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Fi1c. 1. Choice of axes; X', y’, z’ are cube edges.
are still a natural description of the medium along the

100 axis and the 111 axis, but not for the 110 axis or
other angles.
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F1c. 2. 110 plane in cubic crystal. zy lies in 110 plane.
Hj lies along z. x’, y’, 2’ are cube edges

We note the Hermitian character of the tensor x'.
This is consistent with the time-reversal property of
precession of the magnetization for a lossless situation.

We should like to express our thanks to R. C. LeCraw
for bringing this problem to our attention.
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The exact solution to the diffusion equation for one kind of charge carrier is obtained for the metal-
insulator-metal junction where trapping of the charge carriers may occur in the body of the insulator. The
effect of surface states is not considered. The electric potential distribution is given in closed form and the
exact dc current-voltage relation is given in parametric form for any degree of trapping. A graph of the
current-voltage relation is shown for the special case where the two boundary metals are the same.

A brief description of some experimental difficulties is given when test junctions were prepared entirely

by the vacuum evaporation method.

INTRODUCTION

PPROXIMATE solutions to the diffusion equa-
tion have been published by Mott! for the case
of the purely chemical barrier layer metal-semiconduc-
tor junction where the electric field in the barrier layer
is essentially constant, and by Mott and Gurney? for
the case of the metal-insulator contact where the
change in field strength F in the insulator of thickness L
is of the order F/L and where F/LXeF*/kT. Shockley
and Prim® obtain approximate solutions applied to the
analogous physical situation of the p-intrinsic-p and
n-intrinsic-» junctions for semiconductors showing the
Child’s law analog for semiconductors in the space
charge limited region of the current-voltage character-
istic. More recently, Skinner* discussed the properties
* Presented in part at the Ann Arbor-Detroit meeting of the
American Physical Society, March, 1954.
t Now with the Willow Run Laboratory of the Engineering
Research Institute, University of Michigan.
I N. F. Mott, Proc. Roy. Soc. (London) A171, 27 (1939).
2N. F. Mott and R. W. Gurney, Elecironic Processes in Ionic
Crystals (Oxford University Press, New York, 1940).

8 W. Shockley and R. C. Prim, Phys. Rev. 90, 753 (1953).
4 Selby M. Skinner }J. Appl. Phys. 26, 498 and 509 (1955).

of the metal-insulator contact and obtained an exact
solution for the potential distribution within the insu-
lator and a low current approximation of the current-
voltage relation which predicts the possibility of a
turn-over point (a negative resistance region) in the
current-voltage relation.

This work extends the exact solution to include
trapping of charge carriers. Also, the exact calculation
of the entire range of the current-voltage relation is
obtained with any degree of space charge effects. The
solution obtained here applies also to the purely chemical
barrier metal-semiconductor contact and the p-intrinsic-
p or n-intrinsic-# junction. Torrey and Whitmer® had
suggested the possibility of employing the metal-
insulator-metal junction as an effective rectifier. Also
Mott and Gurney suggested that space charge trapping
may be an essential factor in the passage of charge
carriers from a metal into an insulator. The further
exploration of these two suggestions is contained in this
work.

§ Torrey and Whitmer, Crystal Rectifiers (McGraw-Hill Book
Company, Inc., New York, 1948).
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MODEL OF THE JUNCTION

The model of the metal-insulator-metal contact is
essentially that of the purely chemical barrier layer
metal-semiconductor contact treated by Mott, or the
n-intrinsic-z junction treated by Shockley and Prim.
The barrier layer is an electrically neutral insulating
crystal into which charge carriers of only one type
(electrons in this treatment) are injected by thermionic
emission from the metals at the boundaries. Electrons
may enter and leave the insulator only at energies
falling within the conduction band of the insulator. The
concentration, n., of electrons in the conduction band
adjacent to the metal is fixed at a value such that
thermal equilibrium is maintained across the metal-
insulator surface. The mean free path of the conduction
band electrons is taken to be small compared to the
thickness of the insulator. Conduction is by simple
diffusion and drift alone rather than by tunneling or
avalanches. Acceptor trap levels in the form of crystal
defects may exist below and close to the conduction
band and are assumed to be evenly distributed in space.
The effect of surface state trapping is neglected and it is
here that this model may be deficient. However, the
effects of surface trapping can be distinguished experi-
mentally from the effects of body trapping by measuring
the resistivity of different thicknesses of the same
insulator at constant applied electric field. The effect of
the space charge is to resist the introduction of new
charge carriers from the metal. If the space charge is
trapped throughout the body of the material, then by
reducing the thickness of the insulator one also reduces
the number of traps and hence the space charge. This
leads to an apparent reduction in the resistivity of the
insulator. In contradistinction, the number of surface
traps are not reduced by reducing the thickness of the
insulator so an apparent increase in the resistivity would
be noticed. Only if space charge effects of either kind
are so small as to be of no consequence (or if by chance
the effects should just balance) would the resistivity be
unchanged. It is reasonable to assume that the rate of
trapping R; of conduction band electrons is proportional
to the product of the conduction band electron concen-
tration and the concentration of empty traps,

