Neurotropic Enterovirus Infections in the Central Nervous System
Abstract
:1. Introduction
2. Neurological Diseases Associated with Neurotropic Enteroviruses
3. Invasion of the Central Nervous System
4. Tropism of Neurotropic Enteroviruses in the Nervous System
5. Susceptible Cells for Neurotropic Enteroviruses
6. Receptors Associated with Neurotropic Enterovirus Entry
7. Cytokine and Chemokine Production in the CNS upon Enteroviral Infection
8. Persistent Infection of Neurotropic Enteroviruses
9. Enteroviral Infections Induced Apoptosis and Autophagy
10. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Michos, A.G.; Syriopoulou, V.P.; Hadjichristodoulou, C.; Daikos, G.L.; Lagona, E.; Douridas, P.; Mostrou, G.; Theodoridou, M. Aseptic meningitis in children: Analysis of 506 cases. PLoS ONE 2007, 2, e674. [Google Scholar] [CrossRef]
- Gear, J.H. Nonpolio causes of polio-like paralytic syndromes. Rev. Infect. Dis. 1984, 6, S379–S384. [Google Scholar] [CrossRef]
- Berlin, L.E.; Rorabaugh, M.L.; Heldrich, F.; Roberts, K.; Doran, T.; Modlin, J.F. Aseptic meningitis in infants <2 years of age: Diagnosis and etiology. J. Infect. Dis. 1993, 168, 888–892. [Google Scholar] [PubMed]
- Sin, J.; Mangale, V.; Thienphrapa, W.; Gottlieb, R.A.; Feuer, R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015, 484, 288–304. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, G.; Xia, A.; Wang, X.; Cai, J.; Gao, Q.; Yuan, S.; He, G.; Zhang, S.; Zeng, M.; et al. Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: Epidemiology, clinical feature and diagnosis. Virol. J. 2015, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Jennings, G.H.; Hamilton-Paterson, J.L.; MacCallum, F.O. Fatal case of polio-encephalitis due to poliomyelitis virus. Br. Med. J. 1949, 2, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Bissel, S.J.; Winkler, C.C.; DelTondo, J.; Wang, G.; Williams, K.; Wiley, C.A. Coxsackievirus B4 myocarditis and meningoencephalitis in newborn twins. Neuropathology 2014, 34, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ryu, W.S.; Kang, B.; Hong, J.; Hwang, S.; Kim, J.; Cheon, D.S. Clinical and etiological characteristics of enterovirus 71-related diseases during a recent 2-year period in Korea. J. Clin. Microbiol. 2010, 48, 2490–2494. [Google Scholar] [CrossRef] [PubMed]
- Danthanarayana, N.; Williams, D.T.; Williams, S.H.; Thevanesam, V.; Speers, D.J.; Fernando, M.S. Acute meningoencephalitis associated with echovirus 9 infection in Sri Lanka, 2009. J. Med. Virol. 2015, 87, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Meinick, J.L. Enterovirus type 71 infections: A varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev. Infect. Dis. 1984, 6, S387–S390. [Google Scholar] [CrossRef]
- Greninger, A.L.; Naccache, S.N.; Messacar, K.; Clayton, A.; Yu, G.; Somasekar, S.; Federman, S.; Stryke, D.; Anderson, C.; Yagi, S.; et al. A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–2014): A retrospective cohort study. Lancet Infect. Dis. 2015, 15, 671–682. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, Y.C.; Huang, C.C.; Lui, C.C.; Lee, K.W.; Huang, S.C. Acute flaccid paralysis in infants and young children with enterovirus 71 infection: MR imaging findings and clinical correlates. AJNR Am. J. Neuroradiol. 2001, 22, 200–205. [Google Scholar] [PubMed]
- Crone, M.; Tellier, R.; Wei, X.C.; Kuhn, S.; Vanderkooi, O.G.; Kim, J.; Mah, J.K.; Mineyko, A. Polio-like illness associated with outbreak of upper respiratory tract infection in children. J. Child Neurol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Tseng, H.W.; Wang, S.M.; Wang, J.R.; Su, I.J. An outbreak of enterovirus 71 infection in Taiwan, 1998: Epidemiologic and clinical manifestations. J. Clin. Virol. 2000, 17, 23–30. [Google Scholar] [CrossRef]
- Chumakov, M.; Voroshilova, M.; Shindarov, L.; Lavrova, I.; Gracheva, L.; Koroleva, G.; Vasilenko, S.; Brodvarova, I.; Nikolova, M.; Gyurova, S.; et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch. Virol. 1979, 60, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Shindarov, L.M.; Chumakov, M.P.; Voroshilova, M.K.; Bojinov, S.; Vasilenko, S.M.; Iordanov, I.; Kirov, I.D.; Kamenov, E.; Leshchinskaya, E.V.; Mitov, G.; et al. Epidemiological, clinical and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J. Hyg. Epidemiol. Microbiol. Immunol. 1979, 23, 284–295. [Google Scholar] [PubMed]
