#WWDC1/

What's New In StoreKit

Session 303

Pete Hare, App Store Engineer
Ross LeBeau, App Store Engineer

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

What's New In StoreKit

What's New In StoreKit

Promoting in-app purchases

What's New In StoreKit

Promoting in-app purchases

Server-to-server subscription notifications

What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications

Detailed subscription status information

What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications
Detailed subscription status information

Responding to reviews

What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications
Detailed subscription status information
Responding to reviews

Asking for ratings and reviews

Review of In-App Purchases

In-App Purchase Overview

In-App Purchase Overview

Digital content or service bought in-app

In-App Purchase Overview

Digital content or service bought in-app

Not for physical goods

Types of In-App Purchases

Types of In-App Purchases

Consumable products

Types of In-App Purchases

Consumable products

Non-consumable products

Types of In-App Purchases

Consumable products
Non-consumable products

Non-renewing subscriptions

Types of In-App Purchases

Consumable products

Non-consumable products

Non-renewing subscriptions

Auto-renewable subscriptions u

Types of In-App Purchases

Consumable products
Non-consumable products
Non-renewing subscriptions

Auto-renewable subscriptions

Types of In-App Purchases

Consumable products
Non-consumable products
Non-renewing subscriptions

Auto-renewable subscriptions

Advanced StoreKit Grand Ballroom A Thursday 1:50PM

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

In-App Purchase Process

Load In-App Identifiers

Options for storing the list of product identifiers

Load In-App Identifiers

Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Load In-App Identifiers

Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let 1dentifiers = ["com.myCompany.myApp.productl",
"com.myCompany .myApp.product2"]

Load In-App Identifiers

Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let 1dentifiers = ["com.myCompany.myApp.productl",
"com.myCompany .myApp.product2"]

Or fetch from your server

let identifiers remoteIdentifiers()

In-App Purchase Process

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: i1dentifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: i1identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: i1dentifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: i1dentifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: i1dentifierSet)
request.delegate = self
request.start()

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) A

for product in response.products {

// Localized title and description
product.localizedTitle
product.localizedDescription

// Price and locale

product.price

product.pricelocale
// Content size and version (hosted)

product.downloadContentlLengths

product.downloadContentVersion

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceilve response: SKProductsResponse) {

for product in response.products {

// Localized title and description
product.localizedTitle
product.localizedDescription

// Price and locale

product.price

product.pricelocale
// Content size and version (hosted)
product.downloadContentlLengths

product.downloadContentVersion

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceilve response: SKProductsResponse) {

for product in response.products {

// Localized title and description
product.localizedTitle
product.localizedDescription

// Price and locale

product.price

product.pricelocale
// Content size and version (hosted)
product.downloadContentlLengths

product.downloadContentVersion

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceilve response: SKProductsResponse) {

for product in response.products {

// Localized title and description
product.localizedTitle
product.localizedDescription

// Price and locale

product.price

product.pricelocale
// Content size and version (hosted)

product.downloadContentlLengths

product.downloadContentVersion

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) A

for product in response.products {

// Localized title and description
product.localizedTitle
product.localizedDescription

// Price and locale

product.price

product.pricelocale
// Content size and version (hosted)

product.downloadContentlLengths

product.downloadContentVersion

In-App Purchase Process

In-App Purchase Ul

In-App Purchase Ul

Up to the application / \

In-App Purchase Ul

Up to the application / \

Can have a large effect on sales

In-App Purchase Ul

Up to the application / \

Can have a large effect on sales

https://developer.apple.com/in-app-purchase/

In-App Purchase Ul

Formatting the product price

In-App Purchase Ul

Formatting the product price

let formatter = NumberFormatter()

In-App Purchase Ul

Formatting the product price

formatter.numberStyle = .currency

In-App Purchase Ul

Formatting the product price

formatter.locale = product.pricelLocale // Not the device locale!

