

BEST PRACTICES WHEN BENCHMARKING CUDA APPLICATIONS

Bill Fiser - Senior System Software Engineer Sebastian Jodłowski - Senior System Software Engineer

Peak performance

vs. Stable performance

Peak performance vs.

Stable performance

AGENDA

System stability

- CPU Frequency Scaling
- NUMA
- GPU clocks

Measuring the right thing

- JIT cache
- CUDA events
- API contention

SYSTEM STABILITY

Achieving Stable CPU Benchmarks: launch latency

}

```
#include <chrono>
#include <iostream>
using namespace std;
using namespace std::chrono;
__global__ void empty() {}
int main() {
   const int iters = 1000;
   cudaFree(0);
   empty<<<1,1>>>();
   cudaDeviceSynchronize();
```

```
// Warmup phase
for (int i = 0; i < 10; ++i) {
    empty<<<1,1>>>();
}
```

```
// Benchmark phase
auto start = steady_clock::now();
for (int i = 0; i < iters; ++i) {
    empty<<<1,1>>>();
}
auto end = steady_clock::now();
auto usecs = duration_cast<duration<float,
    microseconds::period> >(end - start);
```

```
cout << usecs.count() / iters << endl;</pre>
```

Achieving Stable CPU Benchmarks: launch latency

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Achieving Stable CPU Benchmarks: launch latency

CPU clocks can fluctuate significantly

- This can be a result of CPU idling
- This can be a result of thermal or power throttling
- Can potentially cause unstable benchmark results

Average Launch Latency - 2.70 us

Relative Standard Deviation - 16%

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Monitoring Clocks and Policies

Using cpupower to monitor clocks while the test is running can reveal what is happening

user@d	lgx-1	Lv:~\$	cpupowe	r monit	or -m Mperf	user@dgx-1v:~\$ cpupower frequency-info
						analyzing CPU 0:
			Mperf			driver: intel_pstate
PKG C	ORE	CPU	C0	Cx	Freq	CPUs which run at the same hardware frequency: 0
0	0	0	99.13	0.87	3575	CPUs which need to have their frequency coordinated by software: 0
0	0	40	0.07	99.93	3360	maximum transition latency: Cannot determine or is not supported.
0	1	1	9.64	90.36	3568	hardware limits: 1.20 GHz - 3.60 GHz
0	1	41	41.55	58.45	3576	available cpufreq governors: performance powersave
0	2	2	0.05	99.95	2778	current policy: frequency should be within 1.20 GHz and 3.60 GHz.
0	2	42	0.14	99.86	3249	The governor "powersave" may decide which speed to use
0	3	3	0.06	99.94	2789	within this range.
0	3	43	0.07	99.93	2835	current CPU frequency: Unable to call hardware
0	4	4	0.07	99.93	2867	current CPU frequency: 1.31 GHz (asserted by call to kernel)
0	4	44	0.06	99.94	2912	boost state support:
0	8	5	0.05	99.95	2793	Supported: yes
0	8	45	0.07	99.93	2905	Active: yes

Monitoring Clocks and Policies

CPU frequency scaling enables the operating system to scale the CPU frequency up or down in order to increase performance or save power

Scaling Governor set to "powersave" can result in CPU being underclocked longer than expected

Turbo Boost set to enabled can result in CPU being overclocked and eventually throttle user@dgx-1v:~\$ cpupower frequency-info analyzing CPU 0: driver: intel pstate CPUs which run at the same hardware frequency: 0 CPUs which need to have their frequency coordinated by software: 0 maximum transition latency: Cannot determine or is not supported. hardware limits: 1.20 GHz - 3.60 GHz available cpufreq governors: performance powersave current policy: frequency should be within 1.20 GHz and 3.60 GHz. The governor "powersave" may decide which speed to use within this range. current CPU frequency: Unable to call hardware current CPU frequency: 1.31 GHz (asserted by call to kernel) boost state support: Supported: yes Active: yes

