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Projective Geometry with Clifford Algebra*

DAVID HESTENES and RENATUS ZIEGLER

Abstract. Projective geometry is formulated in the language of geometric algebra, a unified
mathematical language based on Clifford algebra. This closes the gap between algebraic
and synthetic approaches to projective geometry and facilitates connections with the rest
of mathematics.

1. Introduction

Despite its richness and influence in the nineteenth century, projective geometry has not
been fully integrated into modern mathematics. The reason for this unfortunate state
of affairs is to be found in certain incompatibilities of method. The ordinary synthetic
and coordinate-based methods of projective geometry do not meld well with the popular
mathematical formalisms of today. However, the foundation for a more efficient method
had already been laid down in the nineteenth century by Hermann Grassmann (1809-1877),
though, to this day, that fact has been appreciated by only a few mathematicians. This
point has been argued forcefully by Gian-Carlo Rota and his coworkers [1,2,16]. They claim
that Grassmann’s progressive and regressive products are cornerstones of an ideal calculus
for stating and proving theorems in invariant theory as well as projective geometry. From
that perspective they launch a telling critique of contemporary mathematical formalism.
Their main point is that the formalism should be modified to accommodate Grassmann’s
regressive product, and they offer specific proposals for doing so. We think that is a step
in the right direction, but it does not go far enough. In this article, we aim to show that
there is a deeper modification with even greater advantages.

We see the problem of integrating projective geometry with the rest of mathematics as
part of a broad program to optimize the design of mathematical systems [8,10]. Accordingly,
we seek an efficient formulation of projective geometry within a coherent mathematical
system which provides equally efficient formulations for the full range of geometric concepts.
A geometric calculus with these characteristics has been under development for some time.
Detailed applications of geometric calculus have been worked out for a large portion of
mathematics [12] and nearly the whole of physics [7-9]. It seems safe to claim that no
single alternative system has such a broad range of applications. Thus, by expressing the
ideas and results of projective geometry in the language of geometric calculus, we can make
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them readily available for applications to many other fields. We hope this will overcome the
serious ‘language barrier’ which has retarded the diffusion of projective geometry in recent
times.

Clifford algebra is the mathematical backbone of geometric calculus. The mistaken belief
that Clifford algebra applies only to metric spaces has severely retarded recognition of its
general utility. We hope to dispel that misconception once and for all by demonstrating the
utility of Clifford algebra for expressing the nonmetrical concepts of projective geometry.
This strengthens the claim, already well grounded, that Clifford algebra should be regarded
as a universal geometric algebra. To emphasize its geometric significance, we will henceforth
refer to Clifford algebra by the descriptive name geometric algebra, as Clifford himself
originally suggested.

In geometric algebra there is a single basic kind of multiplication called the geometric

product. In terms of this single product, a great variety (if not all) of the important
algebraic products in mathematics can be simply defined (see [8,12]). This provides a
powerful approach to a unified theory of algebraic (and geometric) structures, for it reduces
similarities in different algebraic systems to a common body of relations, definitions, and
theorems. We think the decision to follow that approach is a fundamental issue in the
design of mathematical systems.

In this article, we define Grassmann’s progressive and regressive products in terms of
the geometric product and derive their properties therefrom. These properties include
a system of identities which have been derived and discussed by many authors dating
back to Grassmann. However, the approach from geometric algebra is sufficiently different
to justify reworking the subject once more. The central geometrical idea is that, with
suitable geometric interpretations, the identities provide straightforward proofs of theorems
in projective geometry. This idea also originated with Grassmann, though it has been much
elaborated since.

Since Grassmann’s progressive and regressive products can be (and have been) directly
defined and applied to projective geometry, the suggestion that they be regarded as sub-
sidiary to the geometric product requires a thorough justification. The most important
reason has already been mentioned and will be elaborated on in subsequent discussions,
namely, the geometric product provides connections to other algebraic and geometric ideas.
Specific connections to affine and metric geometry will be discussed in a subsequent article
[11]. Within the domain of applications to projective geometry alone, however, we believe
that the geometric product clarifies the role of duality and enhances the fluidity of expres-
sions. Moreover, some important relations in projective geometry are not readily expressed
in terms of progressive and regressive products without an abuse of notation. A prime
example is the cross-ratio discussed in [11].

Geometric algebra will lead us to conclude that Grassmann’s inner product is more
fundamental than his closely related regressive product, so our use of the latter will be
limited. However, we need not make hard choices between them, since translation from
one product to the other is so easy. The same can be said about their relation to the
geometric product. Indeed, the progressive and inner products together are essentially
equivalent to the geometric product, as should be clear from the way we obtain them by
‘taking the geometric product apart.’ The crucial converse step of joining them into a
single product was finally taken by Grassmann in one of his last published articles [6] (see
[8] for comments). Ironically, that seminal article was dismissed as without interest by his
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biographer Engel [3] and ignored by everyone else since.

The main purpose of this article is to set the stage for a complete treatment of projective
geometry with the language and techniques of geometric algebra. This requires first that
we establish the necessary definitions, notations and geometric interpretation. Sections 2
and 3 are devoted to this task. Next, we show how the algebra is used to formulate and
prove a representative set of important theorems in projective geometry. As our objective
is to rebottle the old wine of projective geometry, we do not have new results to report.
The originality of this article lies solely in the method. Nevertheless, we know that much
of the old material we discuss will be unfamiliar to many readers, so we hope also to help
them reclaim the past. Finally, in the appendix, we present a guide for translating the rich
store of ideas and theorems in the literature into the language of geometric algebra. The
serious student will want to delve into the literature to see what treasures have yet to be
reclaimed.

2. Geometric Algebra

In this section we discuss features of geometric algebra needed for our treatment of projective
geometry. We follow the extensive treatment of geometric algebra in [12], so we can omit
many details covered there. In particular, we omit proofs of the basic identities except where
we wish to emphasize important methodological points. The fact that our formulation of
geometric algebra is completely coordinate-free is especially important, because it makes
possible a completely coordinate-free treatment of projective geometry.

