
Bill Fiser – Senior System Software Engineer
Sebastian Jodłowski – Senior System Software Engineer

BEST PRACTICES WHEN
BENCHMARKING CUDA APPLICATIONS

2

AGENDA
Peak performance

vs.

Stable performance

3

AGENDA
Peak performance

vs.

Stable performance

4

AGENDA

System stability

• CPU Frequency Scaling

• NUMA

• GPU clocks

Measuring the right thing

• JIT cache

• CUDA events

• API contention

5

SYSTEM STABILITY

6

CPU FREQUENCY SCALING

#include <chrono>
#include <iostream>

using namespace std;
using namespace std::chrono;

__global__ void empty() {}

int main() {
 const int iters = 1000;

 cudaFree(0);
 empty<<<1,1>>>();
 cudaDeviceSynchronize();

Achieving Stable CPU Benchmarks: launch latency

 // Warmup phase
 for (int i = 0; i < 10; ++i) {
 empty<<<1,1>>>();
 }

 // Benchmark phase
 auto start = steady_clock::now();
 for (int i = 0; i < iters; ++i) {
 empty<<<1,1>>>();
 }
 auto end = steady_clock::now();

 auto usecs = duration_cast<duration<float,
 microseconds::period> >(end - start);
 cout << usecs.count() / iters << endl;
}

7

CPU FREQUENCY SCALING
Achieving Stable CPU Benchmarks: launch latency

Average Launch Latency – 2.70 us

Relative Standard Deviation – 16%

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

8

CPU FREQUENCY SCALING
Achieving Stable CPU Benchmarks: launch latency

CPU clocks can fluctuate significantly

• This can be a result of CPU idling

• This can be a result of thermal or power
throttling

• Can potentially cause unstable benchmark
results

Average Launch Latency – 2.70 us

Relative Standard Deviation – 16%

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

9

CPU FREQUENCY SCALING

Using cpupower to monitor clocks while the test is running can reveal what is happening

Monitoring Clocks and Policies

user@dgx-1v:~$ cpupower monitor –m Mperf

 |Mperf
PKG |CORE|CPU | C0 | Cx | Freq
 0| 0| 0| 99.13| 0.87| 3575
 0| 0| 40| 0.07| 99.93| 3360
 0| 1| 1| 9.64| 90.36| 3568
 0| 1| 41| 41.55| 58.45| 3576
 0| 2| 2| 0.05| 99.95| 2778
 0| 2| 42| 0.14| 99.86| 3249
 0| 3| 3| 0.06| 99.94| 2789
 0| 3| 43| 0.07| 99.93| 2835
 0| 4| 4| 0.07| 99.93| 2867
 0| 4| 44| 0.06| 99.94| 2912
 0| 8| 5| 0.05| 99.95| 2793
 0| 8| 45| 0.07| 99.93| 2905

user@dgx-1v:~$ cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: Cannot determine or is not supported.
 hardware limits: 1.20 GHz - 3.60 GHz
 available cpufreq governors: performance powersave
 current policy: frequency should be within 1.20 GHz and 3.60 GHz.
 The governor "powersave" may decide which speed to use
 within this range.
 current CPU frequency: Unable to call hardware
 current CPU frequency: 1.31 GHz (asserted by call to kernel)
 boost state support:
 Supported: yes
 Active: yes

10

CPU FREQUENCY SCALING

CPU frequency scaling enables the operating system to scale the CPU frequency up or down in
order to increase performance or save power

Monitoring Clocks and Policies

user@dgx-1v:~$ cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: Cannot determine or is not supported.
 hardware limits: 1.20 GHz - 3.60 GHz
 available cpufreq governors: performance powersave
 current policy: frequency should be within 1.20 GHz and 3.60 GHz.
 The governor "powersave" may decide which speed to use
 within this range.
 current CPU frequency: Unable to call hardware
 current CPU frequency: 1.31 GHz (asserted by call to kernel)
 boost state support:
 Supported: yes
 Active: yes