R,=Cumn, (dt_ nt),

where d, is the concentration of traps, s, is the concen-
tration of trapped electrons, and C; is a constant. The
rate of breaking free again, Rj, is proportional to the
concentration of electrons in the trap levels
Rf= Cﬂ’lg
where Cy is a constant. For equilibrium R, is set equal to
R, to obtain
= C,n,/C,(dg—n,) .
Assuming that #,«d; (Boltzmann statistics apply to
the carriers in the trap and conduction band levels),
one has
nc+nt=Pnc;
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where p, the “trapping factor,” is equal to (1+C.d./C;).
Thus, the trapping model requires that a fixed fraction
1/ of the total charge carrier density at a given position
in the insulator resides in the conduction band while the
remainder resides in the traps.

POTENTIAL DISTRIBUTION AND
CURRENT-VOLTAGE RELATION

Let the contact surfaces be plane with metal number
zero in the region x <0, metal number one in the region
x> L, and the insulator in the region 0 <x < L.

To determine the potential distribution within the
barrier and the current-voltage relation one must obtain
the simultaneous solution to the diffusion equation,

j=—De(dn./dx)—~n.eu(dp/dx),
the Poisson equation,
d*p/dx*= —4npn.e/K,
and the continuity equation for the steady state,
dj/dx=0,

where j is the electric current density, which clearly is
not a function of x, D is the diffusion coefficient, ¢ is the
charge of the electron, # is the mobility, ¢ is the electric
potential, and K is the dielectric constant.

At the boundaries one has pn(0)=pn, and pn(L)
= pny. The quantities pnoand pr1 are determined by the
thermal equilibrium conditions at the boundaries and
are taken to be independent of the current. In addition
one has ¢(L)—¢(0)=A¢p where A¢ is the contact
potential plus the applied potential difference across the
barrier.

Changing to the dimensionless variables,

g==/L,
U=e¢/kT,
Q=j2xL’ep/KDET,
making use of the Einstein relation, #/D=¢/kT, and

eliminating 7. from the diffusion equation by use of the
Poisson equation, one obtains

ZQ= UIII+ UIIUI, (1)

where the primes denote differentiation with respect to
¢. The boundary conditions are then expressed by

U= —4apetn.(0)/RTK,

U'=~4dxpe*n (L)/kTK,
and

AU= (¢/kT)[$(L)—¢(0)].

The consequences of the trapping model may be seen
from the form of the dimensionless variables. Notice
that p always occurs in conjunction with K as the ratio
#/K. Hence, one may define an effective dielectric
constant K,,=K/p. Thus, the effect of trapping may
be thought of mathematically as a change in the dielec-
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tric constant of the insulator. The properties of K,y are
rather unusual for a dielectric constant. It should be
strongly temperature dependent and increase with
temperature since p must decrease with temperature.
In addition, for heavy trapping (p of the order of 109),
K4 must be of the order of 107¢ or considerably less
than the dielectric constant for vacuum. These unusual

properties are due to the fact that the electric field-

“flux lines” originating from the positive metal surface
do not all reach the opposite metal but are terminated
in the space charge of the insulator. One should not
expect to find the capacity of the junction reduced when
the capacity is measured by an ac bridge.

Relation (1) may be integrated immediately to give

2R+20q=U"+U"/2, (2)

where 2R is the first constant of integration.f The
further change of variable,

U=2In(y) (3)
brings the relation (2) to the form
¥"'—(Qg+R)y=0. 4
For the case Q=0, relation (4) can be integrated to
y==cos(wq)+A sin(wg) (5)

where w is the positive square root of —R. For Q=0,
relation (4) can be integrated to

y=sLT3()+N4(s)] (6)

with s=—(2/30)(—Qg¢— R)}. The quantity, A, is the
second constant of integration. The third constant is
taken to be unity since it only serves to fix the absolute
value of the potential. The functions J3 and J_4 are
the Bessel functions of order § and —3% respectively.
When w and s are imaginary, it should be understood
that the following relations are implied:

cos(4z) = cosh(z)
sin(iz) =1 sinh(z)
Jo(iz) =exp(pmi/2)1,(3) ;

where I, is the modified Bessel function.

(—wr<argz<m/2)

The Case Q=0

Twofold differentiation of U provides the expression
for the dimensionless charge density, which can be
evaluated at the boundaries to give

Ud'= =20 (14N (7

Uy =~ 20 (1422 / (cosw-A sinw)?. (8)

Taking the ratio of (7) and (8), member for member,
1 Relation (2) is a special case of the generalized Ricatti equa-
tion with U’ as the dependent variable. [For example, see E. L.

