
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Pete Hare, App Store Engineer
Ross LeBeau, App Store Engineer

•What’s New in StoreKit
• Session 303

Distribution

What’s New in StoreKit
NEW

What’s New in StoreKit

Promoting in-app purchases

NEW

What’s New in StoreKit

Promoting in-app purchases

Server-to-server subscription notifications

NEW

What’s New in StoreKit

Promoting in-app purchases

Server-to-server subscription notifications

Detailed subscription status information

NEW

What’s New in StoreKit

Promoting in-app purchases

Server-to-server subscription notifications

Detailed subscription status information

Responding to reviews

NEW

What’s New in StoreKit

Promoting in-app purchases

Server-to-server subscription notifications

Detailed subscription status information

Responding to reviews

Asking for ratings and reviews

NEW

•Review of In-App Purchases

In-App Purchase Overview

In-App Purchase Overview

Digital content or service bought in-app

In-App Purchase Overview

Digital content or service bought in-app

Not for physical goods

Types of In-App Purchases

Types of In-App Purchases

Consumable products

Types of In-App Purchases

Consumable products

Non-consumable products

Types of In-App Purchases

Consumable products

Non-consumable products

Non-renewing subscriptions

Types of In-App Purchases

Consumable products

Non-consumable products

Non-renewing subscriptions

Auto-renewable subscriptions

Types of In-App Purchases

Consumable products

Non-consumable products

Non-renewing subscriptions

Auto-renewable subscriptions

Types of In-App Purchases

Consumable products

Non-consumable products

Non-renewing subscriptions

Auto-renewable subscriptions

Advanced StoreKit Grand Ballroom A Thursday 1:50PM

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

Load In-App Identifiers
Options for storing the list of product identifiers

Load In-App Identifiers
Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Load In-App Identifiers
Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let identifiers = ["com.myCompany.myApp.product1", 
 "com.myCompany.myApp.product2"]

Load In-App Identifiers
Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let identifiers = ["com.myCompany.myApp.product1", 
 "com.myCompany.myApp.product2"]

Or fetch from your server

let identifiers = remoteIdentifiers()

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)
request.delegate = self
request.start()

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) {
 for product in response.products {
 // Localized title and description
 product.localizedTitle
 product.localizedDescription
 // Price and locale
 product.price
 product.priceLocale
 // Content size and version (hosted)
 product.downloadContentLengths
 product.downloadContentVersion
 }
}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) {
 for product in response.products {
 // Localized title and description
 product.localizedTitle
 product.localizedDescription
 // Price and locale
 product.price
 product.priceLocale
 // Content size and version (hosted)
 product.downloadContentLengths
 product.downloadContentVersion
 }
}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) {
 for product in response.products {
 // Localized title and description
 product.localizedTitle
 product.localizedDescription
 // Price and locale
 product.price
 product.priceLocale
 // Content size and version (hosted)
 product.downloadContentLengths
 product.downloadContentVersion
 }
}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) {
 for product in response.products {
 // Localized title and description
 product.localizedTitle
 product.localizedDescription
 // Price and locale
 product.price
 product.priceLocale
 // Content size and version (hosted)
 product.downloadContentLengths
 product.downloadContentVersion
 }
}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse) {
 for product in response.products {
 // Localized title and description
 product.localizedTitle
 product.localizedDescription
 // Price and locale
 product.price
 product.priceLocale
 // Content size and version (hosted)
 product.downloadContentLengths
 product.downloadContentVersion
 }
}

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

In-App Purchase UI

In-App Purchase UI

Up to the application

In-App Purchase UI

Up to the application

Can have a large effect on sales

In-App Purchase UI

Up to the application

Can have a large effect on sales

https://developer.apple.com/in-app-purchase/

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase UI
Formatting the product price

Do not perform currency conversion

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.locale = product.priceLocale // Not the device locale!
let formattedString = formatter.string(from: product.price)

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

// Requesting a Payment

let payment = SKPayment(product: product)
SKPaymentQueue.default().add(payment)

Detecting Irregular Activity
Suspicious activity during payment process

Detecting Irregular Activity
Suspicious activity during payment process

johnnyappleseed@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

ServerServerApp
Store

Detecting Irregular Activity
Suspicious activity during payment process

johnnyappleseed@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

ServerServerApp
Store

ServerServerYour
Server

neverfoldsJim35

Detecting Irregular Activity
Provide an account identifier

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID
• Don’t provide the actual account name

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID
• Don’t provide the actual account name
• Don’t provide the password

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID
• Don’t provide the actual account name
• Don’t provide the password
• We suggest using a hash of the account name

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID
• Don’t provide the actual account name
• Don’t provide the password
• We suggest using a hash of the account name

let payment = SKPayment(product: product)
payment.applicationUsername = hash(yourCustomerAccountName)
SKPaymentQueue.default().add(payment)

