#WWDC1/

What's New In StoreKit

Session 303

Pete Hare, App Store Engineer
Ross LeBeau, App Store Engineer

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.



What's New In StoreKit




What's New In StoreKit

Promoting in-app purchases



What's New In StoreKit

Promoting in-app purchases

Server-to-server subscription notifications



What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications

Detailed subscription status information



What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications
Detailed subscription status information

Responding to reviews



What's New In StoreKit

Promoting in-app purchases
Server-to-server subscription notifications
Detailed subscription status information
Responding to reviews

Asking for ratings and reviews



Review of In-App Purchases




In-App Purchase Overview




In-App Purchase Overview

Digital content or service bought in-app




In-App Purchase Overview

Digital content or service bought in-app

Not for physical goods
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Load In-App Identifiers

Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let 1dentifiers = ["com.myCompany.myApp.productl",
"com.myCompany .myApp.product2"]

Or fetch from your server

let identifiers remoteIdentifiers()
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In-App Purchase Ul

Up to the application / \

Can have a large effect on sales

https://developer.apple.com/in-app-purchase/
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formatter.numberStyle = .currency
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Formatting the product price

let formattedString = formatter.string(from: product.price)



In-App Purchase Ul

Formatting the product price




In-App Purchase Ul

Formatting the product price

Do not perform currency conversion
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let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)
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import UIK1it
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
SKPaymentQueue.default().add(self)

return true
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Create a mutable payment

Set the sinutteskskTobuynsanduox flag
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Handling Errors

Not all errors are equal

Check the error code
* Don’t show an error alert unless necessary

» User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible

* Including asking for confirmation for purchase
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The Receipt

Trusted record of app and in-app purchases

" Receipt

Stored on device
Issued by the App Store
Sighed and verifiable

For your app, on that device only
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" Receipt

* Unlock features and content within the app

Server-to-server validation
* Restrict access to downloadable content

» Used often for subscriptions
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Unlock functionality in your app

Download additional content
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Downloading Content

Apple-hosted content
« On-demand resources

* Hosted in-app purchase content

Self-hosted content

» Use background downloads with NSURLSession
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Finish the Transaction

Finish all transactions once content is unlocked
* If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

SKPaymentQueue.default().finishTransaction(transaction)
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App Review

You must have a Restore button
Restore and Purchase must be separate buttons

Not just as a “backup” tool

» Users with multiple devices



Restore Completed Transactions

Only restores transactions for
« Non-consumables

» Auto-renewable subscriptions

For consumables and non-renewing subscriptions

* You must persist the state!
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Restore Completed Transactions

SKPaymentQueue.default().restoreCompletedTransactions()

Observe the queue

// Additional callbacks i1n SKPaymentTransactionObserver

func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {}

func paymentQueue(_ queue: SKPaymentQueue,
restoreCompletedTransactionsFailedWithError error: NSError) {}

Inspect the receipt and unlock content and features accordingly
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Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store
Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Allow the user to restore completed transactions
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over time with HealthKit.

* App page

Make Your Own Summer Jam

Beatskip
for Pacemaker

Yes, You Can Cook That! See All
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Promoting In-App Purchases

DiSCOverable Eat better, sleep more, and track your progress
over time with HealthKit.

* App page

» Editorial features NS YOLI LI SRIITEIN ~/8n

e Search results Beatskip

for Pacemaker

Start purchase on the App Store

S a

Yes, You Can Cook That! See All
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Implementation Overview

Required
* Set up in ITunes Connect

* Handle info from App Store

Optional
* Order and visibility

What's New in iTunes Connect WWDC 2017
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// MARK: - SKPaymentTransactionObserver
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// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
forProduct product: SKProduct) -> Bool {

// Hold on to the payment
return false

SKPaymentQueue.default().add(savedPayment)
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Defaults in iTunes Connect
Override on device

Not synced
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// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
completionHandler: { (error: Error?) 1in
// Complete
1)
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// Fetch Product Info for Hidden Beaches pack

let storePromotionController = SKProductStorePromotionController.default()

storePromotionController
completionHandler: {
// visibility ==

1)

.fetchStorePromotionVisibility(forProduct: hiddenBeaches,
(visibility: SKProductStorePromotionVisibility, error: Error?) 1n
.default



Order

Hidden Beaches

Pro Subscription Fishing Hot Spots

A —




Order

Fishing Hot Spots

Hidden Beaches Pro Subscription

A —
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// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
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// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder (completionHandler: <
(products: [SKProduct], error: Error?) 1in
// products == [hiddenBeaches, proSubscription, fishingHotSpots]
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// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder(completionHandler: {
(products: [SKProduct], error: Error?) in

// products == [hiddenBeaches, proSubscription, fishingHotSpots]
)
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Promoting In-App Purchases

Discoverable in App Store

Set up in iITunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Optional—order and visibility



Ratings, Reviews, and Responses

Pete Hare, App Store Engineer
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Alto's Adventure

Above the placid ivory snow lies a sleepy
mountain village, brimming with the promise of
adventure. Join Alto and his friends as the  more

.




all 100% ()

( Games X

Ratings & Reviews See All
4.7

Truly Amazing Game

This game is wonderful and highly
enjoyable for the entire family! | love how
easy It Is to pick up and play wherever you

are. If you need an infinite runner to play
with the kids, this is the one to get. After a
long day, the colorful visuals and cheery
music always put me in a good moc  more

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more




all 100% ()

Ratings & Reviews See All
4.7

Impossible to Stop Playing

This game rocks! Ever since | unlocked the
wingsuit | haven’t been able to put it down...
even during our ET meetings.