Ince, Ordinary Differential Equations (Dover Publications, New
York, 1944).]
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and solving for A one obtains

(U /UL )i~ cosw
A= .

(9)

sinw

The positive square root is taken to avoid an infinite
potential within the barrier. The potential can then be

expressed as
(U /U") sinwg+sinw(1—g)

U=21n

(10)

sinw
s0 the contact potential difference is simply
AU=In(U"/U")=In[ne(0)/n(L)].
The contact potential does not depend upon the amount
of trapping. This is a necessary condition which all
trapping models must satisfy to be consistent with the
general thermodynamic laws. To solve for w one elimi-
nates A from (7) and (8) and after some algebraic
manipulations one finds that
sintw = (2/—Uy")
+2/—=U/)—4(Us" Uy cosw] (11)
and in the special case where Uy”=U," one finds that
cosw/2=w(—U,"/2)7}. (12)
The positive square root, (U Uy"")}, has been taken to
correspond to the sign of (Uy’/U")} in relation (9).
The electric fields at the boundaries are determined by
(U /UL —cosw
w

0 .
sinw

(U"/U") = cosw
! 2w .

=—

sinw

The solutions for w in (11) and (12) are either real or
purely imaginary. If they are real,§ % may be multiple
valued. If w 2> =, then there will be an infinite potential
somewhere within the barrier. The restriction 0<w <=
is added on physical grounds so as to make w single
valued and avoid the infinite potential.

The Case Q=0

If so and sy are the values of s at the respective
boundaries, then Q and R may be expressed as

Q== (/2 (st =s5oY)? (13)
R=— (3/2)2(514*5()})250*. (14)

Again applying the first two boundary conditions and
solving for A, one has

BT ya(s0) = PoJ —5/s(s0) ]
 [—us(s0)+FPoTasa(s0)T
_ uals)—=PiJ2sa(sy)]
ys(s)+PuTasls))T

§ Solutions to (12) must always be real.

(15)

(16)
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where

Po=[Bo/(1—Bo) ]},
Pi=[B,/(1-By)J,

The sign of Py and P; is determined by the sign of the
electric field at the respective boundaries. For the small
Q range the electric fields are essentially the zero current
fields and for the large Q range the electric field is
essentially the applied field, so the signs may be fixed
accordingly.

The elimination of A from relations (15) and (16)
leads to

[T 1s3(s0) T 1ss(s1) = Ta(s0) T —1s3(s1) ]
~[Toss(s0)J—2s3(s1) = T —2/3(50) J23(s1) JPoPr
+ [T 2s3(s0)T1/3(s0)+T—273(s0)J ~1/3(s1) JPo
— [T 13(50) T —ap3(s1) + T 173(50) T a3(s1) JP1=0,  (17)

which constitutes the exact solution for the current
voltage relation in parametric form. If a value of s,
is chosen, relation (17) provides the corresponding
value of s;. With this pair of values one determines Q
by (13), R by (14), A by (15) or (16) and AU by (3) and
(6). Explicit forms for the current voltage relation may
be obtained by the use of asymptotic expansions of the
Bessel functions. The forms,

Bo=9so}(s1t—s0)2/ —2U";
B,= 981*(81;—50})2/* 20,

AU= s Uy"/Q)3—1 0
g U -1, o<
(18)
— Q2
AU= +U"?/Q)¥—1], 0>0
gL U 1], 0

are obtained for the large Q range and are essentially
the same as the form obtained by Mott and Gurney for
the metal-insulator surface. These forms indicate that,
in this range of current, the current-voltage relation is
governed by the property of the metal from which elec-
trons are flowing. The other metal acts simply as a sink.
The form for small Q is given by

= (1/2) n(1-Q/w?)
+21In[1—(2/=U¢")HQ/2w?) (1+ 20/ U")¥]
—In{1—(Q/2e")[ 2/ = Us")}(1+ 2/ Uy")?
+(2/= U202/ U]}

where AU, is the applied potential difference, w is
defined by (11) or (12), and the signs of (14-2w?%/U,"’)?
and (14-2w?/Uy")} take the signs of the corresponding
zero current electric fields. The range of validity is given
by |se|, |s1]>>1 for both relations (18) and (19).||
In addition one must require that |Q/R|<«1 and
| (|R|—|w?|)/|w?| |1 for relation (19).

f| In relation (18) Q~|so|? and R~]se| when s;—i such that
|s1i—so| = . In relation (19) Q~|s|7? and R——u? when
so— for real w or when sp—ix for imaginary w such that
| 51— 50| —0.

