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ABSTRACT 

Well-defined colloidal-stable citrate-stabilized Au/CeO2 hybrid nanocrystals (NCs) with coherent 
quasi-epitaxial interfaces and unprecedented control of their architectural and morphological 
characteristics have been synthesized via a novel and straightforward seeded-growth aqueous 
approach. The synthetic strategy, based on the identification of the experimental conditions 
under which the heterogeneous nucleation and growth processes of CeO2 onto pre-synthesized 
Au is controlled, allows for the fine adjustment of each individual domain in the structure, 
particularly, the size of the Au core (from 5 to 100 nm), the thickness of the CeO2 shell (from 5 to 
20 nm) and the growth mode of CeO2 onto Au NCs (from core@shell to heterodimer, clover- and 
star-like structures). This morphological control is achieved by the rational use of sodium citrate 
which plays multiple key roles, as a reducer and stabilizing agent in the preparation of the Au 
NCs, and as a complexing agent of Ce3+ for its controlled oxidation and hydrolysis during the 
subsequent CeO2 deposition. The resultant Au/CeO2 NCs remain stable and well-dispersed in 
water, allowing to study the impact of fine variations of NC structure on the underlying optical 
response. This level of morphological control, as well as the ease by which such well-defined 
nanostructures are produced, opens new opportunities for systematically investigate the 
interactions between individual components in designing more advanced complex NCs. 
Remarkably, because no organic solvents are used and no toxic waste is formed during the 
reaction, the proposed synthesis method can be defined as a sustainable, viable and low-cost 
effective. 
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INTRODUCTION 

The rational design and development of new protocols for the colloidal synthesis of 

multicomponent nanocrystals (NCs) represent an important research direction to expand the 

functionalities of single-component counterparts.1-3 In these systems, the functionality of the 

composite NCs is ultimately determined by the atomic interactions between constituent domains, 

which essentially relies on the precise and deliberate control of the NC architecture with the 

independent organization of each individual domain.4 Thus, while in heterodimer conformation 

the accessible reactive sites at the interface enhance the catalytic performance of NCs5-8, in 

core@shell geometries the interaction and electronic transfer between both domains are 

maximized, offering great applicability in plasmonics and sensing.9-11  

Among the variety of developed materials, the controllable integration of noble metal and metal 

oxides into single NCs has attracted significant interest due to their unique structural features 

and physicochemical properties.12-13 Despite advances in the field, the rational development of 

synthetic strategies enabling the precise control over the architecture of noble metal/metal oxide 

NCs and their interface still represents a difficult task, especially in water, where the 

identification of the relevant synthetic parameters governing their final morphology is a no 

solved issue. The deposition of a crystalline overlayer onto a crystalline substrate implies dealing 

with the atomic geometrical constraints of the materials involved, which is challenging for 

materials with large lattice mismatch. A paradigmatic case is Au/CeO2 NCs. These materials are 

of interest because they have shown advanced optical properties and excellent catalytic activity 

due to the combination of the outstanding oxygen storage properties of CeO2 facilitated by the 

metallic electron cloud of Au.14-15 

Traditionally, Au/CeO2 composites were easily prepared by impregnation and co-precipitation 

methods. The co-precipitation method takes advantage of the very low solubility of CeO2 at 

alkaline pH, and because of its simplicity is the method of choice for industrial production, 

although the morphological control and stability of the resulting material is extremely poor.16-18 

Alternatively, colloidal chemistry strategies have allowed a much-improved control of material 

morphology.19 Among them, one-pot methods based on the simultaneous oxidation and 

reduction of the precursors (Au3+ to Au0 each 3 Ce3+ to Ce4+), provide an easy way to force their 

precipitation into a single NC.20-23 However, since Ce3+ oxidation and hydrolysis are promoted at 

alkaline pH and the reactivity of Au3+ in these conditions is very low24, the redox process is not 

spontaneously favored, restricting the reaction conditions and thus hampering the architectural 

and morphological control of the system.  
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Alternatively, seed-mediated strategies have the advantage of decoupling Ce3+ oxidation from 

