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Abstract—Fuzzing is a testing approach commonly used in
industry to discover bugs in a given software under test (SUT).
It consists of running a SUT iteratively with randomly generated
(or mutated) inputs, in order to find as many as possible
inputs that make the SUT crash. Many fuzzers have been
proposed to date, however no consensus has been reached on
how to properly evaluate and compare fuzzers. In this work we
evaluate and compare nine prominent fuzzers by carrying out a
thorough empirical study based on an open-source framework
developed by Google, namely FuzzBench, and a manually curated
benchmark suite of 12 real-world software systems. The results
show that honggfuzz and AFL++ are, in that order, the best
choices in terms of general purpose fuzzing effectiveness. The
results also show that none of the fuzzers outperforms the others
in terms of efficiency across all considered metrics, that no
particular bug affinity is found for any fuzzer, and that the
correlation found between coverage and number of bugs depends
more on the SUT rather than on the fuzzer used.

Index Terms—Fuzzing, Software Testing, FuzzBench, Empiri-
cal Study

I. INTRODUCTION

Fuzzers are commonly used in industry during the software
testing process to find inputs that, when fed to the software
under test (SUT), will make it crash [4], [27]. There is also a
great deal of research on producing new fuzzers which utilize
innovative techniques in an effort to improve their bug-finding
ability [15], [26]. In spite of this activity, there is no unified
methodology or benchmark suite for fuzzers. Thus, it has been
challenging to carry out a comprehensive benchmark analysis
to compare fuzzers, and assess if one performs better than
others. This has led to different studies using different evalu-
ation techniques including different target programs, different
environments and/or different parameters [15], which impacts
a user’s ability to reliably choose the most suitable fuzzer to
their purposes. As shown by Klees et al. [15], there is no
established consensus on how to evaluate fuzzers or compare
them against each other, as evidenced by the fact that each
of the 32 papers they analysed used a different evaluation
methodology. An empirical study that compares the currently
most prominent fuzzers against each other, based on a sound
methodology, including taking into account the guidelines by
Klees et al., metrics based on real-world bugs, and a diverse
enough set of benchmarks seems overdue. Our work sought
to fill this gap.

In this paper, we aim to evaluate a set of relevant and widely
used fuzzers in a robust and fair way, and to compare them
against each other based on metrics that accurately reflect the
fact that a fuzzer’s main goal is to discover bugs in the SUT.
To this end, we evaluate fuzzers’ effectiveness and efficiency
by assessing their ability to find crashes that match with a
ground truth, a set of real-world bugs found by OSS-Fuzz; we
also evaluate fuzzers on their ability to find additional crashes
that are not present in our ground truth. In summary, we set to
address two common issues in fuzzing evaluation: Having a
weak or lacking methodology, and relying on proxy evaluation
metrics that do not reflect real-world purposes.

To run our experiments in a systematic manner and with
minimal variations between runs, we use FuzzBench [21], a
framework designed by Google to facilitate fuzzer benchmark-
ing. While initially FuzzBench only focused on comparing the
code coverage of different fuzzers and ranking them according
to this metric, we have extended it to rank fuzzers based
on found bugs. Our work includes the following: extending
FuzzBench in order to detect/record the crashes; implementing
a mechanism to get a unique hash for each detected crash
(for de-duplication); choosing a set of benchmarks that fit our
requirements; devising a robust methodology to assess and
rank fuzzers, and finally, running the chosen fuzzers on the
selected benchmarks, while keeping track of which of the
known and how many unknown bugs have been found by each
fuzzer.

We compare nine prominent fuzzers (AFL, AFLFast,
AFLSmart, AFL++, mOpt, entropic, honggfuzz,
libfuzzer, FairFuzz) on their ability to find real-world
bugs, or more specifically to trigger crashes related to bugs
in the ground truth we have compiled from the OSS-Fuzz
platform, as identified by the de-duplication functionality of
ClusterFuzz. We also record and compare additional informa-
tion, such as the achieved coverage and the number of crashes
whose hashes do not match any bug in the ground truth (and
thus can be considered potentially newly discovered bugs).
This information, together the number of found ground truth
bugs, is then analysed in three steps: (1) a report for each
fuzzer is generated containing all the data gathered during our
experiment; (2) the fuzzers are compared against one another
based on various metrics and by using statistical significance
and effect size analyses in order to establish whether we have



found any relevant difference; (3) a selection of bugs found
by each fuzzer is qualitatively analysed to understand if there
is any correlation between fuzzers and the characteristics of
the bugs they find.

Our results show that, across all metrics, honggfuzz
and AFL++ equally outperform all other fuzzers according
to the Friedman test, with AFLFast, AFL, entropic, and
mOpt following in a tight group. Two runner-up groups are
formed, almost coinciding with the fuzzer families. When
considering other aspects, such as effect size, number of
unique bugs found, or total number of bugs found over all
trials, honggfuzz performs better than all other fuzzers,
followed closely by AFL++. Additionally, when considering
efficiency, we find that the roles reverse: honggfuzz ends up
at the bottom of the rankings, with AFL++ performing slightly
better, but still ending up towards the bottom based on two
out of three metrics. Fairfuzz instead, which performed
the worst in terms of efficacy, proved the most efficient fuzzer
in finding both additional crashes and in expected time to find
the last distinct crash.

In summary, the main contributions of our work are: (1) a
large-scale rigorous empirical study comparing widely used,
publicly available, fuzzers based on a solid methodology with
real-world bugs; (2) a manually curated ground truth suite of
real bugs from open-source projects; (3) open-source code and
data available in FuzzBench [2] and our online appendix [3] to
allow for reproduction, replication and extension of our work.

II. BACKGROUND

This section provides some background about fuzz testing,
the FuzzBench tool, and other tools used in our work.

