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Abstract
First-line therapy with interferon beta (IFN-β), involved in gene expression modulation in immune response, is widely used 
for multiple sclerosis. However, 30–50% of patients do not respond optimally. Variants in CBLB, CTSS, GRIA3, OAS1 and 
TNFRSF10A genes have been proposed to contribute to the variation in the individual response. The purpose of this study 
was to evaluate the influence of gene polymorphisms on the IFN-β response in relapsing–remitting multiple sclerosis (RRMS) 
patients. CBLB (rs12487066), GRIA3 (rs12557782), CTSS (rs1136774), OAS1 (rs10774671) and TNFRSF10A (rs20576) 
polymorphisms were analysed by Taqman in 137 RRMS patients. Response to IFN-β and change in the Expanded Disability 
Status Scale (EDSS) after 24 months were evaluated using multivariable logistic regression analysis. Carriers of at least one 
copy of the C allele of CTSS-rs1136774 had a better response to IFN-β (p = 0.0423; OR = 2.94; CI95% = 1.03, 8.40). Carri-
ers of TT genotype of TNFRSF10A-rs20576 had a higher probability of maintaining their EDSS stable after 24 months of 
IFN-β treatment (p = 0.0251; OR = 5.71; CI95% = 1.39, 31.75). No influence of CBLB (rs12487066), OAS1 (rs10774671) 
and GRIA3 (rs12557782) gene polymorphisms in the variation of the individual response to IFN-β was shown. Our results 
suggest that the TNFRSF10A-rs20576 and CTSS-rs1136774 gene polymorphisms influence the response to IFN-β after 
24 months, while the CBLB (rs12487066), OAS1 (rs10774671) or GRIA3 (rs12557782) gene polymorphisms had no effect 
on the variation of the individual response to IFN-β.
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Introduction

Multiple sclerosis (MS) is one of the most common neuro-
logical diseases causing permanent disability among young 
adults [1, 2]. Epidemiological data indicate an estimated 
total prevalence of 83 affected per 100,000 people, an esti-
mated annual average incidence rate of 4.3 cases per 100,000 
inhabitants and a ratio female:male of ≈ 2.0 in the last three 
decades in the European continent, with the highest rates 
corresponding to Northern countries [3]. Although there are 
different types of MS, defined by the course of the disease 
[4], the relapsing–remitting multiple sclerosis (RRMS) pat-
tern, manifested by 85% of patients, is characterized by the 
recurrence of weakening and recovery episodes [5, 6].

The mechanisms underlying the immunopathogenesis of 
MS have not yet been fully determined, despite the intense 
research [7, 8]. Some evidence points to autoimmune pro-
cesses involving several cell subtypes and proinflammatory 
substances [8]. The process occurs through the production of 
cytokines by dendritic cells and lymphocytes; when the den-
dritic cells cross the blood–brain barrier reaching the central 
nervous system (CNS), induce polarization and activation 
of T helper cells (Th1 and Th17) [9, 10]. Both IFN gamma 
and interleukin 17 (IL-17), produced by Th1 and Th17 cells 
respectively, are active during the disease, promoting CNS 
inflammation and axonal damage [11–13].

Most MS patients are treated with first-line disease-mod-
ifying drugs, such as IFN-β, a natural polypeptide highly 
synthesized by fibroblasts with anti-inflammatory properties. 
IFN-β modulates the expression of certain genes, interfering 
with the antigen presentation process, inhibiting the acti-
vation and proliferation of T cells [14] and also reducing 
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the expression of proinflammatory cytokines [15]. It has 
important effects on the molecules involved in the perme-
ability of the blood–brain barrier, preventing the adhesion 
of T lymphocytes to the endothelium and their extravasation 
to the CNS [16, 17].