In-App Purchase Ul

Formatting the product price

let formattedString = formatter.string(from: product.price)

In-App Purchase Ul

Formatting the product price

In-App Purchase Ul

Formatting the product price

Do not perform currency conversion

In-App Purchase Process

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)

SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

Pacemaker’

App Store Cancel

- REVERB

4+
J.APPLESEED@ICLOUD.COM

PAY APP STORE

Buy with Touch ID

App Store Cancel

- REVERB

4+
J.APPLESEED@ICLOUD.COM

PAY APP STORE

9

Detecting Irregular Activity
Suspicious activity during payment process

Detecting Irregular Activity
Suspicious activity during payment process

johnnyappleseed®@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

Detecting Irregular Activity
Suspicious activity during payment process

neverfoldsJim35
A

johnnyappleseed®@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

Detecting Irregular Activity
Provide an account identifier

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for

* Don't send us the user’s Apple ID

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for
* Don't send us the user’s Apple ID

* Don't provide the actual account name

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for
* Don't send us the user’s Apple ID
* Don't provide the actual account name

* Don't provide the password

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for

* Don't send us the user’s Apple ID

* Don't provide the actual account name
* Don't provide the password

* We suggest using a hash of the account name

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for

* Don't send us the user’s Apple ID

* Don't provide the actual account name
* Don't provide the password

* We suggest using a hash of the account name

let payment = SKPayment(product: product)
payment.applicationUsername = hash(yourCustomerAccountName)
SKPaymentQueue.default().add(payment)

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an for

* Don't send us the user’s Apple ID

* Don't provide the actual account name
* Don't provide the password

* We suggest using a hash of the account name

let payment = SKPayment(product: product)
payment.applicationUsername = hash(yourCustomerAccountName)
SKPaymentQueue.default().add(payment)

In-App Purchase Process

// Start Observing the Payment Queue

import UIK1it
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
SKPaymentQueue.default().add(self)

return true

// Start Observing the Payment Queue

import UIK1it
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
SKPaymentQueue.default().add(self)

return true

// Start Observing the Payment Queue

import UIK1it
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
SKPaymentQueue.default().add(self)

return true

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {

for transaction 1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {

for transaction 1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {

for transaction 1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {

for transaction 1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {

for transaction 1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {
for transaction i1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase
case .deferred:

// Allow the user to continue to use the app

// It may be some time before the transaction 1s updated

// Do not get stuck 1n a modal "Purchasing..." state!

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {
for transaction i1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase
case .deferred:

// Allow the user to continue to use the app

// It may be some time before the transaction 1s updated

// Do not get stuck in a modal "Purchasing..." state!

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
[SKPaymentTransaction]) {
for transaction i1n transactions {
switch transaction.transactionState {
case .purchased:
// Validate the purchase
case .deferred:

// Allow the user to continue to use the app

// It may be some time before the transaction 1s updated

// Do not get stuck 1n a modal "Purchasing..." state!

