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Monte-Carlo Tree Search (MCTS) is a new best-first search guided by the results of
Monte-Carlo simulations. In this article we introduce two progressive strategies for
MCTS, called progressive bias and progressive unpruning. They enable the use of rel-
atively time-expensive heuristic knowledge without speed reduction. Progressive bias
directs the search according to heuristic knowledge. Progressive unpruning first reduces
the branching factor, and then increases it gradually again. Experiments assess that the
two progressive strategies significantly improve the level of our Go program Mango.
Moreover, we see that the combination of both strategies performs even better on larger
board sizes.

1. Introduction

Over fifty years, two-person zero-sum games with perfect information have been
addressed by many AI researchers with great success.17 The classical approach is
to use the alpha-beta framework, combined with a positional evaluation function.
Such an evaluation function is applied to the leaf nodes of a search tree. If the
node represents a terminal position (or an endgame database position) it produces
an exact value. Otherwise, heuristic knowledge is used to estimate the value of the
leaf node. This technique led to excellent results in many games (e.g., chess and
checkers).7,21,20

However, in several games building an evaluation function based on heuristic
knowledge for a non-terminal position is a difficult and time-consuming issue; the
most notorious example is the game of Go.2 It is probably one of the reasons why
Go programs so far did not achieve a strong level, despite intensive research and
additional use of knowledge-based methods.

Recently, researchers proposed to use Monte-Carlo simulations as an evaluation
function.5,6 Yet, this approach remained too slow to achieve a satisfying search
depth. Even more recently, three slightly different uses of Monte-Carlo simulations
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within a tree-search context have been proposed.10,13,18 The new general method,
which we call “Monte-Carlo Tree Search” (MCTS), resulted from it. MCTS is not
a classical tree search followed by a Monte-Carlo evaluation, but rather a best-first
search guided by the results of Monte-Carlo simulations. This method uses two
main strategies, which aim at different purposes described below. (1) A selection
strategy, derived from the Multi-Armed Bandit problem, is able to increase the
quality of the chosen moves in the tree when the number of simulations grows.11,15

Yet, the strategy requires the results of several previous simulations. (2) When a
sufficient amount of results is not available, a simulation strategy decides on the
moves to be played.1,15 So, the challenge is: how do we harmonize a simulation
strategy (necessary to be applied by a lack of sufficient results) with the selection
strategy?

In this article, we propose two progressive strategies as a soft transition between
the simulation strategy and the selection strategy. The strategies enable, among
others, the use of time-consuming heuristic knowledge. Below, we use the game of
Go as test domain. Go is challenging, because so far programs are not able to defeat
expert humans, and thus it has been a testbed for artificial-intelligence techniques
for over 30 years.

The article is organized as follows. In Section 2, we present the Monte-Carlo Tree
Search method. In Section 3, we describe the two progressive strategies. Section
4 presents the experiments, performed with the Go program Mango. Section 5
discuss alternative solutions. Section 6 summarizes the contributions, formulates
conclusions, and gives an outlook on future research.

2. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method, which does not
require a positional evaluation function. It is based on a randomized exploration of
the search space: in the beginning of the search, exploration is performed fully at
random. Then, using the results of previous explorations, the algorithm becomes
able to predict the most promising moves more accurately, and thus, their evalu-
ation becomes more precise. The basic structure of MCTS is given in Subsection
2.1. Relevant pseudo-code is provided in Subsection 2.2. Four strategic tasks are
discussed in Subsection 2.3. Finally, we discuss how to select the move to be played
in the actual game in Subsection 2.4.

2.1. Structure of MCTS

In MCTS, each node i represents a given position (also called a state) of the game.
A node contains at least the following two pieces of information: (1) the current
value vi of the position (usually the average of the results of the simulated games
that visited this node), and (2) the visit count of this position ni. MCTS usually
starts with a tree containing only the root node.
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Fig. 1. Outline of a Monte-Carlo Tree Search.

MCTS consists of four steps, repeated as long as there is time left. The steps are
as follows. (1) The tree is traversed from the root node to a leaf node (L), using a
selection strategy. (2) An expansion strategy is called to store one (or more) children
of L in the tree. (3) A simulation strategy plays moves in self-play until the end of
the game is reached. The result R of this “simulated” game is +1 in case of a win
for Black (the first player in Go), 0 in case of a draw, and −1 in case of a win for
White. (4) R is propagated back through the tree according to a backpropagation
strategy. Finally, the move played by the program is the child of the root with the
highest visit count. The four steps of MCTS are explained in some detail in Figure
1, and more elaborated in Subsection 2.3.