Two therapeutic options of recombinant IFN-β are used 
in the treatment of MS. IFN-β 1a is obtained from hamster 
ovary cells, with identical amino acid sequence to native 
IFN, which may be administered intramuscularly (IM) or 
subcutaneously (SC) [18]. The second form of recombinant 
IFN-β is the pegylated IFN 1a (PEG 1a), obtained by con-
jugation with polyethylene glycol molecules. The pegyla-
tion contributes to a reduction in antigenicity and immuno-
genicity, as well as increased exposure, half-life and serum 
concentrations of the therapeutic agent [19, 20]. IFN-β 1b, 
administered SC, is synthesized by Escherichia coli, has 
significant differences in certain amino acids compared to 
IFN-β of natural origin and is not glycosylated. These differ-
ences influence the specific biological activity, and therefore, 
a higher dose is required [18], which implies a greater prob-
ability of developing neutralizing antibodies (NAbs) [21].

The efficacy of IFN-β as first-line therapy has been dem-
onstrated in different studies [22, 23]. However, approxi-
mately 30 to 50% of patients do not respond optimally to 
IFN treatment, showing no indication of response in some 
cases [24, 25]. The influence of genetic variants on MS sus-
ceptibility and/or in the response to IFN-β therapy has been 
investigated in several genome-wide association (GWA) and 
candidate gene association studies [26–35], revealing poten-
tial roles for different genes in the response to IFN-β [26–30, 
36–38]. Although many single-nucleotide polymorphisms 
(SNPs) have been proposed, there is in general a lack of 
replication in other studies. Among them, we selected SNPs 
in GRIA3, TNFRSF10A, CTSS, OAS1 and CBLB genes, pre-
viously identified with potential roles in response to IFN-β 
[30], as response modifiers [28], increased disease activity 
[29] or mechanistically involved in IFN treatment [26]. In 
a GWAS evaluating 428,867 SNPs in 210 RRMS patients 
of Caucasian origin, the most significant SNP associated 
with response to IFN-β was rs12557782 in GRIA3 gene [30]. 
The GRIA3 gene (glutamate receptor ionotropic Ampa 3), 
located on the X chromosome, plays an important role in the 
synaptic transmission in the CNS [39, 40]. The rs12557782 
(G allele) variant of this gene was identified as a possible 
biomarker of response to IFN-β therapy in 144 Spanish 
RRMS women (p = 0.002; OR = 2.7;  CI95% = 1.5, 5.2) [30]. 
The TNFRSF10A (tumour necrosis factor receptor superfam-
ily 10A) gene encodes a protein that induces cellular apop-
tosis [41] and is involved in autoimmune diseases mediated 
by T cells, such as MS [42]. The rs20576 polymorphism (CC 
genotype) was identified as a predictor of positive response 
to IFN-β (p = 8.88·10−4; OR: 0.30;  CI95% = 0.14, 0.63) in the 
joint analysis of an original cohort of 509 and a validation 

cohort of 226 Spanish RRMS patients [38]. The C allele car-
riers of the rs1136774 polymorphism, located in the CTSS 
(cathepsin S) gene [43], encoding a protease involved in 
the degradation of antigens from antigen-presenting cells 
[44], showed a greater response to IFN-β in 230 RRMS 
patients from Belfast, UK (p = 0.02; OR = 0.38;  CI95% = 0.18, 
0.84) [28]. The OAS1 gene (oligoadenylate synthetase 1) is 
induced by IFN and encodes a protein involved in mecha-
nisms of regulation of viral infection [45]. The presence of the 
AA genotype in the rs10774671 variant of this gene conferred 
susceptibility to MS in 401 RRMS patients treated with IFN-β 
and 394 healthy controls from Dublin, Ireland, while the GG 
genotype protected against disease activity (p = 0.04; hazard 
ratio = 1.47;  CI95% = 1.01, 2.16) [29]. The CBLB gene (Casitas 
B-lineage lymphoma proto-oncogene B gene) is a key regulator 
of the activation thresholds of the peripheral immune system 
and T lymphocytes, involved in immunological tolerance and 
autoimmunity [26, 36, 37]. In 37 RRMS patients from Ham-
burg, Germany, T allele carriers of CBLB rs12487066 polymor-
phism showed a reduction in CBLB expression compared to CC 
homozygotes in the presence of IFN (p = 0.012), not inhibiting 
the proliferation of T lymphocytes [26].