Au3+ reduction allowing to control these processes independently. However, the large lattice 

mismatch between CeO2 (0.5412 nm) and Au (0.4065 nm), and the strong preference of cerium 

precursors to homonucleate during condensation rather than to heteronucleate makes the 

controlled deposition of CeO2 at the surface of Au NCs difficult. In this regard, the complexation 

of Ce precursors with strong affinity ligands may provide a much lower hydrolysis rate which 

helps to avoid the homogeneous nucleation of CeO2.25     

Strategies exploiting the use of functional ligands to direct the deposition of CeO2 onto pre-

synthesized metal NCs are an interesting approach with increasing popularity.25-28 Following this 

idea, ligands drive the absorption of Ce3+ and Ce4+ onto the metal surface that, upon heating, 

decomposes forming the hybrid structure. Stated examples include the use of EDTA,25 CTAB,25 

glucose,26 and mercaptocarboxilic acids.27-28 Although interesting, these strategies are 

considerably complicated, often requiring multiple steps, including washing and 

functionalization of the pre-synthesized metal NCs, and post-thermal and –calcination treatments 

for the elimination of the ligands that may lead to unwanted NC transformations (sintering and 

aggregation).21, 29-30 Additionally, the use of ligands with strong affinities for metal surface blocks 

further surface accessibility. 

Herein, we report a general, straightforward and novel seeded-growth approach for the 

preparation of stable colloidal solutions of monodisperse citrate-stabilized Au/CeO2 NCs with 

coherent and quasi-epitaxial interfaces. The method allows a fine adjustment of each individual 

domain in the structure and explicitly different coupling manners between the Au and CeO2 

counterparts. Particularly, the size of the Au core, the thickness of the CeO2 shell and the growth 

mode of CeO2 onto Au NCs can be manipulated in an independent, rational, and systematic way. 

The strategy relies on the use of sodium citrate (SC) as a unique co-reagent. SC is a well-known 

non-toxic and biocompatible substance widely-used in the synthesis of noble metal NCs.31-32 In 

this work, we extend its use to oxide systems by employing its ability to act as a complexing agent 

of Ce3+/4+ ions, thereby adjusting their oxidation and hydrolysis rates in water. Interestingly, 

because this strongly depends on the reaction pH, it is by adjusting this parameter that 

architectures varying from core@shell to clover-like and heterodimers can be obtained. In 

addition, Au can be overgrown onto clover-like Au@CeO2 NCs, yielding to tip-free CeO2-coated 

Au star-like NCs. Different morphologies entail different properties. Thus, while heterodimer 

morphologies offer accessibility to both domains, core@shell structures are more attractive when 

seeking electronic confinement. 
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The overall procedure is simple, highly reproducible and avoids time-consuming processes 

because it does not require calcination or any other complicated steps. Furthermore, resultant 

Au/CeO2 NCs remain stable and well-dispersed in water, and show bright colors with well-

defined surface plasmon resonances, allowing studying the impact of fine variations of hybrid 

nanostructure on the underlying optical response. 

RESULTS and DISCUSSION  

In order to control the nucleation and growth of CeO2 exclusively onto previously synthesized 

Au NCs, our strategy is to provide a lower reactivity of Ce3+ precursor in water by its 

complexation with sodium citrate (SC).25, 33 Thus, for the synthesis of core@shell Au@CeO2 hybrid 

NCs, citrate-stabilized Au seeds of ~30 nm are first prepared as previously described31 and used 

without further purification. The formation of the CeO2 shell is achieved by injecting an aqueous 

solution of Ce(NO3)3  into a boiling solution of SC containing a specific amount of the Au seeds. 