Achieving Stable CPU Benchmarks

With intel_pstate driver user cannot directly control CPU clocks

Use "performance" scaling governor and disable Turbo Boost for more stable benchmarking

```
user@dgx-1v:~$ # Set the Frequency Scaling Governor to Performance
user@dgx-1v:~$ sudo cpupower frequency-set -g performance
Setting cpu: 0
...
Setting cpu: 79
user@dgx-1v:~$ # Disable Turbo Boost
user@dgx-1v:~$ # Disable Turbo Boost
user@dgx-1v:~$ echo "1" | sudo tee
/sys/devices/system/cpu/intel_pstate/no_turbo
1
```

Achieving Stable CPU Benchmarks

This helps keeping CPU clocks in more stable state

user	@dgx-1	.v:~\$	cpupowe	r monit	or -m Mperf	user@dgx-1v:~\$ cpupower frequency-info
						analyzing CPU 0:
			Mperf			driver: intel_pstate
PKG	CORE	CPU	C0	Cx	Freq	CPUs which run at the same hardware frequency: 0
0	0	0	93.43	6.57	2192	CPUs which need to have their frequency coordinated by software: 0
0	0	40	0.45	99.55	2191	maximum transition latency: Cannot determine or is not supported.
0	1	1	0.75	99.25	2185	hardware limits: 1.20 GHz - 3.60 GHz
0	1	41	0.60	99.40	2193	available cpufreq governors: performance powersave
0	2	2	2.71	97.29	2192	current policy: frequency should be within 1.20 GHz and 2.20 GHz.
0	2	42	0.56	99.44	2193	The governor "performance" may decide which speed to use
0	3	3	0.52	99.48	2193	within this range.
0	3	43	0.53	99.47	2193	current CPU frequency: Unable to call hardware
0	4	4	0.46	99.54	2193	current CPU frequency: 2.19 GHz (asserted by call to kernel)
0	4	44	0.56	99.44	2186	boost state support:
0	8	5	0.48	99.52	2193	Supported: yes
0	8	45	0.54	99.46	2193	Active: yes

Achieving Stable CPU Benchmarks: launch latency

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

NUMA

Achieving Stable Memory Benchmarks: pageable copies

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

NUMA

Achieving Stable Memory Benchmarks: pageable copies

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Non-Uniform Memory Access (NUMA) allows system memory to be divided into zones (nodes)

NUMA nodes are allocated to particular CPUs or sockets

Non-Uniform Memory Access (NUMA) allows system memory to be divided into zones (nodes)

NUMA nodes are allocated to particular CPUs or sockets

Non-Uniform Memory Access (NUMA) allows system memory to be divided into zones (nodes)

NUMA nodes are allocated to particular CPUs or sockets

Non-Uniform Memory Access (NUMA) allows system memory to be divided into zones (nodes)

NUMA nodes are allocated to particular CPUs or sockets

Use numactl to check NUMA nodes configuration

user@dgx-1v:~\$ numactl --hardware available: 2 nodes (0-1) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 node 0 size: 257844 MB node 0 free: 255674 MB node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 node 1 size: 258039 MB node 1 free: 256220 MB node distances: node 0 1 0: 10 21 1: 21 10

Use numactl to check NUMA nodes configuration

user@dgx-1v:~\$ numactlhardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
0: 10 21
1: 21 10

Use numactl to check NUMA nodes configuration

user@dgx-1v:~\$ numactlhardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59
node 0 size: 257844 MB
node 0 free: 255674 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1
0: 10 21
1: 21 10

Use numactl to check NUMA nodes configuration

user@dgx-1v:~\$ numactl --hardware available: 2 nodes (0-1) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 node 0 size: 257844 MB node 0 free: 255674 MB node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 node 1 size: 258039 MB node 1 free: 256220 MB node distances: node 0 1 0: 10 21 1: 21 10

