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Detailed subscription status information

Responding to reviews

Asking for ratings and reviews

NEW
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Load In-App Identifiers 
Options for storing the list of product identifiers

After setting up product identifiers in iTunes Connect

Baked into your app

let identifiers = ["com.myCompany.myApp.product1", 
    "com.myCompany.myApp.product2"]

Or fetch from your server

let identifiers = remoteIdentifiers()
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Up to the application

Can have a large effect on sales

https://developer.apple.com/in-app-purchase/
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In-App Purchase UI 
Formatting the product price

Do not perform currency conversion

let formatter = NumberFormatter() 
formatter.numberStyle = .currency 
formatter.locale = product.priceLocale // Not the device locale! 
let formattedString = formatter.string(from: product.price)
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Suspicious activity during payment process

johnnyappleseed@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

ServerServerApp 
Store

ServerServerYour 
Server

neverfoldsJim35
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// Start Observing the Payment Queue 

import UIKit 
import StoreKit 

@UIApplicationMain 
class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver { 

    func application(application: UIApplication, didFinishLaunchingWithOptions 
            launchOptions: [NSObject: AnyObject]?) -> Bool { 
        SKPaymentQueue.default().add(self) 
        return true 
    }
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Testing Deferred Transactions

Create a mutable payment

Set the simulatesAskToBuyInSandbox flag 

let payment = SKMutablePayment(product: product) 
payment.simulatesAskToBuyInSandbox = true 
SKPaymentQueue.default().add(payment)
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Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible
• Including asking for confirmation for purchase
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The Receipt

Trusted record of app and in-app purchases

Stored on device

Issued by the App Store

Signed and verifiable 

For your app, on that device only 
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Unlock functionality in your app 

Download additional content
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Downloading Content

Apple-hosted content
• On-demand resources
• Hosted in-app purchase content

Self-hosted content
• Use background downloads with NSURLSession
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Finish the Transaction

Finish all transactions once content is unlocked 
• If downloading hosted content, wait until after the download completes

Includes all auto-renewable subscription transactions

Otherwise, the payment will stay in the queue

Subscription billing retry depends on up-to-date information about transaction

SKPaymentQueue.default().finishTransaction(transaction)
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App Review

You must have a Restore button

Restore and Purchase must be separate buttons

Not just as a “backup” tool
• Users with multiple devices



Restore Completed Transactions

Only restores transactions for 
• Non-consumables 
• Auto-renewable subscriptions 

For consumables and non-renewing subscriptions 
• You must persist the state!
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Restore Completed Transactions

Observe the queue

SKPaymentQueue.default().restoreCompletedTransactions()

// Additional callbacks in SKPaymentTransactionObserver 
func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {} 
func paymentQueue(_ queue: SKPaymentQueue, 
    restoreCompletedTransactionsFailedWithError error: NSError) {}

Inspect the receipt and unlock content and features accordingly
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Implementing In-App Purchases

Always observe the Payment Queue

Fetch localized product information from the App Store 

Display pricing using the product’s price locale

Use the receipt to validate your purchases

Make the content available

Finish the transaction

Allow the user to restore completed transactions
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Promoting In-App Purchases

Discoverable
• App page
• Editorial features
• Search results

Start purchase on the App Store
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Required 
• Set up in iTunes Connect 
• Handle info from App Store

Optional 
• Order and visibility
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// MARK: - SKPaymentTransactionObserver 

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment, 
        forProduct product: SKProduct) -> Bool { 
    return true 
}
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// Deferring or Stopping a Transaction 

// MARK: - SKPaymentTransactionObserver 

func paymentQueue(_ queue: SKPaymentQueue, shouldAddStorePayment payment: SKPayment, 
        forProduct product: SKProduct) -> Bool { 
    // Hold on to the payment 
    return false 
} 

SKPaymentQueue.default().add(savedPayment)
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Testing Purchases

Protocol itms-services://

Parameters

"action" "purchaseIntent"

"bundleId" com.example.app

"productIdentifier" product_name

itms-services://?action=purchaseIntent&bundleId=com.example.app&productIdentifier=product_name
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Defaults in iTunes Connect

Override on device

Not synced
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// Updating Visibility Override of a Promoted In-App Purchase 

// Fetch Product Info for Pro Subscription 

let storePromotionController = SKProductStorePromotionController.default() 
storePromotionController.update(storePromotionVisibility: .hide, forProduct: proSubscription, 
    completionHandler: { (error: Error?) in 
        // Complete 
    }) 
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// Updating Order Override of Promoted In-App Purchases 