The citrate rapidly complex and stabilize the Ce3+ ions that, upon boiling at alkaline conditions, 

slowly oxidize -by dissolved O2-, hydrolyze and deposit at the metal surface, leading to Au@CeO2 

NCs. This process results in a progressive change in the color of the reaction mixture from red-

wine (Au seeds) to bright/intense purple (Au@CeO2 NCs), and takes about 4 hours to complete. 

Representative images of transmission electron microscopy (TEM) and high-angle annular dark 

field scanning TEM (HAADF-STEM) of as-obtained colloids (Fig. 1A-D) show the systematic 

formation of highly monodisperse Au@CeO2 NCs consisting of an electron-dense core of Au (~30 

nm) surrounded by a relatively uniform crystalline CeO2 shell (~7 nm). Interestingly, no isolated 

CeO2 were observed in the final product, indicating the controlled growth of CeO2 onto the Au 

NC surface. According to HRTEM images (Fig. 1E, S1-2), the shell is composed of tiny CeO2 NCs 

with sizes between 2-3 nm, assembled together around the Au core with coherent quasi-epitaxial 

interfaces. Details of the squared region and its corresponding power spectrum reveal that the 

individual CeO2 NCs are crystalline with lattice space corresponding well with the characteristic 

(111), (002) and (220) planes of fluorite phase of CeO2. These results are further supported by the 

XRD analyses (Fig. S3). Finally, elemental chemical composition maps obtained by electron 

energy loss spectroscopy (EELS) (Fig. 1F) of selected Au@CeO2 NCs (Fig. 1D) corroborate the 

encapsulation of the Au core by the CeO2 NCs.              
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Figure 1. Synthesis of Au@CeO2 Hybrid Nanocrystals. Representative TEM images (A-C) and 
HAADF-STEM images (D) of as-obtained Au@CeO2 NCs revealing the formation of highly 
monodispersed hybrid nanostructures consisting on an electron-dense core of Au (~30 nm) 
surrounded by a relatively uniform crystalline CeO2 shell (~7 nm). HRTEM images (E) reveal the 
details of the CeO2 shell, which is composed of small NCs with sizes of 2-3 nm assembled together 
around the Au core. Detail of the red squared CeO2 region and its corresponding electron 
diffraction pattern show the f.c.c structure of the CeO2 phase. Electron energy loss spectroscopy 
(EELS) elemental maps (F) obtained from selected hybrid NCs (D) confirms the core@shell 
structure. Additional HRTEM characterization of these NCs is shown in Fig. S1. 

 

One of the main advantages of adopting a seeded-growth approach is the possibility to precisely 

and independently tailor the Au core and the CeO2 shell dimensions.31, 34 Thus, well-defined 

core@shell Au@CeO2 NCs with different core sizes were obtained by using Au NC seeds with 

diameters of 6.5, 10, 15, 30, 40 and 100 nm (Fig. 2, Table 1). The impact of the CeO2 coating in the 

localized surface plasmon resonance (LSPR) of these Au@CeO2 NCs was studied by UV-Vis 

spectroscopy. The presence of the CeO2 coating results in both an increase in the LSPR peak 

intensity of the Au core and a systematic red-shift of its position. The great shift, as large as 86 

nm in the case of 100 nm Au cores with a CeO2 shell of 18 nm, along with the increased absorbance 

of the samples, are in agreement with the high refractive index of the CeO2 coating layer.20, 25 

Remarkably, the full width at half-maximum (FWMH) of the plasmon band is well-maintained, 

proving not only that the morphology of the initial Au seeds is preserved after the CeO2 coating 

but also that the samples remain well-dispersed in solution. These changes in the optical 

properties upon the formation of the CeO2 shell also result in color changes of the samples: from 

brown-red to pink-red (small Au cores, Fig. 2H), from red to purple (medium Au cores, Fig. 2J) 