2.1. BASIC DEFTNITIONS

Let Vn, be an n-dimensional vector space over the reals. Throughout this article, lowercase
letters a, b, c, . . . denote vectors and lowercase Greek letters denote (real) scalars. The
geometric algebra Gn = G(Vn) is generated from Vn by defining the geometric product ab
with the following properties holding for all vectors

a(bc) = (ab)c, (2.1a)

a(b + c) = ab + ac, (2.1b)

(b + c)a = ba + ca, (2.1c)

aλ = λa (2.1d)

a2 = ±| a |2, (2.1e)

where | a | is a positive scalar associated with a. Axiom (2.1e) is called the contraction
rule. The vector a is said to have positive (or negative) signature when the sign in (2.1e) is
specified as positive (or negative), and a is said to be a null vector if | a | = 0 when a 6= 0.

To avoid trivialization, the above axioms must be supplemented by an axiom ensuring
that the product ab of nonzero vectors vanishes only if the vectors are collinear and null.
With the additional assumption that Gn is not generated by any proper subspace of Gn, it
can be proved that with the geometric product Gn generates exactly 2n linearly independent
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elements. Thus, Gn = G(Vn) is a 2n-dimensional algebra. Actually, there are different types
of geometric algebra distinguished by specifications on the contraction rule. If all vectors
are assumed to be null, then Gn is exactly the Grassmann algebra of Gn. However, as
shown below, the Grassmann algebra is included in every type of Gn. Now, let p and q
be, respectively, the dimension of maximal subspaces of vectors with positive and negative
signature. The different types of geometric algebra distinguished by the different signatures
can be distinguished by writing Gn = G(p, q). If p+q = n, the algebra Gn and its contraction
rule are said to be nondegenerate with signature (p, q). We deal only with nondegenerate
algebras, because all other cases are included therein.

A geometric algebra is said to be Euclidean if its signature is (n, 0) or anti-Euclidean if
its signature is (0, n). For the purpose of projective geometry it is convenient to adopt the
Euclidean signature, though all algebraic relations that arise are independent of signature
with the exception of a few which degenerate on null vectors. In this paper we will ignore
signature except for occasional remarks in places where it can make a difference. In the
companion paper [11], signature becomes important when projective geometry is related to
metrical geometry.

From the geometric product ab, two new kinds of product can be defined by decomposing
it into symmetric and antisymmetric parts. Thus,

ab = a · b + a ∧ b , (2.2)

where the inner product a · b is defined by

a · b = 1
2 (ab + ba) (2.3a)

and the outer product a ∧ b is defined by

a ∧ b = 1
2 (ab − ba) (2.3b)

In consequence of the contraction axiom, the inner product is scalar-valued. The outer
product of any number of vectors a1, a2, . . . , ak can be defined as the completely antisym-
metric part of their geometric product and denoted by

〈 a1a2 · · · ak 〉k = a1 ∧ a2 ∧ · · · ∧ ak . (2.4)

This can be identified with Grassmann’s progressive product, though we prefer the alter-
native term ‘outer product.’

Any element of Gn which can be generated by the outer product of k vectors, as expressed
in (2.4), is called a k-blade or a blade of step (or grade) k. Any linear combination of k-
blades is called a k-vector. The k-fold outer product (2.4) vanishes if and only if the
k-vectors are linearly independent. Therefore, Gn contains nonzero blades of maximum
step n. These n-blades are called pseudoscalars of Vn or of Gn. A generic element of Gn is
called a multivector. Every multivector M in Gn can be written in the expanded form

M =
n∑

k=0

〈M 〉k , (2.5)
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where 〈M 〉k denotes the k-vector part of M . As in (2.5), it is sometimes convenient to
refer to scalars as 0-vectors; but we employ the term blade only for step k ≥ 1. Since the
scalar part is of special interest so often, we often write 〈M 〉 for 〈M 〉0.

The main antiautomorphism of Gn is called reversion, and M† denotes the reverse of M .
From the antisymmetry of the outer product (2.4), it follows that

〈M† 〉k = 〈M 〉
†
k = (−1)k(k−1)/2〈M 〉k . (2.6)

Every blade A in Gn has the property that its square is a scalar, that is,

A2 = 〈A2 〉 . (2.7)

We say that a nonzero blade A is null if A2 = 0.
The algebra Gn is nondegenerate if and only if the square I2 of any nonvanishing pseu-

doscalar I is a nonvanishing scalar. Throughout this article, the symbol I denotes unit
pseudoscalar. The sign of I2 depends on the signature of Gn = G(p, q) according to

II† = (−1)q| I |2 , (2.8)

where | I2 | = | I |2 defines the ‘magnitude of I.’ The choice | I | = 1 fixes a scale for the
pseudoscalars, but we need not make that choice because we will be concerned only with
‘relative magnitudes.’ The magnitude of a pseudoscalar P relative to I will be called the
bracket of P and defined by

[P ] = PI−1 , (2.9)

so [ I ] = II−1 = 1. It is important to note that the sign of the bracket is independent of
signature. For the bracket determined by n vectors, we write

[ a1a2 · · · an ] ≡ [ a1 ∧ a2 · · · ∧ an ] = (a1 ∧ a2 · · · ∧ an) · I−1 . (2.10)

This can be taken as the definition of a determinant, and therefrom the whole theory of
determinants can be developed efficiently with geometric algebra. Details are given in [8].

2.2. IDENTITIES

We will be concerned primarily with the algebraic relations among blades, since blades
have a direct geometric interpretation in projective geometry. To express and derive these
relations, we need a few basic properties of inner and outer products. For blades A and B
of step r and s, respectively,

A ∧ B = 〈AB 〉r+s = (−1)rsB ∧ A ; (2.11)

A · B = 〈AB 〉| r−s | = (−1)r(s−r)B · A for s ≥ r . (2.12)

These can be taken as definitions of inner and outer products in terms of the geometric
product AB, generalizing (2.3a,b).
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The geometric product of a vector with a blade B of step s can now be decomposed into
a ‘step down’ part

a · B = 〈 aB 〉s−1 = (−1)s−1B · a (2.13)

and a ‘step up’ part
a ∧ B = 〈 aB 〉s+1 = (−1)sB ∧ a . (2.14)

Thus,
aB = a · B + a ∧ B . (2.15)

