End of Degree Project in Computer Science, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

YOLO Object Detector for Onboard Driving
Images

Albert Soto i Serrano

Abstract— With the evolution of artificial intelligence and, specially, machine learning, tech and
car manufacturing companies are in research of the car of the future. Along with the arrival of
new powerful hardware, deep learning is expected to be one of the most outstanding fields in the

automotive sector.

In this paper, we will be developing an object detection system with neural

networks using the You Only Look Once (YOLO) network architecture. We will train and evaluate
the model using various datasets and extract conclusions on its feasibility for autonomous driving or

other driving assistance applications.

Keywords— Deep Learning, Convolutional Neural Networks, Object Detection, YOLO, ADAS

1 INTRODUCTION

known as ADAS, is one of the most outstanding

fields nowadays. The evolution of artificial intel-
ligence and, specially, machine learning, has lead tech and
car manufacturing companies to the research of the car of
the future. Conventional ADAS technology could perform
basic object detection and classification, driver alerting of
hazardous road conditions and eventually vehicle speed reg-
ulation. The new hardware and software platforms brought
the world of deep learning to ADAS, providing a spectrum
of new capabilities such as advanced object recognition sys-
tems capable of distinguishing a tourism from a police car
from an ambulance or interpreting speed limit signals.

3 DVANCED Driving Assistance Systems, commonly

1.1 Objectives

The objectives of this project are:

e Develop an object detection system using YOLO
neural-network-based model, capable of recognizing
typical objects present on a driving session, such as
cars, trucks, pedestrians, cyclists or even animals.

e Evaluate the convenience of the YOLO detection sys-
tem for autonomous driving and other ADAS applica-
tions.

The object detection system will be developed using the
You Only Look Once neural network architecture, which

o Contact e-mail: albert.sotoi @e-campus.uab.cat
e Major: Computer Science

o Tutored by: Dr. Antonio M. Lépez (CVC)

e Course 2016/17

claims to be one of the most promising deep learning
detection systems out in the wild.

We will have to evaluate the performance using the
original YOLO weights against fine tuning with other
datasets. So another tasks will be finding and adjusting
proper datasets to fine-tune the model to increase its
performance for our specific model.

1.2 Methodology

During the development of the project, we have worked
following a methodology based on SCRUM. SCRUM is
an agile development methodology based on iterations
(commonly called sprints) of short duration. Each sprint
is assigned with a list of small tasks that is tracked upon
completion. Due to the reduced number of members, the
role policy of SCRUM has not been followed to the letter.

For each sprint, we defined the tasks to be developed
based on the project planning. At the end of each sprint, we
made a retrospective look of the amount of work that was
completed and rescheduled the uncompleted work for the
next sprints.

To keep the software under control, we worked with
a GitHub repository for code and script development.

1.3 Document structure

This document begins with a brief introduction to the
project, its objectives and scope, emphasizing on the new
horizons of deep learning in the automotive field. Follow-
ing the brief introduction, the problem of developing an ob-
ject detection system will be detailed. Later, we will focus
on the YOLO detection system. Finally we will expose and
analyze the obtained results and extract conclusions.

July of 2017, Escola d’Enginyeria (UAB)

2 EE/UAB End of Degree Project in Computer Science: YOLO Object Detector for Onboard Driving Images

2 DEVELOPING AN OBJECT DETECTOR
WITH NEURAL NETWORKS

The following sections will describe the task of creating an
object detection system using neural networks and other el-
ements that are involved, such as the used datasets.

2.1 Classification and detection

Object classification is the task of determining the presence
or absence of a certain object in an image. Results are
binary: object is present or object is absent.

Object detection is the task of determining the pres-
ence or absence of a certain object in an image and the
location of this object in the image. Location is usually
represented using bounding boxes (see Ground Truth
section below).

Image contains: Car, Car, Motorcycle, Car, Truck,
Pedestrian, Truck, Motorcycle

Fig. 1: Obj. detection output (left) vs Obj. classification
output (right)

Thus, object detection is a more complex procedure,
since it includes object classification plus further computa-
tions to determinate the location of the objects in the image.

2.2 Convolutional Neural Networks (CNN)
against traditional Neural Networks

We will not be digging into neural networks in this article
but it is important to understand the basis of their operation
to understand how YOLO works. Especially, we will focus
on what convolutional neural networks are, how do they
differentiate from traditional neural networks and what are
they composed of.