Testing Deferred Transactions

Testing Deferred Transactions

Create a mutable payment

Testing Deferred Transactions

Create a mutable payment

Set the simulatesAskToBuyInSandbox flag

Testing Deferred Transactions

Create a mutable payment

Set the sinutteskskTobuynsanduox flag

Handling Errors

Handling Errors

Not all errors are equal

Handling Errors

Not all errors are equal

Check the error code

Handling Errors

Not all errors are equal

Check the error code

* Don’t show an error alert unless necessary

Handling Errors

Not all errors are equal

Check the error code
* Don’t show an error alert unless necessary

» User canceling a payment will result in an error

Handling Errors

Not all errors are equal

Check the error code
* Don’t show an error alert unless necessary

» User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible

Handling Errors

Not all errors are equal

Check the error code
* Don’t show an error alert unless necessary

» User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible

* Including asking for confirmation for purchase

The Receipt

" Receipt

The Receipt

Trusted record of app and in-app purchases

" Receipt

The Receipt

Trusted record of app and in-app purchases

" Receipt

Stored on device

The Receipt

Trusted record of app and in-app purchases

" Receipt

Stored on device

Issued by the App Store

The Receipt

Trusted record of app and in-app purchases

" Receipt

Stored on device
Issued by the App Store

Sighed and verifiable

The Receipt

Trusted record of app and in-app purchases

" Receipt

Stored on device
Issued by the App Store
Sighed and verifiable

For your app, on that device only

Receipt Validation

" Receipt

Receipt Validation

On-device validation

" Receipt

* Unlock features and content within the app

Receipt Validation

On-device validation

" Receipt

* Unlock features and content within the app

Server-to-server validation
* Restrict access to downloadable content

» Used often for subscriptions

Receipt Validation

On-device validation

" Receipt

* Unlock features and content within the app

Server-to-server validation
* Restrict access to downloadable content

» Used often for subscriptions

Grand Ballroom A Thursday 1:50PM

In-App Purchase Process

Unlock Content

Unlock Content

Unlock functionality in your app

Unlock Content

Unlock functionality in your app

Download additional content

Downloading Content

Downloading Content

Apple-hosted content

Downloading Content

Apple-hosted content

« On-demand resources

Downloading Content

Apple-hosted content
« On-demand resources

* Hosted in-app purchase content

Downloading Content

Apple-hosted content
« On-demand resources

* Hosted in-app purchase content

Self-hosted content

Downloading Content

Apple-hosted content
« On-demand resources

* Hosted in-app purchase content

Self-hosted content

» Use background downloads with NSURLSession

In-App Purchase Process

Finish the Transaction

Finish the Transaction

Finish all transactions once content is unlocked

* [f downloading hosted content, walit until after the download completes

Finish the Transaction

Finish all transactions once content is unlocked

* [f downloading hosted content, walit until after the download completes

Includes all auto-renewable subscription transactions

Finish the Transaction

Finish all transactions once content is unlocked

* If downloading hosted content, wait until after the download completes
Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Finish the Transaction

Finish all transactions once content is unlocked
* If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

Finish the Transaction

Finish all transactions once content is unlocked
* If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

SKPaymentQueue.default().finishTransaction(transaction)

In-App Purchase Process

App Review

App Review

You must have a Restore button

App Review

You must have a Restore button

Restore and Purchase must be separate buttons

App Review

You must have a Restore button
Restore and Purchase must be separate buttons

Not just as a “backup” tool

App Review

You must have a Restore button
Restore and Purchase must be separate buttons

Not just as a “backup” tool

» Users with multiple devices

Restore Completed Transactions

Only restores transactions for
« Non-consumables

» Auto-renewable subscriptions

For consumables and non-renewing subscriptions

* You must persist the state!

Restore Completed Transactions

Restore Completed Transactions

SKPaymentQueue.default().restoreCompletedTransactions()

Restore Completed Transactions

SKPaymentQueue.default().restoreCompletedTransactions()

Observe the queue

// Additional callbacks i1n SKPaymentTransactionObserver

func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {}

func paymentQueue(_ queue: SKPaymentQueue,
restoreCompletedTransactionsFailedWithError error: NSError) {}

Inspect the receipt and unlock content and features accordingly

Implementing In-App Purchases

Implementing In-App Purchases

Always observe the Payment Queue

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Implementing In-App Purchases

Always observe the Payment Queue
Fetch localized product information from the App Store

Display pricing using the product'’s price locale

Implementing In-App Purchases

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product'’s price locale

Use the receipt to validate your purchases

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store
Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store
Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store
Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Allow the user to restore completed transactions

Promoting In-App Purchases

Ross LeBeau, App Store Engineer

Promoting In-App Purchases

Promoting In-App Purchases

Discoverable

Promoting In-App Purchases

DiSCOverable Eat better, sleep more, and track your progress
over time with HealthKit.

* App page

Make Your Own Summer Jam

Beatskip
for Pacemaker

Yes, You Can Cook That! See All

Promoting In-App Purchases

DiSCOverable Eat better, sleep more, and track your progress
over time with HealthKit.

* App page

» Editorial features NS YOLI LI SRIITEIN ~/8n

Beatskip
for Pacemaker

Yes, You Can Cook That! See All

Promoting In-App Purchases

DiSCOverable Eat better, sleep more, and track your progress
over time with HealthKit.

* App page
» Editorial features NS YOLI LI SRIITEIN ~/8n

e Search results Beatskip

for Pacemaker

Yes, You Can Cook That! See All

Promoting In-App Purchases

DiSCOverable Eat better, sleep more, and track your progress
over time with HealthKit.