Use nvidia-smi to check which CPU is the closest to the given GPU

user@dgx-1v:~\$ nvidia-smi topo -mp													
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	$mlx5_1$	mlx5_2	mlx5_3	mlx5_0	CPU Affinity
GPU0	Х	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU1	PIX	Х	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU2	PHB	PHB	Х	PIX	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU3	PHB	PHB	PIX	Х	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU4	SYS	SYS	SYS	SYS	Х	PIX	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU5	SYS	SYS	SYS	SYS	PIX	Х	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU6	SYS	SYS	SYS	SYS	PHB	PHB	Х	PIX	SYS	PHB	PIX	SYS	20-39,60-79
GPU7	SYS	SYS	SYS	SYS	PHB	PHB	PIX	Х	SYS	PHB	PIX	SYS	20-39,60-79
$mlx5_1$	PHB	PHB	PIX	PIX	SYS	SYS	SYS	SYS	Х	SYS	SYS	PHB	
mlx5_2	SYS	SYS	SYS	SYS	PIX	PIX	PHB	PHB	SYS	Х	PHB	SYS	
mlx5_3	SYS	SYS	SYS	SYS	PHB	PHB	PIX	PIX	SYS	PHB	Х	SYS	
mlx5_0	PIX	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	Х	

Use nvidia-smi to check which CPU is the closest to the given GPU

user@dgx-1v:~\$ nvidia-smi topo -mp													
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	$mlx5_1$	mlx5_2	mlx5_3	mlx5_0	CPU Affinity
GPU0	Х	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	40-59, 40-59
GPU1	PIX	Х	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU2	PHB	PHB	Х	PIX	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU3	PHB	PHB	PIX	Х	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU4	SYS	SYS	SYS	SYS	Х	PIX	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU5	SYS	SYS	SYS	SYS	PIX	Х	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU6	SYS	SYS	SYS	SYS	PHB	PHB	Х	PIX	SYS	PHB	PIX	SYS	20-39,60-79
GPU7	SYS	SYS	SYS	SYS	PHB	PHB	PIX	Х	SYS	PHB	PIX	SYS	20-39,60-79
mlx5_1	PHB	PHB	PIX	PIX	SYS	SYS	SYS	SYS	Х	SYS	SYS	PHB	
mlx5_2	SYS	SYS	SYS	SYS	PIX	PIX	PHB	PHB	SYS	Х	PHB	SYS	
mlx5_3	SYS	SYS	SYS	SYS	PHB	PHB	PIX	PIX	SYS	PHB	Х	SYS	
mlx5_0	PIX	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	Х	

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

user@dgx-1v:~\$ nvidia-smi topo -mp													
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	$mlx5_1$	mlx5_2	mlx5_3	mlx5_0	CPU Affinity
GPU0	Х	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU1	PIX	Х	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU2	PHB	PHB	Х	PIX	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU3	PHB	PHB	PIX	Х	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU4	SYS	SYS	SYS	SYS	Х	PIX	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU5	SYS	SYS	SYS	SYS	PIX	Х	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU6	SYS	SYS	SYS	SYS	PHB	PHB	Х	PIX	SYS	PHB	PIX	SYS	20-39,60-79
GPU7	SYS	SYS	SYS	SYS	PHB	PHB	PIX	Х	SYS	PHB	PIX	SYS	20-39,60-79
$mlx5_1$	PHB	PHB	PIX	PIX	SYS	SYS	SYS	SYS	Х	SYS	SYS	PHB	
mlx5_2	SYS	SYS	SYS	SYS	PIX	PIX	PHB	PHB	SYS	Х	PHB	SYS	
mlx5_3	SYS	SYS	SYS	SYS	PHB	PHB	PIX	PIX	SYS	PHB	Х	SYS	
mlx5_0	PIX	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	Х	

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

user@dgx-1v:~\$ nvidia-smi topo -mp													
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	$mlx5_1$	mlx5_2	mlx5_3	mlx5_0	CPU Affinity
GPU0	Х	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU1	PIX	Х	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	PIX	0-19,40-59
GPU2	PHB	PHB	Х	PIX	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU3	PHB	PHB	PIX	Х	SYS	SYS	SYS	SYS	PIX	SYS	SYS	PHB	0-19,40-59
GPU4	SYS	SYS	SYS	SYS	Х	PIX	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU5	SYS	SYS	SYS	SYS	PIX	Х	PHB	PHB	SYS	PIX	PHB	SYS	20-39,60-79
GPU6	SYS	SYS	SYS	SYS	PHB	PHB	Х	PIX	SYS	PHB	PIX	SYS	20-39,60-79
GPU7	SYS	SYS	SYS	SYS	PHB	PHB	PIX	Х	SYS	PHB	PIX	SYS	20-39,60-79
mlx5_1	PHB	PHB	PIX	PIX	SYS	SYS	SYS	SYS	Х	SYS	SYS	PHB	
mlx5_2	SYS	SYS	SYS	SYS	PIX	PIX	PHB	PHB	SYS	Х	PHB	SYS	
mlx5_3	SYS	SYS	SYS	SYS	PHB	PHB	PIX	PIX	SYS	PHB	Х	SYS	
mlx5_0	PIX	PIX	PHB	PHB	SYS	SYS	SYS	SYS	PHB	SYS	SYS	Х	

