

http://developer.garmin.com/connect-iq/book/?utm_source=oreillybook&utm_medium=bookad&utm_campaign=ciqmktg2016

Brian Jepson

Wearable Programming for
the Active Lifestyle
Using Garmin Connect IQ

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97207-6

[LSI]

Wearable Programming for the Active Lifestyle
by Brian Jepson

Copyright © 2017 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson and Jeff Bleiel
Production Editor: Melanie Yarbrough
Copyeditor: Jasmine Kwityn
Proofreader: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2016: First Edition

Revision History for the First Edition
2016-11-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Wearable Pro‐
gramming for the Active Lifestyle, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Garmin, the Garmin logo, ANT, ANT+, fēnix, Forerunner, vívoactive, and quatix are
trademarks of Garmin Ltd. or its subsidiaries and are registered in one or more
countries, including the U.S. Connect IQ, Garmin Connect, vívohub, D2, and tempe
are trademarks of Garmin Ltd. or its subsidiaries.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

Preface. v

1. Big Data and µData. 1
The Garmin “Full Circle Experience” 2
From the Body to the Cloud 6
Garmin Health/Wellness 7

2. The Connect IQ Platform. 9
Designing for Different Watches 10
Connect IQ Tools and Features 11
Designing for Wearables 12

3. Getting Started with Connect IQ. 15
What You’ll Need 15
Install the SDK 16
Create a New Connect IQ Project 17
Run an App in the Simulator 19
Run an App on a Real Device 20
Exploring the App 21
A Tour of the Source Code 30

4. Projects. 33
Personal Data Tracking 33
Read Data from a Sensor 42
Working with an Authenticated Web Service 51

5. Our Wearable, Connected Future. 57

iii

Preface

As computing devices have gotten smaller and smaller, and as they
have gotten more interested in knowing things about you, they have
also become more intimate. A desktop computer that you control
with a keyboard and mouse doesn’t feel like an extension of you
most of the time (with a notable exception being when you’re lost in
an activity such as programming or gaming). A tablet feels an awful
lot like a book. Mobile phones get a little closer to you, but they still
have enough bulk to constantly remind you they are still there.

Wearable devices, however, can truly begin to feel like a part of you.
You might use them to tell time and receive notifications from your
mobile phone, but you also use them in a much more personal fash‐
ion. They can monitor your heart rate and count your steps, and
when they need your attention, they touch you gently by vibrating.

Balancing Comfort, Looks, and Ability
Over the years, we’ve attached some clunky-looking devices to our
wrists, our belts, and even our eyeglasses. Some smart jewelry can
hang from your neck or even ears. But when does a device cease to
be an appendage and start feeling like an extension of yourself? It’s
probably a device that you forget to take off when you go for a swim,
that you can wear to the top of a mountain and back down, and that
you can comfortably wear while sleeping.

A smartwatch works in all of those use cases. It’s the least obtrusive
thing that can possibly work. A few hours into your swim, hike, or
nap, and it’s an extension of you that’s always there.

v

A smartwatch can be the center of your personal area network. To
succeed at it, it’s got to not only be a seamless extension of your per‐
son, but it’s also got to have a design you want to look at continu‐
ously, and it’s got to do something, and do it well.

How Big, How Hungry?
Given this intimacy of the smartwatch, it’s no wonder that reviewers
and users alike fret over the short battery life that many devices
have. If you think of your wearable as nothing more than an exten‐
sion of your smartphone, maybe it’s not unreasonable for it to have a
charge that lasts one or two days. But if it’s an extension of you, you
need to be able to trust the device…wherever you are, whatever you
do, and whenever you need it.

For a device to be a constant companion, something that you can
take into the wild for a week or on a cross-country bike trip, you
need days of battery life. After all, you’re expecting your device to
observe and record not only your heart rate or step count but the
geographic points you travel over in your wanderings. Whatever
you do, you need the device and its accessories to last through your
activities, and then some.

It’s not all about the battery, but many other factors. If you’re assum‐
ing you’ll use the device outdoors, you need to be able to read its
screen outdoors. The device can’t be so big as to be clunky (and nei‐
ther can its peripherals). It needs to be easy to interact with, it needs
to look good, and it needs to stand up to the elements, slips, falls,
and impacts.

What Do You Want?
A wearable device becomes a trusted and natural part of our lives. A
good wearable will have features and behaviors that come from
human needs. Humans move around, engage in activities, and occa‐
sionally need to be reminded to not sit still. As a companion and
extension of us, the device needs to know what we are doing. Are we
sitting still or in motion? How fast are our hearts beating?

It needs to know these things, and it needs to know them 24/7. And
it needs to be connected. It’s one thing to gather this data and dis‐
play it. It’s another to allow users to connect their data to apps and
systems that are part of a larger health and wellness ecosystem. For

vi | Preface

all this to come together, developers like you will need to not only
understand how to develop for these devices, but how to develop for
low-power, resource-constrained scenarios. A device manufacturer
can set the stage with power-sipping devices, but app developers
need to stick to the game plan to keep from overtaxing the device’s
battery.

Connections
Aside from the question of what you expect a device to do, there is
also the matter of how it does it. A wearable can’t do everything, so
it needs to rely on devices around it. As a result, it needs to make
connections to other devices: a smartphone is a hub that connects
the wearable to the cloud.

But what will it say to the hub? It’s tempting to imagine a hub that’s
just a gateway, allowing the wearable device to make direct connec‐
tions over whatever network the hub is connected to. But that
assumes the wearable has a lot of memory and computational
power. Memory and computational power are relatively cheap, but
for any work they do, there is a corresponding power draw. Once
again, with a constraint comes an opportunity to define a better
interaction model.

There are a few key interactions that you’ll engage in when you con‐
nect to the world beyond your wrist:

Phone notifications
As much as possible, you will want your users to interact with
your apps directly through the wearable device. But there will be
times, such as when a user needs to provide credentials to con‐
nect a web app to your app, that you’ll need to direct the user’s
attention to his phone to complete a task.

Interacting with the Internet
A Garmin wearable can interact with web apps, typically
through an API. When this happens, interactions need to be
quick and brief. There’s no reason to pull down 16 kilobytes of
JSON when you only need a 16-byte string from it. Save mem‐
ory, save power.

Be part of the IoT
Users are surrounded by other smart devices, from sensors to
entertainment devices to smart homes. Through the use of

Preface | vii

APIs, and also through short-range sensor technology like
ANT+, your device can communicate with any IoT device that
exposes an API or offers the ability to connect wirelessly.

The Platforms
Power consumption is one key area where smart device platforms
show their subtle differences. One one end, the power-hungry end,
you’ve got Android Wear and Apple Watch, with battery life just
over a day. The Pebble smartwatches trade battery life (2 to 10 days
depending on model) for a slower CPU without really sacrificing
functionality. Garmin devices can run even longer—two to three
weeks (between 8 and 14 days with 24/7 heart rate monitoring).

What the Pebble and Garmin wearables lack are actually their
strengths. Because they choose reflective displays that are readable
in sunlight, they are usable where you probably use them most: out‐
doors. And although they don’t have CPUs as fast as the Apple
Watch or Android Wear devices, they get great battery life, and still
have enough built-in computational power to create a user experi‐
ence that works well on the small screen.

Of all the smartwatches on the market, Garmin devices have been
designed for the most extreme of conditions. An ultramarathoner
who needs to track activity for a 100 km footrace may expose the
device to varying weather conditions, needs the device to be reada‐
ble in bright sunlight, and needs it to stand up to 12 or more hours
of sweat and strain. And while the user and the elements are trying
to destroy it, the device needs to log position, speed, heart rate, and
maybe more…every second of those 12 hours.

Inventing the Future of Wearable Devices
In these modern times, where computers and mobile devices have
massive amounts of memory, computing power, and battery life,
wearables represent a multifold challenge. First, you need to work
within significant constraints in the face of modern user expecta‐
tions. Second, you’re going to find yourself at the leading edge of a
new kind of development; with that comes the opportunity to blaze
a trail, but with the challenge of finding your own way. Finally,
you’re inventing the future; as exciting as that is, it does come with a
great responsibility to get it right.

viii | Preface

With all the wearable platforms out there, why Garmin devices?
First of all, they are built to stand up to grueling conditions, have
long battery lives, and there are millions of devices on the wrists of
millions of dedicated, active fans of the Garmin brand.

In this book, you’ll see some of the many things you can do with the
Garmin Connect IQ platform. The device APIs let you program to
the various capabilities of the wearable device. ANT and ANT+
wireless communication expands your solutions to include external
sensors—from off-the-shelf to something you create. And with sup‐
port for authenticating to web services in Connect IQ, your data
won’t be trapped on the device.

Acknowledgments
When I first began working on this book, I was in way over my
head. Fortunately, I had plenty of curiosity and several immensely
helpful guides to help me on my way: a big thanks to Josh Gunkel,
Nick Kral, and Nate Ahuna for helping me understand the Garmin
device family as well as help me find my way around the Connect IQ
SDK. Thanks also to Sebastian Barnowski and Harrison Chin for
helping me learn more about ANT and ANT+, and to Laura
McClernon for helping me understand the Garmin wellness pro‐
grams.

Preface | ix

CHAPTER 1

Big Data and µData

Years ago, you could use a conventional database system to store,
process, and display pretty much any kind of data you might come
across. These days, thanks to ever-present sensors and the ability to
obtain large amounts of information in real time, our data has got‐
ten too big, and it changes shape almost as fast as it accumulates.

Whether it’s data from high-speed stock market trades or informa‐
tion streaming in from a heart rate monitor, it’s big and hard to con‐
trol. Big data has emerged as the catch-all term for both the data
itself and also for the tools and practices we use to get it under con‐
trol.

