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Abstract

The increasing popularity of WebAssembly creates a demand
for understanding and reverse engineering WebAssembly bi-
naries. Recovering high-level function types is an important
part of this process. One method to recover types is data-
flow analysis, but it is complex to implement and may re-
quire manual heuristics when logical constraints fall short. In
contrast, this paper presents SNOWWHITE, a learning-based
approach for recovering precise, high-level parameter and
return types for WebAssembly functions. It improves over
prior work on learning-based type recovery by representing
the types-to-predict in an expressive type language, which
can describe a large number of complex types, instead of
the fixed, and usually small type vocabulary used previously.
Thus, recovery of a single type is no longer a classification
task but sequence prediction, for which we build on the suc-
cess of neural sequence-to-sequence models. We evaluate
SNOWWHITE on a new, large-scale dataset of 6.3 million type
samples extracted from 300,905 WebAssembly object files.
The results show the type language is expressive, precisely
describing 1,225 types instead the 7 to 35 types considered in
previous learning-based approaches. Despite this expressive-
ness, our type recovery has high accuracy, exactly matching
44.5% (75.2%) of all parameter types and 57.7% (80.5%) of all
return types within the top-1 (top-5) predictions.

CCS Concepts: » Software and its engineering — Soft-
ware notations and tools; « Security and privacy — Soft-
ware reverse engineering.

Keywords: WebAssembly, type prediction, type recovery,
reverse engineering, debugging information, DWARF, neural
networks, machine learning, dataset, corpus.
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1 Introduction

WebAssembly is a portable bytecode language, with unman-
aged, linear memory, low-level instructions, and near-native
performance [25]. Originally designed for in-browser execu-
tion, it has expanded to many other application domains, in-
cluding server-side code with Node.js, function-as-a-service
cloud computing, standalone WebAssembly VMs, and smart
contract systems. WebAssembly binaries are often compiled
from C and C++, and more recently also from a multitude of
other languages, such as Rust or Go [30].

Because WebAssembly programs are in a low-level, bi-
nary format, understanding them is all but trivial. At the
same time, due to its increasing popularity and the multitude
of application domains, there is ample demand for reverse
engineering WebAssembly code. For example, a developer
integrating a third-party WebAssembly module may want to
better understand its exported functions, or audit it to pre-
vent supply-chain attacks [75]. Security experts may need
to analyze malicious WebAssembly binaries, which, e.g., try
to escape from the browser sandbox [3, 65], or perform un-
solicited cryptocurrency mining [37, 51, 63, 68, 70]. Finally,
good reverse engineering tools are even more important
when malicious JavaScript code is intentionally hidden in-
side or compiled to WebAssembly for obfuscation [50, 62].

An important first step toward understanding a WebAs-
sembly binary is to understand the type signatures of its func-
tions. Because types are highly relevant for understanding
low-level code, they are targeted by existing reverse engineer-
ing tools for native binaries [12, 14, 57]. Developer studies
also show that static types help to understand code [26, 49].

Unfortunately, the types available in a WebAssembly bi-
nary are only of very limited help. WebAssembly code is
statically typed, but there are only four low-level primitive
types: integers and floats of 32 bits and 64 bits. To a reverse
engineer, those are not very informative. E.g., an i32 could
be a signed or unsigned integer in the application domain, a
size in bytes, an array, a pointer to a struct, or one of many
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other source types. Thus, in addition to WebAssembly’s four
low-level types, it would be beneficial to recover precise,
high-level types similar to those used in the programming
language the binary was compiled from.

One avenue to recover high-level types is based on “clas-
sical” data-flow analysis or type inference, which collects
constraints based on how values are used in the program [12].
However, this is complex to implement and often builds on
heavy analysis frameworks, such as BAP or CodeSurfer [43,
54]. Supporting WebAssembly, especially with its slightly un-
usual stack machine [25], would be a non-trivial undertaking.
More fundamentally, not all information can be expressed as
logical constraints, so manual heuristics are often still em-
ployed to present simplified, intuitive types in the end [54].

In contrast, we pursue a data-driven, learning-based ap-
proach, in line with general guidelines on when neural soft-
ware analysis is beneficial [58]. E.g., some sequences of in-
structions may only provide a statistical hint, but no guaran-
tee about the type of a parameter. Similarly, there is often
no single correct solution in type recovery, e.g., both class
and struct might be valid in terms of constraints, yet con-
vey different intuitions to a human reverse engineer. Finally,
there is, at least in principle, ample data to learn from, as
arbitrary code can be compiled to WebAssembly and debug
information can provide type labels for supervised training.

Various learning-based approach for predicting types in
other languages have been proposed in recent years. They
consider either binaries for native architectures [14, 27, 47] or
dynamically typed source languages, e.g., Python [5, 59] and
JavaScript [28, 48, 61]. These approaches explore different
input representations, e.g., token sequences [28], data flow
graphs [5], and natural language associated with code [48],
and different model architectures and ways of training them,
e.g., recurrent neural networks [59], transformers [2], graph
neural networks [5], and unsupervised pre-training [57].

Unfortunately, current learning-based approaches suffer
from two key limitations. On the practical side, to the best
of our knowledge, no existing approach predicts high-level
types for WebAssembly. More fundamentally, prior work
focuses either on how to represent the code for which types
are predicted, or on what machine learning model is most
suitable for this task. In contrast, another important aspect
of type prediction is currently understudied: How to repre-
sent the to-be-predicted types themselves? Almost all existing
papers, with one noteworthy exception [5], formulate type
prediction as a classification problem. As classification scales
poorly to a large number of classes, this formulation typically
implies a small number of types to choose from. For example,
recent binary-level type prediction models [14, 27, 47, 57]
support only 7, 11, 17, and 35 types, respectively.

This paper addresses both the lack of a type prediction
approach for WebAssembly in particular, and the limitations
of previous learning-based approaches to represent types for
binary type recovery in general. We present SNOWWHITE, a
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learning-based approach for predicting high-level function
types for a given WebAssembly binary. The core technical
contribution is using an expressive language for describing
the types SNOowWHITE can predict. The language supports
primitive types, named types, complex types, such as point-
ers, arrays, and enums, as well recursive combinations of
all the above. Because different source languages compile
to WebAssembly [30], the type language is derived from the
DWARF debugging format [17], which is widely supported
by several compilers for different source languages.

Given the type language, SNOWWHITE trains a model to
predict types as a sequence of tokens. That is, we formulate
the type prediction problem as a sequence prediction, and not
a classification task. An important advantage of sequence
prediction is that we do not have to artificially limit the
number of types the model can choose from, but instead
support (at least in principle) infinitely many types.

To train and evaluate SNOowWHITE, we also gather the first
large-scale dataset of WebAssembly binaries with debugging
information. Based on the DWARF information provided by
the compiler, we can associate each WebAssembly function
with its return type and parameter types. Our dataset con-
sists of 6.3 million types in 300,905 WebAssembly object
files compiled from over 4,000 C and C++ Ubuntu source
code packages. The dataset is two orders of magnitude larger
than datasets considered in previous work on WebAssembly
compiled from source code, which consider only tens of pro-
grams [32, 44]. Beyond this paper, we envision the dataset
to provide a basis for other learning-based work on WebAs-
sembly, e.g., to predict the names of program elements or to
decompile WebAssembly code back to source code.

Our evaluation shows that the type language expresses
1,225 different types, i.e., many more than prior work on
binary type prediction [14, 27, 47, 57], while also offering a
more uniform type distribution. Despite this expressiveness,
the type prediction model exactly predicts 44.5% (75.2%) of
all parameter types and 57.7% (80.5%) of all return types
within the top-1 (top-5) predictions, clearly outperforming a
statistical baseline approach based on the data distribution.