Neural networks can be described as a biologically-
inspired programming paradigm which enables a computer
to learn from observational data [12].

Traditional neural networks consist of an input and
output layer and a collection of fully-connected hidden
layers of artificial neurons. They take a vector as input,
and transform it through the hidden layers up to the output
layer where class scores are presented.

Traditional networks do not scale properly with large
images. The fully connected layers involve a real problem
with parameter scalability and bad generalization of the
model, also known as overfitting.

On the other hand, convolutional neural networks
take as premise that we will be working with images to

constraint its architecture in a way to solve the weaknesses
of traditional neural networks.

Neurons on the layers of a CNN are arranged in three
dimensions: width height and depth. At the output of the
network full images are reduced into a single vector of
class scores.

depth
SoooeH] height

width

Fig. 2: Example of a Convolutional Neural Network (CNN)
[13]

Every layer of a CNN transforms the previous volume of
activations to the next using a differentiable function. Net-
work architects are free to design the network the way they
wish, but usually a set of operations/layers are common in
all of the networks:

e Input layer: holds the raw values of the image, having
a volume equal to the image dimensions.

e Convolutional layer: computes the output of the lo-
cally connected regions in the input of the layer ap-
plying the dot product between their weights and the
region to which they are connected. After a convolu-
tional layer, height and width dimensions are usually
reduced in favor to a grown of the depth of the activa-
tion volumes, that will later represent the classification
scores.

e Rectified Linear Unit (ReLU) layer: applies an
element-wise activation function, such as max(0,x)
thresholding at zero, where x is the input to a neuron.
ReLU layers do not alter the size of the volume as con-
volutional layers do.

e Pooling layer: performs down-sampling operations on
width and height dimensions altering the activations
volume.

e Fully-Connected layers: the output layer where the
class scores will be computed, resulting in a vector
with a depth equal to the number of classes. All the
neurons of the layer are connected to all the neurons
of the previous layer.

All of the previous explanation corresponds to the task
of classification but not detection. When performing the
task of classification in neural networks, we are limited to
a class per image and we can not straightly get the location
of the object in the image.

For object detection we can apply several techniques.
The simplest is applying a regression, usually by attaching
another fully-connected layer to the last convolutional layer
to compute the bounding box. This method will only work
with one object per image, letting us with what is known as

Albert Soto i Serrano: YOLO Object Detector for Onboard Driving Images

an object localizer.

To achieve multiple object detection, we can divide
the input image into regions. For example, by creating
a region proposal network to get regions to be treated
individually. The region division can be performed in
different steps of the process, changing the behavior and
performance of the system. Region based detectors are
slow, since they might require lots of extra steps.

2.3 Datasets

In this project we will be using several datasets, directly or
indirectly, for training or evaluating. The Data Information
Specialists Committee (DISC) defines a dataset as a
group of data files along with the documentations files
(such as codebook, technical or methodology report, data
dictionary) which explain their production or use [1]. They
are generally unusable for sound analysis by a second party
unless it is well documented.

2.3.1 Ground Truth

Ground Truth is factual data that has been observed or mea-
sured, can be analyzed objectively and has not been inferred
[2]. Specifically, in image recognition technologies, ground
truth is information obtained by direct visual examination,
especially as used to check or calibrate an automated recog-
nition system [3].

In our case, for object detection, the Ground Truth is a set
of data describing the position, size and class of the objects
present in the dataset images. With position and size infor-
mation we can generate what is called a Bounding Box.

A Bounding Box, in a bi-dimensional image scenario, is an
area defined by two points plus a width and height or four
points generating a rectangle.

The rectangle shape is somehow a limitation for detection
systems, since most real objects do not usually have a rect-
angle shape, but it simplifies computation and ground truth
definition.

TABLE 1: EXAMPLE OF A BOUNDING BOX DEFINED IN
THE GROUND TRUTH

Class | X | Y | Width | Height
Car 1 1 4 3

Yo

Fig. 3: representation of Bounding Box from Table 1

2.3.2 Udacity Dataset

The Udacity dataset for object detection [4] was created
together by Google’s Self-Driving Car project and Udacity.
The aim of the project is to develop an open source
self-driving car with user contributions.