2.2. Relevant pseudo-code

The pseudo-code for MCTS is given in Figure 2. In this algorithm, ST is the set of
all nodes (the search tree), Select(Node N) is the selection function, which returns
one child of the node N . Expand(Node N) is the function that stores one more node
in the tree, and returns this node. Play simulated game(Node N) is the function
that plays a simulated game from the node N , and returns the result R ∈ {−1, 0, 1}
of this game. Backpropagate(Integer R) is the procedure that updates the value of
the node depending on the result R of the last simulated game. Nc(node N) is the
set of the children of the node N .

2.3. The four strategic tasks

As has been mentioned earlier, the four strategic tasks in MCTS are selection, ex-
pansion, simulation, and backpropagation. They are each discussed in detail below.
For each, we will show how we use them in our Go program Mango.
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void MCTS(Node root node)

1 while(has time)
2 {
3 current node ← root node
4 while (current node ∈ ST )
5 {
6 last node ← current node
7 current node ← Select(current node) // Selection
8 }
9 last node ← Expand(last node) // Expansion
10 R ← Play simulated game(last node) // Simulation
11 while(current node ∈ ST )
12 {
13 current node.Backpropagate(R) // Backpropagation
14 current node.visit count ← current node.visit count + 1
15 current node ← current node.parent
16 }
17 }
18 return best move = argmaxN∈Nc(root node)(N.visit count)

Fig. 2. Pseudo-code for Monte-Carlo Tree Search.

2.3.1. Selection

Selection is the strategic task that selects one of the children of a given node. It
controls the balance between exploitation and exploration. We explain both notions
below. Exploitation is the task to select the move that leads to the best results so far.
Exploration deals with less promising moves that still have to be examined, due to
the uncertainty of the evaluation. Similar balancing of exploitation and exploration
has been studied in the literature, in particular with respect to the Multi-Armed
Bandit (MAB) problem.19 The MAB problem considers a gambling device and a
player, whose objective is maximizing the reward from the device. At each time
step, the player can select one of N arms of the device, which gives a reward. In
most settings, the reward obeys a stochastic distribution. The selection problem of
MCTS could be viewed as a MAB problem for a given node: the problem is to select
the next move (arm) to play, which will give an unpredictable reward (the outcome
of a single random game). Knowing the past results, the problem is to find the
optimal move. However, the main difference with the MAB problem is that MCTS
works by using sequentially several selections: the selection at the root node, the
selection at depth one, the selection at depth two, etc. Several algorithms have been
designed for this setup,10,11,13 or have been derived from MAB algorithms.15,18

Selection strategy used in Mango

We use the strategy UCT (Upper Confidence Bound applied to Trees).18 This strat-
egy is easy to implement, and used in many programs. UCT works as follows. Let
I be the set of nodes reachable from the current node p. UCT selects the child k of
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the node p that satisfies formula 2.1:

k ∈ argmaxi∈I

(
vi + C ×

√
ln np

ni

)
(2.1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient, which has to be tuned experimentally. In Mango,
we use C = 0.7. In practice, UCT is only applied in nodes of which the visit count
is higher than a certain threshold T (i.e., 30 in Mango).13 If the node has been
visited fewer times than this threshold, the next node is selected according to the
simulation strategy, discussed in 2.3.3.

2.3.2. Expansion

Expansion is the strategic task that, for a given leaf node L, decides whether this
node will be expanded by storing one or more of its children in memory. The simplest
rule is to expand one node per simulated game.13 The expanded node corresponds
to the first position encountered that was not stored yet. Note that the expansion
could also be performed after the simulation.

Expansion strategy used in Mango

In addition to expanding one node per simulated game, we also expand all the
children of a node when a node’s visit count equals T .

