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Abstract
Due to its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing

a charged particle. Despite its popularity, up to now there has been no convincing explanation

why the Boris algorithm has this advantageous feature. In this letter, we provide an answer to

this question. We show that the Boris algorithm conserves phase space volume, even though it is

not symplectic. The global bound on energy error typically associated with symplectic algorithms

still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of

plasmas.
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In particle simulations of magnetized plasmas, the Boris algorithm [1–4] is the de facto

standard for advancing a charged particle in an electromagnetic field in accordance with

equation of motion associated with the Lorentz force:

dx
dt

= v , (1)
dv
dt

= q

m

(
E + v×B

c

)
. (2)

Given the phase space coordinate (xk,vk) at the k-th time-step tk = k∆t, the Boris algorithm

solves for the phase space coordinate of the particle (xk+1,vk+1) at the (k+ 1)-th time-step

tk+1 = (k + 1)∆t from the discretized equation of motion:

xk+1 − xk

∆t = vk+1 , (3)

vk+1 − vk

∆t = q

m

[
Ek + (vk+1 + vk)×Bk

2c

]
, (4)

where ∆t is the step-size, and xk ≡ x(tk), vk ≡ v(tk − ∆t/2), tk ≡ k∆t, Ek ≡ E(xk),

and Bk ≡ B(xk). At first glance, Eqs. (3) and (4) may imply that this scheme is implicit.

However, the dependence on vk+1 is linear and vk+1 can be solved analytically in terms of

vk. There are several equivalent ways to do so [5, 6]. The most commonly adopted method

is to separate the electric and magnetic force as follows:

v− = vk + q

m
Ek

∆t
2 , (5)

v+ − v−

∆t = q

2mc(v+ + v−)×Bk , (6)

vk+1 = v+ + q

m
Ek

∆t
2 . (7)

Here, half of the electric impulse is added to vk to first obtain v−. Then, v+ is calculated

from Eq. (6) through a rotation of v−, and vk+1 is obtained by adding the remaining half of

the electric impulse to v+. This method, defined by a one-step map ψB : zk ≡ (xk,vk) →

zk+1 ≡ (xk+1,vk+1) according to Eqs. (3) and (5)-(7), was first used by Boris and was

accordingly named the Boris algorithm. It has been successfully applied in simulation studies

of magnetized plasmas for over forty years, mainly due to its excellent long term accuracy.

For standard integrators of ordinary differential equations, numerical errors are estimated

and controlled locally for each time-step. For instance, the standard 4th order Runge–Kutta

(RK4) method carries a truncation error which is a 4th order quantity of the step-size for
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each time-step. Over many time-steps, the error of each time-step will add up coherently.

Numerical error at later time is unbounded and can become significantly large. On the

other hand, it has been discovered that the Boris algorithm is capable of solving particle’s

dynamics accurately for an arbitrarily large number of time-steps [3, 4, 6]. This is of course

much needed for simulation studies of plasma dynamics, which is intrinsically multi-scale,

and long term accuracy is indispensable. Despite its popularity, there has been no convincing

explanation as to why the Boris algorithm has this excellent capability of long term accuracy.

In our letter, we answer this question.

First, note that the Boris algorithm is explicit for fast computation and time-centered for

second-order (local) accuracy. However, it is obvious that being explicit and time-centered

has little to do with ensuring long term accuracy. Another often discussed feature of the Boris

algorithm is that it conserves energy exactly when there is no electric field. For almost all

applications, however, the electric field does not vanish. Hence, the energy is not conserved

numerically, and a global bound on energy error would not be expected. Amazingly, we

have found that the energy error for the Boris algorithm is bounded for all time-steps, as

demonstrated by the numerical examples given below. This is indeed a pleasant surprise.

Other similar global bounds on conserved quantities, such as the canonical momentum,

have been observed as well [3, 4]. What is the reason of the existence of a global bound

on numerical errors? One clue is that the Boris algorithm resembles a leapfrog scheme.

In Eqs. (3) and (5)-(7), vk is defined to be the velocity at t = tk − ∆t/2, a half time-step

behind tk, where xk is evaluated. This “staggered” time grid is the defining characteristic of

a leapfrog scheme, whose property of global bound on energy error has long been recognized.

Now it has been realized that this exceptional property is due to the fact that the leapfrog

scheme is actually the simplest symplectic algorithm, which has been proven to be able

to bound global errors in energy and other invariants of dynamics [7–10]. Unfortunately,

the Boris algorithm is not a leapfrog method. This is because the acceleration force cannot

depend on velocity for the leapfrog scheme. One can insist on evaluating vk at tk−∆t/2 and

xk at tk, even if the acceleration force depends on velocity. But the nice feature associated

with leapfrog schemes may not hold up. Nevertheless, it is still appropriate to ask whether

the Boris algorithm is symplectic. If so, then it is the reason for the existence of the global

bound on energy error. If not, it is important to investigate whether the Boris algorithm

possesses some characteristics of a symplectic algorithm that may contribute to it long term
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accuracy.