and finally from red to blue (large Au cores, Fig. 2L).  
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Figure 2. Size control of Au core in the synthesis of Au@CeO2 Hybrid Nanocrystals. 
Representative TEM, SEM and HAADF-STEM images of well-defined core@shell Au@CeO2 NCs 
with different core diameters, and corresponding UV–vis spectra before and after formation of 
the CeO2 shell onto Au seeds of 6.5 nm (A, B), 10 nm (C, D), 15 nm (E, F), 32 nm (G, H), 40 nm (I, 
J) and 98 nm (K, L). In all cases, the LSPR peak of the initial Au seeds (black line) increases in 
intensity and red-shifts after the CeO2 coating (blue line). Samples are detailed in Table 1. 
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Table 1. Tested conditions for the preparation of Au@CeO2 NCs with controlled Au core size. 

SAMPLE 
SYNTHESIS CONDITIONS TEM SIZE LSPR POSITION 

Au seeds 
diam. (nm) 

[Au seeds] 
(NP/mL)* 

Ce(NO3)3 

(mL)** 
Au core 

diam. (nm) 
CeO2 shell 

(nm) 
Au  

λ (nm) 
Au@CeO2 

λ (nm) 
Δλ 

(nm) 
FIG.2A 6.5 ± 0.6 ~1.1 1013 1.5 6.8 ± 1.1 4.0 ± 0.7 513 535 22 
FIG.2C 9.9 ± 0.8 ~2.5 1012 1.5 9.7 ± 1.5 6.6 ± 1.2 517 547 30 
FIG.2E 14.6 ± 1.3 ~7.8 1011 1 14.8 ± 1.8 7.2 ± 1.2 519 549 30 
FIG.2G 32.0 ± 2.6 ~1.3 1011 0.6 31.9 ± 2.6 6.6 ± 0.9 525 550 25 
FIG.2I 40.1 ± 3.8 ~6.8 1010 0.6 40.3 ± 3.9 8.3 ± 0.9 530 560 26 
FIG.2K 98.3 ± 16.0 ~5.9 109 0.75 98.5 ± 15.6 18.4 ± 4.3 571 616 45 

*100 mL of a citrate solution (5 mM) with adjusted pH 9-10. **Specific volume of a 25 mM solution. 

The method also allows the fine adjustment of the amount of CeO2 deposited onto the Au cores 

by simply adjusting the ratio between Au seeds to Ce3+ precursor (Fig. 3, Table 2). Thus, the 

addition of low amounts of Ce3+, or alternatively the increased number of seed NCs present in 

solution, leads to the formation of non-uniform clover-like structures with uncompleted shell 

morphologies (Fig. 3A, D) that become complete core@shell structures when the amount of Ce3+ 

was increased (Fig. 3B-C, D-F). As a result, clover-like Au@CeO2 NCs, where parts of the Au 

surface are still exposed, experience smaller red-shifts than NCs with a uniform and thick CeO2 

coating around the Au cores (Fig. 3G, H).35 A further increase of injected Ce3+, required for the 

formation of thicker CeO2 shells (>20 nm) in a single step, results in the nucleation of separate 

CeO2 NCs. In this case, the sequential and slow injections of Ce3+ precursor prevents the system 

from self-nucleation,31 thereby leading to the formation of thicker CeO2 shells. Note that the 

possibility to adjust the thickness and dimensionality of the CeO2 shell is important to design the 

final applicability of the NC. Thus, while the thinner and low compact shell in the clover-like 

structures maximize the exposed interface between both materials and provides a shorter 

diffusion pathway for reactants to reach the Au core, the thicker and uniform shell endows the 

NC with long-term stability against chemical transformations (dissolution and aggregation).36  
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Figure 3. Control of CeO2 shell thickness in the synthesis of Au@CeO2 Hybrid NCs. 
Representative TEM and HAADF-STEM images of core@shell Au@CeO2 NCs with increasing 
CeO2 shell thickness (A-F): Au cores of 15 nm with increasing CeO2 shell from 5.3 nm (A), 7.2 nm 
(B) and 10.5 nm (C), and Au cores of 32 nm with increasing CeO2 shell from 6.6 (D), 8.5 (E) and 
10.3 nm (F). UV-vis spectra of the corresponding Au colloids before and after CeO2 shell 
formation (G, H) reveals a strong dependence between the LSPR peak (intensity and position) 
and the thickness of the CeO2 shell. Synthesis conditions are detailed in Table 2. 
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Table 2. Tested conditions for the preparation of Au@CeO2 NCs with controlled CeO2 shell 
thickness. 