This generalizes (2.2).
For A = a1 ∧ a2 ∧ · · · ∧ ar of step r and B = b1 ∧ b2 ∧ · · · ∧ bs of step s ≤ r, the inner

product can be developed in the expansion

B · (a1 ∧ a2 ∧ · · · ∧ ar) = B · (a1 ∧ · · · ∧ as) as+1 ∧ · · · ∧ ar +

+ (−1)s−1B · (a2 ∧ · · · ∧ as+1) a1 ∧ as+2 ∧ · · · ∧ ar + · · ·

=
∑

ε(j1j2 · · · jr) B · (aj1 ∧ aj2 ∧ · · · ∧ ajs
) ajs+1

∧ · · · ∧ ajr
(2.16)

where the sum is over all j’s with j1 < j2 < · · · < jr and the permutation symbol
ε(j1j2 · · · jr) has the value 1 (or −1) if (j1j2 · · · jn) is an even (or odd) permutation of
(1, 2, . . . , n). This expansion can be regarded as a generalization of the Laplace expansion
for determinants. The number of nonvanishing terms in this expansion of B · A depends on
the particular set of vectors into which A has been factored. We can always find a factoring
A = a1 ∧ a2 ∧ · · · ∧ ar such that

B = α(b1 + a1) ∧ (b2 + a2) ∧ · · · ∧ (bs + as) ,

where, for i = 1, 2, . . . , s, ai · aj = 0 for j = s + 1, s + 2, . . . , r and bi · aj for j = 1, 2, . . . , r.
In that case (2.16) reduces to a single term

B · (a1 ∧ a2 ∧ · · · ∧ ar) = α(a1 ∧ · · · ∧ as)
2 as+1 ∧ as+2 ∧ · · · ∧ ar .

Thus we may conclude that the inner product of two blades always produces a blade.
The outer product is associative but the inner product is not; rather it obeys the following

rule of the middle factor: For blades A, B, C with steps r, s, t, respectively,

A · (B · C) = (A · B) · C if r + t ≤ s , (2.17)

A · (B · C) = (A ∧ B) · C if r + s ≤ t . (2.18)

A number of useful identities can easily be derived as needed by combining this with the
expansion (2.16).

2.3 DUALITY

We define the dual A of an r-blade Ã by

Ã = AI−1 = A · I−1 = (−1)r(n−r)I−1A . (2.19)
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(This corrects an important misprint on p. 7 of [8].)
It follows that the dual of an r-blade is an (n − r)-blade. In addition, the sum of two

(n− 1) blades is always an (n− 1)-blade, hence all (n− 1)-vectors are (n− 1)-blades, since
the dual of an (n − 1)-blade is a 1-vector. This can be inferred from the fact that the sum
of any number of 1-vectors is always a vector.

From (2.18) and (2.19) we obtain

A · (BI) = (A ∧ B)I = (−1)s(n−s)(AI) · B , (2.20)

or, equivalently,
(A ∧ B)˜ = A · B̃ = (−1)s(n−s)Ã · B , (2.21)

where s is the step of blade B. This expresses the duality of inner and outer products.
When r = n − s, we can write

A · B̃ = 〈AB̃ 〉 = [A ∧ B ] ≡ [AB ] , (2.22)

showing that the bracket is a special duality relation.
The foregoing helps us to distinguish two different (though intimately related) roles of

the inner product in geometric algebra: on the one hand, it may serve a metrical function in
the usual way; on the other hand, it serves as a step-lowering operation or contraction. The
step-lowering property of the inner product expressed by (2.12) is dual to the step-raising
property of the outer product expressed by (2.11). Both raising and lowering operations
are essential for expressing the nonmetrical relations of projective geometry, as shown in
subsequent sections. Whether the inner product performs a metrical or nonmetrical role
depends on the context in which it is used. Ordinarily, the inner product a · b in (2.2) is
given a metrical interpretation, but the vector b can always be expressed as the dual of a
pseudovector B by writing b = B̃, so by (2.19),

a · b = a · B̃ = [ a ∧ B ] . (2.23)

As noted before, the value of the bracket is nonmetrical in the sense that it is independent
of signature. The trick of using the inner product to express nonmetrical relations by
combining it with duality has been much used in projective geometry. In fact, it is the
essence of the theory of poles and polars.

The inner product is essential to duality, as the definition (2.19) shows. The treatment of
duality with geometric algebra differs from the usual approach in the literature dating back
to Grassmann by its explicit use of the pseudoscalar. This has the advantage of reducing
duality to multiplication by a special element of the algebra rather than introducing it as
a special algebraic operation. It simplifies the problem of relating duality operations for
intersecting spaces of different dimension.

2.4. THE COMMUTATOR PRODUCT

The commutator product of multivectors M and N is defined in terms of the geometric
product by

M × N = 1
2 (MN − NM) = −N × M . (2.24)
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This product is a ‘derivation’ with respect to the geometric product, that is, for any mul-
tivectors L, M, N,

L × (MN) = (L × M)N + M(L × N) . (2.25)

This leads easily to the Jacobi identity,

L × (M × N) = (L × M) × N + M × (L × N) . (2.26)

The relation of the commutator product to inner and outer products is step dependent.
Thus, for any vector a,

a × B = a ∧ B , (2.27)

if B is a blade with odd step, and

a × B = a · B , (2.28)

if the step of B is even.
The commutator is especially useful for relations and manipulations involving bivectors.

For a 2-blade A = a ∧ b = a × b and any blade B of step s ≥ 2, the relations (2.27) and
(2.28) enable us to put the Jacobi identity in the useful forms

A × B = (a ∧ b) × B = a · (b ∧ B) − b · (a ∧ B)

= b ∧ (a · B) − a ∧ (b · B) . (2.29)

The two forms are related by the identity

a · (b ∧ B) = (a · b)B + b ∧ (a · B) .

Note that (2.28) applies whether the step of B is even or odd. It also shows that the
commutator product by a bivector is a step-preserving operator. The geometric product
now admits the decomposition

AB = A · B + A × B + A ∧ B , (2.30)

where the three terms on the right have steps s−2, s, and s+2, respectively. Note that this
decomposition into terms of homogeneous step cannot be expressed in terms of inner and
outer products alone without decomposing A into vectors. The three different products on
the right side of (2.29) express three different geometrical relations between A and B.