- Hu, Y.; Jiang, L.; Peng, H.L. Clinical analysis of 134 children with nervous system damage caused by Enterovirus 71 infection. Pediatr. Infect. Dis. J. 2015, 34, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Ayscue, P.; van Haren, K.; Sheriff, H.; Waubant, E.; Waldron, P.; Yagi, S.; Yen, C.; Clayton, A.; Padilla, T.; Pan, C.; et al. Acute flaccid paralysis with anterior myelitis—California, June 2012–June 2014. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 903–906. [Google Scholar] [PubMed]
- Messacar, K.; Abzug, M.J.; Dominguez, S.R. 2014 outbreak of enterovirus D68 in North America. J. Med. Virol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Horner, L.M.; Poulter, M.D.; Brenton, J.N.; Turner, R.B. Acute flaccid paralysis associated with novel enterovirus C105. Emerg. Infect. Dis. 2015, 21, 1858–1860. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kang, B.; Hwang, S.; Lee, S.W.; Cheon, D.S.; Kim, K.; Jeong, Y.S.; Hyeon, J.Y. Clinical and enterovirus findings associated with acute flaccid paralysis in the Republic of Korea during the recent decade. J. Med. Virol. 2014, 86, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- McMinn, P.; Stratov, I.; Nagarajan, L.; Davis, S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin. Infect. Dis. 2001, 32, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Elder, G.; Hallett, M.; Ravits, J.; Baker, M.; Papadopoulos, N.; Albrecht, P.; Sever, J. A long-term follow-up study of patients with post-poliomyelitis neuromuscular symptoms. N. Engl. J. Med. 1986, 314, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, J.L.; Alexander, M.A.; Kitts, E.L.; Swan, B.E.; Klein, M.J.; Bauer, R.E. Late effects of poliomyelitis. Arch. Phys. Med. Rehabil. 1987, 68, 4–7. [Google Scholar] [PubMed]
- Chou, I.C.; Lin, C.C.; Kao, C.H. Enterovirus encephalitis increases the risk of attention deficit hyperactivity disorder: A taiwanese population-based case-control study. Medicine 2015, 94, e707. [Google Scholar] [CrossRef] [PubMed]
- Gau, S.S.; Chang, L.Y.; Huang, L.M.; Fan, T.Y.; Wu, Y.Y.; Lin, T.Y. Attention-deficit/hyperactivity-related symptoms among children with enterovirus 71 infection of the central nervous system. Pediatrics 2008, 122, e452–e458. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.; Huang, L.M.; Gau, S.S.; Wu, Y.Y.; Hsia, S.H.; Fan, T.Y.; Lin, K.L.; Huang, Y.C.; Lu, C.Y.; Lin, T.Y. Neurodevelopment and cognition in children after enterovirus 71 infection. N. Engl. J. Med. 2007, 356, 1226–1234. [Google Scholar] [CrossRef]
- Euscher, E.; Davis, J.; Holzman, I.; Nuovo, G.J. Coxsackie virus infection of the placenta associated with neurodevelopmental delays in the newborn. Obstet. Gynecol. 2001, 98, 1019–1026. [Google Scholar] [CrossRef]
- Ohka, S.; Matsuda, N.; Tohyama, K.; Oda, T.; Morikawa, M.; Kuge, S.; Nomoto, A. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J. Virol. 2004, 78, 7186–7198. [Google Scholar] [CrossRef]
- Gromeier, M.; Wimmer, E. Mechanism of injury-provoked poliomyelitis. J. Virol. 1998, 72, 5056–5060. [Google Scholar] [PubMed]
- Ohka, S.; Nihei, C.; Yamazaki, M.; Nomoto, A. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway. Front. Microbiol. 2012, 3, 147. [Google Scholar] [CrossRef] [PubMed]
- Coyne, C.B.; Kim, K.S.; Bergelson, J.M. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 2007, 26, 4016–4028. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Yao, Y.C.; Lin, S.C.; Lee, Y.P.; Wang, Y.F.; Wang, J.R.; Liu, C.C.; Lei, H.Y.; Yu, C.K. Retrograde axonal transport: A major transmission route of enterovirus 71 in mice. J. Virol. 2007, 81, 8996–9003. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.A.; Bohmwald, K.; Céspedes, P.F.; Gómez, R.S.; Riquelme, S.A.; Cortés, C.M.; Valenzuela, J.A.; Sandoval, R.A.; Pancetti, F.C.; Bueno, S.M.; et al. Impaired learning resulting from respiratory syncytial virus infection. Proc. Natl. Acad. Sci. USA 2013, 110, 9112–9117. [Google Scholar] [CrossRef] [PubMed]