* App page

» Editorial features NS YOLI LI SRIITEIN ~/8n

e Search results Beatskip

for Pacemaker

Start purchase on the App Store

S a

Yes, You Can Cook That! See All

Implementation Overview

Implementation Overview

Required
* Set up in ITunes Connect

« Handle info from App Store

Implementation Overview

Required
* Set up in ITunes Connect

« Handle info from App Store

Optional
* Order and visibility

Implementation Overview

Required
* Set up in ITunes Connect

* Handle info from App Store

Optional
* Order and visibility

What's New in iTunes Connect WWDC 2017

100% ()

Reverb
for Pacemaker

Size matters—control the size
of the room

100% ()

Reverb
for Pacemaker

Size matters—control the size
of the room

Pacemaker’

App Store Cancel

- REVERB

4+
J.APPLESEED@ICLOUD.COM

PAY APP STORE

Buy with Touch ID

App Store Cancel

- REVERB

4+
J.APPLESEED@ICLOUD.COM

PAY APP STORE

9

// Continulng a Transaction from the App Store
// MARK: - SKPaymentTransactionObserver
func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,

forProduct product: SKProduct) -> Bool {

return true

// Continulng a Transaction from the App Store
// MARK: - SKPaymentTransactionObserver
func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,

forProduct product: SKProduct) -> Bool {

return true

// Deferring or Stopplng a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
forProduct product: SKProduct) -> Bool {
// Hold on to the payment
return false

SKPaymentQueue.default().add(savedPayment)

// Deferring or Stopplng a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
forProduct product: SKProduct) -> Bool {
// Hold on to the payment

return false

SKPaymentQueue.default().add(savedPayment)

// Deferring or Stopplng a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
forProduct product: SKProduct) -> Bool {

// Hold on to the payment
return false

SKPaymentQueue.default().add(savedPayment)

Testing Purchases

Protocol

Parameters

Testing Purchases

Protocol

Parameters

Order and Visibility

Order and Visibility

Defaults in iITunes Connect

Order and Visibility

Defaults in iTunes Connect

Override on device

Order and Visibility

Defaults in iTunes Connect
Override on device

Not synced

Visibility

Pro Subscription Fishing Hot Spots Hidden Beaches

A $35.99 h $1.99

Visibility

Fishing Hot Spots Hidden Beaches

h $1.99

// Updating Visibility Override of a Promoted In—-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
completionHandler: { (error: Error?) 1in
// Complete
1)

// Updating Visibility Override of a Promoted In—-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
completionHandler: { (error: Error?) 1in
// Complete
1)

// Updating Visibility Override of a Promoted In—-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
completionHandler: { (error: Error?) 1n
// Complete
1)

// Reading Visibility Override of a Promoted In—-App Purchase

// Fetch Product Info for Hidden Beaches pack

let storePromotionController = SKProductStorePromotionController.default()

storePromotionController
completionHandler: {
// visibility ==

)

.fetchStorePromotionVisibility(forProduct: hiddenBeaches,
(visibility: SKProductStorePromotionVisibility, error: Error?) in
.default

// Reading Visibility Override of a Promoted In—-App Purchase

// Fetch Product Info for Hidden Beaches pack

let storePromotionController = SKProductStorePromotionController.default()

storePromotionController
completionHandler: {
// visibility ==

1)

.fetchStorePromotionVisibility(forProduct: hiddenBeaches,
(visibility: SKProductStorePromotionVisibility, error: Error?) 1n
.default

Order

Hidden Beaches

Pro Subscription Fishing Hot Spots

A —

Order

Fishing Hot Spots

Hidden Beaches Pro Subscription

A —

// Updating Order Override of Promoted In—-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder (newProductsOrder,
completionHandler: { (error: Error?) 1in
// Complete

r)

// Updating Order Override of Promoted In—-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder (newProductsOrder,
completionHandler: { (error: Error?) 1in
// Complete

r)

// Updating Order Override of Promoted In—-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder (newProductsOrder,
completionHandler: { (error: Error?) 1in
// Complete

¥)

// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder (completionHandler: <
(products: [SKProduct], error: Error?) 1in
// products == [hiddenBeaches, proSubscription, fishingHotSpots]

¥)

// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder(completionHandler: {
(products: [SKProduct], error: Error?) in

// products == [hiddenBeaches, proSubscription, fishingHotSpots]
)

