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In the local video clips, we design Dynamic Graph Transformer
(DGT) that explicitly encodes the visual objects, their relations and
dynamics, for spatial and temporal relation reasoning.

aspects:

* YVideo Encoding:

* Contrastive Learning:

We design separate video and text transformers to encode video and
QA 1nformation respectively for contrastive learning, instead of
multi-modal transformer for answer classification.

e Cross-modal Interaction:

Fine-grained vision-text information communication 1s done by
additional light-weight cross-modal interaction modules. The module
can be operated at different levels to interact with wvideo
representations at different granularity levels (object, frame and clip).
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[llustration of the 4 stages to encode a video clip.
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xV: visual representations, e.g., FP6T

x . textual representations, e.g., Outputs from BERT.

Experiment:
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4260763967-C: Why is the boy in yellow reaching out to things on the green

mat? 0.team uniform 1.watch something in the pool

@assembling parts to build toy 3.keep his belongs Agrab remote control
(a) VGT (O) vs. VGT without DGT (/\)
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4123915842-T: What does the lady i black do after passing something to
the lady in green? @unbuckle 1.walk away

2jadjust the girls clothes 3.pointed at baby 4.clap
(b) VGT (O) vs. VGT with pretraining ([])

mgﬂﬂ&.&mgg

6713120511-T:What does the lady at the top do as the man walked down
the slope? tand near the slope 1.leash

2.speak to the audience 3.position herself to slide 4.follow after the girl

Conclusion:

* We propose video graph transformer to advance VideoQA from
coarse recognition and description to fine-gained visual reasoning in
dynamic scenarios, and we achieve SOTA results on related
benchmarks.

* We propose dynamic graph transformer to encode visual graph
dynamics for relation reasoning 1n space-time. Most importantly, we
demonstrate that contrastive learning significantly outperforms
classification for multi-choice cross-modal video reasoning.

* We are the 1% to shown that pretraining visual graph transformer
can benefit video-language understanding towards a more data-
efficient and fine-grained direction.
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