It includes images of driving in Mountain View (Cali-
fornia) and neighboring cities during daylight conditions.
It contains over 65.000 labels across 9.423 frames collected
from a Point Grey research cameras running at full resolu-
tion of 1920x1200 at 2Hz. The dataset Ground Truth was
annotated using a combination of machine learning and
humans [5].

Fig. 4: samples from the Udacity dataset

The ground truth has annotations for 3 different classes:
cars, trucks and pedestrians. The number of classes may
seem limited for a complete autonomous driving object
detector but it is interesting to see which results we can
achieve.

Also, the Udacity dataset lacks from a complete doc-
umentation, so no proper analysis can be done. Because
of these two reasons, the Udacity dataset will not be
our reference dataset for this project but it will be tested
anyway to asses the performance of YOLO in different
datasets.

The dataset has been modified to be compatible with
YOLO: images were cropped to square images of 320
x 320 pixels (Figure 5) and the ground truth format was
changed from the original four point coordinates to the
initial horizontal and vertical coordinates plus height and
width of the boxes.

Fig. 5: samples from Udacity dataset once adapted

2.3.3 KITTI Benchmark Dataset

KITTI Vision Benchmark Suite datasets [7] are captured
from driving sessions around the city of Karlsruhe (Ger-
many), in rural areas and on highways. Up to 15 cars and
30 pedestrians are visible per image. The dataset consists of
7481 training images with a resolution of 1240 x 375 pixels.

4 EE/UAB End of Degree Project in Computer Science: YOLO Object Detector for Onboard Driving Images

The number of classes notated in the dataset ground
truth is 11. These classes include:

e Background e Pedestrian e Tram
e Car it-
° Person sit o Misc.
e Van ting
e Truck o Cyclist e Don’t care

Compared to the three classes of the Udacity dataset,
with the KITTI dataset we expect to be able to get a more
complete detection system. Classes like tram or cyclist are
crucial for an autonomous driving system since car behav-
ior will dramatically vary depending on the type of vehicle
ahead.

Fig. 6: samples from the KITTI benchmark dataset

The main classes present in the dataset are: cars, with
28.742 samples, followed by pedestrians, with 4.487
samples and cyclists, with 1.627 samples.

KITTI will be our reference dataset since it is a prop-
erly documented dataset and it has annotations for more
classes. Also, the images quality seems to be higher than
the Udacity dataset one’s, especially when speaking of
exposure control and dynamic ranges, being the images on
the KITTI dataset more exposure balanced and with better
contrast.

There are, though, many inconveniences with the KITTI
dataset: the first and most important inconvenience is that
no testing set is provided with the dataset, so part of the
training set had to be taken for testing. The other main
inconvenience is the size and aspect ratio of the images
which lead to incompatibility and memory issues when
training the model. This last issue was fixed by resizing the
images and readapting the ground truth.

2.3.4 VOC 2007 Dataset

The PASCAL VOC 2007 dataset [8] consists of 9.963 im-
ages, containing 24.640 annotated objects from 20 different
classes. Data is split into 50% for training/validation and
50% for testing. The distributions of images and objects by
class are approximately equal across the training/validation
and test sets.

In this project, we did not work with this dataset directly,
but we used original YOLO pre-trained weights on this
dataset [6]. Hence, since we used the pre-trained weights
in our experiments, we need to know what the contents of
the dataset to determinate if the weights could improve our
results.

The 20 classes present in the dataset are:

e Airplanes e Cats e Motorbikes
e Bicycles e Chairs e People

e Birds e Cows e Potted plants
e Boats e Dinning ta- e Sheep

e Bottles bles e Sofas

e Buses e Dogs e Trains

e Cars e Horses e TV/Monitors

At a first glance, there are a lot of classes that are not
of our interest, since these objects will not be typically
present in a driving environment, but there are some classes
that could help us on tuning our detection system such as
people, cars, buses, motorbikes, trains, bicycles and, also
important, animals.

Looking in detail to these classes, we can see the
number of annotated objects and the number of images in
which the objects appear (Table 2).

TABLE 2: NUMBER OF IMAGES AND LABELS PRESENT
IN TRAIN AND VALIDATION SETS OF THE PASCAL VOC
2007 DATASET

Train Validation Train + Validation

Class Images | Labels | Images | Labels | Images | Labels
Train 127 145 134 152 261 297
Bicycle 116 176 127 177 243 353

Bus 97 115 89 114 186 229
Person 1025 2358 983 2332 2008 4690
Motorbike | 120 167 125 172 245 339

Car 376 625 337 625 713 1250
Animals T | 622 887 660 877 1282 1764

The number of objects of the classes in which we are
interested is acceptable and could help improving the
results of our model fine-tuning with other datasets, but
we shall see how the pre-trained weights perform by
themselves.