These tools and practices give us a better understanding of the data
through more efficient and more enlightening analysis. Applied to
financial data, it might make some of us richer. But applied to health
and fitness, we can use big data techniques to help live longer,
healthier lives.

The quantified self movement uses technology to capture data about
as many aspects of human life as can be measured. Even a single
individual can generate an incredible amount of data, depending on
what you’re monitoring. Every dimension you add—heart rate,
blood pressure, blood oxygen level—gets projected over time, so if
you’re monitoring 24/7 and sampling every second, the amount of
data gets huge.

1

Armed with the right devices and software, you can measure your‐
self, gain insights that would not be otherwise possible, and make
your life better.

The Garmin “Full Circle Experience”
The Garmin “Full Circle Experience” (Figure 1-1) defines all the
parts of its ecosystem that work together to create one experience
that is wholly driven by a user’s fitness and wellness data stream.

Figure 1-1. Garmin’s Full Circle Experience

Let’s briefly discuss each part of it:

Activity
At the bottom of the circle, you can see the user engaged in an
activity. This is where it begins. The data that the wearable
measures and collects is all tied to whatever activity the user is
engaged in at that moment. Your job as a developer is to orga‐
nize that information in a way that makes sense for a given
activity, and bring it to the user in a relevant way.

Out of the box, a Garmin device may include support for many
activities: running, cycling, walking, swimming, golfing, rowing,
stand-up paddleboarding, skiing, and much more.

2 | Chapter 1: Big Data and µData

Custom Data
Every activity that your device is capable of tracking has data
fields associated with it. For example, there are several data
fields associated with the heart rate monitor: current heart rate,
average heart rate, heart rate zone (1-5, with zones based on
user profile factors such as age), and others. These fields can be
displayed on an activity screen on your device, but they can also
be exported to applications and APIs in the FIT format.

As a developer, you can add your own custom data to this expe‐
rience with Connect IQ data fields. For example, the Strava
social network for athletes has its own “Strava Live Suffer
Score,” a custom data field that analyzes your workout data to
tell you how hard you’re trying.

ANT Ecosystem
When the user starts an activity, the device begins recording
data. That data can come from an onboard sensor, such as a
built-in heart rate sensor, or from a wireless sensor the user is
wearing (or has attached to a bike or exercise equipment).

Garmin uses the ANT+ protocol to communicate with external
devices. ANT+ is a wireless technology that’s designed for trans‐
mitting sensor data for physical activities or other health moni‐
toring. You can mix and match any ANT+ devices, provided
that they both support the same activities. If you’ve got a tem‐
perature monitor, and your wearable or handheld supports the
temperature monitoring activity, the two can talk to each other.

ANT is a low-power wireless protocol that defines
how devices communicate with one another.
ANT+ is a higher-level protocol built on top of
ANT that defines a variety of device profiles (such
as heart rate monitor). While ANT is a general
wireless networking protocol, ANT+ defines the
specific communication format (which channel
configuration to use, how to structure data) for
each specific type of device. This means that any
ANT+ enabled device that is capable of talking to
an ANT+ enabled heart rate monitor can, indeed,
talk to any ANT+ enabled heart rate monitor
regardless of the device manufacturer.

The Garmin “Full Circle Experience” | 3

https://www.strava.com
https://www.strava.com

Custom Device Apps
This is where you get to interact directly with the users. A cus‐
tom device app lets you display information, capture data, and
get input directly from the user.

Your custom apps can offer up activities that the user can start,
stop, and record. You can also interact with companion phone
apps and web services. You’ll use the Connect IQ SDK and
developer tools to build these apps, which I discuss in Chap‐
ter 3.

Custom Tracking
The FIT (Flexible and Interoperable Data Transfer) format is a
binary file format that tracks the values of fitness sensors along
time and space. It includes your GPS tracks, the time at which
each point on the track was sampled, and various data fields of
interest along the way. For example, a biking activity would
track heart rate, speed, and distance traveled at each point.

In addition to creating your own apps to record activities, and
creating your own data fields to represent data that you collect,
you can also record your own tracking data into the FIT format
using FIT developer fields.

If you’re planning on doing any integrations with the Garmin
Connect API, you’ll want to check out the FIT SDK.

Data APIs
In order to make things happen beyond the confines of your
device, you’re going to need to turn to APIs to make this possi‐
ble. Garmin has its own APIs, the Garmin Connect API and the
Garmin Wellness API (see Table 1-1). But through the power of
OAuth, which allows apps and services to authorize access to
one another, you can authenticate against a well-known author‐
ity such as Google, Facebook, or Twitter.

Before you can move data through an API, you need to know
where it comes from. Here’s how data flows through the system
before it’s able to reach the outside world: first, the device
records the data. Now, you could just export the data as a FIT
file, but where’s the fun in that? The next thing that happens is
that the data gets synced into Garmin Connect (often through
the Garmin Connect app running on the user’s phone). Once it’s

4 | Chapter 1: Big Data and µData

https://www.thisisant.com/resources/fit
http://bit.ly/2enflsJ
http://bit.ly/2enfV9Y

in Garmin Connect, developers can connect the data and create
experiences around it.

Table 1-1. Feature comparison between Connect API and Wellness
API

Feature Connect API Wellness API
All Day Step Count Y

All Day Calorie Count Y

All Day Distance Y

Sleep Duration Y

All Day Heart Rate Y

Index Scale Information Y

Device ID Y Y

Start Time of Monitoring Period Y Y

Activity Type Many Many

Duration Y Y

Active Seconds Y Y

Steps Y Y

Distance Y Y

Calories Y Y

Intensity Y Y

METs Y Y

Heart Rate Y Y

Speed Y

Pace Y

Cadence Y

Power Y

GPS Y

Extended Community
The full circle is not closed. In addition to extending out into
APIs, you can also create experiences that help build communi‐
ties around workouts. Users can share their data with others,
take part in challenges, and reinforce other users’ goals.

The path from a user’s body into an API is well defined in the Gar‐
min ecosystem. The full circle experience doesn’t end with the API
or with the extended community. The circle originates with the user,

The Garmin “Full Circle Experience” | 5

but it also returns there in the form of notifications, visualizations,
sharing, and application experiences.

ANT versus BLE?
ANT and Bluetooth Low Energy (BLE) may seem to be competing
standards, but they each have their strengths in different applica‐
tions. In ANT, each node has equal capabilities, whereas in BLE, the
networks are asymmetric, with a hub-based approach (often with
your phone or computer at the center).

Because ANT is a symmetric model, the requirements for a net‐
work are simplified. You can have multiple peers with relatively
similar and low computing power requirements, while BLE
requires a hub device with significant computational power.

BLE uses a star networking model with a hub/master device at the
center, which coordinates each of the other devices on that net‐
work. ANT is able to accommodate that model, but also includes
mesh networking. This means that ANT is able to scale to allow
more sensors to be used at once, but it also allows sensors to talk to
one another directly, without needing to communicate with the hub
first.

While BLE theoretically has no limit on the number of devices that
can participate in a network, there are implementation-specific lim‐
itations. For example, Android 4.4 is limited to 7 simultaneous con‐
nections, and 5.0 allows you to go up to 15.

While there are many overlapping use cases between BLE and ANT,
ANT is particularly suited to fitness and health tracking. So if you
wanted to create a solution where a single device was aggregating
heart rate sensor data from multiple people (a baseball team or the
crew of your starship), ANT would be the natural choice.

From the Body to the Cloud
The Garmin Connect API allows you to create systems that take in
activity data from end users, and build on that data. For example,
you could create a system that lets sports teams track the perfor‐
mance of the team as a whole by analyzing sensor data aggregated
from individual players. You can also use the Garmin Connect API

6 | Chapter 1: Big Data and µData

to integrate with analysis tools, social media, or games. Examples of
this are Strava and TrainingPeaks.

It’s a cloud system for workout data. Access to an individual user’s
feeds are managed by OAuth, so users are in control of what data is
available to a system you create, and they can revoke that access if
they want to.

Garmin Health/Wellness
More and more, employers are correlating employee health to
work–life balance, happiness, decreased healthcare costs, and
improvements in productivity. Garmin provides a wellness program
based on activity tracking from its fitness devices. This program
allows employers to set specific fitness goals for their employees,
measure them, and reward employees who reach their goals.

Through the Garmin Wellness API, which is available to approved
developers, you can roll your own wellness program and take in
data from Garmin devices. The API gives you full access to data
(though it does require opt-in from employees) and the ability to
build wellness solutions for in-house use, or as part of a product
offering you create.

In addition to the API, there are Garmin partners you can work
with (for example, Validic) who provide integration between activity
trackers and your application, wearable device, or in-house systems.

With the Wellness API, Garmin provides access to fitness and activ‐
ity data in the form of data exports that you can bring into your
wellness solutions. Garmin’s wellness solutions also offer hardware
that makes it easier for employees to share their data. The vívohub
can download data from users who have opted in when they walk by
the device, avoiding the need for them to pair their device with an
app to upload data to Garmin. To get started, check out Garmin’s
developer programs, where you will find all you need to get on your
way.

In Chapter 2, we’ll talk about the tools, design principles, and key
platform features you will use as you create your own solutions in
the Connect IQ ecosystem.

Garmin Health/Wellness | 7

http://www.strava.com
https://www.trainingpeaks.com
http://bit.ly/2ena18N
http://developer.garmin.com
http://developer.garmin.com

CHAPTER 2

The Connect IQ Platform

Connect IQ is a platform for third-party apps that run on Garmin
devices. If you’re developing a system that runs on the wearable
device, either working with existing data fields or talking to an
entirely new accessory that you are developing, you’ll start with
Connect IQ. There are several different things you can create with
Connect IQ:

Watch faces
These aren’t just a pretty picture to look at, but they can be that,
too. You can create custom watch faces for your company or
organization. But you can also incorporate data into a watch
face, and display progress toward specific goals the user has set.