NUMA Achieving Stable Benchmarks

Use closest NUMA node for best **stability** (...and highest performance)

With numactl, you can set both:

- which NUMA node the application is executed on
- which NUMA node the application allocates memory from

user@dgx-1v:~\$ numactl --cpunodebind=0 --membind=0 ./bandwidthTest --device=0

NUMA

Achieving Stable Memory Benchmarks: pageable copies

Better **stability** (...and performance) with correct NUMA setting

Host-to-device pageable memcopy:

Average Bandwidth - 8.3 GB/s Relative Standard Deviation - 1%

Device-to-host pageable memcopy:

Average Bandwidth - 11.3 GB/s Relative Standard Deviation - 0%

NUMA

Achieving Stable CPU Benchmarks: launch latency

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Achieving Stable GPU Benchmarks

Histogram of Kernel Runtimes with Clocks Unlocked

compute_gemm() kernel runtimes - RTX 4000

Mean Kernel Runtime - 4.27 ms

Relative Standard Deviation - 3.67%

Kernel Runtime in ms

cudaTensorCoreGemm Sample

Achieving Stable GPU Benchmarks

Histogram of Kernel Runtimes with Clocks Unlocked

Unrestricted, the GPU's clock settings can fluctuate significantly

- This can be a result of thermal or power throttling
- Can potentially cause unstable benchmark results

Mean Kernel Runtime - 4.27 ms

Relative Standard Deviation - 3.67%

Kernel Runtime in ms

cudaTensorCoreGemm Sample

GPU CLOCK SETTINGS Monitoring Clocks and Throttling

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening

- 'nvidia-smi -q -d PERFORMANCE' will show current Performance State and throttling
- 'nvidia-smi dmon' will scroll the current clock of the GPU

=========NVSMI LOG==========	:=	
Timestamp Driven Version	: Fri Feb 22 11:24:42 20	91
CUDA Version	: 10.1	
Attached GPUs	: 1	
GPU 00000000:01:00.0	• 00	
Clocks Throttle Reasons	. P0	
Idle	: Not Active	
Applications Clocks Setting	: Not Active	
SW Power Cap	: Active	
HW Slowdown	: Not Active	
HW Thermal Slowdown	: Not Active	
HW Power Brake Slowdown	: Not Active	
Sync Boost	: Not Active	
SW Thermal Slowdown	: Not Active	
Display Clock Setting	: Not Active	

#	gpu	pwr	gtemp	mtemp	sm	mem	enc	dec	mclk	pclk
#	Idx	W	C	C	%	%	%	%	MHz	MHz
	0	22	59		0	0	0	0	405	300
	0	57	61		1	0	0	0	6500	1215
	0	131	66		22	12	0	0	6500	1575
	0	130	68		100	66	0	0	6500	1530
	0	130	69		100	66	0	0	6500	1530
	0	129	70		100	65	0	0	6500	1515
	0	131	70		100	65	0	0	6500	1500
	0	128	70		100	65	0	0	6500	1485
	0	130	71		100	64	0	0	6500	1455
	0	130	72		100	64	0	0	6500	1485
	0	128	72		100	64	0	0	6500	1455
	0	130	72		100	63	0	0	6500	1440
	0	130	73		100	62	0	0	6500	1455
	0	130	74		100	62	0	0	6500	1440
	0	128	74		100	62	0	0	6500	1455
	0	129	74		100	62	0	0	6500	1440
	0	130	75		100	62	0	0	6500	1410
	0	128	75		100	62	0	0	6500	1410
	0	128	76		100	61	0	0	6500	1965
	0	128	76		60	38	0	0	6500	1965
	0	62	73		0	0	0	0	6500	420