In summary, this paper contributes the following:

e Addressing the practical problem of predicting high-
level types of WebAssembly functions, which is impor-
tant for understanding WebAssembly binaries.

e A type language for binary type recovery that is much
more expressive than the small number of labels used
in prior learning-based approaches (Section 3).

e Formulating the type prediction as a sequence predic-
tion task, which facilitates accurate predictions across
a large number of types to choose from (Section 4).

e Creating and sharing the so-far largest dataset of Web-
Assembly binaries with debug information (Section 5).

Our dataset, code, and results are publicly available at
https://github.com/sola-st/wasm-type-prediction.
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void amd_control(double Control[]) {

0073: Code section start
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0026: DW_TAG_pointer_type

1
1 1
2 double alpha; 2 0076: function $1: ;; Numerical indices 2 DW_AT_type @ 002b
3 int aggressive; 3 type (param $0 i32) (result) 3 002b: DW_TAG_base_type
4 if (Control != (double *) NULL) { 4 [...] ;5 * Low-level type * DW_AT_name: "double”
5 alpha = Control[DENSE]; 5 0091: block 5 Dw_AT_encodlrjg: float
6 aggressive = Control[AGGRESSIVE] != @; 6 0@93: local.get $0  ;; Push param.  ° DW_AT_byte_size: 8
7} else { 7 0095: br_if @ ;; Jump if non-zero 7 ©0033: DW_TAG_subprogram
8 alpha = DEFAULT_DENSE; 3 0.1 8 DW_AT_name: "amd_control"
9 aggressive = DEFAULT_AGGRESSIVE; 9 00e9: end ;5 Jump past this instr. o DW_AT_low_pc: 0x0003
o} 10 @0ea: local.get $0 .; Push param. 0 9047: DW_TAG_formal_parameter
11 if (alpha < @) { 11 @@ec: f64.load offset=8 ;; Mem. read DW_AT_name: "Control"
12 printf("no rows treated as dense"); 12 [...] 12 DW_AT_type @ 0026
133 13 00f7: local.get $0 ;5 Push param. (c) pwaRF debugging information.
14 [...] 14 Q0f9: f64.load offset=0 ;; Mem. read
15 %}

(a) Excerpt of the original source code in C.

(b) Compiled WebAssembly binary from (a), with pointer primitive float 64
byte offsets into the binary shown on the left.

(d) High-level type to predict.

Figure 1. Real-world example of a function’s source code, compiled binary, DWARF information, and high-level type to predict.

2 Overview

This section gives an overview of SNOWWHITE, starting
with a motivating example, then defines the problem more
precisely, and presents the main components of the approach.

Motivating example. Figure 1a shows the source code of
a function from 1ibglpk, a linear-programming library writ-
ten in C, contained in the Ubuntu repositories. The function
has one parameter, which is declared as an array of doubles
(line 1). If it is non-NULL, the function reads two values from
the array, and otherwise uses defaults (lines 4-10).

Compiling the function to WebAssembly yields the code
in Figure 1b. The comments are for illustration only and not
part of the actual binary. On the right, Figure 1c shows the
type of the parameter as represented in the DWARF debug-
ging format [17]. DWARF data is embedded in binaries when
compiling with debug information (-g), but not present in
stripped binaries a reverse engineer typically encounters. It
is a hierarchical binary format, with single-tag entries (blue)
that have multiple attributes (teal), and potentially multiple
other entries as children (e.g., the parameter in line 10 is
a child of the function in line 7). As attributes can refer to
other entries (lines 2, 12), the information forms a directed,
possibly cyclic graph. In the example, the parameter entry
refers to a pointer type entry (line 1), which in turn refers
to its element type, a primitive 64-bit float type (line 3).

Problem definition. The goal of SNOWWHITE is to pre-
dict precise, high-level types from WebAssembly binaries.
Because understanding functions and their types are valuable
first steps to a reverse engineer understanding the function-
ality of a binary, we focus on function parameter and return
types. More formally:

Definition 2.1. The type prediction problem is to find a map-
ping of the form

fa e, Liow — thigh
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where

e f is the body of a given WebAssembly function with
k parameters and zero or one return value,

e e € {param,, ..., paramy, return} is the desired element
from the function signature to predict a type for,

® 11, € {132,164, 132,64} is the low-level WebAssem-
bly type of e, already present in the binary, and

® thigh € Liypes is a type defined by a high-level type
language Liypes.

SnowWHITE predicts the type of each parameter and the
return type separately. As WebAssembly is statically typed,
the low-level type of each program element is known, which
we exploit by providing it as an input to the approach. The
main novelty of SNOWWHITE is how to represent the output
thigh of the type prediction task. One option would be to pre-
dict one out of a fixed set of types, as done in prior work on
binary type prediction [14, 27, 47, 57]. For example, we could
aim to predict simply that the function parameter in Figure 1
is a pointer. While providing a relatively easy prediction task,
that approach misses many details relevant for understand-
ing the functions in a binary. Another option would be to
predict the full DWARF type (Figure 1c). However, full DwARF
types contain various details that are irrelevant for a reverse
engineer, making the prediction task unnecessarily hard.

Instead of the above two extremes, SNOWWHITE predicts
types that are sentences in a high-level type language. For
example, the type in Figure 1d expresses the fact that the
parameter is a pointer to a memory location that stores a
primitive 64-bit float. Our high-level type language is derived
from DWARF, and hence can express types across multiple
source languages that are commonly compiled to WebAs-
sembly, such as C and C++. In contrast to DWARF, the type
language omits details that are not crucial to a reverse engi-
neer but that would make prediction harder.
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Figure 2. Overview of SNOWWHITE’s components.

SNowWHITE in a nutshell. To address the type pre-
diction problem, SNOWWHITE uses a neural sequence-to-
sequence model and a large-scale dataset of WebAssembly
binaries with DWARF type information. Figure 2 shows the
two major phases of the approach: In the training phase, the
sequence-to-sequence neural network model is trained from
labeled data. As there exists no suitable large, real-world
dataset of WebAssembly functions with high-level type in-
formation, we create a large-scale dataset by compiling 4,081
Ubuntu source packages to WebAssembly, resulting in more
than 6.3 million labeled samples. In the prediction phase, a re-
verse engineer can query the trained model with previously
unseen WebAssembly functions, to obtain a high-level type
prediction for parameters and return values.

The following sections present the type language (Sec-
tion 3), the neural prediction model (Section 4), and the col-
lected dataset (Section 5) in more detail.

3 High-Level Type Language

Prior work has explored different input representations and
model architectures for binary type prediction [14, 27, 47, 57].
Much less focus has been on the representation of types for
the prediction task itself. One core contribution of this work
is to describe the types to predict using a type language that
includes precise information about primitive types, nested
types, const and signed-ness, and type names. Figure 3 gives
a BNF grammar of the language. Table 1 compares our type
language against those used in prior learning-based binary
type prediction and against full bwaRF information [17].