Data fields
As described in Chapter 1, these are data points that can be
incorporated elsewhere into the Connect IQ platform full circle.
A data field can come from a sensor accessory that you manu‐
facture, or could be derived from other data fields.

Widgets
These are mini apps that appear as users scroll through the car‐
ousel of widgets installed on their device. Widgets provide at-a-
glance information but can also communicate with phone apps
and web services, and also can pull in activity, location, and sen‐
sor data.

9

Device apps
These are a full-blown interactive experience for the user. They
can be apps that start and stop activity tracking, or interactive
apps for collecting, viewing, or manipulating information the
user is interested in.

Garmin follows what it describes as a “purpose-built device strat‐
egy” where the company creates devices specifically designed to
enable active lifestyles of people around the world. This includes a
wide range of wearables, bike computers, and handhelds. For a com‐
plete list of the compatible devices, go to the Garmin Developer
page. For this book, I will focus on Garmin wearables.

Designing for Different Watches
Garmin watches come in different shapes and sizes, and are built to
different purposes.

For example, there are round watches such as the fēnix 3, and semi-
round watches (circle with flat top and bottom) like the Forerunner
230. There are square watches like the vívoactive and Forerunner
920XT. You’ll be able to define a different layout for each type of
watch.

There are devices built for runners: the Forerunner 235 is great for
beginners, while the 735XT is built for elite runners. There are
luxury watches like the fēnix Chronos, marine watches like the
quatix, and watches for aviators like the D2. And the vívoactive HR
is made for an active person who might not be preparing for a big
race.

What this means for you, as the developer, is that each device has
different capabilities and different constraints. For example, the
vívoactive HR has a built-in, wrist-based heart rate sensor, but the
quatix 3 does not. This doesn’t mean you can’t run an app that
requires a heart rate sensor on the quatix 3, but the user would have
to buy a heart rate sensor with ANT+ technology to be able to use
your app.

On the flip side, the quatix 3 has a barometric altimeter for precise
measurement, while the vívoactive HR can obtain altitude only
through its GPS. So while both can provide the same data, they
obtain them in a different way and have varying degrees of accuracy.

10 | Chapter 2: The Connect IQ Platform

http://bit.ly/2enaPuu
http://bit.ly/2enaPuu

Understanding the variety of devices and their constraints will help
you rise up to one of the big challenges in wearable design: how to
create an app that works great on a lot of different devices. As you’ll
see in Chapter 3, the Connect IQ SDK provides abstractions for the
platform’s features, making things easier for you as a developer. For
example, you don’t need to know whether a heart rate sensor is built
into the device or connected wirelessly via ANT+ technology.

Connect IQ Tools and Features
Connect IQ allows you to build several kinds of app types, which I
introduced at the start of this chapter: watch faces, data fields, widg‐
ets, and device apps.

There are a lot of features you can take advantage of in these apps:

Graphics
You can draw images on screen, include bitmaps, use fonts, and
also embed graphs with data based on data fields.

Sensors
You can access any sensor built into your watch, connect to one
of the many ANT+ sensors, or even use a generic radio channel
for simple communication scenarios.

Data recording
You can capture, record, display, and share data in the FIT for‐
mat.

Connectivity
You’ll be able to communicate with a mobile phone, which can
act as your gateway to the Internet. Through this gateway, you
can also connect to authenticated web services using OAuth to
securely identify which services have access to your data and
what they can do with it.

Phone Not Required
Although a phone is really useful for Connect IQ, it’s not necessary.
There are still ways to upload device data using a USB connection
to your computer. But a smartphone makes a great complement to
devices that run the Connect IQ platform. The Garmin Connect
mobile app is available on iOS, Android, and Windows phones.

Connect IQ Tools and Features | 11

Use device APIs
Connect IQ includes APIs for the user interface, calendar, GPS
and other sensors, connectivity to mobile phones and wireless
sensors, and local storage for storing information when your
app isn’t actively running.

App Store
When you’re ready to publish your app for the world to use, you
can publish it to the Connect IQ App Store. The approval pro‐
cess generally goes quickly. You can browse the app store and
see what other developers just like you have innovated with the
Connect IQ platform.

You can also download an app directly to your own device
without needing to go through the app store. This is called side
loading, and you’ll learn how to do it in “Run an App on a Real
Device” on page 20.

Designing for Wearables
A wearable device is not a phone. Its screen is a small fraction of the
size of a phone; its CPU and battery won’t stand up to heavy-duty
computation. As a result, you need to change the way you think
about app development. Here are some best practices for wearable
app design:

You’ve got seconds of interaction
Don’t take a minute to explain what could be conveyed in a sec‐
ond. A bicyclist cannot safely ride while fiddling with a device;
your app should consume no more time than looking in the
rearview mirror.

Technology must be invisible
A smartphone interrupts and demands your attention. A weara‐
ble, when it does its job right, augments its wearer. It must feel
like a seamless extension of the self.

Glance-ability
With only seconds of interaction, your app needs to be glance-
able, just like a rearview mirror. If a bicyclist needs to know the
temperature, time, or her heart rate, that information needs to
be communicated in a way that can be absorbed instantly.

12 | Chapter 2: The Connect IQ Platform

http://apps.garmin.com

Contextual
A truly smart app will surface the information that the user
needs at a given moment, and only that information. Sure
you’ve got buttons, and maybe a touchscreen. But don’t make
the user hunt for information. Use what you know about the
user to make smart decisions about what to show. Is the user
hurtling down a road at 20 miles per hour? Maybe you should
bump up the font size.

Limited navigation and interaction
Even with a touchscreen, even with buttons, you should be
sparing in how much navigation and interaction you demand of
your users. It makes sense to swipe to switch view modes, or to
tap to start and stop an activity recording. But you shouldn’t
make your users crawl through menu after menu to make some‐
thing happen.

There are two common varieties of use cases: designing for an activ‐
ity and designing for all-day needs. A gym workout app, where the
app is running while the user is involved in a strenuous activity, can’t
demand too much interactivity. You might tap the screen at the start
of the workout. Once your workout begins, your app should record
it, but also display important metrics, perhaps heart rate and elapsed
time, during the workout.

On the other hand, an all-day app like a weather forecast is going to
have different behaviors. That kind of app has the freedom to be a
little more complex. It will connect to the network, it may present a
top-level user interface with some basic information, but require
user interaction to drill down. How you apply these practices will
vary depending on your use case.

Though Connect IQ is full of powerful tools for the hacker in all of
us to tinker with, there are opportunities for real business value by
tying into the Garmin ecosystem and leveraging the Connect IQ
platform:

Exposure
With millions of devices around the world, you have the poten‐
tial to get your app in front of users in a big way.

Engagement
Connect IQ puts powerful tools into your hands so you don’t
have to create your own toolkit. Maybe it’s a powerful, durable

Designing for Wearables | 13

screen to display your data, or a source for sensor data for your
solution. There are lots of ways you can extend and enhance
your solution.

Drive hardware sales
Sensors and accessory devices are a key component to the
power of the Garmin ecosystem. Through Connect IQ, you
have many tools to connect your device to Garmin and raise
awareness of your device.

Generate revenue
The Connect IQ platform and its tools are built for guiding your
users through your existing business models. Premium mem‐
berships, in-app purchases, and other models can all be activa‐
ted through connectivity. Tools like the Popupwebpage API,
where you can initiate a message on the phone to open a web
browser, let you guide the user to “learn more,” set up an
account, and otherwise engage with your services and brand.

In Chapter 3, you’ll learn how to get started developing simple apps
with Connect IQ. In Chapter 4, you’ll see how you can create apps
that go beyond the confines of the wearable device, and interact with
sensors and the cloud.

14 | Chapter 2: The Connect IQ Platform

CHAPTER 3

Getting Started with Connect IQ

It’s time to learn how to build an app. The Connect IQ SDK lets you
write code for Garmin wearables with a minimum of fuss and few
lines of code. With starting templates for four kinds of apps, plenty
of sample code, and a programming language (Monkey C) that is
similar to Java, JavaScript, PHP, Ruby, and Python, you’ll be up and
running quickly. You’ll need to configure some software first, and
(optionally) get your hands on some hardware. You can download
the free SDK from the Garmin website.

What You’ll Need
Garmin wearable

This is optional. The Connect IQ SDK includes a simulator that
can run any code you develop. However, there’s no substitute for
testing on a real device. You can find a list of compatible devices
at the Garmin Developer site.

ANT+ connectivity
In Chapter 4, you’ll learn how to go beyond this chapter’s simple
example. One of the projects shows how a Garmin wearable can
connect to an external sensor using the ANT+ wireless proto‐
col.

If you don’t have a compatible device with Connect IQ that sup‐
ports the Temperature profile, you’ll need to run the app in the
simulator with a Garmin ANT+ USB adapter (Garmin part

15

http://bit.ly/2enfOeI
http://bit.ly/2enaPuu

number 010-01058-00, available from a variety of resellers
including Garmin, Walmart, and Amazon).

The temperature sensor you’ll use is the Garmin tempe sensor
(part number 010-11092-30).

Computer
The Connect IQ SDK will run on a Windows or Mac computer.

You’ll need one USB 2.0 or 3.0 port. If you are running code on
a Garmin wearable, you’ll use USB to transfer your programs to
the device. If you are running the ANT+ project in the simula‐
tor, you’ll need to connect the ANT+ USB adapter.

Install the SDK
To get up and running, check out the Getting Started guide, which
includes links for the Connect IQ SDK. Follow those instructions,
installing the SDK and the Eclipse IDE as directed in that guide.

Here are a few things to know about working with Eclipse:

Workspaces
The first time you run it, Eclipse will ask you to choose a work‐
space location (where all your project should be stored). It will
default to a directory named workspace in your home directory.
If you don’t expect to be partitioning your projects into multiple
workspaces, you can select the box labeled “Use this as a default
and do not ask again.” Until you check that box, Eclipse will ask
you to choose your workspace each time you start it.

