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Abstract— Perception of the shapes of deforming objects
like wires enables their monitoring and manipulation by au-
tonomous robots. This paper presents detection, classification,
and instance segmentation of deformable wires from a cluttered
scene in RGBD imagery. This work uses the Detectron2
implementation of Mask R-CNN trained with the PointRend
mask head on the UIUCWires dataset as the framework for
wire instance segmentation on RGB imagery, a method demon-
strated to perform well for the instance segmentation task in
previous work. In this work, the instance bitmask is directly
used to segment individual object point clouds, an important
step toward wire shape representation for manipulation tasks.

I. INTRODUCTION

The problem of segmenting deformable objects like wires
in cluttered scenes is an important task in robotics with a
wide array of applications like manufacturing and domestic
services. Unlike rigid objects, any forces applied to de-
formable objects result in their translation in space as well as
changes to their shapes [1]. Additionally, deformable objects
have high-dimensional state spaces and complex nonlinear
dynamics which make model-based estimates of their shapes
challenging [2]–[5].

A growing body of work involves wire tracking and
manipulation [6]–[10]. There is relatively little work focused
on wire perception despite the importance of perception in
both model-based and model-free wire tracking and ma-
nipulation research. Perception of wires for tracking and
manipulation involves obtaining quality object segmentation
masks as a pre-processing step. Segmentation masks are
produced via two conventional methods: color, or intensity,
thresholding and segmentation using neural network-based
frameworks. Intensity thresholding exploits color contrasts
between objects in the foreground and the background of
an image. It conveniently requires neither data management
nor neural network training for online deployment, however
it is not robust to noise in background color or texture and
to separating distinct objects in the foreground. These chal-
lenges considerably limit the scope of relevant applications;
it is impractical for obtaining object instance masks in wire
tracking and manipulation tasks in most real environments.

We are interested in the 3D wire object instance seg-
mentation problem. The ability to segment individual wire
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object instances, as opposed to generating one single seman-
tic segmentation mask for all wires in the scene, is critical
for enabling typical robotic wire inspection and manipulation
tasks in the (usual) case that many wires appear together in
the same scene. This work uses a two-step approach. First,
the Detectron2 implementation of Mask R-CNN trained
with the PointRend mask head on the UIUCWires dataset
with object segment semantics produces binary segmentation
masks of wires and ethernet devices in RGB images [11]–
[13]. Next, the predicted binary segmentation masks are used
to segment wires and devices in the corresponding depth
image to extract individual object point clouds. This work
uses both the Object Semantics (OS) and Object Segment
Semantics (OSS) models from UIUCWires to perform depth
segmentation. Under the OSS representation, Mask R-CNN
is not required to associate various segments of a wire object
across wire crossover points. This relaxes the problem from
predicting full object masks to predicting unoccluded parts of
these masks. In future work, these segment semantics could
be combined with a post-processing step for explicit segment
association.

II. OBJECT INSTANCE SEGMENTATION

Point-wise semantic labeling of pointcloud data remains
an open challenge in computer vision. In general, point data
in depth imagery are more difficult to label to obtain ground
truth information than pixel data in RGB imagery. This work
leverages automatic RGB image labeling in the UIUCWires
dataset to train Mask R-CNN to perform object instance
segmentation in RGB imagery. The UIUCWires dataset is
an RGB image dataset comprising 2,000 training images of
up to four wires and up to two devices per image. Images in
the dataset include two schemes of object segmentation mask
representation. With Object Semantics (OS) mask represen-
tations, all contours comprising an object receive one cor-
responding bitmask. With Object Segment Semantics (OSS)
mask representations, each object contour receives a unique
bitmask and thus occlusions by other wires and devices is not
explicitly represented [13]. The UIUCWires training data are
primarily synthetically generated from single-object (single-
wire and single-device) images using color thresholding
techniques to automatically obtain object instance masks. It
uses the copy-paste, background substitution, scale jittering,
and hue jittering augmentation techniques to increase the va-



Fig. 1. In the proposed perception pipeline, an RGB image is segmented using Mask R-CNN with the PointRend (PR) mask head trained on the
UIUCWires dataset with Object Segment Semantics (OSS) annotations. The predicted instance segmentation computed by Mask R-CNN is used to segment
the RGB image ( [13]) and its associated depth image to obtain a point cloud segmented by object instance (this work).

riety of wire configurations and environmental noise classes
present in the dataset [14]. This method enables automatic
labeling of images comprising wires of the same color or of
the same color as the background.

Mask R-CNN is the state-of-the-art method of object
instance segmentation [12]. It performs object detection
(classification), localization (bounding-box prediction), and
instance segmentation (instance-level mask prediction). It
includes a two-stage training procedure. In the convolutional
backbone, a region proposal network performs feature ex-
traction and generates candidate bounding boxes [15]. The
second stage includes the network head which performs
classification and bounding box recognition in parallel with
segmentation mask prediction over each region of interest.
The Mask R-CNN architecture is optimized according to a
multi-task loss on sampled regions of interest according to

L = Lcls + Lbox + Lmask. (1)

where Lcls is the log loss of the predicted class probability,
Lbox is the Smooth L1-loss optimizing the difference be-
tween the true and predicted bounding box dimensions and
center coordinates, and Lmask is the average binary cross-
entropy loss.

The PointRend (PR) mask head is well-suited for refine-
ment of detailed segmentations [11]. During inference, PR
iteratively computes the mask prediction. It includes a point
selection strategy which adaptively selects the most-uncertain
pixels in an image that likely lie on object boundaries and
interpolates their pixel values using the values of the four
nearest neighbors.