SAMPLE 
SYNTHESIS CONDITIONS TEM SIZE LSPR POSITION 

Au seeds 
diam. (nm) 

[Au seeds] 
(NP/mL)* 

Ce(NO3)3 

(mL)** 
Au core 

diam. (nm) 
CeO2 shell 

(nm) 
Au  

λ (nm) 
Au@CeO2 

λ (nm) 
Δλ 

(nm) 
FIG.2A 14.6 ± 1.3 ~7.8 1011 0.75 14.8 ± 1.6 5.3 ± 1.1 519 542 23 
FIG.2C 14.6 ± 1.3 ~7.8 1011 1 14.8 ± 1.8 7.2 ± 1.2 519 549 30 
FIG.2E 14.6 ± 1.3 ~7.8 1011 2.5 15.7 ± 1.8 10.5 ± 1.8 519 556 37 
FIG.2G 32.0 ± 2.6 ~1.3 1011 0.6 31.9 ± 2.6 6.6 ± 0.9 525 550 25 
FIG.2I 32.0 ± 2.6 ~1.3 1011 1 32.1 ± 2.6 8.5 ± 0.9 525 557 32 
FIG.2K 32.0 ± 2.6 ~1.3 1011 1.5 32.8 ± 2.9 10.3 ± 1.5 525 560 35 

*100 mL of a citrate solution (5 mM) with adjusted pH 9-10. **Specific volume of a 25 mM solution. 

The controlled deposition of CeO2 domains onto the surface of Au seeds is promoted by the use 

of SC, which plays multiple roles (Scheme 1). Note that citrate already acts as a reducer and 

stabilizer in the synthesis of the Au seeds, providing electrostatic repulsion to the resultant Au 

NCs (role#1 and #2).31 Next, in the formation process of the CeO2 shell, citrate efficiently complex 

Ce3+/4+ leading to a precursor with a much lower oxidation and hydrolysis rates (role#3) (see SI).33 

In a control experiment (Fig. S5), the lack of SC led to the formation of isolated and strongly 

aggregated CeO2 NCs, indicating how the greater stability of the citrate-complexed Ce3+/4+ 

precursor favours the formation of Au@CeO2 NCs. Also, the employed SC solution maintains the 

reaction mixture at mild alkaline conditions, thereby promoting the oxidation of Ce3+ to Ce4+ by 

the dissolved O2 but not its precipitation in the form of Ce(OH)3, a step often required in the 

formation of the CeO2 shell (role#4).29 Note that in the absence of oxygen (in deoxygenated water), 

neither oxidation of Ce3+ nor deposition of a Ce(OH)3 shell were observed as control experiments 

show (Fig. S6). Finally, the well-known affinity of carboxylic groups of citrate for metal and metal 

oxide surfaces ensures the colloidal stability of the resultant Au@CeO2 NCs25, 27-28 (role#5), as zeta 

potential measurements reveal (Fig. S7). Remarkably, this interaction with citrate does not 

prevent further functionalization of the NCs with the molecules of interest (Fig. S8).  
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Scheme 1.  Roles of SC in the Synthesis of Au@CeO2 Hybrid NCs. Citrate acts as a reducer and 
stabilizer in the synthesis of Au seeds. Then, during the formation process of CeO2, it effectively 
complex Ce3+ and Ce4+ ions, preventing their spontaneous hydrolysis and precipitation in water. 
The buffer effect of sodium citrate also prevents the solution pH from dropping towards acidic 
values during the synthesis and favours the oxidation of Ce3+ to Ce4+. Finally, citrate adsorbs on 
the CeO2 surface through their carboxylic groups and keeps the Au@CeO2 NCs well-dispersed in 
solution. 