Plug-in security warnings
When you install the plug-in, you may receive a warning that
you’re installing software that contains content that hasn’t been
signed with a security certificate. You’ll need to allow this in
order to complete installing the plug-in.

What to do when your window layout gets messed up
At one point in the installation instructions, you’ll be told to
enable the Connect IQ perspective, which includes many useful
settings and windows, such as the Project Explorer. If you close
the Project Explorer, there are a couple of ways to get it back.
One is to choose Window→Show View→Other, which brings
up the Show View dialog. Choose Project Explorer under the
Other option and click OK. You can also choose Window→Per‐

16 | Chapter 3: Getting Started with Connect IQ

http://bit.ly/2famzy5

spective→Reset Perspective, which gives you the option to reset
the Connect IQ perspective to its defaults.

Create a New Connect IQ Project
With Eclipse and the Garmin Connect IQ SDK installed and config‐
ured, you’re ready to create your first project. This is where you’ll
start when you want to create a new project.

1. In Eclipse, select File→New→Connect IQ Project. A window
will appear asking you to choose a name. Give your project a
name (for this tutorial, name it “MyFirstApp”), then click Next.

2. Next, you’ll be prompted to choose the project type, minimum
SDK version, and target platforms. Choose Watch App, version
1.2.x, Square Watch, and Tall Watch, as shown in Figure 3-1. If
you own a Connect IQ device, choose it here as well. That way,
you’ll be able to run the app on your watch later (the Square
Watch and Round Watch targets will only work in the simula‐
tor).
Click Next (don’t click Finish yet).

There are several other project types available to
you, including Watch Face, Data Field, and
Widget. For an overview of each option, see the
Garmin Developer site.

Create a New Connect IQ Project | 17

http://bit.ly/2faoFxR

Figure 3-1. Choose these options for your first project

3. The next screen that appears doesn’t give you any options aside
from Simple (the type of the app). Click Next.

4. This page lets you specify which languages to support. Choose
the language(s) you intend to support, then click Finish.

If you don’t see your project appear, close the
Eclipse Welcome tab.

5. Now you need to set up a Run Configuration for your project,
which configures how it appears when you test it. Click
Run→Run Configurations, select Connect IQ App, then click
the New Launch Configuration toolbar button just above the list
of options.

6. Give your configuration a name (such as “MyFirstApp_Config‐
uration”). Select your project from the list of projects and
choose Square Watch for the target device type. Next, click
Apply, then click Close.

18 | Chapter 3: Getting Started with Connect IQ

As you create more apps, you’ll create new Run Configurations
for them, so this list will get bigger over time.

Run an App in the Simulator
Now you’re ready to run this bare-bones app in the simulator. Each
time you want to run an app in the simulator, you need to follow
these steps:

1. Click the Connect IQ menu, then choose Start Simulator, and
wait for the simulator to start.

On Windows, you may get a prompt from Win‐
dows Firewall asking what kind of network access
to give to the simulator. Choosing access on Pri‐
vate Networks should be fine, unless you plan to
develop and test your app while connected to an
untrusted network (such as at a coffee shop), in
which case you should also select Public Net‐
works. Click Allow Access.
On macOS, you may get a warning that the Con‐
nectIQ app was prevented from running because
it is from an unknown developer. If you see this,
go to the Finder, navigate to the bin subdirectory
of the Connect IQ SDK, right-click on the Con‐
nectIQ app, and click Open. macOS will still warn
you, but it will let you run it. The next time you
try to run the simulator, you won’t get the error
message.

2. Finally, return to Eclipse, click the Run menu, and select Run
Configurations. Select the configuration you created earlier, and
click Run, as shown in Figure 3-2.

Run an App in the Simulator | 19

Figure 3-2. Running your first app

Run an App on a Real Device
You can also side load your app onto a real device. To do this:

1. Plug your device into your computer over USB.
2. Click Connect IQ→Build Project for Device. In the wizard dia‐

log that appears, choose the name of the project, which device
to build for, and where to put the compiled program (it must be
in the GARMIN/APPS folder of your device). The signing key
will default to the signing key you created when you configured
the SDK (see “Install the SDK” on page 16).

3. The wizard should look like Figure 3-3. Click Finish. The wiz‐
ard won’t close by itself, so you’ll need to close it.

20 | Chapter 3: Getting Started with Connect IQ

Figure 3-3. Building for a real device

If you don’t see your device type listed, right-click on
your project in Project Explorer, choose Properties,
and select Connect IQ. This will open up the Project
Details options you saw earlier in “Create a New
Connect IQ Project” on page 17 where you can select
additional target platforms.

Disconnect your Garmin device from your computer (if you’re on a
Mac, you should eject the drive before you unplug it), and go to the
list of programs on your device. Find your app (in this case,
MyFirstApp), and run it.

Exploring the App
Let’s take a look at this sample app. If you ran it in the simulator, it
will look and work great. Figure 3-4 shows how it looks in the
square watch simulator. You can click the menu button (third icon
from the left in the image) and it will pop up a two-item menu.

Exploring the App | 21

Figure 3-4. Running the sample watch app in the simulator

But, if you were to run this on a watch with a smaller screen, you
might have a problem. Figure 3-5 shows how the app looks in the
simulator when it’s configured to behave like the vívoactive HR GPS
smartwatch.

22 | Chapter 3: Getting Started with Connect IQ

Figure 3-5. The sample app on the vívoactive HR

Configure the App for a New Device
To run the app in the simulator as shown in Figure 3-5, you need to
configure it for the vívoactive HR device and also add a new Run
Configuration:

1. In Project Explorer, right-click on MyFirstApp and choose
Properties. Choose Connect IQ from the list on the left, and
then check the box for vívoactive HR under Target Platforms.
Click OK.

2. Next, click Run→Run Configurations. Make sure Connect IQ
App is selected in the list of configurations, then click the New
Launch Configuration icon above the list of configurations.

Exploring the App | 23

3. Name the configuration “MyFirstApp_vivoactiveHR”, select
MyFirstApp under Choose a Project, then choose vívoactive HR
under Target Device. Click Apply, then click Run.

From here on out, you can run it under this configuration by choos‐
ing Run→Run Configurations, selecting MyFirstApp_vivoactiveHR,
and clicking Run. It should look just like Figure 3-5.

You can leave the simulator running when you’re done
checking it out. The next time you run an app in the
simulator, it will stop whatever app you’re running and
start the new one. This means you won’t have to wait
for the simulator to launch each time.

How the Source Code Is Organized
Before I show you how to modify the app so it looks great on the
vívoactive HR, I want to show you around all the files in the app.

First, locate MyFirstApp in Project Explorer. Expand the folder view
so you can see all the folders and all the content in them. If you’re on
Windows with a numeric keypad, you can press the * key on the
numeric keypad to expand all the folders. On Mac, Alt-Right Arrow
will do the same thing. Figure 3-6 shows Project Explorer with
everything expanded, providing an overview of what you’ll see in
the MyFirstApp project.

Your first question may well be, where did all this stuff come from?
When you selected the Watch App project type, this instructed
Eclipse to copy in all these files from a template. So, every time you
create a new app and choose Watch App, you’ll find all the same files
here.

24 | Chapter 3: Getting Started with Connect IQ

Figure 3-6. All the files from the Watch App template

There are four top-level folders under you app, and one file:

bin
This is where all the compiled versions of your app go. Com‐
piled apps have the extension prg, and this is what gets copied to
your device when you run it on a real device.

Exploring the App | 25

resources
This is a collection of XML files that define the appearance of
elements on the screen, the text of buttons and labels, and other
user interface elements.

resources-eng
This is a localized resources folder. If you wanted to override
any elements in resources for a specific language, you’d put cus‐
tomized versions of the resource XML files here. Because you’ve
configured this app for only one language (English), and
because all the English-language resources are in the resources
folder, you don’t need to do anything with this folder.

source
This is where all the Monkey C sources files reside.

manifest.xml
This file contains all the configuration details specific to your
app.

Fix the Font Size
Your first task, fixing the font, will take you to the resources folder.
You could simply edit the layout.xml file and use a smaller font than
the default, but that would look too small on a square watch.
Instead, you’ll create a separate layout that only gets used when on a
device with the same screen size as the vívoactive HR (148×205 pix‐
els).

You can download this and other sample code from
Garmin’s GitHub repo.

1. Right-click on MyFirstApp, and click New→Folder. In the win‐
dow that pops up, make sure that the parent folder is MyFirst‐
App. Give it the name resources-rectangle-148x205 and click
Finish. The resources folders are also used for specific device
layouts and will be discussed later in more depth.

26 | Chapter 3: Getting Started with Connect IQ

http://bit.ly/2engHDU

It is essential that you name it exactly as shown. In
order to override a resource, you need to use the
name resources, add a hyphen, and follow it with
one of the supported qualifiers—in this case,
resources-rectangle-148x205. The Resource Com‐
piler Guide has more details.

2. Under the original resources folder, right-click layouts, then
choose Copy. Then, right-click the resources-rectangle-148x205
folder, and choose Paste.

3. Expand the resources-rectangle-148x205 folder and its child lay‐
outs folder. Double-click layout.xml to open it in the editor win‐
dow.

4. In the editor window, expand the node named label, then right-
click it and select Add Attribute→New Attribute. Give it the
name font, and the value Gfx.FONT_TINY and click OK.

5. Expand the node named bitmap, then edit the filename field
and change it from ../drawables/monkey.png to ../../resources/
drawables/monkey.png. This will let you use the monkey.png
image from the resources folder without needing to copy it into
resources-rectangle-148x205.

6. Choose File→Save to save the layout.xml file.

Your project should now look like Figure 3-7.

