
Finding and Tolerating Concurrency Bugs

by

Jie Yu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Assistant Professor Satish Narayanasamy, Chair
Associate Professor Robert Dick
Associate Professor Jason Nelson Flinn
Professor Scott Mahlke
Cristiano Pereira

To my family.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Satish Narayanasamy,

for his endless support during the past five years. It has been an honor to work with

him and to be one of his first batch of PhD students. From him, I have learnt how

to write papers, make presentations, and most importantly, be confident and strong.

Satish has given me the freedom to pursue various projects that match my interests.

He has also provided countless insightful discussions about my research during our

weekly meetings. I appreciate all his contributions of time, ideas, and funding to

make my PhD experience productive and stimulating.

I also would like to thank other members of my PhD dissertation committee,

Professor Robert Dick, Professor Jason N. Flinn, Professor Scott Mahlke and Dr.

Cristiano Pereira. It is no easy task, reviewing a thesis, and I am grateful for their

invaluable comments and constructive criticisms that greatly improved my disserta-

tion.

This dissertation is partially funded by National Science Foundation (NSF) and

Intel Corporation, and I would like to thank both organizations for their generous

support. I would like to thank Dr. Cristiano Pereira and Dr. Gilles Pokam from

Intel for their valuable discussions and insights from industry perspectives.

I also would like to thank all my labmates. I would like to thank Dongyoon Lee

for sharing ideas and brainstorming with me throughout my PhD studies, Abhayen-

dra Singh for clarifying my uncertainties about memory consistency issues in many

iii

occasions, and Chun-Hung Hsiao for working with me on the smartphone project

offering me unremitting assistance. Thanks also go to other members in the lab,

including Shaizeen Aga and Gaurav Chadha, for making the lab such a comfortable

home for me.

My time at Michigan was made enjoyable in large part due to the many friends

and groups that became a part of my life. I would like to thank Lujun Fang and

Yunjing Xu for always hanging out with me, sharing their visions and big ideas.

Special thanks go to Yunjing for taking me to the hospital in midnight when I was

bleeding badly. I would like to thank Lujun Fang and Yudong Gao for being my

roommates for years, making a sweet home for me. Special thanks go to Yudong for

playing basketball with me all the time. Thanks also go to my friends who have not

been mentioned yet, including Junxian Huang, Yi Li, Feng Qian, Li Qian, Zhiyun

Qian, Zhaoguang Wang, Qiang Xu and Xinyu Zhang, for providing support and

friendship that I needed.

Lastly, I would like to thank my family for their unconditional love and support.

My hard-working parents, Jianzu Yu and Shuyan Li, have sacrificed their lives for

me and provided unconditional love and care. I love them so much, and I would not

have made it this far without them. And most of all, I would like to thank my loving,

supportive and encouraging wife Panmei Chen. For this PhD, we have been apart

for almost three years. This dissertation would not be possible without the love and

support from her.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Two Hypotheses and Interleaving Idioms . 3
1.2 Finding Concurrency Bugs by Exposing Untested Interleavings 5
1.3 Tolerating Concurrency Bugs by Avoiding Untested Interleavings 6
1.4 Contributions . 9
1.5 Structure . 11

II. Background and Related Work . 12

2.1 Detecting Concurrency Bugs . 12
2.1.1 Data Race Detection . 13
2.1.2 Atomicity Violation Detection . 14

2.2 Exposing Concurrency Bugs . 14
2.2.1 Coverage Driven Testing . 14
2.2.2 Stress Testing and Random Testing 15
2.2.3 Systematic Testing . 15
2.2.4 Active Testing . 16
2.2.5 Test Input Generation . 17

2.3 Tolerating Concurrency Bugs . 17

III. Encoding Tested Interleavings Using Interleaving Idioms 20

3.1 Two Hypotheses about Concurrency Bugs 21
3.2 Interleaving Idiom . 22
3.3 Canonical Idioms . 24
3.4 Relation with Concurrency Bugs . 25
3.5 Empirical Analysis . 27

IV. Exposing Untested Interleavings: Maple . 30

4.1 Overview . 30

v

4.2 Online Profiling For Predicting iRoots . 34
4.2.1 Notations and Terminology . 34
4.2.2 Naive Approach . 35
4.2.3 Non-Mutex Happens-Before Analysis 35
4.2.4 Mutual Exclusion Analysis . 36
4.2.5 Online Profiling Algorithm . 38
4.2.6 Predicting iRoots for Compound Idioms 41

4.3 Actively Testing Predicted iRoots . 43
4.3.1 A Naive Approach . 43
4.3.2 Non-preemptive and Strict Priority Scheduler 44
4.3.3 Complementary Schedules . 46
4.3.4 Watch Mode Optimization . 47
4.3.5 Candidate Arbitration . 49
4.3.6 Dealing with Asynchronous External Events 50
4.3.7 Compound Idioms . 52
4.3.8 Exposing Pre-conditions . 53

4.4 Memoization of iRoots . 54
4.5 Evaluation . 55

4.5.1 Maple Configuration . 55
4.5.2 Usage Scenario 1: Exposing Bugs with Bug Triggering Inputs . . . 56
4.5.3 Usage Scenario 2: Coverage-Driven Testing 61
4.5.4 Characteristics of Maple . 66

4.6 Summary . 68

V. Avoiding Untested Interleavings I: PSet . 69

5.1 Overview . 69
5.2 Encoding Tested Interleavings . 73

5.2.1 Predecessor Sets (PSets) . 73
5.2.2 Effectiveness of PSets in Avoiding Concurrency Bugs 75
5.2.3 Deriving and Encoding PSets Constraints 78
5.2.4 Limitations . 79

5.3 Enforcing Tested Interleavings . 79
5.3.1 Detecting and Enforcing PSet Constraints 80
5.3.2 Architectural Support . 81

5.4 Evaluation . 83
5.4.1 Bug Avoidance Capability . 84
5.4.2 Learning PSet Constraints . 85
5.4.3 PSet Constraint Violations in Bug Free Executions 88
5.4.4 Memory Space Overhead . 91

5.5 Summary . 92

VI. Avoiding Untested Interleavings II: LifeTx . 94

6.1 Overview . 94
6.2 Algorithm for Determining LifeTxes . 98

6.2.1 Lifeguard Transactions (LifeTxes) and Profiling Algorithm Overview 98
6.2.2 Checking Conflict Serializability for LifeTxes 100
6.2.3 Splitting LifeTxes On a Conflict . 102
6.2.4 Practical Issues . 104
6.2.5 Discussion and Limitations . 106

6.3 Runtime Support for LifeTxes . 107
6.3.1 LifeTx-Stall Design . 108
6.3.2 LifeTx-CS Design . 112

vi

6.4 Evaluation . 113
6.4.1 Experimental Setup . 113
6.4.2 Learning LifeTxes . 116
6.4.3 Characteristics of LifeTxes . 116
6.4.4 Bug Avoidance Capability . 119
6.4.5 Performance Study . 121

6.5 Summary . 124

VII. Future Work . 126

VIII. Conclusion . 131

BIBLIOGRAPHY . 134

vii

LIST OF FIGURES

Figure

3.1 The canonical idioms for two inter-thread dependencies and two threads. 25

3.2 An idiom1 concurrency bug. 26

3.3 A real idiom4 concurrency bug from MySQL. 27

4.1 Overview of the framework. 32

4.2 Infeasible iRoots due to non-mutex happens-before relations. 35

4.3 Infeasible iRoots due to mutual exclusion. 37

4.4 Predicting iRoots for compound idioms. 42

4.5 The ideal situation for exposing an idiom1 iRoot A ⇒ B. 44

4.6 The naive approach could deadlock when exposing an idiom1 iRoot A ⇒ B. 44

4.7 The situation in which the watch mode is turned on for exposing an idiom1 iRoot
A ⇒ B. 48

4.8 Problem with asynchronous external events. 51

4.9 Expose a compound idiom iRoot A ⇒ B...C ⇒ D. 51

4.10 A pre-condition exists when trying to expose iRoot A ⇒ B. 51

4.11 Comparison with different testing methods using the same amount of time. M
stands for Maple, P stands for PCT, L stands for PCTLarge,D stands for RandDelay,
and C stands for CHESS. 63

4.12 Comparison with different testing methods. X-axis is the number of test runs, and
Y-axis is the total number of iRoots exposed. 65

4.13 Memoization saves testing time. Y axis is normalized to the execution time without
memoization. 66

5.1 PSet constraints for an interleaving. 74

5.2 A data race bug in Mozilla (Mozilla-7 in Table 3.5). 75

5.3 An atomicity violation bug in Mozilla [43] (Mozilla-1 in Table 3.5). 76

viii

5.4 An atomicity violation bug in Mozilla, which will not raise an AVIO [43] invariant
violation. (Mozilla-4 in in Table 3.5). 77

5.5 Order violation bug in Mozilla, which is neither a data race nor an atomicity vio-
lation. (Mozilla-9 in Table 3.5). 77

5.6 Format for encoding an instruction’s PSet. 79

5.7 Number of test runs required for learning PSets and AVIO invariants. 89

5.8 Proportion of static memory instructions with a particular PSet size (normalized
to the total number of static memory instructions in the application binary and
libraries that were executed in at least one test run). 91

6.1 A conflict serializability violation. 101

6.2 A conflict-serializability violation detected across multiple semantic-segments. . . . 104

6.3 Conflicts due to memory operations executed in synchronization functions. 105

6.4 Number of test runs required for getting stable cutpoints. 117

6.5 Footprint distribution (dynamic). 118

6.6 Length distribution (dynamic). 118

6.7 LifeTx-Stall performance overhead. 122

ix

LIST OF TABLES

Table

3.1 Brief descriptions about concurrency bugs that we used in our studies. 28

3.2 Empirical study on 34 documented bugs. 29

4.1 Bug exposing capability given bug triggering inputs. All the time reported in the
table are in seconds. TO stands for timeout (24 hours). In the type column, S
stands for synthetic bugs, E stands for extracted bugs, R-K stands for real bugs
which are known, and R-U stands for real bugs which are unknown. * The root
cause of Bug #12 and bug Bug #13 have not been confirmed yet. They are exposed
when attempting idiom1 iRoots. 59

4.2 Memoization help expose bugs more quickly. All the time reported in the table are
in seconds. 61

4.3 Runtime overhead of Maple comparing to native execution time. 66

4.4 The success rate of the active scheduler (# successfully exposed iRoots / # total
predicted iRoots). For apache and mysql, we experimented with 100 randomly
selected candidate iRoots. 67

5.1 Bug detection capability. Comparing PSet with a happens-before data race detector
and AVIO [43]. 85

5.2 Avoiding bugs using PSet constraints. True constraint violations are related to the
bug. 86

5.3 PSet constraint violations in bug-free executions. 88

5.4 Binary Size Increase. 92

6.1 Baseline configuration. 116

6.2 Bug avoidance capability. 120

6.3 Characteristics of critical LifeTxes. 121

6.4 Runtime statistics for (a) LifeTx-Stall, (b) LifeTx-CS. 123

6.5 Granularity of conflict detection: Block vs Word. 124

x

ABSTRACT

Finding and Tolerating Concurrency Bugs

by
Jie Yu

Chair: Satish Narayanasamy

Shared-memory multi-threaded programming is inherently more difficult than

single-threaded programming. The main source of complexity is that, the threads

of an application can interleave in so many different ways. To ensure correctness, a

programmer has to test all possible thread interleavings, which, however, is imprac-

tical. Many rare thread interleavings remain untested in production systems, and

they are the major cause for a majority of concurrency bugs.

Given that untested interleavings are the major cause of a majority of the concur-

rency bugs, this dissertation explores two possible ways to tackle concurrency bugs

in this dissertation. One is to expose untested interleavings during testing to find

concurrency bugs. The other is to avoid untested interleavings during production

runs to tolerate concurrency bugs. The key is an efficient and effective way to encode

and remember tested interleavings.

This dissertation first discusses two hypotheses about concurrency bugs: the small

scope hypothesis and the value independent hypothesis. Based on these two hypothe-

ses, this dissertation defines a set of interleaving patterns, called interleaving idioms,

xi

which are used to encode tested interleavings. The empirical analysis shows that the

idiom based interleaving encoding scheme is able to represent most of the concurrency

bugs that are used in the study.

Then, this dissertation discusses an open source testing tool called Maple. It mem-

oizes tested interleavings and actively seeks to expose untested interleavings. The

results show that Maple is able to expose concurrency bugs and expose interleavings

faster than other conventional testing techniques.

Finally, this dissertation discusses two parallel runtime system designs which seek

to avoid untested interleavings during production runs to tolerate concurrency bugs.

Avoiding untested interleavings significantly improve correctness because most of the

concurrency bugs are caused by untested interleavings. Also, the performance over-

head for disallowing untested interleavings is low as commonly occuring interleavings

should have been tested in a well-tested program.

xii

CHAPTER I

Introduction

Multi-threaded programming is inherently harder than von Neumann style single-

threaded programming. The number of possible states at a program statement expo-

nentially increases with the number of threads executed, as the memory operations

in a thread could interleave with the memory operations in the other threads in many

different orders. Understanding, testing and verifying the correctness of all possible

thread interleavings is impractical. Programmers tend to test only a small fraction

of all possible legal thread interleavings in an application before shipping it to cus-

tomers. The remaining untested interleavings are the major cause of a majority of

concurrency bugs.

Given that concurrency bugs are typically caused by untested interleavings, we

explore two possible research directions to tackle them. First, we propose a tool,

called Maple, that tries to expose as many untested interleavings as possible during

testing. This increases the chance of exposing any latent concurrency bug before the

program is shipped. Even so, the interleaving space for a given program is so huge

that Maple cannot practically expose all untested interleavings. For the remain-

ing untested interleavings, we propose another approach which seeks to avoid them

during production runs. This approach has the potential to tolerate most of the

1

2

concurrency bugs as untested interleavings are the major cause of a majority of con-

currency bugs. The key to both techniques is a way to encode and remember tested

interleavings, based on which we can either seek to expose untested interleavings

during testing, or try to avoid untested interleavings during production runs.

A thread interleaving is typically defined to be the order in which the memory

operations are executed by all the threads in an execution. One natural way to en-

code a tested interleaving is to record the partial order of the memory operations

executed by all the threads in an execution. However, this encoding scheme is not

suitable for our purpose. Under such an encoding scheme, an encoded tested inter-

leaving is only meaningful for a particular test run and becomes hardly useful when a

different program input is used. Therefore, for a given program, there might exist an

infinite number of untested thread interleavings. If one randomly picks an untested

interleaving to test, the probability of exposing a concurrency bug is low. Avoiding

untested interleavings at runtime using such an encoding scheme is also not practical

as it is likely that many of the interleavings the system encounters at runtime are not

tested. Finally, checking if an interleaving has been tested or not requires checking

every memory operations involved in the interleaving, which is very expensive.

Hence, the challenge is to derive a way to encode tested interleavings such that it

is generic enough for different program inputs. At the same time, it should be able to

capture the set of all tested interleavings so that by exposing or avoiding untested in-

terleavings, we can find and tolerate most of the concurrency bugs. Finally, checking

if an interleaving has been tested or not can be carried out efficiently.

To address the above challenges, our high level idea is to define a finite set of

interleaving fragments that can possibly be exposed for a given program. The set of

interleaving fragments should be able to represent an infinite number of legal thread

3

interleavings of that program. At the same time, if one manages to expose the set of

interleaving fragments, it is sufficient to expose a majority of concurrency bugs in this

program. Tested interleavings are encoded using the set of interleaving fragments

that are exposed during testing. We want the set of interleaving fragments to be

as small as possible such that by exposing an untested interleaving fragment, the

probability of finding a concurrency bug is much higher than randomly picking an

untested thread interleaving from the infinite legal thread interleaving space.

1.1 Two Hypotheses and Interleaving Idioms

In order to define interleaving fragments, we first discuss two hypotheses we make

about concurrency bugs. These two hypotheses are the foundation of this disserta-

tion. The way we encode and remember tested interleavings as well as the tools for

exposing and avoiding untested interleavings are all based on these two hypotheses.

The first hypothesis is called small scope hypothesis. It is originally proposed

by Jackson and Damon [34]. A recent adoption of this hypothesis on concurrency

bugs [49] states that most concurrency bugs can be exposed using a small number of

preemptions. CHESS [52] exploits this observation to bound the number of preemp-

tions to reduce the search space. Our adoption of this hypothesis is that we focus on

those simple concurrency bugs that involve no more than two threads, two variables

and two inter-thread dependencies.

Surely there exist concurrency bugs that are more complex, and our technique is

not able to handle them. However, previous study has shown that complex concur-

rency bugs are less likely to be exposed than simple ones [12]. Given the fact that

we cannot practically expose all concurrency bugs in a program within a constant

time budget, we prefer to spending more time on those concurrency bugs that are

4

more likely to occur in production environment, which are, in order words, the less

complex ones.

We propose a second hypothesis about concurrency bugs called value independent

hypothesis. It states that a majority of concurrency bugs gets triggered if the er-

roneous inter-thread memory dependencies are exposed, irrespective of the program

input and the data values of the shared variables involved in the dependencies. This

hypothesis is based on our observation of several concurrency bugs in real-world ap-

plications. In fact, this hypothesis is implicitly assumed by many of the previous

work on detecting, exposing and tolerating concurrency bugs [43, 44]. Given the

value independent hypothesis, it is safe to choose an interleaving encoding scheme

that is input and value oblivious.

Based on these two hypotheses, we introduce a set of interleaving idioms which we

use as a foundation to define interleaving fragments and encode tested interleavings.

Each interleaving idiom is a pattern of inter-thread dependencies through shared-

memory accesses, which defines a type of interleaving fragments that we are interested

in. In this dissertation, we focus on a set of canonical idioms that involve no more

than two threads, two variables and two inter-thread dependencies, according to the

small scope hypothesis.

An instance of an interleaving idiom is called an iRoot, which is represented using a

set of static memory instructions. We say an iRoot is exposed in an execution if any

part of the thread interleaving in that execution satisfies the interleaving pattern

specified by the interleaving idiom and the involving static memory instructions

match that specified in the iRoot. We use iRoots to represent interleaving fragments.

The tested interleavings can therefore be encoded using a set of iRoots exposed

during test runs. Our empirical analysis shows that such an encoding scheme is able

5

to capture 97% (33 out of 34) of the concurrency bugs 1 we have analyzed.

1.2 Finding Concurrency Bugs by Exposing Untested Interleavings

There have been significant work on detecting various kinds of concurrency bugs

such as data races [21, 19], atomicity violations [43, 22], order violations [71] and

deadlocks [53]. They can be divided into two major categories: static tools and

dynamic tools. Static tools detect concurrency bugs by analyzing program code

statically. These tools usually produce a large volume of false positives, thus pre-

venting them from being widely adopted by programmers. Dynamic tools, however,

can be very precise. They analyze an execution of a program and report potential

concurrency issues. However, these dynamic tools can find a concurrency bug only

if an appropriate execution is exposed. Exposing thread interleavings that exhibit

concurrency bugs is therefore another challenge that we face.

Exposing concurrency bugs is much more difficult than exposing sequential bugs

because it demands exploring not only the input space but also the huge thread

interleaving space. In fact, almost all the existing testing techniques for multi-

threaded programs focus on exploring different thread interleavings and assume a

fixed program input. One common practice for exposing concurrency bugs is stress

testing [18, 12], where a multi-threaded program is subjected to extreme scenarios

during a test run. This method is not adequate because executing a program again

and again over an input tends to unnecessarily test similar thread interleavings and

has less likelihood of exposing a rare buggy interleaving. An alternative to stress

testing is systematic testing [26, 52], where the thread scheduler systematically ex-

plores all legal thread interleavings for a given test input. However, this approach

does not scale well for large programs because of the huge interleaving space for those

1When we say a concurrency bug, we mean a static concurrency bug.

6

programs. Active testing [59, 73, 69] is another recent development. A typical active

testing tool focuses on a specific type of concurrency bugs. It only tests a small set of

representative interleavings that are more likely to expose that type of concurrency

bugs. As a result, a programmer may not be able to determine whether she should

continue testing or not after the active testing tool finishes.

To address the above issues, we propose a coverage driven testing tool, called

Maple, for exposing concurrency bugs. Maple memoizes past tested interleavings

using the idiom based encoding scheme discussed above, and guides each future

test run to explore new untested interleavings. It leverages the value independent

hypothesis to test for an interleaving only once, and avoids testing the same thread

interleaving again and again across different test inputs. Thus, the number of thread

interleavings to test would progressively reduce as we test for more inputs. Our

experiences in using Maple to test real-world applications shows that Maple is able

to expose interleavings and exposing concurrency bugs faster than other existing

testing techniques for multi-threaded programs. We also find 3 previously unknown

bugs, which further demonstrates the bug exposing capability of Maple.

1.3 Tolerating Concurrency Bugs by Avoiding Untested Interleavings

Even with a state-of-the-art testing tool like Maple, we cannot practically test all

thread interleavings of a given program because of its huge interleaving space. For

the remaining untested interleavings, one promising approach is to avoid them during

production runs. This improves correctness because untested interleavings are the

major cause of a majority of concurrency bugs. At the same time, avoiding untested

interleavings at runtime should have little performance impact as the commonly

occuring interleavings should already be tested for a well-tested program.

7

Concurrency bug avoidance technique [64, 62, 45] has gained increasing attentions

recently. It serves as the last safety net for the production system to prevent the

concurrency bugs from manifesting in production runs. Some techniques integrate

dynamic bug detection tools with checkpoint and re-execution systems [62, 64]. In

these tools, once a bug is detected, the program will be rolled back to a previous

checkpoint and re-execute so as to bypass the buggy interleavings. Other tech-

niques [45] limit the freedom that threads can interleave in production systems such

that some types of concurrency bugs will less likely to be exposed in production

runs. For example, Atom-Aid [45] dynamically groups instructions into chunks and

enforces a serial order between them. However, none of the previous technique takes

tested interleavings into account and actively seeks to avoid untested interleavings.

As a result, they are very sensitive to false positives, thus limiting their capabilities

on avoiding variety of concurrency bugs.

In this dissertation, we propose two runtime system designs for tolerating con-

currency bugs. Both systems remember tested interleavings and actively seek to

avoid untested interleavings in production runs. Though possible, a software solu-

tion would incur significant performance overhead to the runtime system. Therefore,

a hardware solution is a must. We first discuss a customized shared memory multi-

processor design for tolerating concurrency bugs. Like Maple, it encodes tested in-

terleavings based on interleaving idioms. However, to ensure a complexity-effective

hardware design, we only consider the simplest interleaving idiom which involves

only one inter-thread dependency. Even though, we are still able to avoid at least

60% of the concurrency bugs according to our empirical analysis. We encode the

tested interleavings in a program’s binary executable using Predecessor Set (PSet)

constraints. These constraints are efficiently enforced at runtime using processor

8

support, which ensures that the runtime follows a tested interleaving. We analyze

17 bugs in open source applications and show that, by enforcing PSet constraints,

we can avoid variety of concurrency bugs.

Though the PSet based runtime system is effective in tolerating many types of

concurrency bugs, it has two major drawbacks. First, since we only consider the

simplest interleaving idiom that involves only one inter-thread dependency due to

hardware complexity concern, the system cannot avoid those concurrency bugs that

involve multiple variables and inter-thread dependencies. For example, it cannot

avoid multi-variable atomicity violations [41]. Second, the technique requires non-

trivial changes to the commodity hardware, preventing it from being widely adopted.

As Hardware Transactional Memory (HTM) becoming a reality [2], we propose

another runtime system design, called LifeTx, to tolerate concurrency bugs. It is

based on a new type of interleaving constraints called lifeguard transaction (LifeTx),

which is designed to be enforcible by HTM. Lifeguard transactions are similar to the

programmer specified transactions [30, 32] in that it instructs the runtime to execute

them in a serializable order. The difference is that LifeTxes are automatically derived

based on interleavings observed during testing. LifeTx constraints can be efficiently

enforced by a new hardware design similar to the eager conflict detection capability

that exist in a conventional hardware transactional memory (TM) systems [32, 48],

but without the need for versioning, rollback and unbounded TM support [8]. This

greatly simplify the hardware design. Our experiments show that LifeTx is able

to avoid 11 out of 12 atomicity violation bugs, including multi-variable atomicity

violations, with only 0.6% performance overhead on average.

It is not unusual that the production environments (e.g. program inputs, hardware

platforms, OS workloads) are substantially different from the testing environments

9

and the frequencies with which particular interleavings occur might be different from

what we observed during testing. To understand the degree to which such hetero-

geneity between testing and production environments can affect the effectiveness and

efficiency of our interleaving constrained systems, we make sure that the program

inputs used in production runs are different from those used in testing in all of our

experiments. Moreover, we try to use different hardware platforms and operating

systems for testing and production runs. For instance, in LifeTx, we simulate the

production environment in a simulator which is configured to be very different from

the real machine in which testing is conducted. In spite of that, our interleaving

constrained systems are still effective in avoiding concurrency bugs with little per-

formance overhead as indicated by our results, which provides some evidences about

the ability of our technique in tolerating the heterogeneity between testing and pro-

duction environments. Nevertheless, if other factors which we have not studied cause

performance problems in productions runs, we always have a choice to turn off the

protection to recover performance if we find the performance overhead is too high

and outweighs the extra reliability we get.

1.4 Contributions

In summary, this dissertation makes the following contributions:

• We discuss two hypotheses about concurrency bugs: the small scope hypothesis

that we adopt and the value independent hypothesis that we propose. Based

on these two hypotheses, we define a set of interleaving idioms which we use to

encode tested interleavings. Being able to encode tested interleavings enables

us to build better tools for finding and tolerating concurrency bugs as we can

concentrate on exposing and avoiding untested interleavings.

10

• We build a coverage driven testing tool called Maple. It memoizes tested in-

terleavings based on interleaving idioms and actively seeks to expose untested

thread interleavings as much as possible. We discuss our experiences in using

the tool to expose 13 known and unknown bugs in real-world applications such

as Apache and MySQL. Our results show that Maple is able to expose inter-

leavings and expose concurrency bugs faster than other conventional testing

techniques.

• We propose a customized shared memory multi-processor design for tolerating

concurrency bugs. It is optimized for the simplest interleaving idiom which only

involves one inter-thread dependency. We encode the tested interleavings in a

program’s binary executable using Predecessor Set (PSet) constraints. These

constraints are efficiently enforced at runtime using processor support, which

ensures that the runtime follows a tested interleaving. We analyze 17 concur-

rency bugs in open source applications such as MySQL, Apache, Mozilla, etc.,

and show that, by enforcing PSet constraints, we can avoid not only data races

and atomicity violations, but also other forms of concurrency bugs.

• Following the PSet work, we discuss another hardware design for tolerating

atomicity violation bugs. It is based on a new interleaving constraints called

lifeguard transaction (LifeTx). LifeTx constraints can be efficiently enforced by

a new hardware design similar to the eager conflict detection capability that

exist in a conventional Hardware Transactional Memory (HTM) systems, but

without the need for versioning, rollback and unbounded TM support. We show

that 11 out of 12 atomicity violation bugs in programs like Apache, MySQL and

Mozilla could be avoided using the proposed approach for only 0.6% performance

overhead on average.

11

• We have made several contributions to open source community. We released a

set of concurrency bugs that we collected from a few open source applications [1].

This online bug database has already been used and cited by dozens of research

papers. We also made Maple, along with a dynamic analysis framework for

concurrency programs, available to the public under the Apache 2.0 license [4].

It has already been adopted by a few researchers.

1.5 Structure

This dissertation is organized as follows. Chapter II discusses the background and

the related work on finding and tolerating concurrency bugs. Chapter III defines the

interleavings idioms and discuss two hypotheses about concurrency bugs which we

use as a foundation of this dissertation. Chapter IV presents Maple, a coverage driven

testing tool for exposing concurrency bugs. Chapter V and Chapter VI discuss two

approaches for tolerating concurrency bugs. Chapter V describes the PSet based in-

terleaving constrained shared memory multi-processor. Chapter VI discusses LifeTx,

a transaction based approach for tolerating atomicity violation bugs. We discuss our

future work in Chapter VII and conclude the dissertation in Chapter VIII.

CHAPTER II

Background and Related Work

In this chapter, we discuss previous work on finding and tolerating concurrency

bugs. We first discuss existing approaches on detecting concurrency bugs (Sec-

tion 2.1). Then, we discuss current testing techniques for exposing concurrency bugs

(Section 2.2). Finally, we discuss existing runtime system solutions for tolerating

concurrency bugs (Section 2.3).

2.1 Detecting Concurrency Bugs

Concurrency bug detection is among one of the most widely studied techniques for

finding concurrency bugs. Numerous tools have been made to find data races [19, 77,

21], atomicity violations [24, 43, 22], deadlocks [53] and other forms of concurrency

bugs [71]. These tools report potential concurrency errors in a program either by

analyzing the program statically (static tools), or by analyzing its dynamic executions

(dynamic tools).