For three 2-blades A, B, C we can prove

(A × B) · C = 〈ABC 〉 = 〈CAB 〉 = (C × A) · B (2.31)

from (2.29) and 〈MN 〉 = 〈NM 〉. Writing C = c ∧ c′ and employing (2.29) in (2.31), we
derive the identity

〈ABC 〉 = 〈AB(c ∧ c′) 〉 = (A ∧ c) · (B ∧ c′) − (A ∧ c′) · (B ∧ c) . (2.32)

In the subsequent discussion, it will be seen that the commutator product is not essential
to our treatment of projective geometry. Nevertheless, we employ the commutator product
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in some places because we believe it gives insight into the structure of algebraic relations.
Moreover, it is important for establishing relations to other mathematical structures. There
are good reasons, for example, for basing the theory of Lie algebras on the commutator
product in Geometric Algebra (see [8] and remarks in [9]).

3. The Algebra of Incidence

The elements of Gn can be assigned a variety of different geometrical interpretations ap-
propriate for different applications. In this section we represent the primitive elements and
relations of projective geometry by elements and algebraic operations in geometric algebra.
Then we can use geometric algebra to prove the theorems of projective geometry.

3.1. PROGRESSIVE AND REGRESSIVE PRODUCTS

The blades in Gn determine an ‘algebra of subspaces’ for Vn discussed at length in Section
1-2 of [8]. We first review some of the main ideas in that discussion as groundwork for
‘projective interpretations.’ To every r-dimensional subspace Vr in Vn there corresponds
an r-blade A = 〈A 〉r such that Vr is the solution set of the equation

x ∧ A = 0 . (3.1)

According to this equation, A is unique to within a scale factor. The vector space generates
a geometric algebra Gr in which A is a pseudoscalar. Accordingly, we may refer to A as the
pseudoscalar or the blade of Vr. Conversely, we refer to the vector space V(A) determined
by the blade A as the support of A. Since each subspace is uniquely determined by its
blade, the lattice algebra of subspaces can be represented by an ‘algebra of blades’ in Gn To
accomplish that we need only introduce an appropriate system of definitions; the geometric
algebra will take care of the rest.

For given blades A and B, if there exists a scalar or blade C such that

A = BC = B ∧ C . (3.2)

we say that A is a dividend of B and B is a divisor (or factor) of A. As to the geometric
interpretation of factoring, it should be noted that B is a factor of A if and only if the
support of B is a subspace of the support of A. If A is not null, then (3.2) is equivalent to
the condition

AB = A · B . (3.3)

This relation is intrinsic to the definition of dual by (2.19), for every blade in Gn is a divisor
of the pseudoscalar I.

We define the join J of blades A and B (to within a scalar factor) as a common dividend
of lowest step. The support of J is then the usual ‘lattice join’ of the supports of A and B.
We define J explicitly by

J = A ∧ B (3.4)

when A∧B does not vanish. The outer product of two blades is nonvanishing if and only if
their supports have zero intersection. If the outer product of two blades is zero, then they
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have a nonscalar common factor and their greatest common divisor is well defined up to a
scalar factor. When Step A + Step B ≥ n and the join of A and B can be identified with
the unit pseudoscalar I of Vn, the scale of the join is fixed by a choice of scale for I. This
is the case that occurs most frequently in applications to projective geometry.

For blades A and B with a common factor, we define the meet A∨B by the ‘deMorgan’
rule

(A ∨ B)˜ = Ã ∧ B̃ , (3.5)

where it is understood that the dual is taken with respect to the join J of A and B, that
is, the duals are defined by (2.19) with I = J . Of course, this definition will not apply if
J is a null blade, but that will not occur unless A or B is null, and we need not consider
that possibility for the purpose of projective geometry.

The meet is a common factor of A and B with greatest step. Its support is the intersection
of the supports of A and B. Thus, the meet and join provide the desired representation in
geometric algebra of the basic operations in the algebra of subspaces of a vector space. For
that purpose, by themselves the meet and join need be defined only up to a scale factor.
But when a scale is chosen for the join, a scale for the meet is determined by (3.5).

Let r and s be the steps of blades A and B, respectively. If the join of A and B is the
pseudoscalar I, then r + s ≥ n. Unless stated otherwise, we henceforth take this condition
for granted wherever the meet is expressed explicitly in terms of duality. The duality
relations (2.19), (2.20) and (2.21) enables us to derive from (3.5) expressions for the meet
which are more useful in computations. Thus, we obtain

A ∨ B = (Ã ∧ B̃)I = Ã · B = (−1)s(n−s)A · B̃ . (3.6)

From this, we obtain for three blades

A ∨ B ∨ C = (Ã ∧ B̃ ∧ C̃)I , (3.7)

which shows that (under the above conditions on steps) the meet has the associative and
anticommutative properties of the outer product.

The formula A ∨ B = Ã · B is the most generally useful expression for the meet because
it makes the powerful expansion formula (2.16) available. However, in the important case

when r = s = n − 1, both Ã and B̃ are vectors, so A ∧ B = A × B and the meet can be
expressed in terms of the commutator product by

A ∨ B = (−1)n−1(A × B)I−1 , (3.8)

Then properties of the commutator product can be exploited.
We could, of course, take A ∨B = Ã · B as the definition of the meet. In fact, Ã · B can

be identified with Grassmann’s regressive product (or, rather, Whitehead’s generalization

of it to arbitrary signature [20]). When r + s = n, Ã · B is scalar valued, as noted in (2.22).
For that case we define A ∨ B = 0, since the meet must be a blade to represent a nonzero
subspace. Accordingly, (3.5) and (3.6) define the meet only for r + s > n.

3.2. PROJECTIVE INTERPRETATION FOR BLADES
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We adopt the standard identification of points in the projective space Pn−1 with rays in
Vn. Each ray is the 1-dimensional solution set of the equation x ∧ p = 0 determined by a
nonzero vector p, so we identify p as a representation of the unique ray it determines by
referring to p as a point. Vectors p and q are regarded as identical points if and only if
p ∧ q = 0, that is, pq = p · q.