A. Fuzz Testing

In automated software testing, fuzz testing (or fuzzing) is
a relatively simple technique to discover bugs in a software.
It consists in running the software under test iteratively with
randomly generated or mutated inputs, aiming at finding those
inputs that make the software crash. While straightforward
in principle, coverage-guided fuzzing generally focuses on
quantity over quality, generating numerous inputs in the hope
that some of them will hit a bug in the code. In practice fuzzing
has been shown to work better than other testing techniques,
such as symbolic execution, and to find a larger number of
bugs on the SUTs [31]. Fuzzers have found thousands of bugs
in real-world software systems in recent years [23], [24], [34].
Next we explain some key terms commonly used for fuzzing.

De-duplication is a process through which crashes identi-
fied in a fuzzing campaign are tentatively clustered together
according to the bug that is thought to have produced them.
More specifically, the aim of the de-duplication process is
to determine with a certain degree of accuracy whether two
crashes are due to the same bug or have different causes. This
is needed since the objective of fuzzing is not to find crashes,
but to find the bugs underlying the crashes. It is worth noting
that de-duplication is useful for two relevant groups, fuzzer
users and fuzzer researchers and developers. De-duplication is

useful for fuzzer users because it makes it easier to infer the
underlying bug. De-duplication is useful for fuzzer researchers
and developers because it allows for evaluation of fuzzers on
the metric that most closely resembles the ultimate goal of
fuzzers: finding bugs.

Previous work has shown that current de-duplication meth-
ods produce 1-2 orders of magnitude more “unique” crashes
than there should be when analysed [15]. In our work we
use ClusterFuzz’s de-duplication technique [20], [23]. This
technique reduces the number of crashes falsely believed to be
unique, enough so that OSS-Fuzz automatically reports bugs
to developers. As with any de-duplication technique, there is
also the possibility that two different bugs are considered to be
the same bug. In theory, it would be possible to use older target
versions with known bugs, tracing back each crash to the bug
causing it and then using the number of bugs discovered as
a metric, but this would require having a dataset of programs
with known, reproducible, and discoverable bugs by fuzzers.

The seeds are input files given by the user to the fuzzer,
in order to jump-start the fuzzing campaign. Mutation based
fuzzers start their mutation process on seeds, and as such seeds
are vital in order to produce good results during fuzzing: using
an empty file, a correctly formatted, or an invalid one can
drastically affect a fuzzer’s performance [15].

Sanitizers are compile time instrumentation for programs
that are inserted by the compiler into executable code to
check for specific bugs such as memory unsafety or undefined
behaviour. This includes bugs such as buffer overflows and
integer overflows. The type of errors detected depend on the
specific sanitizer(s) used during compilation.

Oracles in fuzzing, as exemplified by their name, establish
whether the behaviour of the SUT was correct or not. In a
basic example, an oracle could be a script that, after running
the SUT, reports no crash if the recorded exit code was 0, and
reports a crash if the exit code was not 0. With this oracle a
fuzzer can understand whether or not the input used triggered
bugs such as memory corruption in the SUT, since bugs that
violate memory safety can cause segmentation faults, which
cause the program to return a nonzero exit code. This oracle
is oftentimes used in fuzzing. However, to identify more bugs,
the SUT can be compiled with sanitizers that crash the SUT
during execution when a bug occurs, even if under normal
circumstances the SUT would not crash. More complex oracles
can be based on the execution reaching a buggy state specific
to the SUT, or on whether the SUT passes taint analysis, but
such oracles usually require modifying the SUT’s source code.

B. FuzzBench, OSS-Fuzz and ClusterFuzz

FuzzBench [21] is an open-source tool developed by Google
to provide “fuzzer benchmarking as a service” [21]. Bench-
marks in FuzzBench are based on the fuzz targets in OSS-
Fuzz, which is a continuous fuzzing service for open-source
projects [23]. FuzzBench is based on docker, and allows for
local execution of experiments and for integration of new
fuzzers and new benchmark programs to the already existing



library. FuzzBench can also be modified to customise the re-
ports it produces in order to include additional data or perform
different analyses. In this work we use the FuzzBench platform
to systematically run a series of fuzzing campaigns with
9 fuzzers over 12 different open-source software programs,
while keeping the testing environment consistent between runs.

OSS-Fuzz [8], [23] is a continuous fuzzing service run by
Google that uses AFL++ (and previously AFL), libfuzzer,
and honggfuzz to fuzz the latest version of an open-source
project, in order to find bugs, and report them to the developers
who then fix the bugs. The software that is fuzzed by OSS-
Fuzz is “user” supplied, i.e., the users are the developers
of the projects in question. At the time of writing, OSS-
Fuzz [23] has reported more than 35, 000 bugs, in over 400
open source projects. The same considerations made for all the
other candidate datasets still apply: not all bugs are confirmed,
some are duplicates or “won’t fix” bugs, some others are too
new or too old and they do not have the proper data recorded,
plus each bug only appears in a specific range of program
versions (we can only fuzz one), so we would need to find the
buggiest version of each program through some analysis.

ClusterFuzz [20] is continuous fuzzing infrastructure de-
veloped by Google that runs fuzzers such as AFL++,
libfuzzer, and honggfuzz during the development pro-
cess. ClusterFuzz is the back-end for OSS-Fuzz, OSS-Fuzz
uses ClusterFuzz for fuzzing and bug reporting. ClusterFuzz
can be used as a library allowing users to use some of its
functionality without running the entire infrastructure. This
includes the crash hashing functionality we used in this work.

III. EMPIRICAL STUDY DESIGN

The main goals of our work are to compare a set of
prominent fuzzers in a comprehensive, rigorous and fair way,
to provide a unified dataset of real-world software and bugs,
and to address, at least partly, the issues found in many recent
work that proposes and evaluates fuzzers [15].

To this end, we evaluate the fuzzers based on three main
criteria, which correspond to our first three research questions:
effectiveness, efficiency, and bug type affinity. We also inves-
tigate the relationship between coverage and the number of
crashes or bugs found by a certain fuzzer in a given SUT ,
which is our fourth and last research question. We discuss each
research question in detail in Section III-A.