- Freistadt, M.S.; Fleit, H.B.; Wimmer, E. Poliovirus receptor on human blood cells: A possible extraneural site of poliovirus replication. Virology 1993, 195, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Freistadt, M.S.; Eberle, K.E. Correlation between poliovirus type 1 Mahoney replication in blood cells and neurovirulence. J. Virol. 1996, 70, 6486–6492. [Google Scholar] [PubMed]
- Squires, R.F. How a poliovirus might cause schizophrenia: A commentary on Eagles’ hypothesis. Neurochem. Res. 1997, 22, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Tabor-Godwin, J.M.; Ruller, C.M.; Bagalso, N.; An, N.; Pagarigan, R.R.; Harkins, S.; Gilbert, P.E.; Kiosses, W.B.; Gude, N.A.; Cornell, C.T.; et al. A novel population of myeloid cells responding to coxsackievirus infection assists in the dissemination of virus within the neonatal CNS. J. Neurosci. 2010, 30, 8676–8691. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pu, J.; Huang, H.; Zhang, Y.; Liu, L.; Yang, E.; Zhou, X.; Ma, N.; Zhao, H.; Wang, L.; et al. EV71-infected CD14+ cells modulate the immune activity of T lymphocytes in Rhesus monkeys. Emerg. Microbes Infect. 2013, 2, e44. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Wang, S.W.; Tung, Y.Y.; Chen, S.H. Enterovirus 71 infection of human dendritic cells. Exp. Biol. Med. 2009, 234, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Yeh, T.M. Enterovirus 71 Infection of human immune cells induces the production of proinflammatory cytokines. J. Biomed. Lab. Sci. 2009, 21, 82–90. [Google Scholar]
- Kramer, M.; Schulte, B.M.; Toonen, L.W.; de Bruijni, M.A.; Galama, J.M.; Adema, G.J.; van Kuppeveld, F.J. Echovirus infection causes rapid loss-of-function and cell death in human dendritic cells. Cell. Microbiol. 2007, 9, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Jubelt, B.; Gallez-Hawkins, G.; Narayan, O.; Johnson, R.T. Pathogenesis of human poliovirus infection in mice. I. Clinical and pathological studies. J. Neuropathol. Exp. Neurol. 1980, 39, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Arita, M.; Nagata, N.; Sata, T.; Miyamura, T.; Shimizu, H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J. Gen. Virol. 2006, 87, 3317–3327. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.J.; Yang, F.L.; Hsu, Y.H.; Chen, H.I. Mechanism of fulminant pulmonary edema caused by enterovirus 71. Clin. Infect. Dis. 2004, 38, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.; Audibert, G.; McDonnell, J.; Mertes, P.M. Neurogenic pulmonary edema. Acta Anaesthesiol. Scand. 2007, 51, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.A.; Thaker, H.M.; Racaniello, V.R. Transgenic mouse model for echovirus myocarditis and paralysis. Proc. Natl. Acad. Sci. USA 2003, 100, 15906–15911. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, C.; Chen, D.E.; Song, Z. Coxsackievirus-induced acute neonatal central nervous system disease model. Int. J. Clin. Exp. Pathol. 2014, 7, 858–869. [Google Scholar] [PubMed]
- Puccini, J.M.; Ruller, C.M.; Robinson, S.M.; Knopp, K.A.; Buchmeier, M.J.; Doran, K.S.; Feuer, R. Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. Lab. Investig. 2014, 94, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Feuer, R.; Pagarigan, R.R.; Harkins, S.; Liu, F.; Hunziker, I.P.; Whitton, J.L. Coxsackievirus targets proliferating neuronal progenitor cells in the neonatal CNS. J. Neurosci. 2005, 25, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Pastula, D.M.; Aliabadi, N.; Haynes, A.K.; Messacar, K.; Schreiner, T.; Maloney, J.; Dominguez, S.R.; Davizon, E.S.; Leshem, E.; Fischer, M.; et al. Acute neurologic illness of unknown etiology in children—Colorado, August–September 2014. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 901–902. [Google Scholar] [PubMed]
- Koike, S.; Taya, C.; Kurata, T.; Abe, S.; Ise, I.; Yonekawa, H.; Nomoto, A. Transgenic mice susceptible to poliovirus. Proc. Natl. Acad. Sci. USA 1991, 88, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Slobodeniuk, V.K.; Glinskikh, N.P.; Grigor’eva, IuV.; Tulakina, L.G.; Pashnina, N.I.; Patsuk, N.V.; Rumako, E.N. Neuropathogenecity of Coxsackie B virus strains isolated from children with clinical manifestations of aseptic meningitis in different year. Vopr. Virusol. 2009, 54, 33–36. [Google Scholar] [PubMed]