Static bug detection tools [19, 77, 53, 24, 41] predict concurrency bugs in a pro-

gram by analyzing the program statically. They usually do not produce false nega-

tives. However, one of the common problems with many static bug detection tools is

that they produce a large volume of false positives. The reason is, without knowing

the actual program states at runtime, these tools usually make conservative assump-

12

13

tions about program executions, many of which are not feasible. Because of the high

false positive rate, static bug detection tools are not widely adopted by programmers.

Dynamic bug detection tools [21, 43, 22, 85, 80], however, can be very precise and

produce no false positive [21, 22]. They monitor dynamic program executions and

report concurrency errors that manifest in those executions, or predict errors that

will potentially manifest in alternate executions. Since dynamic bug detection tools

rely on dynamic program executions, they might produce false negatives because

some bugs can only be detected under specific interleavings. Typically, they do

not actively seek to perturb program executions to reduce false negatives. Another

disadvantage of dynamic bug detection tools is that the runtime overhead is usually

high because of the program monitoring cost.

2.1.1 Data Race Detection

A data race can be defined as a pair of memory accesses to the same memory

location, where at least one of the accesses is a write, and neither one happens-before

the other. Dynamic data race detectors can be classified into two major categories:

happens-before based and lockset based. A happens-before data race detector [55]

finds only the data races that manifest in a given program execution. Lockset based

techniques [68] can predict data races that have not manifested in a given program

execution, but can report false positives.

Not all data races are harmful data races [54]. Many of the data races in produc-

tion systems are benign, as programmers intentionally allow data races to optimize

performance. Programmer constructed synchronizations could also result in benign

data races. Benign data races also tends to be frequent, as opposed to harmful data

races [54]. Therefore, a data race is really a heuristic, which is used to detect a

particular interleaving pattern (concurrent memory accesses with no happens-before

14

relation between them) that strongly correlates with the concurrency bugs that pro-

grammers tend to make.

2.1.2 Atomicity Violation Detection

Atomicity violations is another major source of concurrency errors [82, 43, 58,

20, 7, 22]. An atomicity violation occurs when a programmer assume a code region

to be atomic, but fails to enforce its atomicity. Most of the atomicity violation

detectors rely on programmers to specify the atomic regions through annotations.

Some tools [82, 43, 41] use heuristics to automatically infer atomic regions. Detecting

atomicity violations becomes straightforward once the atomic regions are determined.

2.2 Exposing Concurrency Bugs

Concurrency bug detection is one way to find concurrency bugs. Another way to

find concurrency bug is to actually expose them in real executions. In this section,

we discuss previous work on concurrent software testing.

2.2.1 Coverage Driven Testing

Coverage metrics for single-threaded programs are well studied in the literature.

However, defining an effective coverage metric for multi-threaded programs is much

more difficult and remains an open problem. There have been a few studies on

coverage metrics for concurrent programs [74, 83, 11, 40, 70, 38]. Taylor et al. [74]

presented a family of coverage criteria for concurrent Ada programs. All-du-path [83]

is a coverage metric for concurrent programs which is based on definition-use pairs.

Sherman et al. [70] discussed a few coverage metrics based on synchronizations and

inter-thread dependencies. However, none of these work discusses a synergistic set

of testing tools that can help programmers achieve high coverage for the proposed

coverage metric and analyzes its effectiveness in exposing concurrency bugs.

15

2.2.2 Stress Testing and Random Testing

Stress testing is still widely used in software industry today. A parallel program

is subjected to extreme scenarios during testing with the hope of increasing the

likelihood of exposing buggy interleavings. This method is clearly inadequate since

naively executing a program again and again over an input tends to unnecessarily test

similar thread interleavings. A few techniques have been proposed to improve stress

testing. The main idea is to randomize the thread interleavings so that different

thread interleavings will be exercised in different test runs. These techniques mainly

differ in the way in which they randomize thread interleavings. For example, Con-

Test [18] injects random delays at synchronization points. PCT [12] assigns a random

priority to each thread and changes priorities at random points during an execution.

However, all of these random testing techniques still suffer a common problem: the

probability of exposing a rare interleaving that can trigger a concurrency bug is very

low given that the interleaving space is so huge.

2.2.3 Systematic Testing

An alternative to stress testing is systematic testing [31, 26, 52, 78], which tries to

explore all possible thread interleavings for each test input. Even with partial order

reduction techniques [25, 23], the number of thread interleavings to test for a given

input is still huge. Therefore, a few heuristics have been proposed to further reduce

the testing time at the cost of missing potential concurrency errors. CHESS [52]

bounds the number of preemptions in each test run. HaPSet [78] records PSet (dis-

cussed in Chapter V) during testing and guides the systematic search towards those

interleavings that can produce new PSet dependencies. Even though, these tools

still suffer from scalability problem, especially for long-running programs. Further-

16

more, these tools do not have a way to remember tested interleavings across different

inputs. Finally, systematic testing tools usually require a closed unit testing envi-

ronment which is not easy to setup in practice. However, systematic testing tools

do have one distinct advantage in that they can provide certain guarantees to find a

concurrency bug in a program for a given input.

2.2.4 Active Testing

Active testing has recently emerged as a new way to test concurrent software [69,

59, 58, 73, 39, 33, 36]. A typical active testing tool has two phases: a prediction phase

and a validation phase. In the prediction phase, active testing tools use approximate

bug detectors to predict potentially buggy thread interleavings in a program. Then,

in the validation phase, an active scheduler will try to exercise each of the suspicious

buggy interleavings in a real execution to verify whether it is really a bug or just a

false positive.

In the prediction phase, active testing tools use either static or dynamic analysis

techniques to predict certain types of concurrency bugs in a program such as data

races [69], atomicity violations [59, 58, 73], atomic-set serializability violations [39,

33], and deadlocks [36]. The interleaving patterns of these tools represent erroneous

interleaving patterns and target certain types of concurrency bugs. Therefore, they

are not generic. For a given test input, after actively testing for all the predicted

buggy thread interleavings, a programmer may not be able to determine whether she

should continue testing other thread interleavings for the same input or proceed to

test a different input.

There are two common ways in which validation can be performed. One way is

to precisely compute an alternate schedule from the observed schedule such that the

computed alternate schedule is guaranteed to expose a buggy thread interleaving.

17

The computed alternate schedule will then be enforced during an execution [73, 33,

37]. However, computing an alternate schedule precisely is usually very expensive.

It typically involves changing the relative order of independent events in an observed

trace and making sure that the transformed trace is feasible. Therefore, this solution

not suitable if the goal is to achieve high interleaving coverage.

The other approach is to use heuristics, usually best effort, to expose predicted

interleavings [69, 59, 58, 39, 36]. For example, CTrigger [59] injects time delays at

certain points to increase the chance of exposing buggy interleavings.

2.2.5 Test Input Generation

Test input generation is a testing technique that can be used to achieve high code

coverage [27, 13, 28, 57]. For a given program, their goal is to generate test inputs

so that testing the program with the generated test inputs can cover most of the

code in the program. This technique is typically for single-threaded programs and is

orthogonal to what we are doing in this dissertation.

2.3 Tolerating Concurrency Bugs

Bug avoidance and tolerating techniques have gained increasing interests recently.

They serve as the last safety net to prevent concurrency bugs from manifesting in

production systems. The main idea is to limit the freedom that threads can interleave

so that some concurrency bugs can be avoided. Some techniques integrate dynamic

bug detection tools with checkpoint and re-execution systems [62, 64]. In these tools,

once a bug is detected, the program will be rolled back to a previous checkpoint and

re-execute so as to bypass the buggy interleavings. Such systems have two major

drawbacks. First, the bug detection tools used are optimized for reducing false

positives, which could limit their capabilities on avoiding variety of concurrency

18

bugs. Second, supporting checkpoint and re-execution is usually heavyweight and

complex.

Atom-Aid [45] is a seminal work on tolerating concurrency bugs. It leverages the

chunk-based execution model described in [14] in which the processor dynamically

constructs chunks and enforces a serial order between them. The authors show that

many concurrency bugs can be probabilistically avoided using such an execution

model. However, it is optimized for avoiding single-variable atomicity violations.

For other concurrency bugs, though it can still avoid them sometimes, it is purely

by chance.

ISOLATOR [65] and ToleRace [67] detect and avoid one specific type of concur-

rency errors: asymmetric data races. An asymmetric data race occurs when one

thread obeys the locking discipline correctly while some other threads do not. Both

systems can efficiently detect and avoid asymmetric data races by maintaining a

shadow memory copy for each critical section and updating it speculatively.

Deterministic execution [17, 56] constrains the thread interleavings to provide a

guarantee that any execution of a multi-threaded program would yield the same

output as long as the input remains the same. In other words, they guarantee a

deterministic order of all memory accesses for a given program input. This technique

also reduces the freedom that threads can interleave at runtime, thereby can tolerate

concurrency bugs at some degree. It could also help programmers in reproducing

bugs. However, for a given input, the system chooses the deterministic order based

on arbitrary program events (for example, number of retired stores). As a result, the

chosen deterministic order is not going to be more correct than a random order chosen

by the current systems. Therefore, a programmer would still have to test all legal

interleavings to ensure concurrency bug free. This is a fundamental problem with

19

the shared-memory multi-threaded programming model, which we seek to address in

this dissertation.

CHAPTER III

Encoding Tested Interleavings Using Interleaving Idioms

As we mentioned in Chapter I, the key of this dissertation is an efficient and

effective way to encode tested interleavings. Based on that, we can either expose

untested interleavings during testing (Chapter IV), or avoid untested interleavings

at runtime (Chapter V and Chapter VI).

A thread interleaving is typically defined to be the order in which the memory

operations are executed by all the threads in an execution. One natural way to en-

code a tested interleaving is to record the partial order of the memory operations

executed by all the threads in an execution. However, this encoding scheme is not

suitable for our purpose. Under such an encoding scheme, an encoded tested inter-

leaving is only meaningful for a particular test run and becomes hardly useful when a

different program input is used. Therefore, for a given program, there might exist an

infinite number of untested thread interleavings. If one randomly picks an untested

interleaving to test, the probability of exposing a concurrency bug is low. Avoiding

untested interleavings at runtime using such an encoding scheme is also not practical

as it is likely that many of the interleavings the system encounters at runtime are not

tested. Finally, checking if an interleaving has been tested or not requires checking

every memory operations involved in the interleaving, which is very expensive.

20

21

In this chapter, we discuss our approach for encoding tested interleavings. Our

idea is to define a finite set of interleaving fragments that can possibly be exposed

for a given program. The set of interleaving fragments should be able to represent

an infinite number of legal thread interleavings of that program. At the same time,

if one manages to expose the set of interleaving fragments, it is sufficient to expose

a majority of concurrency bugs in this program. Tested interleavings are encoded

using the set of interleaving fragments that are exposed during testing. We want

the set of interleaving fragments to be as small as possible such that by exposing

an untested interleaving fragment, the probability of finding a concurrency bug is

much higher than randomly picking an untested thread interleaving from the infinite

legal thread interleaving space. Furthermore, checking if an interleaving fragment is

tested or not can be carried out quite efficiently.

In order to define interleaving fragments, we first discuss two hypotheses we make

about concurrency bugs (Section 3.1). Based on these two hypotheses, we introduce

interleaving idioms and iRoots which we use to represent interleaving fragments

(Section 3.2). Then, we introduce a set of canonical interleaving idioms that we

focus on (Section 3.3), and discuss the relation between interleaving idioms and

concurrency bugs (Section 3.4). Finally, we present our empirical analysis on 34

documented bugs to show the effectiveness of our idiom based interleaving encoding

scheme (Section 3.5).

3.1 Two Hypotheses about Concurrency Bugs

We first discuss two hypotheses we make about concurrency bugs. As we men-

tioned in Chapter I, these two hypotheses are the foundation of this dissertation.

The first hypothesis is called small scope hypothesis. It is originally proposed

22

by Jackson and Damon [34]. A recent adoption of this hypothesis on concurrency

bugs [49] states that most concurrency bugs can be exposed using a small number of

preemptions. CHESS [52] exploits this observation to bound the number of preemp-

tions to reduce the search space. Our adoption of this hypothesis is that we focus on

those simple concurrency bugs that involve no more than two threads, two variables

and two inter-thread dependencies.

Surely there exist concurrency bugs that are more complex, and our technique is

not able to handle them. However, previous study has shown that complex concur-

rency bugs are less likely to be exposed than simple ones [12]. Given the fact that

we cannot practically expose all concurrency bugs in a program within a constant

time budget, we prefer to spending more time on those concurrency bugs that are

more likely to occur in production environment, which are, in order words, the less

complex ones.

The second hypothesis is called value independent hypothesis. This hypothesis is

proposed by us. It states that a majority of concurrency bugs gets triggered if the

erroneous inter-thread memory dependencies are exposed, irrespective of the data

values of the shared variables involved in the dependencies. This hypothesis is based

on our observation of several concurrency bugs in real-world applications, which is

shown in Section 3.5. In fact, this hypothesis is implicitly assumed by many of the

previous work on detecting, exposing and tolerating concurrency bugs [43, 44].

3.2 Interleaving Idiom

Based on these two hypotheses, we introduce interleaving idioms and iRoots which

we use to represent interleaving fragments. An interleaving idiom is a pattern of

inter-thread dependencies and the associated memory operations. An inter-thread

23

memory dependency (denoted using ⇒) is an immediate (read-write or write-write)

dependency between two memory accesses in two threads. A memory access could be

either to a data or a synchronization variable. For example, the simplest interleaving

idiom is shown in the dotted box in Figure 3.2. The arrow in the idiom represents

an inter-thread memory dependency. AX and BX represent two conflicting memory

accesses where A and B are static instruction addresses.

A dynamic instance of an idiom in a program’s execution is called as an inter-

leaving root (iRoot). A memory access in an iRoot is represented using the static

address of the memory instruction. We say that an iRoot is exposed in an execu-

tion if any part of the thread interleaving in that execution satisfies the interleaving

pattern specified by the interleaving idiom and the involving static memory instruc-

tions match that specified in the iRoot. For example, consider the execution shown

in Figure 3.2. For the given idiom shown in the dotted box, three iRoots of that

idiom are exposed in this execution: I1 ⇒ I4, I2 ⇒ I5 and I5 ⇒ I3. We propose to

use iRoots to represent interleaving fragments. Tested interleavings can therefore be

encoded using the set of iRoots that are exposed during test runs.

Notice that the definitions of interleaving idiom and iRoot are oblivious to the

data values of the shared variables involved in the inter-thread dependencies. In

order words, if an iRoot has been already exposed during an earlier execution for

some test input, we say this iRoot is exposed and we will not seek to expose the same

iRoot again even for a different test input. This is driven by the value independence

hypothesis we just discussed. Moreover, for a given set of interleaving idioms, the

set of possible iRoots of those idioms in a given program is finite, which satisfies our

needs for interleaving fragments.

24

3.3 Canonical Idioms

As we discussed above, interleaving idioms should be generic enough such that,

by exposing their iRoots, most concurrency bugs could be triggered. At the same

time, the set of iRoots that needs to be tested, called coverage domain, should

be small enough that, the probability of exposing an unknown concurrency bug

is high when an untested iRoot is exposed. To meet these competing demands, we

make an assumption that most concurrency bugs can be exposed using simple thread

interleaving patterns. This assumption is inspired by the small scope hypothesis just

discussed.

We study a set of canonical idioms that can be constructed for one or two inter-

thread dependencies (which implies there can be only one or two shared-variables)

involving no more than two threads. Figure 3.1 enumerates the canonical set of

idioms for two inter-thread dependencies and two threads. There are six idioms in

total. We refer to idiom1 as a simple idiom, and the rest as compound idioms. For

compound idioms, to reduce the coverage domain without significantly compromising

the ability to expose a concurrency bug, we include two additional constraints. First,

the number of instructions executed between two events in the same thread should

be less than a threshold. We refer to this threshold as the vulnerability window (vw).

Second, in an idiom, if atomicity of two memory accesses in a thread T to a variable

V is violated by accesses in another thread, we disallow accesses to V between those

two accesses in the thread T . For example, in idiom3 we do not allow any access to

the variable X between the two memory accesses AX and DX , but there could be

accesses to X between BX and CX .

Six idioms in Figure 3.1 can represent interleavings required to expose a majority

25

Idiom1

Idiom2

Idiom3

Idiom4

Idiom5 Idiom6

Figure 3.1: The canonical idioms for two inter-thread dependencies and two threads.

of concurrency bugs: atomicity violations, including both single variable (idiom1,

idiom2, idiom3) and multi-variable (idiom4, idiom5); typical deadlock bugs (idiom5),

and generic order related concurrency bugs (idiom1, idiom6). These interleaving

patterns are more general than the anomalous patterns used in prior studies to find

specific classes of concurrency bugs [69, 59, 73].

3.4 Relation with Concurrency Bugs

The iRoot of a concurrency bug specifies the minimum set of inter-thread depen-

dencies and the associated memory or synchronization accesses, which if satisfied,

are sufficient to trigger that bug in an execution. Therefore, for a given concur-

rency bug, we can either seek to expose its iRoot during testing to find it, or try to

avoid its iRoot at runtime to tolerate it. Of course, higher order iRoots may also

expose the same concurrency bug, but for the purpose of classifying concurrency

bugs, we consider the iRoot that provides the minimum set of sufficient interleaving

conditions.

Figure 3.2 shows an example of a concurrency bug. The idiom of the bug is

shown in the dotted box. A and B represent static instructions in the program and

X represents a memory location. The arrows denote inter-thread dependencies. The

26

T1 T2

:

foo(…)

{

 c:=1

 a:=1

 a:=2

}

bar(…)

{

 if(c)

 assert(a!=1)

}

:

:
Idiom

Sufficient Conditions:

Initial: a = 0, c = 0

:
:

Figure 3.2: An idiom1 concurrency bug.

bug is triggered whenever the inter-thread dependency I2 ⇒ I5 is satisfied in an

execution. Therefore, this is an idiom1 bug and its iRoot is I2 ⇒ I5 which we refer

to as idiom-conditions.

Note that there exists an inter-thread dependency I1 ⇒ I4 that must also be

satisfied before the iRoot I2 ⇒ I5 can be exposed. This dependency affects the

control flow of the thread T2 and determines whether I5 is executed or not. We

refer to such necessary conditions which must be satisfied in order to satisfy the

idiom-conditions as pre-conditions. We choose not to include pre-conditions into the

iRoot of a concurrency bug because these conditions might be irrelevant to the root

cause of the bug and can typically be derived automatically based on the idiom-

conditions [37].

Also notice that I5 ⇒ I3 will be exposed if the bug is triggered. However, this

condition need not be part of the bug’s iRoot (I2 ⇒ I5), because it is always implied

by the bug’s iRoot interleaving conditions.

Figure 3.3 shows a real concurrency bug in MySQL and its idiom. In this ex-

ample, two critical sections in Thread-1 are expected to execute atomically, but the

programmer did not enforce that constraint explicitly. The bug will be exposed when

the critical sections in Thread-1 are intercepted with the critical section in Thread-2.

27

Thread-1 Thread-2

int generate_table(..){
 lock(&LOCK_open);
 // delete table entries
 unlock(&LOCK_open);

 lock(&LOCK_log);
 // write log
 unlock(&LOCK_log);
}

int mysql_insert(..){

 lock($LOCK_open);
 // insert to table
 unlock($LOCK_open);
 ...
 lock(&LOCK_log);
 // write log
 unlock(&LOCK_log);

}

Idiom-4

Figure 3.3: A real idiom4 concurrency bug from MySQL.

The iRoot for this bug is of type idiom4 consisting of the two inter-thread depen-

dencies between the lock and unlock operations. This example conveys an important

observation that even if a concurrency bug is fairly complex involving many differ-

ent variables and inter-thread dependencies, the iRoot of that bug (minimum set of

interleaving conditions that need to be satisfied to trigger that bug) could be quite

simple. Thus, by testing iRoots for a small set of idioms, we can hope to expose a

significant fraction of concurrency bugs.

3.5 Empirical Analysis

To verify our hypothesis that exposing untested iRoots for our simple set of inter-

leaving idioms could expose a significant fraction of concurrency bugs, we conducted

an empirical study using 34 documented concurrency bugs from various programs

including Apache, MySQL, and Memcached [1]. Here, when we say a concurrency

bug, we mean a static concurrency bug.

Table 3.5 lists all the bugs we have analyzed. Each bug in the table has a unique

name (Column-1) which is referred to throughout this dissertation. Column-2 pro-

vides a reference for each bug, which either specifies the issue number in the corre-

sponding bug database if exists, or the paper in which the bug is studied. Among

28

Bug Name Ref. Category Idiom Description

Apache-1 25520 Real Idiom-1
A data race in ap buffered log writer. The function can be invoked by multiple threads and
no synchronization is used to protect the shared memory accesses. This will cause garbage
data in the access log.

Apache-2 21285 Real Idiom-3
An atomicity violation in mod mem cache.c. A temporary object is added to a cache and will
later be removed from the cache. The object is expected, but not guaranteed, to be in the
cache when the removal happens, which can lead to a possible crash.

Apache-3 21287 Real Idiom-1
An atomicity violation in mod mem cache.c. apr atomic dec is not atomic when it is complied
on some platforms, which might cause an object to be cleared twice.

Apache-4 45605 Real Idiom-4
This bug is due to the lack of atomicity between the update of variable queue info->idlers

and the notification of conditional variable wait for idler in ap queue info set idle.

MySQL-1 169 Real Idiom-4
An multi-variable atomicity violation in sql delete.cc. When deleting a table, two criti-
cal sections in generate table() are interleaved with two critical sections in mysql insert(),
resulting in an unexpected order in the log file.

MySQL-2 644 Real Idiom-4
A bug involves join init cache in sql select.cc. The shared accesses in join init cache are
expected to be atomic, but not enforced. If these accesses are interleaved with accesses in
Item field::fix fields, the server will crash.

MySQL-3 791 Real Idiom-1
The bug is triggered when a user simultaneously rotates the log and performs a table
insertion. A log entry will be lost if mysql insert performs the check on the variable log type

while the log file is temporarily closed.

MySQL-4 2011 Real Idiom-4
An multi-variable atomicity violation in slave.cc. The bug is triggered when a thread
rotates the log while another thread is reading the log by invoking next event.

MySQL-5 3596 Real Idiom-1
A data race involves accesses in innobase mysql print thd and do command. The variable
thd->proc info is unexpectedly nullified by a remote thread after it is checked and before it
is used.

MySQL-6 12228 Real Idiom-3
An atomicity violation in the procedure handling logic. A thread invalidates the procedure
cache by calling sp drop procedure while another thread is executing a stored procedure,
leading to a crash.

MySQL-7 12848 Real Idiom-1
A data race in sql cache.cc. A temporary value of query cache size in Query cache::resize()

is read by a remote thread, leading to a crash.

Pbzip2 [1] Real Idiom-1
The main thread waits for the output thread to finish and then releases the mutexes. If
there exist multiple consumer threads, they can still be running while the main thread is
releasing the mutexes and so get a SIGSEGV.

Memcached 127 Real N/A
The bug happens when two clients concurrently increment or decrement cached data. The
in-place increment/decrement is not atomic, which might cause some updates being lost.

Transmission [42] Real Idiom-1
A race condition on variable bandwidth. The bug is triggered when a remote thread reads
the variable before it is initialized in function tr sessionInitFull, leading to an assertion
failure.

Cherokee [1] Real Idiom-1
A race condition in function cheroke buffer add. Two threads can simultaneously call this
function and no synchronization is used to protect the shared accesses. This could cause
a potential corrupted log.

Aget-1 [1] Real Idiom-1
A lock is still hold by the signal handling thread when it is canceled by the main thread.
The main thread will try to acquire the same lock later, causing the execution to freeze.

Aget-2 [1] Real Idiom-4
When a user types ctrl-c on the console, save log will be called in a separate thread to save
the downloaded data. The atomicity of this function is not enforced, which could cause a
potential loss of downloaded data.

MySQL-8 15530 Extract Idiom-1
A bug usually occurs when MySQL starts. Due to an unintentional interleaving, an unini-
tialized value is read by a thread, resulting in all data nodes becoming a master node.

Mozilla-1 [43] Extract Idiom-2
An atomicity violation bug in Mozilla [43]. While one thread is loading a script and
compiling it, the other thread nullifies the script. This leads to a program crash.

Mozilla-2 342577 Extract Idiom-1
An atomicity violation bug in nsZipArchive.cpp. Two different threads call SeekToItem()

simultaneously, leading to one piece of code, which is supposed to be executed only once,
get executed twice. One thread will then read garbage data.

Mozilla-3 200119 Extract Idiom-1
A bug in nsNSSComponent.cpp. While closing Mozilla, two threads check and free a timer
object simultaneously. If two threads interleave incorrectly, the object will get freed twice,
leading to a crash.

Mozilla-4 52111 Extract Idiom-1
A race between accesses in nsFileTransport.cpp and nsAsyncStreamListener.cpp. There is one
temporary state which should be invisible to other threads. Under a bad interleaving, this
temporary state can be read by another thread, leading to a deadlock.

Mozilla-5 [42] Extract Idiom-1
An order violation in nsthread.cpp. It is possible that a thread reads a location that is not
initialized yet, causing Mozilla to crash.

Mozilla-6 [42] Extract Idiom-1
A race between macio.c and macthr.c. A callback function is expected to be invoked after
a thread writes to a variable, but it is not synchronized properly. This bug will cause a
deadlock.

Mozilla-7 190106 Extract Idiom-1
An order violation in nsImapProtocol.cpp. An event will be ignored when certain interleaving
occurs. This will cause Mozilla to hang.

Mozilla-8 90196 Extract Idiom-1
An order violation in nsHttpdConnection.cpp. OnHeadersAvailable() is expected to be called
after AsyncWrite() returns, but it is not enforced. It will crash Mozilla.

Mozilla-9 106009 Extract Idiom-1
A bug in TimerThread.cpp. It happens when Shutdown() is executed prior to Run(). In that
case, the system will lose the exit event and enter into a freezing state.

Mozilla-10 [42] Extract Idiom-4
An atomicity violation that involves multiple variables. An inconsistent state is observed
by a remote thread, causing corrupted memory.

OpenLDAP [79] Extract Idiom-5
A deadlock bug in back-bdb/cache.c. Two threads try to acquire two locks, lru mutex and
c rwlock, in opposite orders, leading to a deadlock.

StringBuffer [24] Extract Idiom-4
The java.lang.StringBuffer overow bug. On append, not all required locks are held. An-
other thread may change buffer during append. State becomes inconsistent.

Pfscan [84] Injected Idiom-1
A counter, which specifies the number of remaining threads, is used by the main thread to
wait until all the child threads finish execution. The bug occurs any child thread finishes
execution before the counter is initialized in the main thread.

BankAccount [45] Synthetic Idiom-2
Shared bank account data structure bug. Simultaneous withdrawal and deposit with in-
correctly synchronized program may lead to inconsistent final balance.

CircularList [45] Synthetic Idiom-3
Shared work list data ordering bug. Removing, processing, and adding work units to list
non-atomically may reorder work units in list.

LogProcSweep [45] Synthetic Idiom-1
Shared data structure NULL dereference bug. Threads inconsistently manipulate shared
log. One thread sets log pointer to NULL, another reads it and crashes.

Table 3.1: Brief descriptions about concurrency bugs that we used in our studies.

29

Idiom1 Idiom2 Idiom3 Idiom4 Idiom5 Idiom6 Other
20 2 3 7 1 0 1

Table 3.2: Empirical study on 34 documented bugs.

all the 34 concurrency bugs, 17 of them are real bugs for which we use the original

programs and study their real executions, 13 of them are extracted bugs for which we

analyze the buggy code snippets extracted from the real buggy programs, 3 of them

are synthetic bugs and 1 of them is an injected bug. For each bug, Column-4 shows

its idiom classification, which is to the best of our understanding and interpretation

of the bug. Column-4 presents a short summary for each bug.

Table 3.2 summarizes the results. Except one, the remaining 33 concurrency bugs

can be characterized using one of our interleaving idioms. We could not represent

one bug using any of our idioms (Memcached) because it was value dependent. We

did not find any concurrency bug that can be classified as idiom6.

CHAPTER IV

Exposing Untested Interleavings: Maple

Chapter III presents a way to encode tested interleavings using interleaving id-

ioms and iRoots. Based on the new interleaving encoding scheme, in this chapter,

we propose a new testing tool, called Maple, that actively seeks to expose untested

interleavings to expose concurrency bugs. We first provide an overview about Maple

in Section 4.1. Then, we discuss the three major components in Maple: the on-

line profiler (Section 4.2), the active scheduler (Section 4.3) and the memoization

database (Section 4.4). Finally, in Section 4.5, we show our evaluation results and

discuss our experience in using Maple to expose known and unknown bugs in open

source applications.

4.1 Overview

Testing a shared memory multi-thread program and exposing concurrency bugs is

a hard problem. For most concurrency bugs, the thread interleavings that can expose

them manifest only rarely during an unperturbed execution. Even if a programmer

manages to construct a test input that can trigger a concurrency bug, it is often

difficult to expose the infrequently occuring buggy thread interleaving, because there

can be many correct interleavings for that input.