As a benchmark to compare the fuzzers, we identified a set
of 12 real-word software systems containing previously bugs
found by fuzzers from OSS-Fuzz, which are further described
in Section III-B.

After integrating this set of software projects with
FuzzBench, we run them within a similar environment used
by OSS-Fuzz, in order to ascertain how many of the bugs
originally reported in OSS-Fuzz could be reproduced in
FuzzBench. As expected we were unable to trigger some of the
bugs, even though both environments are similar. From here

on, we refer to the number of bugs in the ground truth for each
benchmark as the number of bugs successfully reproduced in
FuzzBench (and not the number of bugs originally reported
by OSS-Fuzz).

We run 30 fuzzing campaigns or trials (from here on, runs)
for each (fuzzer, benchmark) pair. We use the default seeds
included by the fuzz target integrators in OSS-Fuzz (which
is sometimes none), and set each campaign to 23 hours. This
length was chosen to lower the cost incurred in running the
experiment on the Google Cloud Platform. We deemed this
an acceptable compromise since results in the literature often
suggest using 20-24 hours as a stoppingc riterion [15].

A. Research questions
In this section we describe the motivations for our research

questions and the methodology adopted to answer them.
1) RQ1 - Effectiveness: How do the chosen fuzzers compare

against each other in finding bugs? Because the purpose of
fuzzers is finding bugs in the SUTs, we first and foremost
evaluate and compare fuzzers based on their bug finding
ability.

We answer RQ1 by comparing fuzzers based on the fol-
lowing three metrics: number of distinct crashes1; number
of distinct ground truth bugs found (i.e., ground truth bug
hits); number of distinct crashes found that are not in the
ground truth (referred to as additional crashes). From now on,
whenever we use the term crashes without any adjective, we
refer to crashes that have already undergone a de-duplication
process run by FuzzBench.

We also compare fuzzers based on the total number of
crashes they have found over all the trials, and on the number
of crashes that only one fuzzer has been able to find across
all the trials. The first metric offers insight into which fuzzer
has the potential for finding a larger number of different
bugs in a SUT, and to understand which fuzzer would be
better suited to a fuzzing campaign composed of multiple
short, potentially parallel, instances. The second metric offers
interesting insights on which fuzzers are able to find bugs no
other fuzzer can find, which is a characteristic to be factored in
when designing a fuzzing campaign with multiple fuzzers, to
avoid finding duplicated bugs. Additionally, we analyse how
the fuzzer behaviour progresses over time during the fuzzing
campaign.

In order to perform a robust analysis, we also devise four
different approaches, based on statistical significance analysis
and effect size test, to rank the fuzzers, as described in the
following.

We define the ranking R adjusted based on the results of
a given statistical significance test for a given fuzzer f and
benchmark in Equation 1:

R(f) =
1

|EFf |
×

∑
f ′∈EFf

NR(f ′) (1)

1For sake of space we report on the number of distinct crashes found only
when they cannot be derived from the results of the other two metrics, as the
number of distinct crashes can in most cases be computed as the sum of the
number of the ground truth bug hits and the number of additional crashes.



where EF f is the set of all fuzzers (f included) equivalent to
f ; and NR is the function that computes the ranking of a fuzzer
for the desired metric. In summary, the ranking procedure
assigns to a given fuzzer f the average ranking of all fuzzers
equivalent to f . For example, if a fuzzer is ranked first since it
found the highest number of crashes, but it is not statistically
significant better than a fuzzer ranked second in terms of
number of crashes, its adjusted ranking will be 1.5. We adopted
this procedure to take into account not only of the difference
between two fuzzers based on a given metric, but also the
statistical significance of such a difference, thus providing a
more robust ranking system.

To rank the fuzzers per benchmark, we use the Kruskal-
Wallis statistical test [16] on the results obtained from the
experiments pertaining to a given benchmark (considering
each trial separately). If this test provides us with a significant
result for a given benchmark, it signifies that at least two
fuzzers behaved differently, and it will prompt us to run
the Dunn’s post-hoc test to determine which pair of fuzzers
produced statistically significant different results.

To rank the fuzzers across all benchmarks we use the
Friedman [11], [12] test, with a follow-up Nemenyi post-hoc
test to determine which fuzzers are statistically equivalent and
which ones are not. For the sake of space, more details on
the process we use to run Kruskal-Wallis, Friedman and the
post-hoc tests are provided in the online appendix [3].

We also rank the fuzzers based on the effect size analysisof
the differences between the fuzzers’ performance on each
benchmark, by using the Vargha-Delaney Â12 measure [33].
Based on this test, a statistical win is given to a fuzzer F1

against a fuzzer F2 when the value of the effect size measure
Â12 is strictly larger than 0.5; a loss is given when Â12 is less
than 0.5, a draw when Â12 is exactly 0.5 (and no win is given
to either fuzzer in this case). Moreover, a win is considered
negligible (N) if Â12 is less than 0.647, small (S) if Â12 is less
than 0.83, medium (M) if Â12 is less than 0.974, and large
(L) otherwise [14].

We rank the fuzzers not only based on the number of wins,
losses and ties, but also on their respective magnitude (i.e.,
N,S,M,L). Since any kind of weighting given to negligible,
small, medium and large wins could be considered subjective,
we consider three different scoring systems: (i) “Linear Score”,
which assigns the weights (3, 2, 1, 0) to L, M, S and N wins,
respectively; (ii) “Quadratic Score” which assigns the weights
(4, 2, 1, 0) to L, M, S and N wins, respectively;(iii) “Adjusted
Ranking’ which first ranks each fuzzer based on the number of
large, medium, small and negligible wins for a given fuzzer’s
tuple (L,M,S,N), and then adjusts such ranking based on
Equation 1 considering as statistically equivalent the tuples
that are either equal or non-dominated.2

2A tuple is said to dominate another if all the values in the first tuple are
greater or equal than each corresponding value in the second tuple, and if
there is at least one corresponding value greater than the other tuple.