- Yoon, S.Y.; Ha, Y.E.; Choi, J.E.; Ahn, J.; Lee, H.; Kweon, H.S.; Lee, J.Y.; Kim, D.H. Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons. J. Virol. 2008, 82, 11976–11978. [Google Scholar] [CrossRef]
- Ahn, J.; Choi, J.; Joo, C.H.; Seo, I.; Kim, D.; Yoon, S.Y.; Kim, Y.K.; Lee, H. Susceptibility of mouse primary cortical neuronal cells to coxsackievirus B. J. Gen. Virol. 2004, 85, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, G.; Li, W.; Zhang, D.; Chen, X.; Xin, G.; Jiang, Z.; Li, K. Induction of cytopathic effect and cytokines in coxsackievirus B3-infected murine astrocytes. Virol. J. 2013, 10, 157. [Google Scholar] [CrossRef]
- Yan, J.J.; Wang, J.R.; Liu, C.C.; Yang, H.B.; Su, I.J. An outbreak of enterovirus 71 infection in Taiwan 1998: A comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J. Clin. Virol. 2000, 17, 13–22. [Google Scholar] [CrossRef]
- Ong, K.C.; Badmanathan, M.; Devi, S.; Leong, K.L.; Cardosa, M.J.; Wong, K.T. Pathologic characterization of a murine model of human Enterovirus 71 encephalomyelitis. J. Neuropathol. Exp. Neurol. 2008, 67, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Tsueng, G.; Tabor-Godwin, J.M.; Gopal, A.; Ruller, C.M.; Deline, S.; An, N.; Frausto, R.F.; Milner, R.; Crocker, S.J.; Whitton, J.L.; et al. Coxsackievirus preferentially replicates and induces cytopathic effects in undifferentiated neural progenitor cells. J. Virol. 2011, 85, 5718–5732. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.I.; Lin, J.Y.; Chen, H.H.; Yeh, S.B.; Kuo, R.L.; Weng, K.F.; Shih, S.R. Enterovirus 71 infects brain-derived neural progenitor cells. Virology 2014, 468–470, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Feuer, R.; Mena, I.; Pagarigan, R.; Slifka, M.K.; Whitton, J.L. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J. Virol. 2002, 76, 4430–4440. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, C.L.; Wimmer, E.; Racaniello, V.R. Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989, 56, 855–865. [Google Scholar] [CrossRef]
- Ren, R.; Racaniello, V.R. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 1992, 66, 296–304. [Google Scholar] [PubMed]
- Gromeier, M.; Solecki, D.; Patel, D.D.; Wimmer, E. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: Implications for the pathogenesis of poliomyelitis. Virology 2000, 273, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Leon-Monzon, M.E.; Illa, I.; Dalakas, M.C. Expression of poliovirus receptor in human spinal cord and muscle. Ann. N. Y. Acad. Sci. 1995, 753, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Plevka, P.; Hafenstein, S.; Harris, K.G.; Cifuente, J.O.; Zhang, Y.; Bowman, V.D.; Chipman, P.R.; Bator, C.M.; Lin, F.; Medof, M.E.; et al. Interaction of decay-accelerating factor with echovirus 7. J. Virol. 2010, 84, 12665–12674. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, N.A.; Kaufman, R.; Lublin, D.M.; Ward, T.; Pipkin, P.A.; Minor, P.D.; Evans, D.J.; Almond, J.W. Characterization of the echovirus 7 receptor: Domains of CD55 critical for virus binding. J. Virol. 1995, 69, 5497–5501. [Google Scholar] [PubMed]
- Sobo, K.; Rubbia-Brandt, L.; Brown, T.D.; Stuart, A.D.; McKee, T.A. Decay-accelerating factor binding determines the entry route of echovirus 11 in polarized epithelial cells. J. Virol. 2011, 85, 12376–12386. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Dalle Lucca, S.L.; Simovic, M.; Tsokos, G.C.; Dalle Lucca, J.J. Decay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury. J. Neuroinflammation 2010, 7, 24. [Google Scholar] [CrossRef]
- Riabi, S.; Harrath, R.; Gaaloul, I.; Bouslama, L.; Nasri, D.; Aouni, M.; Pillet, S.; Pozzetto, B. Study of Coxsackie B viruses interactions with coxsackie adenovirus receptor and decay-accelerating factor using human CaCo-2 cell line. J. Biomed. Sci. 2014, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg, R.W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [Google Scholar] [CrossRef]