Given the evidence of a potential role of genetics on the 
variability of the response to IFN-β in MS, the objective 
of this study was to investigate the influence of five poly-
morphisms (CBLB-rs12487066, GRIA3-rs12557782, CTSS-
rs1136774, OAS1-rs10774671 and TNFRSF10A-rs20576) in 
the response to IFN-β in RRMS patients.

Material and Methods

An ambispective cohort study was carried out.

Study Population

This study was carried out at the Virgen de las Nieves Uni-
versity Hospital (VNUH) in Granada, Spain, during the 
period from May 2016 to June 2020. One hundred thirty-
seven RRMS patients over 18 years old and treated with 
IFN-β therapy were included and followed for 24 months. 
No patients with clinically or radiologically isolated syn-
drome were included. This study was approved by the 
VNUH Ethics and Research Committee and performed 
conform the declaration of Helsinki. All patients signed an 
informed consent.

Clinical and Sociodemographic Variables

The clinical and sociodemographic data were collected by 
reviewing and monitoring the medical records of the patients 
included in the study. The variables included were gender, 
family history of cancer, age at the time of the diagnosis of 
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MS, duration of disease (years), Expanded Disability Sta-
tus Scale (EDSS) [46], Multiple Sclerosis Severity Score 
(MSSS), Progression Index (EDSS/years of disease) [47] 
and treatment (IFN1a IM, 1a SC, 1a PEG, 1b SC) [18].

Two outcome variables were considered: response to 
IFN-β, as described by Rio et al. [48, 49], and change in the 
EDSS. For the variable response to IFN-β, patients were 
classified as non-responders if there was evidence of mag-
netic resonance disease activity and/or increase of at least 
one point on the EDSS scale and/or had one or more relapses 
that persisted for a minimum of two consecutive scheduled 
visits separated by a 6-month interval and/or the medication 
was discontinued in absence of toxicity [48, 49].

The variable change in the EDSS was defined as a varia-
tion or not in the EDSS after 24 months.

Genetic Variables

Analysis of Gene Polymorphisms

The following SNPs were determined, using real-time 
PCR with TaqMan probes (Supplementary Table  1), 
according to previously described protocols [50]: CBLB 
(rs12487066), GRIA3 (rs12557782), CTSS (rs1136774), 
OAS1 (rs10774671), TNFRSF10A (rs20576). DNA extrac-
tion from saliva samples was performed using the QIAamp 
Mini Kit (Qiagen Gmbh, Hilden Germany), according to the 
extraction protocols indicated by the manufacturer.

Statistical Analysis

Quantitative data were expressed as the mean and standard 
deviation for variables with a normal distribution or median 
and 25th and 75th percentiles for variables with a non-nor-
mal distribution. The Lilliefors test (Kolmogorov–Smirnov) 
was used to assess the normality of the variables.

To analyse the association between response and poly-
morphisms (genotypic, additive, allelic, dominant and reces-
sive models), a bivariate test was performed using Pear-
son’s chi-square with Yates’ correction or the Fisher test for 
expected frequencies below 5%. The relative risk (RR) and 
its 95% confidence interval  (CI95%) were also calculated. The 
genetic models were defined as follows: genotypic (mm vs. 
Mm vs. MM), dominant (mm and Mm vs. MM), recessive 
(mm vs. Mm and MM) and allelic (M vs. m), m being the 
minor allele and M being the major allele. Bivariate analysis 
for independent quantitative variables was carried out using 
the Wilcoxon test.

To verify the influence of SNPs on response to IFN-β, a 
multivariable logistic regression model was applied, taking 
a level for significance of p < 0.05. Statistical analyses were 
carried out using R 3.0.1 [51]. Hardy–Weinberg equilibrium 

was estimated using the free, open-source whole-genome 
association analysis toolset PLINK 1.9 [52].

The statistical analysis of rs12557782 polymorphism in 
the GRIA3 gene (X chromosome) was stratified by sex.

Results

Clinical Characteristics of Patients

We included a total of 137 patients of Caucasian origin diag-
nosed with RRMS who had been treated with IFN-β (1a, 
PEG 1a, 1b).