Exploring the App | 27

http://bit.ly/2farlvz
http://bit.ly/2farlvz

Figure 3-7. The project with the rectangular 148x205 layout added

Now it’s time to see if it worked. First, click Run→Run Configura‐
tions, choose the MyFirstApp_Configuration, which uses the Square
Watch as its target device, and click Run. The font should still be
nice and big. Next, run it with the MyFirstApp_vivoactiveHR con‐
figuration, and the text should now fit on the screen as shown in
Figure 3-8.

28 | Chapter 3: Getting Started with Connect IQ

Figure 3-8. The app with smaller text on the vívoactive HR

Menu Button?
This is a lot better. However, there’s now the matter of the prompt
“Click the menu button.” The vívoactive HR has no menu button.
Instead of using a menu button, you long-press on the button on the
right. Let’s change that prompt, “Click the menu button.” To change
it, you need to add another resource to the resources-
rectangle-148x205 folder:

1. Right-click the resources-rectangle-148x205 folder, and choose
New→Folder. Name this folder strings and click Finish.

Exploring the App | 29

2. Right-click the newly added strings folder and choose
New→File. Name the new file strings.xml and click Finish. The
file will open in the editor.

3. Right-click in the editor window, and choose Add Child→New
Element. Name that element “strings” and click OK.

4. Right-click on the new “strings” element, and choose Add
Child→New Element. Name that element “string” and click OK.

5. Right-click on the new “string” element, choose Add
Attribute→New Attribute, and name it id. Set its value to
prompt. Right-click the “string” element again, choose Add
Child→#PCDATA;, then change the content of the newly added
child from “strings” to “Press/hold right button”.

6. Click File→Save to save strings.xml.

Next, run the project with the MyFirstApp_vivoactiveHR configura‐
tion, and you should see the new prompt appear.

A Tour of the Source Code
Let’s have a look at the code that makes this run.

In the source folder, there are four files that contain this app’s code.
All of the source code files contain a class, which contains several
methods. One of these, initialize(), calls the initialize()
method of its base class, and is present in all four files/classes.

MyFirstAppApp.mc
This is the entry point of your application. There are three addi‐
tional methods in here aside from initalize(): onStart(),
which gets called when the app first begins; onStop(), which is
called when the app runs; and getInitialView(), which sets up
the first view/screen you see when the app starts (in this case, a
Monkey with the text “Click the menu button”).

MyFirstAppDelegate.mc
This is the app’s delegate, which contains all the methods that
define the behavior of the app. This contains the onMenu()
method, which displays a menu when the device’s menu button
is pressed, or when another action takes place (such as long-
pressing the right button) that maps to the menu button action.

30 | Chapter 3: Getting Started with Connect IQ

The menu that’s displayed is defined in the resources/menus/
menu.xml file and contains two menu items.

MyFirstAppMenuDelegate.mc
This is the delegate for the menu, and contains a menu handler
method, onMenuItem(), which gets called when the user selects
something from the menu.

MyFirstAppView.mc
This is responsible for controlling the layout of the initial view
and is referred to in MyFirstAppApp.mc’s getInitialView()
method. The onLayout() method retrieves the MainLayout
through the Rez class, which contains objects taken from the
resource XML files. Remember how you modified the lay‐
out.xml file earlier? If you look at that file (both of them, in
fact), you’ll see that the layout has the ID MainLayout, which
corresponds to what you see in the onLayout() method. This
MainLayout object has different properties at runtime, depend‐
ing on which watch type you’re using, based on the changes you
made in the previous section.

Now that you know how to create and customize Connect IQ apps,
you’re ready to tackle some projects.

A Tour of the Source Code | 31

CHAPTER 4

Projects

There’s no better way to learn something new than by example. I’ve
put together some simple projects that you can follow along with to
learn some skills for Connect IQ. First, you’ll learn how to run the
example programs that come with the Connect IQ SDK, and also
how to modify one of those examples. Next, you’ll step out of the
physical confines of the simulator and use ANT+ technology to talk
to an external sensor, the Garmin tempe temperature sensor. Finally,
you’ll learn how to communicate with an authenticated web service.

You can download these projects and other sample
code from Garmin’s connectiq-apps GitHub repo.

Personal Data Tracking
The Project Explorer in the Connect IQ perspective shows all the
Connect IQ projects in your workspace. Unless you’ve been explor‐
ing on your own, you should only see one project, MyFirstApp.
Keeping track of which project an open file corresponds to can be
tricky, so I suggest you right-click on MyFirstApp and choose Close
Project. That will collapse its folders and also will close any of its
files you may have open. Do the same with any other projects you’re
working on.

33

https://github.com/garmin/connectiq-apps

1. Now you’re ready to import one of the Connect IQ sample
projects. Choose File→Import, and the Import dialog will
appear. Make sure General→Existing Projects into Workspace is
selected as shown in Figure 4-1. Click Next.

Figure 4-1. Importing an existing project

2. In the next page of the dialog, click Browse next to Select Root
Directory, and make your way into the folder where you extrac‐
ted the Connect IQ SDK. In the samples subdirectory, choose
RecordSample (don’t choose any of its subdirectories) and click
OK.

3. Back in the Import dialog, check the box to the left of Copy
Projects into Workspace. That way, you’ll be working on a copy
of the sample (very important in case you make any mistakes)
rather than the original. The Import dialog should look like
Figure 4-2. Click Finish. The RecordSample project will appear
in your Project Explorer.

34 | Chapter 4: Projects

Figure 4-2. Importing the RecordSample

This project is a simple track recorder. If you run it on your watch
or your simulator, it will generate a FIT file with GPS locations. It’s
preconfigured for the Square Watch format as well as a few other
devices. To run it, right-click on the project, then choose Run
As→Connect IQ App.

The Run As option lets you bypass creating a Run
Configuration. But you’ll be asked to choose what kind
of device to run it on when you launch it as shown in
Figure 4-3, so you may also want to create a Run Con‐
figuration for convenience (see “Create a New
Connect IQ Project” on page 17).

Personal Data Tracking | 35

Figure 4-3. Choosing what kind of device to run as

Choose the Square Watch option, and when the simulator starts,
you’ll see a blank screen with the text “Press Menu to Start Record‐
ing.” Press the menu button on the simulator, and it will start
recording data. You can press the menu button again to stop the
recording. Let it run for a minute or two and then use the button
again to stop.

On devices without a menu button, such as the
vívoactive HR, long-press on the right button to start
and stop the recording.

You can also run the sample directly in your device with the
Connect IQ→Build for Device Wizard option in Eclipse.

If your device is not one of the few devices supported
by the sample, right-click RecordSample in Project
Explorer, choose Properties, make sure Connect IQ is
selected in the lefthand side of the screen, check the
box for your device, then click OK.

36 | Chapter 4: Projects

Access the FIT File
When you’re done recording, select Simulation→FIT Data→Save Fit
Session to save the FIT file to a location on your computer.

If you ran the sample on your device, you can later retrieve the FIT
file from your device. Connect it to your computer with the USB
cable, and look in the GARMIN/ACTIVITY folder.

The FIT SDK includes some programs you can run to convert FIT
files to other formats, such as comma-separated values. But if you’ve
paired your device with the Garmin Connect App, and if you’re
signed up for an account, you can view your recording by clicking
the menu icon and choosing Activities, as shown in Figure 4-4 (be
sure to sync your device from your phone first). You’ll then see a list
of activities—in this case, “CityName Walking.” Click on an activity
to see all the information that the sample app recorded.

Figure 4-4. Selecting your activities on Connect

Personal Data Tracking | 37

https://www.thisisant.com/resources/fit
http://connect.garmin.com

Add a New Field
What if you want to track additional data into the FIT file? Here are
some quick changes you can make to the sample app to record a
numeric value. First, open up RecordSampleView.mc in Project
Explorer, and make the following changes.

Right below using Toybox.ActivityRecording as Record;, add
these two lines so you can use classes and objects from these pack‐
ages:

using Toybox.FitContributor as Fit;
using Toybox.Timer as Timer;

Next, you’ll need to add the following lines right under the line
class BaseInputDelegate extends Ui.BehaviorDelegate:

var mFooField;
var mFooValue = 0;
var fooTimer = null;

function updateFoo() {
 mFooValue = mFooValue + 1;
 mFooField.setData(mFooValue);
}

The first three lines add three new variables to the BaseInputDele
gate class: one that represents the new data field, another for its
underlying value, and the third for a Timer object that will be fired
periodically. The updateFoo() method is a new method that the
Timer object will call for you. It just increments the value by 1 each
time.

Next, in the onMenu() function, add the following lines right before
session.start(); (this creates a new field that’s recorded into the
FIT file, sets its value to the value of mFooValue, and then sets up
and starts a timer to periodically update the value and the field):

mFooField = session.createField("Foo", 0, Fit.DATA_TYPE_FLOAT,
 { :mesgType=>Fit.MESG_TYPE_RECORD, :units=>"bars" });
mFooField.setData(mFooValue);
fooTimer = new Timer.Timer();
fooTimer.start(method(:updateFoo), 1000, true);

Just below those lines, right before session.stop(), add the follow‐
ing line:

fooTimer.stop();

38 | Chapter 4: Projects

That line ensures that the timer is gracefully terminated before the
recording stops.

Before you try to run this app, right-click RecordSample in Project
Explorer, select Properties, go to Connect IQ, and check FitContri‐
butor under Permissions. Click OK.

Permissions
Because users and devices have such an intimate connection, the
device knows a lot about an individual user. Most of this informa‐
tion is sensitive, so Connect IQ will not let your app access this
information without permission. When you develop your app, you
need to specify which permissions it needs.

When users install your app, they’ll be notified of which permis‐
sions your app has requested. If they are not comfortable granting
those permissions, they may decide to not install your app, or may
not use certain features in it. So you should only specify the permis‐
sions your app actually needs here.