As discussed in Chapter I, existing testing techniques for exposing concurrency

30

31

bugs still have their problems. Stress testing tends to explore similar thread inter-

leavings and has less likelihood of exposing a rare buggy interleaving. Systematic

testing, on the other hand, is guaranteed to expose a buggy interleaving but suffers

from the scalability problem. Some recently emerged active testing tools use ap-

proximate bug detectors such as static data race detectors [19, 77] to predict buggy

thread interleavings. Using a test input, an active scheduler would try to exercise

a suspected buggy thread interleaving in a real execution and produce a failed test

run to validate that the suspected bug is a true positive. Active testing tools target

specific bug types such as data races [69] or atomicity violations [59, 58, 73, 39, 33],

and therefore are not generic. For a given test input, after actively testing for all the

predicted buggy thread interleavings, a programmer may not be able to determine

whether she should continue testing other thread interleavings for the same input or

proceed to test a different input.

In this chapter, we discuss a tool called Maple that employs a coverage driven

approach for testing multi-threaded programs. Maple encodes tested interelavings

using the idiom based approach discussed in Chapter III. The coverage domain is

then defined to be the set of iRoots that needs to be tested. The goal of Maple is

to achieve higher coverage by exposing as many untested iRoots as possible. To this

end, we built the Maple testing infrastructure comprised of an online profiler and an

active scheduler shown in Figure 4.1.

Maple’s online profiler examines an execution for a test input, and predicts the set

of candidate iRoots that are feasible for that input but have not yet been exposed in

any prior test runs. Predicted untested iRoots are given as input to Maple’s active

scheduler. The active scheduler takes the test input and orchestrates the thread

interleaving to realize the predicted iRoot in an actual execution using a set of novel

32

Figure 4.1: Overview of the framework.

heuristics. If the iRoot gets successfully exposed, then it is memoized by storing

it in a database of iRoots tested for the program. We also consider the possibility

that certain iRoots may never be feasible for any input. We progressively learn these

iRoots and store them in a separate database. These iRoots are given a lower priority

when there is only limited time available for testing.

When the active scheduler for an iRoot triggers a concurrency bug causing the

program produces an incorrect result, Maple generates a bug report that contains

the iRoot. Our active scheduler orchestrates thread schedules on a uniprocessor, and

therefore recording the order of thread schedule along with other non-deterministic

system input, if any, could allow a programmer to reproduce the failed execution

exposed by Maple.

Maple seeks to achieve higher coverage by exposing as many different iRoots

as possible during testing. Unlike coverage metrics such as basic block coverage,

it is hard to estimate the total number of iRoots for a given program. However,

number of exposed iRoots can be used as coverage metric for a saturation-based

test adequacy [70, 38]. That is, a programmer can decide to stop testing at a point

33

when additional tests are unlikely to expose new iRoots. We believe saturation-based

testing approach is a practical solution for problems such as concurrent testing where

estimating the coverage domain is intractable.

We envision two usage models for Maple. One usage scenario is when a program-

mer has a test input and wants to test her program with it. In this scenario, Maple

will help the programmer actively expose thread interleavings that were not tested in

the past. Also, a programmer can determine how long to test for an input, because

Maple’s predictor would produce a finite number of iRoots for testing.

Another usage scenario is when a programmer accidentally exposed a bug for

some input, but is unable to reproduce the failed execution. A programmer could

use Maple with the bug triggering input to quickly expose the buggy interleaving.

We helped a developer at Intel in a similar situation to expose an unknown bug using

Maple.

We built a dynamic analysis framework using PIN [46] for analyzing concurrent

programs. Using this framework, we built several concurrency testing tools including

Maple, a systematic testing tool called CHESS [52] and tools such as PCT [12] that

rely on randomized thread schedulers, which we compare in our experiments.

We perform several experiments using open-source applications (Apache, MySQL,

Memcached, etc.). Though Maple does not provide hard guarantees similar to

CHESS [49] and PCT [12], it is effective in achieving higher coverage faster than

those tools in practice. We evaluate 13 documented bugs and show that Maple is

able to expose 11 of them faster than these prior methods, which provides evidence

that achieving higher coverage for our metric based on interleaving idioms is effective

in exposing concurrency bugs. We also discuss our experiences in using Maple to

find 3 unknown bugs in aget, glibc, and CNC.

34

Our dynamic analysis framework for concurrent programs and all the testing tools

we developed are made available to the public under the Apache 2.0 license. They

can be downloaded from (https://github.com/jieyu/maple).

4.2 Online Profiling For Predicting iRoots

In this section, we discuss the design and implementation of Maple’s online pro-

filer. Given a program and a test input, the profiler predicts a set of candidate iRoots

that can be tested for the given test input.

4.2.1 Notations and Terminology

As we discussed in Section 3.2, an iRoot for an idiom comprises of a set of inter-

thread dependencies between memory accesses. A memory access could be either

a data access or a synchronization access. For synchronization accesses, we only

consider lock and unlock operations. A lock or an unlock operation is treated as a

single access when we construct an iRoot, and all memory accesses executed within

lock and unlock functions are ignored.

Ti (where i = 1,2,3,...) uniquely identifies a thread. Ai
X represents a dynamic

memory access. The super script i uniquely identifies a dynamic access, but we usu-

ally omit it in our discussion to improve readability. If Ai
X is a data access, A stands

for the static address of the memory instruction and X refers to the memory loca-

tion accessed. Two data accesses are said to conflict if both access the same memory

location and at least one of them is a write. If Ai
X is a lock/unlock synchronization

access, A stands for the address of the instruction that invoked the lock/unlock op-

eration and X refers to the lock variable. Two synchronizations accesses conflict if

one of them is a lock and the other is an unlock operation.

https://github.com/jieyu/maple

35

Main Child

fork(child)

Figure 4.2: Infeasible iRoots due to non-mutex happens-before relations.

4.2.2 Naive Approach

We start with the simpler problem, which is predicting idiom1 iRoots for a given

test input. One naive way to predict idiom1 iRoots is as follows. First, run the

program once and obtain the set of accesses executed by each thread. Then, for any

access AX in thread Tc, if there exists a conflicting access BX in another thread Tr,

we predict two idiom1 iRoots: A ⇒ B and B ⇒ A. For synchronization accesses, we

predict A ⇒ B only if A is an unlock operation and B is a lock operation. Obviously,

this approach could produce many infeasible iRoots. An iRoot is said to be infeasible

for a program if it can never manifest in any legal execution of that program. In the

following sections, we discuss two major sources of inaccuracy in this naive algorithm

and present our solutions.

4.2.3 Non-Mutex Happens-Before Analysis

The profiler predicts iRoots based on a few profiled executions for a given test

input. The predicted iRoots may not appear in any of the profiled executions, but

they are predicted to be realizable in some other legal executions. We should avoid

predicting iRoots that can never manifest in any of the legal executions.

We observe that some of the happens-before relations tend to remain the same

in all of the legal executions. Therefore, these happens-before relations can be used

36

to filter out infeasible iRoots predicted in the naive approach. For example, in

Figure 4.2, an access AX is executed before the main thread forks the child thread.

BX is executed in the child thread. Assuming that AX and BX are conflicting, the

naive approach will predict two idiom1 iRoots: A ⇒ B and B ⇒ A. However, it is

trivial to observe that in any legal execution, AX executes before BX because of the

fork call. As a result, we should not predict the iRoot B ⇒ A as a candidate to test.

We improve the accuracy of our profiler by exploiting the observation that non-

mutex happens-before relations mostly remain the same across different executions

for a given input. A non-mutex happens-before relation is due to any synchronization

operation other than a lock/unlock. Happens-before relations due to locks tend to

change across executions, because the order in which locks are acquired could easily

change. On the contrary, we find that non-mutex happens-before relations (e.g.

fork-join, barrier and signal-wait) are more likely to remain constant across different

executions. Therefore, the profiler predicts an iRoot only if it does not violate the

non-mutex happens-before relations in at least one of the profiled executions. For the

program in Figure 4.2, BX cannot happen before AX any of the executions according

to the non-mutex happens-before relation due to fork. As a result, the profiler will not

predict B ⇒ A as a candidate iRoot to test. Though effective in pruning infeasible

iRoots, this analysis is not sound because some non-mutex happens-before relations

are not guaranteed to remain constant across different executions for an input.

4.2.4 Mutual Exclusion Analysis

Mutual exclusion constraints imposed by locks could also prevent naively pre-

dicted iRoots from manifesting in any of the alternate executions. For example, in

Figure 4.3, all the accesses (AX , BX and CX) are protected by the same lock m. As-

sume that these accesses conflict with each other. The naive approach would predict

37

T1 T2

lock(m)

unlock(m) lock(m)

unlock(m)

Figure 4.3: Infeasible iRoots due to mutual exclusion.

A ⇒ C (and C ⇒ B) to be a candidate iRoot to test. Clearly, A ⇒ C (and C ⇒ B)

is not feasible because of the mutual exclusion constraint imposed by the lock m.

To further improve its accuracy, the profiler is augmented with a mutual exclusion

analysis phase to filter those infeasible iRoots that are caused by the mutual exclusion

constraints. To achieve this, the profiler needs to collect two types of information

for each access AX . One is the lockset information which contains the set of locks

that are held by Thd(AX) when executing AX . The other is the critical section

information which specifies whether AX is the first or the last access to X in the

critical section that contain AX .

We now use an example to illustrate how these two types of information can be

used to filter infeasible iRoots caused by the mutual exclusion constraints. Consider

the example in Figure 4.3. The profiler needs to decide whether iRoot A ⇒ C is

feasible. It first checks the locksets of both accesses: AX and CX . If the locksets are

disjoint, the profiler will immediately predict the iRoot to be feasible. If not, the

profiler will go to the next step. In this example, AX and CX have the same lockset

{m}. Therefore, the profiler proceeds to the next step. In the second step, for each

common lock (in our example itsm), the profiler checks whether the mutual exclusion

constraint imposed by the common lock will prevent the iRoot from manifesting. It

checks whether AX is the last access toX in the critical section that is guarded by the

38

common lock m, and whether CX is the first access to X in the critical section that is

guarded by the common lock m. If either of them is not true, the profiler will predict

that the iRoot is infeasible. In our example, since BX is the last access to X in the

critical section that is guarded by the common lock m, the iRoot A ⇒ C is predicted

to be infeasible. This analysis is also not sound since control flow differences between

executions could affect our analysis, but it works well in practice.

4.2.5 Online Profiling Algorithm

Our profiler predicts candidate iRoots to test for a particular idiom using an online

mechanism that we describe in detail in this section. An online algorithm avoids the

need to collect large traces.

Baseline Algorithm

The profiler monitors every memory access. For each object, the profiler maintains

an access history for each thread. We use AHX(Ti) to denote the access history for

object X and thread Ti. Each access AX in the access history AHX(Ti) is ordered

by the execution order of Ti, and is associated with a vector clock and an annotated

lockset. The vector clock, denoted as V C(AX), is used to perform the non-mutex

happens-before analysis. It is the same as that used in many of the dynamic data

race detectors, except that here we consider non-mutex happens-before relations.

The annotated lockset, denoted as AnnoLS(AX), is used to perform the mutual

exclusion analysis. It consists of a set of locks, each of which is annotated with a

sequence number and two bits. The sequence number is used to uniquely identify

each critical section guarded by the lock, and the two bits indicate whether the

access is the first or the last access in the corresponding critical section. We say

that two annotated locksets are disjoint if no common lock is found between the two

39

sets. Both the vector clock and the annotated lockset are recorded when Thd(AX)

is executing AX .

When an access AX is being executed by Tc, the profiler checks the access histories

from all other threads on object X (i.e. AHX(Tr), Tr 6= Tc). If there exists a

conflicting access BX in AHX(Tr), the profiler will predict the iRoot B ⇒ A if the

following conditions are true: (1) BX does not happen after AX by checking V C(BX)

and V C(AX) (the non-mutex happens-before check). (2) Either AnnoLS(AX) and

AnnoLS(BX) are disjoint, or for each common lock m held by AX and BX , AX is

the first access to X in the corresponding critical section guarded by m and BX is

the last access to X in the corresponding critical section guarded by m (the mutual

exclusion check). Similarly, the profiler will also predict the iRoot A ⇒ B according

to the above rules.

To make the profiling algorithm online, we need to deal with several issues. One

issue is that when AX executes, some access, say CX , has not been performed yet.

As a result, CX will not be in any access history. However, the profiler will still

correctly predict iRoot A ⇒ C and iRoot C ⇒ A at the time CX is executed if

they are feasible. Another issue with the online algorithm is that when executes AX ,

the profiler cannot precisely compute the annotated lockset AnnoLS(AX) required

by the mutual exclusion analysis. The reason is because it does not know whether

the access AX will be the last access in the current critical section or not. We solve

this issue by delaying predicting iRoots for AX until either of the following events

happens: (1) another access to X is reached by Thd(AX). (2) X is about to be

deallocated (e.g. free()). (3) Thd(AX) is about to exit. The insight here is that

the profiler can precisely compute the annotated lockset for AX if any of the above

events happens.

40

Optimizations

We have designed a few optimizations to make the online algorithm practical for

large applications.

• Condensing access histories. An access history can be very large because it

stores information about all the dynamic accesses to an object from a given

thread. This can cause problems both in terms of analysis time and space. To

solve that, we propose to condense each access history by removing duplicate

entries in it. We say two accesses from the same thread are identical if they

have the same static instruction address, vector clock and annotated lockset.

We find that storing two identical accesses in an access history is not necessary

because these two accesses will always lead to the same iRoot during prediction.

Therefore, every time a new access is about to be added into an access history,

we first check if an identical entry already exists in the access history. If yes,

we choose not not update the access history. This check can be carried out

efficiently using a hash table.

• Caching prediction results. As we discussed above, when an access AX is being

executed, the profiler needs to scan the access history of each remote thread on

object X . We call this operation a full scan. A full scan is a time consuming

operations. However, we observe that it is not always necessary to perform a

full scan. If an identical copy of AX is found in the access history as we just

described, the profiler can safely skip the full scan as no new iRoot will be

predicted even if a full scan is performed.

• Removing useless access history entries. We observe that it is not necessary

to keep all access histories from the beginning of the program execution. If an

41

access in the access history can no longer be part of any potentially predicted

iRoot, we can safely remove it from the access history.

• Monitoring only shared instructions. Maintaining access histories for each mem-

ory location is very expensive. Clearly, the profiler does not need to maintain

access histories for thread private locations. We perform an online analysis that

runs concurrently with the profiler to detect those instructions that can access

shared locations. Such instructions are called shared instructions. The profiler

uses this information to create access histories only for those locations that are

accessed by shared instructions. To discover shared instructions, we maintain

meta data for each memory location in which we store information about those

instructions and threads that have accessed that location. Whenever we dis-

cover a shared location (accessed by multiple threads), we mark all instructions

that access that location as shared instructions.

4.2.6 Predicting iRoots for Compound Idioms

To predict iRoots for compound idioms, we designed an algorithm that leverages

the idiom1 prediction results. The approach is generic to all compound idioms defined

in Section 3.2. The algorithm is divided into two parts: identifying local pairs, and

correlating with idiom1 prediction results. In this section, we discuss these two parts

in detail.

Identifying Local Pairs

A local pair, as suggested by its name, is a pair of accesses from the same thread.

During a profiling execution, if the profiler finds two accesses AX and BY (X may

or may equal to Y) such that AX and BY are from the same thread, AX is executed

before BY , and the number of dynamic instructions executed between AX and BY is

42

T1 T2

< vw

< vw

(1) Local Pairs:
,

(2) Idiom1 Prediction Results:
,

,

Correlate (1) and (2), we predict
two idiom-4 iRoots:

Figure 4.4: Predicting iRoots for compound idioms.

less than a pre-set threshold vw (vw stands for vulnerability window and is specified

in the idiom definition), it will record a local pair [AX , BY]. For example, Figure 4.4

shows a profiling execution. Accesses AX and BY in T1 are executed first, followed by

CX and DY in T2. The profiler records two local pairs from this profiling execution:

[AX , BY] and [CX , DY]. To collect local pairs, the profiler uses a rolling window for

each thread to keep track of the recent accesses.

Correlating with Idiom1 Prediction Results

To predict iRoots for compound idioms, we propose to leverage the idiom1 pre-

diction results. We use an example to illustrate how to correlate local pairs with

idiom1 prediction results to predict compound idiom iRoots. Consider the example

shown in Figure 4.4. As mentioned, the profiler identifies two local pairs: [AX , BY]

and [CX , DY]. Meanwhile, the profiler also records the idiom1 prediction results. For

instance, AX and CX can produce two idiom1 iRoots A ⇒ C and C ⇒ A according

to the idiom1 prediction algorithm, therefore the profiler records both AX → CX and

CX → AX in the idiom1 prediction results 1. Similarly, the profiler records BY → DY

and DY → BY . Now, consider the first local pair [AX , BY]. According to the pre-

dicted idiom1 results, CX can potentially depend on AX , and BY can potentially

1Notice that the idiom1 prediction results are only useful for the current profiling execution, and will be discarded
once the execution finishes. They are different from the predicted idiom1 iRoots which last across executions. They
contain more information than idiom1 iRoots do.

43

depends on DY . As a result, the profiler predicts an idiom4 iRoot A ⇒ C...D ⇒ B

(assume X 6= Y). Similarly, for another local pair [CX , DY], the profiler predicts an-

other idiom4 iRoot C ⇒ A...B ⇒ D. Currently, the profiler performs the correlation

part at the end of each profiling execution. Similar optimization technique is used to

condense local pairs, that is if two local pairs from the same thread have both their

accesses identical, the profiler just records one of them.

4.3 Actively Testing Predicted iRoots

In this section, we discuss the design and implementation of Maple’s active sched-

uler. Maple’s profiler predicts a set of iRoots that can be realized in an execution

using a test input. The goal of Maple’s active scheduler is to validate the prediction

by orchestrating the thread schedule to realize the predicted iRoots in an actual

execution for the test input.

4.3.1 A Naive Approach

Suppose that we want to expose an idiom1 candidate iRoot A ⇒ B. The static

instructions A and B are called candidate instructions. In a test run, there might be

multiple dynamic accesses associated with a single candidate instruction. We still

use AX to denote a dynamic accesses to object X by the candidate instruction A.

The naive approach works as follows. Whenever a candidate instruction (say AX) is

reached by a thread (say T1), the active scheduler delays the execution of T1. During

the delay, if another thread (say T2) reaches the other candidate instruction (say

BX), then the iRoot A ⇒ B is exposed by executing AX first and then executing

BX (as shown in Figure 4.5).

This approach is used in several prior studies (e.g. [59]). While it is simple, it

can lead to several issues, including deadlocks (also referred as thrashing in [36]).

44

T1 T2

Figure 4.5: The ideal situation for exposing an idiom1 iRoot A ⇒ B.

T1 T2

barrier(b) barrier(b)

Figure 4.6: The naive approach could deadlock when exposing an idiom1 iRoot A ⇒ B.

Consider the example in Figure 4.6. Suppose that T1 reaches AX first. The active

scheduler, in this case, delays the execution of T1, waiting for the other candidate

instruction to be reached in T2. T2 is blocked when calling the barrier function,

leading to a deadlock because no thread can make forward progress at that state.

One way to mitigate this issue is to make use of timeout. In the example, if a timeout

is introduced for each delay, T1 will eventually be woken up when the timeout has

expired. However, as discussed in the following sections, this is not enough to address

most of the issues.

4.3.2 Non-preemptive and Strict Priority Scheduler

There are two problems with a timeout-based approach. First, it is sensitive to

the underlying environment, hence fragile [35]. For instance, the timeout should

be set to a larger value when running a program on a slower machine. Second,

determining how long the timeout should be is not straightforward. A large timeout

45

is detrimental to performance due to the longer delays, while a shorter timeout could

cause unnecessary give ups.

An alternative to timeout is to monitor the status of each thread (blocked or

not) by instrumenting every synchronization operations and blocking system calls

(e.g. [69, 58, 36]). For example, in Figure 4.6, if the active scheduler keeps track of

the status of each thread, it should know that T2 is blocked after it calls the barrier

function. Thus, T1 will be woken up immediately since no other thread in the system

can make forward progress at that state.

Our approach eliminates the need for monitoring thread status. The main idea

is to leverage a thread scheduler provided by the underlying OS that supports non-

preemptive and strict priority. All threads are forced to run on a single processor.

Each thread is assigned a non-preemptive strict priority. Under this scenario, a

lower priority thread never gets executed if there exists a non-blocked higher priority

thread.

By using a non-preemptive strict priority scheduler, the deadlocks will be au-

tomatically detected and resolved by the underlying OS since it knows the status

of each thread. Let us consider the example in Figure 4.6. Initially, T1 has a pri-

ority Pinit(T1) and T2 has a priority Pinit(T2). Suppose that Pinit(T1) > Pinit(T2).

Therefore, T1 executes first. When T1 reaches AX , the active scheduler changes the

priority of T1 to Plow such that Plow < Pinit(T2). According to the semantics of a

non-preemptive strict priority scheduler, T1 is preempted by T2 immediately after the

priority change. When T2 calls the barrier function, it is blocked. At this moment, T1

becomes the only non-blocked thread, and resumes execution immediately after T2 is

blocked. The deadlock situation is naturally resolved. Note that the active scheduler

only needs to monitor the instructions involved in the iRoot being exposed, thus

46

limiting the runtime overhead.

Any thread scheduler that implements a non-preemptive strict priority semantics

can be used for our purpose. For example, we can use the scheduler discussed

in Frost [75]. However, it requires modifications to the underlying Linux kernel,

making it not easily portable. Alternatively, we may choose to use the real-time

scheduler (schedule policy SCHED FIFO) provided by the Linux kernel, which is an

approximation of a non-preemptive strict priority scheduler. In most of the time,

the real-time scheduler will follow the semantics of a non-preemptive strict priority

scheduler. However, in some cases where a higher priority thread is executing some

I/O related operations (e.g. page swaps), the OS may choose to suspend the higher

priority thread and run a lower priority thread in the meantime even if the higher

priority thread is not actually blocked.

In Maple, we choose to use the real-time scheduler provided by the Linux kernel

mainly for portability concern. The slight inaccuracy introduced by the real-time

scheduler may cause a few false negatives. However, our results shown in Section 4.5

indicate that this effect is small. Maple is still very effective in exposing both known

and unknown bugs in spite of this inaccuracy.

4.3.3 Complementary Schedules

Another problem with the approach discussed in Section 4.3.1 is that it does not

have a mechanism to control the order in which threads get executed. Assume that

we want to expose the idiom1 iRoot A ⇒ B in the example of Figure 4.7, where AX

is in T1 and BX in T2, respectively. Because both AX and BX are protected by the

same lock m, if BX is reached by T2 first, the iRoot will not be exposed. The delay

introduced before BX will not help because T1 will never be able to reach AX due to

the fact that T2 is still holding the lock m. In order to expose this iRoot, AX must

47

be reached by T1 first. However, the naive approach (Section 4.3.1) cannot guarantee

this as it does not have a mechanism to control the order in which the threads get

executed.

We address this issue using a technique called complementary schedules. The

idea is to use two test runs on each candidate iRoot. Each newly created thread Ti,

including the main thread, is assigned with an initial priority Pinit(Ti). In the first

test run, the initial priorities are assigned from high to low, following the order of

thread creation. To be more precise, we have Pinit(Ti) > Pinit(Tj) (Ti has a higher

priority than Tj) if thread Ti is created earlier than Tj . In the second test run, initial

priorities are assigned from low to high, following the order of threads creation. In

order words, Pinit(Ti) < Pinit(Tj) if thread Ti is created earlier than Tj . Using this

technique, we increase the likelihood that, in one of the two test runs, AX will be

reached first in the example shown in Figure 4.7.

Complementary schedules is a heuristic. If more than two threads are involved,

we may encounter problems like priority inversion [12] and our current solution may

not work as we expected. One possible solution is to use more test runs for each

candidate iRoot and shuffle the initial priorities differently in each test run. We leave

that as a future work.

4.3.4 Watch Mode Optimization

A problem with the naive approach is that it can unnecessarily give up exposing

some iRoot in certain cases. Consider the example in Figure 4.7. We are still

interested in exposing the idiom1 iRoot A ⇒ B. If T1 reaches AX first, the naive

approach gives up exposing the iRoot for AX right after the timeout. However,

giving up is not necessary here because it is still possible that BX could execute later

without any access to X in between AX and BX .

48

T1 T2

lock(m)

unlock(m)

lock(m)

unlock(m)

Figure 4.7: The situation in which the watch mode is turned on for exposing an idiom1 iRoot
A ⇒ B.

We use a mechanism called watch mode to exposes an iRoot in such case. In

watch mode, every memory access is monitored. Consider again the example in

Figure 4.7. When T1 reaches AX first and sets its priority to Plow (Plow is lower

than any initially assigned priorities), T2 gets control and executes, but is blocked

when trying to acquire the lock m. As mentioned above, T1 resumes immediately

after T2 is blocked and executes AX . At this moment, instead of giving up exposing

iRoot for AX , the active scheduler enters the watch mode and monitor every memory

access. The active scheduler still keeps the priority of T1 to Plow. Once the lock m

is released, T1 is preempted by T2 because T2 has a higher priority than T1. Shortly

after, T2 reaches BX and no access to X is found in between AX and BX . Therefore,

the iRoot A ⇒ B is exposed.

In the same example, during the watch mode, it is likely that T1 reaches an

instruction – no matter whether it is a candidate instruction or not – that accesses

X as AX does. In such case, the active scheduler is not able to expose iRoot for AX

because T1 already has the lowest priority at that moment. It just ends the watch

mode and gives up exposing iRoot for AX . If the access to X (not instruction B)

is from a thread other than T1 (say T3), the active scheduler sets the priority of T3

to Plow. The intuition here is that some other threads may make progress and reach

the other candidate instruction B. However, if the conflicting access is eventually

49

executed by T3 in spite of its lowest priority, the active scheduler ends the watch

mode and gives up.

The watch mode can be implemented efficiently using debug registers or by lever-

aging the selective instrumentation mechanism in PIN [46]. We implement the second

approach. For compound idioms, the execution under watch mode is usually short

given that we have distance constraints in the idiom definitions. For idiom1, the

selective instrumentation mechanism in PIN can affect performance depending on

how long the active scheduler spends in watch mode. The overhead is discussed in

Section 4.5.

4.3.5 Candidate Arbitration

There might exist multiple dynamic accesses that correspond to the same candi-

date instruction during the execution. In many cases, the active scheduler has to

decide which of these accesses belongs to the candidate iRoot to expose. For example,

while the active scheduler is exposing iRoot for AX (seeking candidate instruction

B in other threads), it is possible that another thread also reaches the candidate

instruction A, or another thread reaches candidate instruction B, but it happens to

access a location other than X (say BY). In either one of these situations, the active

scheduler has two choices: either continue to expose the iRoot A ⇒ B for AX , or

give up on that attempt and seek to expose the iRoot for latter access of A or for BY .

We decided to make these choices random with equal probability. We choose not to

use a fixed policy because it could cause some feasible iRoot to become impossible

to expose. We save the random seed for reproduction purpose.

We aware that the random arbitration algorithm we use may cause a later access

exponentially unlikely to be used as part of a candidate iRoot. This will become

an issue when we do want to expose an iRoot for a later access (e.g. only the

50

iRoot that uses this access will lead to a bug). Nevertheless, we are still able to

expose all the bugs we have analyzed using this strategy (Section 4.5.2). This may

be because many of the bugs we analyzed manifest early in their executions, or

not many dynamic accesses exist for the candidate instructions in the iRoots that

expose the bugs. Even if that, we believe this is an important problem and we plan

to address it in our future work. Currently, we can think of two possible ways. First,

we can associate more information with each candidate instruction such as its calling

context so that some irrelevant accesses that use the same instruction but different

contexts will be filtered out. Second, we can devise a more sophisticated arbitration

algorithm using more test runs.

4.3.6 Dealing with Asynchronous External Events

Some applications depend on asynchronous external events such as network and

asynchronous signals. These events are usually difficult to deal with in the active

scheduler because it has no control on when these events are delivered. Consider

the example in Figure 4.8 where T2 has a higher priority initially. When T2 reaches

BX , its priority is changed to Plow, at which point T1 is scheduled. If T1 is blocked

when calling the function sigwait (e.g. because the signal might not have been

delivered yet), since all threads except T2 are blocked in the system at that time,

T2 has to execute BX in spite of its lowest priority; thus giving up the exposition of

iRoot A ⇒ B for BX . We observe that if the asynchronous signal in this example is

delivered earlier, the active scheduler might be able to expose the iRoot.

To solve this problem, the active scheduler introduces extra time delay where it

is about to give up, hoping that the potential external event will arrive during that

period. For instance, in the example of Figure 4.8, when the active scheduler is

about to give up by executing BX in T2 after T1 has been blocked, a time delay is

51

T1 T2

sigwait(...)

async signal

Figure 4.8: Problem with asynchronous external events.

T1 T2

watch mode

Figure 4.9: Expose a compound idiom iRoot A ⇒ B...C ⇒ D.