 

Because the complexation of Ce3+ and Ce4+ with citrate forming intermediate species is expected 

to be strongly dependent on the pH, the effect of this parameter on the reaction kinetics and final 

NC structure was evaluated. By performing the reaction at acidic pH 5.5, partially substituting 

SC by citric acid, no deposition of CeO2 onto the Au seeds was observed (Fig. S9A). Under these 

conditions, Ce3+ did not oxidize nor hydrolyze, even in the presence of a metal surface. When the 

pH was set at nearly neutral values (pH 7-8), the reaction proceeded very slow (5h) (Fig. S10A) 

and resultant NCs were heterodimers composed by two well-defined compositional domains 

(Fig. 4A-B, S11). As pH was increased (pH 9-10), the reaction progressed faster (1-2h) (Fig. S10B) 

and the obtained Au@CeO2 NCs were core@shell structures (Fig. 4C). Finally, the further increase 

of the pH towards highly alkaline values (pH 12) resulted in the fast and spontaneous nucleation 

of isolated CeO2 NCs away from the surface of the Au seeds (Fig. S9B).  

Obtained results show how the use of citrate as a complexing agent of Ce3+/4+ facilitated control 

over the oxidation and hydrolysis rates of cerium precursors, reducing their reactivity in water 

and allowing for a better control of the reaction. In these conditions, the different growth modes 

of CeO2 can be adjusted by simply varying the reaction pH. This process determines the tendency 

of the cerium precursor to (i) homogeneously nucleate (high pH), (ii) hetero-nucleate at the metal 

surface (mild alkaline), (iii) growth (neutral) or (iv) remain stable in solution (acidic). As stated 
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previously37-38, hydroxide ions in solution are highly involved in the formation process of CeO2 

NCs.  By decreasing the concentration of hydroxide ions, the oxidation and hydrolysis rates of 

the complexed cerium ions are further decreased39-40, which is translated into even slower reaction 

rates. Under these conditions, the homogeneous nucleation of CeO2 is prevented while its 

heterogeneous nucleation onto the Au seeds is promoted. Then, once a small domain of CeO2 

NCs is initially formed on the Au seeds, the subsequent CeO2 NCs prefers to grow on top of this 

domain, rather than on the Au surface.41 This is consistent with the fact that nucleation has higher 

energy barriers than growth processes, in such a way that nucleation and growth can be 

separated.42 At intermediate conditions of pH, multiple nucleation points coexist at the Au NC 

surface initially forming clover-like (discontinuous) shells that ultimately lead to the core@shell 

when they grow further.41 The possibility to adjust the morphology of the hybrid structure and 

obtain NCs with explicitly different coupling manners between the Au NCs and CeO2 allows 

adjusting the properties of the NC. Thus, well-defined Au/CeO2 heterodimers, where parts of the 

Au surface are exposed, experience smaller red-shifts than NCs with a uniform CeO2 coating 

around the Au cores (Fig. S10).  

 

 

Figure 4. Variation of the architecture of Au/CeO2 Hybrid NCs. Overall formation mechanism 
(A) and representative SEM, TEM, and HAADF-STEM images (B, C) of Au/CeO2 hybrid NCs 
obtained by adjusting the pH of the reaction solution. At acidic pH, Ce3+ is not oxidized and no 
CeO2 deposits onto the Au NCs. At neutral and alkaline pH, Ce4+-citrate is formed. Its reactivity 
depends on the pH of the solution. At neutral pH, Ce4+-citrate complexes slowly hydrolyze and 
condensate onto Au NCs leading to heterostructured morphologies (B). At alkaline pH, the 
hydrolysis and precipitation are faster and core@shell structures are promoted (C). At highly 
alkaline pH, the complexing effect of citrate strongly decreases because of the high concentration 
of competing hydroxides in solution. As a result, the homogeneous nucleation of isolated CeO2 
NCs is not completely prevented.  
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The versatility of the method allows the precise and deliberate manipulation of the NC 

architecture by the simultaneous injection of Au3+ or Ce3+ precursors onto preformed clover-like 