3.1 Representing the Types to Predict

There are two extremes in terms of how types can be rep-
resented: On the one end of the spectrum, types can be
represented as a small, fixed set of choices. This is the case
for prior work, as shown in the first four rows of Table 1. The
| L] column shows the number of unique types as reported
in the respective papers. Even though a type grammar is
sometimes presented, this is only for illustration and the sets
of types these grammars describe are all finite and small.
One virtue of a fixed set of types is simplicity, both in
terms of data extraction and the model architecture, as classi-
fication tasks are simple to train and evaluate. The downside
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type ;= primitive primitive (primitive types)

| pointer type | array type (pointers and arrays)
| const type (const-ness)
| name name type (nominal types and typedefs)
| struct | class | union | enum (aggregates)
| function (for function pointers)
)

| unknown (uninformative type

primitive ::= bool (booleans)

| int bitsint | uint bitsint (integers)
| float bitsfioat | complex (floating-point)

| cchar | wchar bitsychar (characters)

}

bitsint € {8,16,32, 64}, bitsf1oat € {32, 64, 128}, bitsuchar € {16,32}

name € {"size_t","FILE", "string", ... (names)

Figure 3. Grammar of the high-level type language Lsw.

is that there is a mismatch between the fixed set of types and
the infinite types in the source program (e.g., in C and C++),
where more complex types can be built up from simple ones
by composition. As such, the source types need to be heavily
simplified to map to the target set, which loses information
and equates many potentially different types.

On the other end of the spectrum stands the full type lan-
guage of DWARF. Types therein are directed, possibly cyclic
graphs, allowing DWARF to capture recursive types. A down-
side of this representation is that predicting graphs with neu-
ral networks is challenging; recent work we know of only
encodes graphs, but does not predict them [6, 13, 29]. Full
DWARF types also contain constructs that are unlikely to be
recoverable from binaries, e.g., optimization hints, language-
specific constructs, and domain specific names.

With our type language, we aim to strike a balance be-
tween those two extremes. The grammar in Figure 3 produces
types that are represented as a linear sequence of type tokens.
The set of all possible types is infinite, and while we do not
represent the fields of aggregates, we do allow nested types
for pointers, arrays, const and names. Besides describing a
larger set of types than prior work on learning-based type
prediction, the fact that each type in our language is a se-
quence of type tokens allows us to formulate type prediction
as a sequence prediction task.

To produce a type sequence in our language from the
DWARF information in a binary, we recursively traverse the
DWARF type graph, pattern match on the type constructor
(e.g., DW_TAG_pointer_type in Figure 1c) and convert it to a type
constructor of Figure 3 or remove it. Figures 1c and d show
an example of a DWARF type represented in our language. We
break cycles to prevent generating infinite type sequences.
We now describe the features of our grammar in more detail.
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Table 1. Comparing different type languages of learning-based binary type prediction. v/ means a feature is supported, X means
not. (v') in the ‘Prim. Size’ column means C type names are used, instead of an exact, unambiguous representation.

>4 i DA IS * i 5 3 -
£ Type int/ § & 1.nt Pr‘un. 3o & .9 ¢§ k,z,% K ?01nter gb . g th. Lang.

Structure char ¥ & Sign Size » & 0§ ¢ & & Pointee Type g & Hints specific
Eklavya [14] 7  Fixed set v X v X X v X v /X X X X X X X
Debin [27] 17  Fixed set v v/ X v/ (nt)y v X Vv V V X X X X X X
TypeMiner [47] 11  Fixed set v vV / X (int) X X X X V X struct,char, func X X X X
StateFormer [57] 35 Fixed set v X v v () o x v v /X Single level X X X X

SNOWWHITE o Sequence v v v v / v v v vV v/ Recursive Topk X X class
Full DWARF oo Full graph v v v v / v v v v vV / Recursive v v v v

3.2 Primitive Types

Primitive types in binaries, as represented in DWARF, are sur-
prisingly complex. All type prediction approaches have some
representation of integers, but they differ in their precision
and how they handle other primitives, which can lead to
ambiguous or incorrect type labels (columns 4-8 of Table 1).

First, our language has an explicit boolean type. Even
though on a machine-level, boolean values are represented
as integers, we believe the type distinction is important and
instructive for reverse engineers, e.g., bool is more telling
than just int. Eklavya and StateFormer do not distinguish
the two and map booleans to integers instead.

Second, we support floats of different width (single, dou-
ble, and quad precision) and the C built-in complex type. In
contrast, floating point types are not handled by Debin at
all, and Eklavya and TypeMiner do not capture their width.

Third, our language represents integer types precisely.
Eklavya does not distinguish different sizes or signed-ness of
integers, e.g., short and long long are mapped to the same
type. A better, but still naive approach is to represent integer
types by their name in the source code, e.g., int or unsigned
long. This is problematic, because the relation between the
source code name and the machine representation of integers
is both ambiguous and not injective. The mapping of name
to representation is not injective because different names can
map to the same type, e.g., short, short int, and signed
short int (and even permutations thereof) are all the same
type in C. In other languages, the same type is called differ-
ently again, e.g., 116 in Rust. Using the source code name for
identification would thus introduce distinct classes for what
is really the same type. Additionally, the mapping from name
to representation is ambiguous, e.g., long can be both 32 bits
wide or 64 bits wide, depending on the compiler’s data model
(ILP32 vs. LP64). That is, a reverse engineer cannot tell the
bit-width from long alone. Thus, unlike prior work, which
uses C and C++ type names to identify integers, we choose
an unambiguous and language-independent representation
based on bit-width and signed-ness.

Finally, our type language models character types pre-
cisely. In C and C++, signed and unsigned char are just
8-bit integers, and encoded in our approach as such. A “plain”
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char in C is different from both, and used only for character
data, not in arithmetic operations. It commonly appears in
string-handling functions. We represent it as cchar. Wide
char types, e.g., wchar16_t in C++, are used for 16 and 32-bit
unicode characters and modeled in our language as well.
Prior approaches do not distinguish between those types.
In summary, our encoding normalizes all primitive types
appearing in the dataset to an unambiguous representation of
16 types. It does not conflate different types with each other,
and assigns exactly one type name per unique underlying
primitive type. Notably absent are high-level data structures
such as strings, lists, or dictionaries, as they are not built-in in
systems-level languages, unlike, e.g., in Python or JavaScript.

3.3 Pointers and Aggregate Types

More complex aggregate types can be built up from con-
stituents, e.g., in array, pointer, or struct types. Our type
language supports both arrays and pointers (unlike Eklavya,
which maps the former to the latter) and also captures the
nested type of their elements and pointee, respectively. This
is unlike Eklavya and Debin, where all pointers are *void,
regardless of what they actually point to. TypeMiner and
StateFormer discern certain classes of pointers from each
other, e.g., pointers-to-structs from function pointers, but
are not recursive, and as such cannot represent, e.g., the C
type *char[] (array pointer char in our type language).
We do not capture individual fields of aggregate types
like structs and unions, which is where we lose information
compared with full DWARF types. As not every field of a
struct or union is used in a given function, prediction of field
types is a challenge left for future work. To model function
pointers, our language includes a function constructor.

3.4 Type Attributes and Language-Specific Types

DWARF information includes type attributes, e.g., const. We
include const as a type constructor into our language. This
allows a reverse engineer to discern between a pointer to con-
stant data (pointer const t), a pointer whose value is con-
stant (const pointer t), and a mutable pointer t, and thus
gives useful information about the invariants of the source
program. This is similar to the constraint-based Retypd [54],
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but unlike all prior learning-based approaches. DWARF types
also contain the attributes volatile and restrict, but since
those are optimization hints for the compiler and likely hard
to recover, we remove them when traversing the input type.
We also aim to recover some language specific types, no-
tably the distinction between a class and a struct. We be-
lieve this is useful to reverse engineers because classes point
to object-oriented programming, frequently have methods,
and implicitly identify the source language as C++, whereas
structs are idiomatic for plain old data. Neither learning-
based nor constrained-based approaches so far aimed to
recover this distinction, instead equating classes and structs
into a single concept. The distinction between C++ refer-
ences and C pointers is less instructive and more difficult to
recover, so we map those to a single pointer constructor.