- Salinas, S.; Bilsland, L.G.; Henaff, D.; Weston, A.E.; Keriel, A.; Schiavo, G.; Kremer, E.J. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathog. 2008, 5, e1000442. [Google Scholar] [CrossRef] [PubMed]
- Salinas, S.; Zussy, C.; Loustalot, F.; Henaff, D.; Menendez, G.; Morton, P.E.; Parsons, M.; Schiavo, G.; Kremer, E.J. Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomain- and dynamin-dependent endocytosis and lysosomal targeting. J. Biol. Chem. 2014, 289, 680–695. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jee, Y.; Seo, I.; Yoon, S.Y.; Kim, D.; Kim, Y.K.; Lee, H. Primary neurons become less susceptible to coxsackievirus B5 following maturation: The correlation with the decreased level of CAR expression on cell surface. J. Med. Virol. 2008, 80, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Yamashita, Y.; Li, J.; Hanagata, N.; Minowa, T.; Takemura, T.; Koike, S. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 2009, 15, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Shimojima, M.; Tano, Y.; Miyamura, T.; Wakita, T.; Shimizu, H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 2009, 15, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Chou, Y.T.; Wu, C.N.; Ho, M.S. Annexin II binds to capsid protein VP1 of Enterovirus 71 and enhances viral infectivity. J. Virol. 2011, 8, 11809–11820. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chuang, H.; Yang, K.D. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol. J. 2009, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Pourianfar, H.R.; Poh, C.L.; Fecondo, J.; Grollo, L. In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71. Virus Res. 2012, 169, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Kuronita, T.; Eskelinen, E.L.; Fujita, H.; Saftig, P.; Himeno, M.; Tanaka, Y. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J. Cell Sci. 2002, 115, 4117–4131. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Nagata, N.; Sato, Y.; Ong, K.C.; Wong, K.T.; Yamayoshi, S.; Shimanuki, M.; Shitara, H.; Taya, C.; Koike, S. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 14753–14758. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.Y.; Guo, L.; Huang, D.Y.; Chang, X.L.; Qiu, Q.C. Distribution of EV71 receptors SCARB2 and PSGL-1 in human tissues. Virus Res. 2014, 190, 40–52. [Google Scholar] [CrossRef]
- Zhao, W.; Lu, B. Expression of annexin A2 in GABAergic interneurons in the normal rat brain. J. Neurochem. 2007, 100, 1211–1223. [Google Scholar] [CrossRef]
- Finkelstein, S.D. Polioviruses. In Apthology of Infectious Diseases; Connor, D.H., Ed.; Appleton and Lange: Stamford, CT, USA, 1997. [Google Scholar]
- Ogra, P.L.; Ogra, S.S.; Al-Nakeeb, S.; Coppola, P.R. Local antibody response to experimental poliovirus infection in the central nervous system of Rhesus monkeys. Infect. Immun. 1973, 8, 931–937. [Google Scholar] [PubMed]
- Hsueh, C.; Jung, S.M.; Shih, S.R.; Kuo, T.T.; Shieh, W.J.; Zaki, S.; Lin, T.Y.; Chang, L.Y.; Ning, H.C.; Yen, D.C. Acute encephalomyelitis during an outbreak of enterovirus type 71 infection in Taiwan: Report of an autopsy case with pathologic, immunofluorescence, and molecular studies. Mod. Pathol. 2000, 13, 1200–1205. [Google Scholar] [CrossRef]
- Frohman, E.M.; Racke, M.K.; Raine, C.S. Multiple sclerosis—The plaque and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef]
- Carrithers, M.D.; Visintin, I.; Kang, S.J.; Janeway, C.A., Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000, 123, 1092–1101. [Google Scholar] [CrossRef]
- Duan, H.; Xing, S.; Luo, Y.; Feng, L.; Gramaglia, I.; Zhang, Y.; Lu, D.; Zeng, Q.; Fan, K.; Feng, J.; et al. Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS. Sci. Rep. 2013, 3, 1687. [Google Scholar] [CrossRef] [PubMed]
- Feuer, R.; Ruller, C.M.; An, N.; Tabor-Godwin, J.M.; Rhoades, R.E.; Maciejewski, S.; Pagarigan, R.R.; Cornell, C.T.; Crocker, S.J.; Kiosses, W.B.; et al. Viral persistence and chronic immunopathology in the adult central nervous system following Coxsackievirus infection during the neonatal period. J. Virol. 2009, 83, 9356–9369. [Google Scholar] [CrossRef] [PubMed]