GPU CLOCK SETTINGS Monitoring Clocks and Throttling

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening

Achieving Stable GPU Benchmarks

To achieve **stable** results, best practice is to lock the GPU's clock to default

- Clocks higher than default can be chosen, but monitor throttling with nvidia-smi
- 'nvidia-smi -q -d SUPPORTED_CLOCKS' lists available clock settings
- 'nvidia-smi -q -d CLOCK' shows current GPU clocks

========NVSMI LOG==========

Timestamp	: Fri Feb 22 11:27:21 2019
Driver Version	: 418.39
CUDA Version	: 10.1
Attached CPUC	. 1
	. 1
GPU 0000000:01:00.0	
Clocks	
Graphics	: 300 MHz
SM	: 300 MHz
Memory	: 405 MHz
Video	: 540 MHz
Applications Clocks	
Graphics	: 1215 MHz
Memory	: 6501 MHz
Default Applications Clocks	
Graphics	: 1215 MHz
Memory	: 6501 MHz
Max Clocks	
Graphics	: 2100 MHz
SM	: 2100 MHz
Memory	• 6501 MHz
Video	• 1950 MHz
Viuco	. 1990 1112

GPU CLOCK SETTINGS Achieving Stable GPU Benchmarks

Use the values from "Default Application Clocks" for more stable benchmarking

 'nvidia-smi -ac <Default Memory Clock>,<Default Graphics Clock> to lock the clocks while an application is running on the GPU

For Volta+

 'nvidia-smi -lgc <Default Graphics Clock>' to lock the GPU clocks regardless of if an application is running

Note that persistence mode must be enabled for the setting to stick

Achieving Stable GPU Benchmarks

Histogram of Kernel Runtimes

Monitoring Clocks and Throttling

Clocks Locked to Default

Monitoring Clocks and Throttling

'nvidia-smi dmon' output for both runs

Unlocked:

#	gpu	pwr	gtemp	mtemp	sm	mem	enc	dec	mclk	pclk
#	Idx	W	C	C	%	%	%	%	MHz	MHz
	0	22	59		0	0	0	0	405	300
	0	57	61		1	0	0	0	6500	1215
	0	131	66		22	12	0	0	6500	1575
	0	130	68		100	66	0	0	6500	1530
	0	130	69		100	66	0	0	6500	1530
	0	129	70		100	65	0	0	6500	1515
	0	131	70		100	65	0	0	6500	1500
	0	128	70		100	65	0	0	6500	1485
	0	130	71		100	64	0	0	6500	1455
	0	130	72		100	64	0	0	6500	1485
	0	128	72		100	64	0	0	6500	1455
	0	130	72		100	63	0	0	6500	1440
	0	130	73		100	62	0	0	6500	1455
	0	130	74		100	62	0	0	6500	1440
	0	128	74		100	62	0	0	6500	1455
	0	129	74		100	62	0	0	6500	1440
	0	130	75		100	62	0	0	6500	1410
	0	128	75		100	62	0	0	6500	1410
	0	128	76		100	61	0	0	6500	1965
	0	128	76		60	38	0	0	6500	1965
	0	62	73		0	0	0	0	6500	420

Locked to Default:

#	gpu	pwr	gtemp	mtemp	sm	mem	enc	dec	mclk	pclk
#	Idx	W	C	C	%	%	%	%	MHz	MHz
	0	27	59		0	0	0	0	810	1215
	0	57	60		0	0	0	0	6500	1215
	0	102	63		41	22	0	0	6500	1215
	0	102	64		100	54	0	0	6500	1215
	0	102	64		100	54	0	0	6500	1215
	0	103	67		100	54	0	0	6500	1215
	0	104	67		100	54	0	0	6500	1215
	0	105	67		100	54	0	0	6500	1215
	0	106	68		100	54	0	0	6500	1215
	0	107	69		100	54	0	0	6500	1215
	0	108	69		100	54	0	0	6500	1215
	0	109	70		100	54	0	0	6500	1215
	0	109	70		100	54	0	0	6500	1215
	0	110	70		100	54	0	0	6500	1215
	0	111	71		100	54	0	0	6500	1215
	0	111	72		100	54	0	0	6500	1215
	0	111	72		100	54	0	0	6500	1215
	0	89	71		100	54	0	0	6500	1215
	0	66	70		78	41	0	0	6500	1215
	0	63	70		0	0	0	0	6500	1215
	0	30	68		0	0	0	0	810	1215