T1 T2

lock(m)

unlock(m)

lock(m)

unlock(m)

pre-condition

Figure 4.10: A pre-condition exists when trying to expose iRoot A ⇒ B.

52

injected right before BX is executed. During this period, if the asynchronous signal

is delivered, the active scheduler can successfully expose the iRoot A ⇒ B.

For applications that do not depend on asynchronous external events, there is

no need for the active scheduler to inject extra time delay. We detect whether an

application depends on asynchronous external events by monitoring system calls and

signals during profiling. Even if an application does depend on asynchronous external

events, this might not be true for all the iRoots. During profiling, we mark each

candidate iRoot with a flag indicating whether this iRoot depends on asynchronous

external events or not. The active scheduler uses this flag to decide whether to inject

time delay or not. Finally, to ensure forward progress, we set a timeout for each

delay. The timeout value can be optimized according to the application and the

input.

4.3.7 Compound Idioms

A compound idiom iRoot is composed of multiple idiom1 iRoots. Our general

policy for exposing compound idiom iRoots is to expose each of the idiom1 iRoot

one at a time. Each of the idiom1 iRoot is exposed as described before, but the

algorithm for exposing compound idiom iRoots needs to address two more issues

that we describe next.

First, the active scheduler always enters the watch mode after the first candidate

instruction in a compound iRoot is executed. To understand why, consider the

example in Figure 4.9. The goal is to expose an idiom4 iRoot A ⇒ B...C ⇒ D.

According to the idiom4 definition, we need to make sure that there is no other

access to the same locations that A and D access in between them. Therefore, after

AX is executed in this example, we enter the watch mode. If there is any access

to location X before DY is reached, the active scheduler stops trying to expose the

53

iRoot for AX because this violates the idiom definition. One complex aspect of this

implementation is that, before DY is reached, we do not know which location it is

going to access. We solve this problem by recording the set of locations that are

accessed by T1 after AX is executed. This set is checked when DY is reached, to

verify that none of the addresses touched conflicts with the address accessed by DY .

In addition, the active scheduler exits the watch mode and gives up exposing iRoot

for AX if the number of dynamic instructions executed by T1 after AX exceeds the

pre-defined threshold specified in the idiom definition.

Second, the arbitration is biased after the first part of the compound idiom iRoot

is exposed. In the example of Figure 4.9, after the first part of the iRoot (A ⇒ B)

is exposed, if T2 reaches AZ (an access to Z by candidate instruction A), we have

two choices: (1) ignore AZ and continue looking for the second part of the iRoot; (2)

expose the iRoot for AZ and discard the already exposed first part. In such a case,

we select the first choice with a higher probability.

Finally, exposing iRoots for idiom5 is slightly different from other compound

idioms. To expose an idiom5 iRoot A ⇒ B...C ⇒ D, our strategy is to let two

different threads reach A and C, respectively; then execute them, and seek B and D

in the corresponding threads.

4.3.8 Exposing Pre-conditions

One limitation of the current active scheduler is that it cannot handle pre-conditions.

The pre-conditions for an iRoot is the necessary conditions that need to be satisfied

to expose the iRoot. For example, in Figure 4.10, there exists a pre-condition (from

unlock to lock) that needs to be satisfied so that the iRoot A ⇒ B can be exposed.

Currently, our active scheduler has no knowledge of these pre-conditions; therefore

it cannot enforce them. The complementary schedules might alleviate this problem

54

to some extent. To fully address this problem, one possible solution would be to

automatically derive pre-conditions for a given iRoot [37]. We leave this as a future

work.

4.4 Memoization of iRoots

Past work on systematic testing and active testing ignore the information about

the interleavings tested from previous test runs with different inputs. We believe

that this is crucial in reducing the number of interleavings that need to be tested for

a given program input. Therefore, we propose a memoization module in our active

testing infrastructure. The memoization module is composed of a database of tested

interleavings and a database of fail-to-test interleavings for each interleaving idiom

as shown in Figure 4.1. This module is used to avoid testing the same interleaving

again and again across different test inputs.

The candidate interleavings are pruned out depending on whether previous at-

tempts were made to test them. If a candidate interleaving was tested before (i.e. it

has been exposed by the active scheduler), it is filtered out by consulting the tested

interleavings database. This optimization is sound if the bugs we are targeting are

not value dependent. Also, if several attempts were made in the past to test a can-

didate interleaving and the active testing system failed to produce a legal execution

exposing the desired interleaving, this candidate interleaving is filtered out using the

fail-to-test interleavings database, which stores all such failed to expose candidate

interleavings. This allows us to avoid trying to expose thread interleavings that can

never manifest. Unlike memoization of tested iRoots, this is an unsound optimiza-

tion even if a bug is not value dependent. However, the number of times a candidate

interleaving is actively tested is configurable, and a programmer can choose to set it

55

to a very high value if soundness is a concern.

4.5 Evaluation

This section evaluates Maple and discusses our experiences in using the tool for

testing real world applications. We first describe the configurations of Maple we used

in our experiments (Section 4.5.1). Then, we compare Maple with other general

concurrency testing techniques in two different usage scenarios (Section 4.5.2 and

Section 4.5.3), and show how memoization can be useful in both of these scenarios

(Section 4.5.2 and Section 4.5.3). Finally, we discuss the efficiency and effectiveness

of Maple (Section 4.5.4).

4.5.1 Maple Configuration

Maple is built to be highly configurable. We now describe the default configura-

tions of Maple in our experiments.

In the profiling phase, the program is profiled using the best randomized testing

technique (explained later in Section 4.5.3) a few number of times. For each profile

run, the profiler observes what iRoots are exposed and predicts candidate iRoots to

test. The profiling phase stops when no new candidate iRoot is found for N consec-

utive profile runs (we use an empirical value N = 3 throughout our experiments).

Unless otherwise noted, Maple observes and predicts all iRoots in the program by

default, including those iRoots from libraries such as Glibc. We believe this is neces-

sary because we do find bugs that are related to the library code (e.g. Bug #11 and

Bug #13 in Table 4.1).

In the testing phase, candidate iRoots are exposed using the active scheduler.

Currently, the active scheduler tests all candidate iRoots starting from idiom1 and

then proceeds to test iRoots for other idioms in the order of their complexity (one

56

to five). For each idiom, the active scheduler always chooses to test those iRoots

that are from the application code first. More sophisticated ranking mechanism may

exist, but we leave that to future work. Each candidate iRoot will be attempted at

most twice, as mentioned in Section 4.3.3.

4.5.2 Usage Scenario 1: Exposing Bugs with Bug Triggering Inputs

One scenario that Maple can be useful is when a programmer or a user accidentally

exposed a non-deterministic bug for some input, but is unable to reproduce the failed

execution. In that case, the programmer can use Maple with the bug triggering input

to quickly expose the buggy interleaving. Once the buggy interleaving is found,

Maple can also reproduce it faithfully by replaying the same schedule choices, which

can be very useful during the debugging process.

To evaluate the ability of Maple in exposing concurrency bugs in such scenarios,

we want to know whether Maple is able to expose the set of bugs we have listed

in Table 3.5 given their corresponding bug triggering inputs. Ideally, we would like

to evaluate all the bugs listed in Table 3.5. However, setting up environment for

reproducing each bug is difficult and time consuming. Most of the time, it requires

installing a specific version of the program which sometimes requires installing a

specific version of the operating system. Because of that, we decided to evaluate only

a subset of the concurrency bugs listed in Table 3.5 whose reproducing environments

are easy to setup on our test machine (e.g. those bugs that do not require re-installing

the operating system on our test machine). We try to evaluate at least one bug from

each popular application.

Table 4.1 lists the 13 bugs that we have evaluated in our experiments. Column-2

shows the name of each bug which matches that in Table 3.5. Among them, 4 (Bug

#1 to Bug #4) are synthetic bugs, 1 (Bug #5) is a code snippet extracted from a

57

real buggy program, and 8 (Bug #6 to Bug #13) are real bugs from real executions.

There are 3 previously unknown bugs (Bug #11 - Bug #13), which are accidentally

found during our experiments. We will discuss our stories of finding these three bugs

in Section 4.5.2.

We want to know whether Maple is able to expose these bugs and how fast it can

expose these bugs when comparing to other general concurrency testing tools. We

compare Maple with two random testing techniques, PCT and PCTLarge. PCT [12] is a

recently proposed random testing technique that provides probabilistic guarantee in

exposing concurrency bugs. In PCT, threads are randomly assigned a non-preemptive

strict priority (similar to that used in the active scheduler of Maple); during execu-

tion, PCT changes the priority of the currently running thread to lowest at random

points d times. The authors state that most of the concurrency bugs can be exposed

with a small value of d. In our experiment, we choose to use d = 3. PCTLarge is a

variation of PCT that we proposed. It has the same algorithm as that in PCT except

that it uses non-strict priorities instead of strict priorities. For instance, in Linux, we

use nice values to serve as non-strict priorities. Higher priority threads will have more

time quantum than lower priority threads. Interestingly, we found that PCTLarge

usually performs better than PCT. More details are provided in Section 4.5.3.

For each bug, we run it repeatedly using its bug triggering input until the bug

is triggered. Each time, a different testing technique is used. We compare the time

needed by each testing technique to expose the bug. For Maple, we assume no

previously built memoization database is available. The effect of memoization is

discussed in Section 4.5.2. Table 4.1 shows the results. As shown in the table, Maple

can expose all 13 bugs, including 3 previously unknown bugs (Bug #11 to Bug #13).

In contrast, PCT and PCTLarge can only expose 7 and 11 bugs respectively before

58

timeout (24 hours) in reached. Moreover, Maple can expose all the real bugs much

faster than PCT and PCTLarge. Maple uses more time to expose Bug #5 than PCT

and PCTLarge. This is because Bug #5 is an idiom4 bug and a lot of time is spent

testing irrelevant idiom1, idiom2 and idiom3 iRoots according to our current ranking

mechanism. We found that PCT or PCTLarge expose bugs faster than Maple on some

applications with small execution lengths (e.g. Bug #3). This is expected because

the smaller the execution length, the higher the probability to expose the bug, but

Maple has to pay a high cost for analysis. Nevertheless, the random techniques do

not scale for long execution lengths (e.g. Bug #8). Bug #10 does not have an idiom

because it is value dependent.

Experiences in Finding Unknown Bugs

We found three previously unknown bugs. Bug #11 was accidentally found when

testing Bug #9, a documented bug in Aget. We observed a situation where the

program hangs when testing Bug #9. We looked at the iRoot that caused the hang

and tried the same iRoot again with the same random seed. In addition, we attached

a tracer to the active scheduler to record the execution trace. The deadlock happened

again in less than 5 runs 2. With the help of the trace, we eventually found the root

cause of this bug. The thread that handles signals is asynchronously canceled when

holding an i/o lock (in printf), causing a deadlock in the main thread when it tries

to acquire the same lock.

Bug #12 is an intermittent bug in an CNC-based application that manifests as an

assertion failure. CNC was developed by Intel and stands for Concurrent Collections.

The particular application we examined is a server-client application that builds on

Intel Thread Building Blocks (TBB) to synchronize threads. This bug was provided

2This is because we cannot faithfully replay some non-deterministic external events which are part of the program
inputs.

59

M
a
p
le

P
C
T
[1
2
]

P
C
T
L
a
r
g
e

ID
B
u
g

N
a
m

e
T
y
p
e

#
P
ro

fi
le

P
ro

fi
le

T
im

e
#

T
e
st

T
e
st

T
im

e
T
o
ta

l
T
im

e
#

R
u
n
s

T
im

e
#

R
u
n
s

T
im

e

#
N
o
n
-

S
ta

c
k

M
e
m

O
p
s

#
T
h
d
s

N
a
ti
v
e

T
im

e

1
L
o
g
P
ro

c
S
w
e
e
p

S
1
1

1
6
.5

1
0
.6

1
7
.1

9
8
5
1
1

8
6
4
0
0
(
T
O

)
1
0
1
6
9

8
1
8
8
.6

3
.3
K

3
0
.1

2
S
tr
in

g
B
u
ff
e
r

S
8

1
2
.0

1
0
.8

1
2
.8

4
0

5
6
.4

6
1

4
9
.1

2
.4
K

2
0
.1

3
C
ir
c
u
la
rL

is
t

S
6

9
.5

1
1
.0

1
0
.6

6
9
.1

1
8

1
4
.6

3
.3
K

3
0
.1

4
B
a
n
k
A
c
c
o
u
n
t

S
6

9
.0

1
0
.9

1
0
.0

1
2

1
7
.4

4
4

3
5
.4

3
.6
K

3
0
.1

5
M

y
S
Q
L
-1

E
8

1
3
.2

1
0
0

1
2
0
.8

1
3
3
.9

1
8

2
9
.0

1
5

1
3
.6

4
.9
K

3
0
.1

6
P
b
z
ip

2
R
-K

8
1
5
1
.9

2
3
.2

1
5
5
.1

2
6
9
3
3

8
6
4
0
0
(
T
O

)
3
3
3
6

6
1
4
4
.1

3
2
.1
M

3
0
.1

7
A
p
a
c
h
e
-1

R
-K

3
6

5
8
0
.7

9
3

1
5
4
4
.2

2
1
2
4
.9

3
4
8
5

3
1
6
8
8
.0

1
2
9
5
1

8
6
4
0
0
(
T
O

)
2
1
8
.5
K

5
3
.6

8
M

y
S
Q
L
-3

R
-K

1
0

4
3
6
.5

3
9
7
5

4
3
0
9
7
.6

4
3
5
3
4
.1

1
1
7
5
4

8
6
4
0
0
(
T
O

)
1
0
5
7
4

8
1
8
8
7
.2

1
.8
M

1
3

4
.4

9
A
g
e
t-
2

R
-K

9
1
4
8
.1

1
1

2
9
.2

1
7
7
.4

1
5
2

3
5
5
.0

3
3
5

6
1
9
.5

3
2
.0
K

3
0
.1

1
0

M
e
m

c
a
c
h
e
d

R
-K

4
1

3
0
4
.6

4
1
1
.3

3
1
6
.0

1
0
1
0

3
6
3
5
.1

3
0
6

7
8
2
.5

8
9
.5
K

4
1
.2

1
1

A
g
e
t-
1

R
-U

9
7
4
.7

1
8

1
2
3
.9

1
9
8
.6

3
2
0
7
5

8
6
4
0
0
(
T
O

)
4
7
6
3
6

8
6
4
0
0
(
T
O

)
5
2
9
.5
K

3
0
.1

1
2

C
N
C

R
-U

6
5
0
.6

4
0
3

4
1
6
3
.8

4
2
1
4
.4

1
1
0
6
3

8
6
4
0
0
(
T
O

)
1
0
0
1
2

4
9
0
4
6
.8

2
0
9
.6
K

3
1
.1

1
3

G
li
b
c

R
-U

3
0

1
1
2
0
.4

2
0

3
6
.6

1
1
5
7
.0

3
9
5
6
0

8
6
4
0
0
(
T
O

)
1
6
1
4
7

3
4
3
4
9
.1

2
8
.5
M

4
0
.1

T
a
b
le
4
.1
:
B
u
g
ex
p
o
si
n
g
ca
p
a
b
il
it
y
g
iv
en

b
u
g
tr
ig
g
er
in
g
in
p
u
ts
.
A
ll
th
e
ti
m
e
re
p
o
rt
ed

in
th
e
ta
b
le

a
re

in
se
co
n
d
s.

T
O

st
a
n
d
s
fo
r
ti
m
eo
u
t
(2
4
h
o
u
rs
).

In
th
e
ty

p
e
co
lu
m
n
,
S
st
a
n
d
s
fo
r
sy
n
th
et
ic
b
u
g
s,
E

st
a
n
d
s
fo
r
ex
tr
a
ct
ed

b
u
g
s,
R
-K

st
a
n
d
s
fo
r
re
a
l
b
u
g
s
w
h
ic
h
a
re

k
n
ow

n
,
a
n
d
R
-U

st
a
n
d
s

fo
r
re
a
l
b
u
g
s
w
h
ic
h
a
re

u
n
k
n
ow

n
.
*
T
h
e
ro
o
t
ca
u
se

o
f
B
u
g
#
1
2
a
n
d
b
u
g
B
u
g
#
1
3
h
av
e
n
o
t
b
ee
n
co
n
fi
rm

ed
y
et
.
T
h
ey

a
re

ex
p
o
se
d
w
h
en

a
tt
em

p
ti
n
g
id
io
m
1
iR

o
o
ts
.

60

to us by a developer at Intel who could not expose it even after attaching a software

deterministic record and replay tool to it [60]. Maple was able to expose the assertion

failure in about 400 test runs, much faster than the two random testing techniques.

However, because we do not have access to the source code, we could not help the

programmer understand the root cause of the bug using iRoot.

The Glibc bug (Bug #13) was also accidentally discovered when testing Bug #6

on a machine with glibc-2.5. It manifested as an assertion failure from the free

function. We could reproduce the buggy interleaving using the same iRoot and the

same random seed. The bug never showed up when a newer version of glibc was

used. Since the memory management code in glibc is quite complex, the root cause

has not been confirmed yet.

Memoization Help Expose Bugs Faster

We aware that applying memoization may affect the bug exposing capability of

Maple. For example, if an iRoot cannot be exposed under some inputs, it does

not mean that it is not feasible under other inputs. Since we put a limit on the

total number of test runs on any iRoot in our current settings, the corresponding

iRoot that leads to the bug might not be attempted when the bug triggering input

is used, causing the bug to be missed. In order to see how memoization can affect

the bug exposing capability, we evaluate 4 real bugs from Table 4.1 (Bug #7 to

Bug #10). Other real bugs are not chosen either because the bugs can be exposed

using any input (Bug #6, Bug #11 and Bug #13), or no other input is available (Bug

#12). We first test the 4 bugs using inputs that do not trigger the bug to build

the memoization databases. Then, we test the bugs using the bug triggering inputs.

Table 4.2 shows the results. We can see that all the 4 bugs can be exposed when

memoization is applied. More importantly, the time required to expose each bug

61

ID Bug Name Memo # Profile Profile Time # Test Test Time Total Time

7 Apache-1 No 36 580.7 93 1544.2 2124.9
Yes 22 357.6 2 18.3 375.8

8 MySQL-3 No 10 436.5 3975 43097.6 43534.1
Yes 8 362.9 162 1953.6 2316.5

9 Aget-2 No 9 148.1 11 29.2 177.4
Yes 6 100.5 8 21.8 122.3

10 Memcached No 41 304.6 4 11.3 316.0
Yes 36 272.6 5 12.1 284.8

Table 4.2: Memoization help expose bugs more quickly. All the time reported in the table are in
seconds.

also reduces drastically. For instance, we save about 94% of the testing time for Bug

#8. In fact, for the server application bugs, we save can a lot of testing time by

memoizing those iRoots that are related to server start and server shutdown, clearly

showing the benefit of memoization.

4.5.3 Usage Scenario 2: Coverage-Driven Testing

Another usage scenario that Maple can be helpful is when a programmer has a test

input and wants to explore as many interleavings as possible for that input within the

time budget. In this scenario, Maple can be used to cover more interleavings quickly.

Also, memoization can prevent the programmer from testing the same interleaving

multiple times, which helps reduce testing time.

Maple Achieves Higher Coverage Faster

The first question we want to address is whether Maple can expose more inter-

leavings faster than other testing techniques. We use the interleaving idiom based

coverage metric defined in Section 4.1. The coverage is represented using a tuple of

numbers, each of which is the number of exposed iRoots for one idiom. For example,

the following coverage (1, 2, 5, 100, 50) means that the test has successfully exposed

1 idiom1 iRoot, 2 idiom2 iRoots, 5 idiom3 iRoots, 100 idiom4 iRoots and 50 idiom5

iRoots. We have implemented a tool, called observer, in our dynamic analysis frame-

work to measure the coverage. The same observer is also reused in the profiler to

observe exposed iRoots during profile runs so as to avoid testing these iRoots again

62

during the test phase.

We compare it with 4 other testing techniques: PCT, PCTLarge, RandDelay and

CHESS. PCT and PCTLarge have already been introduced in Section 4.5.2. RandDelay

injects random time delay at random points during the execution. The number of

points in which a delay is introduced is proportional to the execution length (one per

50K non stack memory accesses). The program is run on multi-core processors when

RandDelay is used. CHESS [52] is a systematic testing tool. For a given program

and a given input, it tries to explore all possible thread interleavings that have few

preemptions. It was originally developed for Windows programs. We implemented

it in our framework for Linux. Currently, it works for programs that use POSIX

threads for synchronization. It employs the sleep-set based partial order reduction

technique described in [50], and uses a fair scheduler discussed in [51]. We use a

preemption bound of 2 throughout our experiments as suggested in [49] 3. To handle

a program that has data races, we run a dynamic data race detector first to find all

racy memory accesses in the program, and then inform the CHESS scheduler so that

it can explore different orderings of these racy memory accesses.

We use seven bug-free multi-threaded applications in this experiments, among

which (fft and radix) are scientific applications from Splash2 [81], (pfscan, pbzip2,

aget) are utility programs, and (memcached and apache) are server applications.

For scientific and utility programs, we use random inputs (e.g. random number of

thread, random files and directories, random URLs, etc.). For memcached, we wrote

our own test cases which perform commonly used operations such as set/get keys and

incr/decr keys. For apache, we use SURGE [9] to generate URLs and use httperf

to generate parallel requests. Notice that when testing server applications, each test

3In fact, 13 out of 14 bugs studied in [49] are exposed with a preemption bound of 2. Using a preemption bound
larger than 2 will drastically increase the number of test runs and exceed our time budget.

63

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M P L D C M P L D C M P L D C M P L D C M P L D M P L D M P L D M P L D

fft radix pfscan pbzip2 aget memcached apache geomean

#
 E

x
p

o
se

d
 i

R
o

o
ts

 (
N

o
rm

a
li

ze
d

 t
o

 M
a

p
le

) idiom5 idiom4 idiom3 idiom2 idiom1

Figure 4.11: Comparison with different testing methods using the same amount of time. M stands
for Maple, P stands for PCT, L stands for PCTLarge, D stands for RandDelay, and C
stands for CHESS.

run consists of starting the server, issuing the requests, and stopping the server. This

process is automated through scripting.

To compare Maple with these tools, we attach the same observer to each tool

to collect the coverage after each test run. The current implementation of CHESS

cannot identify the low level synchronization operations used in Glibc. Though we

can treat those unrecognizable synchronization operations as racy memory accesses

and still run CHESS on it, we believe this approach is unfair to CHESS as the number

schedules to explore will increase unnecessarily comparing to the case in which we can

recognize those synchronization operations. As a result, we decide to only consider

iRoots from application code and ignore library code in this experiment to ensure a

fair comparison.

Figure 4.11 shows the coverage achieved by these tools using the same amount of

time as Maple does. We run Maple till its completion. For apache, as we are not able

to run Maple till completion due to its scale, we test it for 6 hours. The observer

overhead is excluded from the testing time. Y-axis is normalized to the coverage

achieved by Maple. We are not able to run CHESS on aget, memcached and apache

because in these applications, some non-deterministic events (e.g. network package

64

arrival) are not controllable by CHESS 4. From the results shown in Figure 4.11, we

find that Maple achieves higher coverage faster than all the tools we have analyzed.

On average, it achieves about 15% more coverage than the second best tool in our

experiment. Also, we find CHESS only achieves about 60% of the coverage that is

achieved by Maple using the same amount of time as Maple does. Be aware that

the results shown in Figure 4.11 do not mean that Maple is able to explore more

interleavings than random testing tools and systematic testing tools. In fact, CHESS

explores a different interleaving in each test run. The results shown here convey

a message that if we believe the interleaving coverage we come up with is a good

coverage metric for concurrent testing, a specially engineered tool like Maple is able

to achieve higher coverage faster than a more general testing tool such as CHESS and

PCT.

We also notice that PCTLarge performs better than other random testing tech-

niques like PCT and RandDelay. We believe the reason is because PCTLarge has more

context switches than others. As a result, we choose to use PCTLarge to randomize

the profile runs in Maple.

Figure 4.12 shows the rate of increase in coverage using different testing tools.

The X-axis is the number of test runs and the Y-axis is the total number of iRoots

exposed so far. We only show results for those applications on which we are able

to run CHESS. We run CHESS till its completion in this experiment. The results in

Figure 4.12 further justify the fact that Maple is able to gain coverage faster than

random testing tools and systematic testing tools. Also, we notice an interesting

fact that CHESS experiences a slow start in gaining coverage. We believe this is due

to the use of depth-first search strategy in CHESS. A best-first search strategy may

4Such programs are called non closed programs.

65

15

20

25

30

35

40

45

0 10 20 30 40 50 60

#
 E

x
p

o
se

d
 i

R
o

o
ts

Number of Runs

Maple CHESS PCT

PCTLarge RandDelay

(a) fft

0

20

40

60

80

100

1 10 100 1000 10000 100000

#
 E

x
p

o
se

d
 i

R
o

o
ts

Number of Runs

Maple CHESS PCT

PCTLarge RandDelay

(b) pfscan

30

40

50

60

70

80

90

0 100 200 300 400

#
 E

x
p

o
se

d
 i

R
o

o
ts

Number of Runs

Maple CHESS PCT

PCTLarge RandDelay

(c) radix

0

50

100

150

200

250

300

350

400

1 10 100 1000 10000 100000

#
 E

x
p

o
se

d
 i

R
o

o
ts

Number of Runs

Maple CHESS PCT

PCTLarge RandDelay

(d) pbzip2

Figure 4.12: Comparison with different testing methods. X-axis is the number of test runs, and
Y-axis is the total number of iRoots exposed.

alleviate this problem at the cost of storing more states [15].

Memoization Help Reduce Testing Time

The next question we want to address is how much testing time we can save

when memoization is applied under this usage scenario. To do that, for each bug

free application, we test it using 8 different inputs (inputi, i ∈ [1, 8]). When testing

with inputi+1, we compared the testing time between the following two methods:

(1) without memoization database; (2) using the memoization database built from

input1 to inputi. We choose to memoize both the exposed iRoots and the fail-to-

expose iRoots (we set the threshold to 6, i.e. each iRoot will not be attempted

more than 6 test runs). For this experiment, we only test for idiom1 iRoots due to

time constraints. Figure 4.13 shows the results. The Y-axis represents the testing

time of the method that uses memoization (normalized to the testing time without

memoization). The line plotted in red shows the average of the applications we

66

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8
T

e
st

in
g

 T
im

e
 (

N
o

rm
a

li
ze

d
)

Input

fft

radix

pfscan

pbzip2

aget

memcached

apache

Figure 4.13: Memoization saves testing time. Y axis is normalized to the execution time without
memoization.

analyzed. We observe that, with memoization, the testing time reduces gradually

when more and more inputs are tested. For input8, the average saving on testing

time is about 90%. This clearly shows the benefit of memoization in reducing testing

time.

4.5.4 Characteristics of Maple

In the following, we discuss the characteristics of Maple in terms of its efficiency

(Section 4.5.4) and effectiveness (Section 4.5.4).

Performance Overhead

App. Pinbase Profiler Active Scheduler

fft 6.9X 30.9X 16.3X
radix 6.9X 67.7X 17.8X
pfscan 8.3X 31.9X 27.7X
pbzip2 9.5X 183.3X 45.4X
aget 13.7X 34.4X 98.8X

memcached 2.1X 4.8X 4.1X
apache 1.7X 6.2X 6.0X
mysql 1.6X 15.7X 2.5X

Table 4.3: Runtime overhead of Maple comparing to native execution time.

Table 4.3 shows the average performance overhead of the profiler and the active

scheduler for each application. We also include the Pinbase overhead, which is the

overhead of PIN itself without any instrumentation. All the numbers shown in

Table 4.3 are normalized to the native execution time. The overhead of the profiler

67

varies depending on the applications. The overhead ranges from 5X (I/O bound

applications) to 200X (memory intensive applications), and on average is at about

50X. The overhead of the active scheduler also varies, ranging from 3X to 100X.

The average overhead is about 30X. We identify two major factors that contribute

to the overhead of the active scheduler. One is due to the extra time delay that we

introduce to solve the asynchronous external events problem. The other is because

the candidate instructions of some infeasible iRoots are reached so frequently. We

believe we still have room to improve the performance of the active scheduler.

Effectiveness of the Active Scheduler

App. Idiom1 Idiom2 Idiom3 Idiom4 Idiom5

fft 87.5% 100.0% 40.0% 36.0% 25.0%
radix 66.7% 0.0% 0.0% 16.9% 5.6%
pfscan 13.3% 6.7% 5.6% 4.8% 6.4%
pbzip2 23.4% 23.1% 8.0% 5.6% 12.8%
aget 13.6% 3.6% 7.0% 2.7% 8.6%

memcached 7.8% 1.4% 8.4% 2.7% 7.1%
apache 6.0%* 1.0%* 0.0%* 7.0%* 4.0%*
mysql 5.0%* 0.0%* 1.0%* 1.0%* 2.0%*

Table 4.4: The success rate of the active scheduler (# successfully exposed iRoots / # total pre-
dicted iRoots). For apache and mysql, we experimented with 100 randomly selected
candidate iRoots.