- Cheeran, M.C.; Mutnal, M.B.; Hu, S.; Armien, A.; Lokensgard, J.R. Reduced lymphocyte infiltration during cytomegalovirus brain infection of interleukin-10-deficient mice. J. Neurovirol. 2009, 15, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Lei, H.Y.; Huang, K.J.; Wu, J.M.; Wang, J.R.; Yu, C.K.; Su, I.J.; Liu, C.C. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: Roles of cytokines and cellular immune activation in patients with pulmonary edema. J. Infect. Dis. 2003, 188, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.S.; McArdle, F.; Kyle, J.A.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [PubMed]
- Ida-Hosonuma, M.; Iwasaki, T.; Yoshikawa, T.; Nagata, N.; Sato, Y.; Sata, T.; Yoneyama, M.; Fujita, T.; Taya, C.; Yonekawa, H.; et al. The α/β interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 2005, 79, 4460–4469. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hsia, S.H.; Huang, Y.C.; Wu, C.T.; Chang, L.Y. Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin. Infect. Dis. 2003, 36, 269–274. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chang, L.Y.; Huang, Y.C.; Hsu, K.H.; Chiu, C.H.; Yang, K.D. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: Implications for early recognition and therapy. Acta Paediatrica 2002, 91, 632–635. [Google Scholar] [CrossRef]
- Wang, S.M.; Lei, H.Y.; Su, L.Y.; Wu, J.M.; Yu, C.K.; Wang, J.R.; Liu, C.C. Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin. Microbiol. Infect. 2007, 13, 677–682. [Google Scholar] [CrossRef]
- Khong, W.X.; Foo, D.G.; Trasti, S.L.; Tan, E.L.; Alonso, S. Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J. Virol. 2011, 85, 3067–3076. [Google Scholar] [CrossRef]
- Huang, S.W.; Lee, Y.P.; Hung, Y.T.; Lin, C.H.; Chuang, J.I.; Lei, H.Y.; Su, I.J.; Yu, C.K. Exogenous interleukin-6, interleukin-13, and interferon-γ provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice. Respir. Res. 2011, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Maruta, K.; Burkart, V.; Gillis, S.; Kolb, H. IL-1 and IFN-γ increase vascular permeability. Immunology 1988, 64, 301–305. [Google Scholar] [PubMed]
- Glück, B.; Schmidtke, M.; Merkle, I.; Stelzner, A.; Gemsa, D. Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice. J. Mol. Cell. Cardiol. 2001, 33, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.M.; Lanke, K.H.; Piganelli, J.D.; Kers-Rebel, E.D.; Bottino, R.; Trucco, M.; Huijbens, R.J.; Radstake, T.R.; Engelse, M.A.; de Koning, E.J.; et al. Cytokine and chemokine production by human pancreatic islets upon enterovirus infection. Diabetes 2012, 61, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C. Post-polio syndrome spinal cord pathology. Case report with immunopathology. Ann. N. Y. Acad. Sci. 1995, 753, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Julien, J.; Leparc-Goffart, I.; Lina, B.; Fuchs, F.; Foray, S.; Janatova, I.; Aymard, M.; Kopecka, H. Postpolio syndrome: Poliovirus persistence is involved in the pathogenesis. J. Neurol. 1999, 246, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ma, X.J.; Wan, J.F.; Liu, Y.H.; Han, Y.L.; Chen, C.; Tian, C.; Gao, C.; Wang, M.; Dong, X.P. Long persistence of EV71 specific nucleotides in respiratory and feces samples of the patients with hand-foot-mouth disease after recovery. BMC Infect. Dis. 2010, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Chapman, N.M.; Kim, K.S. Persistent coxsackievirus infection: Enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr. Top. Microbiol. Immunol. 2008, 323, 275–292. [Google Scholar] [PubMed]
- Lipton, H.L. Theiler’s virus infection in mice: An unusual biphasic disease process leading to demyelination. Infect. Immun. 1975, 11, 1147–1155. [Google Scholar] [PubMed]
- Kim, K.S.; Tracy, S.; Tapprich, W.; Bailey, J.; Lee, C.K.; Kim, K.; Barry, W.H.; Chapman, N.M. 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J. Virol. 2005, 79, 7024–7041. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Chapman, N.M.; Tracy, S. Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions. J. Virol. 2008, 82, 2033–2037. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.E.; Kirkegaard, K. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J. Virol. 1991, 65, 3384–3387. [Google Scholar] [PubMed]