III. PERCEPTION OF WIRES IN IMAGERY

Previous work automatically generates semantic labels for
a wire data set using chroma-key separation [16]. Each image
in the data set has a corresponding segmentation mask which
describes the segmentation for every wire in the scene. The
approach used to automatically label these images is unable

to distinguish between wire objects in a scene. The semantic
segmentation frameworks which are trained on this data set
are also not designed for instance-level tasks [17].

Other work on wire perception in RGB imagery performs
wire segmentation without complex classification, localiza-
tion, and mask prediction architectures. The Ariadne algo-
rithm first detects wire terminals using a convolutional neural
network, then performs a biased random walk over the region
adjacency graph of the source image according to the color
histogram and curvature likelihood of each superpixel [10].
For visually-distinct wire instances with distinct color and
curvature properties, the Ariadne algorithm can distinguish
individual wire instances and perform wire segmentation
under occlusion.

Ariadne+ is the first method to address the wire instance
segmentation problem using deep learning; it is more robust
to noise than Ariadne [18]. Ariadne+ is initialized with a
binary semantic segmentation mask to identify all wires in
the image [16]. This mask is partitioned into superpixels
to create a region adjacency graph. Each graph node is
scored according to its status as an endpoint, segment, or
intersection. Intersection groups are scored based on color
and curvature properties, and paths are computed between
candidate endpoints. At wire intersections, binary classifica-
tion is used to distinguish foreground wires from background
wires. Path layouts are used to resolve wire instances.

IV. TRAINING MASK R-CNN

UIUCWires defines two new categories of segmentation
annotation for objects under occlusion, namely the Object
Semantics (OS) and the Object Segment Semantics (OSS)
formats. When creating segmentation masks, only the por-
tions of objects which are in view in an image receive
a mask. Furthermore, the annotation for occluded objects
comprises multiple contours describing the segments of the
object that are in view. The OS format of segmentation anno-
tation represents all contours of an object within one mask;



the mask captures occlusion and wire crossings. The OSS
format of segmentation annotation represents one contour of
an object within the mask. UIUCWires provides both the
OS and OSS annotation with corresponding category and
bounding box information for every object in every image,
and demonstrates significant improvement in wire instance
segmentation tasks when training Mask-RCNN using OSS
annotations as opposed to OS annotations [13].

This work uses Mask R-CNN as implemented in De-
tectron2 trained on the UIUCWires data [19]. The two
models tested use the R50-FPN backbone network with the
PointRend (PR) mask head with each of the OS and OSS
mask representation schemes. The models are initialized
with Mask R-CNN baselines pretrained on COCO instance
segmentation tasks. The models were each trained with a
learning rate of 0.00025, 30,000 iterations, and 8 images per
batch [13].

V. WIRE INSTANCE SEGMENTATION FROM RGBD
IMAGERY

The complete instance segmentation procedure which gen-
erates object instance predictions on an RGB image and
uses the instance bitmasks to segment the corresponding
registered depth image to produce an object instance-aware
point cloud is outlined in Figure 1. The proposed method of
point cloud segmentation using the PR+OSS model for seg-
mentation produces significantly more complete segmented
point clouds than the PR+OS model as shown in in Figure
2. Preliminary results on two test scenes indicate an 153%
improvement in the number of points recovered in depth
segmentation using the PR+OSS model for segmentation as
compared to the PR+OS model. These results are summa-
rized in Table I.

The segmented point cloud was used to construct an object
mesh of the scene using the Vedo 3D visualization library
[20]. The mesh was processed with an outlier removal step
using density-based clustering. The smoothed mesh is shown
in Figure 3. The mesh reconstruction is a candidate 3D
representation of the scene from raw RGB-D data. This 3D
information about the shape of wires in the scene can be
used to generate the normal vectors at each point along the
surface of the mesh for use in grasp planning.

VI. CONCLUSIONS AND FUTURE WORK

This work contributes an object instance-aware method for
extracting unique wire and device point clouds from RGBD
imagery by using Mask R-CNN trained on UIUCWires to
segment and process a depth image. The OSS+PR model
produces the most complete point clouds, but self-occlusion

TABLE I
NUMBER OF POINTS IN INSTANCE-SEGMENTED POINT CLOUDS

Training Configuration Two-Wire Scene Three-Wire Scene
PR+OSS 21,688 26,366
PR+OS 8,580 4,082

Fig. 2. Mask R-CNN with the PointRend (PR) mask head trained on
the UIUCWires dataset with Object Segment Semantics (OSS) annotations
produces more complete point cloud segmentations than the same model
trained on the same dataset with Object Semantics (OS) annotations.

Fig. 3. The point cloud segmented using the PointRend (PR) Object
Segment Semantics (OSS) training configuration can be converted to an
object mesh for object grasping and manipulation applications.

still confounds wire point cloud segmentation. This work
leaves three questions unanswered for future work:

1) Can a graph search method, such as the method used in
Ariadne+, be combined with the instance segmentation
performed by Mask R-CNN to improve instance seg-
mentation performance for the class of wire instance
segmentation problems?

2) Can multiple fused sensor perspectives improve scene
point cloud and mesh retrieval for the 3D wire instance
segmentation problem?

3) How do wire detection and segmentation frameworks
trained on [13] and [16] compare?

The goal of this work is to demonstrate a method for 3D
perception of wires to use for robotic interaction in a greater
variety of contexts. In addressing remaining open questions,
future work aims to improve the reconstruction quality for
model-free deformable object perception.
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