Finally, we discuss how effective the active scheduler is in exposing iRoots. For

each application and each idiom, we collect the success rate of the active scheduler

(# successfully exposed iRoots / # total predicted iRoots). We run Maple till its

completion except for apache and mysql which exceed our time budget. For these

two applications, we randomly sample 100 candidate iRoots for each idiom and report

the success rate. On average, the active scheduler achieves about 28% success rate

on idiom1, 17% on idiom2, 9% on idiom3, 10% on idiom4 and 9% on idiom5. We

realize that the success rate for the active scheduler is not satisfactory. We identify

three major reasons: (1) the profiler algorithm in not accurate in the sense that it

cannot detect user customized happens before relations, producing many infeasible

68

iRoots; (2) the active scheduler cannot deal with pre-conditions which might exist

for some iRoots. (3) no dynamic information being associated with each iRoot

combining with the fact that the currently candidate arbitration mechanism is not

sophisticated enough causes some iRoots unlikely to be exposed. Nonetheless, Maple

succeeds at exposing concurrency bugs faster than the state of the art randomization

techniques, as previously demonstrated. We plan to further improve the accuracy of

the profiler and the active scheduler in future.

4.6 Summary

Maple is a new coverage-driven approach to test multi-threaded programs. To this

end, we discussed a coverage metric based on a generic set of interleaving idioms.

We discussed a profile-based predictor that determines the set of untested thread

interleavings that can be exposed for a given input, and an active scheduler to effec-

tively expose them. A key advantage of our approach over random and systematic

testing tools is that we avoid testing the same thread interleavings across different

test inputs. Our experience in using Maple to test real-world software shows that

Maple can trigger bugs faster by exposing more untested interleavings in a shorter

period of time than conventional methods.

CHAPTER V

Avoiding Untested Interleavings I: PSet

Even with a tool like Maple discussed in Chapter IV, untested interleavings are in-

evitable and are the major cause of a majority of concurrency bugs. In this chapter,

we discuss PSet, a runtime technique for avoiding untested interleavings in pro-

duction runs. We first provide an overview in Section 5.1. Then, we introduce

Predecessor Set (PSet) constraints, the way we use to encode tested interleavings in

Section 5.2. We discuss our architectural support for enforcing PSet constraints in

Section 5.3. Finally, we show our evaluation results in Section 5.4.

5.1 Overview

Even with a state-of-the-art testing tool like Maple discussed in Chapter IV, the

interleaving space of most multi-threaded programs is so large that, a programmer

cannot practically test all the legal interleavings of a program. In a well tested

production code, a programmer would have tested most of the frequently occurring

interleavings, but many of the infrequently occurring interleavings would remain

untested. These rare untested interleavings are major cause of a majority of concur-

rency bugs in the production code. Thus, one of the fundamental problems with the

shared-memory multi-threaded programming model is that, it exposes too many legal

interleavings to the parallel runtime system, which makes it difficult for programmers

69

70

to guarantee correctness.

In this chapter, we proposes to constrain a shared-memory multi-processor system,

such that it avoids the untested thread interleavings during a production run. This

improves correctness, because a tested interleaving is more likely to be correct than

an untested interleaving. Also, the untested interleavings tend to occur infrequently

during an execution, because otherwise they would have been tested in a high quality

production code. Therefore, constraining a parallel runtime system to avoid the rare

untested interleavings does not degrade performance significantly.

We face two challenges when designing such an interleaving constrained system.

The first challenge is to develop a method for encoding the set of all tested thread

interleavings in a program’s executable using ISA extensions. We define a thread in-

terleaving of an execution to be the order between the memory operations executed

by all the threads. A thread interleaving is therefore unique to an execution of a pro-

gram for a particular input. The challenge is to derive interleaving constraints from

each tested interleaving. These interleaving constraints should be generic enough

for different program inputs, so that enforcing them does not result in too many

unnecessary constraint violations during the production runs. At the same time, the

interleaving constraints should also be able to capture the set of tested interleav-

ings, so that by enforcing them, we can avoid a majority of concurrency bugs due

to the untested interleavings. Finally, the interleaving constraints should not be too

complex so that the processor can easily enforce them at runtime.

In this chapter, we present an interleaving constraint called the Predecessor Set

(PSet) constraint, which meets the above requirements. The PSet constraint is

actually derived from the idiom-1 interleaving idiom discussed in Chapter III. Every

static memory instruction in the program’s binary has a PSet constraint defined

71

for it. It encodes the set of exposed idiom-1 iRoots involved for that given static

instruction. In other words, the PSet constraint for an instruction I specifies the set

of all valid remote memory operations over which I can be immediately dependent

upon. Intuitively, PSet constraints captures the tested interleavings between two

dependent memory instructions. If a memory operation I was never immediately

dependent upon another remote memory operation P in any of the test runs, then

that dependency is avoided during the production runs.

We only consider the simplest interleaving idiom (idiom-1) in this chapter because

we want to simplify the hardware design. We believe this simplification will not

affect the bug avoidance capability significantly for two reasons. First, as shown

in Table 3.2, about 60% of the bugs we have observed are idiom-1 bugs. Second,

avoiding a concurrency bug is much easier than exposing it because we only need to

avoid one of the inter-thread dependencies that lead to the bug. While to expose a

concurrency bug, we need to find an interleaving that satisfies all the inter-thread

dependencies that lead to the bug.

The second challenge is to efficiently enforce PSet constraints during production

runs in order to avoid untested interleavings. We discuss extensions to a shared-

memory multi-processor design, which efficiently detects PSet constraint violations

and avoids them. Without processor support, we find that the performance overhead

for enforcing the PSet constraints is very high, which would render the proposed

interleaving constrained execution model to be impractical.

Our interleaving constrained processor detects PSet violations by keeping track of

the last accessor information for every memory word and piggy-backing the coher-

ence messages with that additional information. The processor recovers from a PSet

constraint violation by either stalling the violating thread until the constraint is sat-

72

isfied, or by re-executing the program from an earlier checkpoint with an alternative

thread interleaving. The violated constraint is logged and sent back to the developer.

The developer can then test the violated interleaving seen in the production run. If

it is indeed a correct interleaving, then a binary patch to relax the relevant PSet

constraint could be released.

Sufficient testing is required for the interleaving constrained processor to retain

reasonable performance. However, it is likely that the production environments

(e.g. hardware platforms, OS workloads) are substantially different from the testing

environments, and the frequencies with which particular interleavings occur might

be different from what we observed during testing. If that happens, the interleav-

ing constrained processor may encounter more PSet constraint violations, causing

performance problems. In such scenarios, we always have a choice to turn off the

protection to recover performance if we find the performance overhead is too high

and outweighs the extra reliability we get.

We discuss a software tool built using PIN [46], which we use to profile applications

during the test runs and derive the PSet constraints. It is also used to detect and

avoid the PSet constraint violations during real executions. This tool is used to

analyze the effectiveness of the proposed mechanism in avoiding 17 bugs in the open

source programs such as MySQL, Mozilla, Apache, etc. We show that by enforcing

PSet interleaving constraints, we can effectively avoid not only bugs due to data

races and atomicity violations, but also other forms of concurrency bugs that cannot

be found using the existing dynamic bug detection tools.

We also analyze the accuracy and performance of our tool using Splash [81] and

Parsec [10] benchmark suits. We show that the number of PSet constraint violations

in a bug free execution is very less, and as a result, the performance cost of enforcing

73

the PSet constraints is negligible.

5.2 Encoding Tested Interleavings

This section discusses the Predecessor Set interleaving constraints. They are

derived from correct test runs, and are encoded in the program binary. We then

discuss the effectiveness of PSets in avoiding concurrency bugs using several real

examples. Finally, we discuss the limitations of the PSet constraints.

5.2.1 Predecessor Sets (PSets)

We are taking the first step towards constraining a shared-memory multi-processor

system to follow the tested interleavings. In order to simplify the hardware design,

we focus on constraining just the interleaving between two dependent memory oper-

ations using the Predecessor Set constraints. The PSet constraints are derived from

the idiom1 interleaving idiom, the simplest idiom, discussed in Chapter III. We show

that even with this simplification, the PSet constraints are powerful enough to avoid

most of the data race bugs, atomicity violation bugs, and also other concurrency

bugs.

A Predecessor Set (PSet) is defined for each static memory operation. It encodes

the set of exposed idiom1 iRoots involved for that given static memory operation.

More precisely, the PSet for a memory instruction specifies the set of all memory

operations over which it can be immediately dependent upon. We consider true (read-

after-write) as well as false (write-after-write and write-after-read) dependencies. We

consider all thread local memory dependencies (where the two dependent memory

operations were executed in the same thread) to be valid during production runs.

Therefore, a PSet constraint specifies only the set of valid remote dependencies for

an instruction.

74

R1

R2

W1

R3

W2

R4

W3

T1 T2 T3

PSet(W1) = {}

PSet(W2) = {R2, R4}

PSet(W3) = {W2}

PSet(R1) = {W1}

PSet(R2) = {}

PSet(R3) = {}

PSet(R4) = {W1}

Figure 5.1: PSet constraints for an interleaving.

A static memory operation M contains another static memory operation P in its

PSet only if the following conditions are satisfied. Either P or M should be a write.

Also, there should be at least one dynamic instance in any of the tested correct

interleavings, such that (a) P and M were executed in two different threads (say,

T1 and T2), (b) M was immediately dependent on P in that interleaving, and (c)

neither T1 nor T2 executed a read or a write (to the same memory location asM) that

interleaved between P and M . During a production run, the runtime system detects

a violation while executing a memory operation M , if M is memory-dependent on a

remote memory operation P , but P is not in the PSet of M .

Figure 5.1 shows a tested interleaving, and the resultant PSets. Assume that all

the memory operations shown in the figure are to the same memory location, and

each of them is a different static memory operation. Reads are labeled with the

prefix R and writes are labeled with the prefix W. The PSet for W2 contains two reads

due to two write-after-read dependencies. Note that the PSet for R2 is empty even

though it is immediately dependent on the remote memory operation W1, because

R1 interleaves between W1 and R2 (refer condition (c) listed above). In this tested

interleaving, the values read by R1 and R2 would be the same. An empty PSet for R2

ensures that the value read by R1 and R2 are the same even in the production runs.

Including W1 in the PSet of R2 would not guarantee this property during production

75

Thread 1
 OpenInputStream()
 {
 PostEvent();
 ...

m_inputStream = ...

 }

Thread 2
 ProcessCurrentURL()
 {

 WaitEvent();
 ...
 if (m_inputStream) {
 AsyncRead(m_inputStream);

}

 }
nsSocketTransport.cpp nsImapProtocol.cpp

Correct Interleaving Incorrect Interleaving

W

R

Figure 5.2: A data race bug in Mozilla (Mozilla-7 in Table 3.5).

runs.

5.2.2 Effectiveness of PSets in Avoiding Concurrency Bugs

We now describe how enforcing the PSet constraints avoids harmful data race

bugs (while still allowing benign data races for performance), atomicity violations

and other forms of concurrency bugs.

Enforcing PSet Constraints Avoids Data Races

Figure 5.2 shows a data race bug in Mozilla. In this example, the variable

m inputStream points to a heap location that is dynamically allocated on receiv-

ing an input. During the correct test runs, the only valid interleaving between W

and R is W → R. Therefore, the PSet for R contains W, and the PSet for W is a null

set. For this data race bug to manifest in a production run, R should precede W.

However, such an interleaving would result in at least one PSet constraint violation.

The predecessor for W in an incorrect interleaving would be R. Since R is not in the

PSet for W, a PSet constraint violation would be detected.

A benign data race could occur frequently in a program’s execution. Therefore,

if we use a data race detector to avoid data races at runtime, we might hurt perfor-

mance. However, a PSet constraint based mechanism does not have this issue, as

PSets can capture the fact that a benign data race interleaving is a correct interleav-

76

Thread 1
 void LoadScript(nsSpt *aspt)
 {
 Lock(l);

gCurrentScript = aspt;
 LaunchLoad(aspt);
 Unlock(l);
 }

 void OnLoadComplete()
 {

 /* callback */
 Lock(l);
 gCurrentScript->compile();
 Unlock(l);

 }

Thread 2

Lock(l);
gCurrentScript = NULL;

 Unlock(l);

nsXULDocument.cpp

W1

R1

W2

Incorrect
Interleaving

Figure 5.3: An atomicity violation bug in Mozilla [43] (Mozilla-1 in Table 3.5).

ing, provided that interleaving is seen in a correct test run.

Enforcing PSet Constraints Avoids Atomicity Violations

Figure 5.3 shows an atomicity violation bug in Mozilla. The memory operations

W1-R1 are expected to execute atomically. W2 would never be immediately dependent

on W1 in any of the correct test runs. Therefore, the PSet for W2 would not contain

W1. In an incorrect execution, the atomicity property of W1-R1 could be violated by

an interleaving W2. However, this would cause a PSet constraint violation at W2, as

the PSet of W2 would not contain W1.

For this example, we would detect a PSet violation at W2, whereas AVIO [43], a

state-of-the-art atomicity violation detector, can only detect the violation later at R1.

A PSet constraint violation can be detected at least as early as an AVIO constraint

violation, as the PSet constraints are a super-set of the AVIO constraints.

Figure 5.4 shows an atomicity violation bug that AVIO [43] cannot detect. The

programmer expects that the operations W1-R1-W2 be executed atomically. There-

fore, the PSet for R2 learned from all the correct test runs would not contain W1.

When the required atomicity property for the operations W1-R1-W2 is violated by R2

in a production run, a PSet violation would be detected at R2.

77

Thread 1
 nsFileTransport::Process()
 {
 ...

mStatus =
 mOutputStream->WriteFrom();

 if(mStatus == STREAM_WOULD_BLOCK)
 {

mStatus = NS_OK;
 return;
 }
 ...
 }

Thread 2
 HandleEvent()
 {

 if(mStatus != NS_OK)
 return; // ignore event

 }

nsFileTransport.cpp

W1

R1

W2

R2

Incorrect
Interleaving

Figure 5.4: An atomicity violation bug in Mozilla, which will not raise an AVIO [43] invariant
violation. (Mozilla-4 in in Table 3.5).

Thread 1
 TimerThread::Shutdown()
 {

...
Lock(l);
mProcessing = FALSE;
if(mWaiting)
 Notify(cond,l);
Unlock(l);
...

mThread->Join();
return NS_OK;

 }

Thread 2
 TimerThread::Run()
 {

 Lock(l);
 mProcessing = TRUE;
 while(mProcessing){
 ...

mWaiting = TRUE;
 Wait(cond,l);
 mWaiting = FALSE;

 }
 Unlock(l);

 }

Correct
Interleaving

Incorrect
Interleaving

TimerThread.cpp

 Wait(cond, l) {
 Unlock(l);
 do_wait(cond);
 Lock(l);
 }

R

W

Figure 5.5: Order violation bug in Mozilla, which is neither a data race nor an atomicity violation.
(Mozilla-9 in Table 3.5).

Enforcing PSet Constraints Avoids Order Violations

Figure 5.5 shows a concurrency bug in Mozilla that neither a data race detector nor

an atomicity violation detector can detect. The function Notify() in Thread1 should

be invoked only after Thread2 executes the Wait() function. Otherwise, Thread2

would block forever. The PSet for W learned from the correct test interleavings would

not contain R. In an incorrect interleaving during a production run, R would be W’s

predecessor, and therefore a PSet constraint violation would be detected at W.

78

5.2.3 Deriving and Encoding PSets Constraints

The predecessor sets are constructed from the test runs using a profiling tool that

we built using PIN [46]. The programmer has to ensure that the test run is correct.

This could be done by verifying the program output and by checking the test run

using dynamic bug detection tools.

Figure 5.6 shows the format of an instruction with its PSet information for a

32-bit ISA. The field P-Type has two bits. If the P-Type value for an instruction is

three, then the next field specifies the number of instructions in the PSet for that

instruction. Each of the remaining fields specify an instruction in the PSet. An

instruction is represented using a concatenated value of the identifier for its library

and its relative offset that refers to the instruction’s location in the library. This is

necessary to support programs with dynamically loaded libraries.

The worst case space complexity for the PSets of a program is O(N2), where N is

the number of static memory instructions in the program. The reason is that, each

static instruction can have at most N elements in its PSet. However, in Section 5.4

we show that, on average, about 95% of static instructions have a PSet of size zero,

as a huge proportion of memory operations are thread local accesses. For such

instructions, there is no additional space overhead.

Programmers commonly use a testing metric called basic block coverage. It mea-

sures the percentage of static instructions that were executed in at least one test

run. Even for high quality production code, basic block coverage is typically less

than 100%. For instructions that were never tested even once, we could assume that

its PSet is a null-set. This could ensure a high degree of fault tolerance. Alterna-

tively, one could choose not to enforce PSet constraints for such untested instructions

to reduce the number of false constraint violations during production runs. However,

79

Instruction P Size PInst1 PInst2

Predecessor Address (4 bytes)

PInst3

PSet Size (1 byte)

PSet Type (2 bits)

00 - Not Tested

01 - Null Pset

10 - PSet Size = 1

11 - PSet Size > 1

Lib ID Rel Addr

4 bits 28 bits

Figure 5.6: Format for encoding an instruction’s PSet.

untested instructions are also likely to occur rarely, because otherwise it would have

been tested in a well tested program. Therefore, assuming null PSets for untested

instructions in a well tested program would not result in significant number of false

constraint violations.

5.2.4 Limitations

The PSet constraints described does not account for the interleavings between two

or more memory operations accessing different memory locations due to hardware

complexity concern. As a result, it may not be able to avoid certain bugs due to

multi-variable atomicity violations. Another limitation of PSets is that they are

context insensitive. Additional context such as the calling stack could help avoid

more untested interleavings. In future, we plan to extend the PSet interleaving

constraints so that we can avoid most of the untested interleavings. However, our

analysis in Section 5.4 shows that the PSets constraints are powerful enough to avoid

15 out of 17 concurrency bugs that we analyzed.

5.3 Enforcing Tested Interleavings

In this section, we first discuss methods to detect and avoid PSet constraint

violations. Using these methods we ensure that most of the untested interleavings

are avoided during production runs. We then discuss the architectural support for

detecting and avoiding PSet constraint violations.

80

5.3.1 Detecting and Enforcing PSet Constraints

During a production run, whenever a memory operation is immediately dependent

on a remote memory operation, the runtime system checks to see if the remote

memory operation is in the predecessor set of the current memory operation. If not,

a PSet violation is detected.

To repair the violation, we evaluate two approaches. In one approach, the violating

memory operation is stalled until the violation gets resolved. When the violating

thread is stalled, other threads continue to make progress. If another thread executes

a memory operation to the same memory location as the violating memory operation,

the violated PSet constraint is checked again. If the check succeeds, the stalled thread

continues its execution.

A repair mechanism based on stalling the violating threads is easier to support

and is also performance efficient. However, not all PSet constraint violations can

be avoided using this mechanism. Because, for a constraint to get resolved, another

thread should be able to make progress so that it eventually accesses the same mem-

ory location as the stalled memory operation. But, it is possible that the other

thread needs a lock before it can access that memory location, and that lock might

be currently held by the stalled thread. Thus, stalling the violating thread might

not resolve the violation. Consider another example where a violating memory op-

eration’s PSet is a null-set. In this case, any remote memory dependency would

cause a violation, and therefore waiting for the other threads to execute a different

memory operation is never going to resolve the violation. To ensure forward progress

while using a stalling mechanism, we use a time-out scheme, where the stalled thread

is released to continue its execution (or the second recovery scheme is triggered, if

available) when the stall time has reached a particular threshold.

81

We also evaluate another recovery mechanism to avoid PSet constraint violations.

It is based on a checkpoint and rollback mechanism. On detecting a violation, the

program is re-executed from an earlier checkpoint. During re-execution, the thread

schedule is perturbed to induce an alternative interleaving. Since, the constraint

violations are likely to be rare events, it is unlikely that the same violation would be

encountered again during re-execution.

Not all PSet constraint violations can be avoided by just perturbing the thread

schedule. It is possible that the only legal interleaving for an input is one that is

untested. Such violations would cause repeated rollbacks to the same checkpoint. To

ensure forward progress, the maximum number of rollbacks to a checkpoint is set to a

threshold. When the number of rollbacks to a checkpoint has reached the threshold,

that checkpoint is discarded, and another checkpoint is taken at the point where a

PSet violation is detected. The system then logs the violation and continues with

the execution. This ensures forward progress. The log is sent back to the developer

to test the untested interleaving and determine if it is a cause of a bug or not. If it

is not a bug, then the relevant PSet is updated in order to allow the newly tested

interleaving at runtime.

5.3.2 Architectural Support

We implemented a profiler that learns PSets from the test runs using PIN [46]. We

also implemented a runtime monitor to detect PSet constraint violations and avoid

concurrency bugs using PIN [46]. The runtime overhead for this runtime monitor

is about 100x for server applications such as MySQL and Apache, but it is over

200x for memory intensive applications like Splash [81] and Parsec [10]. Therefore,

to constrain the interleavings at runtime using PSet constraints, adequate processor

support is a must.

82

We discuss architectural support for detecting PSet constraint violations in this

section. In addition, we also need checkpoint support for rollback and re-execution.

This is a well researched problem. A copy-on-write mechanism can be supported

in the operating system [64] or in the processor [72, 63]. During re-execution, we

induce a different thread interleaving. The execution cannot be rolled back past a

committed system state. But as we show in Section 5.4, the rollback window length

required to avoid a majority of concurrency bugs is small.

We now discuss architectural support for detecting PSet constraint violations. The

instruction set architecture (ISA) needs to be extended to let the developers specify

the PSet constraints. Section 5.2 discussed an instruction encoding for specifying

the PSet constraint for an instruction. A processor needs to execute a check for a

memory operation, if it has a PSet constraint specified in the instruction code.

Tracking Last Writer and Last Reader(s)

To execute the checks, the processor needs to keep track of either the last writer

or the set of last readers for every memory location. We propose to extend the caches

to keep track of this additional meta-data for every memory location. When a cache

block is evicted, the information is lost. But as described in Section 5.2, most of the

concurrency bugs are tightly interleaved. Therefore, the loss in information due to a

cache eviction is not significant.

The coherence reply messages (write-update replies and acknowledgments for in-

validations) are piggy-backed with the meta-data corresponding to the cache block.

The processor core receiving the reply, stores the received information in its pri-

vate cache along with the information that the last reader or the writer information

belongs to a different thread.

83

Checking PSet Constraints

We propose to use DISE [16] for efficiently executing the PSet check for every

memory operation that has a PSet constraint. A check needs to be executed for a

memory operation, only if the last reader(s)/writer to the memory location accessed

by the current instruction belongs to a different thread. Thus, in the common case,

no check needs to be executed for a memory operation. Also, for a majority of

instructions, the PSet is a null-set (including all thread local accesses). We show

that less than 5% of static memory operations have a PSet size greater than one,

and therefore the check for a memory operation could be very efficient. If a check is

executed for a memory operation, it checks if the last writer or the last set of readers

is a member of the current memory operation’s PSet.

5.4 Evaluation

We discuss several results in this section. First, we discuss the bug avoidance ca-

pability of an interleaving constrained shared-memory multi-processor that enforces

the PSet constraints. We analyze its capability in detecting and avoiding 17 concur-

rency bugs in several multi-threaded applications such as Mozilla, MySQL, Apache,

etc. We also analyze if these bugs can be detected by a happens-before based data

race detector [21] and AVIO [43]. Second, we analyze the number of tests it takes

to learn the PSet constraints adequately, and compare it with another test based

AVIO bug detection tool [43]. Third, we discuss the number of PSet constraint vio-

lations in real executions (using input different from the ones used for training), and

the overhead in resolving the PSet constraint violations using stalling and rollback

mechanisms. Finally, we analyze the size of PSets and the memory space overhead

to express PSet constraints in the binary and to keep track of them during produc-

84

tion runs. These results are based on our PSet constraint tool implemented using

PIN [46].

5.4.1 Bug Avoidance Capability

We analyzed 17 bugs that were known to us at the time we performed our experi-

ments. These bugs are listed in Table 5.1. Column-2 shows the unique name of each

bug used in our experiments which matches that in Table 3.5. A short description

about each bug we have analyzed can be found in Table 3.5. In our experiments,

we evaluated four real bugs (Bug #1, Bug #2, Bug #4 and Bug #5) and one injected

bug (Bug #3). For the rest of the bugs, we analyzed their extracted versions, as

these bugs manifest only under a very specific interleaving that is very difficult to

reproduce and analyze.

As shown in Table 5.1, the proposed PSet constraint based detection tool detected

all the bugs, except the last two bugs listed in Table 5.1. One bug (Bug #16) is related

to an incorrect interleaving between memory operations accessing different locations.

The other one (Bug #17) is a deadlock bug. In order to detect this bug, the PSet

constraint needs to be context sensitive. AVIO [43] can detect 6 atomicity violation

bugs, but cannot detect one atomicity violation bug (Bug #10), which we discussed

in Section 5.2. A happens-before data race detector can detect all the bugs, except

five data race free bugs (Bug #3, Bug #7, Bug #15, Bug #16 and Bug #17).

Our PSet based tool detected Bug #3 and Bug #15, which neither the data race

detector nor AVIO [43] could detect. Thus, PSet constraint based concurrency bug

detector is effective in detecting all the concurrency bugs that traditional tools find,

and also has the potential to detect other memory ordering related concurrency bugs.

We now analyze the bug avoidance capability of the proposed constrained shared-

memory multi-processor runtime system. Table 5.2 shows all the 15 bugs that were

85

ID Bug Name D.R.D AVIO PSET

1 Pbzip2 Yes No Yes
2 Aget-2 Yes Yes Yes
3 Pfscan No No Yes
4 Apache-1 Yes Yes Yes
5 MySQL-1 Yes Yes Yes
6 MySQL-8 Yes No Yes
7 Mozilla-1 No Yes Yes
8 Mozilla-2 Yes Yes Yes
9 Mozilla-3 Yes Yes Yes
10 Mozilla-4 Yes No Yes
11 Mozilla-5 Yes No Yes
12 Mozilla-6 Yes No Yes
13 Mozilla-7 Yes No Yes
14 Mozilla-8 Yes No Yes
15 Mozilla-9 No No Yes
16 Mozilla-10 No No No
17 OpenLDAP No No No

Table 5.1: Bug detection capability. Comparing PSet with a happens-before data race detector and
AVIO [43].

detected by the PSet violation detector. Six bugs were avoided using the stalling

mechanism that we described in Section 5.3, and the rest of the bugs require sup-

port for a rollback and re-execution mechanism. Table 5.2 also lists the number of

static and dynamic PSet constraint violations detected by our tool. The constraint

violations are classified into true and false constraints. The true constraint viola-

tions are related to the bug. The false constraint violations are due to insufficient

training during testing. The performance impact due to false constraint violations is

discussed in Section 5.4.3. Table 5.2 also lists the number of instructions that need

to be rolled back to avoid the bugs that we analyzed. As expected, the required

rollback window size is small. This is because, most of the concurrency bugs are due

to temporally tight interleaving between the memory operations. A rollback window

of size zero means that the bug was avoided by just stalling the violating thread.

5.4.2 Learning PSet Constraints

For the runtime system to be efficient, PSet constraints should be complete enough

to allow valid frequent interleavings between memory operations at runtime. In this

section we discuss how soon the number of new PSets learned reaches a satura-

tion point, and compare it with another profiling based bug detection tool called

86

T
ru

e
C
o
n
st
ra

in
t
V
io
la
ti
o
n
s

F
a
ls
e
C
o
n
st
ra

in
t
V
io
la
ti
o
n
s

ID
B
u
g
N
a
m
e

T
y
p
e

S
ta

ll
R
o
ll
b
a
ck

S
ta

ti
c

D
y
n
a
m
ic

S
ta

ti
c

D
y
n
a
m
ic

R
o
ll
b
a
ck

W
in
d
o
w

S
iz
e

1
P
b
z
ip
2

R
e
a
l

Y
e
s

Y
e
s

1
1

3
3

0
2

A
g
e
t-
2

R
e
a
l

N
o

Y
e
s

1
1

2
2

1
1

3
P
fs
c
a
n

In
je
c
te
d

N
o

Y
e
s

1
1

0
0

5
1

4
A
p
a
ch

e
-1

R
e
a
l

N
o

Y
e
s

2
2
0

1
1

3
5
8

5
M

y
S
Q
L
-1

R
e
a
l

Y
e
s

Y
e
s

1
7

3
6

0

6
M

y
S
Q
L
-8

E
x
tr
a
c
t

N
o

Y
e
s

1
1

0
0

4
7
6
0

7
M

o
z
il
la
-1

E
x
tr
a
c
t

N
o

Y
e
s

1
1

3
3

1
6
6
4

8
M

o
z
il
la
-2

E
x
tr
a
c
t

N
o

Y
e
s

2
2

1
1

1
2
2
4

9
M

o
z
il
la
-3

E
x
tr
a
c
t

N
o

Y
e
s

1
1

0
0

1
2
1
0

1
0

M
o
z
il
la
-4

E
x
tr
a
c
t

Y
e
s

Y
e
s

1
1

0
0

0
1
1

M
o
z
il
la
-5

E
x
tr
a
c
t

Y
e
s

Y
e
s

1
1

0
0

0
1
2

M
o
z
il
la
-6

E
x
tr
a
c
t

Y
e
s

Y
e
s

1
1

0
0

0
1
3

M
o
z
il
la
-7

E
x
tr
a
c
t

N
o

Y
e
s

1
1

0
0

8
2
1

1
4

M
o
z
il
la
-8

E
x
tr
a
c
t

Y
e
s

Y
e
s

1
1

0
0

0
1
5

M
o
z
il
la
-9

E
x
tr
a
c
t

N
o

Y
e
s

2
2

1
1

1
6
7
4

T
a
b
le

5
.2
:
A
v
o
id
in
g
b
u
g
s
u
si
n
g
P
S
et

co
n
st
ra
in
ts
.
T
ru
e
co
n
st
ra
in
t
v
io
la
ti
o
n
s
a
re

re
la
te
d
to

th
e
b
u
g
.