The clinical characteristics and sociodemographic data 
are detailed in Table 1. The median age of diagnosis was 
31 years, with a mean duration of the disease of 2 years. 
The proportion of women was 65.7% (90/137). Sixty-nine 
patients maintained their EDSS stable after 24 months of 
therapy (84.2%) and the remaining 15.9% increased their 
EDSS score in a median of 0.5 points (Table 1). Good 
response to IFN-β therapy was shown by 77.3% of patients 
(Table 1). There were no differences in the distribution of 

Table 1  Sociodemographic and clinical characteristics of the 137 
multiple sclerosis patients treated with interferon beta

Characteristic N (%) P50  [P25,  P75]

Gender
  Female 90 (65.7)
  Male 47 (34.3)

Family history of cancer
  Yes 6 (4.4)
  No 131 (95.6)

Age at multiple sclerosis diagnosis 31 [5, 39]
Duration of disease (years) 2 [2, 4]
Expanded Disability Status Scale 1 [0, 1]
Baseline Expanded Disability Status 

Scale
1 [0, 1.5]

Change in the Expanded Disability 
Status Scale

0 [0, 2]

  No change 69 (84.2) 0 [0, 0]
  Increase 13 (15.9) 0.5 [0.5, 1.0]

Multiple Sclerosis Severity Score 1.92 [0.53, 2.01]
Progression index 0.25 [0, 0.50]
Response to interferon beta

  Yes 106 (77.3)
  No 31 (22.6)

Treatment type
  1a Intramuscular 54 (39.4)
  1a Subcutaneous 46 (33.6)
  1a Pegylated 5 (3.6)
  1b Subcutaneous 14 (10.2)
  Unspecified 18 (13.1)
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responders and non-responders to IFN-β or change in the 
EDSS among different IFN-β therapeutic options (Table 2).

Baseline EDSS was the only clinical variable associated 
with response to IFN-β (p = 0.008) and change in the EDSS 
(p = 0.036) (Table 2).

Influence of SNPs and the Response to IFN‑β

The bivariate analysis of genetic polymorphisms and the 
response to IFN is detailed in Table 3. Bivariate analysis 
showed that patients with CC genotype in the rs1136774 pol-
ymorphism of the CTSS (recessive model) gene had greater 
response to IFN-β (Table 3: p = 0.047; RR = 1.3;  CI95% = 1.0, 
1.7); women with the GG genotype of the rs12557782 pol-
ymorphism in the GRIA3 gene (recessive model) showed 
greater response to IFN-β (Table 3: p = 0.033; RR = 1.4; 
 CI95% = 1.0, 2.1). The CBLB-rs12487066 and TNFRSF10A-
rs20576 gene polymorphisms showed a trend to association 
with change in the EDSS after 24 months of IFN treatment, 
but non-significant (p < 0.1; Table 3). The OAS1-rs10774671 
gene polymorphism did not predict the variation of the indi-
vidual response to IFN-β or change in the EDSS.

Multivariable logistic regression analysis showed that 
patients with lower baseline EDSS (p = 0.0694; OR = 0.06; 
 CI95% = 0.34, 1.04) and carriers of at least one copy of the 
C allele of CTSS-rs1136774 had a better response to IFN-β 
(p = 0.0423; OR = 2.94;  CI95% = 1.03, 8.40). Patients with 
lower baseline EDSS (p = 0.0060; OR = 0.36;  CI95% = 0.016, 
0.71) and carriers of TT genotype of TNFRSF10A-rs20576 
had a higher probability of maintaining their EDSS sta-
ble after 24 months of treatment with IFN-β (p = 0.0251; 
OR = 5.71;  CI95% = 1.39, 31.75) (Table 4). The GRIA3-
rs12557782 association with response in women and trend 
shown by CBLB-rs12487066 on change in the EDSS in the 
bivariate analysis were not confirmed as independent asso-
ciations after multivariable analyses.