MEASURING THE RIGHT THING

CUDA JIT COMPILATION Performance Considerations

When a CUDA fat binary doesn't include code for the architecture to be executed, the PTX (if available) is just-in-time compiled by the driver

In order to reduce CUDA module load time, JIT results are cached on the filesystem

Default locations for JIT cache:

- Linux ~/.nv/ComputeCache
- Windows %APPDATA\%NVIDIA\ComputeCache

CUDA JIT COMPILATION Performance Considerations

For certain environments these default locations can be problematic

- If the location is a network filesystem, access can be slow
- If the location is shared across nodes, concurrent access can result in drops in performance

JIT cache location and usage is configurable

- Environment variable CUDA_CACHE_PATH can be used to set the location
- Environment variable CUDA_CACHE_DISABLE can be used to skip the cache entirely

CUDA JIT COMPILATION Performance Considerations

JITing can be time consuming, especially on a cache miss

Can be invoked during module load and runtime initialization

Avoid timing JITing when benchmarking code unless specifically required

- Use appropriate architecture flags to create fat binaries to avoid JITing and the JIT cache
- For Example: -gencode=arch=compute_75,code=sm_75
- See nvcc documentation for details

Using events to time kernels in complex multi-stream cases can result in unexpected results

• Example: Start and end events recorded for each kernel launch across 4 streams

The expectation might be that each event pair reports ~5ms (the kernel runtime)

- Events have no affinity to the preceding or subsequent GPU work
- Only ordering within the stream is guaranteed

Expected recorded event times:

Start and end events have additional work from other streams interleaved

- Per kernel events report 1-4x actual kernel execution time (with 4 streams)
- Default stream events timing the entire run are accurate

Even for single stream, other GPU operations can be executed between the start and end event

Events will record the time the GPU executes the event on the given stream

- Useful for measuring stream work with respect to the CPU
- Useful for coarser measurements, but not short running kernels

Nsight Compute and Nsight Systems are better suited for measuring specific GPU kernels when using multiple streams

• Both have access driver internals that allow for accurate measurement of GPU operations

CUDA EVENTS Other Event Benchmarking Troubles

Events have timing enabled by default

• Recording a time may result in synchronization, potentially reducing concurrency

To use events for explicit synchronization or querying, disable timing when creating the event

Use cudaEventDisableTiming or CU_EVENT_DISABLE_TIMING flags to disable timing on creation

API OVERHEAD Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

API OVERHEAD Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

API OVERHEAD Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

API OVERHEAD Lock contention

pthread_mutex is not fair and depends on OS scheduler to select the next thread

API OVERHEAD

How to avoid it?

Approach	Benefit	More information
Submit work from a single CPU worker thread	Eliminates inter-thread lock contention	This presentation
Batch work submission when using many CPU threads	Eliminates some of inter-thread lock contention	GTC 2019 - CE9147 Connect with the Experts: CUDA Platform
Try CUDA Graphs to minimize overall API overheads	Reduces overheads by >2x	GTC 2019 - S9240 CUDA: New Features and Beyond
Combine kernels together to avoid API calls	Single kernel eliminates launch and inter-kernel overheads	Cooperative Groups: Flexible CUDA Thread Programming Devblog
Go multi-process with Volta+ MPS	Separates launching threads and avoids locks	GTC 2017 - S7798 Inside Volta

SUMMARY

Best Practices when benchmarking CUDA applications

System stability

CPU Frequency Scaling - Use performance governor and disable Turbo Boost

NUMA - Use 'numactl' to control NUMA behavior

GPU clocks - Lock GPU clocks for stable benchmarking

Measuring the right thing

JIT cache - Check the location or avoid JITing entirely

CUDA events - Use Nsight tools for better measurements

API contention - Take steps to avoid lock contention