- Tam, P.E.; Messner, R.P. Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: Viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J. Virol. 1999, 73, 10113–10121. [Google Scholar] [PubMed]
- Deonarain, R.; Cerullo, D.; Fuse, K.; Liu, P.P.; Fish, E.N. Protective role for interferon-β in coxsackievirus B3 infection. Circulation 2004, 110, 3540–3543. [Google Scholar] [CrossRef]
- Ng, C.T.; Sullivan, B.M.; Teijaro, J.R.; Lee, A.M.; Welch, M.; Rice, S.; Sheehan, K.C.; Schreiber, R.D.; Oldstone, M.B. Blockade of interferon β, but not interferon α, signaling controls persistent viral infection. Cell Host Microbe 2015, 17, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Colbère-Garapin, F.; Christodoulou, C.; Crainic, R.; Pelletier, I. Persistent poliovirus infection of human neuroblastoma cells. Proc. Natl. Acad. Sci. USA 1989, 86, 7590–7594. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Shu, B.; Liu, X.; Zhang, Z.; Liu, Y.; Bai, B.; Hu, Q.; Mao, P.; Wang, H. Human astrocytic cells support persistent coxsackievirus B3 infection. J. Virol. 2013, 87, 12407–12421. [Google Scholar] [CrossRef]
- Berger, M.M.; Kopp, N.; Vital, C.; Redl, B.; Aymard, M.; Lina, B. Detection and cellular localization of enterovirus RNA sequences in spinal cord of patients with ALS. Neurology 2000, 54, 20–25. [Google Scholar] [CrossRef]
- Woodall, C.J.; Riding, M.H.; Graham, D.I.; Clements, G.B. Sequences specific for enterovirus detected in spinal cord from patients with motor neurone disease. BMJ 1994, 308, 1541–1543. [Google Scholar] [CrossRef]
- Swanson, N.R.; Fox, S.A.; Mastaglia, F.L. Search for persistent infection with poliovirus or other enteroviruses in amyotrophic lateral sclerosis-motor neurone disease. Neuromuscul. Disord. 1995, 5, 457–465. [Google Scholar] [CrossRef]
- Daley, J.K.; Gechman, L.A.; Skipworth, J.; Rall, G.F. Poliovirus replication and spread in primary neuron cultures. Virology 2005, 340, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, L.C.; Liu, L.D.; Liao, Y.; Dong, C.H.; Li, A.H. Biological effects of EV71 infection in neural cells. J. Biophys. Chem. 2010, 1, 113. [Google Scholar] [CrossRef]
- Girard, S.; Couderc, T.; Destombes, J.; Thiesson, D.; Delpeyroux, F.; Blondel, B. Poliovirus induces apoptosis in the mouse central nervous system. J. Virol. 1999, 73, 6066–6072. [Google Scholar] [PubMed]
- Tabor-Godwin, J.M.; Tsueng, G.; Sayen, M.R.; Gottlieb, R.A.; Feuer, R. The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy 2012, 8, 938–953. [Google Scholar] [CrossRef] [PubMed]
- Tolskaya, E.A.; Romanova, L.I.; Kolesnikova, M.S.; Ivannikova, T.A.; Smirnova, E.A.; Raikhlin, N.T.; Agol, V.I. Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J. Virol. 1995, 69, 1181–1189. [Google Scholar] [PubMed]
- Carthy, C.M.; Yanagawa, B.; Luo, H.; Granville, D.J.; Yang, D.; Cheung, P.; Cheung, C.; Esfandiarei, M.; Rudin, C.M.; Thompson, C.B.; et al. Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology 2003, 313, 147–157. [Google Scholar] [CrossRef]
- Rasilainen, S.; Ylipaasto, P.; Roivainen, M.; Bouwens, L.; Lapatto, R.; Hovi, T.; Otonkoski, T. Mechanisms of β cell death during restricted and unrestricted enterovirus infection. J. Med. Virol. 2004, 72, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Kuo, R.L.; Kung, S.H.; Hsu, Y.Y.; Liu, W.T. Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J. Gen. Virol. 2002, 83, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Tolskaya, E.A.; Romanova, L.I.; Kolesnikova, M.S.; Ivannikova, T.A.; Agol, V.I. A final checkpoint in the drug-promoted and poliovirus-promoted apoptosis is under post-translational control by growth factors. J. Cell. Biochem. 1996, 6, 422–431. [Google Scholar] [CrossRef]