Here’s the part of the RecordSampleView.mc file that you modified,
with new lines shown in bold (some long lines have been wrapped
from the original so it fits on the page):

using Toybox.WatchUi as Ui;
using Toybox.Graphics as Gfx;
using Toybox.System as Sys;
using Toybox.Lang as Lang;
using Toybox.ActivityRecording as Record;
using Toybox.FitContributor as Fit;
using Toybox.Timer as Timer;

var session = null;

class BaseInputDelegate extends Ui.BehaviorDelegate
{
 var mFooField;
 var mFooValue = 0;
 var fooTimer = null;

 function updateFoo() {
 mFooValue = mFooValue + 1;
 mFooField.setData(mFooValue);
 }
 function onMenu() {
 if(Toybox has :ActivityRecording) {

Personal Data Tracking | 39

 if((session == null)
 || (session.isRecording() == false))
 {
 session = Record.createSession({:name=>"Walk",
 :sport=>Record.SPORT_WALKING});
 mFooField = session.createField("Foo", 0,
 Fit.DATA_TYPE_FLOAT,
 { :mesgType=>Fit.MESG_TYPE_RECORD, :units=>"bars" });
 mFooField.setData(mFooValue);
 fooTimer = new Timer.Timer();
 fooTimer.start(method(:updateFoo), 1000, true);
 session.start();
 Ui.requestUpdate();
 }
 else if((session != null) && session.isRecording()) {
 fooTimer.stop();
 session.stop();
 session.save();
 session = null;
 Ui.requestUpdate();
 }
 }
 return true;
 }
}

If you look inside one of the generated FIT files, you’ll see the Foo
field being populated. Here’s an excerpt from a FIT file that I recor‐
ded on a vívoactive HR with this app, and converted to CSV using
the java/FitToCSV.bat utility in the FIT SDK:

Field 12 Value 12 Units 12
Foo 5 bars

Foo 6 bars

Foo 7 bars

Foo 8 bars

Foo 9 bars

Foo 10 bars

Foo 11 bars

Notice how it simply increments, which is consistent with what’s in
the updateFoo() method.

Next, you need to add some string labels to the strings.xml file and
create a fitcontributions.xml file to instruct Connect IQ as to how to
graph these values. Expand the resources folder under RecordSample

40 | Chapter 4: Projects

and double-click strings.xml. In Chapter 3, you used the Eclipse
XML visual editing tools to modify resource files. This time, I’d like
you to try editing the raw XML. Click the Source tab under the edi‐
tor window, and you should see this in the editor:

<resources>
 <string id="AppName">RecordSample</string>
</resources>

Add three new lines, one for the field label, one for the graph label,
and one for its units. Your strings.xml file should now look like this:

<resources>
 <string id="AppName">RecordSample</string>
 <string id="foo_label">Foos</string>
 <string id="foo_graph_label">Foos</string>
 <string id="foo_units">bars</string>
</resources>

Save the file. Next, right-click the resources folder, add a new folder
called contributions, then add a new file to that folder called fitcon‐
tributions.xml. Use the Source tab of the XML editor to add the fit
Contributions resources as shown:

<fitContributions>
 <fitField id="0" displayInChart="true" sortOrder = "0"
 precision="2" chartTitle="@Strings.foo_graph_label"
 dataLabel="@Strings.foo_label" unitLabel="@Strings.foo_units"
 fillColor="#FF0000" />
</fitContributions>

Save the file, and run the app on your device. You won’t be able to
see the new field appear on Garmin Connect, because your app
needs to be approved and published in the Connect IQ store for cus‐
tom fields to appear. However, if you run the monkeygraph utility
(Connect IQ→Start Monkeygraph), you can see how the graph
would look. Before you run monkeygraph, go back to Eclipse and
choose Connect IQ→App Export Wizard. This will create an IQ file
that could be submitted to the Connect IQ store. But it also contains
important metadata that monkeygraph needs to be able to graph the
values. Select the RecordSample project, and export the IQ file
somewhere.

Next, run monkeygraph, then use File→Open IQ File to open the
file you just created. After that, use File→Open FIT File to open one
of the FIT files you recorded after running the app. You’ll see a
graph like the one in Figure 4-5.

Personal Data Tracking | 41

Figure 4-5. Graph of your foos as measured in bars

Read Data from a Sensor
Now let’s experiment with talking to a sensor using ANT+ technol‐
ogy, the Garmin tempe temperature sensor. This project won’t be an
activity recorder; it will display the values, but won’t record them.

1. Choose File→New→Connect IQ Project. Name it TempeApp,
make it a Watch App, and choose Square Watch as the target
platform (along with any other platforms you want to use).

2. Delete the following files or directories from the project (right-
click, then choose Delete): resources/menus, resources/layouts,
and source/TempeAppMenuDelegate.mc. These files relate to
portions of the sample app (specifically, the part that displays
the sample menus) that you won’t need for this project.

3. Open source/TempeAppDelegate.mc in the editor, and remove
the entire onMenu() function. The file should look like this
when you’re done:

using Toybox.WatchUi as Ui;

class TempeAppDelegate extends Ui.BehaviorDelegate {

 function initialize() {

42 | Chapter 4: Projects

 BehaviorDelegate.initialize();
 }

}

4. Right-click TempeApp in Project Explorer, select Properties,
and check ANT under Permissions. Click OK.

5. Double-click the source/TempeAppView.mc file to open it in the
editor. Replace its contents with the code shown in Example 4-1.
Save the file.

6. Right-click the source folder, choose New→File, name it Tempe‐
Sensor.mc, and put the code shown in Example 4-2 in the file.
Save it.

Example 4-1. Source of the TempeAppView.mc file

using Toybox.WatchUi as Ui;
using Toybox.Graphics as Gfx;
using Toybox.System as Sys;

class TempeAppView extends Ui.View { // The class for the app view

 var mTemp = 0; // current temperature
 var tempTimer = null; // timer for update frequency
 var mSensor; // sensor object

 function updateTemp() {
 mTemp = mSensor.data.currentTemp; // Read the temperature
 Ui.requestUpdate(); // Request a screen update
 }

 function initialize() {

 // Create and start a timer.
 tempTimer = new Timer.Timer();
 tempTimer.start(method(:updateTemp), 10000, true);

 try {
 // Create the sensor object and open it
 mSensor = new TempeSensor();
 mSensor.open();

 } catch(e instanceof Ant.UnableToAcquireChannelException) {
 Sys.println(e.getErrorMessage());
 mSensor = null;

Read Data from a Sensor | 43

 }
 View.initialize(); // Initialize the UI
 }

 // Load your resources here
 function onLayout(dc) {
 }

 // Called when this View is brought to the foreground.
 function onShow() {
 // (re)start the timer
 tempTimer.start(method(:updateTemp), 10000, true);
 }

 // Update the view
 function onUpdate(dc) {
 dc.clear(); // Clear the display

 // Set a white color for drawing and draw a rectangle
 dc.setColor(Gfx.COLOR_WHITE, Gfx.COLOR_TRANSPARENT);
 dc.fillRectangle(0, 0, dc.getWidth(), dc.getHeight());

 // Draw black text against a white
 // background for the temperature
 dc.setColor(Gfx.COLOR_BLACK, Gfx.COLOR_WHITE);
 dc.drawText(dc.getWidth()/2, 0, Gfx.FONT_XTINY,
 "Temperature:"+ mTemp, Gfx.TEXT_JUSTIFY_CENTER);
 }

 // Called when this View is removed from the screen.
 function onHide() {
 tempTimer.stop(); // Stop the timer
 }

}

Here’s where you declare which libraries you are using. The as
keyword lets you assign a shorter alias for them. So instead of
writing Graphics, I can write Gfx throughout this file.

These three variables represent the current temperature read
from the sensor, a timer object for updating the value periodi‐
cally, and a sensor object to refer to the sensor itself.

This function is called by the timer, and does two things: gets
the latest value from the sensor and forces the user interface to
refresh, which causes the onUpdate() function to be called.

44 | Chapter 4: Projects

This function gets called when things start up. It creates a timer
that fires every 10 seconds, and also attempts to open the sensor,
which is represented by the TempeSensor class.

The onLayout() method is called when your app starts, and sets
up the layout of your app’s view. Because you’re only drawing
directly on the screen in the onUpdate() function, as opposed to
displaying UI elements whose contents are refreshed, you don’t
have any layout to perform. The dc argument is short for “draw‐
ing context,” which is an object that’s provided to your app for
all drawing operations. You want to put something on the
screen? You go through the dc.

The onShow() method is called when the app comes back into
the foreground. This restarts the timer (it will be stopped in
onHide()). This reveals a key part of power management. The
device runtime will notify your app when the user sends it to
the background. It does this by calling the onHide() method.
When the user returns to the app later, the device calls your
onShow() method.

This function clears the screen, puts a white background on
there, and adds some text with the current temperature read
from the sensor.

This stops the timer when the app gets sent to the background.
See the preceding discussion for the onShow() method.