Discussion

IFN-β is one of the most used first-line treatment thera-
pies for MS. Although its mechanism of action is not yet 
fully known, several studies indicate that it plays a role in 
modifying the expression of genes involved in the immune 

Table 2  Association of clinical and sociodemographic characteristics with change in the Expanded Disability Status Scale (EDSS) and response 
to IFN-β in 137 multiple sclerosis patients treated with interferon beta (bivariate analysis)

* p-value for Fisher’s exact test. p-value for the chi-squared test otherwise in qualitative variables. p-value for the Wilcoxon test. Significant 
p-values are shown in bold
Frequencies are expressed as number (%)
Quantitative variables are expressed as  P50  [P25,  P75]
Percentages shown are calculated per column

Characteristic N Expanded Disability Status 
Scale

p N Response P

Change No change Yes No

Gender
  Female 53 47 (68.1) 6 (46.2) 0.204* 90 63 (63.0) 27 (73.0) 0.374
  Male 29 22 (38.9) 7 (53.8) 47 37 (37.0) 10 (27.0)

Family history of cancer
  Yes 4 2 (2.9) 2 (15.4) 0.116* 6 4 (4.0) 2 (5.4) 0.661*
  No 78 67 (97.1) 11 (84.6) 131 96 (96.0) 35 (94.6)

Age at multiple sclerosis diagnosis 82 30 [24, 38] 31 [26, 37] 0.380 137 31 [24, 38] 31 [25, 40] 0.767
Duration of disease (years) 82 2 [2, 4] 2 [2, 3] 0.917 137 2 [2, 4] 2 [2] 0.217
Baseline Expanded Disability Status Scale 82 1 [0, 1] 1.5 [0, 2] 0.036 137 1 [0, 1] 1 [1, 2] 0.008
Treatment

  Type
    1a 71 9 (69.2) 62 (91.2) 0.050 105 86 (88.7) 19 (86.4) 0.721
    1b 10 4 (30.8) 6 (8.8) 14 11 (11.3) 3 (13.6)
  All options
    1a Intramuscular 35 6 (46.2) 29 (42.6) 0.070 54 45 (46.4) 9 (40.9) 0.770*
    1a Subcutaneous 31 2 (15.4) 29 (42.6) 46 36 (37.1) 10 (45.5)
    1a Pegylated 5 1 (7.7) 4 (5.9) 5 5 (5.2) 0 (0)
    1b Subcutaneous 10 4 (30.8) 6 (8.8) 14 11 (11.3) 3 (13.6)
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response [18, 53–56], by inhibiting the synthesis of inflam-
matory cytokines (IL-12, IL-17, IL-23), and favouring the 
production of anti-inflammatory cytokines (IL-4, IL-10) and 
Th2 type cells [57]. The response to IFN-β has also been 
suggested to be determined by certain genetic variants in 
the GRIA3, CBLB, CTSS, OAS1 and TNFRSF10A genes, 
among others [26–30, 36–38]. Our results point at the TT 
genotype for rs20576 in TNFRSF10A as a possible indica-
tor of better response to IFN-β since it was associated with 

stability in the EDSS score after 24 months (p = 0.0251; 
OR = 5.71; CI95% = 1.39, 31.75). However, this was not 
reflected in an association with response to IFN-β when 
defined as the compound EDSS/relapse/imaging variable. 
The beneficial effect of the TT genotype found in our study 
is in contrast with the findings of a previous study includ-
ing 509 MS patients of Spanish origin treated with IFN-β 
and an additional validation cohort of 226 patients, which 
showed an association of the CC genotype with a positive 

Table 3  Association of gene polymorphisms with response and change in the Expanded Disability Status Scale (EDSS) after 24 months of inter-
feron beta

* p-value for Fisher’s exact test. P-value for the chi-squared test otherwise. Significant p-values are shown in bold
Percentages shown are calculated per row

Gene SNPs
Minor allele

Genetic Model Expanded Disability Status Scale Response

Genotype N Change
N (%)

No Change
N (%)

p-value N Yes
N (%)