2.3.3. Simulation

Simulation (also called playout) is the strategic task that selects moves in self-play
until the end of the game. This task might consist of playing plain random moves or
– better – pseudo-random moves chosen according to a simulation strategy. Indeed,
the use of an adequate simulation strategy has been shown to improve the level of
play significantly.1,16 The main idea is to play interesting moves by using patterns,
capture considerations, and proximity to the last move. The simulation requires
that the number of moves per game is limited. When considering the game of Go,
extra rules are added to satisfy this condition: (1) a player should not play in his
eyes, and (2) the game is stopped and scored if it exceeds a given number of moves.
Elaborating an efficient simulation strategy is a difficult issue. If the strategy is too
stochastic (e.g., if it selects moves nearly randomly), then the moves played are of-
ten weak, and the level of the Monte-Carlo program is decreasing. In contrast, if the
strategy is too deterministic (e.g., if the selected move for a given position is almost
always the same, i.e., too much exploitation takes place) then the exploration of
the search space becomes too selective, and the level of the Monte-Carlo program
is decreasing too.
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Simulation strategy used in Mango

Let M be the set of all possible moves for a given position. Each move j ∈ M is
given an urgency Uj ≥ 1. The simulation strategy selects one move from M. The
probability of each move to be selected is pj = Uj∑

k∈M Uk
. The urgency is the sum

of two values: the capture value and the pattern value.

(1) Capture value. This value is given to moves capturing stones or preventing cap-
tures. It equals 50, 000 × the number of captured stones, plus 5, 000 × the
number of stones prevented from capture. Using a capture value was first pro-
posed by Bouzy, and later improved successively by Coulom and Cazenave.1,13,8

(2) Pattern value. For each possible 3 × 3 pattern, the value of the central move
has been learned by a dedicated algorithm developed in our previous research.4

The pattern values range from 1 to 2433.

Moves within a Manhattan distance of 1 from the previous move have their
urgency multiplied by 20. This idea is taken from the strategy developed by Gelly
and Wang16 and slightly adapted.

2.3.4. Backpropagation

Backpropagation is the procedure that propagates the result of a simulated game k

backwards from leaf node L to the nodes it had to traverse to reach this leaf node.
This result is counted positively (Rk = +1) if the game is won, and negatively
(Rk = −1) if the game is lost. Draws lead to a result Rk = 0. The value vL of a
node is computed by taking the average of the results of all simulated games made
through this node, i.e., vL = (

∑
k Rk)/nL. Several backpropagation strategies have

been proposed in the literature.9,11,13 However, the best results in game play have
been obtained by using the plain average of the simulations.

Backpropagation strategy used in Mango

In Mango we use the plain average strategy described above.

2.4. Final move selection

After the simulations, the move finally played by the program in the actual game
is the one corresponding to the “best child” of the root. There are different ways to
define which child is the best.

(1) Max child. The max child is the child that has the highest value.
(2) Robust child. The robust child is the child with the highest visit count.
(3) Robust-max child. The robust-max child is the child with both the highest visit

count and the highest value. If there is no robust-max child at the moment,
more simulations are played until a robust-max child occurs.13
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(4) Secure child. The secure child is the child that maximizes a lower confidence
bound, i.e., which maximizes the quantity v + A√

n
, where A is a parameter (set

to 4 in our experiments), v is the node’s value, and n is the node’s visit count.

Final move selection used in Mango

Mango uses the robust child. In our preliminary experiments we did not measure
a significant difference between the methods discussed above, when a sufficient
amount of simulations per move was played. However, when only a short thinking
time per move was used (e.g., below a second), choosing the max child turned out
to be significantly weaker than other methods.

3. Progressive Strategies

When a node has been visited only a few times, a well-tuned simulation strategy
chooses moves more accurately than a selection strategy. However, when a node has
been visited quite often, the selection strategy is more accurate.10,11,13,18

We propose a “progressive strategy” that performs a soft transition between
the simulation strategy and the selection strategy. Such a strategy uses (1) the
information available for the selection strategy, and (2) some time-expensive domain
knowledge. A progressive strategy is similar to a simulation strategy when a few
games have been played, and converges to a selection strategy when numerous games
have been played.

In the following two subsections we describe the two progressive strategies used
in our Go-playing program Mango: progressive bias (Subsection 3.1) and progres-
sive unpruning (Subsection 3.2). Subsection 3.3 describes the heuristic domain
knowledge used in Mango. Subsection 3.4 discusses the time efficiency of these
heuristics.