87

AVIO [43].

Testing Methodology

PSet constraints used in Section 5.4.1 were learned from the correct test runs.

Here we describe the input we used to test our multi-threaded programs and learn

the PSet constraints. These input are different from the ones used for the bug

avoidance (Section 5.4.1) and the false positive analysis (Section 5.4.3). Pbzip2 is a

parallel implementation of Bzip2, which does file compression and file decompression.

We compressed a random file in each test run. Aget is a download accelerator

that spawns multiple threads to download different chunks of a file in parallel. For

each test run, we downloaded a random file from the Internet. Pfscan is a multi-

threaded file scanner, which combines the functionality of find, xargs and fgrep.

We searched a random string from a randomly chosen file or directory in each test

run. We also evaluated two server applications, Apache and MySQL. For Apache,

each test run consists of issuing a session of requests to a set of static web pages

using httperf. For MySQL, each test run consists of running the regression test

suite that is available for public. In parallel with the regression test suite, we also

continuously run the OSDB (Open Source Database Benchmark [6]) multi-user test

to emulate a concurrent workload. For these five programs, we used the same version

as the ones used for the bug avoidance analysis (from Bug #1 to Bug #5), and the

PSet constraints derived in this section are used in the bug avoidance analysis. In

addition, we also evaluated six bug free applications, four of them (FFT, LU, Radix,

FMM) are from the Splash2 [81] benchmark suite, and two of them (Blackscholes

and Canneal) are from the Parsec [10] benchmark suite. For these programs, we

chose a random input parameter for each test run.

88

Programs Stall Rollback
Cannot
Resolve

Total PSet
Constraint
Violations

Inst.
Count

pbzip2 1 5 0 6 1.3E+9
aget 0 0 0 0 1.1E+7
pfscan 1 2 0 3 7.4E+7
apache 1 4 0 5 2.8E+8
mysql 0 2 2 4 9.7E+8
fft 0 0 0 0 2.3E+8
fmm 1 0 0 1 1.6E+9
lu 0 1 0 1 1.6E+8
radix 0 0 0 0 6.4E+7
blackscholes 0 0 0 0 8.1E+8
canneal 1 0 0 1 7.0E+9

Table 5.3: PSet constraint violations in bug-free executions.

Tests Required to Learn PSet Constraints

Figure 5.7 shows the number of new PSet pairs learned in each test run. Each

point along the x-axis represents a unique test run, and the y-axis represents the

number of new PSet pairs derived from a particular test run. PSet takes more

test runs to stabilize than AVIO, because it captures more constraints than AVIO.

These results show that the tests used during the quality assurance process should

be adequate to learn the PSets.

5.4.3 PSet Constraint Violations in Bug Free Executions

We now discuss the number of false PSet constraint violations in bug free exe-

cutions. We used the same set of benchmarks that we used for the results in Sec-

tion 5.4.2. The input used to analyze the false PSet constraint violations is different

from the training input. For Pbzip2, we used a different set of files as input. For

Aget, some new files were downloaded. For Pfscan, we searched some new strings

from different files and directories. For Apache, we used httperf to issue concurrent

requests to a set of static web pages which are not used in the test runs. For MySQL,

we used the tool in OSDB to randomly generate a new database with a size different

from the one used for training, and ran the OSDB multi-user test. For Splash2 and

Parsec programs, we randomly selected inputs and parameters not used in the test

89

0

40

80

120

160

200

0 10 20 30 40

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t
Number of Test Runs

pbzip2 (PSet)

pbzip2 (AVIO)

0

50

100

150

200

250

300

0 20 40 60 80 100

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

aget (PSet)

aget (AVIO)

0

50

100

150

200

250

0 20 40 60 80 100 120

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

pfscan (PSet)

pfscan (AVIO)

1

10

100

1000

10000

0 100 200 300

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

apache (PSet)

apache (AVIO)

1

10

100

1000

10000

0 20 40 60 80 100 120

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

mysql (PSet)

mysql (AVIO)

0

40

80

120

160

0 10 20 30 40 50 60 70 80

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

fft (PSet)

fft (AVIO)

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

fmm (PSet)

fmm (AVIO)

0

50

100

150

200

250

0 10 20 30 40 50 60 70

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

lu (PSet)

lu (AVIO)

0

40

80

120

160

200

0 20 40 60 80 100

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

radix (PSet)

radix (AVIO)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

blackscholes (PSet)

blackscholes (AVIO)

0

200

400

600

800

0 10 20 30 40 50 60 70 80

N
e

w
 P

S
e

t
P

a
ir

s
Le

a
rn

t

Number of Test Runs

canneal (PSet)

canneal (AVIO)

Figure 5.7: Number of test runs required for learning PSets and AVIO invariants.

90

runs.

Table 5.3 shows the static and dynamic number of PSet constraint violations, and

also the total number of instructions executed. All the data shown in the table are

the cumulative results of 10 runs, except for MySQL. For MySQL, we run the OSDB

multi-user benchmark once. The results show that the number of false constraint

violations are very few. For example, for Pbzip2, we detected 6 constraint violations

while executing over 1.3 billion instructions. We avoided one constraint violation by

just stalling the violating thread. The other five constraint violations needed rollback

and re-execution to resolve them. Even for a rollback window of length 100,000

(which is more than sufficient for resolving most of the concurrency bugs as discussed

in Section 5.4.1), five violations would result in additional 0.5 million instructions

being executed at runtime. But this is a small fraction (0.04%) when compared

to 1.3 billion instructions executed by the original program. Thus, false constraint

violations are infrequent enough that they are likely to not impact performance.

Detecting PSet invariant violations and maintaining checkpoints can also degrade

performance, but both of these costs can be ameliorated using processor support

(discussed in Section 5.3).

We also noticed that there are two PSet constraint violations in MySQL that can-

not be resolved by both stall and rollback mechanisms, because there is no legal

interleaving that would not violate the PSet constraints. This is due to insufficient

testing. We found that these two violations are from the function bmove512() (in

bmove512.c). This function moves 512 bytes in the heap. To improve performance,

the programmer has manually unrolled a loop in the function 128 times resulting

in 128 reads and 128 writes within the loop. In a test run, only very few bytes are

touched in the heap before the function bmove512() gets executed. As a result, in a

91

90% 92% 94% 96% 98% 100%

canneal

blackscholes

radix

lu

fmm

fft

mysql

apache

pfscan

aget

pbzip2

0

1

2 ~ 5

6 ~ 10

> 10

Figure 5.8: Proportion of static memory instructions with a particular PSet size (normalized to the
total number of static memory instructions in the application binary and libraries that
were executed in at least one test run).

test run, only a few memory instructions within the loop have a predecessor memory

operation. This makes it difficult for us to learn all the legal interleavings involving

this function using our current testing methodology. However, if we can perform

more complete industry-level testing, such violations should also disappear.

When we detect a PSet violation that we cannot avoid, in addition to logging

it for post-mortem analysis, the corresponding PSet is updated so that no future

violations due to the same interleaving would be detected. A PSet violation that

we manage to avoid are also logged for post-mortem analysis, but the corresponding

PSet is not updated so that the system continues to avoid a potential bug related to

the PSet violation.

5.4.4 Memory Space Overhead

We now discuss the memory space overhead in expressing the PSet constraints in

the binary and tracking them at runtime. We use the same set of benchmarks that

we described in Section 5.4.2.

Figure 5.8 shows the distribution of the PSet sizes for several programs that we

analyzed. The x-axis is normalized to the total number of memory instructions in

the application binary and the libraries that were executed at least once in the test

92

Programs App. Size App+Lib Size # PSet Pairs PSet Size Overhead w.r.t App. Overhead w.r.t App+Lib

pbzip2 39KB 3.70MB 201 0.84KB 2.16% 0.02%
aget 90KB 2.04MB 365 1.53KB 1.69% 0.08%

pfscan 17KB 2.08MB 295 1.25KB 7.34% 0.06%
apache 2435KB 8.60MB 4119 16.80KB 0.69% 0.20%
mysql 4284KB 8.19MB 6604 27.58KB 0.64% 0.34%
fft 24KB 2.59MB 158 0.67KB 2.74% 0.03%

fmm 73KB 2.64MB 1764 7.39KB 10.13% 0.28%
lu 24KB 2.59MB 244 1.03KB 4.31% 0.04%

radix 21KB 2.59MB 255 1.07KB 5.00% 0.04%
blackscholes 54KB 3.65MB 41 0.17KB 0.32% 0.00%

canneal 59KB 3.66MB 752 3.10KB 5.24% 0.08%

Table 5.4: Binary Size Increase.

runs. Over 95% of the instructions have PSets of size zero. These instructions either

accessed only thread local memory locations, or, they were never dependent on a

remote memory operation. Less than 2% of static memory instructions have a PSet

of size greater than two. This result shows that the performance overhead in the

executing the PSet constraint checks should be very small.

Table 5.4 lists the sizes of the applications’ binaries and also the sizes of the

libraries they use. It also lists the number of PSet pairs learned from the test runs.

The percentage of code size increase with respect to just the application binary size

is about 10% in the worst case. This is the code size increase for an application.

However, the PSet pairs for an application also includes the static instructions from

the libraries. The increase in binary size with respect to the total size of application

and libraries is negligible. As a result, at runtime, we expect that the increase

in the size of the instruction memory footprint to be also negligible. The reason

for this result is that, only a small fraction of the instructions access shared-memory

locations. And, only the shared-memory instructions could have a PSet of size greater

than zero.

5.5 Summary

Testing and verifying a multi-threaded program is more difficult than a single-

threaded program, because the number of possible interleavings is exponential over

93

the number of memory operations executed by different threads. We make a case for

an interleaving constrained shared-memory multi-processor which avoids untested

interleavings.

We make the first step towards designing an interleaving constrained multi-processor.

To detect untested interleavings we need a set of invariants fundamentally different

from the ones used to detect incorrect interleavings such as a data race invariant or

AVIO. We focused on constraining the runtime interleaving such that, no two remote

memory operations are allowed to depend on each other at runtime, unless that de-

pendency was observed in at least one of the test runs. We built a software tool to

detect PSet constraints and enforce them, but as expected, it incurs significant run-

time slowdown. We proposed extensions to a multi-processor design, which enables

efficient detection of PSet constraint violations. On detecting a violation, checkpoint

support is used for re-executing the program with an alternative interleaving and

resolve the PSet constraint violations.

We analyzed several bugs in real applications, and showed that the proposed

system can avoid not only data races and atomicity violations, but also other un-

structured memory order related concurrency bugs. The number of false constraint

violations in a well tested program is very small, and as a result, the resulting per-

formance overhead is also negligible.

CHAPTER VI

Avoiding Untested Interleavings II: LifeTx

Chapter V takes the first step towards constraining the parallel runtime system

to follow tested interleavings in order to avoid concurrency bugs in production runs.

However, it cannot avoid concurrency bugs that involves multiple variables and de-

pendencies, and it requires a custom processor design. As Hardware Transactional

Memory (HTM) becoming a reality [2], one interesting research question is whether

we can leverage the emerging HTM to tolerate concurrency bugs.

In this chapter, we discuss another runtime technique, called LifeTx, to tolerate

concurrency bugs. This technique is based on a new type of interleavings constraint,

called Lifeguard Transaction (LifeTx). LifeTxes are designed to be enforcible by

HTM. This chapter is organized as follows. We first discuss LifeTx constraint and

present an algorithm for deriving LifeTxes from test runs in Section 6.2. Then,

we discuss our TM based hardware support for enforcing LifeTxes in Section 6.3.

Finally, we present our evaluation results in Section 6.4.

6.1 Overview

We observed that in a well tested program, a programmer is likely to have tested

at least the interleavings that manifest frequently when the program is executed.

But many rare interleavings are likely to remain untested. Such rare untested in-

94

95

terleavings tend to be the common cause for a majority of concurrency bugs that

manifest at the production site. Given this, a parallel runtime system that avoids

untested interleavings by biasing the runtime thread schedule to select a tested inter-

leaving, whenever possible, could potentially avoid a majority of concurrency bugs

from manifesting at the customer site. The performance cost of disallowing rare

untested interleavings would not be significant, because though they are many in

number, they are only likely to manifest infrequently (if they do manifest frequently,

then they are likely to have been tested).

The key challenge in realizing an interleaving constrained parallel runtime system

is in devising the right interleaving constraint that can be learned from the test runs

and communicated to the runtime system. The interleaving constraint should be

such that it disallows untested interleavings at runtime and avoids a majority of

concurrency bugs, but at the same time it does not unnecessarily restrict parallelism

by disallowing correct thread interleavings in production runs.

The Predecessor Set (PSet) constraint described in Chapter V serves this purpose.

However, PSet interleaving constraints require a fairly complex hardware support to

enforce them efficiently in production runs. Also, PSet constraints cannot avoid con-

currency bugs due to incorrect interleaving of memory accesses to different locations

such as the multi-variable atomicity violations [41]. For example, the atomicity vio-

lation bug shown in Figure 3.3 cannot be detected and avoided by PSet constraints

because it involves multiple variables. As Hardware Transactional Memory (HTM)

becoming a reality [2], one interesting research question is whether we can leverage

the emerging HTM to tolerate concurrency bugs.

In this chapter, we present a new interleaving constraint called Lifeguard Trans-

action (LifeTx). LifeTxes are designed to be enforcible by HTM. They are similar to

96

the programmer specified transactions [30, 32] in that it instructs the runtime to ex-

ecute them in a serializable order. The difference is that LifeTxes are automatically

derived based on interleavings observed during testing. When enforced, they are

likely to avoid concurrency bugs. But, the runtime may also choose not to enforce

a LifeTx constraint either because the performance is being adversely affected or to

ensure forward progress. We exploit this relaxed requirement of LifeTx constraints

to significantly reduce the hardware support required to enforce them.

We describe a profiling algorithm to determine LifeTxes from all the tested correct

executions. Before testing a program, a thread’s main function is contained in a

LifeTx. Of course, this is overly constrained as a thread’s entire execution needs

to be serializable with respect to all the other threads. But, when a programmer

tests a new interleaving for which there is no serializable execution that satisfies the

current set of LifeTxes learned till that test run, we split one of the existing LifeTx

such that the resulting LifeTxes are serializable for the newly tested interleaving.

Thus, the newly tested interleaving would be allowed in future production runs. A

programmer would test as many interleavings in a program as practically possible.

The more a programmers tests, smaller and less constrained the LifeTxes will be.

Once the testing is done, the LifeTx constraints are encoded in the program binary

and shipped to the production site.

To enforce LifeTx constraints in production runs we propose a simple but effi-

cient hardware support similar to the conflict detection mechanism in a hardware

transactional memory (HTM) system [32]. Conflicts between concurrent LifeTxes

are eagerly detected by tracking the cache blocks accessed by a LifeTx and mon-

itoring the coherence messages. Since the runtime is not obligated to enforce the

LifeTx constraint, we avoid the complexity of versioning, rollback and unbounded

97

region support required in TM systems. Instead, we simply stall the coherence reply

on detecting a conflict till one of the conflicting LifeTx finishes its execution or the

stall time exceeds a predefined threshold. The threshold can be configured by the

end user to make a trade-off between performance and reliability. We show that a

majority of LifeTx constraints including those that encapsulate buggy code regions

can be enforced by simply stalling coherence replies on detecting a conflict. The con-

straint violations detected during production runs and beta-testing could be logged

and communicated back to the developer so that the programmer could test those

interleavings and relax LifeTx constraints for future executions.

We implemented a PIN tool [46] to profile the test runs and determine LifeTxes.

We studied a set of applications that includes Apache, MySQL, Parsec, and a few

micro-kernels. We tested these applications as much as we can using the regression

test suits and/or randomized input. Insufficient testing could result in unreasonably

large LifeTxes. But, we observed that even with our less than industrial strength

testing effort, LifeTxes are on the order of only a few hundred instructions in length.

To study the performance impact and bug avoidance capability, we modeled hard-

ware support for runtime conflict detection and conflict avoidance support using

Simics [47]. Thus, the simulated environment is significantly different from the test

environment. Yet, we find that the runtime overhead is less than 0.6%. In the worst

case, for one of the MySQL’s execution, we detected only 178 constraint violations

during an execution of about 2.1 billion instructions. We also analyzed 14 docu-

mented bugs in our benchmark suite, out of which 12 were atomicity violations. Out

of the 12 atomicity violation bugs, 11 bugs (two of them were multi-variable atomic-

ity violation bugs) were successfully avoided by enforcing LifeTx constraints learned

during testing.

98

LifeTx constraints are useful for tolerating concurrency bugs in programs written

using traditional form of synchronization operations such as locks, barriers, etc. We

believe that they will also be useful for programs written using programmer specified

transactions as well. Because, even when programmers use transactions, they could

still introduce atomicity bugs by not encapsulating all the instructions that need to

be atomic in a single transaction. LifeTx constraints can avoid such atomicity bugs.

In addition to helping us avoid concurrency bugs in production systems, LifeTx

constraints derived from tested executed could also help improve the testing process

of multithreaded programs. One common practice is to blindly stress test as many

rare interleavings as possible. Instead, programmers and automatic testing tools can

prioritize their efforts on exposing more interleavings for code regions contained in

the larger LifeTxes. Also, LifeTx constraint violations logged during production runs

could help programmers prioritize their test efforts and also determine the root cause

of a program crash.

6.2 Algorithm for Determining LifeTxes

In this section we define LifeTx interleaving constraints and describe an online

profiling algorithm for automatically determining those constraints from correct test

runs.

6.2.1 Lifeguard Transactions (LifeTxes) and Profiling Algorithm Overview

Our goal is to tolerate concurrency bugs in production system by constraining

the runtime system to execute tested thread interleavings as much as possible in-

stead of allowing it to execute any legal interleavings permissible by user specified

synchronizations. To achieve this, we require techniques to determine interleaving

constraints from test runs, encode them in a program binary and enforce them at run-

99

time. By enforcing these constraints during production runs, untested interleavings

would be avoided.

We propose Lifeguard Transaction (LifeTx) interleaving constraint. Every in-

struction in a program is part of some LifeTx. A LifeTx constraint is similar to a

programmer specified transaction [32] and is defined for a static code region (a code

region is a consecutive sequence of instructions in the source program). An execution

is said to satisfy the LifeTx constraints, if there exists an equivalent execution where

the LifeTx protected code regions are executed in a serial total order.

We learn LifeTx constraints from correct test runs. We start from a conservative

set of LifeTxes assuming that the entire execution of each thread is part of one LifeTx.

Clearly, this initial constraint is too strict. As a programmer tests an execution for

which there is no serializable execution of LifeTx protected code regions, we split the

current set of LifeTxes. This is done by introducing what we call a cutpoint in the

source program. During an execution, a cutpoint serves to terminate the previous

LifeTx and then start a new LifeTx. Thus, a set of cutpoints represents the LifeTx

constraints. They are encoded in the binary. As a programmer tests more and more

interleavings, we progressively construct smaller and smaller LifeTxes such that the

final set of LifeTxes are conflict serializable for all the tested interleavings. The

runtime, which we describe in Section 6.3, would then try to enforce a serializable

order between the LifeTxes during a production run.

In fact, tested interleavings are encoded in the set of learnt LifeTx constraints.

By successfully enforcing these LifeTx constraints during production runs, we can

ensure that if the execution of a code region was atomic in all the test executions,

then it will be atomic in production runs, preventing untested unserializable inter-

leaving with respect to this code region from manifesting. Consider the atomicity

100

violation bug shown in Figure 3.3. In any correct execution, code regions in Thread-1

would have executed atomically and therefore will be part of the same LifeTx. Even

though, the programmer has not correctly synchronized the critical sections, our

LifeTx constraints would automatically ensure that property and thereby avoid a

potential concurrency bug in production runs.

The algorithm can be divided into two major parts, checking conflict serializability

for the current set of LifeTxes and splitting LifeTxes when a conflict is detected,

which will be addressed in the subsequent sections.

6.2.2 Checking Conflict Serializability for LifeTxes

To determine whether a test run satisfies the set of LifeTx constraints learnt

until that test run, we check conflict serializability for these LifeTxes. To check

conflict serializability, we construct a directed graph called conflict serializability

graph. Each node in the graph represents a LifeTx. When a new LifeTx begins its

execution during testing, a new node is added to the graph. All the nodes executed

by a thread are connected according to the execution order. A conflict edge is

added between two LifeTxes if they executed conflicting memory operations. Two

concurrent memory operations executed in different threads are said to conflict if they

accessed the same memory location and at least one of them is a write. Duplicated

edges are not allowed. A conflict serializability violation is detected when we detect

a cycle while adding a new edge to the conflict serializability graph [29]. The cycle

indicates that the tested execution is not conflict serializable with respect to the

LifeTxes learnt till that point.

Figure 6.1 shows a thread schedule and the corresponding conflict serializability

graph. Thread1 and Thread2 are currently executing LifeTxes T1 and T2 respectively.

W(X) represents a write to memory location X, and R(X) represents a read to memory

101

Thread 1

foo(){

 R(C)

 W(A)

 ...

 W(B)

}

Thread 2

bar(){

 W(C)

 R(A)

 R(B)

}

TX1

TX2

TX1

TX2

Conflict Serializability Graph

Conflict

TX1

TX2

TX3

X

W(A)

R(A)

W(B)

R(B)

W(A)

R(A)

R(B)

W(B)(a)

(b)

(c)

TX3

Figure 6.1: A conflict serializability violation.

location X. An conflict serializability violation is detected at the point of W(B) in

Thread1, because a cycle is detected in the conflict serializability graph.

Conflict serializability violation checks only report a violation when there is an

unserializable memory accesses. Whereas, other serializability checks such as strong

strict two-phase locking do not guarantee this. We want our profiling algorithm to

be conservative – do not split a LifeTx unless an real unserializable interleaving is

observed during testing.

To detect conflicting memory operations, for each memory location, we maintain

a data structure to store the latest write operation and the latest read operations

for each thread to that location. Each time a conflict edge is added to the conflict-

serializability graph, we check whether a cycle exists in the graph. Since the complex-

ity of cycle detection is linear to the number of nodes in the graph, it is impractical

to keep all the nodes in the graph. We employ an optimization [22] that removes

those nodes that do not have incoming edges and the corresponding LifeTxes have

terminated, because they cannot be part of any future cycle.

102

6.2.3 Splitting LifeTxes On a Conflict

On detecting a conflict serializability violation for the current set of LifeTxes

during a test run, our tool decides to split one of the conflicting LifeTx by introducing

a cutpoint into that LifeTx. The LifeTx that executed the most recently conflicting

memory operation is chosen as the victim for the split.

In order to decide the location of the cutpoint in the source program, we need

information about the memory accesses involved in the conflict. This is obtained by

tracking conflicting memory access information on every conflict edge in the graph

used for conflict serializability check. It is possible that we may detect multiple

conflicts between two LifeTxes during an execution. Since we do not allow duplicated

edges, we choose to maintain the most recent conflict. This could help us pinpoint

the location of the cutpoint more precisely when a conflict serializability violation is

detected. For example, in figure 6.1, conflict edge R(C) → W(C) is discarded when

conflict W(A) → R(A) is detected.

The LifeTx chosen for the split will contain at least two memory operations that

participate in the conflict-serializability violation. Otherwise, there cannot be a cycle

in the graph. For example, in Figure 6.1, Tx1 is the LifeTx that executed the most

recent conflicting memory operation W(B). It also contains another memory operation

W(B) that participates in the conflict-serializability violation. The cutpoint to split

Tx1 can be introduced anywhere between these two memory accesses. We choose to

always insert the cutpoint just before the last conflicting memory operation W(B).

After a cutpoint is inserted, we also split the corresponding node of the LifeTx in

the conflict-serializability graph by terminating the current LifeTx and introducing

a new LifeTx. Consider the example in figure 6.1, figure 6.1(b) shows the conflict-

serializability graph before splitting, and figure 6.1(c) shows the graph after splitting.

103

Inserting a cutpoint in effect relaxes the atomicity constraints between all the

memory operations that happen-before the cutpoint and all the memory operations

that happen-after the cutpoint in a LifeTx. Ideally, we should relax the atomicity

constraint only for memory operations involved in the conflict instead of inserting

a cutpoint. However, that would require complex runtime hardware support for

enforcing them. We leave such a design for future work.

Splitting LifeTxes Spanning Multiple Code Levels. The LifeTx chosen

for splitting could span across multiple semantic segments, which requires special

handling while inserting a cutpoint. All the instructions executed in a function are

considered to be part of a semantic segment. Similarly, all the instructions of a

loop are considered to part of another semantic segment. Instructions of an itera-

tion of a loop together constitute a different semantic segment. Figure 6.2 shows a

thread interleaving where the LifeTx TX1 spans across two semantic segments, func-

tions foo() and bar(). As discussed before, a cutpoint could be inserted anywhere

between conflicting accesses R(A) and W(C). Our algorithm picks the outermost se-

mantic segment that contains the conflicting accesses, and inserts a cutpoint at the

point in the source program where the next semantic segment starts. In Figure 6.2,

the cutpoint is inserted just before the function call bar(). Inserting a cutpoint

inside inner semantic segments such as bar() are more likely to allow interleavings

that are not tested. For example, if we insert a cutpoint inside bar to resolve the

conflict in our example, then when bar() is invoked from a different function, the

LifeTx executed at that time would be terminated. This could prevent us from avoid-

ing concurrency bugs. In effect, our heuristic for inserting cutpoints biases against

inserting context insensitive cutpoints. The algorithm for loops and loop-iteration

semantic segments is similar.

104

Thread 1

foo(){

R(A)

bar(){

W(B)

...

W(C)

}

}

Thread 2

W(A)

TX1

TX2

TX1
TX3

Conflict Serializability Graph

Conflict

Thread 3

R(A)

W(C)

TX3

TX4
TX2

TX4

Figure 6.2: A conflict-serializability violation detected across multiple semantic-segments.

To track semantic segments, we instrument the entries and exits for each semantic

segment in the program. For example, we instrument each function call and return.

For loops and iterations, we statically identify loop entries, exits and back edges using

goose tool [5], and then instrument them. To decide which semantic segment is the

outermost one that contains the conflicting accesses, we assign a thread local counter

(monotonically increasing) for each memory operation executed by the thread, and

maintain a per-thread stack to track the value of the counter when the thread enters

a semantic segment. By comparing the counter values of the conflicting memory

operations and the counter values stored in the stack, we can easily identify the

outermost semantic segment that contains conflicting memory operations.

6.2.4 Practical Issues

In this part, we discuss a few practical issues when applying our LifeTx infer-

ence algorithm to a real world multi-threaded program that is written using explicit

synchronizations.

Relaxing Conflict Detection For Synchronization Functions

As we discussed in Section 6.2.3, inserting a cutpoint in effect relaxes the seri-

alizability constraints between all memory accesses before and after the cutpoint.

105

Thread 1

foo(){

 lock(X){

 R(X)

 W(X)

 }

 unlock(X){

 W(X)

 }

}

Thread 2

lock(X){

 R(X)

 R(X)

 W(X)

}

TX1

TX2
Conflict

No Cutpoint

No Cutpoint

Figure 6.3: Conflicts due to memory operations executed in synchronization functions.

Ideally, we should relax the constraint only for the memory accesses that are in-

volved in the conflict. Such an approximation will become problematic, especially

when we detect conflicts for memory accesses that are inside synchronization func-

tions. Figure 6.3 illustrates the problem. In the example, two threads are contending

for the same lock. Two conflicts will be detected according to our LifeTx inference

algorithm. When the same lock functions are called by a different function F , the

cutpoint inserted would terminate and restart the transaction containing F as well.

As a result, some concurrency bugs like the one discussed in Figure 3.3 may escape.

This problem actually exists for any function, not just for synchronization func-

tions we showed. However, using a general way to solve the problem is very difficult.

Instead, we choose to address this problem for code regions that matter the most

– synchronization functions. This is because synchronization calls are interleaved

heavily with other synchronization calls in remote threads.

We disable conflict detection for synchronization calls both during testing and

also in production runs. This is similar to the escape actions described in [76].