2) RQ2 - Efficiency: How do the chosen fuzzers compare
against each other in terms of efficiency? An important
consideration in evaluating a fuzzer is how quickly fuzzers
find bugs. Bugs that are found sooner can be fixed earlier, and
possibly before deployment. We compare fuzzers based on the
median expected time to first bug, and the median expected
time to last bug, that is how much time it takes for them to find
the first bug and how long they can continue finding bugs until
they are not able to find anymore before the timeout. While it
would be interesting to analyse other efficiency measures such
as executions per second, memory and disk usage, none of the
fuzzers currently integrated with FuzzBench reports additional
statistics through their API, nor can FuzzBench reliably record
any of such info. Thereby we could not analyse any additional
efficiency measures.

3) RQ3 - Bug Types: Do certain fuzzers reliably find some
type of bugs more than others? This aspect is particularly
relevant for practitioners who have an interest in finding
specific types of bugs that, for example, might be present in
large quantities in a known codebase, or simply are not well
covered by the existing test suite. If such a requirement exists,
knowing which fuzzer is best suited to find which bugs could
prove very beneficial. To answer this question, we categorise
the bugs in the ground truth and the ones newly discovered
by the fuzzers based on the bug-type provided by OSS-Fuzz
or ClusterFuzz. We then check if there is any relationship
between a given fuzzer and type of bugs. The description of
the bug categories considered in this work can be found in our
online appendix [3].

4) RQ4 - Coverage Correlation: Does coverage correlate
with the number of crashes? Our last question aims at further
analysing the claims made in previous work [15] that the usage
of the coverage achieved as a proxy for found bugs is not op-
timal. Providing researchers and practitioners with additional
and more robust empirical evidence answering such a question
can guide them towards a more rigorous analysis of fuzzers
in the future. Therefore we check for correlation between
the coverage data gathered by FuzzBench and the number of
crashes found. We do so in three different scenarios: across
the entirety of the results, without any grouping; grouped
per benchmark, in order to test if and which benchmarks are
more prone to triggering actual bugs when their coverage is
higher; grouped per fuzzer, in order to check whether the code
coverage measure is a good predictor for the bug revealing
abilities of a specific fuzzer. Since we have no guarantee that
our data is normally distributed, we use the Spearman test [30]
as our correlation test. The Spearman’s ρ coefficient goes from
−1 to 1, where −1 indicates a perfect inverse correlation, 1 a
perfect direct correlation, and 0 a lack of correlation [30].

B. Benchmarks

To select the software systems to be used as a benchmark to
assess and compare fuzzers, we have carefully analysed several
options, including the CGC [7] and LAVA [9] benchmark
suites, which, however, consist of synthetic programs and/or
synthetic bugs, and the Fuzzer Test Suite [22], whose number



of known bugs per benchmark was too low for our needs. We
decided to use the OSS-Fuzz bug tracker [8] as a source for
software systems under test, as it provides real-world data, a
good amount of ground truth, and its software systems can be
conveniently integrated in FuzzBench [27].

From OSS-Fuzz, we aimed at selecting projects with a
sufficient number of bugs that can be reliably reproduced
among three sets: (i) projects having the largest number of
bugs; (ii) projects having the largest number of bugs that are
difficult to find; (iii) projects chosen uniformly at random. We
refer the reader to our online appendix [3] for the description
of the collection procedure we performed to gather the subjects
and the detailed list of benchmarks used in our evaluation.

C. Fuzzers

We investigate and compare nine fuzzers that are widely
used in industry and previous work [13], [15], [27], and
that are integrated with FuzzBench, in order to allow
for reproduction and replication of our work: AFL [35],
AFLFast [5], AFL++ [10], AFLSmart [29], entropic [6],
Fairfuzz [17], honggfuzz [19], libfuzzer [24],
mOpt [25]. These fuzzers, excluding honggfuzz ( which is
a project developed independently by Google), can be roughly
separated into two families: the AFL family, formed by AFL,
AFLFast, AFLSmart, AFL++, mOpt, and fairfuzz,
and the libfuzzer family, composed by libfuzzer and
entropic. The fuzzers in each of the two families are a
modified version of a same original fuzzer (i.e., AFL and
libfuzzer, respectively).

D. Hardware

FuzzBench uses a single core preemptible Google Compute
Engine instance to run each trial for a (fuzzer, benchmark)
pair, and a 96 core Google Compute Engine instance to run
the process in charge of collecting the data regarding crashes,
coverage, etc.. The data analysis was performed on a consumer
PC with an AMD 3900x processor and 64GB of RAM.

E. Threats to Validity

We recognise the following possible threats to the validity
of our study.

The chosen benchmarks could not be representative of the
whole space of possible SUTs for general usage fuzzers. We
acknowledge that our benchmarks have been chosen from a
selection of open source projects voluntarily submitted to the
OSS-Fuzz platform and have also been selected based on
criteria that could introduce a bias. we consider the former
threat unlikely as the projects in OSS-Fuzz cover a wide range
of dimensions, complexity and usages, and the open source
nature of the projects is needed for us to run an effective
campaign on the SUTs, so commercial, closed source projects
could not be used in this work. To account for the latter threat,
we also include randomly selected SUTs in our benchmark
(more info in our online appendix [3]).

In terms of construct validity, the ClusterFuzz’s de-
duplication technique, which we used to link the crashes with
our ground truth, might not be completely accurate, and as
such recognise different bugs as being the same one (overeager
de-duplication), or vice-versa split one bug into two separate
ones (insufficient de-duplication). ClusterFuzz, in addition to
what it refers to as “de-duplication”, actually uses another
technique called ”Grouping” for de-duplication which we do
not use in our experiment. This technique uses Levenshtein
distance to de-duplicate crashes that have slight variations in
their stacks [1]. Because of this difference, our de-duplication
may be less effective than ClusterFuzz’s.