No
N (%)

p-value

CBLB rs12487066
C

Genotypic CC 7 3 (42.9) 4 (57.1) 0.130* 10 9 (90.0) 1 (10.0) 0.568*
CT 28 3 (10.7) 25 (89.3) 48 34 (70.8) 14 (29.2)
TT 47 7 (14.9) 40 (85.1) 79 57 (72.2) 22 (27.8)

Dominant C- 35 6 (17.1) 29 (82.9) 1 58 43 (74.1) 15 (25.9) 0.949
Recessive CC 7 3 (42.9) 4 (57.1) 0.075* 10 9 (90.0) 1 (10.0) 0.287*
Allelic C 42 33 (78.6) 9 (21.4) 0.251 68 52 (76.5) 16 (23.5) 0.456

CTSS rs1136774
C

Genotypic CC 24 2 (8.3) 22 (91.7) 0.487* 33 29 (87.9) 4 (12.1) 0.083
CT 40 7 (17.5) 33 (82.5) 68 47 (69.1) 21 (30.9)
TT 18 4 (22.2) 14 (77.8) 36 24 (66.7) 12 (33.3)

Dominant C- 64 9 (14.1) 55 (85.9) 0.467* 101 76 (75.2) 25 (24.8) 0.437
Recessive CC 24 2 (8.3) 22 (91.7) 0.327* 33 29 (87.9) 4 (12.1) 0.047
Allelic C 88 77 (87.5) 11 (12.5) 0.205 134 105 (78.4) 29 (21.6) 0.050

OAS1 rs10774671
G

Genotypic AA 30 5 (16.7) 25 (83.3) 0.914* 51 37 (72.5) 14 (27.5) 0.714*
AG 42 6 (14.3) 36 (85.7) 69 49 (71.0) 20 (29.0)
GG 10 2 (20.0) 8 (80.0) 17 14 (82.4) 3 (17.6)

Dominant G- 52 8 (15.4) 44 (84.6) 1* 86 63 (73.3) 23 (26.7) 1
Recessive GG 10 2 (20.0) 8 (80.0) 0.655* 17 14 (82.4) 3 (17.6) 0.559*
Allelic G 62 52 (83.9) 10 (16.1) 0.940 103 77 (74.8) 26 (25.2) 0.609

TNFRSF10A rs20576
G

Genotypic GG 2 1 (50.0) 1 (50.0) 0.101* 3 1 (33.3) 2 (66.7) 0.227*
GT 37 8 (21.6) 29 (78.4) 60 43 (71.7) 17 (28.3)
TT 43 4 (9.3) 39 (90.7) 74 56 (75.7) 18 (24.3)

Dominant G- 39 9 (23.1) 30 (76.9) 0.161 63 44 (69.8) 19 (30.2) 0.566
Recessive GG 2 1 (50.0) 1 (50.0) 0.293* 3 1 (33.3) 2 (66.7) 0.177*
Allelic G 41 31 (75.6) 10 (24.4) 0.083 66 45 (68.2) 21 (31.8) 0.312

GRIA3 rs12557782
G

Women (n = 53) Women (n = 90)
Genotypic AA 16 2 (12.5) 14 (87.5) 0.456* 30 17 (56.7) 13 (43.3) 0.034*

AG 27 2 (7.4) 25 (92.6) 45 32 (71.1) 13 (28.9)
GG 10 2 (20.0) 8 (80.0) 15 14 (93.3) 1 (6.7)

Dominant G- 37 4 (10.8) 33(89.2) 1* 60 46 (76.7) 14 (23.4) 0.087
Recessive GG 10 2 (20.0) 8 (80.0) 0.315* 15 14 (93.3) 1 (6.7) 0.033*
Allelic G 51 45 (88.2) 6 (11.8) 0.889 81 64 (79.0) 17 (21.0) 0.010

Men (n = 29) Men (n = 47)
A 13 5 (38.5) 8 (61.5) 0.192* 23 18 (78.3) 5 (21.7) 1*
G 16 2 (12.5) 14 (87.5) 24 19 (79.2) 5 (20.8)
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response to IFN-β, defined in a similar way to ours and also 
after 24 months (OR: 0.30; CI95% = 0.14–0.63; p = 8.88·10−4) 
[38]. The clinical characteristics of the patients were also similar. 
Another study with 73 Iranian MS patients did not found a sig-
nificant association of rs20576 with IFN-β response (p = 0.87) 
[58]. No other studies have explored the influence of rs20576 
on IFN-β response in MS patients. In follicular lymphoma, 
no association with response to first-line rituximab was found 
either in 125 patients [59]. Its role as a susceptibility marker for 
systemic lupus erythematosus [60], hepatocellular carcinoma 
[61], Alzheimer’s disease [62] or lymphomas [63] has also been 
investigated, although unsuccessfully.