Thus, we ignore the unserializable dependencies between shared-memory operations

inside synchronization functions. However, we determine the happens-before rela-

tion specified by the synchronization calls, and treat a happens-before relation as a

106

dependency between transactions during testing. That is, a conflict edge is added for

each happens-before relation in the conflict serializability graph that we construct

during testing. This is necessary to allow tested interleavings between code regions

synchronized using traditional synchronization operations during production runs.

Optimizations for Reducing Runtime Conflict Detection Complexity

To reduce the hardware support required for conflict detection in production runs

we seek to limit the number of memory locations accessed by a LifeTx. For this,

we employ a simple heuristic that profiles the loops that have a trip count greater

than a threshold, and introduce a cutpoint before the back edge of those loops. The

intuition here is that it is unlikely that a program would require atomicity property

across a loop that iterates for a long time.

Speculating past certain system calls such as network I/O could be difficult for the

runtime system. We introduce a cutpoint before such difficult to speculate system

calls, so that the runtime system need not support speculation past those system

calls. However, this optimization is not necessary for the runtime system which does

not require speculation (Section 6.3.1).

Mapping Cutpoints to Source Code

As cutpoints are gathered for a program, we map them back to the statement in

the source code. If a programmer makes a simple change to the program, then all

the cutpoints gathered through testing will still be valid.

6.2.5 Discussion and Limitations

Testing Correctness

Programmers have to ensure that the test runs are correct. This could be done by

verifying the program output or by checking the test runs using traditional dynamic

107

bug detection tools.

Input dependency

We use very different input for testing and measuring performance to evaluate

whether our approach is sensitive to program input. Our results (Section 6.4) indicate

that LifeTxes could be learnt in a few test runs and the overhead observed during

a simulated production run is negligible. However, though rare, a production run

could encounter frequent conflicts for some input. In such a scenario, we could turn

off the LifeTx protection for performance, and the conflicting LifeTxes could be

logged and communicated to the developer. These logs could assist programmers

prioritize their testing effort. It is rare for an execution with incorrect interleaving

to produce a correct answer. But if such a test input exist, then we may incorrectly

relax constraint by splitting a LifeTx. We did not encounter this scenario in our

experiments.

Context

LifeTx constraints are context insensitive. As a result, some concurrency bugs

might not be avoided due to the lack of context information such as MySQL-4 in

Table 6.2. We could associate context information (e.g. calling stack) with LifeTxes

to address this problem, but it will require significantly more test runs to learn and

require complex runtime system support.

6.3 Runtime Support for LifeTxes

We now discuss the runtime support for enforcing LifeTxes. The goal of the

runtime system is to ensure that the execution of LifeTxes is conflict serializable with

respect to each other during production runs. We implemented a runtime detection

and avoidance support using PIN, but it slows down an execution by several orders of

108

magnitude and therefore are unrealistic for use in a production system. To efficiently

enforce LifeTxes at runtime, architectural support is a must. In this section, we first

present LifeTx-Stall, an architectural design that considers hardware complexity as

a first-order constraint (Section 6.3.1). It is simple and lightweight while still very

effective in enforcing LifeTxes. We also discuss an ideal design, which we later use

for comparison. In Section 6.4 we evaluate the performance, conflict detection and

bug avoidance capability of the proposed architectural design using our Simics based

simulation model.

6.3.1 LifeTx-Stall Design

LifeTx-Stall design consider hardware complexity as a first-order constraint. It

is actually a simplified Hardware Transactional Memory (HTM) system without

speculation and unbounded TM support. Each LifeTx is treated as a hardware

transaction. On encountering a cutpoint, the processor commits the current LifeTx

and starts a new LifeTx.

To enforce LifeTxes, we need to check whether the LifeTxes executed at runtime

are conflict serializable. However, hardware support for checking conflict serializ-

ability violations is fairly complex [66]. Therefore, we choose to detects conflicts for

LifeTxes eagerly [48]. It tracks the cache blocks read and written by a LifeTx and

detects a conflict by monitoring coherence requests. Although it could unnecessarily

report a conflict between two LifeTxes while they are actually conflict serializable, it

simplifies the design a lot. Our results (Section 6.4.5) also indicate that the number

of extra conflicts are acceptable.

To resolve a conflict, instead of using the traditional recovery mechanism used

in HTM designs, we propose to use a simpler scheme. The main idea is that a

processor would delay the coherence reply when the requester has a conflict with the

109

LifeTx currently running on it until the current LifeTx commits. To ensure forward

progress, we assign a threshold for the number of cycles to wait. Such a scheme

does not guarantee to enforce all the LifeTx constraints, therefore, it is a best effort

scheme. We have the luxury to design such a simple system because not all LifeTx

constraints need to be enforced (unlike HTM systems). Such a design avoids the

need for speculation and rollback support. As a result, neither version management

nor checkpointing is needed, which avoids issues in traditional HTM systems such as

speculative I/O buffering. Even with such a simple design, our results (Section 6.4.5)

indicate that it is effective in avoiding most of the conflicts.

LifeTx-Stall assumes a snoop bus based MESI cache coherence protocol. There

are two major functionalities that LifeTx-Stall needs to support. One is to detect

runtime LifeTx conflicts. The other is to resolve the detected LifeTx conflicts so

that the resultant execution is conflict serializable with respect to both LifeTxes.

The following sections discusses these two functionalities in detail.

Detecting LifeTx Conflicts

Maintaining Transactional Meta-data. LifeTx-Stall needs to keep track of

the memory locations accessed by a LifeTx so as to detect conflicts. Each private

cache block is extended with two additional bits (TX-READ and TX-WRITE), which

we call transactional meta-data, indicating whether the cache block is read and

written by the current LifeTx. A processor clears all the meta-data in its private

cache when it commits a LifeTx. Also, when a processor timeouts waiting for a

conflict to resolve, all the processors clear the meta-data in their private caches.

LifeTx-Stall maintains transactional meta-data in private caches. If the cache line

is evicted from the private caches, the transactional information will be lost. To

alleviate this problem, we assume a small victim cache along with each private cache,

110

which similar to the one used in many processor implementations for improving

performance by indirectly increasing the associativity of caches. The replacement

policy for the victim cache is LRU based, but with the exception that it always

prioritizes to hold cache blocks with transactional meta-data.

Monitoring Coherence Actions. LifeTx-Stall assumes a bus based design.

LifeTx-Stall detects a read-write or write-write conflict by monitoring coherence

requests broadcasted on the bus and by checking its private transactional meta-data.

On detecting a conflict, a processor would set a dedicated wired-OR line (similar to

the wired-OR line used for detecting whether a shared copy exists or not). This

is useful in efficiently resolving the conflict using the stall mechanism described in

Section 6.3.1.

Relaxed Memory Accesses. LifeTx-Stall does not update the transactional

meta-data for synchronization accesses (discussed in Section 6.2.4) or memory ac-

cesses from OS. This is because we are not interested in the conflicts that are caused

by the relaxed synchronization accesses or OS accesses. Those accesses are called

relaxed memory accesses. Although LifeTx-Stall does not update transactional meta-

data for relaxed memory accesses, it still needs to check conflicts for them. In other

word, a relaxed memory access can cause a conflict and a resultant processor stall.

This is because a cache block might be accessed by both regular and relaxed memory

accesses. A normal memory access which indeed conflicts with the remote processors

may not be able to trigger a bus transaction if the read or write permission of the

cache block has already been obtained by a precedent relaxed memory access to the

same cache block. The simple policy we employed may cause unnecessary stalling

(false positives). However, our results indicate that the number of conflicts detected

at runtime is still negligible. This problem can also be addressed if the compiler can

111

separate the data that is accessed by normal memory accesses from the data that is

accessed by synchronization accesses.

Granularity. Instead of detecting conflicts at the granularity of a cache block,

LifeTx-Stall can be extended to support word level conflict detection, which would

avoid false conflicts. To achieve this, we need to maintain transactional meta-data for

each word in a block, and associate word offset information with coherence requests.

However, a few issues arise in such a design. First, the transactional meta-data

of a word in a cache block may get lost when the cache block is invalidated due

to a remote write to a different word of the same cache block, which would affect

the bug avoidance capability of our system. For example, a processor P1 and a

processor P2 both have a shared copy of a cache block B initially. P1 reads the first

word W1 in B, causing the TX-READ bit of W1 be set. Then, P2 writes to another

word W2 in B. Since the conflicts are detected at the granularity of word, no conflict

would be detected. At this time, P1 invalidates its copy of B to service the write

request, and in the process loses the TX-READ bit for W1. Second, the permission

of a cache block could migrate to a different processor causing a potential silent

conflicting access. Consider the following example: a read to a word in a block

does not generate a coherence request since the read permission is obtained by a

previous read to the same block but not the same word. These problems will not

occur if we detect conflicts at the granularity of block. Nevertheless, our results show

that the bug avoidance capability of the word based implementation is not significant

(Section 6.4.4). Furthermore, we observe that detecting conflicts at the granularity of

word can significantly reduce the number of false conflicts at runtime (Section 6.4.5).

Therefore, we choose to use word level conflict detection in our LifeTx-Stall design.

112

Resolving LifeTx Conflicts

A processor detects a conflict by monitoring the coherence requests and checking

its transactional data. On detecting a conflict, a processor sets a dedicated wired-OR

line that can be read by all the processors. The processor that initiated the coherence

request reads the wired-OR line and determines that it needs to stall and re-issue the

same request after a specified time period has elapsed. The wired-OR line also helps

other processors with a valid read copy to not invalidate their cache block in response

to an invalidation request that got stalled. The stalled processor would re-issue the

coherence request after a specified time period has elapsed. If after requests fail to

get a response after a specified number of attempts, the processor issues a special

coherence request that cannot be ignored. Thereby, we ensure forward progress.

To enhance the capability of resolving a conflict, we could add rollback support to

the LifeTx-Stall design. However, adding rollback support will significantly increase

the hardware complexity. In addition to supporting speculation, we need to keep

track of the dependencies among transactions caused by the relaxed memory accesses.

Each time a transaction is about to commit, it has to wait until all the dependent

transactions have committed. This not only increases hardware complexity, but also

could hurt performance. Since one of the goals of LifeTx-Stall design is to reduce

hardware complexity, we choose not to support rollback in our LifeTx-Stall design.

6.3.2 LifeTx-CS Design

As we mentioned in Section 6.3.1, LifeTx-Stall is optimized for hardware complex-

ity. We also studied how effective an ideal hardware conflict detection and resolution

mechanism could be. This would require an ability to detect conflict-serializability

violation similar to the design proposed in DATM [66], and an ability to rollback

113

and re-execute a LifeTx, which could potentially contain system calls. We call this

ideal design as LifeTx-CS.

6.4 Evaluation

In this section, we evaluate our technique from several perspectives. We first ac-

cess how much testing is required to learn LifeTxes (Section 6.4.2). Then, we study

the characteristics of resultant LifeTxes in terms of their footprints and lengths

(Section 6.4.3). After that, we discuss the bug avoidance capability of our technique

using 14 documented concurrency bugs, and its trade-offs with runtime system de-

signs (Section 6.4.4). Finally, we evaluate the performance of two proposed runtime

system designs (Section 6.4.5).

6.4.1 Experimental Setup

We built our profiling tool using the PIN [46] binary instrumentation infrastruc-

ture. To study the runtime system, we modeled LifeTx-Stall design in Simics [47],

a full system simulator. We also built a PIN based simulator to model LifeTx-CS

design. All the experiments are conducted on a Quad-Core Dell T3400 workstation,

with a 64-bit Redhat Enterprise Linux 5 on it.

Benchmarks

Two sets of benchmarks are used throughout our evaluation. The first set is called

Bug-Bench, which is used to study the bug avoidance capability of our technique.

Ideally, we would like to evaluate all the documented bugs that were available at the

time we performed our experiment. However, setting up environment for reproducing

each bug is difficult and time consuming because we may need to install a specific

version of the program which sometimes requires installing an old kernel. Therefore,

we decided to evaluate a subset of them. We mainly focus on evaluating atomicity

114

violation bugs because LifeTx is optimized for tolerating atomicity violation bugs

and does not actively seek to avoid other types of concurrency bugs.

Table 6.2 lists the 14 documented concurrency bugs we have studied, The names

shown in Column-2 match that shown in Table 3.5 in which a short description of

each bug is provided. Among these 14 bugs, 8 of them are Bug Kernels, which are

code snippets extracted from real buggy programs. Some program details might be

omitted in Bug Kernels. The remaining 6 bugs are Real Bugs. For these real bugs,

we use the original programs, and study their real executions.

The second set of benchmarks, called Perf-Bench, is used to evaluate LifeTx char-

acteristics and the runtime performance. It consists of selected parallel benchmarks

from Splash2 [81] (fft, radix, fmm and ocean) and Parsec [10] (blackscholes,

canneal), and several widely used multi-threaded applications (pbzip2, pfscan,

mysql, apache). Notice that the versions of mysql, apache and pbzip2 used in

Perf-Bench are the same as that of Bug #10, Bug #9 and Bug #14 used in Bug-

Bench. The corresponding testing methods for them are the same, saving us a little

testing effort.

Testing Methodology

LifeTxes are learned from correct test runs. We build our profiling tool using PIN

binary instrumentation tool. Our profiling tool does not require source code. We use

goose [5], a PIN based tool, to automatically extract loop information from program

binaries.

We perform testing for both Bug-Bench and Perf-Bench. For scientific programs

in Splash2 and Parsec, randomly generated parameters are used (e.g. matrix size,

number of threads, etc.) in each test run. For each MySQL benchmark (Bug #10 to

Bug #13, mysql), we use selected tests from the regression test suite that is shipped

115

with MySQL source code. Also, we run OSDB [6] multi-user test in parallel with the

regression test to create a parallel environment. Each version of MySQL is tested

individually. For Bug #9 and apache, we use httperf tool to generate concurrent

requests to a set of html files. For Bug #14 and pbzip2, we compress a randomly

chosen files using random number of threads in each test run. For pfscan, we search

a random string from a large collection of random files or directories in each test

run. Finally, for all the bug kernels, we use random inputs (e.g. random loop count,

random strings, etc.) and random number of threads.

Simulation Methodology

We use a simulator to study the proposed runtime system behavior. We built two

simulators, LifeTx-Stall and LifeTx-CS. We model LifeTx-Stall in Simics. We extend

the g-cache timing model in Simics. The configurations of the baseline system is listed

in Table 6.1. The coherent caches are based on MESI protocol, and is implemented

on a snoop bus. We model all the features we discussed in Section 6.3.1. Conflicts

are detected at the granularity of word. We assume 1-cycle LifeTx commit latency

and 100-cycle give up latency. The timeout threshold is set to 50K cycles.

We model another proposed design, LifeTx-CS, using PIN binary instrumentation

infrastructure. The simulator models in-place memory update. The transactional

undo logs are kept in the main memory as LogTM [48] does. The modeled system

tests conflict serializability for LifeTxes, which is similar to MetaTM [66] does. Con-

flicts are detected at the granularity of word. The simulator also supports rollback

and re-execution.

The inputs used in simulation are different from those used in testing. For bench-

marks in Splash2 and Parsec, we use a set of input parameters that are not used

during testing. For pbzip2, we compress a new file. For pfscan, we search a ran-

116

Processor 4 cores, 2.0GHz, in-order
L1 Cache Private, 64KB I-cache, 64KB D-cache,

4-way set associative, 32B block size,
3-cycle latency, write-back, 1KB fully
associative victim cache

L2 Cache Shared, 8MB, 8-way set associative,
128B block size, 15-cycle latency,
write-back

Main Memory 2GB DRAM, 200-cycle access
Interconnect Bus based, latency not modeled

Table 6.1: Baseline configuration.

domly generated string from a different directory. For all the MySQL benchmarks

in Bug-Bench, we use their bug triggering inputs. For mysql in Perf-Bench, we use

OSDB to generate concurrent requests to a newly created database. For Bug #9 and

apache, we generate concurrent requests to a different set of html files (which could

trigger the bug). Notice that the inputs used in the PIN based simulator are not

identical to that used in the Simics based simulator.

6.4.2 Learning LifeTxes

To access the time required to learn LifeTxes, we perform testing for all the bench-

marks using the methods described in Section 6.4.1. Figure 6.4 shows the testing

results for all the Perf-Bench (Bug-Bench results are similar). Each point along

the x-axis represents a unique test run 1, and the y-axis represents the cumulative

total number of cutpoints learned after a particular test run. As the figure shows,

our profiling algorithm reaches a stable state reasonably fast. That shows that the

testing process during the normal software development should be adequate for our

purpose.

6.4.3 Characteristics of LifeTxes

Once we have obtained LifeTxes from testing, the most important question to

answer is how ”big” each LifeTx is. Most hardware transactional memory systems

1For mysql, one test run is a 12min run of the workload we described before. For apache, one test run means a
session of concurrent requests generated by httperf.

117

5 10 15
24

25

26

27

28

fft

2 4 6 8 10
12

14

16

18

radix

5 10 15 20
20

25

30

fmm

2 4 6 8 10
20

40

60

80

ocean

2 4 6 8 10 12
13

14

15

16

17

blackscholes

2 4 6 8 10 12 14
18

20

22

24

canneal

5 10 15 20
30

35

40

45

50

55

pbzip2

5 10 15
12

14

16

18

20

22

24

pfscan

50 100 150 200 250
100

200

300

400

mysql

10 20 30 40 50 60
26

28

30

32

34

36

apache

Figure 6.4: Number of test runs required for getting stable cutpoints.

118

256B 512B 1KB 2KB 4KB 8KB 16KB >16KB
0%

20%

40%

60%

80%

100%

fft
radix
fmm
ocean
blackscholes
canneal
pbzip2
pfscan
mysql
apache

Figure 6.5: Footprint distribution (dynamic).

256 512 1K 2K 4K 8K 16K 32K 64K >64K
0%

20%

40%

60%

80%

100%

fft
radix
fmm
ocean
blackscholes
canneal
pbzip2
pfscan
mysql
apache

Figure 6.6: Length distribution (dynamic).

have limits on the size of each transaction and even for unbounded transactional

memory systems, supporting large transactions is not efficient.

We use our PIN based simulator (described in Section 6.4.1) to obtain the mem-

ory footprints and lengths (measured in terms of number of dynamic instructions

executed) of each LifeTx. All the results are the cumulative results of 10 simula-

tion runs. Figure 6.6 and Figure 6.5 shows the results for Perf-Bench. Figure 6.6

shows the length distribution of all the committed dynamic LifeTxes. As shown in

the figure, for all benchmarks (except apache), over 95% of the dynamic LifeTxes

have lengths less than 1K instructions. Although the LifeTxes in apache are longer

than that in other benchmarks, almost all of its LifeTxes are less than 32K instruc-

tions. Figure 6.5 shows the memory footprint distribution of all committed dynamic

LifeTxes. Similarly, we observe that for almost all the workload (except apache),

over 90% of the dynamic LifeTxes have memory footprint less than 1KB. And almost

all the LifeTxes we observed have memory footprint less than 16KB. These results

indicate that most of the LifeTxes are reasonable in size, both in terms of length and

memory footprint. Therefore, LifeTxes can be supported efficiently because most of

the time the execution of a LifeTx will not exceed the hardware resource limit. It is

only for a few LifeTxes hardware resource limit would be reached.

119

6.4.4 Bug Avoidance Capability

There are several factors that contribute to the bug avoidance capability of our

technique. We classify these factors into two major groups. One is coming from

testing, and the other is from runtime systems.

Testing Impact

We infer LifeTxes from testing. For an atomicity violation bug, whether it can be

avoided or not depends on whether the inferred LifeTxes enclose the critical path –

the code execution path that need to be atomic but is not enforced by the program.

In other words, to test the bug avoidance capability, we can check whether there exist

cutpoints inside a critical path. If not, our runtime system will make best effort to

enforce the atomicity of that critical path, avoiding the atomicity violation bug.

For each bug in Bug-Bench, we check each inferred cutpoint after testing is fin-

ished. We check to see whether there exists any cutpoint in the critical path. If not,

the concurrency bug is under LifeTx protection. We compare LifeTx with data-race

detectors and PSet [84] based systems. Table 6.2 shows the results. Among the

14 bugs we have analyzed, 12 of them are atomicity violation bugs. Out of these

12 atomicity violation bugs, LifeTx provides protection for 11 of them, including

not only data-race free atomicity violations (Bug #1, Bug #2 and Bug #3), but also

multi-variable atomicity violation bugs (Bug #3 and Bug #12). Those bugs cannot be

easily avoided by traditional data race and atomicity violation surviving techniques.

Our technique cannot avoid Bug #13. That is because a cutpoint is found in a

function which is called in the critical path. During testing, this function is found

to be not serializable under a different calling context. In order to solve this prob-

lem, we could associate context information with each cutpoint. However, that will

120

ID Bug Name Type LifeTX Protection Data Race Detector PSet Protection

K
e
rn

e
l

1 BankAccount Single-A.V. Yes No Yes
2 CircularList Single-A.V. Yes No Yes
3 StringBuffer Multi-A.V. Yes No No
4 LogProcSweep Race, Single-A.V. Yes Yes Yes
5 Mozilla-2 Race, Single-A.V. Yes Yes Yes
6 Mozilla-3 Race, Single-A.V. Yes Yes Yes
7 Mozilla-4 Race, Single-A.V. Yes Yes Yes
8 Mozilla-9 Order Vio. No No Yes

R
e
a
l

9 Apache-1 Race, Single-A.V. Yes Yes Yes
10 MySQL-3 Race, Single-A.V. Yes Yes Yes
11 MySQL-5 Race, Single-A.V. Yes Yes Yes
12 MySQL-4 Race, Multi-A.V. Yes Yes No
13 MySQL-1 Multi-A.V. No No No
14 Pbzip2 Race, Order Vio. No Yes Yes

Table 6.2: Bug avoidance capability.

significantly increase the runtime system complexity.

Runtime System Influences

Even if the critical path is under LifeTx protection, it is possible that the concur-

rency bug is not avoided since we assume a best-effort runtime system.

To avoid concurrency bugs, the runtime system must be able to detect them first.

Usually, for atomicity violation bugs, a transactional conflict will be detected when

the bug is triggered. However, under some circumstances, a runtime system might

not be able to detect a bug. There are two major causes: 1) Loss of transactional

meta-data, and 2) Permission migration. The problem has already been discussed

in Section 6.3.1. Table 6.3 shows the characteristics of the four critical LifeTxes (for

the four real bugs that have LifeTx protection) that are collected from LifeTx-Stall

simulation (critical LifeTxes are the LifeTxes that contain the critical sections). In

the table, the second column shows how many times a particular critical LifeTx gets

executed in the simulation workload, and all the other columns show the average

number for each LifeTx instance. As can be observed from the table, most of the

time, critical LifeTxes have moderate memory footprint and do not suffer meta-

data loss or permission migration problems. The statistics shown in table 6.3 are

for all executions of the critical LifeTx. Triggering a real concurrency bug in Sim-

121

Conflicts
ID Name

Instance Resovled
Timeout Footprint (# Blks) Inst. Cnt. Meta Loss (# Blks) Migration (# Blks)

9 Apache-1 362 0.0 0.0 126.1 4215.6 0.0 0.0
10 MySQL-3 2 0.0 0.0 141.5 2296.5 0.0 0.0
11 MySQL-5 264 1.0 0.0 158.7 17405.9 1.0 2.0
12 MySQL-4 3 0.0 0.0 62.0 6137.7 0.0 0.0

Table 6.3: Characteristics of critical LifeTxes.

ics is challenging. However, we successfully managed to trigger Bug #10 in Simics

by implementing CTrigger [59] algorithm, and the bug was successfully avoided by

LifeTx-Stall design.

Even if a concurrency bug (the conflict) can be detected, it is possible that the

runtime system cannot resolve it. For LifeTx-Stall design, since it does not have

rollback support, some bugs may not be avoided. One example is two concurrent

read-modify-writes race for a shared variable, stalling on either write will not resolve

the bug. Even with rollback support (such as LifeTx-CS design), some bugs still may

not be avoided. For example, two LifeTxes may have cyclic dependency, preventing

each other from making forward progress. However, we argue that under such cases,

the bug is less likely to be an atomicity violation bug since no valid execution can

be found to be serializable with the code region that is intended to be atomic.

6.4.5 Performance Study

Finally, we study the performance of our runtime system. We evaluate both

LifeTx-Stall and LifeTx-CS designs. We model LifeTx-Stall in Simics. For each

benchmark in Perf-Bench, we start the simulation from the middle of the program

execution, usually from the program point after which all worker threads have been

created (e.g. after the first barrier). Table 6.4 shows the simulation statistics. We

find that most of the LifeTx conflicts can be resolved by just stalling one conflicting

thread. In worst case (pfscan), only 4 timeouts are reported. We also list the average

waiting cycles for resolved conflicts. Except for the conflicts in pfscan, most of the

122

fft radix fmm ocean blackscholes canneal pbzip2 pfscan mysql apache GEOMEAN
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

R
el

at
iv

e
P

er
fo

rm
an

ce

LifeTX−Stall
Base

Figure 6.7: LifeTx-Stall performance overhead.

conflicts can be resolved in 2000 cycles. pfscan stalls longer than others because it

spends relatively more time in OS handling I/O operations which take longer time to

finish. The percentage of total waiting cycles (with respect to total simulated cycles)

for each benchmark is negligible, indicating small runtime overhead. Figure 6.7

compare the performance between the baseline system and LifeTx-Stall system. The

average overhead is less than 0.6%, which is negligible.

We also model LifeTx-CS runtime system design using a PIN based simulator.

The runtime performance overhead of LifeTx-CS can be broken down into two parts.

The first part is the cost in supporting a TM system (e.g. version management

and conflict detection). However, post work in hardware TM [66] has shown that

such cost can be minimized by using hardware support. The second part of the

overhead is determined by the runtime conflicts. Each runtime conflict would result

in LifeTx abort and re-execute instructions. We measured the number of aborts and

the number of additional instructions that need to be executed due to those aborts.

Table 6.4 shows the number of runtime conflicts (or false conflicts) and the number of

aborted instructions. For example, for mysql, we detect 27 constraint violations for a

program that executed about 800 million instructions, which resulted in re-execution

of 0.019% of instructions. And for the worst case (pfscan), only 0.027% of the

instructions are re-executed. Therefore, the runtime overhead due to transactional

abort and re-execution is negligible. Notice that there are a few conflicts which

123

L
if
e
T
x
-S

ta
ll

L
if
e
T
x
-C

S
#

C
o
n
fl
ic
ts

#
C
o
n
fl
ic
ts

P
ro

g
ra

m
s

R
e
so

lv
e
d

T
im

e
o
u
t

A
v
g
.
R
e
so

lv
e
d
W

a
it

C
y
c
le
s

%
W

a
it
in
g
O
v
e
rh

e
a
d

In
st
.
C
n
t.

R
e
so

lv
e
d

w
/
S
y
sc
a
ll

%
R
e
-e
x
e
c
In

st
.

In
st
.
C
n
t.

ff
t

0
0

0
0
.0
0
0
%

5
4
3
M

0
0

0
.0
0
0
%

1
3
0
M

ra
d
ix

0
0

0
0
.0
0
0
%

3
5
M

0
3

0
.0
1
3
%

3
6
0
M

fm
m

1
7
8

0
6
3
1

0
.1
2
5
%

2
2
5
M

1
2

0
.0
0
0
%

2
2
7
0
M

o
c
e
a
n

1
4
1

0
1
1
1
6

0
.5
6
3
%

4
4
M

0
0

0
.0
0
0
%

3
3
9
M

b
la
ck

sc
h
o
le
s

0
0

0
0
.0
0
0
%

9
2
M

0
0

0
.0
0
0
%

8
1
0
M

c
a
n
n
e
a
l

0
0

0
0
.0
0
0
%

1
6
M

3
2

2
0
.0
0
7
%

4
5
M

p
b
z
ip
2

0
0

0
0
.0
0
0
%

6
5
8
M

0
4
0

0
.0
0
3
%

8
9
2
M

p
fs
c
a
n

1
3

4
1
2
2
8
8

1
.4
0
7
%

4
3
M

1
2

0
.0
2
7
%

1
3
M

m
y
sq

l
1
7
8

3
4
7
0

0
.0
0
2
%

2
.1
B

2
3

4
0
.0
1
9
%

7
9
4
M

a
p
a
ch

e
0

0
0

0
.0
0
0
%

4
4
4
M

0
1

0
.0
1
7
%

3
7
4
M

T
a
b
le

6
.4
:
R
u
n
ti
m
e
st
a
ti
st
ic
s
fo
r
(a
)
L
if
eT

x
-S
ta
ll
,
(b
)
L
if
eT

x
-C

S
.

124

Block Word

Programs Conflict Resolved Timeout Conflict Resolved Timeout

fft 0 0 0 0
radix 8 1 0 0
fmm 255 7 178 0
ocean 757 125 141 0

blackscholes 0 0 0 0
canneal 0 0 0 0
pbzip2 0 1 0 0
pfscan 19 13 13 4
mysql 22 41170 178 3
apache 0 0 0 0

Table 6.5: Granularity of conflict detection: Block vs Word.

we cannot resolve. This is because our current PIN based implementation of our

simulator cannot undo the effect of certain system calls. However, this could be

resolved by integrating operating system support [61].