Scaling Governor set to “powersave”
can result in CPU being underclocked
longer than expected

Turbo Boost set to enabled can
result in CPU being overclocked and
eventually throttle

11

CPU FREQUENCY SCALING

With intel_pstate driver user cannot directly control CPU clocks

Use “performance” scaling governor and disable Turbo Boost for more stable benchmarking

Achieving Stable CPU Benchmarks

user@dgx-1v:~$ # Set the Frequency Scaling Governor to Performance
user@dgx-1v:~$ sudo cpupower frequency-set -g performance
Setting cpu: 0
...
Setting cpu: 79
user@dgx-1v:~$ # Disable Turbo Boost
user@dgx-1v:~$ echo "1" | sudo tee
/sys/devices/system/cpu/intel_pstate/no_turbo
1

12

CPU FREQUENCY SCALING

This helps keeping CPU clocks in more stable state

Achieving Stable CPU Benchmarks

user@dgx-1v:~$ cpupower monitor –m Mperf

 |Mperf
PKG |CORE|CPU | C0 | Cx | Freq
 0| 0| 0| 93.43| 6.57| 2192
 0| 0| 40| 0.45| 99.55| 2191
 0| 1| 1| 0.75| 99.25| 2185
 0| 1| 41| 0.60| 99.40| 2193
 0| 2| 2| 2.71| 97.29| 2192
 0| 2| 42| 0.56| 99.44| 2193
 0| 3| 3| 0.52| 99.48| 2193
 0| 3| 43| 0.53| 99.47| 2193
 0| 4| 4| 0.46| 99.54| 2193
 0| 4| 44| 0.56| 99.44| 2186
 0| 8| 5| 0.48| 99.52| 2193
 0| 8| 45| 0.54| 99.46| 2193

user@dgx-1v:~$ cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: Cannot determine or is not supported.
 hardware limits: 1.20 GHz - 3.60 GHz
 available cpufreq governors: performance powersave
 current policy: frequency should be within 1.20 GHz and 2.20 GHz.
 The governor "performance" may decide which speed to use
 within this range.
 current CPU frequency: Unable to call hardware
 current CPU frequency: 2.19 GHz (asserted by call to kernel)
 boost state support:
 Supported: yes
 Active: yes

13

CPU FREQUENCY SCALING
Achieving Stable CPU Benchmarks: launch latency

Average Launch Latency – 2.61 us

Relative Standard Deviation – 3%

Better stability with
“performance” scaling governor

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

14

NUMA
Achieving Stable Memory Benchmarks: pageable copies

Host-to-device pageable memcopy:

Average Bandwidth – 4.5 GB/s
Relative Standard Deviation – 1%

Device-to-host pageable memcopy:

Average Bandwidth – 6.1 GB/s
Relative Standard Deviation – 15%

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

15

NUMA
Achieving Stable Memory Benchmarks: pageable copies

Host-to-device pageable memcopy:

Average Bandwidth – 4.5 GB/s
Relative Standard Deviation – 1%

Device-to-host pageable memcopy:

Average Bandwidth – 6.1 GB/s
Relative Standard Deviation – 15%

Low or unstable bandwidth might be caused by
CPU migrations or accesses to non-local
memory.

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

16

NUMA
DGX-1V Topology

Non-Uniform Memory Access (NUMA)
allows system memory to be divided into

zones (nodes)

NUMA nodes are allocated to particular
CPUs or sockets

Memory bandwidth and latencies
between NUMA nodes might not be the

same

17

NUMA

Non-Uniform Memory Access (NUMA)
allows system memory to be divided into

zones (nodes)

NUMA nodes are allocated to particular
CPUs or sockets

Memory bandwidth and latencies
between NUMA nodes might not be the

same

node0

DGX-1V Topology

18

NUMA

Non-Uniform Memory Access (NUMA)
allows system memory to be divided into

zones (nodes)