(19)
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Fic. 1. Current-voltage relation for the special case where
Uy'=U"=—14 10m. Curve 1 is for m=1; curve 3 is for m=3,
etc.

DISCUSSION OF RESULTS

The special case where Uy’ = U1" contains one fewer
parameter; so, this case will be particularly interesting
experimentally even though no rectification can be
expected. The calculated current-voltage relation for
this case with various values of U, is given in Fig. 1.
In order to display the interesting features of this rela-
tion on a single graph, the variables,

V=AU/2(— U/
J=—=Q/(—=U")},

are employed. For J— all curves approach the V=7
line asymptotically. For large but decreasing values of
J the curves tend toward a slope of two, which is the
Child’s law analog region for space charge limited
current obtained by Shockley and Prim. However, for
small U1"” a slope of two is not reached. In the limit
U,"—0, the relation becomes V=J over the entire
range. For J—0, all curves have a slope of one. The
region which must be determined by numerical calcula-
tion is the region where the curves are sharply concave
upward.

From the current-voltage relation one may determine
the resistivity, R, as a function of the thickness, L, of
the film. For illustration take, along with Uy’'=U,",
the reasonable values, #=300 cm?/v sec, K=5, T
=300°K, F=10* volts/cm applied field. A plot of
log(Rr/R.) against log (L/1 cm) is given in Fig. 2. The
quantity, R,=1/niex, is the resistivity at infinite field
strength, or the temperature limited resistivity, and is
independent of L. Notice that for pr,>10" cm= there
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F16. 2. The ratio of resistivity at constant field to the resistivity
at infinitely large field as a function of the thickness of the film
bounded by identical metals.

Curve 4 (in the base line) is for p=1, #,=10"; curve B is for
$=108, n,=101; curve C is for p=1, n,=10'8; curve D is for
=108 n.=108, Curves B, C, and D show that even for thick
films the resistivity should vary linearly with thickness.

is an unmistakable change in resistivity with thickness,
but for pn,<10" ¢cm—* there is hardly a measurable
change. In addition the change in resistivity is most
apparent for quite thick films.

It would appear from this analysis that a clear indica-
tion for the validity of this model could be obtained
experimentally by way of testing for the current-
voltage relation and the resistivity as a function of
thickness. An attempt was made to verify this model
experimentally by preparing the junctions entirely by
the vacuum evaporation technique. It was found that in
the case of MgF; considerable matter transport occurred
during the current flow and in the case of amorphous
Si0, (where matter transport appeared slight) a current
noise appeared which gave the appearance of temporary
and multiple electronic breakdowns® over a rather large
range of field strengths. The average dc current in-
creased nonlinearly with the applied potential as one
might expect from the model so that an investigator
might be misled into feeling that he had a true test of the
junction if he employed only the relatively long-re-

8 A. von Hippel, Phys. Rev. 54, 1096 (1938).
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sponse time meter movements rather than a cathode ray
oscilloscope presentation of the instantaneous current.
Klirmann and Miihlenpfordt’ tested a Ag-SiO.,-Ag
junction made by the vacuum evaporation technique.
A similar nonlinear increase of current with applied
potential was observed but apparently no investigation
of the nature of the instantaneous current was made.
Thin evaporated films have been used in these tests
mainly because they may be prepared fresh in the
vacuum. One may hope to avoid adsorbed material,
which may produce serious surface trapping. However,
evaporated films are rarely well-ordered crystals and
some materials (NaCl and NaF for example) never form
a compact film. The use of thick films prepared by other
means is presently limited by the technical difficulty of
complete cleaning of adsorbed material. High-energy
ion bombardment of self-supporting films such as
Al:O;, SiO, mica, and numerous organic films should
produce a basis for a more nearly ideal junction.

SUMMARY

The effect of the trapping model on the dc current-
voltage relation of the metal-insulator-metal junction
was the same as if the dielectric constant of the insu-
lator were reduced by a factor 1/p.

The exact current-voltage relation was obtained in
parametric form and was computed for the case of
identical metals on the boundaries. For the low current
range an almost linear relation was found. Higher cur-
rents followed a square-law relation for high values of
space charge. Still higher currents followed a linear rela-
tion. When space charge effects were negligible, a linear
relation was followed for all values of current. The
apparent resistivity of the insulator film was computed
as a function of its thickness at constant field strength,
using reasonable values for the properties of the insu-
lator. It was found that the resistivity should decrease
nearly linearly with thickness for thick insulators when
boundary charge densities exceeded 10 per cm?.

Test junctions were prepared entirely by the vacuum
evaporation method, but the insulating films were not
compact, or exhibited matter transport with the appli-
cation of an electric field. A more suitable test junction
might be prepared using self-supporting insulator films
cleaned by ion bombardment.
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