3.5 Unknown and Unspecified Types

In some cases, the type information in DWARF can be incom-
plete. One common cause are forward declarations in C and
C++, such as struct name;. While a forward declared type
cannot be used directly in parameters or return types, they
frequently appear behind pointers. Similar are void pointers,
e.g., in the return type of malloc and other generic func-
tions. A third case is the C++ nullptr expression, which has
an unnameable type decltype(nullptr). In all three cases
the element type is unknown, but we still know that this is
a generic pointer. We thus feature an unknown constructor,
similar to an uninformative type T in other type systems,
and encode all three mentioned cases as pointer unknown.

3.6 Names and Typedefs

The type language so far is precise, but still purely structural
and fairly low-level, thus capturing little “human intuition”
about the high-level semantics of types. Type names can con-
vey such semantics and are included in DwWARF, so we would
like to recover them (at least partially) in our prediction task.
This sets us apart from prior work on learning-based type
prediction from binaries, that never went beyond primitive
types and simple aggregates. Constraint-based approaches
also either ignore type names fully, or rely on manually writ-
ten rules for some well-known functions [54]. There are
several challenges when representing names in types.
Names in DWARF types appear in two places, namely in
typedefs and in named aggregate type definitions, such as
struct, class, or union. In both cases, names are used to as-
cribe meaning, but only the latter introduces a nominal type
with strict typing discipline. Typedefs are merely aliases, i.e.,
can be freely exchanged with the underlying type. Should we
thus remove typedefs? We argue not, because their names
still convey useful information, e.g., the type size_t is more
instructive than just integer. We thus map names in typedefs
and names in datatype definitions to a single name construc-
tor that also contains the underlying structural type. E.g.,
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name "size_t" uint 32 captures both the name and the un-
derlying structural type.

Next, what to do with nested names? Those can appear
either because of the previous conversion, or simply because
of repeated typedefs. Consider the frequent example of a
typedef in conjunction with a struct definition:

typedef struct sname { /x fields... */ } tname;
Which name should be used for the type: tname or sname?
We solve this by filtering the names (see below), and then
keeping only the outermost (i.e., first) name constructor in a
type sequence, as this is most likely the user-visible name. Le.,
the example would be represented as name "tname" struct.

Finally, out of all names in the DWARF information, we
keep only a subset in our language. First, because of the age
and low-level nature of C and C++, there is less of a shared
type vocabulary than there is, e.g., in Python, and many pro-
grams define their own data structures and even names for
primitives. We do not want to predict such domain or project
specific names. Second, very infrequent type names cannot
be realistically predicted, and unlike in type-prediction ap-
proaches for high-level languages, the input binary contains
no natural language data that a copy mechanism [22] could
use to generate type names from the input.

We thus extract a set of k common names (from typedefs
and named datatypes), where we define common as all names
that appear at least once in 1% of all compiled packages
in our dataset. Additionally, we filter out names that start
with an underscore (as those are likely internal) or where
the typename is equal to what we already capture in our
primitive type representation, such as the name uint32_t.
For generic types, e.g., the C++ template std: : vector<int>,
type arguments are included in the name. An alternative
would be to abstract over the argument, but for simplicity
and to retain more information, we keep the name as-is.

3.7 Type Language Variants

To evaluate the effect of different type languages on the type
distribution and the accuracy of type prediction, we also de-
fine two variants of our language. We call the type language
described so far Lsyowwmirs (0r Lsw for short). First, we
define a variant of Lgw that contains all type names in the
dataset. That is, it has the same grammar as in Figure 3, and
performs the same mapping of typedef and datatype names
to a name constructor, and keeps only the outermost name
as described in Section 3.6, but it does not restrict the set of
names based on the number of packages they appear in. Con-
sequently, many more types are named in this language. Sec-
ond, we define a simplified version of Lgw, which removes
the following constructors from Figure 3: const, class, and
name. Consequently, types in this language are never named,
classes are represented as structs, and const constructors
are flattened away. This makes the language considerably
simpler and closer to prior binary type prediction work. We
discuss the effect of those variants on prediction in Section 6.
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4 Type Prediction Model

We now present how SNowWHITE predicts high-level types
for WebAssembly functions with a neural model. Our work is
the first to formulate prediction of a single type as a sequence
prediction task p

P (it eim) = (B oo tn)
where (iy, ..., i) are instruction tokens extracted from the
WebAssembly function body (Section 4.1) and (#4, ..., t,) are
type tokens as described by our type language. We address
the prediction task p with a state-of-the-art, sequence-to-
sequence neural network model (Section 4.2) trained in a
supervised manner to minimize the difference between the
predicted type and the known actual type.

4.1 WebAssembly Input Representation

We have described the type language and hence the type
tokens t; in Section 3, but we also need to represent the
WebAssembly input as tokens i;.

Extracting instruction tokens. To predict the parame-
ter types and the return type of a function f, SNOWWHITE
creates a sequence (iy, ..., i) of instruction tokens from f’s
representation in the WebAssembly binary. First, we disas-
semble the binary into a sequence of instructions for each
function. In contrast to native binary formats, e.g., x86, static
disassembly is well-specified and robust for WebAssembly.
Then, we represent each instruction as in the WebAssem-
bly text format (e.g., 132.const 42 for the instruction that
pushes 42 on the stack), and delimit individual instructions
by ‘;’. We omit static arguments of instructions that are
likely unhelpful and unnecessarily increase the number of
tokens, namely alignment hints for memory accesses and
the function index of the callee in call instructions. For pre-
dicting the type of a parameter p, we replace the index of p
in local.get, local.set, and local. tee instructions with
the special token <param>, to indicate to the model which
parameter to focus on. Finally, we also add the low-level type
(e.g., 132) of the parameter or return value to predict at the
beginning of the sequence, delimited by a <begin> token.

Handling long functions. Binary code can have very
long functions, which results in even longer token sequences.
In our dataset, 10% of the functions have more than 1,000 to-
kens and 1% even more than 5,500 tokens. Because recurrent
neural networks have trouble handling long sequences [55],
and to facilitate efficient training in mini-batches, sequences
are truncated and padded to a fixed length (here: 500 tokens)
during training. Prior learning-based approaches on code of-
ten completely filter out long samples from the dataset, both
during training and evaluation [14, 28, 42]. As such filtering
may unrealistically inflate accuracy, we do not follow this
practice. Instead, SNOWWHITE extracts windows of instruc-
tions around instructions related to the to-be-predicted type.
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For predicting a parameter type, the approach extracts fixed-
size windows around all instructions that use the parameter
(local.get, local.set, and local. tee), and concatenates
the windows, omitting the instructions in between. For pre-
diction of a return type, SNOWWHITE extracts all windows
ending in a return instruction. Windows are delimited by a
<window> token from each other.

Examgple. For illustration, consider the following sequence
of i; tokens, extracted for predicting a parameter type:
(132", ‘<begin>’,
‘i32.const’, 42’y

‘132,add’, ‘;’, ‘local.set’, ‘<param>’, ‘;’, ‘i32.eqz’ )

.7, “local.get’, ‘<param>’, ©;’, ‘call’, ‘<window>’,
It starts with the low-level type 132 of the parameter to

predict and then contains two windows of w = 3 instructions

each, extracted around usages of the parameter. By default,

we extract windows of size w = 21, i.e., 10 instructions to

the left and right of parameter usages, and 20 instructions

before a return instruction.