// Fetch Product Info for Pro Subscription, Fishing Hot Spots, and Hidden Beaches 

let storePromotionController = SKProductStorePromotionController.default() 
let newProductsOrder = [hiddenBeaches, proSubscription, fishingHotSpots] 
storePromotionController.updateStorePromotionOrder(newProductsOrder, 
    completionHandler: { (error: Error?) in 
        // Complete 
    }) 
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// Reading Order Override of Promoted In-App Purchases 

let storePromotionController = SKProductStorePromotionController.default() 
storePromotionController.fetchStorePromotionOrder(completionHandler: { 
    (products: [SKProduct], error: Error?) in 
        // products == [hiddenBeaches, proSubscription, fishingHotSpots] 
    })



// Reading Order Override of Promoted In-App Purchases 

let storePromotionController = SKProductStorePromotionController.default() 
storePromotionController.fetchStorePromotionOrder(completionHandler: { 
    (products: [SKProduct], error: Error?) in 
        // products == [hiddenBeaches, proSubscription, fishingHotSpots] 
    })
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Promoting In-App Purchases

Discoverable in App Store

Set up in iTunes Connect

Start purchase in App Store

Handle in app via SKPaymentTransactionObserver

Optional—order and visibility



Pete Hare, App Store Engineer
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Respond to reviews

Ask for ratings and reviews via SKStoreReviewController

Deep link to write review in the App Store

Helpfulness and Report a Concern on iOS

Ratings, Reviews, and Responses 
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NEW









Ratings, Reviews, and Responses 
Responding to reviews











Average increase of 1.5 stars per review
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NEW
Ratings, Reviews, and Responses 
Asking for ratings and reviews with SKStoreReviewController

Introduced in iOS 10.3

Quick way to request a rating/review

Will be required for all modal rating/ 
review prompts

Restrictions in place
• Limited requests per device
• Can be disabled by user in Settings
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Ratings, Reviews, and Responses 
Asking for ratings and reviews with SKStoreReviewController

Present as a prompt after a user action

Do not present from a button
May not present any UI due to restrictions



// Asking for Ratings and Reviews with SKStoreReviewController 

if shouldPromptUser() { 
  SKStoreReviewController.requestReview() 
} 

func shouldPromptUser() -> Bool { 
  // Local business rules 
}



// Asking for Ratings and Reviews with SKStoreReviewController 

if shouldPromptUser() { 
  SKStoreReviewController.requestReview() 
} 

func shouldPromptUser() -> Bool { 
  // Local business rules 
}



// Asking for Ratings and Reviews with SKStoreReviewController 

if shouldPromptUser() { 
  SKStoreReviewController.requestReview() 
} 

func shouldPromptUser() -> Bool { 
  // Local business rules 
}



// Asking for Ratings and Reviews with SKStoreReviewController 

if shouldPromptUser() { 
  SKStoreReviewController.requestReview() 
} 

func shouldPromptUser() -> Bool { 
  // Local business rules 
}
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Introduced in iOS 10.3

Link to open your app in the App Store 
• Presents compose review from app page

User initiated actions 
• Button in settings

NEW
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Ratings, Reviews, and Responses 
Deep link to write a review in App Store

Use from an embedded button in your app 
Such as a settings screen

Do not use from an alert
Use SKStoreReviewController instead



Deep Link to Write Review

URL is formed using regular product URL with an anchor tag 
https://itunes.apple.com/us/app/itunes-u/id490217893?action=write-review 

For creating product URLs visit 
https://linkmaker.itunes.apple.com/
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More information 
https://developer.apple.com/app-store/ratings-and-reviews/
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Summary

How to implement in-app purchases

Promote in-app purchases in the App Store

New App Store design

New opportunities to improve your ratings and reviews



More Information
https://developer.apple.com/wwdc17/303



Related Sessions

What’s New in iTunes Connect WWDC 2017

Introducing the New App Store WWDC 2017

Advanced StoreKit Grand Ballroom A Thursday 1:50PM



Labs

App Store and iTunes Connect Lab Technology Lab H Thu 12:00PM-1:50PM

StoreKit Lab Technology Lab E Thu 3:10PM-6:00PM

StoreKit Lab Technology Lab E Fri 1:50PM-4:00PM