Example 4-2. Source of the TempeSensor.mc file

using Toybox.Ant as Ant;
using Toybox.System as System;
using Toybox.Time as Time;

class TempeSensor extends Ant.GenericChannel
{

 const DEVICE_TYPE = 25; // The ANT+ device type
 const PERIOD = 65535; // How often we expect new data

 hidden var chanAssign; // The channel assigned by the radio

 var data; // Stores the data received from the
 // sensor

Read Data from a Sensor | 45

 var searching; // Whether we're currently searching for
 // the sensor
 var deviceCfg; // Device configuration details

 // This flag indicates we've obtained enough
 // data to read the temperature
 var tempDataAvailable = false;

 class TempeData
 {
 var currentTemp;
 function initialize()
 {
 currentTemp = 0;
 }
 }

 class TempeDataPage
 {
 static const PAGE_NUMBER = 1;

 function parse(payload, data)
 {
 // The payload (what we received from the sensor) has
 // a few data points in it. We're just interested in
 // the current temperature.
 data.currentTemp = parseCurrentTemp(payload);
 }

 hidden function parseCurrentTemp(payload)
 {
 // Mask most significant byte (MSB) to see if it's > 127
 var intHigh = payload[7] & 0x80;

 // Combine the most significant and least significant bytes
 var currentTemp = (payload[7] << 8) | (payload[6] & 0xff);

 // If the MSB is over 127, invert its bits and multiply by -1
 if (intHigh > 0) {
 currentTemp = (~currentTemp & 0xFFFF) * -1;
 }
 currentTemp = currentTemp / 100f; // Divide by 100 to get
 // actual temp
 if ((currentTemp < -327) || (currentTemp > 327)) {
 return 0;
 }
 return currentTemp;
 }
 }

 function initialize()

46 | Chapter 4: Projects

 {
 // Get the channel
 chanAssign = new Ant.ChannelAssignment(
 Ant.CHANNEL_TYPE_RX_NOT_TX,
 Ant.NETWORK_PLUS);
 GenericChannel.initialize(method(:onMessage), chanAssign);

 // Set the configuration
 deviceCfg = new Ant.DeviceConfig({
 :deviceNumber => 0, // Wildcard (any matching
 // device)
 :deviceType => DEVICE_TYPE,
 :transmissionType => 0,
 :messagePeriod => PERIOD,
 :radioFrequency => 57, // ANT+ Frequency
 :searchTimeoutLowPriority => 10, // Timeout in 25s
 :searchTimeoutHighPriority => 2, // Timeout in 5s
 :searchThreshold => 0}); // Pair w/all sensors
 GenericChannel.setDeviceConfig(deviceCfg);

 data = new TempeData();
 searching = true;
 }

 function open()
 {
 // Open the channel
 GenericChannel.open();

 data = new TempeData();
 searching = true;
 }

 function closeSensor()
 {
 GenericChannel.close();
 }

 function onMessage(msg)
 {
 // Parse the payload
 var payload = msg.getPayload();

 if(Ant.MSG_ID_BROADCAST_DATA == msg.messageId)
 {
 if(TempeDataPage.PAGE_NUMBER ==
 (payload[0].toNumber() & 0xFF))
 {
 // Were we searching?
 if(searching)
 {

Read Data from a Sensor | 47

 searching = false;

 // Update our device configuration primarily to see the
 // device number of the sensor we paired to
 deviceCfg = GenericChannel.getDeviceConfig();
 }
 var dp = new TempeDataPage();
 dp.parse(msg.getPayload(), data);
 tempDataAvailable = true;
 }
 } // end broadcast data

 else if(Ant.MSG_ID_CHANNEL_RESPONSE_EVENT == msg.messageId)
 {
 if(Ant.MSG_ID_RF_EVENT == (payload[0] & 0xFF))
 {
 if(Ant.MSG_CODE_EVENT_CHANNEL_CLOSED ==
 (payload[1] & 0xFF))
 {
 open();
 }
 else if(Ant.MSG_CODE_EVENT_RX_FAIL_GO_TO_SEARCH
 == (payload[1] & 0xFF))
 {
 searching = true;
 }
 }
 else
 {
 //It is a channel response.
 }
 } // end channel response event

 } // end on message

}

To determine the available device types, you will need
to go to the ANT+ website and register for a developer
account. Next, log in with your developer account, go
to Downloads page on the ANT+ website, and down‐
load the PDF corresponding to the device profile
you’re interested in. You’ll typically find the device type
under the Slave Channel Configuration section of the
document.
You will also find an explanation of how the data pay‐
load is structured in this document.

48 | Chapter 4: Projects

https://www.thisisant.com
http://bit.ly/2favqzy

There are several variables used throughout this program. The
DEVICE_TYPE is the type of device with ANT+ technology we’re
working with, and the PERIOD refers to how often the sensor is
expected to send new data. The other variables relate to the con‐
figuration of the radio, and the data received from it (the data
variable).

This class represents the value from the sensor that we’re inter‐
ested in: the current temperature.

The data from the sensor comes back as data pages. This class
reads through each page, parsing the payload contained in the
page, and extracts the current temperature from it. The parse()
function calls the parseCurrentTemp() function and stores the
value it gets from it into the currentTemp field of the TempeData
variable, data.

This function receives the ANT message and extracts the cur‐
rent temperature from it. The ANT message comes in as an
array of bytes; elements 6 and 7 are the least significant and
most significant byte that, when combined, give us a two-byte
integer that contains the temperature.

The range of numbers that can be represented in two bytes is 0
to 65,535. Divided by 100, that gives us a range of 0 to 655.35
degrees, in .01 degree increments. However, temperatures can
be negative, so the values 0 to 32767 represent 0 to 327.67
degrees, while the values 32768 to 65535 represent the range
-327.67 to 0 degrees. Technically, 0 represents positive 0 and
65535 represents negative 0, but they are numerically equiva‐
lent.

This function assigns a radio channel for the ANT network,
then configures the device to communicate with the tempe sen‐
sor. It then creates a new TempeData object and stores it in the
data variable.

The open() function reopens the ANT communications chan‐
nel.

This closeSensor() function closes the ANT communications
channel.

Read Data from a Sensor | 49

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/Signed_zero

This method is called when a message is received from the
tempe sensor. It retrieves the payload from the message, allo‐
cates a data page for parsing the payload, and parses the newly
received data. It also includes some code to handle various types
of activities that might occur in the course of radio communica‐
tions.

After you’ve saved all your changes, you can run it on the device or
the simulator. If you’re using the simulator, you’ll need the USB
adapter described in “What You’ll Need” on page 15 and any drivers
required by it. Figure 4-6 shows the current temperature (in Celsius)
on the simulator.

For further exploration of ANT and ANT+, check out the following
resources:

ANT/ANT+ N5 Starter Kit
Dynastream Innovations, a Garmin company, makes the N5
Starter Kit, which includes a programmer with cable, two ANT
radios, an input/output board, USB carrier, and a battery board
for powering one of the radios. You can use their N5 SDK to
develop firmware that runs directly on the radio modules and
create your own ANT/ANT+ products.

ANT Developer Forums
On the ANT+ forum, you’ll find discussions, advice, and
answers for all your ANT/ANT+ development questions.

50 | Chapter 4: Projects

https://www.dynastream.com/N5starterkit
https://www.dynastream.com/N5starterkit
https://www.thisisant.com/forum

Figure 4-6. Reading the temperature

Working with an Authenticated Web Service
OAuth provides a standard way for developers to authenticate their
apps against a web API. Before you can use an API in your app, you
(the developer) must register yourself and your app with whoever
provides the web API. Your users must also be registered as users
with whoever provides the API. When your app goes to authenticate
to a web API, it first uses the app’s credentials, then asks the user to

Working with an Authenticated Web Service | 51

https://oauth.net

log in to the service, and then gives your app permission to access
her data.

OAuth provides a special challenge to wearables: how can you type
your username and password into the little screen on your wrist?
You can’t, at least not easily. As a result, Connect IQ has a few tricks
up its sleeve: first, you invoke the makeOAuthRequest function,
which causes a notification to appear on the user’s paired phone
that’s running the Garmin Connect app. This notification
(Figure 4-7) takes the user to a web page that allows him to sign in
and grant permission. Once this process is complete, the user is
notified that sign-in is complete, and asks him to return to his
watch.

Figure 4-7. How Garmin Connect Mobile notifies users that they need
to sign in

What happens if your watch app or widget times out before the user
finishes logging in?

To address this, your app should call registerForOAuthMessages to
receive the result of the login process. If your app closes before the
login process completes, the result will be cached on the device until
the next time your app calls registerForOAuthMessages, at which
point the result will be passed to your callback immediately. Once
you have the access token, you can use it as an argument to
makeWebRequest, which is the function you use to actually call the
API.

Activity Summary
Strava is a popular fitness app and online community. Strava can
collect workout information from its own Strava app as well as other
fitness communities, including Garmin Connect. Strava offers a
developer API that allows access to an athlete’s workout history and

52 | Chapter 4: Projects

https://www.strava.com

other information. This section looks at an example app that
accesses an athlete’s four-week summary of workouts and summari‐
zes it in a Connect IQ widget. Because it is a large app, I won’t be
showing it in its entirety here. The source code is accessible from
GitHub.

To access the Strava API, you need to first create an app definition.
To do this, you need to go to Strava’s developer site and create an
application. You’ll need to obtain the following values from the
Strava developer site, and create a source/Keys.mc file with the fol‐
lowing information (replace the values in quotes with your actual
ID, secret, and token):

var ClientId = "FROM STRAVA API ADMIN"
var ClientSecret = "FROM STRAVA API ADMIN";
var ServerToken = "FROM STRAVA API ADMIN";

The app is split into two halves: login and display. If the app hasn’t
gotten an access token, it needs to authenticate the user. Most of the
work is done in the LoginTransaction class, which is contained in
source/StravaLogin.mc. This class follows the OAuth login flow
described earlier.