3.1. Progressive bias

The aim of the progressive bias strategy is to direct the search according to – pos-
sibly time-expensive – heuristic knowledge. For that purpose, the selection strategy
is modified according to that knowledge. The influence of this modification is im-
portant when a few games have been played, but decreases fast (when more games
have been played) to ensure that the strategy converges to a selection strategy.
We modified the UCT selection in the following way. Instead of selecting the move
which satisfies formula 2.1, we select the node k which satisfies formula 3.2. We call
this formula our enhancement.

k ∈ argmaxi∈I

(
vi + C ×

√
ln np

ni
+ f(ni)

)
(3.2)

In Mango, we chose f(ni) = Hi

ni+1 , where Hi is a coefficient representing heuris-
tic knowledge, which depends only on the board configuration represented by the
node i. The variables np and ni, and coefficient C are the same as in Section 2.
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More details on the construction of Hi are given in Subsection 3.3. Formula 3.2 has
the following four properties.

(1) When the number of games np made through a node p equals T (i.e., 30 in
Mango), the selection algorithm starts to be applied in this node. For all the

children i of this node with ni = 0,
√

ln np

ni
is replaced by a fixed number M

(e.g., 100 in Mango) satisfying ∀i,M À vi. vi is replaced by 0 when ni = 0.
Thereafter, the algorithm selects every unexplored child once. The order in
which these children are selected is given by f(ni), i.e., the children with the
highest heuristic values are selected first.

(2) If only a few simulations have been made through the node (e.g., from around
30 to 100 in Mango), and if the heuristic value Hi is sufficiently high, the
term Hi

ni+1 is dominant. Hence, the number of simulations made depends more
on the domain knowledge Hi than on the results of the simulated games. It is
an advantage to use mainly the domain knowledge at this stage, because then
the results of only a few simulated games are affected by a large uncertainty.
The behavior of the algorithm is therefore close to the behavior of a simulation
strategy.

(3) When the number of simulations increases (e.g., from around 100 to 500 in
Mango), both the results of the simulated games and the domain knowledge
have a balanced impact on the selection.

(4) When the number of simulations is high (e.g., > 500 in Mango), the influence
of the domain knowledge is low compared to the influence of the previous sim-
ulations, because the domain knowledge decreases by O(1/ni), and the term
corresponding to the simulation decreases by O(

√
ln np/ni). The behavior of

the algorithm is, at this point, close to the behavior of a classical selection strat-
egy (UCT). The only difference with plain UCT occurs if two positions i and
j have the same value vi = vj , but different heuristic evaluations Hi and Hj .
Then, the position with the highest heuristic evaluation will be selected more
often.

3.2. Progressive unpruning

We have seen in Mango that when there is not much time available and simultane-
ously the branching factor is high, MCTS performs poorly. Our solution, progressive
unpruning, consists of (1) reducing the branching factor artificially when the selec-
tion function is applied, and (2) increasing it progressively as more time becomes
available. When the number of games np in a node p equals the threshold T , pro-
gressive unpruning “prunes”a most of the children. The children, which are not
pruned from the beginning, are the kinit children with the highest heuristic values.
In Mango kinit was set to 5. The children of the node i are progressively “un-

aA node is pruned if it cannot be accessed in the simulated games.



June 6, 2008 17:12 WSPC/INSTRUCTION FILE pMCTS

Progressive Strategies for Monte-Carlo Tree Search 9

pruned”. In Mango, k nodes are unpruned when the number of simulations in the
parent surpasses A×Bk−kinit simulated games. A was set experimentally to 50 and
B to 1.3. The scheme is shown in Figure 3.

Fig. 3. Progressive unpruning in Mango.

3.3. Heuristic knowledge used in Mango

The two previous soft-transition strategies require computing a heuristic value Hi

for a given board configuration representing the node i. In this subsection we de-
scribe the heuristic, which is based on the same ideas as seen in 2.3.3. However,
the heuristic knowledge for Hi is much more elaborated than the one used for the
urgency value Ui. In Mango, Hi is composed of three elements: (i) a pattern value,
(ii) a capture value, and (iii) the proximity to the last moves.

The capture value of each move depends on (1) the number of stones that could
be captured by playing the move, and on (2) the number of stones that could escape
a capture by playing the move. It is calculated the same way than for the simulation
strategy.