Finally, the bugs in our ground truth might favour
libfuzzer, AFL, and honggfuzz since they were orig-
inally found by those fuzzers in OSS-Fuzz. Given the re-
sults shown in this paper, this seems unlikely, as AFL and
libfuzzer were not ranked amongst the best and only a
few bugs found by honggfuzz are in the ground truth. In
order to mitigate such bias, we also analyse the results using
“additional crashes”, i.e., crashes not originally found by such
fuzzers in OSS-Fuzz and ClusterFuzz.

IV. EMPIRICAL STUDY RESULTS

In this section we present the results of our empirical
study and the answers to our research questions. We refer to
benchmarks by their project name for better readability. The
two php benchmarks are referred to as php-parser and php-
execute based on their target.

A. RQ1 - Effectiveness

Tables I and II present the ranking of fuzzers based on
their effectiveness in finding bugs, while Tables III and IV
report on the total number of bugs found and total number of
unique bugs found by each fuzzer per benchmark, respectively.
Additional results in terms of average number of crashes found
by fuzzer per benchmark, and the number of crashes over
time can be found in our online appendix [3]. We use the
acronym GT to indicate the results regarding the ground truth
bugs metrics, AC to indicate those related to the additional
crashes (not in GT), and DC to indicate the results regarding
the distinct crashes found as a whole (GT + AC).

Table I shows the rank of each fuzzer per benchmark,
adjusted to account for statistical significance as described in
Section III and Equation 1. The lower the rank, the better the
fuzzer is positioned according to a given metric (i.e., DC, GT
or AC) and the results of the Kruskal-Wallis statistical test
(note the ranks are calculated independently for each metric).

Table II shows four different ranking approaches (differing
for the type of statistical analyses done), which are instead
calculated across all benchmarks. The first ranking approach,
dubbed Friedman Ranking, ranks fuzzers according to the
median number of crashes they found, and then adjusts these
ranks based on Equation 1 and the results of the Friedman test
as described in Section III-A1 (which, in our case, resulted
in a p-value < 0.001). The other three ranking approaches
(dubbed as Effect Size Rankings) are all based on the results



TABLE I: RQ1 – Ranking based on fuzzers performance per benchmark, adjusted based on Equation 1 and Kruskal-Wallis test results. The
lower the rank, the better. Highlighted in blue (GT) and green (AC) the best performing fuzzer(s) per benchmark.

Benchmark AFL AFLFast AFL++ AFLSmart entropic Fairfuzz honggfuzz libfuzzer mOpt
GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC

arrow 3.5 3 3.5 3 3 3 3.5 3 8.5 9 7 6.5 8.5 8 4.38 6.5 3 3
ffmpeg 6.5 5 6.5 4.5 2 1.5 6.5 5 2.5 8 7 6.5 1.5 1.5 6 8 6.5 5
libarchive 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
matio 4.5 4.75 4.5 4.75 2.5 1.5 4.5 4.75 8.5 7.67 4.5 7.5 4 1.5 8.5 7.5 4.5 5.5
njs 5 5.31 5 5 5 3.4 5 5 5 4.43 5 6.25 5 6.25 5 5.31 5 4.43
openh264 4.5 6.5 5 7 4 2.17 4.67 6.5 4 1.5 9 7.75 4 3.5 4 3 4.5 6.5
php-execute 4 6 4 6 4 1.5 4 6 8.5 6 4 6 4 1.5 8.5 6 4 6
php-parser 5 4.5 5.44 5 5 4.5 5 4.5 4.71 4 5 3.67 4.88 4.5 6 8.5 5 5.86
poppler 5 3.5 5 3.5 5 4 5 3.5 5 8 5 8 5 3.5 5 8 5 3
proj4 6.5 7 6.5 7 6.5 4 6.5 7 1.5 1.5 6.5 7 2 1.5 2.5 3 6.5 7
stb 4 4.58 3.5 4.58 3.5 3.5 4 3.5 8.5 5.17 5.33 9 3.5 3.25 8.5 7.5 3.5 3.5
wireshark 5 5.5 5 5.5 5 5.5 5 4.93 5 3.5 5 5.5 5 9 5 1.5 5 4.93

TABLE II: RQ1 – Rankings based on fuzzers performance across all benchmarks, evaluated with the Friedman test, and the Vargha-Delaney
effect size. The lower the rank, the better. Highlighted in red (DC), blue (GT) and green (AC) the best fuzzer(s) per benchmark.

Benchmark Friedman Rankings Effect Size Rankings
Linear Score Quadratic Score Adjusted Ranking

DC GT AC DC GT AC DC GT AC DC GT AC

honggfuzz 1.5 1.5 1.5 1 1 1 1 1 1 1.5 1 2
AFL++ 1.5 1.5 1.5 2 2 2 2 2 2 1.5 2 1
AFL 5 5.5 5.2 7 7.5 8 7 7.5 8 8 8.5 7
AFLFast 5 5.5 5.2 5 7.5 5 5 7.5 5 7 8.5 6
entropic 5 5.5 5.2 3 3 3 3 3 3 4 6.5 5
mOpt 5 5.6 5.2 4 4 4 4 5 4 3 3 3.5
AFLSmart 5 5.6 5.2 6 6 6.5 6 6 6 5 5 3.5
libfuzzer 8.5 6 8 8 5 6.5 8 4 7 6 6.5 8
fairfuzz 8.5 7 8 9 9 9 9 9 9 9 4 9

of the Vargha-Delaney effect size test. The first two (namely,
Linear Score and Quadratic Score) assign a certain amount of
points for each large, medium or small statistical win, and then
rank the fuzzers based on their tally. The last ranking approach
(namely, Adjusted Ranking) ranks the fuzzers based on their
number of large, then medium, then small wins, and averages
the ranks for those fuzzers that do not completely dominate
another one (more details in Section III-A1). The results in
terms of number of wins for each fuzzer, both against all other
fuzzers on each benchmark, and against each other fuzzer on
all benchmarks, can be found in our appendix [3].