Each projective line in Pn−1 is the 2-dimensional vector solution set of the equation
x ∧A = 0 determined by a 2-blade A. Accordingly, we can identify A with the unique line
it determines. Blades A and B of step 2 are regarded as identical lines if and only if AB =
A · B, which is equivalent to the condition that they differ only by a scale factor. In the
analogous way, we identify 3-blades with projective planes and (n−1)-blades (pseudovectors)

with hyperplanes. Each pseudovector N = ÑI is the dual of a vector Ñ , so the duality
relation (2.20) enables us to replace the equation x ∧ N = 0 for a hyperplane by the
equivalent equation

x · Ñ = 0 . (3.9)

Note that the inner product does not perform a metrical function here.
The theory of duality in Gn with respect to a nondegenerate inner product is the algebraic

equivalent of the theory of poles and polars in Pn−1 with respect to the surface of the
second degree, or quadric, determined by this inner product. This sheds some light on
the significance of (3.9). The inner product, indeed, has no metrical function here; it
reflects how points and hyperplanes and their incidence relation are represented in geometric
algebra in terms of duality, or, geometrically speaking, in terms of polarity. In particular,
x and N are incident if and only if x and Ñ are conjugate with respect to the quadric
determined by the inner product. Furthermore, self-conjugate points are null and are
exactly the points lying on this quadric, that is, the equation of this quadric is given by
x · x = x2 = 0. This situation allows straightforward proofs of theorems involving polarity
with respect to quadrics of any signature without referring to coordinate representations of
quadratic forms (for examples, see Sections 4.3 and 5.6).

The relations among points, lines, planes, etc., in projective geometry can now be readily
expressed by the various products in geometric algebra. For example, each pair of distinct
points a and b determine a unique line a ∧ b. Also, a point p lies on a line A if and only if

p ∧ A = 0 . (3.10)

The same relation can be expressed in terms of the meet as the ‘absorption relation’

p ∨ A = p . (3.11)

If this is regarded as a relation in the projective line P1, then A can be identified with the
pseudoscalar and (3.6) allows us to write

p ∨ A = p̃ · A = p̃A = p .

This can be solved for the point

p̃ = pA−1 = p · A−1

dual to p on the line A. This is the simplest case in the projective theory of poles and
polars, namely the theory of involutions in P1. In P1, the point p̃ is conjugate to the point
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p with respect to the conic determined by the nondegenerate inner product on V2, for the
points satisfy the orthogonality condition

p · p̃ = 0 .

There are two distinct cases. The first case, A2 < 0, occurs for Euclidean or anti-Euclidean
signature only. The second case, A2 > 0, occurs for the other signature. In this case the
line A contains exactly two distinct ‘self-dual’ points; such points are null, for p̃ = p implies
p̃ · p = p2 = 0. Given any nonnull point p, there is a unique dual point q = p̃−1 such that

A = q ∧ p = qp .

This completes our discussion of P1. Of course, the same relations hold on any nonnull line
in Pn−1.

3.3. INCIDENCE RELATIONS AMONG LINES

Having seen how to characterize incidence relations between points and lines with geometric
algebra, we turn now to incidence relations among lines. We seek formulations which are
independent of the dimension of the projective space, in so far as that is possible. Two
distinct lines A, B intersect in a point if and only if

A ∧ B = 0 . (3.12)

The point of intersection p is given by

p = A ∨ B = (A × B)J−1 , (3.13)

where J is the join of A, B. If A = a ∧ a′ and B = b ∧ b′, then, by (2.22), we have

A ∨ B = Ã · B = (Ã · b)b′ − (Ã · b′)b = [ aa′b ]b′ − [ aa′b′ ]b . (3.14)

The condition that lines A, B are concurrent with line C is

p ∧ C = (A ∨ B) ∧ C = 0 . (3.15)

In P2, J = I and necessarily commutes with C; so, together with (2.31),

(A ∨ B) ∧ C = [(A × B)J−1] ∧ C = [(A × B)C]J−1 = A ∧ (B ∨ C) . (3.16)

Therefore, in P2 the condition (3.15) that three lines be concurrent is equivalent to the
condition

〈ABC 〉 = 0 . (3.17)

This is especially convenient for computations, because the join is not involved. In projective
spaces of dimension 3 or greater, (3.17) is necessary but not a sufficient condition for
concurrence. To see what else is needed, note that

[J−1(A × B)] ∧ C = 〈 J−1(A × B)C 〉3

= J−1〈ABC 〉 + J−1 × [(A × B) × C)] .
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Therefore, for concurrence of lines in any dimension, (3.17) must be supplemented by

J × [(A × B) × C] = 0 . (3.18)

Thus, it appears that there is no way to avoid introducing the join in some capacity. To
understand how (3.18) can be satisfied, it is instructive to write C = q ∧ p = q × p and use
the identity (2.29) to get

(A × B) × C = (A × B)p · q − [ (A × B) · p ] ∧ q + [ (A × B) ∧ p ] · q .

Now, if p = A ∨ B, then (3.15) gives (A × B) · p = 0 and (A × B) ∧ p = p2J−1, whence all
three terms in this expansion of (A × B) × C commute with J to satisfy (3.18).

4. Two-Dimensional Projective Geometry

Now we are prepared for the main business of this article, to show how the theorems of
projective geometry can be formulated and proved with geometric algebra. To demonstrate
the scope and the flexibility of geometric algebra, we give examples concerning three major
themes in projective geometry. First, it is well known that certain geometric configurations,
such as those of Pappus and Desargues, are instrumental for proving many important the-
orems. We shall see that these configurations can be regarded as geometric representations
of identities in geometric algebra. Second, the projective generation of higher-order loci
from projective primitive forms (such as ranges of points, pencils of lines, etc.) is a method
characteristic of projective geometry to define complicated figures in terms of simpler ones.
For the plane, we pick the simplest example illustrating this method, namely the projective
generation of a conic. This leads to a proof of Pascal’s theorem. It is followed by a short dis-
cussion of polar and self-polar triangles in which the elegance and simplicity of formulating
the theory of poles and polars in terms of algebraic duality is immediately evident. Third,
explicit constructions have always been a characteristic feature of projective geometry. Our
treatment of the plane cubic shows how such constructions can be modeled with geometric
algebra, leading eventually to an explicit equation for the curve in terms of the geometric
elements that uniquely determine it.

