KUDELSKI
SECURITY

o

Zilliga's Schnorr Signatures Security Audit

Final Report, 2018-12-19

FOR PUBLIC RELEASE

Contents

1 Summary 2
2 Findings 3
2.1 ZILLIQ-F-001: the k values are not generated using state of the art methods 3
2.2 ZILLIQ-F-002: the CommitSecret constructor introduces a modulo bias . . 4
2.3 ZILLIQ-F-003: the last signer can forge multi-signatures 5
2.4 ZILLIQ-F-004: lack of boundary checking in the TS version 6
3 Observations 8
3.1 ZILLIQ-O-001: BN_rand_rangeisnotused 8
3.2 ZILLIQ-0-002: The signature scheme differs from the quoted reference
document e e e e e 8
3.3 ZILLIQ-0O-003: The current implementation is not compatible with key
FECOVRIY & v v i e 9
3.4 ZILLIQ-0O-004: Exceptions are handled but not thrown 9
3.5 ZILLIQ-O-005: Code quality could beimproved 9
3.6 ZILLIQ-0-006: The multi-signature is using random commits 10

4 About 1M

1 Summary

Zilliga is a new blockchain platform that is designed to scale in transaction rates. It
features EC-Schnorr based multi-signatures to reduce the signature size when multiple
signatures are required on a message.

Zilliga hired Kudelski Security to perform a security assessment of their Schnorr
implementation, providing access to source code, documentation, and review
guidelines including references to the most critical components.

The repositories concerned are:

* https://github.com/Zilliqa/Zilliqa/tree/master/src/libCrypto
(using branch “master”, commit 292cd0d0 on October 8th)

* https://github.com/Zilliqa/Zilliqa-JavaScript-Library
(using branch “master”, commit 56b3a5f on October 19th).

This document reports the security issues identified and our mitigation
recommendations, as well as our general assessment of the wallet implementation
and architecture. A “Status” section reports the feedback from Zilliga developers, and
includes a reference to the patches related to the issues reported.

We report:

* 1 security issue of high severity
* 1security issue of medium severity
* 2 security issue of low severity

* 6 observations related to the codebase.

The audit was led by Yolan Romailler, Cryptography Engineer, and involved 5 person-
days of work.

https://github.com/Zilliqa/Zilliqa/tree/master/src/libCrypto
https://github.com/Zilliqa/Zilliqa-JavaScript-Library

606

607

608

609

610

611

612

613

614

615

616

617

2 Findings

This section reports security issues found during the audit.

The “Status” section includes feedback from the developers received after delivering
our draft report.

2.1 ZILLIQ-F-001: the k values are not generated using state of the
art methods

Severity: Low
Description

The security of the Schnorr signature system crucially relies on the randomness of the
value k. Reusing k values, using predictable ones or biased ones can lead to a private
key recovery.

Currently these values are generated using the following code:

// 1. Generate a random k from [1, ..., order-1]
do {
// -1 means no constraint on the MSB of k
// 0 means mo constraint on the LSB of k
err =
(BN_rand(k.get(), BN_num_bits(m_curve.m_order.get()), -1, 0) == 0);
if (err) {
LOG_GENERAL (WARNING, "Random generation failed");

return false;

}
} while ((BN_is_zero(k.get())) ||
(BN_cmp(k.get(), m_curve.m_order.get()) != -1));

39

40

41

42

43

44

45

Schnorr Audit Zilliga

Recommendation

The same method as used by OpenSSL 1.1 in BN_generate_dsa_nonce should be
preferred. This would consist of:

1. In the signature method, instantiate a PRNG.
2. Using BN_ran_range, draw a random value of the bit size of k.

3. Use this value along with the hash of the message and the private key to seed
the PRNG.

4. Generate the value k using this seeded PRNG.

This could be also solved by simply using OpenSSL 1.1 and its BN_generate_dsa_nonce
method.

Status

The Zilliga team has addressed this problem using OpenSSL 1.1 and its
BN_generate_dsa_nonce method, as recommended.