In Figure 7, we can see that the samples from the
PASCAL VOC 2007 dataset are varied. We should evaluate
how this level of variety affects to our results in a driving
environment.

3 YOLO: You ONLY LoOK ONCE

You Only Look Once (YOLO from now on) is a state-
of-the-art, real-time object detection system [6] that uses
neural networks to detect objects in images.

Prior detection systems re-purpose classifiers or local-
izers to perform detection. They apply the model to an
image at multiple locations and scales. High scoring
regions of the image are considered detections.

YOLO uses a different approach applying a single
neural network to the full image. The network divides
the image into regions and predicts bounding boxes and

! Animals include categories: horse, dog, cat, sheep and cow.

Albert Soto i Serrano: YOLO Object Detector for Onboard Driving Images

Fig. 7: samples from the PASCAL VOC 2007 dataset

probabilities for each region. These bounding boxes are
weighted by the predicted probabilities (Figure 8).

S xS grid oninput Final detections

Class probability map

Fig. 8: YOLO image processing overview

3.1 Architecture

Now lets take a deeper look: YOLO detection network has
24 convolutional layers, followed by 2 fully connected lay-
ers. It alternates 1 x 1 convolutional layers to reduce the
features space from the preceding layers [6]. Initial con-
volutional layers extract features from the image and the
fully-connected layers predict the output probabilities and
coordinates of the object.

Ty)|
3
2 A \
o

Conv. Layers

D

7
%

Conv. Layer

7x7x6452

Maxpool Layer Maxpool Layer
2252 24252

Conv. Layers
1x1x256

3x3x256 Sxasta P4

1x1x256 1x1x512

Conv. Layers
1x1x512
aanions 12
3x3x1024

3x3x1024-:2

Conv. Layers
3x3x1024
3x3x1024

Conn. Layer ~ Conn. Layer

Fig. 9: YOLO network architecture

3.2 What to expect

From its authors, YOLO still lags behind state-of-the-art de-
tection systems in accuracy. While it can quickly identify
objects in images it struggles to precisely localize some ob-
jects, especially small ones. We will find out how big are
those limitations and how do they affect to us in the specific
field of autonomous driving.

3.3 Implementation

YOLO was originally implemented using Darknet [9], an
open-source neural network framework written in C and
CUDA. For our implementation of YOLO, we used Ten-
sorflow [10], an open-source software library for Machine
Intelligence developed by Google and Keras [11], a high-
level neural networks API, written in Python and capable
of running on top of either TensorFlow or Theano, as front-
end.

4 RESULTS

During the development of the project, lots of experiments
were made, but most of them did not introduce any im-
provement or even lead us to unwanted results. We selected
three experiments that gave us the best results on Udacity
and KITTI datasets to resume the experimental phase of the
project.

4.1 Metrics

The metrics used to quantitative evaluate the results can be
divided into classification and detection metrics. We need
to consider both since object detection includes object clas-
sification as part of its procedure.

4.1.1 Classification metrics

As stated in previous sections, the final classification
output is a binary result: the object is present or is ab-
sent. From the result we can compute several metrics that
can give us an idea of how good our classification system is.

Using the ground truth and predicted information, we
can create a confusion matrix (Table 3).

TABLE 3: CONFUSION MATRIX

Predicted condition

True False
True True | True positive (TP) | False negative (FN)
(0 iGin False | False positive (FP) | True negative (TN)

The most relevant metrics for classification that we are
going to take as reference are:

e Precision: gives us an idea of how many selected items
are relevant. We can compute it by dividing the num-
ber of true positive predictions between the sum of the
true positive predictions and the false positive predic-
tions.

TP

P . _ s
recitsion TP+ FP

(1

6 EE/UAB End of Degree Project in Computer Science: YOLO Object Detector for Onboard Driving Images

e Recall: how many relevant items are selected. We can
compute it by dividing the number of true positive pre-
dictions between the sum of the true positive predic-
tions and the false negative predictions.

TPLFN PTP 2

+FN

e F-Score: reference value. It can give us a general idea
of how good the system performs. We compute it us-
ing the previous precision and recall metrics as seen in
equation 3.