Based on the results shown in Table I, we observe that
AFL++ and honggfuzz are ranked top for more benchmarks
than the rest of the fuzzers. While, from the results shown in
Table II, we observe that according to the Friedman ranking
both honggfuzz and AFL++ rank first for each of the
metrics (i.e., DC, GT, AC). Whereas, according to the Effect
Size Rankings, honggfuzz ranks first in all but one case
(Adjusted Rankings for AC), and AFL++ ranks always either
second (Linear Scores, Quadratic Scores, and Adjusted GT
Rankings) or first (Friedman Rankings and Adjusted DC and
AC Rankings). We also observe, based on the Friedman
rankings, that two runner-up groups emerge: the one composed
by AFL-based fuzzers, and the one by libfuzzer-based
fuzzers, except for swapping Fairfuzz and entropic.
While, the groups become indistinguishable based on the effect
size rankings. The detailed results of the Friedman and Vargha-
Delaney tests can be found in our online appendix [3].

Table III shows the number of total crashes found over
all runs by each fuzzer per benchmark. Both AFL++ and
honggfuzz rank first based on the number of ground truth
bugs found, followed by mOpt. While, when considering
the number of additional crashes, honggfuzz is the best
fuzzer, while AFL++ ranks second. In addition to being first,
honggfuzz also distinguishes itself from the other fuzzers
when accounting for the raw number of bugs found. The
efficacy of honggfuzz becomes more evident when we
consider the ability of fuzzers to find crashes that no other
fuzzer has found during our experiment. As shown in Table IV,
honggfuzz ranks first (8 wins), while AFL++, AFLSmart
entropic and libfuzzer rank second (3 wins each).

In terms of average number of crashes found across all three
metrics and the corresponding statistically adjusted ranks, the
best fuzzer is still honggfuzz, edging a win over AFL++.
Besides, when we consider a broader picture including the
results of the Vargha-Delaney rankings and the number of
unique and total distinct crashes/bugs/additional crashes found
(Table II), honggfuzz performs better than any other fuzzer
in 54.17% of the effect size comparisons for distinct crashes,
39.58% for ground truth bugs, and 54.17% for additional
crashes, getting ranked first 11 times and second only once.

B. RQ2 - Efficiency
Table V shows the rankings for all fuzzers across all

benchmarks and metrics (i.e., DC, GT, and AC) based on the
expected time to find their first and last crash.These ranks are
not adjusted because despite the Friedman test gives a p-value



TABLE III: RQ1 – Number of bugs found by each fuzzer for a given benchmark. Each distinct bug is only counted once per (fuzzer,
benchmark) pair. The first column shows the total number of bugs in the ground truth for each benchmark. Highlighted in
green and blue the best fuzzer(s) per benchmark.

Benchmark Bugs AFL AFLFast AFL++ AFLSmart entropic Fairfuzz honggfuzz libfuzzer mOpt
GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC

arrow 29 19 49 19 53 20 55 18 52 14 19 17 37 16 28 19 32 19 50
ffmpeg 35 4 16 5 24 17 30 4 22 9 13 3 15 25 48 5 7 5 20
libarchive 6 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
matio 32 6 13 6 15 6 15 6 15 5 12 6 12 6 19 5 10 6 12
njs 6 1 4 1 4 1 5 1 4 1 5 0 4 1 3 1 3 1 4
openh264 4 3 3 3 2 3 6 3 4 3 9 3 0 3 5 3 6 3 3
php-execute 9 2 4 1 4 5 17 4 9 3 9 2 10 3 16 0 3 1 7
php-parser 6 3 8 2 7 3 9 2 7 4 10 3 9 2 10 1 2 1 9
poppler 13 3 48 4 47 4 47 4 46 4 39 1 28 1 53 1 15 6 52
proj4 27 0 0 0 0 6 10 0 0 16 21 0 0 22 62 14 11 0 0
stb 8 7 18 7 18 7 20 7 18 7 14 7 16 7 20 4 14 7 19
wireshark 8 1 7 0 5 0 7 1 8 0 8 0 8 0 0 1 7 1 7

TABLE IV: RQ1 – Number of bugs found by a given fuzzer that have not been found by any other fuzzer per benchmark. Highlighted in
blue and green the best performing fuzzer(s) per benchmark.

Benchmark AFL AFLFast AFL++ AFLSmart entropic Fairfuzz honggfuzz libfuzzer mOpt
GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC GT AC

arrow 0 1 0 2 1 2 0 2 0 0 0 0 0 0 1 0 0 0
ffmpeg 0 0 0 2 0 4 0 0 0 0 0 0 4 18 0 0 0 2
libarchive 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
matio 0 0 0 1 0 1 0 2 0 0 0 0 0 2 0 0 0 0
njs 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
openh264 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
php-execute 0 2 0 2 0 8 0 5 0 2 1 6 0 6 0 1 0 1
php-parser 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
poppler 0 3 0 1 0 2 0 1 0 3 0 3 0 9 0 2 1 2
proj4 0 0 0 0 0 1 0 0 1 0 0 0 7 40 0 0 0 0
stb 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
wireshark 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

lower than 0.05, the Nemenyi tests only reveals a statistically
significant difference in two cases (namely, the expected time
to last distinct crash between Fairfuzz and entropic,
and the expected time to find the last additional crash between
Fairfuzz and honggfuzz). The raw data for the expected
time to first/last crash can be found in our online appendix [3].

Since we analyse the expected time to find both first and
last bug, it is interesting to observe that there are three main
“behaviours” a fuzzer can assume, depending on its position
in the rankings. Let us indicate with A a fuzzer’s rank for
the expected time to first crash, and with B the rank for the
expected time to last crash, if |B − A| ≤ 2 then we can say
that the fuzzer performs in a manner inversely proportional to
avg(A,B) since the higher the values of A and B the shorter
the time window in which the fuzzer has found its crashes. If
|B−A| > 2 then the fuzzer either finds its first crash early and
then finishes early too, or finds the first late and keeps finding
crashes until the end; as such, we could say it behaves in a
standard way, and its performance should be judged based on
the user’s goals.