When the Strava app is launched (source/StravaApp.mc), its
getInitialView method creates a LoginView (StraveLogin‐
View.mc), which kicks off LoginTransaction’s go method, in turn
calling makeOAuthRequest:

function go() {
 // Kick off a request for the user's credentials. This will
 // cause a notification from Connect Mobile to appear.
 Comm.makeOAuthRequest(
 // URL for the authorization URL
 "https://www.strava.com/oauth/authorize",
 // POST parameters
 {
 "client_id"=>$.ClientId,
 "response_type"=>"code",
 "scope"=>"public",
 "redirect_uri"=>$.RedirectUri
 },
 // Redirect URL
 $.RedirectUri,
 // Response type
 Comm.OAUTH_RESULT_TYPE_URL,
 // Value to look for
 {"code"=>"value"}

Working with an Authenticated Web Service | 53

http://bit.ly/2engHDU
http://labs.strava.com/developers/

);
}

Earlier, LoginTransaction’s initialize method had set up a call‐
back to handle OAuth messages:

Comm.registerForOAuthMessages(method(:accessCodeResult));

The makeOAuthRequest call will cause the login prompt to appear in
Garmin Connect Mobile. Once the user has completed credential
entry, the accessCodeResult callback is invoked with the response
from the authenticating server, including the temporary access code.
At this point, the user is done with the browser on her phone, and
your app will use makeWebRequest to request the access token with
an HTTP POST request. If this request is successful, it will call our
delegate’s handleResponse method with the access token:

// Convert the authorization code to the access token
function getAccessToken(accessCode) {
 // Request an access token via POST over HTTPS
 Comm.makeWebRequest(
 // URL
 "https://www.strava.com/oauth/token",
 // Post parameters
 {
 "client_secret"=>$.ClientSecret,
 "client_id"=>$.ClientId,
 "code"=>accessCode
 },
 // Options to the request
 {
 :method => Comm.HTTP_REQUEST_METHOD_POST
 },
 // Callback to handle response
 method(:handleAccessResponse)
);
}

// Callback to handle receiving the access code
function handleAccessResponse(responseCode, data) {
 // If we got data back then we were successful. Otherwise
 // pass the error on to the delegate
 if(data != null) {
 _delegate.handleResponse(data);
 } else {
 Sys.println("Error in handleAccessResponse");
 Sys.println("data = " + data);
 _delegate.handleError(responseCode);
 }
}

54 | Chapter 4: Projects

What do you do with this token? Fortunately, Connect IQ offers
nonvolatile storage of app properties so you won’t need to re-
authorize each time you run the app. For apps in the Connect IQ
app store, the persistent data is encrypted using a randomly gener‐
ated asymmetric key, and app access is validated with digital signa‐
tures (see the Connect IQ security model). You can use the app
properties to store away the access token you receive from the
server:

// Handle a successful response from the server
function handleResponse(data) {
 // Store the access and refresh tokens in properties
 // For app store apps the properties are encrypted using
 // a randomly generated key
 App.getApp().setProperty("refresh_token",
 data["refresh_token"]);
 App.getApp().setProperty("access_token",
 data["access_token"]);
 // Store away the athlete id
 App.getApp().setProperty("athlete_id",
 data["athlete"]["id"]);
 // Switch to the data view
 Ui.switchToView(new StravaView(), null, Ui.SLIDE_IMMEDIATE);
}

Once you have the access token, you can use it to make authentica‐
ted requests to the server by passing the access token in the HTTP
headers:

Comm.makeWebRequest(
 url,
 _parameters,
 {
 :method=>Comm.HTTP_REQUEST_METHOD_GET,
 :headers=>{ "Authorization"=>"Bearer " + accessToken }
 },
 method(:onResponse)
);

Keep It Brief
The Connect IQ Communication API brings the wearable web to
Garmin devices. However, there are some subtleties to how to
expose a web service to a Garmin device. Because all of the commu‐
nication takes place over a Bluetooth Smart connection (you may
know this as Bluetooth LE or BLE), the device is bandwidth limited.
Data transfers through the Connect IQ SDK will have a transfer
speed less than 1 Kb/s, generally between 400 and 800 bytes/s. For

Working with an Authenticated Web Service | 55

http://bit.ly/2enbkEJ

comparison, a single tweet from Twitter’s API can be upwards of 2.5
Kb. Connect IQ does some magic under the hood to minimize the
amount of data that’s transferred from the phone to the watch, but
you can quickly see how pulling a user’s last few tweets could be
somewhat time consuming.

This classic proverb of “Less Is More” couldn’t be more true when
considering JSON responses. When working with web services, con‐
sider what information you really need to have at the Connect IQ
level and keep your bandwidth budget in mind when you make
decisions about what to ask a server to send back to you.

The projects in this chapter are meant to give you a foundation in
Connect IQ development, but also a start on whatever you might
want to build yourself. You know how to record sessions and define
your own data fields. You’ve seen how to talk to external sensors and
read their transmissions. And you have gotten an overview of using
OAuth to authenticate to web services and fetch data from them.

Now you can combine these things, or mix up your own from
scratch. For example, you could push your temperature readings to
a web service that logs them and displays them online. You could
poll a public weather API like the Weather Underground, and com‐
bine humidity and weather forecast information with your tempera‐
ture readings.

The Connect IQ SDK, while preserving backward compatibility with
older SDKs, is in a constant state of improvement. When I started
this book, a new version was in beta; it was already on its first point
release by the time I finished it. Keep an eye on the Connect IQ
developer site, especially their forums and developer blog, and sign
up for their developer newsletter to stay current with the latest
updates.

56 | Chapter 4: Projects

http://bit.ly/2engMaY
http://bit.ly/2engMaY
http://bit.ly/2ene9Wk
http://bit.ly/2fhsXnc
http://bit.ly/2enemZK

CHAPTER 5

Our Wearable, Connected Future

If you’d asked someone prior to 2014 what a wearable technology
device means to them, you’d have gotten a lot of different answers,
and a smartwatch might have been one of them. By the time we
reached 2015, things were taking shape, but Apple Watch was essen‐
tially an extension of an iPhone. It wasn’t meant to be a standalone
device; it was more of a window into the bigger world of a compan‐
ion smartphone.

That’s been cleaned up a lot in 2016. But even before Apple added
GPS and more standalone capabilities to their watch, devices that
use Connect IQ technology had been designed from the ground up
to be extensions of the user rather than extensions of the user’s
smartphone. That’s a smart place to start from, and in 2016, Apple
started moving in that direction.

If you start from thinking of wearables as an extension of you, where
can they go from here? The DIY, craft, and Maker movements are
full of inspirational examples of wearable devices that break out of
conventional definitions of wearables. Many of them blur the lines
between the Internet of Things (IoT) and wearables.

The inexpensive wearable FLORA platform from Adafruit is a con‐
stant source of innovation and inspiration for anyone looking to
take wearables in a new direction. Any of these projects from Becky
Stern, former Director of Wearable Electronics at Adafruit, could be
integrated with a wearable device with Connect IQ technology, with
the addition of an ANT radio to the FLORA project, and a little bit
of programming:

57

Sunscreen Reminder Hat
It’s easy to remember to put on sunscreen when you go out, but
not so easy to remember to reapply. This project uses a UV sen‐
sor to monitor how much UV you’ve been exposed to. You
could connect this sensor to your device with Connect IQ over a
wireless connection, not only to set reminders for when to put
on sunblock, but to monitor, record, and graph how much UV
you’ve been exposed to.

Brake Light Backpack
A wearable with Connect IQ technology can track a lot of
things about your bike ride; this project uses an accelerometer
to measure something you might not think to measure: when
you step on the brakes. You could adapt the logic in this exam‐
ple to add a new data field to count how often you brake on a
bicycle ride. You could then adapt the electronics from this
project to light up when you brake (again, you’d need to estab‐
lish a wireless connection between your watch and the FLORA).

NeoPixel Matrix Snowflake Sweater
Tacky holiday sweaters never go out of style, perhaps because
they’ve always been out of style. This project uses a smartphone
and a wireless connection to control a snowflake display on a
winter sweater. Not only could you use Connect IQ to build a
Watch App that controls the display, but you could map the dis‐
play’s behavior to your current heart rate if you so desired, puls‐
ing at a rate that corresponds to your actual, measured heart
rate.

These are the sort of places you end up when you think about the
smartwatch as an extension of you, rather than a “second screen” for
your smartphone. It starts right at your core, right at your heart, and
it can’t get any more personal than that.

A device that is so closely tied to what keeps you alive has a big
responsibility, and that’s to be true to you. But you can’t expect a lit‐
tle smartwatch to be human, not without some help. As the devel‐
oper, you’ve got the opportunity to inject humanity into the things
you build. Go create things that make people healthier, happier, and
more connected to one another.

58 | Chapter 5: Our Wearable, Connected Future

http://bit.ly/2efMQgI
http://bit.ly/2efMJlf
http://bit.ly/2efPeE6

About the Author
Brian Jepson is an O’Reilly editor, hacker, and co-organizer of Prov‐
idence Geeks and the Rhode Island Mini Maker Faire. He’s also a
geek-at-large for AS220, a nonprofit arts center in Providence,
Rhode Island. AS220 gives Rhode Island artists uncensored and
unjuried forums for their work and also provides galleries, perfor‐
mance space, fabrication facilities, and live/work space.

	Cover
	Garmin
	Copyright
	Table of Contents
	Preface
	Balancing Comfort, Looks, and Ability
	How Big, How Hungry?
	What Do You Want?
	Connections

	The Platforms
	Inventing the Future of Wearable Devices
	Acknowledgments

	Chapter 1. Big Data and µData
	The Garmin “Full Circle Experience”
	From the Body to the Cloud
	Garmin Health/Wellness

	Chapter 2. The Connect IQ Platform
	Designing for Different Watches
	Connect IQ Tools and Features
	Designing for Wearables

	Chapter 3. Getting Started with Connect IQ
	What You’ll Need
	Install the SDK
	Create a New Connect IQ Project
	Run an App in the Simulator
	Run an App on a Real Device
	Exploring the App
	Configure the App for a New Device
	How the Source Code Is Organized
	Fix the Font Size
	Menu Button?

	A Tour of the Source Code

	Chapter 4. Projects
	Personal Data Tracking
	Access the FIT File
	Add a New Field

	Read Data from a Sensor
	Working with an Authenticated Web Service
	Activity Summary
	Keep It Brief

	Chapter 5. Our Wearable, Connected Future
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