Our patients also showed a better response to IFN-β for 
the C allele of the rs1136774 CTSS in the multivariable 
analysis (Table 4: p = 0.042; OR: 2.94;  CI95%: 1.03, 8.40), 
in line with the results of a study with 230 RRMS patients of 
European origin (UK) in which C allele carriers had a better 
response to IFN-β after 2 years of follow-up (p = 0.02; OR: 
0.38;  CI95%: 0.18, 0.84) [28]. The CTSS protein (lysosomal 
cysteine proteinase) has been suggested to participate in the 
presentation of microglia antigens through MHC II-associ-
ated invariant chain degradation [64] and the degradation 
of myelin basic protein in vitro [65]. Serum cathepsin S and 
cystatin C levels influenced disease activity in 73 RRMS 
patients, specifically in those responding to IFN-β, through 
the reduction of the levels of serum cathepsin S [66].

We could not find any association of response to IFN-β 
or change in EDSS with gene polymorphisms in GRIA3, 
CBLB or OAS1. RRMS women carrying the G allele in 
rs12557782-GRIA3 responded better to IFN-β (p = 0.002; 
OR = 2.7;  CI95% = 1.5, 5.2) in a GWAS including 106 
RRMS patients of Caucasian origin (Spanish) that evalu-
ated 428,867 SNPs [30]. No association was found in men 
[30]. Despite the size, follow-up period of 24 months and 
female:male ratio (2:1) in our study being very similar and 
GG women showing greater response to IFN-β in our bivari-
ate analysis, this association did not prove to be independent 
after multivariable analysis (Table 3: p = 0.033). No associa-
tion with response to IFN-β was shown in 73 MS patients 
of Iranian origin, neither in females or males (p = 0.15 and 

0.4, respectively), although we cannot rule out a lack of sta-
tistical power, given the limited size of the study [58]. The 
GRIA3 gene encodes an AMPA-type glutamate receptor, 
which participates in most excitatory synaptic transmissions 
of the CNS, potentially explaining a relationship between the 
response to IFN-β and genes encoding channels activated 
by neurotransmitters [27]. The rs12487066 polymorphism 
of the CBLB gene was associated with MS risk in a GWAS 
in which 334,923 SNPs were evaluated in 931 family trios 
of European origin (UK = 928 cases and 1475 controls) and 
American (US = 1394 cases and 1512 controls) [67]. The 
replication study showed an increased risk of MS in T allele 
carriers (p = 0.035; OR: 1.08; CI95% = 1.03, 1.16) [67]. 
Another study with 342 patients of Saudi origin (99 MS with 
no antecedents of MS, 22 with a family member with MS, 
89 controls related to MS and 132 independent controls) 
showed rs12487066 associated with MS when compared to 
the independent control group [68]. This SNP has been sug-
gested to regulate the expression of the CBLB gene so that 
in carriers of the T allele, CBLB is inhibited by transcription 
factors, and lymphocytic proliferation does not cease [26]. In 
our study, CBLB-rs12487066 had no influence on response 
to IFN-β in RRMS patients, but we cannot compare it to 
other populations since this is the first study evaluating its 
possible predictive value for response in MS. The role of 
OAS1-rs10774671 polymorphism in disease activity in MS 
patients treated with IFN-β was investigated in 198 RRMS 
Irish patients and 394 controls [29]. The relapse time after 
treatment with IFN-β was significantly shorter in patients 
with AA genotype (hazard ratio: 1.47; CI95% = 1.01–2.16; 
p = 0.04) [29]. RRMS patients were divided into two groups 
according to disease activity (low and high); those with low 
activity were defined as those who had a maximum relapse 
after 24 months of treatment with IFN-β and did not have a 
sustained increase in disability. High activity was for those 
who had two or more relapses in the 24-month follow-up, 
with or without a sustained increase in disability (EDSS) 
[29]. This approach is similar to the response criteria applied 
in our study; however, OAS1-rs10774671 did not show an 
influence on response to IFN-β in our RRMS patients. There 