Promoting In-App Purchases

Promoting In-App Purchases

Discoverable in App Store

Promoting In-App Purchases

Discoverable in App Store

Set up in iITunes Connect

Promoting In-App Purchases

Discoverable in App Store
Set up in iITunes Connect

Start purchase in App Store

Promoting In-App Purchases

Discoverable in App Store
Set up in iITunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Promoting In-App Purchases

Discoverable in App Store

Set up in iITunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Optional—order and visibility

Ratings, Reviews, and Responses

Pete Hare, App Store Engineer

l 100% (=)
|

Alto's Adventure

Above the placid ivory snow lies a sleepy
mountain village, brimming with the promise of
adventure. Join Alto and his friends as the more

.

all 100% ()

(Games X

Ratings & Reviews See All
4.7

Truly Amazing Game

This game is wonderful and highly
enjoyable for the entire family! | love how
easy It Is to pick up and play wherever you

are. If you need an infinite runner to play
with the kids, this is the one to get. After a
long day, the colorful visuals and cheery
music always put me in a good moc more

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more

all 100% ()

Ratings & Reviews See All
4.7

Impossible to Stop Playing

This game rocks! Ever since | unlocked the
wingsuit | haven’t been able to put it down...
even during our ET meetings.

Developer Response
Just make sure to keep the volume off!

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more

all 100% ()

(Games X

Ratings & Reviews See All
4.7

A Fun Challenge

| can’t even count how many hours I've
spent playing this awesome game. The
visuals are stunning and doing backflips is
so addictive. But it's not easy—I had to
replay one level multiple times before
moving on. I'm getting better each time |
play, but | still have a lot to learn.

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more

Ratings, Reviews, and Responses
What's new

Ratings, Reviews, and Responses
What's new

Reset your rating

Ratings, Reviews, and Responses
What's new

Reset your rating

Respond to reviews

Ratings, Reviews, and Responses
What's new

Reset your rating
Respond to reviews

Ask for ratings and reviews via SKStoreReviewController

Ratings, Reviews, and Responses
What's new

Reset your rating
Respond to reviews
Ask for ratings and reviews via SKStoreReviewController

Deep link to write review in the App Store

Ratings, Reviews, and Responses
What's new

Reset your rating

Respond to reviews

Ask for ratings and reviews via SKStoreReviewController
Deep link to write review in the App Store

Helpfulness and Report a Concern on iI0S

Helpful

Not Helpful

Report a Concern

all & 100% ()

£ Alto's Adventure

Ratings & Reviews

4./

Helpful

Thanks for your feedback.
Tru

This game is wonderful and highly enjoyable
for the entire family! | love how easy it is to
pick up and play wherever you are. If you
need an infinite runner to play with the kids,
this is the one to get. After a long day, the
colorful visuals and cheery music always
puts me in a good mood.

Impossible to stop playing

all = 100% (e

£ Alto's Adventure

Ratings & Reviews

4./

pA¢

pport

Reported pful v

Thanks for your feedback.
Tru

This game is wonderful and highly enjoyable
for the entire family! | love how easy it is to
pick up and play wherever you are. If you
need an infinite runner to play with the kids,
this is the one to get. After a long day, the
colorful visuals and cheery music always
puts me in a good mood.

Impossible to stop playing

| loved this game

| have never written a review before, but
this game is so good. | just want more

levels. | played through this game at More

Developer Response

Thanks for making us your first review!
Keep checking for updates, there's + More

Ratings, Reviews, and Responses
Responding to reviews

Awesome game

If you like unusual challenge of ripping a
paper up to save the cute little guys, this

game is fun to be stumped, save the More

Developer Response

Glad you had fun getting stumped. We're
big fans of unusual challenges, too. More

all ¥ 100% (wmmm)

(All Inboxes (2) A N

From: Apple Hide

To: Kelly Westover

You've received a developer response to
your review of TripGuides

g

Dear Johnny,

App Co. responded to your review of

\ . \

| '1*\. TripGuides

“Glad you’'re enjoying the game though I’'m sorry
you’re having problems on that level, we'll be
Issuing an update soon to fix it. In the meantime
we suggest you go level 3 manually via Load
Game in the Main Menu. Sorry again!”