Token-level embedding. Finally, the tokens, both for the
WebAssembly code and the type language, need to be con-
verted to real-valued vectors for the neural network. We
jointly train embedding layers that map each individual to-
ken to a dense vector of dimension e, with one embedding for
WebAssembly tokens and one for type tokens. If we would
naively embed all WebAssembly tokens, one issue is the very
large number of unique, but infrequent tokens in code [33].
In particular, our dataset contains more than v = 427,000
unique WebAssembly tokens. The majority of those are num-
bers in the instructions, such as memory offsets, or integer
and floating point constants. Using a very large vocabulary
is undesirable due to increasing the number of model param-
eters (and thus memory usage), so instead we first build up
a subword model based on byte-pair encoding (BPE) [64]
that re-tokenizes the input into only v’ <« v subword tokens.
This breaks down infrequent source tokens into multiple
subword tokens, which are then embedded with a much
smaller embedding matrix, at the cost of slightly increased
sequence length. We employ subword tokenization both for
WebAssembly and for the type language.

4.2 Sequence-to-Sequence Model Architecture

To address the sequence-to-sequence prediction task, we
reuse state-of-the-art results from neural machine transla-
tion (NMT). As the model architecture is standard, we keep
this description short and refer to the available implementa-
tion and literature for details. The model is queried separately
for every parameter of a function and its return type, i.e.,
only a single type (which is itself a sequence) is generated per
prediction. For each type-to-predict, we present the model
with a separate input sequence. For example, to predict the
types of a function of two arguments, we would query the
same model twice, but with slightly different inputs.
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We train two separate models, one for parameter and one
for return type prediction. We use the same configuration for
both models, namely a bidirectional LSTM model with global
attention [10, 46] and dropout for regularization [66], as im-
plemented in the OpenNMT framework [40]. The network’s
weights are optimized by standard backpropagation-through-
time gradient descent with the Adam optimizer [39]. As an
alternative sequence-to-sequence architecture, we also ex-
plored Transformers [69], but did not find it improving accu-
racy, so we select the computationally much cheaper LSTM
model. More experimentation with other model architectures
is orthogonal to our work; there is ample work on alternative
architectures and representations of code [6, 8, 19, 23, 29].

As hyperparameters, we choose after experimentation:
h = 512 as the dimension of the hidden vectors, [, = 2
two layers for the encoder and I; = 1 a single layer for the
decoder, Ir = 0.001 as the initial learning rate and default
momentums for Adam, d = 0.2 as the dropout rate, e = 100
as the dimension of the embeddings, and v” = 500 as the
subword vocabulary size. The models have about 5.5 million
learnable parameters in total.

5 Dataset

Training the models in SNowWHITE for predicting types
requires a dataset (i) from a diverse set of source programs,
(if) compiled to WebAssembly binaries, (iii) including the
appropriate DWARF information, and (iv) resulting in an over-
all dataset size that is conductive to training a deep neural
network. Previous work on studying WebAssembly perfor-
mance [25, 32] and security [44] uses small datasets in the
order of tens of programs. A recent dataset provides 8,400
WebAssembly binaries [30] but contains neither source code
nor DWARF information. We thus collect our own large-scale
dataset, which comprises 6.3 million WebAssembly code and
type samples, extracted from 300,905 object files, which were
compiled from 4,081 C and C++ Ubuntu packages. Beyond
type prediction, we envision the dataset to also serve other
purposes, e.g., for work on recovering names from stripped
binaries, decompilation, or finding compilation issues.

Compiling to WebAssembly binaries. We start from all
70,065 source packages in the Ubuntu 18.04 repositories.
Filtering out Linux kernel modules, which are unlikely to
be compilable to WebAssembly, duplicates of applications
for different locales, and fonts, 61,261 packages remain. We
download their source code and keep all packages with at
least one C or C++ source file. To compile the packages to
WebAssembly, we modify the build scripts to use Emscripten,
which is based on LLVM and the currently most popular com-
piler for WebAssembly. We add the -g flag to add debugging
information in the DWARF format, but leave all other com-
pilation options unchanged. In particular, all packages are
compiled with their original optimization level (e.g., 02 or
-03), reflecting the options used for realistic binaries found
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in the wild and which a reverse engineer would encounter
in practice. In total, 4,081 packages can be partially built to
at least one object file, producing a total of 300,905 object
files with WebAssembly code and bwARF information.!

Deduplication. Following the advice by Allamanis [4],
we deduplicate the dataset to avoid artificially inflating our
results. One option is to deduplicate individual functions or
type samples. However, Allamanis [4] notes that in some
tasks, duplication is part of the true data distribution. Func-
tions are frequently duplicated across different binaries when
they stem from the same statically linked library, which is
the case in WebAssembly. Thus, instead of deduplicating on
the level of functions or samples, we deduplicate at the level
of binaries. As a first step, we remove exact duplicates of
binaries, identified by hashing the full file contents.

To also remove near-duplicates, e.g., because of strings
like build time included in the binary, we also compute an
approximate signature of each binary. The signature takes
only the function bodies into account, where each function
gets a hash based on its abstracted instructions. The abstrac-
tion removes immediate arguments from the instructions,
ie, local.get $0 is mapped to local.get, or i32.1load
offset=8 to just i32.load. The function hashes are then
concatenated (i.e., function order is taken into account) and
the result is hashed again to obtain an approximate signature
for the whole binary. Out of multiple binaries with the same
signature, only one is finally retained in the dataset.

Overall, deduplication reduces the dataset from 3.8 billion
instructions and 31 million functions in 300,905 object files,
down to 866 million instructions and 7.9 million functions
in 46,856 object files. Even after this strict deduplication,
our dataset is much larger than prior binary type prediction
datasets: It is 1.8X the size, in terms of number of instruc-
tions, of the four-architecture dataset in [57], 21X of [14],
32x of [27], and 1,059 of [47]. With an average function
length of 109 instructions, we also believe our dataset is rep-
resentative of real-world code, whereas an average length
of ~8 in [57] might indicate a dataset biased towards very
short functions. Our deduplicated set comprises 21 GiB of
WebAssembly binaries, which is 3.2x the size of the previ-
ously largest WebAssembly corpus [30], which additionally
lacks debug information.

Matching WebAssembly to DwARF and filtering. To
train SNOWWHITE in a supervised manner and as a ground
truth for the evaluation, we associate WebAssembly func-
tions with DWARF type information about the parameters
and the return value. Function bodies are in the code section
of a WebAssembly binary, whereas debug information is split
over several custom sections .debug_info, .debug_str, etc.

!Final linking frequently fails because Emscripten uses mus1 libc instead
of glibc. As pre-linking object files still contain WebAssembly and DWARF
information, those can still be used to train and evaluate our approach.



Finding the Dwarf: Recovering Precise Types from WebAssembly Binaries

We match each WebAssembly function with the correspond-
ing DWARF information via the function’s offset in the binary.

The number of parameters of a function and also whether
a function has a return value, may differ between the source
code and the compiled binary, e.g., due to optimizations. If
the number of function parameters in the DWARF information
and the number of parameters in the WebAssembly bytecode
is the same, then we extract one parameter type sample for
each parameter. Likewise, if a function has a non-void return
type in DWARF and returns a value in WebAssembly, then
we extract a return type sample. Because of this, we do not
extract type samples for 6% of the 7.9 million functions in the
deduplicated dataset, which we believe does not introduce a
significant bias. Finally, to avoid that one Ubuntu package
with many samples biases our dataset, we limit the number
of samples per package to at most the number of samples in
the second most frequent package.

The final dataset after all deduplication and filtering com-
prises 5.5 million parameter type samples and 796 thousand
return type samples. The lower number of return type sam-
ples can be attributed to many C and C++ functions returning
void, where no type needs to be predicted.