The pattern value is learned offline by using the pattern matching described
by Bouzy and Chaslot.3 This pattern matching was also implemented in the Go
program Indigo, and improved its level significantly.b In this research, each pattern
assigns a value to the move that is in its center. The value corresponds to the
probability that the move is played in professional games. The learning phase has
been performed on 2, 000 professional games; 89, 119 patterns were learned. Each
pattern contained between 0 stones (e.g., corner pattern) and 15 stones (e.g., joseki
pattern). The size of the patterns was not bounded, so some patterns covered nearly
the whole board, and some covered only a few intersections.

The proximity coefficients are computed as the Euclidean distances to all moves
previously played, as shown below.

These elements are combined in the following formula to compute Hi:

Hi = (Ci + Pi)
∑

k

1
(2dk,i)αk

(3.3)

bIndigo was third out of 17 participants in the World Computer Go Championship 2006, see
http://computer-go.softopia.or.jp/gifu2006/English/index.html
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where Ci is the capture value, Pi is the pattern value, dk,i is the (Euclidean) distance
to the kth last move, and αk = 1.25+ k

2 . This formula has been tuned experimentally.
Computing the Pi values is the time-consuming part of the heuristic.

3.4. Time available for heuristics

The time consumed to compute Hi is in the order of one millisecond, which is
around 1000 times slower than playing a move in a simulated game. To avoid a
speed reduction in the program’s performance, we compute Hi only once per node,
when a certain threshold of games has been played through this node. The threshold
was set to T = 30 in Mango. With this setting, the speed of the program was only
reduced by 4 percent. The speed reduction is low because the amount of nodes that
have been visited more than 30 times is low compared to the amount of moves
played in the simulated games. It can be seen in Figure 4 that the number of calls
to the domain knowledge is reduced quickly as T increases. Even for T = 9, the
number of calls to the domain knowledge is quite low compared to the number of
simulated moves. The amount of nodes having a certain visit count is plotted in
Figure 5. The data has been obtained from a 19× 19 initial position by performing
a 30-second MCTS. We have also plotted a trend line that shows that this data can
be approximated by a power law.
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4. Experiments

Three different series of experiments were conducted. Subsection 4.1 gives the im-
pact of each progressive strategy against GNU Go. Subsection 4.2 shows that these
methods also improve the level of our program in self-play. Subsection 4.3 assesses
the strength of our program Mango in recent (internet) tournaments.

4.1. Mango vs. GNU Go

In the first series of experiments we tested the two progressive strategies in games
against GNU Go version 3.6. The experiments were performed on the 9×9, 13×13,
and 19 × 19 boards. Our program used 20, 000 simulations per move. It takes on
average less than one second on a 9× 9 board, two seconds on a 13× 13 board, and
five seconds on a 19 × 19 board. The level of GNU Go has been set to 10 on the
9×9 board and on the 13×13 board, and to 0 on the 19×19 board. The results are
reported in Table 1, where PB stands for progressive bias and PU for progressive
unpruning.

From these experiments, the results, and our observation, we may arrive at three
conclusions. First, the plain MCTS framework does not scale well to the 13 × 13
board and the 19 × 19 board, even by using GNU Go at level 0. Second, the
progressive strategies increase Mango’s level of play on every board size. Third,
on the 19× 19 board size the combination of both strategies is much stronger than
each strategy applied separately.
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Table 1. Results of Mango against GNU Go.

Board Simulations GNU Go’s PB PU Wins Games 95 percent
size per move level confidence interval

9 20,000 10 33.2% 1000 3.0%
9 20,000 10 X 37.2% 1000 3.1%
9 20,000 10 X 58.3% 1000 3.1%
9 20,000 10 X X 61.7% 2000 2.2%

13 20,000 10 8.5% 500 2.5%
13 20,000 10 X 15.6% 500 3.2%
13 20,000 10 X 30.0% 500 4.1%
13 20,000 10 X X 35.1% 500 4.3%

19 20,000 0 0% 200 1.0%
19 20,000 0 X 3.1% 200 2.5%
19 20,000 0 X 4.8% 200 3.0%
19 20,000 0 X X 48.2% 500 4.5%

4.2. Self-play experiment

We also performed self-play experiments on the different board sizes. The time set-
ting of these experiments is 10 seconds per move. On the 9×9 board, Mango using
progressive strategies won 88 percent of 200 games played against Mango without
progressive strategies. Next, on the 13× 13 board, Mango using both progressive
strategies won 81 percent of 500 games played against Mango without progressive
strategies. Finally, on the 19× 19 board, Mango using both progressive strategies
won all the 300 games played against Mango without progressive strategies. These
self-play experiments show that the impact of progressive strategies is larger on the
19× 19 board than on the 13× 13 and 9× 9 boards. This conclusion is consistent
with the results of the experiments of the previous subsection.