Our first task is to prove the theorems of Desargues and Pappus. Proofs using Grass-
mann’s progressive and regressive products have been given by Forder [5], and the same
proofs in terms of meet and join products are given in [1, 2, 16]. We develop the proofs
rather differently, in a way which we believe gives insight into how the proofs work, es-
pecially the role of duality. We wish to exhibit how the proofs depend on relations with
diverse applications to physics as well as mathematics. This can be seen already in algebraic
relations among three points, to which we turn first.

4.1. ALGEBRA OF POINTS AND LINES

Every bivector in G3 is a 2-blade, thus the only relevant primary objects of P2 are vectors
and 2-blades, that is, points and lines. The join of three noncollinear points a, b, c is a plane

J = a ∧ b ∧ c . (4.1)
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The points are the intersections of three coplanar lines

A = b ∧ c = ÃJ, B = c ∧ a = B̃J, C = a ∧ b = C̃J . (4.2)

These lines are dual in the plane to three points

Ã = AJ−1 =
b ∧ c

a ∧ b ∧ c
, B̃ = BJ−1 =

c ∧ a

a ∧ b ∧ c
, C̃ = CJ−1 =

a ∧ b

a ∧ b ∧ c
. (4.3)

In the standard parlance of projective geometry, the points Ã, B̃, C̃ are the poles of the
polars A, B, C with respect to the conic determined by the nondegenerate inner product.

The intersection of the lines A, B, C at the points a, b, c is expressed by the equations

a = C ∨ B = (C̃ ∧ B̃)J, b = A ∨ C = (Ã ∧ C̃)J, c = B ∨ A = (B̃ ∧ Ã)J . (4.4)

In addition, the following relations (holding for any signature) are easy to prove

a · B̃ = a · C̃ = b · Ã = b · C̃ = c · Ã = c · B̃ = 0 , (4.5a)

a · Ã = b · B̃ = c · C̃ = 1 , (4.5b)

〈CBA 〉 = (a ∧ b ∧ c)2 = J2 , (4.6)

C̃ ∧ B̃ ∧ Ã = J−1 . (4.7)

Although our central concern here is with projective geometry, it is worth noting that,
for the case of Euclidean signature, numerous applications of the foregoing relations among
three points are given in [9] using the language of geometric algebra. Note, for example,

that the relation of Ã to b and c in (4.2) is exactly that of the conventional vector cross-
product. Consequently, the mathematical language used here articulates smoothly with
standard vector algebra of Gibbs so widely used in physics [10]. In Appendix A of [9], the
main theorems of spherical trigonometry are derived with geometric algebra. There the
points a, b, c represent vertices of a spherical triangle while the lines A, B, C represent its
sides.

4.2. THE THEOREMS OF DESARGUES AND PAPPUS AND RELATED THEOREMS

For Desargues’ theorem we introduce another set of three points a′, b′, c′, which determine
a plane

J ′ = a′ ∧ b′ ∧ c′ (4.8)

and three lines

A′ = b′ ∧ c′ = Ã′J ′, B′ = c′ ∧ a′ = B̃′J ′, C ′ = a′ ∧ b′ = C̃ ′J ′ . (4.9)

It may be possible to prove Desargues’ theorem from a single identity that covers all cases
in P3. However, we consider only the case where J and J ′ represent the same projective
plane P2. Then

J = a ∧ b ∧ c = [ abc ]I, J ′ = a′ ∧ b′ ∧ c′ = [ a′b′c′ ]I , (4.10)
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where I is the unit pseudoscalar, so all points and lines commute with J and J ′. This
simplifies manipulations considerably.

The two sets of three points above determine three lines P, Q, R defined by

P = a ∧ a′, Q = b ∧ b′, R = c ∧ c′ . (4.11)

Similarly, the two sets of three lines intersect in three points p, q, r given by

(A ∨ A′)I = A × A′ = (Ã ∧ Ã′)JJ ′ = pI ,

(B ∨ B′)I = B × B′ = (B̃ ∧ B̃′)JJ ′ = qI , (4.12)

(C ∨ C ′)I = C × C ′ = (C̃ ∧ C̃ ′)JJ ′ = rI .

Desargues’ theorem says that the three points p, q, r are collinear if and only if the three
lines P, Q, R are concurrent (Figure 1). The theorem follows immediately from the identity

〈 (a ∧ a′)(b ∧ b′)(c ∧ c′) 〉 = JJ ′〈 (Ã ∧ Ã′)(B̃ ∧ B̃′)(C̃ ∧ C̃ ′) 〉 . (4.13)

Note the symmetry with respect to duality. Using (4.11) and (4.12) the identity can be
cast in the form

[ pqr ] = (JJ ′)2〈PQR 〉 . (4.14)

The right side of this identity vanishes if and only if the left side vanishes. This is an
algebraic expression of Desargues’ theorem.

The identity (4.13) can be derived from the fundamental identity (2.32) by using duality.
Thus, (2.32) gives us

〈 a ∧ a′ b ∧ b′ c ∧ c′ 〉 = (b′ ∧ b ∧ c) · (a ∧ c′ ∧ a′) − (b ∧ b′ ∧ c′) · (c ∧ a ∧ a′) .

By duality,
b′ ∧ (b ∧ c) = (Ã′ ∧ C̃ ′J ′) ∧ (ÃJ) = (Ã′ ∧ C̃ ′ ∧ Ã)JJ ′ ,
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and similarly,

a ∧ c′ ∧ a′ = (C̃ ∧ B̃ ∧ B̃′)JJ ′, b ∧ b′ ∧ c′ = (Ã ∧ C̃ ∧ Ã′)JJ ′ ,

c ∧ a ∧ a′ = (B̃ ∧ C̃ ′ ∧ B̃′)JJ ′ .
Hence,

〈 a ∧ a′ b ∧ b′ c ∧ c′ 〉 = −JJ ′[(B̃ ∧ B̃′ ∧ C̃ ′) · (C̃ ∧ Ã ∧ Ã′) − (B̃′ ∧ B̃ ∧ C̃) · (C̃ ′ ∧ Ã′ ∧ Ã)] .