Recall =

Precision * Recall

Precision + Recall

4.1.2 Detection metrics

When it comes to detection metrics, we will take as
reference Intersection over Union (IoU). Intersection over
Union is the most common metric in object detectors as
it is computable independently from the type of detec-
tor being used (SVM, CNN, ..). The only things that are
required are the ground truth and predicted bounding boxes.

To compute the metric, we divide the area of inter-
section between the predicted box and the ground truth box
by their union area (Equation 4).

_ Area_of Intersection

IoU = “)

Area_of _Union

Intersection area

Union area

Fig. 10: visual representation of intersection and union ar-
eas between two bounding boxes.

We will not start considering a predicted box as good if
its intersection over union value is below 40%. In Figure
11, we can see three examples of IoU values.
loU =70%

loU = 40% loU =90%

Poor Good Excellent

Fig. 11: Examples of IoU

4.2 Detection threshold

Since the output detections of our model are the probabili-
ties of a detection being reliable, we can establish a thresh-
old to discard predictions with low probability. This way
we can adjust the level of reliability of our model and de-
cide weather to be more or less restrictive.

4.3 Non-maximum Suppression

In object detection, it is common to face situations in which
the system detects multiple overlapping bounding boxes
for the same object. This shall not be considered as a bad
indicator per se, because if the detection is right, it means
that the system is working well. But obviously this is not
the expected output of a good object detector and we need
ways to fix these situations.

Fig. 12: Result of applying a non-maximum suppression
(right)

It is usual to use non-maximum suppression algorithms
to prune them. Non-maximum suppression algorithms
compute the degree of overlapping between bounding boxes
and, if the overlapping is greater than an specified threshold,
the bounding box is removed.

4.4 Experiment 1: VOC pre-trained weights
test on KITTI dataset

In this experiment, we tested YOLO pre-trained weights on
the KITTI dataset. The weights were trained using the PAS-
CAL VOC 2007 dataset as in the original implementation.
Dataset has tags for 20 classes of very varied nature. Not
all the classes are of our interest, but it was important to see
how good they behaved in a driving environment.

TABLE 4: EXPERIMENT 1 TEST PARAMETERS

Parameter Value

Test dataset KITTI
Samples 481
Detection threshold 50%
Non-Maximum Suppression threshold 20%

Test image size in pixels (height x width) | 320 x 1060

TABLE 5: EXPERIMENT 1 TEST RESULTS

Metric Value
Intersection over Union | 40.10%?2
Throughput 2.25127 fps’

Before stepping into visual results, we can see that the
throughput of the system is very low. This may be because
of the resolution of the images (1060 x 320px) but it is still
very far from a desirable performance.

The average intersection over union is 40%, which is

2 Average IoU computed before applying detection threshold
3Throughput measures on Nvidia GTX Titan X 12GB

Albert Soto i Serrano: YOLO Object Detector for Onboard Driving Images

relatively low, but considering that we are running YOLO
with pre-trained weights on a dataset not meant specifically
for autonomous driving is not that far from what we would
initially expect.

Fig. 13: results of experiment number one. Images numer-
ated from left-right, top-bottom, 1-6.

Having a look into the visual results: overall, the
performance of the system seems pretty poor, especially
on vehicles, where it struggles the most. Bounding boxes
do not cover the object properly, and sometimes they have
random sizes, which are crucial for an autonomous driving
system as they could be an indicator of the object distance
to the car.

Sometimes, though, it performs quite well, as seen on
Figure 13, images 3 and 5. It works especially well on
persons, which, if we remember, was the class with more
labeled samples in the training set.

On very large objects as the train on Figure 13, im-
age 4, YOLO struggles to detect the whole object.

Also, it has trouble detecting far objects in group, as
seen on Figure 13, image 3, where it missed the group of
pedestrians on the background.

4.5 Experiment 2: Fine tuning the model
with the KITTI dataset

In this experiment we will be fine tuning the pre-trained
weights on the KITTI dataset. We did test training the
model from scratch and compared it to train loading the pre-
trained weights. In the second case, the performance im-
provement was clearly visible, so further experiments were
made loading the pre-trained weights.

The first thing we can see is that precision and recall
are very good. The intersection over union seems to be
similar to the previous experiment. The performance is
low, mainly because of the KITTI large images, with an
average of only 2.35 fps.