In this letter, we show that the Boris algorithm is not symplectic, but it does conserve

phase space volume, i.e., it is volume-preserving. An algorithm being volume-preserving is

a necessary but not sufficient condition for it to be symplectic. In other words, we show that

even though the Boris algorithm is not symplectic according to the standard definition, it

does on the other hand possess the beneficial feature of sympletic algorithms, i.e., the phase

space volume is conserved, and this is the reason that the energy error is globally bounded

for an arbitrarily large number of simulation time-steps.

We start from Eq. (4), which can be written as

(
I + Ω̂k

)

v1

k+1

v2
k+1

v3
k+1

 =
(
I − Ω̂k

)

v1

k

v2
k

v3
k

+ q∆t
m


E1

k

E2
k

E3
k

 . (8)

Here, superscript i = 1, 2, 3 denotes the components of vectors in the three-dimensional

configuration space, I is the 3× 3 unit matrix. The 3× 3 matrix

Ω̂k = q∆t
mc


0 −B3

k B2
k

B3
k 0 B1

k

−B2
k −B1

k 0

 (9)

is an anti-symmetric matrix associated with the vector Ωk ≡ (B1
k, B

2
k, B

3
k)q∆t/mc. Such

an association is the so-called hat map [11]. Then, the one-step map of the algorithm

ψB : zk ≡ (xk,vk)→ zk+1 ≡ (xk+1,vk+1) is

vk+1 = Rvk +
(
I + Ω̂k

)−1 q∆t
m

Ek , (10)

xk+1 = xk +Rvk∆t+
(
I + Ω̂k

)−1 q∆t2
m

Ek , (11)

where the matrix R is the Caylay transformation [12] of Ω̂k, i.e.,

R ≡
(
I + Ω̂k

)−1 (
I − Ω̂k

)
. (12)

From Eq. (12), it can be easily shown that Ω̂k ≡ (I +R)−1 (I −R) , i.e., Ω̂k is also the

Caylay transformation of R. There is a theorem due to Weyl [8] which states that if P is the

Caylay transformation of Q, then for an arbitrary matrix A the equation P TAP = A holds

if and only if QTA+AQ = 0. For the matrices R and Ω̂k of interest, we have Ω̂T
k + Ω̂k = 0,
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and thus RTR = I, i.e., R ∈ O(3). Since R is continuously connected to I as ∆t → 0, R

must be a rotation in the 3D space, R ∈ SO(3). The Jacobian matrix of the one-step map

ψB : zk ≡ (xk,vk)→ zk+1 ≡ (xk+1,vk+1) is simply

∂ψB

∂zk

=

 I + ∆t∂vk+1

∂xk

∆tR
∂vk+1

∂xk

R

 , (13)

where vk+1 depends on xk through the inhomogeneity of the electromagnetic field.

We now prove that the Boris algorithm cannot be symplectic. The condition for a one-

step map ψ : zk ≡ (xk,vk)→ zk+1 ≡ (xk+1,vk+1) to be sympletic is that its Jacobian matrix

is symplectic, (
∂ψ

∂zk

)T

J

(
∂ψ

∂zk

)
= J , (14)

where J =

 0 I

−I 0

 is the 6 × 6 unit symplectic matrix. If we write the Jacobian matrix

in 3× 3 blocks,
∂ψ

∂zk

=

 S1 S2

S3 S4

 , (15)

then a set of sufficient and necessary conditions for it to be symplectic are

S1S
T
2 = S2S

T
1 , (16)

S3S
T
4 = S4S

T
3 , (17)

S1S
T
4 − S2S

T
3 = I . (18)

These conditions are in general not satisfied by the Jacobian matrix of the Boris algorithm

given by Eq. (13). To see this, consider the special case where the electric and magnetic fields

are homogenous such that ∂vk+1/∂xk = 0. In this case, S1S
T
4 − S2S

T
3 = RT 6= I. Therefore,

one-step map ψB : zk ≡ (xk,vk)→ zk+1 ≡ (xk+1,vk+1) is not symplectic. For charged par-

ticle dynamics in an electromagnetic field, the canonical Hamiltonian structure is associated

with the canonical momentum p ≡ mv + eA/c. One may wonder whether the one-step

map (xk,pk) → (xk+1,pk+1) of the canonical momentum is symplectic. A straightforward

calculation using the same method shows that the momentum map (xk,pk)→ (xk+1,pk+1)

induced by ψB : zk ≡ (xk,vk)→ zk+1 ≡ (xk+1,vk+1) is also not symplectic.

One of the merits of a symplectic algorithm is that the phase space volume is conserved.