NUMA nodes are allocated to particular
CPUs or sockets

Memory bandwidth and latencies
between NUMA nodes might not be the

same

node1

DGX-1V Topology

19

NUMA

Non-Uniform Memory Access (NUMA)
allows system memory to be divided into

zones (nodes)

NUMA nodes are allocated to particular
CPUs or sockets

Memory bandwidth and latencies
between NUMA nodes might not be the

same

node0 node1

DGX-1V Topology

20

NUMA

Use numactl to check NUMA nodes configuration

Querying NUMA configuration

user@dgx-1v:~$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

21

NUMA

Use numactl to check NUMA nodes configuration

Querying NUMA configuration

user@dgx-1v:~$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

22

NUMA

Use numactl to check NUMA nodes configuration

Querying NUMA configuration

user@dgx-1v:~$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

23

NUMA

Use numactl to check NUMA nodes configuration

Querying NUMA configuration

user@dgx-1v:~$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

24

NUMA

Use nvidia-smi to check which CPU is the closest to the given GPU

Querying System Topology

user@dgx-1v:~$ nvidia-smi topo -mp
 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_1 mlx5_2 mlx5_3 mlx5_0 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X PHB SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB X SYS
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS X

25

NUMA

Use nvidia-smi to check which CPU is the closest to the given GPU

Querying System Topology

user@dgx-1v:~$ nvidia-smi topo -mp
 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_1 mlx5_2 mlx5_3 mlx5_0 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X PHB SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB X SYS
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS X

26

NUMA

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

Querying System Topology

user@dgx-1v:~$ nvidia-smi topo -mp
 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_1 mlx5_2 mlx5_3 mlx5_0 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X PHB SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB X SYS
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS X

27

NUMA

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

Querying System Topology

user@dgx-1v:~$ nvidia-smi topo -mp
 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_1 mlx5_2 mlx5_3 mlx5_0 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X PHB SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB X SYS
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS PHB SYS SYS X

28

NUMA

Use closest NUMA node for best stability (...and highest performance)

Achieving Stable Benchmarks

user@dgx-1v:~$ numactl --cpunodebind=0 --membind=0 ./bandwidthTest --device=0

With numactl, you can set both:

• which NUMA node the application is executed on

• which NUMA node the application allocates memory from

29

NUMA
Achieving Stable Memory Benchmarks: pageable copies

Host-to-device pageable memcopy:

Average Bandwidth – 8.3 GB/s
Relative Standard Deviation – 1%

Device-to-host pageable memcopy:

Average Bandwidth – 11.3 GB/s
Relative Standard Deviation – 0%

Better stability (...and performance)
with correct NUMA setting

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

30

NUMA
Achieving Stable CPU Benchmarks: launch latency

Average Launch Latency – 2.47 us

Relative Standard Deviation – 1%

Better stability (...and performance) with
“performance” scaling governor

and
correct NUMA settings

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

31

GPU CLOCK SETTINGS

compute_gemm() kernel runtimes - RTX 4000

Achieving Stable GPU Benchmarks

Mean Kernel Runtime – 4.27 ms

Relative Standard Deviation – 3.67%

32

GPU CLOCK SETTINGS

Unrestricted, the GPU’s clock settings can
fluctuate significantly

• This can be a result of thermal or power
throttling

• Can potentially cause unstable benchmark
results

Achieving Stable GPU Benchmarks

Mean Kernel Runtime – 4.27 ms

Relative Standard Deviation – 3.67%

33

GPU CLOCK SETTINGS

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening

• ‘nvidia-smi –q –d PERFORMANCE’ will show current Performance State and throttling