Detecting Irregular Activity
Provide an account identifier

For applications with their own account management

Provide an opaque identifier for your user’s account
• Don’t send us the user’s Apple ID
• Don’t provide the actual account name
• Don’t provide the password
• We suggest using a hash of the account name

let payment = SKPayment(product: product)
payment.applicationUsername = hash(yourCustomerAccountName)
SKPaymentQueue.default().add(payment)

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

// Start Observing the Payment Queue

import UIKit
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 func application(application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {
 SKPaymentQueue.default().add(self)
 return true
 }

// Start Observing the Payment Queue

import UIKit
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 func application(application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {
 SKPaymentQueue.default().add(self)
 return true
 }

// Start Observing the Payment Queue

import UIKit
import StoreKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 func application(application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {
 SKPaymentQueue.default().add(self)
 return true
 }

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 case .deferred:
 // Allow the user to continue to use the app
 // It may be some time before the transaction is updated
 // Do not get stuck in a modal "Purchasing..." state!
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 case .deferred:
 // Allow the user to continue to use the app
 // It may be some time before the transaction is updated
 // Do not get stuck in a modal "Purchasing..." state!
 }
 }
}

// Handle SKPaymentQueueObserver Events

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:
 [SKPaymentTransaction]) {
 for transaction in transactions {
 switch transaction.transactionState {
 case .purchased:
 // Validate the purchase
 case .deferred:
 // Allow the user to continue to use the app
 // It may be some time before the transaction is updated
 // Do not get stuck in a modal "Purchasing..." state!
 }
 }
}

Testing Deferred Transactions

Testing Deferred Transactions

Create a mutable payment

Testing Deferred Transactions

Create a mutable payment

Set the simulatesAskToBuyInSandbox flag

Testing Deferred Transactions

Create a mutable payment

Set the simulatesAskToBuyInSandbox flag

let payment = SKMutablePayment(product: product)
payment.simulatesAskToBuyInSandbox = true
SKPaymentQueue.default().add(payment)

Handling Errors

Handling Errors

Not all errors are equal

Handling Errors

Not all errors are equal

Check the error code

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible
• Including asking for confirmation for purchase

The Receipt

The Receipt

Trusted record of app and in-app purchases

The Receipt

Trusted record of app and in-app purchases

Stored on device

The Receipt

Trusted record of app and in-app purchases

Stored on device

Issued by the App Store

The Receipt

Trusted record of app and in-app purchases

Stored on device

Issued by the App Store

Signed and verifiable

The Receipt

Trusted record of app and in-app purchases

Stored on device

Issued by the App Store

Signed and verifiable

For your app, on that device only

Receipt Validation

Receipt Validation

On-device validation
• Unlock features and content within the app

Receipt Validation

On-device validation
• Unlock features and content within the app

Server-to-server validation
• Restrict access to downloadable content
• Used often for subscriptions

Receipt Validation

On-device validation
• Unlock features and content within the app

Server-to-server validation
• Restrict access to downloadable content
• Used often for subscriptions

Advanced StoreKit Grand Ballroom A Thursday 1:50PM

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

Unlock Content

Unlock Content

Unlock functionality in your app

Unlock Content

Unlock functionality in your app

Download additional content

Downloading Content

Downloading Content

Apple-hosted content

Downloading Content

Apple-hosted content
• On-demand resources

Downloading Content

Apple-hosted content
• On-demand resources
• Hosted in-app purchase content

Downloading Content

Apple-hosted content
• On-demand resources
• Hosted in-app purchase content

Self-hosted content

Downloading Content

Apple-hosted content
• On-demand resources
• Hosted in-app purchase content

Self-hosted content
• Use background downloads with NSURLSession

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

Finish the Transaction

Finish the Transaction

Finish all transactions once content is unlocked
• If downloading hosted content, wait until after the download completes

Finish the Transaction

Finish all transactions once content is unlocked
• If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Finish the Transaction

Finish all transactions once content is unlocked
• If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Finish the Transaction

Finish all transactions once content is unlocked
• If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

Finish the Transaction

Finish all transactions once content is unlocked
• If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

SKPaymentQueue.default().finishTransaction(transaction)

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show
In-App UI

Request
Payment

Process
Transaction

Unlock
Content

Finish
Transaction

App Review

App Review

You must have a Restore button

App Review

You must have a Restore button

Restore and Purchase must be separate buttons

App Review

You must have a Restore button

Restore and Purchase must be separate buttons

Not just as a “backup” tool

App Review

You must have a Restore button

Restore and Purchase must be separate buttons

Not just as a “backup” tool
• Users with multiple devices

Restore Completed Transactions

Only restores transactions for
• Non-consumables
• Auto-renewable subscriptions

For consumables and non-renewing subscriptions
• You must persist the state!