Block vs. Word

To decide the conflict detection granularity for LifeTx-Stall, we implemented both

versions. Table 6.5 shows the comparison results. For each design, we simulate the

same number of instructions. As we can see, word level conflict detection reports

far less conflicts than the block level counterpart. For example, for mysql, block

based implementation reports 41192 conflicts while the word based implementation

only reports 181 conflicts. Another interesting finding is that block based imple-

mentation is more likely to cause an timeout than the word based implementation.

This is reasonable since our profiling tool detects conflicts at the granularity of word.

Detecting conflict on block at runtime introduces more dependencies than that seen

during testing, leading to more timeouts. Therefore, we choose to detect conflicts at

the granularity of word.

6.5 Summary

As we enter the multi-core era, providing support for developing reliable parallel

programs is crucial. Most of the concurrency bugs manifest when a rare interleaving

125

manifests in a production run. The traditional approach has been to test the program

as much as possible and try to expose as many rare interleavings as possible. While

testing for corner cases in single-threaded programs is absolutely necessary, it not so

necessary for multi-threaded programs, especially given the fact that there are too

many of those corner cases. Our approach is based on the insight that we can exploit

the inherent non-determinism in parallel systems, and use it to our advantage. That

is, bias the non-deterministic thread schedule to pick a tested interleaving as much

as possible.

Sun has already incorporated hardware support for transactions. The proposed

design could be simpler than a conventional HTM support. We proposed an algo-

rithm for automatically deriving Lifeguard transactions from tested executions. We

showed that the performance overhead of our stall based mechanism is negligible,

and that we can avoid 11 out of 12 atomicity violations in programs like MySQL and

Apache.

CHAPTER VII

Future Work

Parallel programming becomes increasingly important nowadays due to the preva-

lence of multi-core hardware. As it is inherently more difficult than sequential pro-

gramming, we are in great need of tools and techniques that can help programmers

build more reliable concurrent software. In this dissertation, we have made several

contributions towards this goal. However, it is still a relatively open area and many

problems remain unsolved. In this chapter, we discuss our future work.

Among all the possible future directions, one that interests us most is to develop

tools and algorithms for improving the reliability of concurrent programs running

on mobile platforms. Mobile computers are becoming increasingly important. The

number of mobile devices has already exceeded 1 billion. For many people, smart-

phones or tablets are the primary platform for interacting with computer systems.

Driven by the need of running increasingly sophisticated software, mobile comput-

ers are becoming more and more powerful with more and more cores being added.

Mobile applications, thereby, need to be concurrent to better utilize the multi-core

processors in modern smartphones. They also need concurrency to process event

streams from a rich array of sensors.

Mobile applications are commonly programmed using an event-based concurrency

126

127

model. This model, used in popular platforms such as Android, arises naturally on

mobile devices that have a rich array of sensors and user input modalities. In an

event-based program, there exists at least one thread which continuously polls an

event queue to dequeue events and executes the handlers associated with those event.

Such type of threads are called Looper threads [3]. For example, in Android, the UI

thread (a.k.a. the main thread) is a Looper thread. It processes all events generated

by the user (e.g., button clicks). The computation in a Looper thread is structured as

a sequence of event callbacks invoked to process the events received by that thread.

One interesting aspect about event-based programs is that event handlers invoked

by the same Looper thread can be logically concurrent even if they are always ex-

ecuted in order. For example, two events being posted into an event queue by two

independent threads may be processed in different orders by a Looper thread in dif-

ferent executions. These two event handlers are therefore logically concurrent in the

sense that a programmer should not rely on a particular execution order between

them.

This unique feature in event-based programs may cause problems for existing

concurrent programming tools which always assume that operations executed by the

same thread cannot be concurrent. For instance, a happens-before date race detec-

tor [21] assumes a happens-before relation between any two operations executed by

the same thread. Though working well for thread-based programs, this assumption

is too conservative for event-based programs.

Alternatively, one could, for the purpose of analysis, transform an event-based

program into a multi-threaded program by regarding the handling of each event as a

separate, short-lived thread. However, we argue that such a reasoning of concurrency

for event-based programs is also not precise and overly aggressive. One problem is

128

that it neglects the ordering constraints that could be imposed by an event queue.

For example, if the event queue of a Looper thread uses a first-in-first-out (FIFO)

dequeue policy, a later added event will not be processed until all the previously

added events are processed, and a programmer may rely on this invariant to establish

orders between event handlers. Another problem is that the model assumes any two

event handlers can interleave as if they are two independent threads. However, in

the case where two event handlers are invoked by the same thread, they need to be

mutually exclusive.

Therefore, we propose to redefine the causality, which is the happens-before order-

ing, for event-based programs. This is essentially the key for many concurrent pro-

gramming tools such as data race detectors. Our main idea is to relax the happens-

before ordering caused by the program order between event handlers executed by

a single Looper thread. The reason is that one should not assume that two event

handlers are ordered simply because they appear sequentially in the same Looper

thread. However, it would also be incorrect to assume that there is never any order

between event handler. To solve that, we introduce a few rules for defining causality

for event-based programs. Our initial work has defined the following causal orders:

• All instructions in a regular thread (i.e. non-Looper thread) are causally ordered

by the program order. Instructions within an event handler are also causally

ordered by the program order.

• We account for all causal orders due to any resource release and the subse-

quent resource acquire. The resource here can be any kind of resource such as

synchronization variable, pipe, socket, file or user defined resource.

• Two event handlers in a Looper thread are ordered if the instructions that

created them are ordered. This assumes that the events posted will be processed

129

in FIFO order. Where alternate orders are employed, we will need to develop

and substitute other ordering relations.

• Event handlers executed in a looper thread are atomic with respect to one

another. This assumes that a looper thread always completes the execution of

an event handler before starting another handler.

In the future, we plan to generalize these rules to handle a broad set of event-

based programs. For example, some event-based program use a time-based event

queue in which each event is associated with an earliest dispatch time, some uses

a priority-based event queue in which each event is associated with a priority, and

some uses a thread pool to serve an event queue. We would like to handle all such

cases. Our idea is to introduce a general event handling model such that all types of

event-based programs can be equivalently mapped to that model, and we will extend

our current rules to capture its causality.

Base on the new causal model, we propose a few tools for finding and tolerating

concurrency bugs for event-based programs. One promising direction is to detect

data races. We propose to analyze an execution of a program and predict data races

that might exist in the program. We say that two operations in an execution over

an input are conflicting if there is only one correct order of execution between them

for that input. Two conflicting operations are racy if there is no happens-before

order between them, where the happens-before order is determined according to the

new causal model. One problem we need to address in the future is false positives.

We expect more false positives under the new causal model since races can happen

even between operations within the same thread. Another challenge is to design

an algorithm to efficiently check happens-before order between operations because

directly applying the traditional vector clock based algorithm does not scale.

130

Another promising direction is to actually expose concurrency bugs in real execu-

tions. For example, we can employ a similar technique described in RaceFuzzer [69]

to expose concurrency bugs. The main idea is to first detect races as we discussed

above for a given input, and then produce alternative executions with the same input

by injecting extra delays at certain points during the executions according to the race

report, hoping to actually expose concurrency bugs in an event-based program. We

can also use a technique similar to that described in Chapter IV to expose concur-

rency bugs. The key challenge is to devise a new way to encode tested interleavings

which is suitable for event-based programs.

Finally, we can build runtime techniques to tolerate concurrency bugs in event-

based programs. In fact, we envision that the bug avoidance technique for event-

based programs is more likely to be successful than that for traditional thread-based

programs as we discussed in Chapter V and Chapter VI. The reason is because an

event-based program is executed in such a regulated way that it is much easier to

control its runtime behaviors to bypass certain bad interleavings. For example, we

can constrain the order in which event handlers are invoked by using an efficient and

software only solution to prevent untested event dispatching orders from manifesting

in production runs. Such a software only solution is more likely to be adopted by

customers. Again, the key challenge is a way to encode tested interleavings that is

optimized for event-based programs.

CHAPTER VIII

Conclusion

Shared-memory multi-threaded programming is inherently more difficult than

single-threaded programming. The main source of complexity is that, the threads

of an application can interleave in so many different ways. To ensure correctness, a

programmer has to test all possible thread interleavings, which, however, is imprac-

tical. Many rare thread interleavings remain untested in production systems, and

they are the major cause for a majority of concurrency bugs.

This dissertation discusses two ways to tame concurrency bugs. The first way is

to expose untested interleavings during testing so that we can discover concurrency

bugs in a program before it is shipped to customers. However, the interleavings space

of a multi-threaded program is usually so huge that we cannot practically expose

all untested interleavings. For the remaining untested interleavings, we propose to

avoid them during production runs such that most of the concurrency bugs can be

tolerated.

The central part of this dissertation is an efficient and effective way to encode and

remember tested interleavings. We make two hypotheses about concurrency bugs:

the small scope hypothesis and value independent hypothesis. Based on these two

hypotheses, we define a set of interleaving idioms which we use to encode tested

131

132

interleavings. Our empirical analysis shows that such an encoding scheme is able to

capture most of the concurrency bugs we have analyzed.

Based on the set of interleaving idioms, we build a testing tool, called Maple,

that seeks to expose untested interleavings as much as possible. It memoizes tested

interleavings and actively seeks to expose untested interleavings in order to expose

more interleavings faster. Our experience in using Maple to test real-world applica-

tions shows that Maple is able to trigger concurrency bugs faster by exposing more

untested interleavings in a shorter period of time than other conventional testing

techniques.

For inevitable untested interleavings of a program, we propose two runtime tech-

niques for avoiding them during production runs to tolerate concurrency bugs. First,

we propose a customized shared memory multi-processor design for tolerating concur-

rency bugs. It is optimized for the simplest interleaving idiom which only involves

one inter-thread dependency. We encode the tested interleavings in a program’s

binary executable using Predecessor Set (PSet) constaints. These constraints are ef-

ficiently enforced at runtime using processor support, which ensures that the runtime

follows a tested interleaving. We analyze several bugs in open source applications

such as MySQL, Apache, Mozilla, etc., and show that, by enforcing PSet constraints,

we can avoid not only data races and atomicity violations, but also other forms of

concurrency bugs.

Then, we discuss another hardware design for tolerating atomicity violation bugs.

It is based on a new interleaving constraints called lifeguard transaction (LifeTx).

LifeTx constraints can be efficiently enforced by a new hardware design similar to the

eager conflict detection capability that exist in a conventional hardware transactional

memory (TM) systems, but without the need for versioning, rollback and unbounded

133

TM support. We show that 11 out of 14 real concurrency bugs in programs like

Apache, MySQL and Mozilla could be avoided using the proposed approach for a

negligible performance overhead.

BIBLIOGRAPHY

134

135

BIBLIOGRAPHY

[1] Collection of Concurrency Bugs. http://www.eecs.umich.edu/~jieyu/bugs.html.

[2] Haswell Microarchitecture. http://en.wikipedia.org/wiki/Haswell_(microarchitecture).

[3] Looper Thread in Android. http://developer.android.com/reference/android/os/Looper.html.

[4] Maple Open Source Project. https://github.com/jieyu/maple.

[5] The goose tool. http://systems.cs.colorado.edu/~moseleyt/goose/.

[6] The Open Source Database Benchmark. http://osdb.sourceforge.net/.

[7] Agarwal, R., Sasturkar, A., Wang, L., and Stoller, S. D. Optimized Run-time
Race Detection and Atomicity Checking Using Partial Discovered Types. In ASE (2005),
pp. 233–242.

[8] Ananian, C. S., Asanovic, K., Kuszmaul, B. C., Leiserson, C. E., and Lie, S. Un-
bounded Transactional Memory. In HPCA (2005), pp. 316–327.

[9] Barford, P., and Crovella, M. Generating Representative Web Workloads for Network
and Server Performance Evaluation. In SIGMETRICS (1998), pp. 151–160.

[10] Bienia, C., Kumar, S., Singh, J. P., and Li, K. The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications. In PACT (2008), pp. 72–81.

[11] Bron, A., Farchi, E., Magid, Y., Nir, Y., and Ur, S. Applications of Synchronization
Coverage. In PPOPP (2005), pp. 206–212.

[12] Burckhardt, S., Kothari, P., Musuvathi, M., and Nagarakatte, S. A Randomized
Scheduler with Probabilistic Guarantees of Finding Bugs. In ASPLOS (2010), pp. 167–178.

[13] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In OSDI (2008), pp. 209–224.

[14] Ceze, L., Tuck, J., Montesinos, P., and Torrellas, J. Bulksc: bulk enforcement of
sequential consistency. In ISCA (2007), pp. 278–289.

[15] Coons, K. E., Burckhardt, S., and Musuvathi, M. GAMBIT: Effective Unit Testing
for Concurrency Libraries. In PPOPP (2010), pp. 15–24.

[16] Corliss, M. L., Lewis, E. C., and Roth, A. DISE: a Programmable Macro Engine for
Customizing Applications. In ISCA (2003), pp. 362–373.

[17] Devietti, J., Lucia, B., Ceze, L., and Oskin, M. DMP: Deterministic Shared Memory
Multiprocessing. In ASPLOS (2009), pp. 85–96.

[18] Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., and Ur, S. Multithreaded Java
program test generation. IBM Systems Journal 41, 1 (2002), 111–125.

http://www.eecs.umich.edu/~jieyu/bugs.html
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)
http://developer.android.com/reference/android/os/Looper.html
https://github.com/jieyu/maple
http://systems.cs.colorado.edu/~moseleyt/goose/
http://osdb.sourceforge.net/

136

[19] Engler, D. R., and Ashcraft, K. RacerX: Effective, Static Detection of Race Conditions
and Deadlocks. In SOSP (2003), pp. 237–252.

[20] Flanagan, C., and Freund, S. N. Atomizer: a Dynamic Atomicity Checker for Multi-
threaded Programs. In POPL (2004), pp. 256–267.

[21] Flanagan, C., and Freund, S. N. FastTrack: Efficient and Precise Dynamic Race Detec-
tion. In PLDI (2009), pp. 121–133.

[22] Flanagan, C., Freund, S. N., and Yi, J. Velodrome: A Sound and Complete Dynamic
Atomicity Checker for Multithreaded Programs. In PLDI (2008), pp. 293–303.

[23] Flanagan, C., and Godefroid, P. Dynamic Partial-order Reduction for Model Checking
Software. In POPL (2005), pp. 110–121.

[24] Flanagan, C., and Qadeer, S. A Type and Effect System for Atomicity. In PLDI (2003),
pp. 338–349.

[25] Godefroid, P. Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem, vol. 1032 of Lecture Notes in Computer Science.
Springer, 1996.

[26] Godefroid, P. Model Checking for Programming Languages using Verisoft. In POPL (1997),
pp. 174–186.

[27] Godefroid, P., Klarlund, N., and Sen, K. DART: Directed Automated Random Testing.
In PLDI (2005), pp. 213–223.

[28] Godefroid, P., Levin, M. Y., and Molnar, D. A. Automated Whitebox Fuzz Testing.
In NDSS (2008).

[29] Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[30] Hammond, L., Carlstrom, B. D., Wong, V., Hertzberg, B., Chen, M. K.,

Kozyrakis, C., and Olukotun, K. Programming with Transactional Coherence and Con-
sistency (TCC). In ASPLOS (2004), pp. 1–13.

[31] Havelund, K., and Pressburger, T. Model Checking JAVA Programs using JAVA
PathFinder. STTT 2, 4 (2000), 366–381.

[32] Herlihy, M., and Moss, J. E. B. Transactional Memory: Architectural Support for Lock-
Free Data Structures. In ISCA (1993), pp. 289–300.

[33] Huang, J., and Zhang, C. Persuasive prediction of concurrency access anomalies. In ISSTA
(2011), pp. 144–154.

[34] Jackson, D., and Damon, C. Elements of Style: Analyzing a Software Design Feature with
a Counterexample Detector. In ISSTA (1996), pp. 239–249.

[35] Jagannath, V., Gligoric, M., Jin, D., Luo, Q., Rosu, G., and Marinov, D. Improved
Multithreaded Unit Testing. In SIGSOFT FSE (2011), pp. 223–233.

[36] Joshi, P., Park, C.-S., Sen, K., and Naik, M. A Randomized Dynamic Program Analysis
Technique for Detecting Real Deadlocks. In PLDI (2009), pp. 110–120.

[37] Kahlon, V., and Wang, C. Universal Causality Graphs: A Precise Happens-Before Model
for Detecting Bugs in Concurrent Programs. In CAV (2010), pp. 434–449.

[38] Krena, B., Letko, Z., and Vojnar, T. Coverage Metrics for Saturation-based and Search-
based Testing of Concurrent Software. In RV (2011).

137

[39] Lai, Z., Cheung, S.-C., and Chan, W. K. Detecting Atomic-set Serializability Violations
in Multithreaded Programs Through Active Randomized Testing. In ICSE (1) (2010), pp. 235–
244.

[40] Lu, S., Jiang, W., and Zhou, Y. A Study of Interleaving Coverage Criteria. In ESEC/SIG-
SOFT FSE (2007), pp. 533–536.

[41] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A., and Zhou, Y. MUVI:
Automatically Inferring Multi-variable Access Correlations and Detecting Related Semantic
and Concurrency Bugs. In SOSP (2007), pp. 103–116.

[42] Lu, S., Park, S., Seo, E., and Zhou, Y. Learning from Mistakes: a Comprehensive Study
on Real World Concurrency Bug Characteristics. In ASPLOS (2008), pp. 329–339.

[43] Lu, S., Tucek, J., Qin, F., and Zhou, Y. AVIO: Detecting Atomicity Violations via Access
Interleaving Invariants. In ASPLOS (2006), pp. 37–48.

[44] Lucia, B., and Ceze, L. Cooperative Empirical Failure Avoidance for Multithreaded Pro-
grams. In ASPLOS (2013), pp. 39–50.

[45] Lucia, B., Devietti, J., Strauss, K., and Ceze, L. Atom-Aid: Detecting and Surviving
Atomicity Violations. In ISCA (2008), pp. 277–288.

[46] Luk, C.-K., Cohn, R. S., Muth, R., Patil, H., Klauser, A., Lowney, P. G., Wallace,

S., Reddi, V. J., and Hazelwood, K. M. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In PLDI (2005), pp. 190–200.

[47] Magnusson, S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G.,

Högberg, J., Larsson, F., Moestedt, A., and Werner, B. Simics: A Full System
Simulation Platform. IEEE Computer 35, 2 (2002), 50–58.

[48] Moore, K. E., Bobba, J., Moravan, M. J., Hill, M. D., and Wood, D. A. LogTM:
Log-based Transactional Memory. In HPCA (2006), pp. 254–265.

[49] Musuvathi, M., and Qadeer, S. Iterative Context Bounding for Systematic Testing of
Multithreaded Programs. In PLDI (2007), pp. 446–455.

[50] Musuvathi, M., and Qadeer, S. Partial-Order Reduction for Context-Bounded State Ex-
ploration. Tech. Rep. MSR-TR-2007-12, Microsoft Research, 2007.

[51] Musuvathi, M., and Qadeer, S. Fair Stateless Model Checking. In PLDI (2008), pp. 362–
371.

[52] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P. A., and Neamtiu, I.

Finding and Reproducing Heisenbugs in Concurrent Programs. In OSDI (2008), pp. 267–280.

[53] Naik, M., Park, C.-S., Sen, K., and Gay, D. Effective Static Deadlock Detection. In
ICSE (2009), pp. 386–396.

[54] Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A., and Calder, B. Automatically
Classifying Benign and Harmful Data Races Using Replay Analysis. In PLDI (2007), pp. 22–
31.

[55] Netzer, R. H. B. Optimal Tracing and Replay for Debugging Shared-Memory Parallel
Programs. In Workshop on Parallel and Distributed Debugging (1993), pp. 1–11.

[56] Olszewski, M., Ansel, J., and Amarasinghe, S. P. Kendo: Efficient Deterministic
Multithreading in Software. In ASPLOS (2009), pp. 97–108.

[57] Pacheco, C., and Ernst, M. D. Randoop: Feedback-directed Random Testing for Java.
In OOPSLA Companion (2007), pp. 815–816.

138

[58] Park, C.-S., and Sen, K. Randomized Active Atomicity Violation Detection in Concurrent
Programs. In SIGSOFT FSE (2008), pp. 135–145.

[59] Park, S., Lu, S., and Zhou, Y. CTrigger: Exposing Atomicity Violation Bugs from Their
Hiding Places. In ASPLOS (2009), pp. 25–36.

[60] Patil, H., Pereira, C., Stallcup, M., Lueck, G., and Cownie, J. PinPlay: a Frame-
work for Deterministic Replay and Reproducible Analysis of Parallel Programs. In CGO
(2010), pp. 2–11.

[61] Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and Witchel, E. Oper-
ating Systems Transactions. In SOSP (2009), pp. 161–176.

[62] Prvulovic, M., and Torrellas, J. ReEnact: Using Thread-Level Speculation Mechanisms
to Debug Data Races in Multithreaded Codes. In ISCA (2003), pp. 110–121.

[63] Prvulovic, M., Torrellas, J., and Zhang, Z. ReVive: Cost-Effective Architectural
Support for Rollback Recovery in Shared-Memory Multiprocessors. In ISCA (2002), pp. 111–
122.

[64] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating Bugs as Allergies - a
Safe Method to Survive Software Failures. In SOSP (2005), pp. 235–248.

[65] Rajamani, S. K., Ramalingam, G., Ranganath, V. P., and Vaswani, K. ISOLATOR:
Dynamically Ensuring Isolation in Concurrent Programs. In ASPLOS (2009), pp. 181–192.

[66] Ramadan, H. E., Rossbach, C. J., and Witchel, E. Dependence-aware Transactional
Memory for Increased Concurrency. In MICRO (2008), pp. 246–257.

[67] Ratanaworabhan, P., Burtscher, M., Kirovski, D., Zorn, B. G., Nagpal, R., and

Pattabiraman, K. Detecting and Tolerating Asymmetric Races. In PPOPP (2009), pp. 173–
184.

[68] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. E. Eraser:
a Dynamic Data Race Detector for Multi-Threaded Programs. In SOSP (1997), pp. 27–37.

[69] Sen, K. Race Directed Random Testing of Concurrent Programs. In PLDI (2008), pp. 11–21.

[70] Sherman, E., Dwyer, M. B., and Elbaum, S. G. Saturation-based Testing of Concurrent
Programs. In ESEC/SIGSOFT FSE (2009), pp. 53–62.

[71] Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., and Zheng, W. Do I Use the
Wrong Definition?: DeFuse: Definition-use Invariants for Detecting Concurrency and Sequen-
tial Bugs. In OOPSLA (2010), pp. 160–174.

[72] Sorin, D. J., Martin, M. M. K., Hill, M. D., and Wood, D. A. SafetyNet: Improving
the Availability of Shared Memory Multiprocessors with Global Checkpoint/Recovery. In
ISCA (2002), pp. 123–.

[73] Sorrentino, F., Farzan, A., and Madhusudan, P. PENELOPE: Weaving Threads to
Expose Atomicity Violations. In SIGSOFT FSE (2010), pp. 37–46.

[74] Taylor, R. N., Levine, D. L., and Kelly, C. D. Structural Testing of Concurrent
Programs. IEEE Trans. Software Eng. 18, 3 (1992), 206–215.

[75] Veeraraghavan, K., Chen, P. M., Flinn, J., and Narayanasamy, S. Detecting and
Surviving Data Races Using Complementary Schedules. In SOSP (2011), pp. 369–384.

[76] Volos, H., Goyal, N., and Swift, M. Pathological Interaction of Locks with Transactional
Memory. In TRANSACT (2008).

139

[77] Voung, J. W., Jhala, R., and Lerner, S. RELAY: Static Race Detection on Millions of
Lines of Code. In ESEC/SIGSOFT FSE (2007), pp. 205–214.

[78] Wang, C., Said, M., and Gupta, A. Coverage Guided Systematic Concurrency Testing.
In ICSE (2011), pp. 221–230.

[79] Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., and Mahlke, S. A. Gadara:
Dynamic Deadlock Avoidance for Multithreaded Programs. In OSDI (2008), pp. 281–294.

[80] Weeratunge, D., Zhang, X., and Jagannathan, S. Analyzing Multicore Dumps to
Facilitate Concurrency Bug Reproduction. In ASPLOS (2010), pp. 155–166.

[81] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. The SPLASH-2
Programs: Characterization and Methodological Considerations. In ISCA (1995), pp. 24–36.

[82] Xu, M., Bod́ık, R., and Hill, M. D. A Serializability Violation Detector for Shared-memory
Server Programs. In PLDI (2005), pp. 1–14.

[83] Yang, C.-S. D., Souter, A. L., and Pollock, L. L. All-du-path Coverage for Parallel
Programs. In ISSTA (1998), pp. 153–162.

[84] Yu, J., and Narayanasamy, S. A Case for an Interleaving Constrained Shared-memory
Multi-processor. In ISCA (2009), pp. 325–336.

[85] Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., and Reps,

T. W. ConSeq: Detecting Concurrency Bugs through Sequential Errors. In ASPLOS (2011),
pp. 251–264.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Two Hypotheses and Interleaving Idioms
	Finding Concurrency Bugs by Exposing Untested Interleavings
	Tolerating Concurrency Bugs by Avoiding Untested Interleavings
	Contributions
	Structure

	Background and Related Work
	Detecting Concurrency Bugs
	Data Race Detection
	Atomicity Violation Detection

	Exposing Concurrency Bugs
	Coverage Driven Testing
	Stress Testing and Random Testing
	Systematic Testing
	Active Testing
	Test Input Generation

	Tolerating Concurrency Bugs

	Encoding Tested Interleavings Using Interleaving Idioms
	Two Hypotheses about Concurrency Bugs
	Interleaving Idiom
	Canonical Idioms
	Relation with Concurrency Bugs
	Empirical Analysis

	Exposing Untested Interleavings: Maple
	Overview
	Online Profiling For Predicting iRoots
	Notations and Terminology
	Naive Approach
	Non-Mutex Happens-Before Analysis
	Mutual Exclusion Analysis
	Online Profiling Algorithm
	Baseline Algorithm
	Optimizations

	Predicting iRoots for Compound Idioms
	Identifying Local Pairs
	Correlating with Idiom1 Prediction Results

	Actively Testing Predicted iRoots
	A Naive Approach
	Non-preemptive and Strict Priority Scheduler
	Complementary Schedules
	Watch Mode Optimization
	Candidate Arbitration
	Dealing with Asynchronous External Events
	Compound Idioms
	Exposing Pre-conditions

	Memoization of iRoots
	Evaluation
	Maple Configuration
	Usage Scenario 1: Exposing Bugs with Bug Triggering Inputs
	Experiences in Finding Unknown Bugs
	Memoization Help Expose Bugs Faster

	Usage Scenario 2: Coverage-Driven Testing
	Maple Achieves Higher Coverage Faster
	Memoization Help Reduce Testing Time

	Characteristics of Maple
	Performance Overhead
	Effectiveness of the Active Scheduler

	Summary

	Avoiding Untested Interleavings I: PSet
	Overview
	Encoding Tested Interleavings
	Predecessor Sets (PSets)
	Effectiveness of PSets in Avoiding Concurrency Bugs
	Enforcing PSet Constraints Avoids Data Races
	Enforcing PSet Constraints Avoids Atomicity Violations
	Enforcing PSet Constraints Avoids Order Violations

	Deriving and Encoding PSets Constraints
	Limitations

	Enforcing Tested Interleavings
	Detecting and Enforcing PSet Constraints
	Architectural Support
	Tracking Last Writer and Last Reader(s)
	Checking PSet Constraints

	Evaluation
	Bug Avoidance Capability
	Learning PSet Constraints
	Testing Methodology
	Tests Required to Learn PSet Constraints

	PSet Constraint Violations in Bug Free Executions
	Memory Space Overhead

	Summary

	Avoiding Untested Interleavings II: LifeTx
	Overview
	Algorithm for Determining LifeTxes
	Lifeguard Transactions (LifeTxes) and Profiling Algorithm Overview
	Checking Conflict Serializability for LifeTxes
	Splitting LifeTxes On a Conflict
	Practical Issues
	Relaxing Conflict Detection For Synchronization Functions
	Optimizations for Reducing Runtime Conflict Detection Complexity
	Mapping Cutpoints to Source Code

	Discussion and Limitations
	Testing Correctness
	Input dependency
	Context

	Runtime Support for LifeTxes
	LifeTx-Stall Design
	Detecting LifeTx Conflicts
	Resolving LifeTx Conflicts

	LifeTx-CS Design

	Evaluation
	Experimental Setup
	Benchmarks
	Testing Methodology
	Simulation Methodology

	Learning LifeTxes
	Characteristics of LifeTxes
	Bug Avoidance Capability
	Testing Impact
	Runtime System Influences

	Performance Study
	Block vs. Word

	Summary

	Future Work
	Conclusion
	BIBLIOGRAPHY