Do you want to update your review?

You can also email the developer.

[

ol = 100% ()

(All Inboxes (2) A N

From: Apple Hide

To: Kelly Westover

You've received a developer response to
your review of TripGuides

g

Dear Johnny,

App Co. responded to your review of

N TripGuides

“Glad you’'re enjoying the game though I’'m sorry
you’re having problems on that level, we'll be
Issuing an update soon to fix it. In the meantime

we suggest you go level 3 manually via Load
Game in the Main Meni1 Snrrv anainl”

Do you wan

You can also email the developer.

[

all 9:41 AM 100% ()

Cancel Edit Review Send

* X Kk Kk %k

Great improvements!

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
Issues. Thanks for listening!

2 3 4 5 6 7 8 9 O

() $ & @ ”

Average increase of 1.5 stars per review

Ratings, Reviews, and Responses
Responding to reviews

More information
https://developer.apple.com/app-store/responding-to-reviews

Ratings, Reviews, and Responses
Responding to reviews

More information
https://developer.apple.com/app-store/responding-to-reviews

What's New in iTunes Connect WWDC 2017

Ratings, Reviews, and Responses
Receiving reviews

Ratings, Reviews, and Responses
Receiving reviews

Prompt for review with SKStoreReviewController

Ratings, Reviews, and Responses
Receiving reviews

Prompt for review with SKStoreReviewController

Deep link to review in App Store

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Blitz Bonus +35%

Enjoying Emoji Blitz?
a

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Quick way to request a rating/review

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in 10S 10.3
Quick way to request a rating/review

Will be required for all modal rating/
review prompts

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Quick way to request a rating/review

Missions;

Will be required for all modal rating/
review prompts

Restrictions in place

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Quick way to request a rating/review

Missions;

Will be required for all modal rating/
review prompts

Restrictions in place

 Limited requests per device

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Quick way to request a rating/review

Missions,

Will be required for all modal rating/
review prompts

Restrictions in place

 Limited requests per device

» Can be disabled by user in Settings

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

° Present as a prompt after a user action

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

° Present as a prompt after a user action
Do not present from a button
May not present any Ul due to restrictions

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules

// Asking for Ratings and Reviews with SKStoreReviewController

1f shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Wl T 9:41 AM

Cancel Edit Review

* Kk Kk ok Kk

Great improvements!

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0

() $ & @~
&

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in I0S 10.3

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0

-1/ ;1) 1sj&j@f”

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in I0S 10.3

Link to open your app in the App Store

» Presents compose review from app page

' This game has improved a LOT. There

were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0

-1/ ;1) 1sj&j@f”

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in I0S 10.3

Link to open your app in the App Store

» Presents compose review from app page

User Iinitiated actions

» Button in settings

' This game has improved a LOT. There

were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0

-1/ ;1) 1sj&j@f”

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Use from an embedded button in your app
Such as a settings screen

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Use from an embedded button in your app
Such as a settings screen

Do not use from an alert

Use SKStoreReviewController instead

Deep Link to Write Review

URL is formed using regular product URL with an anchor tag

https://1tunes.apple.com/us/app/i1tunes—u/1d490217893?action=write-review

For creating product URLSs visit
https://linkmaker.itunes.apple.com/

Ratings, Reviews, and Responses
Asking users for reviews

More information
https://developer.apple.com/app-store/ratings-and-reviews/

Summary

Summary

How to implement in-app purchases

Summary

How to implement in-app purchases

Promote in-app purchases in the App Store

Summary

How to implement in-app purchases
Promote in-app purchases in the App Store

New App Store design

Summary

How to implement in-app purchases
Promote in-app purchases in the App Store
New App Store design

New opportunities to improve your ratings and reviews

More Information
https://developer.apple.com/wwdc1/7/303

Related Sessions

What's New in iTunes Connect WWDC 2017

Introducing the New App Store WWDC 2017

Advanced StoreKit Grand Ballroom A Thursday 1:50PM

Labs

App Store and iTunes Connect Lab Technology Lab H Thu 12:00PM-1:50PM

StoreKit Lab Technology Lab E Thu 3:10PM-6:00PM

StoreKit Lab Technology Lab E Fri 1:50PM-4:00PM