Au@CeO2 NCs. As expected, under appropriate conditions, Ce3+ oxidizes and deposits onto the 

existent CeO2 domains. This process confines the overgrowth of Au onto the accessible ceria-free 

surface of the hybrid NCs, thereby forcing the formation of highly anisotropic star-like NCs (Fig. 

5). This change in morphology result into the emergence of a characteristic LSPR band in the 

region between 600-800 nm (Fig. 5E).44 This intense broadband at the near-infrared region 

together with the larger interface of anisotropic structures make these NCs promise candidates 

for NIR-light-driven applications.  

 
Figure 5. Branched Au/CeO2 NCs. Precise and deliberate manipulation of the NC architecture by 
the simultaneous co-injection of Au3+ and Ce3+ precursors onto preformed Au/CeO2 NCs (A). 
Representative TEM and HAADF_STEM images of clover-like Au@CeO2 NCs obtained by the 
injection of Ce3+ precursor onto 15 nm Au NC seeds (B), and after 1st (C) and 2nd (D) co-injection. 
The large lattice mismatch between CeO2 and Au favors the epitaxial reduction of Au3+ onto the 
accessible Au domains of the structure and the formation of well-defined branched Au/CeO2 
NCs. UV-vis spectra of as-obtained samples (E). The broadband in the region between 600-800 
nm is assigned to the collective LSPR of the anisotropic Au domain. Additional morphological 
characterization can be found in Fig. S12. 

 

The presented approach can be extended to other systems. In preliminary experiments, similar 

citrate-stabilized Ag/CeO2 NCs were obtained by replacing the Au seeds by Ag seeds (Fig. 6A). 

Similarly, the atom-by-atom CeO2 deposition occurs and can be controlled also in the presence of 

surfactants with strong or mild affinity for metal surfaces. Thus, 11-mercaptoundecanoic acid 

(MUA)- and polyvinylpyrrolidone (PVP)-coated Au seeds were also successfully employed to 

grow Au@CeO2 NCs (Fig. 6B-C). This point suggests that the method may be adapted to the CeO2 
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coating of anisotropic NC seeds, like cubes and rods, obtained by selective attachment of 

surfactants to certain crystal facets, or the template-induced growth processes.  

 

 

Figure 6. Representative TEM, SEM and HAADF-STEM images and corresponding UV-vis 
spectra (A) of core@shell and heterodimer Ag/CeO2 NCs obtained using 30 nm Ag seeds. 
Representative TEM images of Au@CeO2 NCs obtained using 11-mercaptoundecanoic- (B) and 
10 KDa PVP- (C) stabilized 30 nm Au seeds. Synthesis conditions are detailed in the supporting 
information.  

 

With the aim of gaining further insight into the impact of the CeO2 coating on the optical 

properties of Au NCs, extinction efficiencies of Au spheres of varying diameters and CeO2 coating 

thickness have been calculated following the standard Mie theory45. Figure 7 plots individual 

absorbance spectra, containing both absorption and scattering contributions, calculated for Au 

spheres of different sizes (5, 10, 15, 30, 40 and 100 nm) coated with a homogeneous CeO2 shell of 

different thicknesses (from 0.5 to 20 nm). Results are further summarized by plotting the position 

of the LSPR band of Au NCs for the different CeO2 thicknesses (Fig. 7G). As can be seen, when 

the Au cores are coated with the CeO2 dielectric shell of increasing thickness, the LSPR position 

shifts gradually towards longer wavelengths and the absorbance increases, saturating at a 

thickness when the electric field of the plasmon is fully confined inside the dielectric CeO2 layer. 