It is clear that the best performing fuzzers for distinct
crashes behave in the “standard” way, and as such should be
considered situational. Conversely, for the other two metrics
we have two clear winners and two runner-ups. Overall,
AFLFast and Fairfuzz seem to be consistently highly
efficient, while honggfuzz, libfuzzer, and entropic

seem to consistently perform poorly. mOpt, while ranking first
for the expected time to find first distinct crash (DC), and
second for the additional crashes (AC), it does not show good
results when considering its efficiency in finding ground truth
bugs (GT).

C. RQ3 - Bug Types

We investigate whether some fuzzers exhibit different per-
formance towards particular types of bugs by comparing the
number of ground truth bugs and distinct crashes found by
each fuzzer, categorised per bug type as reported by OSS-Fuzz
and FuzzBench, respectively. For sake of space, the visual
representation of these results can be found in our online
appendix [3], while in the following we discuss the main trends
observed.

The majority of all crashes found are Integer-overflow,
Undefined-shift, Divide-by-zero, and Heap-buffer-overflow
crashes, making up respectively 28.51%, 12.68%, 9.71%, and
8.58% of all the crashes. All fuzzers were able to find almost
equally often Integer overflows bugs, except for honggfuzz
and AFL++, which were notably able to find around 20 to
30 more crashes of this type (i.e., almost 35% more than the
other fuzzers). Whereas libfuzzer found around half as
many Integer overflows bugs than the average.



TABLE V: RQ2 – Ranking based on the average expected time to first crash and to last crash, across all benchmarks. The lower the better.

Benchmark DC GT AC
First Last First Last First Last

AFL 3 2 8 6 7 4
AFLFast 4 3 1 1 4 3
AFL++ 7 6 2 2 5 8
AFLSmart 2 5 4 4 3 5
entropic 6 8 7 8 6 7
Fairfuzz 5 1 3 3 1 1
honggfuzz 8 9 6 7 8 9
libfuzzer 9 7 9 9 9 6
mOpt 1 4 5 5 2 2

Another interesting observation is the very large disparity
in Divide-by-zero ground truth bugs found, ranging from the
almost 84 bugs found by honggfuzz, to the single one found
by Fairfuzz. All other fuzzers also find very few of this
type of bugs, with the exception of AFL++, libfuzzer,
and entropic, which manage to find between 30 and 40,
but their results are still much lower than those achieved by
honggfuzz.

We also noticed some minor differences. Honggfuzz,
AFLSmart, AFLFast, and mOpt found a slightly higher
number of Abrt bugs. Whereas, Entropic, AFL, AFLFast,
honggfuzz and libfuzzer did not find any Container-
overflow bugs (both in the ground truth and in terms of distinct
crashes), while other fuzzers found only a single Container-
overflow bug. However, it is possible that more bugs that
could fall under this category were instead recorded as another
similar type of bug.

Aside from the above differences, there are no relevant
strong patterns in bug affinity. We also note that FuzzBench
has a slightly different bug categorisation method from OSS-
Fuzz, which we used for our ground truth. Thus, in some cases
where fuzzers found zero ground truth bugs of a given type,
the same fuzzers ended up finding additional crashes (not in
the ground truth) of such a type. This is due to some of the bug
types producing similar crashes, which makes it so that a same
bug can be categorised in different ways, depending on the
sanitiser, the fuzzer, or the environment in which it was found.
Nevertheless, we mitigated this behaviour by considering the
most prominent fault type when checking the bug types.

In summary, no particular relationship was found be-
tween fuzzers and bug types, other than Integer-overflow
bugs for honggfuzz and AFL++, and Divide-by-zero for
honggfuzz, entropic, AFL++, and libfuzzer.

D. RQ4 - Coverage Correlation

We discuss below the results of the correlation analysis
carried out to answer RQ4. For the sake of space we report
the raw correlation results in our online appendix [3].

The Spearman correlation test run on all data (i.e., without
considering any grouping), reports a very weak correlation
(Spearman’s ρ = 0.10, p-value < 0.01), while the results
for the data grouped by benchmark show different levels
of correlation (0.16 ≤ ρ ≤ 0.93, p-value < 0.01), from
weak to strong depending on the benchmark. When analysing

the correlations by grouping the data by fuzzer, the results
also tend to vary (−0.14 ≤ ρ ≤ 0.31, p-value < 0.01).
We have also found two interesting cases: (entropic and
libfuzzer) present a weak inverse correlation (entropic’s
ρ = −0.07, libfuzzer’s ρ = −0.14) when considering results
over all benchmarks, meaning that the more coverage, the
fewer bugs found. A possible explanation for this is that the
design of these fuzzers does not lend itself well to continuing
fuzzing after a crash is found, as in the case of libfuzzer
that was originally developed as an in-process fuzzer.

Overall, our results reveal that, while the overall coverage
of all fuzzers on all benchmarks cannot be used as a strong
predictor of bug discovery ability, for some benchmarks this
is not the case. When we group the data by benchmark, many
strong and significant correlations arise. Thus, not surprisingly,
we can state that the correlation depends more on the SUT
rather than on the fuzzer used.

E. Summary

The results of our empirical study in terms of effective-
ness reveal that honggfuzz (especially) and AFL++ are
top ranked fuzzers, while the other AFL-based fuzzers lag
slightly behind, and libfuzzer and Fairfuzz occupying
the lowest ranks.

When considering the rankings based the Friedman statisti-
cal analysis, we are not able to find any statistically signifcant
difference between the top fuzzers mentioned above. We did
though find such a difference when considering the ranking
based on Kruskal-Wallis test, and when analysing the effect
sizes of the different results achieved by different fuzzers.
This is partly in agreement with other experiments in the
literature [15] that found no statistically relevant differences
between AFL-based fuzzers when they are evaluated on a num-
ber of real-world found bugs. On the other end, our analysis
shows that using effect size tests (which were not employed
in any previous attempts at large scale fuzzer evaluations)
together with using a larger number of samples can reveal
some significant differences among fuzzers. In fact, we found
that honggfuzz and AFL++ are able to perform better than
other fuzzers in our experiment, while AFL++ shows similar
results to the rest of the AFL-based fuzzers.