Splitting the dataset. We split the dataset into three por-
tions: one for training, one for early stopping and evaluating
hyperparameters, and a held-out test set. Randomly assign-
ing each function or type sample to one of the three portions
could cause (i) functions from the same binaries, or (ii) bi-
naries from the same Ubuntu package ending up in two
different portions of the dataset. Issue (i) is definitely unreal-
istic compared with the usage scenario of our approach, as
the reverse engineer encounters a previously unseen binary,
and (ii) means information from related binaries can leak
from test to training data. To avoid both issues, we hence
split the dataset by original Ubuntu packages. Since the total
number of samples in our dataset is in the order of millions,
the validation and test sets can be a relatively small portion
of the overall dataset [9]. We choose 96% of the packages for
training, and 2% for validation and testing, respectively.

6 Evaluation

We evaluate SNOWWHITE on the previously described dataset.
In Section 6.2, we focus on the expressiveness of our type
language and the resulting distribution of realized types.
We show that the default variant of our language distin-
guishes 1,225 unique types and provides a more uniform
type distribution than the small set of types predicted by
prior learning-based approaches. In Section 6.3, we evaluate
the accuracy of the type prediction model. We show that
SNOWWHITE predicts 44.5% (75.2%) of all parameter types
and 57.7% (80.5%) of all return types exactly within the top-1
(top-5) predictions. Finally, Section 6.4 qualitatively discusses
the strengths and weaknesses of our approach with some
representative examples of predicted and ground truth types.
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6.1 Implementation, Setup, and Runtime

Our implementation, the dataset, and all scripts required to
reproduce our work are publicly available at

https://github.com/sola-st/wasm-type-prediction.

The implementation consists of about 500 lines of Python and
Bash for gathering the dataset, about 4,000 lines of Rust for
extracting and processing DWARF types and WebAssembly
code, and about 1,700 lines of Python for preparing the data
and the neural model. We use the gimli and wasmparser
libraries for parsing DwARF and WebAssembly, respectively.
The neural model is built on top of OpenNMT-py for the
neural model and SentencePiece for the subword tokenization.

We run all experiments on a server with with two Intel
Xeon 12-core 24-thread CPUs running at 2.2 GHz, using 256
GiB of system memory, and Ubuntu 18.04 LTS as the oper-
ating system. For training the neural networks and during
inference, we also use two NVIDIA Tesla T4 GPUs with 16
GiB of GPU memory each.

As usual, training neural networks takes orders of magni-
tude more time than prediction, but needs to be done only
once. In our case, the fastest training run took about 1 hour
25 minutes and the slowest 11 hours 55 minutes on a sin-
gle GPU. As a general rule, training a return type model
takes less time than a parameter type model (due to fewer
samples), and training with a simple type language takes
less time than with a complex language (due to shorter type
sequences). Prediction takes on average between 3ms and
40ms per input sample, including beam search to produce
multiple predictions. Such near instantaneous results are
another advantage of learning-based approaches, as no com-
plex constraint solving is required.

We train all models on the training portion of the data set.
During training, we check the accuracy on the validation set
and stop early if it regresses. Due to the large dataset, the
models converge after one to four epochs. We then take the
best model from validation for final evaluation. All final type
predictions are obtained on the test data, which the model
has never seen and was not used to select the best model.

6.2 Type Language

The following evaluates the expressiveness of our type lan-
guage and the type distribution that results from it.

Most common types. Table 2 shows the ten most com-
mon types in the dataset expressed in our type language. We
observe that several features make the language distinguish
large groups of types from each other that would otherwise
be merged into imprecise labels. First and most importantly,
we see that 7 out of the 10 most common types are some
kind of pointer. Without tracking their pointee type, all of
those labels would collapse into one, so the recursive nature
of our type language is essential for informative predictions.
Second, if we did not distinguish classes from structs, the


https://github.com/sola-st/wasm-type-prediction

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Table 2. Most common types in Lsyowwnrre i our dataset.
Short explanations for select types in italics.

Rank Type Sample Count % Total
y Pointer class 1,307,617  20.5%
a pointer to a class
2 pointer struct 918,332 14.4%
primitive int 32
3 a 32-bit signed integer 771,690 12.1%
4 pointer const class 468,184 7.3%
5 pointer const struct 185,635 2.9%
6 p01n.ter const primitive cchar 184,586 2.9,
a pointer to constant character(s)
name "size_t" primitive uint 32
7 a32-bit unsigned integer, named "size_t" 181,204 2.8%
8 primitive uint 32 144,519 2.3%
pointer unknown
? 4 pointer of unspecified pointee type 114,139 1.8%
10 pointer primitive int 32 101,947 1.6%
Total Samples in Dataset 6,376,307 100%

largest two types would be merged into a single type ac-
counting for 35% of all data, instead of only 20% and 14%,
respectively. Third, const-ness is also useful, in particular in
the pointee type of pointers. Without it, the types with rank
four and five would be merged into the first two. Finally, we
see that type names are useful to distinguish size_t from
other, non-specified integers.

Most common names. Table 3 lists the eight most com-
mon type names as defined in Section 3.6, ordered by in
how many packages they appear. In total, we extract 239
commonly used names from the dataset. Those names are
well-known, semantic types of C and C++ programs, and
they are not domain or project specific. The most common
name size_t appears in almost two thirds of all projects,
followed by FILE handles in a bit less than half of all projects.
The distribution levels off quickly, with ranks three to six
containing common types from the C++ standard library
related to strings and I/O. All of these names are more useful
to areverse engineer than just the underlying structural type,
e.g., FILE instead of pointer struct. Of the 239 names in
our dataset, 141 (59%) also appear in the test data, so this
feature is sufficiently exercised during testing.

When comparing the name distribution to type distribu-
tions from high-level languages [5, 59], complex data struc-
tures are notably absent, e.g., lists or maps. This shows that
there is much less of a shared “type vocabulary” in binaries
compiled from C and C++ than there is, e.g., in Python.

Expressiveness. To quantify how expressive our type lan-
guage is, e.g., compared to a fixed set of types as consid-
ered in prior work [14, 27, 47, 57], we measure how many
different types it describes in our dataset. The underlying
assumption is that a larger set of types provides more pre-
cise type information to users of type prediction, e.g., during
reverse engineering. Table 4 compares our language Lsw
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(short for Lgyowwmre), against the two variants described in
Section 3.7 and the type language of Eklavya [14]. Column
| L| shows the number of unique types in the dataset, if ex-
pressed in the respective language. For that, we re-extract
samples from the binaries with different configuration set-
tings that map DWARF types to the respective languages.

Lsw can distinguish 1,225 unique types, far more than
the 7 of Eklavya, 11 of TypeMiner [47], 17 of Debin [27],
or 35 of StateFormer [57]. Just by removing names, const-
ness and the distinction between classes and structs, the
simplified variant in the third row results in only 120 unique
types in the dataset, so our aforementioned type language
features are clearly necessary to express many types more
precisely. In the “All Names” variant, the large amount of
project and domain specific names increases the set of types
than 100-fold to 146,883 unique types.

We also check that recursion in our type language is useful
and even necessary for many types. Of all type samples
expressed in Lgw, only 20.7% do not make use of recursion
(e.g., primitive types), 48.3% have one nested type constructor
(e.g., pointer from Figure 3), and 31% have an even deeper
nesting depth of up to six nested type constructors.

Type distribution. As another measure of how informa-
tive the type language is, we also inspect the resulting distri-
bution of realized types when converting the samples in the
dataset to the language. For brevity, we do not show the full
distributions, but summarize two key aspects in Table 4.