Once again, having a look into the visual results we
can see that the system still lacks from the same issues
as in the previous experiments. For example, the truck in
Figure 15, image 3, which bounding box is too small and
is un-properly labeled as a car or in Figure 15, image 1,

6 Average IoU computed before applying detection threshold
SThroughput measures on Nvidia GTX Titan X 12GB

TABLE 6: EXPERIMENT 2 TRAINING PARAMETERS

Parameter Value
Dataset KITTI
Training samples 6519
Validation samples 481
Learning rate 0.00001
Optimizer rmsprop
L2 regularization 0.000005
Pretrained weights VOC 2007
Epochs 10
Learning rate decay None
Train image size in pixels (height x width) | 320 x 448

Metric

Model training history
10

avg_recall (0.516) — loss (13.281) L22
avg_iou (0.500) ——- val_loss (13.972)
-+- val_avg_recall (0.557)
0.8 -4- val_avg_iou (0.516) r2o

]
0.6

Loss

0.4
14

riz

0.2 q

r 1o

0.0

T T T T T T T
0 5 10 15 20 25 30
Epoch

Fig. 14: experiment 2 model training history

TABLE 7: EXPERIMENT 2 TRAINING RESULTS

Metric Value

Average recall (train) 49.7%
Average Intersection over Union (train) 49.1%
Loss (train) 6.923

Average recall (validation) 53.7%
Average Intersection over Union (validation) | 51.3%
Loss (validation) 6.6666

TABLE 8: EXPERIMENT 2 TEST PARAMETERS

Parameter Value

Test dataset KITTI
Samples 481
Detection threshold 65%
Non-Maximum Suppression threshold 20%

Test image size in pixels (height x width) | 320 x 1060

TABLE 9: EXPERIMENT 2 TEST RESULTS

Metric Result
Precision 58.93%
Recall 40.92%
F-Score 48.30%
Intersection over Union | 40.96%"
Throughput 2.35578 fps’

8 EE/UAB End of Degree Project in Computer Science: YOLO Object Detector for Onboard Driving Images

Fig. 15: results of experiment number two. Images numer-
ated from left-right, top-bottom, 1-6.

where YOLO has troubles detecting very large objects like
the tram.

As in previous experiments, there are cases in which
YOLO performs well, as in Figure 15, images 4, 5 and 6,
in which detects almost all the objects present in the image
and the bounding boxes size is the proper one.

4.6 Experiment 3: Fine tuning the model
with the Udacity dataset

For this experiment, we trained the model on the Udacity
dataset loading YOLO pre-trained weights.

TABLE 10: EXPERIMENT 3 TRAINING PARAMETERS

Parameter Value
Dataset Udacity
Training samples 8679
Validation samples 501
Learning rate 0.00001
Optimizer rmsprop
L2 regularization None
Pretrained weights VOC 2007
Epochs 30
Learning rate decay None
Train image size in pixels (height x width) | 320 x 320
o Model training history
avg_recall (0.843) — loss (7.683) L14

avg_iou (0.646)
—+- val_avg_recall (0.645)
0.89 —1- val_avg_iou (0.564)

——- val_loss (10.407)

ris

riz
0.6 1

Metric

0.4 4

0.2 4

0.0 T T T T
0 5 10 15 20 25 30

Epoch

Fig. 16: Experiment 3 model training history

TABLE 11: EXPERIMENT 3 TRAINING RESULTS

Metric Value
Average recall (train) 84.30%
Average Intersection over Union (train) 64.60%
Loss (train) 7.683
Average recall (validation) 64.50%
Avg. Intersection over Union (validation) | 56.40%
Loss (validation) 10.407

TABLE 12: EXPERIMENT 3 TEST PARAMETERS

Parameter Value
Test dataset Udacity
Samples 2500
Detection threshold 65%
Non-Maximum Suppression threshold 20%

Test image size in pixels (height x width) | 320 x 320

TABLE 13: EXPERIMENT 3 TEST RESULTS

Metric Result
Precision 37.28%
Recall 20.63%
F-Score 27.10%
Intersection over Union | 51.12%°
Throughput 9.58 fps’

From the values on Table 13, we can see how the
throughput of the system has increased due to the lower
size of the images compared to the KITTI dataset ones.
It is still too low for a real-time detection system with a
frequency of only 9.58 Hz.