Restore Completed Transactions

Restore Completed Transactions

SKPaymentQueue.default().restoreCompletedTransactions()

Restore Completed Transactions

Observe the queue

SKPaymentQueue.default().restoreCompletedTransactions()

// Additional callbacks in SKPaymentTransactionObserver
func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {}
func paymentQueue(_ queue: SKPaymentQueue,
 restoreCompletedTransactionsFailedWithError error: NSError) {}

Inspect the receipt and unlock content and features accordingly

Implementing In-App Purchases

Implementing In-App Purchases

Always observe the Payment Queue

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Display pricing using the product’s price locale

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Display pricing using the product’s price locale

Use the receipt to validate your purchases

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store

Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Allow the user to restore completed transactions

Ross LeBeau, App Store Engineer

•Promoting In-App Purchases

Promoting In-App Purchases

Promoting In-App Purchases

Discoverable

Promoting In-App Purchases

Discoverable
• App page

Promoting In-App Purchases

Discoverable
• App page
• Editorial features

Promoting In-App Purchases

Discoverable
• App page
• Editorial features
• Search results

Promoting In-App Purchases

Discoverable
• App page
• Editorial features
• Search results

Start purchase on the App Store

Implementation Overview

Implementation Overview

Required
• Set up in iTunes Connect
• Handle info from App Store

Implementation Overview

Required
• Set up in iTunes Connect
• Handle info from App Store

Optional
• Order and visibility

Implementation Overview

Required
• Set up in iTunes Connect
• Handle info from App Store

Optional
• Order and visibility

What’s New in iTunes Connect WWDC 2017

// Continuing a Transaction from the App Store

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
 forProduct product: SKProduct) -> Bool {
 return true
}

// Continuing a Transaction from the App Store

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
 forProduct product: SKProduct) -> Bool {
 return true
}

// Deferring or Stopping a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
 forProduct product: SKProduct) -> Bool {
 // Hold on to the payment
 return false
}

SKPaymentQueue.default().add(savedPayment)

// Deferring or Stopping a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
 forProduct product: SKProduct) -> Bool {
 // Hold on to the payment
 return false
}

SKPaymentQueue.default().add(savedPayment)

// Deferring or Stopping a Transaction

// MARK: - SKPaymentTransactionObserver

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment,
 forProduct product: SKProduct) -> Bool {
 // Hold on to the payment
 return false
}

SKPaymentQueue.default().add(savedPayment)

Testing Purchases

Protocol itms-services://

Parameters

"action" "purchaseIntent"

"bundleId" com.example.app

"productIdentifier" product_name

Testing Purchases

Protocol itms-services://

Parameters

"action" "purchaseIntent"

"bundleId" com.example.app

"productIdentifier" product_name

itms-services://?action=purchaseIntent&bundleId=com.example.app&productIdentifier=product_name

Order and Visibility

Order and Visibility

Defaults in iTunes Connect

Order and Visibility

Defaults in iTunes Connect

Override on device

Order and Visibility

Defaults in iTunes Connect

Override on device

Not synced

Visibility

Visibility

// Updating Visibility Override of a Promoted In-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Updating Visibility Override of a Promoted In-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Updating Visibility Override of a Promoted In-App Purchase

// Fetch Product Info for Pro Subscription

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Reading Visibility Override of a Promoted In-App Purchase

// Fetch Product Info for Hidden Beaches pack

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionVisibility(forProduct: hiddenBeaches,
 completionHandler: { (visibility: SKProductStorePromotionVisibility, error: Error?) in
 // visibility == .default
 })

// Reading Visibility Override of a Promoted In-App Purchase

// Fetch Product Info for Hidden Beaches pack

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionVisibility(forProduct: hiddenBeaches,
 completionHandler: { (visibility: SKProductStorePromotionVisibility, error: Error?) in
 // visibility == .default
 })

Order

Order

// Updating Order Override of Promoted In-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder(newProductsOrder,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Updating Order Override of Promoted In-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder(newProductsOrder,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Updating Order Override of Promoted In-App Purchases

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches

let storePromotionController = SKProductStorePromotionController.default()
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots]
storePromotionController.updateStorePromotionOrder(newProductsOrder,
 completionHandler: { (error: Error?) in
 // Complete
 })

// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder(completionHandler: {
 (products: [SKProduct], error: Error?) in
 // products == [hiddenBeaches, proSubscription, fishingHotSpots]
 })

// Reading Order Override of Promoted In-App Purchases

let storePromotionController = SKProductStorePromotionController.default()
storePromotionController.fetchStorePromotionOrder(completionHandler: {
 (products: [SKProduct], error: Error?) in
 // products == [hiddenBeaches, proSubscription, fishingHotSpots]
 })