• ‘nvidia-smi dmon’ will scroll the current clock of the GPU

Monitoring Clocks and Throttling

==============NVSMI LOG==============

Timestamp : Fri Feb 22 11:24:42 2019
Driver Version : 418.39
CUDA Version : 10.1

Attached GPUs : 1
GPU 00000000:01:00.0
 Performance State : P0
 Clocks Throttle Reasons
 Idle : Not Active
 Applications Clocks Setting : Not Active
 SW Power Cap : Active
 HW Slowdown : Not Active
 HW Thermal Slowdown : Not Active
 HW Power Brake Slowdown : Not Active
 Sync Boost : Not Active
 SW Thermal Slowdown : Not Active
 Display Clock Setting : Not Active

gpu pwr gtemp mtemp sm mem enc dec mclk pclk
Idx W C C % % % % MHz MHz
 0 22 59 - 0 0 0 0 405 300
 0 57 61 - 1 0 0 0 6500 1215
 0 131 66 - 22 12 0 0 6500 1575
 0 130 68 - 100 66 0 0 6500 1530
 0 130 69 - 100 66 0 0 6500 1530
 0 129 70 - 100 65 0 0 6500 1515
 0 131 70 - 100 65 0 0 6500 1500
 0 128 70 - 100 65 0 0 6500 1485
 0 130 71 - 100 64 0 0 6500 1455
 0 130 72 - 100 64 0 0 6500 1485
 0 128 72 - 100 64 0 0 6500 1455
 0 130 72 - 100 63 0 0 6500 1440
 0 130 73 - 100 62 0 0 6500 1455
 0 130 74 - 100 62 0 0 6500 1440
 0 128 74 - 100 62 0 0 6500 1455
 0 129 74 - 100 62 0 0 6500 1440
 0 130 75 - 100 62 0 0 6500 1410
 0 128 75 - 100 62 0 0 6500 1410
 0 128 76 - 100 61 0 0 6500 1965
 0 128 76 - 60 38 0 0 6500 1965
 0 62 73 - 0 0 0 0 6500 420

34

GPU CLOCK SETTINGS

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening

Monitoring Clocks and Throttling

35

GPU CLOCK SETTINGS

To achieve stable results, best practice is to lock the
GPU’s clock to default

• Clocks higher than default can be chosen, but monitor
throttling with nvidia-smi

• ‘nvidia-smi –q –d SUPPORTED_CLOCKS’ lists available
clock settings

• ‘nvidia-smi –q –d CLOCK’ shows current GPU clocks

Achieving Stable GPU Benchmarks

==============NVSMI LOG==============

Timestamp : Fri Feb 22 11:27:21 2019
Driver Version : 418.39
CUDA Version : 10.1

Attached GPUs : 1
GPU 00000000:01:00.0
 Clocks
 Graphics : 300 MHz
 SM : 300 MHz
 Memory : 405 MHz
 Video : 540 MHz
 Applications Clocks
 Graphics : 1215 MHz
 Memory : 6501 MHz
 Default Applications Clocks
 Graphics : 1215 MHz
 Memory : 6501 MHz
 Max Clocks
 Graphics : 2100 MHz
 SM : 2100 MHz
 Memory : 6501 MHz
 Video : 1950 MHz
…

36

GPU CLOCK SETTINGS

Use the values from “Default Application Clocks” for more stable benchmarking

• ‘nvidia-smi –ac <Default Memory Clock>,<Default Graphics Clock> to lock the clocks while
an application is running on the GPU

For Volta+

• ‘nvidia-smi –lgc <Default Graphics Clock>’ to lock the GPU clocks regardless of if an
application is running

Note that persistence mode must be enabled for the setting to stick

Achieving Stable GPU Benchmarks

37

GPU CLOCK SETTINGS

Note that absolute performance may be lower
at default clocks, but we’re after stable rather
than peak performance