First, column H/H,,y gives the normalized entropy of the
type distribution, where Hy,q, = log, | L] is the entropy of a
uniform distribution of the same size. If a type distribution
is very non-uniform, e.g., if one type is extremely common,
less information can be gained from a single predicted type,
and H becomes smaller compared to a more ideal, uniform
distribution of types. With the normalized entropy, we can
compare the entropy of distributions of different size. Evi-
dently, more expressive type languages have not only more
types, but are more uniformly distributed as well, as the
entropy increases towards the maximum of 1.

Table 4 also shows the most frequent type, separately for
parameter and return types, and how much of the overall
distribution that type accounts for. For Lgiavya, the pointer
label makes up for almost 80% of the data, a very biased
type distribution! Simplified Lgw without names, const,
and classes is similar to the type language used in State-
Former [57], and is only slightly better, as the most common
parameter type already accounts for 57% of the data. Lgw is
much more uniform with 22% for the most common param-
eter type. Interestingly, the return type distribution is less
affected by the different languages than the parameter types.
Regardless of the type language, the most common label
is a primitive integer, accounting for 30% (most expressive
language) to 51% (least expressive) of all return types. This
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Table 3. Most common extracted type names.
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Table 4. Different type distributions compared.

Name Sample Count Packages o Most Frequent Type
Type Language 1Ll #7.—

size_t 516,451 63.8% Parameter Return
FILF . 20,949 452% Lsw, All Names 146,883 0.69 primitive int 32 5% primitive int 32 30%
basic_string<char, ...> 135,900 17.2% . . X

. Lsw 1,225 0.49 pointer class 22% primitive int 32 39%
basic_ostream<char, ...> 35,460 16.3 % . . . c e .
i0s_base 10.002 161 % Lsw, Simplified 120 0.42 pointer struct 57% primitive int 32 41%

- ’ o ] 7 038 pointer 78% int 51%
ostreambuf_iterator<char, ...> 7,801 15.8% Leidavya pot !
va_list 2,470 15.8%
string 45,081 155% the k most likely high-level types for a given tj,, from the

may be an artifact of C and C++, where complex results are
often written via pointers instead of being returned by value.

Summary. We conclude that all features of our type lan-
guage, in particular type names, recursion, const, and the
distinction of class vs. struct help to distinguish types and
avoid a biased type distribution. The extracted names convey
useful intuitions and are project and domain independent.
In general, parameter types are more sensitive to the type
language than return types. While more names can be added
to the language to increase the number of unique types, the
next section shows that accurate prediction also becomes
much harder in that case.

6.3 Type Prediction Model

We now evaluate the accuracy of our type prediction model.

Metrics. To compare a predicted type against the ground
truth type, we use two metrics. One is perfect match accuracy,
i.e., the percentage of all predicted types that exactly match
the ground truth. We report perfect match accuracy within
the top-1 and the top-5 predictions, where the latter retrieves
the five most likely type predictions via beam search.

Perfect match accuracy does not consider partially correct
predictions. For example, if the ground truth is pointer
struct, a prediction of pointer class is intuitively better
than primitive int 32, but since neither are exact matches,
they do not count towards accuracy. We thus introduce a
metric for type accuracy based on the longest common prefix
of the prediction and the ground truth. The type prefix score
of a prediction ¢’ and ground truth ¢ is the length of the
common prefix TPS(t',t) = [commonPrefix(t’, t)|. That is,

TPS(pointer struct, pointer class) = 1, but
TPS(pointer struct, primitive int 32) = 0.

Computed over the whole test set, TPS gives the average
number of type tokens that are correct until the predicted
sequence diverges from the ground truth.

Baseline. As there is no existing learning-based type pre-
diction for WebAssembly binaries, we compare our model
against a statistical baseline. This baseline exploits that the
low-level WebAssembly type t,, is available in the binary
for each parameter and return sample. Given only the t,,,
of an input, we can “generate” top-k predictions by copying
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conditional probability distribution P(t4ign | tiow) that was
empirical observed on the training data. For example, the
most common type for t;,,, = 132 is pointer class, and for
tiow = f32itis primitive float 32.

Results. Table 5 shows the model accuracy for parameter
and return type prediction separately in the left and right half.
For our proposed type language Lsw, we see that the model
predicts the exactly correct parameter type in 44.5% of the
cases, even though there is a large choice out of 1,225 unique
types. If we accept any of the model’s top five predictions, the
model is right for 75.2% of the test samples. This is also not
just because of a skewed data distribution, as the baseline
exploiting the underlying data distribution achieves only
28.7% top-1 exact match accuracy, significantly less than
the neural model. The model accuracy is even better for
return type prediction with a top-1 (top-5) accuracy of 57.7%
(80.5%). On average, the type prediction model gets the first
1.47 (1.37) tokens of the type sequence correct for parameter
(return) types. We expect the first tokens to be likely the
most relevant to a reverse engineer, so this is a good result.

We also judge the hardness of type prediction with differ-
ent languages. Without filtering names (Lsw, All Names),
the task becomes much too difficult, with a top-1 accuracy
of only 18.6% on parameter types. This motivates our restric-
tion to a vocabulary of common type names. At the other
end, for the simple language Luiavya We achieve a top-1 ac-
curacy of 87.9%, compared with an accuracy of around 81%
on native binaries reported in [14]. However, the statistical
baseline also casts doubt on whether this is really an achieve-
ment of the model, or simply a very easy task, as even the
baseline achieves 77.1% top-1 accuracy without any neural
network. The model for simplified Lsw sits between Lsw
and Lgxlavya, With a top-1 accuracy of 65.1% (60.6%) on pa-
rameter (return) types. In general, we can conclude that the
neural model accuracy is consistent with the complexity of
the type language. A good type language for learning-based
type prediction must balance the trade-off between being
precise and allowing for accurate predictions.

Ablation study and type depth. The rightmost model
for both parameter and return type prediction in Table 5 is
an ablation study as to how much passing the WebAssembly
low-level type tj5, helps the model to predict high-level
types. For that, we take the same language as in Lsw, but
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Table 5. Model accuracy on different type prediction tasks, compared with a simple conditional probability baseline.

Task Parameter Type Prediction Return Type Prediction
Lsw, Lsw, Lsw, t Lsw, Lsw, Lsw. t
Type Language Lsw All Names  Simplified Leiiavya not givl(ejlvrlv Lsw All Names  Simplified Leiavya not givlszlv
Seq-to-seq Model, see Section 4
Top-1 Accuracy 44.5% 18.6% 65.1% 87.9% 42.4% 57.7% 40.6% 60.6% 76.3% 50.7%
Top-5 Accuracy 75.2% 27.1% 86.2% 100.0% 73.4% 80.5% 47.3% 87.9% 100.0% 81.2%
Type Prefix Score 1.47 1.31 1.62 0.88 1.45 1.37 1.00 1.38 0.76 1.02
Statistical Baseline, based on P(thigh | tow)
Top-1 Accuracy 28.7% 13.0% 47.1% 77.1% 49.9% 41.7% 50.7% 64.6%
Top-5 Accuracy 61.4% 20.8% 78.1% 99.9% N/A 74.2% 48.5% 81.4% 100.0% N/A
Type Prefix Score 1.05 0.28 1.24 0.77 1.14 0.92 1.16 0.65
100% W Top-5 accuracy 100% Top-5 accuracy pointer struct
80% 1 IO W Top-1 accuracy 80% Top-1accuracy primitive int 32
> 60% - 60% pointer primitive cchar
g pointer const primitive cchar
g 0% 40%
< The sample corresponds to the fourth parameter? fp of a
20% 20% class method in 1ibgdal, a geospatial library written in C++.
e 2 3 4 & % 2 3 & The method declaration in the source code reads:

Type Nesting Depth

Type Nesting Depth

(a) Parameter types. (b) Return types.