- Agol, V.I.; Belov, G.A.; Bienz, K.; Egger, D.; Kolesnikova, M.S.; Raikhlin, N.T.; Romanova, L.I.; Smirnova, E.A.; Tolskaya, E.A. Two types of death of poliovirus-infected cells: Caspase involvement in the apoptosis but not cytopathic effect. Virology 1998, 252, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Romanova, L.I.; Belov, G.A.; Lidsky, P.V.; Tolskaya, E.A.; Kolesnikova, M.S.; Evstafieva, A.G.; Vartapetian, A.B.; Egger, D.; Bienz, K.; Agol, V.I. Variability in apoptotic response to poliovirus infection. Virology 2005, 33, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Autret, A.; Martin-Latil, S.; Mousson, L.; Wirotius, A.; Petit, F.; Arnoult, D.; Colbère-Garapin, F.; Estaquier, J.; Blondel, B. Poliovirus induces Bax-dependent cell death mediated by c-Jun NH2-terminal kinase. J. Virol. 2007, 81, 7504–7516. [Google Scholar] [CrossRef] [PubMed]
- Brisac, C.; Téoulé, F.; Autret, A.; Pelletier, I.; Colbère-Garapin, F.; Brenner, C.; Lemaire, C.; Blondel, B. Calcium flux between the endoplasmic reticulum and mitochondrion contributes to poliovirus-induced apoptosis. J. Virol. 2010, 84, 12226–12235. [Google Scholar] [CrossRef] [PubMed]
- Feuer, R.; Mena, I.; Pagarigan, R.R.; Harkins, S.; Hassett, D.E.; Whitton, J.L. Coxsackievirus B3 and the neonatal CNS: The roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am. J. Pathol. 2003, 163, 1379–1393. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, J.; Wong, B.W.; Si, X.; Wong, J.; Yang, D.; Luo, H. Inhibition of glycogen synthase kinase 3beta suppresses coxsackievirus-induced cytopathic effect and apoptosis via stabilization of β-catenin. Cell Death Differ. 2005, 12, 1097–1106. [Google Scholar] [CrossRef]
- Ruller, C.M.; Tabor-Godwin, J.M.; van Deren, D.A., Jr.; Robinson, S.M.; Maciejewski, S.; Gluhm, S.; Gilbert, P.E.; An, N.; Gude, N.A.; Sussman, M.A.; et al. Neural stem cell depletion and CNS developmental defects after enteroviral infection. Am. J. Pathol. 2012, 180, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Sadusky, T.; Li, Y.; Coulton, G.R.; Zhang, H.; Archard, L.C. Altered expression of Bag-1 in Coxsackievirus B3 infected mouse heart. Cardiovasc. Res. 2001, 50, 46–55. [Google Scholar] [CrossRef]
- Wong, J.; Zhang, J.; Si, X.; Gao, G.; Mao, I.; McManus, B.M.; Luo, H. Autophagosome supports coxsackievirus B3 replication in host cells. J. Virol. 2008, 82, 9143–9153. [Google Scholar] [CrossRef]
- Delorme-Axford, E.; Morosky, S.; Bomberger, J.; Stolz, D.B.; Jackson, W.T.; Coyne, C.B. BPIFB3 regulates autophagy and coxsackievirus B replication through a noncanonical pathway independent of the core initiation machinery. MBio 2014, 5, e02147. [Google Scholar] [CrossRef]
- Koenig, A.; Sateriale, A.; Budd, R.C.; Huber, S.A.; Buskiewicz, I.A. The role of sex differences in autophagy in the heart during coxsackievirus B3-induced myocarditis. J. Cardiovasc. Transl. Res. 2014, 7, 182–191. [Google Scholar] [CrossRef]
- Chen, T.C.; Lai, Y.K.; Yu, C.K.; Juang, J.L. Enterovirus 71 triggering of neuronal apoptosis through activation of Abl-Cdk5 signalling. Cell. Microbiol. 2007, 9, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, H.; Xu, F.; Huang, Y.; Liu, Z.; Liu, T. Enterovirus 71 induces apoptosis of SH-SY5Y human neuroblastoma cells through stimulation of endogenous microRNA let-7b expression. Mol. Med. Rep. 2015, 12, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Chang, C.L.; Wang, P.S.; Tsai, Y.; Liu, H.S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J. Med. Virol. 2009, 81, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Wang, P.S.; Wang, J.R.; Liu, H.S. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. J. Biomed. Sci. 2014, 21, 80. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-I.; Shih, S.-R. Neurotropic Enterovirus Infections in the Central Nervous System. Viruses 2015, 7, 6051-6066. https://doi.org/10.3390/v7112920
Huang H-I, Shih S-R. Neurotropic Enterovirus Infections in the Central Nervous System. Viruses. 2015; 7(11):6051-6066. https://doi.org/10.3390/v7112920
Chicago/Turabian StyleHuang, Hsing-I, and Shin-Ru Shih. 2015. "Neurotropic Enterovirus Infections in the Central Nervous System" Viruses 7, no. 11: 6051-6066. https://doi.org/10.3390/v7112920
APA StyleHuang, H.-I., & Shih, S.-R. (2015). Neurotropic Enterovirus Infections in the Central Nervous System. Viruses, 7(11), 6051-6066. https://doi.org/10.3390/v7112920