Achieving Stable GPU Benchmarks

Mean Kernel Runtime – 5.05 ms

Relative Standard Deviation – 0.39%

38

GPU CLOCK SETTINGS
Monitoring Clocks and Throttling

39

GPU CLOCK SETTINGS

‘nvidia-smi dmon’ output for both runs

Monitoring Clocks and Throttling

gpu pwr gtemp mtemp sm mem enc dec mclk pclk
Idx W C C % % % % MHz MHz
 0 27 59 - 0 0 0 0 810 1215
 0 57 60 - 0 0 0 0 6500 1215
 0 102 63 - 41 22 0 0 6500 1215
 0 102 64 - 100 54 0 0 6500 1215
 0 102 64 - 100 54 0 0 6500 1215
 0 103 67 - 100 54 0 0 6500 1215
 0 104 67 - 100 54 0 0 6500 1215
 0 105 67 - 100 54 0 0 6500 1215
 0 106 68 - 100 54 0 0 6500 1215
 0 107 69 - 100 54 0 0 6500 1215
 0 108 69 - 100 54 0 0 6500 1215
 0 109 70 - 100 54 0 0 6500 1215
 0 109 70 - 100 54 0 0 6500 1215
 0 110 70 - 100 54 0 0 6500 1215
 0 111 71 - 100 54 0 0 6500 1215
 0 111 72 - 100 54 0 0 6500 1215
 0 111 72 - 100 54 0 0 6500 1215
 0 89 71 - 100 54 0 0 6500 1215
 0 66 70 - 78 41 0 0 6500 1215
 0 63 70 - 0 0 0 0 6500 1215
 0 30 68 - 0 0 0 0 810 1215

gpu pwr gtemp mtemp sm mem enc dec mclk pclk
Idx W C C % % % % MHz MHz
 0 22 59 - 0 0 0 0 405 300
 0 57 61 - 1 0 0 0 6500 1215
 0 131 66 - 22 12 0 0 6500 1575
 0 130 68 - 100 66 0 0 6500 1530
 0 130 69 - 100 66 0 0 6500 1530
 0 129 70 - 100 65 0 0 6500 1515
 0 131 70 - 100 65 0 0 6500 1500
 0 128 70 - 100 65 0 0 6500 1485
 0 130 71 - 100 64 0 0 6500 1455
 0 130 72 - 100 64 0 0 6500 1485
 0 128 72 - 100 64 0 0 6500 1455
 0 130 72 - 100 63 0 0 6500 1440
 0 130 73 - 100 62 0 0 6500 1455
 0 130 74 - 100 62 0 0 6500 1440
 0 128 74 - 100 62 0 0 6500 1455
 0 129 74 - 100 62 0 0 6500 1440
 0 130 75 - 100 62 0 0 6500 1410
 0 128 75 - 100 62 0 0 6500 1410
 0 128 76 - 100 61 0 0 6500 1965
 0 128 76 - 60 38 0 0 6500 1965
 0 62 73 - 0 0 0 0 6500 420

Unlocked: Locked to Default:

40

MEASURING
THE RIGHT THING

41

CUDA JIT COMPILATION

When a CUDA fat binary doesn’t include code for the architecture to be executed, the PTX (if
available) is just-in-time compiled by the driver

In order to reduce CUDA module load time, JIT results are cached on the filesystem

Default locations for JIT cache:

• Linux - ~/.nv/ComputeCache

• Windows - %APPDATA\%NVIDIA\ComputeCache

Performance Considerations

42

CUDA JIT COMPILATION

For certain environments these default locations can be problematic

• If the location is a network filesystem, access can be slow

• If the location is shared across nodes, concurrent access can result in drops in performance

JIT cache location and usage is configurable

• Environment variable CUDA_CACHE_PATH can be used to set the location

• Environment variable CUDA_CACHE_DISABLE can be used to skip the cache entirely

Performance Considerations

43

CUDA JIT COMPILATION

JITing can be time consuming, especially on a cache miss

Can be invoked during module load and runtime initialization

Avoid timing JITing when benchmarking code unless specifically required

• Use appropriate architecture flags to create fat binaries to avoid JITing and the JIT cache

• For Example: -gencode=arch=compute_75,code=sm_75

• See nvcc documentation for details

Performance Considerations

44

CUDA EVENTS

Using events to time kernels in complex multi-stream cases can result in unexpected results