For a symplectic one-step map ψ, it is evident from Eq. (14) that the determinant of the
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Jacobian matrix is one, i.e., |∂ψ/∂zk| = 1. Even though we have just proven that the Boris

algorithm is not symplectic, it surprisingly does conserve the phase space volume. This fact

is easily proven as follows.
∣∣∣∣∣∂ψB

∂zk

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
I + ∆t∂vk+1

∂xk

∆tR
∂vk+1

∂xk

R

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
I 0

∂vk+1

∂xk

R

∣∣∣∣∣∣∣∣ = |R| = 1 ,

where the second row times ∆t has been subtracted from the first row to obtain the second

equal sign. The volume-preserving property is the reason that the Boris algorithm has the

capability of long term accuracy.

We now proceed to demonstrate this property by several numerical examples. The first

example is the 2D dynamics of a charged particle in a static electromagnetic field given by

B = (x2 + y2)1/2ez, φ = 10−2(x2 + y2)−1/2.

Physical quantities are normalized by the system size a, characteristic magnetic field B0, and

the gyro-frequency Ω0 ≡ qB0/mc of the particle. Plotted in Figs. 1 and 2 are the numerical

solutions using the Boris algorithm and the RK4 method, respectively. Theoretical analysis

shows that the particle’s orbit is a spiraling circle with constant radius (see Fig. 1). The

large circle corresponds to the ∇B drift and the E × B drift of the guiding center, and

the small circle is the fast-scale gyromotion. The step-size for both calculations is π/10

(1/20 of the characteristic gyro-period). The Boris algorithm gives the correct orbit at the

beginning and later stage of the numerical solution, whiles the RK4 method fails at the later

stage. For the result generated by the RK4 method, the gyromotion is numerically dissipated

due to the numerical damping of energy. This is clearly demonstrated in Fig. 3, where the

normalized energy for both methods are plotted as a function of time. The energy error

for the Boris algorithm is not zero, but it is bounded for all simulation time-steps, which

is the desirable feature associated with symplectic algorithms. As we have just proven, the

Boris algorithm is not symplectic. However, it is volume-preserving, and it can be expected

that the property of long term bound on energy error still holds. The RK4 algorithm fails

because the problem investigated is multi-scale in nature. The fast gyromotion co-exists

with the slow guiding center dynamics, and it is necessary to simulate the system for a large

number of time-steps. The RK4 method, as a standard algorithm with local error control,

is suitable for problems with only one time-scale. For multi-scale problems, it is essential to

use symplectic or volume-preserving methods with global bound on numerical errors.
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Figure 1: The Boris algorithm gives the correct orbit at the beginning (a) and later stage (b) of

the numerical solution.
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Figure 2: The RK4 method fails to generate the correct orbit at the later stage due to the accu-

mulation of numerical error.
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Figure 3: The energy error for the Boris algorithm is bounded for all time-steps, whiles that for

the RK4 method increases without bound. The time axis has been normalized by the gyro-period.
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(a) Banana orbit by Boris algorithm
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(b) Banana orbit by RK4 method

Figure 4: The banana orbit is correctly attained by the Boris algorithm (a). The RK4 algorithm

gives an erroneous orbit (b), where the banana orbits is not closed and is gradually transformed

into a circulating orbit due to the accumulation of numerical energy dissipation. The orbit consists

of a slow guiding center motion, superimposed on the fast time-scale gyromotion, which appears

in the figure as a dense patch of dots along each point of the guiding center trajectory.
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(b) Ware pinch by RK4 method

Figure 5: The Boris algorithm captures the Ware pinch effect in great detail (a). In contrast, the

RK4 method fails dramatically for this case (b).

The next example considered is the banana orbit of a charged particle in an axi-symmetric

tokamak geometry with and without an inductive electric field in the toroidal direction.

Shown in Fig. 4 is the comparison of banana orbits calculated using the Boris algorithm and

the RK4 algorithm when there is no toroidal electric field. Because of toroidal symmetry,

the particle’s guiding center should form a closed orbit that is superimposed on the fast

time-scale gyromotion. This orbit is correctly obtained by the Boris algorithm. In contrast,

the RK4 algorithm produces an erroneous orbit, where the banana orbit is not closed and
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gradually transformed into a circulating orbit due to the accumulation of numerical energy

dissipation. The step-size for both methods is about 1/20 of the gyro-period. If an inductive

electric field in the toroidal direction is imposed, the banana orbit will experience an inward

pinch in the radial direction, which is known as the Ware pinch [13]. Simulation results

are plotted in Fig. 5. The Boris algorithm captures the Ware pinch effect in great detail.

For example, it is interesting to observe that in addition to the inward pinch, the up-down

symmetry of the banana orbit (projected on a polodial plane) is broken due to the presence

of an axi-symmetric toroidal electric field. As evident from Fig. 5(b), the RK4 method is

unable to capture these important effects.

In summary, we have proven that the widely adopted Boris algorithm for numerically

solving for particle orbits in an electromagnetic field is not symplectic. However, it is

volume-preserving, i.e., it conserves the phase space volume. The global bound on energy

error typically associated with symplectic algorithms still holds for the Boris algorithm. This

is the reason why the Boris algorithm is an effective algorithm for charged particle dynamics

in an electromagnetic field, which is intrinsically a multi-scale dynamic problem.
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