Table 4  Association of gene 
polymorphisms with response 
to interferon beta and change in 
the Expanded Disability Status 
Scale

EDSS, Expanded Disability Status Scale

Reference cat-
egory

p-value Odds ratio Confidence 
interval 
(95%)

Response to interferon beta
  Baseline EDSS 0.0694 0.60 0.34, 1.04
  CTSS rs1136774 (C-) TT 0.0423 2.94 1.03, 8.40

Change in EDSS
  Baseline EDSS 0.0060 0.36 0.16, 0.71
  TNFRSF10A rs20576 (TT) G- 0.0251 5.71 1.39, 31.75
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are no more studies of rs10774671 related to response to 
IFN.

Other SNPs have been proposed as indicators of response 
to IFN-β in Caucasian patients in various studies, some of 
them as response predictors (FHIT, GAPVD1, ZNF697 [35], 
GPC5, COL25A1, HAPLN1 [27], IRF5 [31], CD46 [32], 
PELI3, GABRR3 [33]), or other signs of response, as lower 
relapse rates (IFNAR1) [34]. Some of these results were not 
adjusted by multiple comparisons [27] or have not been rep-
licated in other studies [28, 34].

The main limitation of our study was the sample size. In 
our study, 160 patients treated with IFN-β were included as 
an initial cohort, 23 were excluded due to unavailability of 
their clinical history for follow-up, leaving an even smaller 
sample size. However, our population has a great homogene-
ity in terms of the definition and application of the response 
criteria since these are patients treated in the same hospital, 
evaluated, monitored and treated according to the same pro-
tocols by the same team of physicians.

It has been shown that patients treated with IFN-β could 
develop neutralizing antibodies that can negatively affect 
the therapeutic response. In Korea, a study was conducted 
with 150 patients from nine different centres to evaluate the 
development of NAbs in MS patients treated with IFN-β-1a 
and IFN-β-1b. NAbs were found in 35% of patients treated 
with IFN-β-1b, 15% with IFN-β-1a SC and 0% with IFN-
β-1a IM. Persistent NAb positivity was associated with dis-
ease activity in MS patients treated with IFN-β (p = 0.004) 
[69]. The frequency of MS patients developing NAbs against 
IFN-β was also significantly higher with IFN-β-1b therapy 
compared with IFN-β-1a therapy [70]. In our study, with 
only 14 patients (Table 1, 10.2%) treated with IFN-β 1b SC, 
the influence of NAbs development could not be well-pow-
ered investigated. Consequently, a further limitation of our 
study would be that patients were not screened for NAbs.

It is therefore necessary that future studies include larger 
cohorts that allow greater statistical power to elucidate asso-
ciations, not only to warrantee sufficient statistical power 
for the investigation of a greater number of SNPs, but also 
to include different therapeutic forms of IFN-β or several 
follow-up periods, which would allow to explore the effect 
of the different genetic variants on the short or long-term 
response, as well as the need for a change in therapy and the 
moment during the follow-up when this occurs, which will 
allow a better therapeutic control of these patients.

Conclusions

Our results suggest that treatment of RRMS patients with 
IFN-β for 24 months helps maintaining EDSS score in TT 
carriers of the TNFRSF10A-rs20576 gene polymorphism, 
whereas carriers of the C allele of CTSS-rs1136774 show a 

better response. A lower baseline EDSS is associated with 
a better response to IFN-β and EDSS stability, while CBLB 
(rs12487066), OAS1 (rs10774671) or GRIA3 (rs12557782) 
gene polymorphisms did not influence the variation of the 
individual response to IFN-β after 24 months.
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