Remarkably, both features (redshift and increase in peak intensity) depend on the size of the Au 

NC core and can be explained in terms of the size-dependent near-field profiles of the Au NCs.46 

Despite the good correlation between experimental results and Mie calculations, the calculated 
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LSPR red-shits are systematically larger than those experimentally obtained. These differences 

are mainly attributed to the “compactness” of the CeO2 shell. We certainly assume in our 

calculations that Au NCs are surrounded by a homogeneous CeO2 coating layer while 

experimental results suggest that the CeO2 shell is rather granular (porous) and of low density. 

This assumption determines the effective dielectric constant of the system, which ultimately 

affects the extent of the LSPR red-shifts (Fig. S14). Although the limitations of the Mie theory, 

especially for small NC sizes, the good correlation between experimental results and Mie 

calculations confirms the working hypothesis, that is, the possibility of precisely controlling the 

strongly enhance local electromagnetic fields near the metal-dielectric interface by adjusting Au 

core size, and CeO2 shell thicknesses.  

 

Figure 7. Influence of CeO2 shell thickness on the optical properties of Au NCs of different sizes. 
Calculated absorbance spectra of Au spheres before and after their coating with a CeO2 shell of 
different thickness (as-labelled). 5 nm (A), 10 nm (B), 15 nm (C), 30 nm (D), 40 nm (E), 100 nm (F). 
Dependence of the surface plasmon resonance peaks positions for Au NCs of varying sizes (G). 
Calculations were performed considering colloidal solutions of NCs (3x1012 NCs/mL) coated by 
a CeO2 shell of refractive index 2.2 (20 °C) and dispersed in water (RI = 1.333, 20 °C).47  For citrate-
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stabilized Au NCs, a shell thickness of 0.7 nm and RI=1.3735 was used (SI, section 15). Results 
reveal the higher sensitivity of the smaller NCs in comparison with the larger sizes for a 
determined CeO2 shell thickness. Similar calculations were performed to study the influence of 
the shell coating on the LSPR peak of Au and Ag NCs of different sizes.31, 46 

CONCLUSIONS 

To summarize, we have developed a novel and simple seeded-growth aqueous approach for the 
production of well-defined colloidal-stable citrate-stabilized Au/CeO2 hybrid nanocrystals (NCs) 
with unprecedented control of their architectural and morphological characteristics. The 
synthetic strategy, based on the identification of the experimental conditions under which the 
heterogeneous nucleation and growth processes of CeO2 onto pre-synthetized Au NCs is 
controlled, relies on the use of SC which plays multiple key roles as a reducer, pH buffer, 
complexing, directing and stabilizing agent. The robustness and versatility of the synthetic 
reaction allows for the fine adjustment of each individual domain in the structure, particularly, 
the size of the Au core (from 5 nm to 100 nm), the thickness of the CeO2 shell (from 5 nm to 20 
nm) and the growth mode of CeO2 onto Au (core@shell, clover-like, star-like or heterodimer). 
Also, the approach allows for studying the impact of fine variations of hybrid NCs on the 
underlying optical response.  

Additionally, the level of morphological control obtained, as well as the ease by which such well-
defined nanostructures are produced, opens new opportunities for understanding the nanoscale 
mechanisms and systematically investigate the interactions between individual components 
allowing designing new catalysts and optical devices. Remarkably, since no organic solvents are 
used and no toxic waste is formed during the reaction, the proposed synthesis method can be 
defined as a sustainable, viable and low-cost strategy to fabricate noble metal/metal oxide NCs. 
We believe that the results and understanding acquired in this study will contribute to the 
development of a new generation of highly multifunctional complex hybrid NCs for a wide 
variety of applications. 

SUPPORTING INFORMATION 

Details of experimental protocols and conditions studied together with extended NCs 
characterization are available free of charge via the internet at http://pubs.acs.org. 
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