Application of (2.32) once more yields (4.13) as desired, so our proof of Desargues’ theorem
is complete. The theorem of Pappus says that if the three lines in any two of the sets of
lines

{a ∧ a, b ∧ b′, c ∧ c′}, {a ∧ b′, b ∧ c′, c ∧ a′}, {a ∧ c′, b ∧ a′, c ∧ b′}

concur, then the lines of the remaining set concur (Figure 2a). This follows immediately
from the identity

〈 a ∧ a′ b ∧ b′ c ∧ c′ 〉 + 〈 a ∧ b′ b ∧ c′ c ∧ a′ 〉 + 〈 a ∧ c′ b ∧ a′ c ∧ b′ 〉 = 0 , (4.15)

which can be proved by applying the expansion (2.32) to each term. The dual relation for
lines (Figure 2b) is given by the identity

〈A∨A′ B ∨B′ C ∨C ′ 〉+ 〈A∨B′ B ∨C ′ C ∨A′ 〉+ 〈A∨C ′ B ∨A′C ∨B′ 〉 = 0 . (4.16)

This follows directly from (4.15) by applying (4.13) and changing notation in accordance
with (4.12).

Now we turn to an application of the algebraic form for Desargues’ theorem. Given three
points q, r, s on a line Z, a point p is called the harmonic conjugate of q with respect to r, s if
there is a quadrangle {a, b, c, d} (with no vertex incident with Z) such that pairs of opposite
sides meet in r, s and the diagonals pass through p, q respectively (Figure 3). Desargues’
theorem is instrumental for proving uniqueness of the harmonic conjugate. Suppose there
is a quadrangle {a′, b′, c′, d′} not coinciding with {a, b, c, d} such that the pairs of opposite
sides pass through r, s and one diagonal, say a′ ∧ c′, through q. We need to prove that the
second diagonal d′ ∧ b′ passes through p.

16



c

z

p

d`

c `

a`

b`

Z sq

d

r

b

a

Fig. 3. Invariance of the construction of the fourth harmonic point.

In geometric terms, Desargues’ theorem states that if two triangles are in perspective
from a line, then they are perspective from a point and conversely. Suppose, the triangles
{a, b, c} and {a′, b′, c′} as well as the triangles {a, d, c} and {a′, d′, c′} are in perspective
from the same line (see Figure 3), then they are in perspective from the same point z and
we conclude from (4.13) that

〈 a ∧ a′b ∧ b′c ∧ c′ 〉 = 〈 a ∧ a′d ∧ d′c ∧ c′ 〉 = 0 .

By (2.32) and (2.9), this is equivalent to the two relations

[ aa′c ][ bb′c′ ] = [ aa′c′ ][ bb′c ], [ aa′c ][ dd′c′ ] = [ aa′c′ ][ dd′c ] .

Taking the ratios of these two expressions and applying (2.32) again we obtain

〈 d ∧ d′b ∧ b′c ∧ c′ 〉 = 0 .

This says that the triangles {d, b, c} and {d′, b′, c′} are also in perspective from point z.
They are therefore also in perspective from the line Z. It follows that d′ ∧ b′ and d∧ b pass
through the same point, so our proof is complete.

The next theorem we prove is due to Bricard [5, p. 63f.].
Consider two triangles {a, b, c} and {a′, b′, c′} with corresponding sides intersecting at

points p, q, r. Then Bricard’s theorem says that the meets of a ∧ a′, b ∧ b′, c ∧ c′ with the
opposite sides b ∧ c, c ∧ a, a ∧ b of triangle {a, b, c} are collinear if and only if p ∧ a′, q ∧ b′,
r∧ c′ concur (Figure 4). We use the notation employed in our proof of Desargues’ theorem.
By (3.14) we have

P ∨ A = [ aa′b ]c − [ aa′c ]b, Q ∨ B = [ bb′c ]a − [ bb′a ]c,

R ∨ C = [ cc′a ]b − [ cc′b ]a,
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hence

(P ∨ A) ∧ (Q ∨ B) ∧ (R ∨ C) = J([aa′b][bb′c][cc′a] − [aa′c][bb′a][cc′b]) .

In addition,

p ∧ a′ = (A ∨ A′) ∧ a′ = [bcb′]c′ ∧ a′ − [bcc′]b′ ∧ a′,

q ∧ b′ = (B ∨ B′) ∧ b′ = [cac′]a′ ∧ b′ − [caa′]c′ ∧ b′,

r ∧ c′ = (C ∨ C ′) ∧ c′ = [aba′]b′ ∧ c′ − [abb′]a′ ∧ c′ ,
therefore,

〈 p ∧ a′ q ∧ b′ r ∧ c′ 〉 = 〈C ′B′A′ 〉2([aa′b][bb′c][cc′a] − [aa′c][bb′a][cc′b]) ,

and finally

(J ′)2(P ∨ A) ∧ (Q ∨ B) ∧ (R ∨ C) = J〈 p ∧ a′ q ∧ b′ r ∧ c′ 〉 . (4.17)

This is the algebraic form of Bricard’s theorem. In words, if the meets of the lines P, Q, R
with the opposite sides of the triangle {a, b, c} are collinear, then the joins of the points
p, q, r with the opposite vertices of the triangle {a′, b′, c′} concur.

4.3. CONICS

The set of all lines passing through a point is called a pencil of lines. Every such pencil
is uniquely determined by two of its lines A, B and can be represented by the expression
A + λB where λ ∈ <∪{−∞,+∞}. The sum of lines is well-defined as bivector addition as
long as the arbitrary scale factor is the same for all lines. Two pencils of lines X = A+λB
and X ′ = A′ + µB′ are said to be projectively related if they can be put in an ordered
one-to-one correspondence such that X corresponds to X ′ if and only if λ = µ. In this case,
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the set of intersection points of corresponding lines forms a conic. For, if L = A + λB and
L′ = A′ + λB′ intersect in x, we have

x ∧ L = x ∧ A + λx ∧ B = 0 ,

x ∧ L′ = x ∧ A′ + λx ∧ B′ = 0 ,

and eliminating λ, we arrive at an equation of second order in x:

(x ∧ A)(x ∧ B′) − (x ∧ B)(x ∧ A′) = 0 . (4.18)

Alternatively, the conic is given by the parametric equation

x = (A + λB) ∨ (A′ + λB′)

= A ∨ A′ + λ(A ∨ B′ + B ∨ A′) + λ2B ∨ B′ .

Let A = a∧ b, B = a∧ b′, A′ = a′ ∧ b, B′ = a′ ∧ b′, so that A∨A′ = b, B ∨B′ = b′ (Figure
5). Then letting d = A ∨ B′ + B ∨ A′, the parametric equation takes the form

x = b + λd + λ2b′ .