Figure 4. Prediction accuracy of Lsw by type nesting depth.

remove the low-level type from the beginning of the input
sequence. For parameter types, the low-level type seems
to help only marginally (a difference of 2% in accuracy),
possibly because there are enough cues from the parameter
usage even without explicitly passing the low-level type. For
return type prediction, the low-level type seems more useful,
with an accuracy difference of ~9%.

Finally, Figure 4 shows the prediction accuracy of Lsw,
separately for different type nesting depths. The general
trend is that accuracy decreases with more deeply nested
types, as expected. However, even for types with three (four)
nested levels, parameters can still be predicted exactly with
a top-5 accuracy of 65% (43%). Return types are less deeply
nested in general and prediction accuracy is also worse be-
yond types with a single or two nested levels.

6.4 Case Studies of Predictions

We show representative examples of predictions produced
by the model, to get an intuition how useful it is in practice.

Example: 1ibgdal. For predicting the first parameter sam-
ple in the shuffled test set, the Lgw model is given a Web-
Assembly input of 8 instruction windows, containing 168
instructions and 453 tokens in total. The input starts with:

i32.const 294552 ; i32.add ;
; local.get <param> ; call ...

i32 <begin> global.get 1 ;
i32.const 3 ; i32.const 1

From just this input, the model’s top five predictions are:
pointer name "FILE" struct
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void DDFSubfieldDefn: :DumpData(
const char * pachData, int nMaxBytes, FILE * fp ) ...

As we can see, the top-most prediction of the model is exactly
correct, the parameter is indeed a pointer to a file handle.
For a reverse engineer, we believe this prediction in our type
language is much more useful than, e.g., pointer struct by
StateFormer or just pointer by Eklavya. The top-2 predic-
tion would not have been incorrect either, just not as precise,
justifying our type prefix metric for evaluation.

Staying with the example, the model’s predictions for the
parameter nMaxBytes of the same function are as follows:

pointer const primitive uint 8

primitive int 32

pointer const primitive cchar

pointer struct

pointer primitive uint 8
Here, the top-1 prediction is not correct, but the top-2 pre-
diction is. It is unclear how the model came up with the
top-1 prediction; we can only speculate that it got confused
by instructions related to the other parameter, whose string
type is closer to the predictions.

Example: 1ibtiff. Taking the first return type sample
in the test set from the next library, the model attempts to
predict the return type of the following function in 1ibtiff:

int JPEGVGetField(TIFF* tif, uint32 tag, va_list ap) ...

The model’s top five return type predictions are:
primitive int 8
primitive uint 32
primitive uint 32
pointer name "Exception" class
primitive int 32

2We regard the methods’ receiver object as the implicit first parameter.
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The correct prediction is on place five. As the raw model
is not constrained to generate five unique predictions, we
also see two duplicate predictions. In a production-grade
type prediction tool, the raw model outputs could be filtered
to only include unique types. Interestingly, the body of the
function (not shown) returns a literal 1, so the other primitive
predictions would have actually been type compatible in C,
showing the difficulty in getting accurate training data.
Finally, we inspect the top-most prediction for the first
parameter of the same function, where the model returns
pointer struct. As a domain specific name, TIFF is not shared
among enough projects to be in our list of common type
names. The predicted type is thus correct and as precise as
possible as per our type language Lgsw. Future work could
explore to predict information about the struct fields as well.

7 Related Work

Binary type recovery. Recovering types from binaries
has received significant attention, mostly for x86 binaries.
Several approaches aim to recover class hierarchies [35, 56]
and other kinds of type information [18, 34, 43, 52]. Caballero
and Lin [12] provide a good overview of approaches until
2016. More recently, several data-driven and learning-based
type prediction approaches have been proposed [14, 27, 47,
57], which we compare against in terms of the set of types
that can be predicted (Section 6.2). Like SNowWHITE, Type-
Miner [47] and StateFormer [57] also discern types of point-
ers, e.g., “pointer to array”, but they do not define a recursive
type language, and hence, their types are strictly less ex-
pressive than ours. Beyond the expressiveness of our type
language, SNOowWHITE contributes by being the first type
prediction approach for WebAssembly binaries.

Type prediction for source languages. Dynamically
typed languages also benefit from type prediction, e.g., to
automatically add type annotations to source code. There are
several approaches for JavaScript [28, 48, 61, 72], Python [5,
59, 73], and Ruby [36]. Most of them focus on how to repre-
sent and process the input to a prediction model, e.g., with an
RNN over a token sequence [28] or a GNN over a graph rep-
resentation of code [72]. TypeWriter [59] combines neural
type prediction and type checking-based validation. Almost
all the above approaches predict types from a fixed set, with
the exception of Typilus [5], which represents types as points
in a continuous type space. SNowWHITE differs by repre-
senting types as sentences in a type language, which turns
type prediction into a sequence prediction task.

Reverse engineering. Beyond types, other information
about a binary can also be predicted to support reverse engi-
neering. DIRE [42] and Nero [15] are neural models to predict
names of variables and functions, respectively. Coda [20] is
a trained model that predicts an AST for code given in a sim-
ple assembly language. For WebAssembly, wasm-decompile
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and wasm2c from the official WebAssembly Binary Toolkit
(WABT) aim to decompile binaries to more readable pseudo
code or proper C, respectively [1]. All the above tools and
techniques are complementary to recovering types.

Neural models of code. Deep learning on code is receiv-
ing significant interest [58] beyond the work discussed above.
One important question is how to represent a piece of code,
e.g., using AST paths [8], control flow graphs [71], ASTs [74],
or a combination of token sequences and a graph represen-
tation of code [29]. Instead of the input representation, this
work focuses on how to represent the type output of a pre-
dictive model. Other neural models are applied to predicting
code changes [11, 31] or program repairs [16, 24], complete
partial code [7, 38], or detects bugs [60].

WebAssembly. Since its inception [25], WebAssembly has
been subject to studies about its security [41, 44, 50], perfor-
mance [32], and use in practice [30]. Techniques to analyze
and improve WebAssembly code include a general purpose
dynamic analysis framework [45], taint analyses [21, 67], and
a compiler framework for hardening WebAssembly against
Spectre attacks [53]. To the best of our knowledge, no prior
work addresses the problem of recovering precise, high-level
types in WebAssembly binaries. In particular, wasm2c, de-
spite the name, does not recover high-level source types.
Instead, the low-level WebAssembly types in the binary are
merely translated to matching C typedefs.

8 Conclusion

This paper presents the first learning-based approach for re-
covering precise types in WebAssembly binaries. In contrast
to prior work on learning-based binary type prediction, we
represent types through an expressive type language. The
language allows for thousands of different types, instead of
the 7 to 35 types considered previously. Despite this increase
of expressiveness, we find our type prediction model to be
highly accurate, exactly predicting 44.5% (75.2%) of all pa-
rameter types and 57.7% (80.5%) of all return types within
the top-1 (top-5) predictions. SNOWWHITE is an important
first step toward reverse engineering WebAssembly binaries.
Beyond our technique, we share a novel large-scale dataset
of C and C++ code compiled to WebAssembly with debug
information, which is two orders of magnitude larger than
existing datasets for WebAssembly. Finally, we envision the
idea of formulating type prediction as a sequence prediction
task to be potentially useful also for other languages.
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