• Example: Start and end events recorded for each kernel launch across 4 streams

Timing Event Issues

~5ms

Record Record

for (int i = 0, j = 0; i < NUM_RUNS / NUM_STREAMS; i++) {
 for (int iStream = 0; iStream < NUM_STREAMS; iStream++, j++) {
 cudaEventRecord(startEvents[j], streams[iStream]);
 compute_gemm<<<gridDim, blockDim, SHMEM_SZ, streams[iStream]>>>(…);
 cudaEventRecord(stopEvents[j], streams[iStream]);
 }
}

45

CUDA EVENTS

The expectation might be that each event pair reports ~5ms (the kernel runtime)

• Events have no affinity to the preceding or subsequent GPU work

• Only ordering within the stream is guaranteed

Timing Event Issues

~5ms

Record Record

~5ms

Record Record

~5ms

Record Record

~5ms
Record Record

Expected recorded event times:

46

CUDA EVENTS

Start and end events have additional work from other streams interleaved

• Per kernel events report 1-4x actual kernel execution time (with 4 streams)

• Default stream events timing the entire run are accurate

Timing Event Issues

~10ms

~15ms

Actual recorded event times:

~20ms

Record Record

Record Record
~60ms

~5ms

Record Record

47

CUDA EVENTS

Even for single stream, other GPU operations can be executed between the start and end
event

Events will record the time the GPU executes the event on the given stream

• Useful for measuring stream work with respect to the CPU

• Useful for coarser measurements, but not short running kernels

Nsight Compute and Nsight Systems are better suited for measuring specific GPU kernels
when using multiple streams

• Both have access driver internals that allow for accurate measurement of GPU operations

Timing Event Issues

48

CUDA EVENTS

Events have timing enabled by default

• Recording a time may result in synchronization, potentially reducing concurrency

To use events for explicit synchronization or querying, disable timing when creating the event

• Use cudaEventDisableTiming or CU_EVENT_DISABLE_TIMING flags to disable timing on
creation

Other Event Benchmarking Troubles

49

API OVERHEAD

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

Latency spikes

50

API OVERHEAD

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

Latency spikes

< 10 us / call < 10 us / call

< 10 us / call

< 10 us / call

51

API OVERHEAD

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

Latency spikes

< 10 us / call < 10 us / call

< 10 us / call

< 10 us / call

537 us622 us

795 us

665 us

52

API OVERHEAD

pthread_mutex is not fair and depends on OS scheduler to select the next thread

Lock contention

< 10 us / call < 10 us / call

< 10 us / call

< 10 us / call

537 us622 us

795 us

665 us

53

API OVERHEAD

Approach Benefit More information

Submit work from a single CPU
worker thread

Eliminates inter-thread lock
contention This presentation

Batch work submission when
using many CPU threads

Eliminates some of inter-thread
lock contention

GTC 2019 - CE9147
Connect with the Experts: CUDA
Platform

Try CUDA Graphs to minimize
overall API overheads Reduces overheads by >2x GTC 2019 - S9240

CUDA: New Features and Beyond

Combine kernels together to
avoid API calls

Single kernel eliminates launch
and inter-kernel overheads

Cooperative Groups: Flexible
CUDA Thread Programming
Devblog

Go multi-process with Volta+ MPS Separates launching threads and
avoids locks

GTC 2017 - S7798
Inside Volta

How to avoid it?

54

SUMMARY

System stability

CPU Frequency Scaling – Use performance governor and disable Turbo Boost

NUMA – Use ‘numactl’ to control NUMA behavior

GPU clocks – Lock GPU clocks for stable benchmarking

Measuring the right thing

JIT cache – Check the location or avoid JITing entirely

CUDA events – Use Nsight tools for better measurements

API contention – Take steps to avoid lock contention

Best Practices when benchmarking CUDA applications