Overall our results provide researchers and practitioners
with the following insights. If the most important metric is
effectiveness in finding bugs, honggfuzz would be the best
choice as it ranked first in almost all of our rankings. If
for some reason honggfuzz is not a feasible choice, as
an alternative we would recommend AFL++, or at least a
member of the AFL family. If one is looking for a fuzzer with
a focus on efficiency instead, either Fairfuzz, AFLFast,
or mOpt are recommended. Finally, as a compromise between
these two aspects (i.e., effectiveness and efficiency), we would
recommend the use of AFL++.

V. ADDITIONAL OBSERVATIONS

As can be seen in the plots available in our online ap-
pendix [3], the benchmarks we used have many bugs that take
a long time to be found. In some cases these bugs took over
400 days to be found. Although this time can be due to several
reasons, like an update to the fuzzing system that allowed the
bug to be found after only a few hours while having been
introduced many days prior, it is still a good proxy for the
difficulty in finding the bug itself. Only five of our benchmarks
were selected to target for a higher 75th percentile of time to
find bugs, but other benchmarks ended up being just as difficult
as the ones we chose purposefully that way.

We can observe that most of the bugs found by the evaluated
fuzzers are those with a time to find lower (and in most cases
much lower) than 100 days, except for some outliers such
as ffmpeg, proj4 and wireshark (see the second boxplot in
our online appendix [3]). This suggests that future attempts at
building an improved version of this benchmark suite should
compute this metric beforehand and use it as a criterion to
guide the choice of the benchmarks, in order to try avoid
those with high time to find values (given our results, the cut-
off point could be set at around 100 days, for ground truths
sourced from OSS-Fuzz), or keep them to a minimum, as they
provide limited information when used.

VI. RELATED WORK

A relatively small amount of work has been published on
the topic of either fuzzer evaluation or large scale empirical
fuzzer comparison, which has started gaining more and more
attention since the work of Klees et al. in 2018 [15].

Klees et al. [15] analysed the evaluation methodology of 32
different fuzzer presented in published articles, and compared
them with an ideal methodology that follows all known best
practices and accounts for all possible parameters in a fuzzer
evaluation. They found that no two analysed papers use the
same methodology, and none of them fully follows even the
subset of procedures encompassing at least the known best
practices. They also suggested a list of basic criteria every
fuzzer evaluation methodology should follow. Their paper has
motivated our work, which follows their suggested guidelines
wherever possible.

Li et al. [18] produced an (open-source) evaluation frame-
work and runs an empirical comparison of eight fuzzers (which
slightly overlaps with ours). Although the authors reached
similar conclusions, their work tries to match crashes to CVEs
as a ground truth.

The work by Paaßen et al. [28] evaluated mainly AFL
derived fuzzers, with a strong focus on statistical analyses and
robustness of the results. It evaluates fuzzers with different
seeds and indeed presents, as claimed, the largest fuzzing
experiment in terms of CPU-hours. As mentioned, though, it
mostly focuses on the AFL family of fuzzers and uses as a
benchmark suite a selection from the DARPA Cyber Grand
Challenge (CGC) [7], a repository of synthetic (although
real-world inspired) software with a single known bug per
program. As such, although they do evaluate the fuzzers on 42
benchmarks, the number of real-world bugs actually involved
in the experiments is only 42. In contrast, we evaluate fuzzers
on a set of 183 real-world bugs.

Hazimeh et al. [13] evaluated seven fuzzers based on a novel
methodology. The novelty consists mainly in the method they
used to select the benchmark suite: A real-world program is
selected and known and fixed bugs from previous versions
are manually forward-ported in the most recent version of the
executable. Extra code to allow for easy bug identification is
also manually added. Although surely derived from real-world
programs, we do not think the SUTs obtained this way can be
considered proper “real-world” benchmarks, as the bugs end
up being artificially reconstructed, with all the problems and
nuances this process can introduce.

Tsuzuki et al. [32] performed a comparison of three fuzzers
and reported their results in terms of path coverage. As it
happens to most fuzzing comparison papers, this work does
not use bugs as a source of information for quality and does
not use multiple independent runs.

Our work differs from those discussed above mainly on the
scale, rigour, and most importantly on the nature of the subject
programs. We collected real-world subjects with known bugs
found by ClusterFuzz within the OSS-Fuzz system. Moreover,
we do not import bugs from other versions of the same soft-
ware, but rather find the buggiest version through a rigorous
procedure (as explained in the online appendix [3]). In this
sense, we can state that the scenario in which the fuzzers are
tested is as similar as possible to a real-world testing scenario.
Furthermore, we performed multiple repeated runs of over
20 hours each to cater for the inherently stochastic nature of
fuzzers, while also providing many metrics and analyses based
on statistical tests.

VII. CONCLUSIONS AND FUTURE WORK

We have carried out a rigorous and fair benchmarking of
nine widely used and publicly available fuzzers based on
real-world bugs. To this end we have implemented additional
features in FuzzBench and manually curated a set of 183 real-
world bugs from the OSS-Fuzz platform.



Our results show that AFL-based fuzzers and honggfuzz
perform better in terms of effectiveness, while libfuzzer-
based ones and fairfuzz perform better in terms of ef-
ficiency, with honggfuzz and entropic being the best
fuzzers in terms of effectiveness and efficiency, respectively.

We found no relevant relationships between fuzzers and bug
types, and only a weak correlation between region coverage
metrics and the number of crashes/bugs found by a fuzzer.
Whereas, we have found a strong correlation between coverage
and number of crashes/found bugs in specific benchmarks, and
as such we conclude that such correlation is SUT dependent.

Future work can extend our work with additional fuzzers
and benchmarks based on the findings highlighted herein.
To this end, we have made our code and data publicly
available [2][3]. It would be also interesting to investigate why
some fuzzers could find a different proportion of certain bug
types, and if this behaviour is generalizable or due to chance.
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