Promoting In-App Purchases

Promoting In-App Purchases

Discoverable in App Store

Promoting In-App Purchases

Discoverable in App Store

Set up in iTunes Connect

Promoting In-App Purchases

Discoverable in App Store

Set up in iTunes Connect

Start purchase in App Store

Promoting In-App Purchases

Discoverable in App Store

Set up in iTunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Promoting In-App Purchases

Discoverable in App Store

Set up in iTunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Optional—order and visibility

Pete Hare, App Store Engineer

•Ratings, Reviews, and Responses

Ratings, Reviews, and Responses
What’s new

NEW

Reset your rating

Ratings, Reviews, and Responses
What’s new

NEW

Reset your rating

Respond to reviews

Ratings, Reviews, and Responses
What’s new

NEW

Reset your rating

Respond to reviews

Ask for ratings and reviews via SKStoreReviewController

Ratings, Reviews, and Responses
What’s new

NEW

Reset your rating

Respond to reviews

Ask for ratings and reviews via SKStoreReviewController

Deep link to write review in the App Store

Ratings, Reviews, and Responses
What’s new

NEW

Reset your rating

Respond to reviews

Ask for ratings and reviews via SKStoreReviewController

Deep link to write review in the App Store

Helpfulness and Report a Concern on iOS

Ratings, Reviews, and Responses
What’s new

NEW

Ratings, Reviews, and Responses
Responding to reviews

Average increase of 1.5 stars per review

Ratings, Reviews, and Responses
Responding to reviews

More information 
https://developer.apple.com/app-store/responding-to-reviews

Ratings, Reviews, and Responses
Responding to reviews

More information 
https://developer.apple.com/app-store/responding-to-reviews

What’s New in iTunes Connect WWDC 2017

Ratings, Reviews, and Responses
Receiving reviews

Prompt for review with SKStoreReviewController

Ratings, Reviews, and Responses
Receiving reviews

Prompt for review with SKStoreReviewController

Deep link to review in App Store

Ratings, Reviews, and Responses
Receiving reviews

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

Will be required for all modal rating/ 
review prompts

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

Will be required for all modal rating/ 
review prompts

Restrictions in place

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

Will be required for all modal rating/ 
review prompts

Restrictions in place
• Limited requests per device

NEW
Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

Will be required for all modal rating/ 
review prompts

Restrictions in place
• Limited requests per device
• Can be disabled by user in Settings

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Present as a prompt after a user action

Ratings, Reviews, and Responses
Asking for ratings and reviews with SKStoreReviewController

Present as a prompt after a user action

Do not present from a button
May not present any UI due to restrictions

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {
 SKStoreReviewController.requestReview()
}

func shouldPromptUser() -> Bool {
 // Local business rules
}

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {
 SKStoreReviewController.requestReview()
}

func shouldPromptUser() -> Bool {
 // Local business rules
}

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {
 SKStoreReviewController.requestReview()
}

func shouldPromptUser() -> Bool {
 // Local business rules
}

// Asking for Ratings and Reviews with SKStoreReviewController

if shouldPromptUser() {
 SKStoreReviewController.requestReview()
}

func shouldPromptUser() -> Bool {
 // Local business rules
}

Ratings, Reviews, and Responses
Deep link to write a review in App Store

NEW

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in iOS 10.3

NEW

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in iOS 10.3

Link to open your app in the App Store
• Presents compose review from app page

NEW

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Introduced in iOS 10.3

Link to open your app in the App Store
• Presents compose review from app page

User initiated actions
• Button in settings

NEW

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Use from an embedded button in your app
Such as a settings screen

Ratings, Reviews, and Responses
Deep link to write a review in App Store

Use from an embedded button in your app
Such as a settings screen

Do not use from an alert
Use SKStoreReviewController instead

Deep Link to Write Review

URL is formed using regular product URL with an anchor tag
https://itunes.apple.com/us/app/itunes-u/id490217893?action=write-review

For creating product URLs visit 
https://linkmaker.itunes.apple.com/

Ratings, Reviews, and Responses
Asking users for reviews

More information 
https://developer.apple.com/app-store/ratings-and-reviews/

Summary

Summary

How to implement in-app purchases

Summary

How to implement in-app purchases

Promote in-app purchases in the App Store

Summary

How to implement in-app purchases

Promote in-app purchases in the App Store

New App Store design

Summary

How to implement in-app purchases

Promote in-app purchases in the App Store

New App Store design

New opportunities to improve your ratings and reviews

More Information
https://developer.apple.com/wwdc17/303

Related Sessions

What’s New in iTunes Connect WWDC 2017

Introducing the New App Store WWDC 2017

Advanced StoreKit Grand Ballroom A Thursday 1:50PM

Labs

App Store and iTunes Connect Lab Technology Lab H Thu 12:00PM-1:50PM

StoreKit Lab Technology Lab E Thu 3:10PM-6:00PM

StoreKit Lab Technology Lab E Fri 1:50PM-4:00PM