2.2 ZILLIQ-F-002: the CommitSecret constructor introduces a
modulo bias

Severity: Medium

Description

When generating a value commit->secret that should bein [2,...,n — 1], for n the order
of the base point, the current code base is drawing a random value and reducing it
modulo the curve order, which introduces a so-called “modulo bias” in MultiSig. cpp.

do {

const Curve& curve = Schnorr::GetInstance().GetCurve();

err = (BN_rand(m_s.get(), BN_num_bits(curve.m_order.get()), -1, 0) == 0);
if (err) {

LOG_GENERAL (WARNING, "Value to commit rand failed");

break;

FOR PUBLIC RELEASE Page 4 of 11

46

47

48

49

50

51

52

53

Schnorr Audit Zilliga

err = (BN_nnmod(m_s.get(), m_s.get(), curve.m_order.get(), NULL) == 0);

< // This introduces a bias

if (err) {
LOG_GENERAL (WARNING, "Value to commit gen failed");
break;

}

} while (BN_is_zero(m_s.get()) || BN_is_one(m_s.get()));

Notice that this problem is not present in PrivKey, where another method is used,
only in CommitSecret.

Since the CommitSecret values are equivalent to the k values in the multi-signature
case, this could lead to lattice attacks of the same sort that we have already seen
applied to ECDSA k value biases.

Notice that we did not quantify the bias introduced given the short engagement time.

Recommendation

Use OpenSSL's method BN_rand_range instead to securely generate a random integer
in the desired range. Or use the same rejection sampling method as in PrivKey.

Status

The Zilliga team has addressed this problem using OpenSSL's method BN_rand_range
as recommended.

2.3 ZILLIQ-F-003: the last signer can forge multi-signatures

Severity: High

Description

The multi-signature scheme discussed in Zilliga Whitepaper, as it is implemented in
the audited library is vulnerable to forgeries by one of the co-signers and to so-called
“key cancellation”.

Let P; and d; be the public and private keys of a given signer, “the last signer”, let m be
the message to sign and let P, - - -, P, be the public keys of the other signers.

FOR PUBLIC RELEASE Page 5 of 11

Schnorr Audit Zilliga

When generating a multi-signature, if our signer can set his publickey tobe P, — Y1 , P;
then, since the aggregated public key P is computed as being P = [T ; P;, the resulting
aggregated public key would be

n n
P=P—-) P+) Pb=P
i=2 i=2

for which that last signer knows the private key d;.

This means a co-signer is able to perform a key cancellation attack against another
co-signer or even against all other co-signers.

Recommendation

Use either a secure variant such as the one presented in the paper “Simple Schnorr
Multi-Signatures with Applications to Bitcoin™ by Maxwell et al.

Or explicitly verify the binding of the advertised public key with the respective private
key, using the method proposed in the whitepaper.

Status

It appears the verification proposed in the whitepaper, that the public keys are
effectively linked to a valid private key, is performed in a non-audited part of the
codebase. (We recall that this audit was only performed on the libCrypto part of
Zilliga's codebase.) Thus, this should not be exploitable and should not be a concern
for Zilliga.

2.4 ZILLIQ-F-004: lack of boundary checking in the TS version

Severity: Low

Description

In the verify method, the signature values r and s are supposed to be in the range
[1,---,n — 1] for n the order of the base point. However the lower bound is not
enforced in the current TypeScript implementation. This could possibly be exploited
by using invalid values (such as 0) in the signature, depending on the elliptic curve
implementations used, since the input can be controlled by an attacker.

"https://eprint.iacr.org/2018/068.pdf

FOR PUBLIC RELEASE Page 6 of 11

https://eprint.iacr.org/2018/068.pdf

Schnorr Audit Zilliga

Recommendation

Perform all the required boundary checks to ensure the input is strictly within the
expected range.

Status

The Zilliga team has addressed this problem by implementing the required checks.

FOR PUBLIC RELEASE Page 7 of 11

3 Observations

This section reports various observations that are not security issues to be fixed, but
recommendations for improvement or defense-in-depth.

3.1 ZILLIQ-0-001: BN_rand_range is not used

Whenever a random value in a given range is required, the current codebase is using
BN_rand on the range bit size in a while comparing the generated value with the
range value to generate a value in that range. For an example, see the code snippetin
section 2.1.

