

Adding Zig support to
the Defold game engine

Today

● What is Defold?
● Why Zig?
● Case Study for Defold
● Conclusions
● Q & A

Who are we?

Mathias Westerdahl
 @mwesterdahl76
 @jcash@mastodon.gamedev.place
 mathias@defold.se

Björn Ritzl
 @bjornritzl
 @britzl@mastodon.gamedev.place
 bjorn@defold.se

History

● Created in 2009
○ By Christian Murray and Ragnar Svensson

● Bought by King in 2014
○ Released a few games

● Made available for free in 2016
● Made source available in 2020
● Source + Trademarks transferred to Defold Foundation in 2020

1M DAU - 4M MAU

Why Zig?

● Seems interesting / promising
● We use a C-like-C++ api
● Focus on small runtimes
● Defold extension system

○ Cloud build server (https://github.com/defold/extender)
○ Currently 8 platforms (desktop, mobile, html5 & console)

■ Should work well to add Zig
● A bit of fun!

https://github.com/defold/extender

What do we have? - the cloud builder

● Extension System
○ User supplied custom code

■ C/C++, Java, Objective C
○ Upload user code to cloud server
○ Server builds static libraries
○ Links engine
○ Sends custom engine back to user

 # Zig
 zigSourceRe: '(?i).*(\.zig)'
 zigCompileCmd: '{{env.ZIG_PATH}}/zig build-obj -target {{zig-target}} {{#ext.includes}}-I{{{.}}} {{/ext.includes}} {{#includes}}-I{{{.}}} {{/includes}} {{#defines}}-D{{{.}}} {{/defines}} {{src}} -femit-bin={{tgt}} -O ReleaseFast'

What do we have? - the Defold SDK

● Defold SDK
○ Allows user to add…

■ custom component & resource types
■ custom Lua modules

○ Mostly C-like-C++
■ Few container templates (vector + hashtable)
■ Namespaces
■ RAII (mutex locks, profile scopes)

○ Currently 101 headers

Zig support - What do we need?

● Zig lives in C land
○ We need a C api

● Backwards compatibility
○ 100+ C++ plugins in the wild

● Minimal Maintenance
○ C api needs to match C++ api
○ Easy to update our api

C API - some options (for us)

● Manually port our headers to C
○ We can have more control over the code
○ Cons: 100+ headers!

● Code generation
○ Keeps api’s in sync
○ Cons: Takes time to R&D and configure

● Experimental C++ wrapper (c2z)
○ Cons:

■ Very early stages
■ Doesn’t give us a C api

Porting our API to C

● Constructors/Deconstructors
○ To initialize values, but also for RAII

● Templates
○ Used in API calls and structs (POD types)
○ Allows users to use same containers

● Namespaces
● Enums

Getting down to business

● Disclaimer:
○ Quick and dirty R&D, only scratching the surface of Zig
○ Goal: Get a happy path working!
○ We’re not looking to replace our engine code
○ We want to allow users writing plugins using Zig

Getting down to business

● First approach: Manual C approach
○ 2 api’s in the same header

● One api calls the other
○ C api calls C++ api to keep 100% sync

Getting down to business - Enums

● C

● C++
namespace dmExtension {
 enum EventID {
 EVENT_ID_ACTIVATEAPP = DM_EXTENSION_EVENT_ID_ACTIVATEAPP,

 EVENT_ID_DEACTIVATEAPP = DM_EXTENSION_EVENT_ID_DEACTIVATEAPP,

 EVENT_ID_ICONIFYAPP = DM_EXTENSION_EVENT_ID_ICONIFYAPP,

 EVENT_ID_DEICONIFYAPP = DM_EXTENSION_EVENT_ID_DEICONIFYAPP

 };

}

typedef enum dmExtensionEventID {

 DM_EXTENSION_EVENT_ID_ACTIVATEAPP,

 DM_EXTENSION_EVENT_ID_DEACTIVATEAPP,

 DM_EXTENSION_EVENT_ID_ICONIFYAPP,

 DM_EXTENSION_EVENT_ID_DEICONIFYAPP,

} dmExtensionEventID;

Getting down to business - Typedefs

● C

● C++ namespace dmConfigFile {
 typedef dmConfigFileHConfig HConfig;
}

typedef struct dmConfigFileConfig * dmConfigFileHConfig ;

Getting down to business - Constructors

● C

● C++ dmExtensionParams::dmExtensionParams () {

 memset(this, 0, sizeof(*this));

}

void dmExtensionParams_Init (dmExtensionParams * params) {

 memset(params, 0, sizeof(*params));

}

Getting down to business - Destructors

● Used for RAII
○ Mutexes
○ Profile scopes

● We already have the C-like functions for this
○ E.g. MutexLock() / MutexUnlock

● Zig
○ Either we generate Zig specific helpers
○ Or the developer uses our C functions as-is

● Mostly used in the sdk for resource type structs
○ We could use C arrays
○ Can we create an api that maps on top of the ABI?
○ Protobuf is C++
○ Hiding behind opaque pointer seems easiest

Getting down to business - vectors

SomeType* GetData(void* resource, uint32_t* data_count);

dmArray<SomeType> data;● C++

● C

● Same problems as vectors
○ Can also be solved with opaque struct + data accessors

Getting down to business - hash table

dmHashTable<uint64_t, SomeType*> sub_contexts;

void* GetSubContext(Context* ctx, const char* name);

● C++

● C

Demo

Steps:

● Clone repo: https://github.com/defold/example-zig
● Open in Defold (experimental version)
● Press “Build and Run”

Description

● The example encodes+decodes a string in Lua
○ Encoder is written in C++, and adds 1 to each character: “Ac” -> “Bd”
○ Decoder is written in Zig, and subtracts 1 from each character: “Bd” -> “Ac”

https://github.com/defold/example-zig

Conclusion

● Learning curve
○ Memory allocation
○ Pointers / Strings

● The Zig experience is a bit rough around the edges
○ Build errors (0.10)

■ Obscure messages (hard to understand what to do)
■ If C header contained errors, cInclude would not report as-is

○ Documentation
■ Took a long time to find out about “build-obj”, and no real examples
■ No documentation about linksection
■ Special thanks to the Zig Discord for helping out!
■ “Hidden” documentation (reddit)

Conclusions

● The Zig experience is a bit rough around the edges
● Porting would likely be split between manual work and code generation

○ Not straightforward!
● Main benefits will be for new plugins

○ Core engine code will remain C++
○ A lot of work needed to fully support our SDK

● But overall success!

Future

● Port more SDK headers to C
○ E.g. add new game component/resource types

● Integrate Zig testing into the build step
● Use a Zig package manager

What I’d like to see

● Migration guides
○ How to convert 3rd party libraries and integrate into existing code bases
○ How to incorporate zig libraries into C/C++ code
○ Memory / allocators / containers best practices to/from Zig

● Documentation and examples on official web page
○ Less reliance on 3rd party sites

● Crazy idea: Some kind of cppImport(“api.hxx”)
○ For C-like-C++ code (e.g no templates)

Thank you!

Q & A

● Links
○ www.defold.com
○ github.com/defold/defold

● Social
○ https://twitter.com/defold
○ https://mastodon.gamedev.place/@defold