Developer Response
Just make sure to keep the volume off!

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more
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( Games X

Ratings & Reviews See All
4.7

A Fun Challenge

| can’t even count how many hours I've
spent playing this awesome game. The
visuals are stunning and doing backflips is
so addictive. But it's not easy—I had to
replay one level multiple times before
moving on. I'm getting better each time |
play, but | still have a lot to learn.

In this gorgeous twist on the infinite
runner, you guide an agile snowboarder
down a never ending mountain, pull more
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What's new

Reset your rating

Respond to reviews

Ask for ratings and reviews via SKStoreReviewController
Deep link to write review in the App Store

Helpfulness and Report a Concern on iI0S



Helpful

Not Helpful

Report a Concern
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£ Alto's Adventure

Ratings & Reviews

4./

Helpful

Thanks for your feedback.
Tru

This game is wonderful and highly enjoyable
for the entire family! | love how easy it is to
pick up and play wherever you are. If you
need an infinite runner to play with the kids,
this is the one to get. After a long day, the
colorful visuals and cheery music always
puts me in a good mood.

Impossible to stop playing
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Thanks for your feedback.
Tru

This game is wonderful and highly enjoyable
for the entire family! | love how easy it is to
pick up and play wherever you are. If you
need an infinite runner to play with the kids,
this is the one to get. After a long day, the
colorful visuals and cheery music always
puts me in a good mood.

Impossible to stop playing




| loved this game

| have never written a review before, but
this game is so good. | just want more

levels. | played through this game at  More

Developer Response

Thanks for making us your first review!
Keep checking for updates, there's + More

Ratings, Reviews, and Responses
Responding to reviews

Awesome game

If you like unusual challenge of ripping a
paper up to save the cute little guys, this

game is fun to be stumped, save the More

Developer Response

Glad you had fun getting stumped. We're
big fans of unusual challenges, too. More
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From: Apple Hide

To: Kelly Westover

You've received a developer response to
your review of TripGuides

g

Dear Johnny,

App Co. responded to your review of

\ . \

| '1*\. TripGuides

“Glad you’'re enjoying the game though I’'m sorry
you’re having problems on that level, we'll be
Issuing an update soon to fix it. In the meantime
we suggest you go level 3 manually via Load
Game in the Main Menu. Sorry again!”

Do you want to update your review?

You can also email the developer.

[
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From: Apple Hide

To: Kelly Westover

You've received a developer response to
your review of TripGuides

g

Dear Johnny,

App Co. responded to your review of

N TripGuides

“Glad you’'re enjoying the game though I’'m sorry
you’re having problems on that level, we'll be
Issuing an update soon to fix it. In the meantime

we suggest you go level 3 manually via Load
Game in the Main Meni1 Snrrv anainl”

Do you wan

You can also email the developer.

[
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Great improvements!

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
Issues. Thanks for listening!

2 3 4 5 6 7 8 9 O

() $ & @ ”







Average increase of 1.5 stars per review
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More information
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Ratings, Reviews, and Responses
Responding to reviews

More information
https://developer.apple.com/app-store/responding-to-reviews

What's New in iTunes Connect WWDC 2017
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Prompt for review with SKStoreReviewController

Deep link to review in App Store
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Blitz Bonus +35%

Enjoying Emoji Blitz?
a
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Asking for ratings and reviews with SKStoreReviewController

Introduced in I0S 10.3

Quick way to request a rating/review

Missions,

Will be required for all modal rating/
review prompts

Restrictions in place

 Limited requests per device

» Can be disabled by user in Settings
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Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

° Present as a prompt after a user action
Do not present from a button
May not present any Ul due to restrictions




// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules
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// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {

SKStoreReviewController.requestReview()

func shouldPromptUser() -> Bool {
// Local business rules
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Great improvements!

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0
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Deep link to write a review in App Store

Introduced in I0S 10.3

This game has improved a LOT. There
were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0
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Deep link to write a review in App Store

Introduced in I0S 10.3

Link to open your app in the App Store

» Presents compose review from app page

' This game has improved a LOT. There

were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0
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Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in I0S 10.3

Link to open your app in the App Store

» Presents compose review from app page

User Iinitiated actions

» Button in settings

' This game has improved a LOT. There

were some problems with the earlier
version, but since updating I've had no
issues. Thanks for listening!

1 2 3 4 5 6 7 8 9 0
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Ratings, Reviews, and Responses
Deep link to write a review in App Store

Use from an embedded button in your app
Such as a settings screen

Do not use from an alert

Use SKStoreReviewController instead




Deep Link to Write Review

URL is formed using regular product URL with an anchor tag

https://1tunes.apple.com/us/app/i1tunes—u/1d490217893?action=write-review

For creating product URLSs visit
https://linkmaker.itunes.apple.com/
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Asking users for reviews

More information
https://developer.apple.com/app-store/ratings-and-reviews/
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Summary

How to implement in-app purchases
Promote in-app purchases in the App Store
New App Store design

New opportunities to improve your ratings and reviews



More Information
https://developer.apple.com/wwdc1/7/303



Related Sessions

What's New in iTunes Connect WWDC 2017

Introducing the New App Store WWDC 2017

Advanced StoreKit Grand Ballroom A Thursday 1:50PM




Labs

App Store and iTunes Connect Lab Technology Lab H Thu 12:00PM-1:50PM

StoreKit Lab Technology Lab E Thu 3:10PM-6:00PM

StoreKit Lab Technology Lab E Fri 1:50PM-4:00PM