OpenSSL provides a method doing this, but with more checks called BN_rand_range.
While not a security issue, it might be better to use OpenSSLs method from a
maintainability point of view.

3.2 ZILLIQ-0-002: The signature scheme differs from the quoted
reference document

The scheme is currently deviating from the standard in two points:

* the challenge r value is computed using H(Q, P4, m) instead of H(Q,m). This
is a breaking change that prevents interoperability with other implementations
and which requires custom test vectors to be generated.

« the s value in the signature is created by subtracting the r - d 4 value from the k
value, whereas the document BSI-TR-03111 referred to in the code is using an
addition instead. This makes the current implementation incompatible with an
implementation following the aforementioned document as reference. It is

Schnorr Audit Zilliga

however possible to use the inverted public key as a public key that would then
verify the signatures correctly.

However, these changes do not weaken the scheme and do not constitute a problem
per se.

3.3 ZILLIQ-0-003: The current implementation is not compatible
with key recovery

Since the current implementation is following the specification from BSI-TR-03111
section 4.2.3, the signatures are directly exposing the challenge value r, whereas it
could instead expose the commitment Q = kG, which would allow to perform public
key recovery from the message and the signature, provided the public key is not
hashed into the challenge as currently done and noted above in section 3.2.

This is true since Q = [s]G + [r]Py4, and if r can be computed by knowing only Q and
the message m. One could then compute P4 = [r~1](Q — [s]G), allowing us to derive
the value P4 from the values Q, m and s.

Notice this would require the current r value of a signature to be replaced by the
commitment point Q, and the verification process would need to be changed as well
to be done as in the multi-signature case.

This “feature” might not be desirable and we only report this in order to be as
informative as possible.

3.4 ZILLIQ-0-004: Exceptions are handled but not thrown

In many locations, code exists to handle exceptions that can never occur because none
are thrown. This causes unreachable code and is not good for maintainability.

3.5 ZILLIQ-0O-005: Code quality could be improved

The codebase is using OpenSSL and does so in the best way possible, using the
required clearing methods. Which is a good indicator of good code quality. However,
the codebase contains portions of code that are never visited, such as this if
condition in Schnorr.cpp that is always true, since otherwise the code would have
already returned.

FOR PUBLIC RELEASE Page 9 of 11

697

698

699

Schnorr Audit Zilliga

if (lerr) {

res = (BN_is_zero(result.m_r.get())) || (BN_is_zero(result.m_s.get()));

Other examples include the clearing of certain buffers that are not always required
and yet performed, or variables whose scope might be reduced.

This might be a problem for maintainability. We recommend enforcing code reviews,
shall it not be already the case, in order to increase code quality as much as possible
and to integrate so-called “Continuous Inspection” tools in the development process.

3.6 ZILLIQ-0-006: The multi-signature is using random commits

This means that as long as care has been taken to never re-use a commit value, even if
a previous multi-signature attempt failed, then the signature scheme is not vulnerable
to the derandomization attacks that tend to occur when a deterministic nonce is used
instead of a random value in such schemes.

FOR PUBLIC RELEASE Page 10 of 11

4 About

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs.
Our global reach and cyber solutions focus is reinforced by key international
partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security

route de Geneve, 22-24

1033 Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA 2018, all rights reserved.

"

https://www.kudelskisecurity.com

	Summary
	Findings
	ZILLIQ-F-001: the k values are not generated using state of the art methods
	ZILLIQ-F-002: the CommitSecret constructor introduces a modulo bias
	ZILLIQ-F-003: the last signer can forge multi-signatures
	ZILLIQ-F-004: lack of boundary checking in the TS version

	Observations
	ZILLIQ-O-001: BN_rand_range is not used
	ZILLIQ-O-002: The signature scheme differs from the quoted reference document
	ZILLIQ-O-003: The current implementation is not compatible with key recovery
	ZILLIQ-O-004: Exceptions are handled but not thrown
	ZILLIQ-O-005: Code quality could be improved
	ZILLIQ-O-006: The multi-signature is using random commits

	About