4.3. Tournaments

In the last series of experiments we tested Mango’s strength by competing in
computer tournaments. Table 2 presents the results by Mango in the tournaments
entered in 2007. In all these tournaments, Mango used both progressive strategies.
In this table, KGS stands for “KGS Go Server”. This server is the most popular one
for computer programmers, and most of the well-known programs have participated
in one or more editions (e.g., MoGo, CrazyStone, Go++, The Many Faces

Of Go, GNU Go, Indigo, Aya, Dariush, etc...).
As shown in the previous experiments, the progressive strategies are the main

strength of Mango. We remark that Mango was always in the best half of the
participants.
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Table 2. Results by Mango in 2007 tournaments.

Tournament Board Size Participants Mango’s rank

KGS January 2007 13× 13 10 2nd

KGS March 2007 19× 19 12 4th

KGS April 2007 13× 13 10 3rd

KGS May 2007 13× 13 7 2nd

12th Computer Olympiad 9× 9 10 5th

12th Computer Olympiad 19× 19 8 4th

KGS July 2007 13× 13 10 4th

5. Discussion

An alternative enhancement to progressive bias has been proposed by Gelly and
Silver.14 It consists of introducing prior knowledge. The selected node k is the one,
which satisfies formula 5.4:

k ∈ argmaxi∈I

(
vi · ni + nprior ·Qi

ni + nprior
+ C ×

√
ln np

ni + nprior

)
(5.4)

where Qi is the prior estimation of the position. Gelly and Silver use a reinforcement
learning algorithm, which learned the value from self-play on the 9×9 board.22 nprior

is a coefficient that was tuned experimentally.
On the 9× 9 board, this technique successfully increased Mogo’s winning per-

centage against GNU Go from 60 percent to 69 percent. However, learning the
prior value Qi was only done for the 9×9 board. So, the scalability of this approach
to larger board sizes is an open question.

We would also like to remark that a quite similar scheme to progressive unprun-
ning, called progressive widening, has been proposed simultaneously by Coulom.12

This scheme improved the level of his program CrazyStone significantly. The
main difference with our implementation is that the speed of unpruning as imple-
mented in his program is slower than the one used in Mango. This implies that
the quality of the heuristic domain knowledge in his program is higher. Therefore
it can afford to be more selective without pruning important moves.

6. Conclusions and Future Research

In this article we introduced the concept of progressive strategy. It enables a soft
transition from a simulation to a selection strategy. Such a strategy uses (1) the in-
formation available for the selection strategy, and (2) some time-expensive domain
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knowledge. We have developed two progressive strategies: progressive bias and pro-
gressive unpruning. Progressive bias uses knowledge to direct the search. Progressive
unpruning first reduces the branching factor, and then increases it gradually. This
scheme is also dependent on knowledge.

Based on the results of the experiments performed with our program Mango,
we may offer four conclusions. (1) The plain Monte-Carlo Tree Search method does
not scale well to 13×13 Go, and performs even worse in 19×19 Go. (2) Progressive
strategies increase the level of play of our program Mango significantly, on every
board size. (3) On the 19 × 19 board size, the combination of both strategies is
much stronger than each strategy applied separately. (4) These strategies can use
relatively expensive domain knowledge with hardly any speed reduction.

For future research there are four interesting directions. First, we will investigate
other progressive strategies such as RAVE and UCT with prior knowledge.14 They
have been recently proposed to include knowledge in the Monte-Carlo Tree Search
framework. It would be interesting to combine them with the current progressive
strategies. Second, the progressive strategies could give even better results by using
more advanced knowledge, e.g., as developed by Coulom.12 Third, another idea
is to improve the heuristic knowledge by using life-and-death knowledge. Fourth,
an interesting path of research is to apply the work by Coquelin and Munos11 to
improve the progressive bias.
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