Intersection over union is better than in experiment
number one and it is above 50% so the performance of the
system in terms of object detection is acceptable.

Fig. 17: results of experiment number three. Images numer-
ated from left-right, top-bottom, 1-8.

Having a look into the third experiment visual results,
we can see that the system performs a lot better than in the
first experiment, especially in aspects such as the size of
the bounding boxes.

In this case, bounding boxes have proper sizes, sur-

4 Average IoU computed before applying detection threshold
"Throughput measures on Nvidia GTX Titan X 12GB

Albert Soto i Serrano: YOLO Object Detector for Onboard Driving Images

rounding the whole object in most of the cases, but
sometimes taking too much size as seen with trucks on
Figure 17, images 1 and 5. The Udacity dataset has only
labels for 3 classes, which makes it very limited for a
complete detection system, but still, results are overall
decent.

5 CONCLUSIONS

YOLO is announced as one of the most promising detection
systems using neural networks but, from the results we
have obtained, we can say it is yet still far from being a
perfect model, as it is not too far from a traditional object
detector. Even if results can be improved, the detector
behavior is still unpredictable in some situations.

Generally speaking, the model works, but not for our
needs. For autonomous driving, the wrong size of bound-
ing boxes and the miss rate is what really limits its usage.
The size of bounding boxes could be used to determine the
proximity of objects. On a real-world situation, we could
not trust a system based on YOLO for autonomous driving,
but it could help in other tasks, like warning alerts over high
probability detections or augmented reality applications on
the car’s head unit.

ACKNOWLEDGEMENTS

This project would have not been possible without the guid-
ance of our tutor, Dr. Antonio M. Lépez and the help from
David Vazquez. Special thanks to all the members of the
Computer Vision Center (CVC) of Barcelona who helped us
in one way or another and to the Engineering School mem-
bers of the Autonomous University of Barcelona (UAB).

REFERENCES

[1] Data Information Specialists Committee UK.
Questions and Answers, 2010. [Online] Available:
http://www.disc-uk.org/qanda.html [Accessed: 15-
May- 2017].

[2] TopCoder.com, The Importance of Ground
Truth in Data Science. [Online] Available:

http://crowdsourcing.topcoder.com/the-importance-
of-ground-truth-in-data-science/ [Accessed: 15- May-
2017].

Oxford Dictionary, Ground Truth. [Online] Available:

(6]

(7]

(8]

(9]

[12]

[13]

https://en.oxforddictionaries.com/definition/ground_truth

[Accessed: 15- May- 2017].

Udacity, We’re Building an
Self-Driving Car. [Online]
https://github.com/udacity/self-driving-car
cessed: 15- May- 2017].

Open Source
Available:
[Ac-

Udacity,
Available:
car/tree/master/annotations [Accessed:
2017].

Annotated Driving Dataset. [Online]
https://github.com/udacity/self-driving-
15- May-

J. Redmon and A. Farhadi, YOLO9000. Faster, Better,
Stronger, 2016.

A. Geiger, P. Lenz, R. Urtasun, Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark
Suite, 2012.

Everingham, M. and Van Gool, L. and Williams, C.
K. I. and Winn, J. and Zisserman, A., The PASCAL
Visual Object Classes Challenge 2007 (VOC2007),
2007.

Joseph Redmon, Darknet: Open Source Neu-
ral Networks in C, 2013-2016 [Online] Available:
https://pjreddie.com/darknet/ [Accessed: 08- June-
2017]

M. Abadi, A.Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.
Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems,
2015.

Chollet, Francois and others, Keras, GitHub, 2015.
[Online] Available: https://github.com/fchollet/keras
[Accessed: 10- June- 2017]

Michael A. Nielsen, "Neural Networks and Deep
Learning”, Determination Press, 2015.

Stanford, Class CS231n: Convolutional Neural
Networks for Visual Recognition [Online] Avail-
able: http://cs231n.github.io/convolutional-networks
[Accessed: 10- June- 2017]

10 EE/UAB End of Degree Project in Computer Science: YOLO Object Detector for Onboard Driving Images

APPENDIX

A.1 Experiment 1 results

A.2 Experiment 2 results

A

Albert Soto i Serrano: YOLO Object Detector for Onboard Driving Images 11

A.3 Experiment 2 additional results

il
Pedestrian

il Pedestrial
Pedestrian

A.4 Experiment 3 results