Conversely, if p ∧ q ∧ r 6= 0, then the parametric equation x = p + λq + λ2r represents a
nondegenerate conic. For, let P = q ∧ r, Q = r ∧ p, R = p ∧ q, then

p ∧ x = λp ∧ q + λ2p ∧ r = λ(R − λQ)

and
r ∧ x = r ∧ p + λr ∧ q = Q − λP

represent two projective pencils that generate the conic [5, §24].
From Equation (4.18), it follows that each one of the points a, a′, b, b′ lies on the conic of

Figure 5, hence
[pab][pa′b′] = µ[pab′][pa′b]

for some µ 6= 0. If c′ is some other point on the curve, then

µ =
[c′ab][c′a′b′]

[cab′][c′a′b]
,
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and the equation for the conic takes the form

[pab][pa′b′][ab′c′][a′bc′] − [pab′][pa′b][abc′][a′b′c′] = 0 . (4.19)

This tells us that a unique conic is determined by five distinct points a, b, a′, b′, c′. Moreover,
a point c lies on a conic passing through a, b, a′, b′, c′ if and only if

[abc][ab′c′][a′bc′][a′b′c] − [a′b′c′][ab′c][a′bc][abc′] = 0 . (4.20)

It is readily verified that this is equivalent to the identity

((b′ ∧ c) ∨ (a′ ∧ a)) ∧ ((a ∧ c′) ∨ (b′ ∧ b)) ∧ ((a′ ∧ b) ∨ (c′ ∧ c)) = 0 . (4.21)

This is an algebraic formulation of Pascal’s theorem [5, p. 118], which says that the inter-
sections of lines connecting opposite vertices of a hexagon lying on a conic are collinear
(Figure 6).

Note that if a∧ b∧ c = 0 and a′ ∧ b′ ∧ c′ = 0, the conic degenerates into two straight lines
and Pappus’s theorem emerges as a special case of Pascal’s theorem.

Dualizing the above arguments leads to Brianchon’s theorem and, again, to the dual of
Pappus’s theorem.

The polarity properties of a conic are automatically expressed by duality when we rep-
resent the conic by the (nondegenerate) inner product. Thus, a point x lies on the conic if
and only if it is incident with its polar, x̃ = xI−1, for

x ∧ x̃ = x ∧ (x · I−1) = (x · x)I−1 = 0 ⇔ x2 = 0 ,

in other words, if x is null. A point y is said to be conjugate to x if y is incident with x̃.
This is the symmetrical relation of orthogonality, for

y ∧ x̃ = x ∧ ỹ = 0 ⇔ x · y = 0 .

It is the foundation of the orthogonality concept within the context of projective metric
geometry. Dually, the line equation for the conic is X2 = 0 and two lines X, Y are conjugate
if and only if X · Y = 0.

We now prove a theorem which is instrumental in the synthetic treatment of the theory of
poles and polars with respect to a conic. It says that if a quadrangle {a, b, c, d} is inscribed
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in a conic, then its diagonal triangle {p, q, r} is self-polar (Figure 7). It is sufficient to show
that the vertices of the diagonal triangle are pairwise conjugate. By (3.14), we have

p = (a ∧ d) ∨ (c ∧ b) = [adc]b − [adb]c,

q = (a ∧ b) ∨ (c ∧ d) = [abc]d − [abd]c,

r = (a ∧ c) ∨ (b ∧ d) = [acb]d − [acd]b.

From this we conclude that

p · q = q · r = r · p = −1
2 (p2 + q2 + r2) . (4.22)

But the point p + q + r = 2b[adc] lies on the conic, for

(p + q + r)2 = p2 + q2 + r2 + 2(p · q + q · r + r · p) = 0 .

This can only be true if p · q = q · r = r · p = 0, that is, if {p, q, r} is a self-polar triangle.
If a triangle {a, b, c} is not self-polar, then it determines a unique polar triangle and they

form a pair of Desargues triangles, which is to say that they are in perspective. Using
the notation of Section 4.1, we conclude that {a, b, c} and {Ã, B̃, C̃}) (or {A, B, C} and

{ã, b̃, c̃}) are polar triangles (Figure 8). The intersection points p, q, r of corresponding sides
are given by

p = ã ∨ (b ∧ c) = (ã ∧ b)c − (ã ∧ c)b = (a · bJ−1)c − (a · cJ−1)b ,

q = b̃ ∨ (c ∧ a) = (̃b ∧ c)a − (̃b ∧ a)b = (b · cJ−1)a − (b · aJ−1)c ,

r = c̃ ∨ (a ∧ b) = (c̃ ∧ a)b − (c̃ ∧ b)a = (c · aJ−1)b − (c · bJ−1)a .

This implies that p ∧ q ∧ r = [pqr]I = 0, which proves the theorem that a pair of triangles
which are not self-polar are in perspective.
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Fig. 8. Pair of polar triangles.
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4.4. PLANE CUBICS

The following algebraic modeling of a synthetic algorithm for constructing points on a plane
cubic curve was first outlined by Grassmann, and later refined and expanded by Whitehead
[20] whom we follow here. This construction does not give a method to discover points on
a plane cubic, but given one point x on the curve (determined by nine points in general
position) the construction can be made.

Take A, B, C as three noncollinear lines and a, a1, b, b1, k, c as six points such that no
three of them lie on a line and none of them is incident with A, B, or C (as, for example,
in Figure 9). Consider any point x and the lines

R = ((x ∧ a) ∨ A) ∧ a1, S = ((((x ∧ b) ∨ B) ∧ k) ∨ C) ∧ b1, T = x ∧ c ;

then the locus of x is a cubic if R, S, T are concurrent, that is, if

〈RST 〉 = 0 . (4.23)

This is necessarily the equation for a cubic since it is of the third degree in x. We need
to prove that any plane cubic can be represented by an equation of this form. Since a plane
cubic is uniquely determined by nine arbitrarily assumed points, it is sufficient to show that
by a proper choice of the fixed lines and points of the construction mentioned above the
cubic may be made to pass through any nine given points.

Before going into the construction itself, we analyze (4.23) in more detail. Let

p = R ∨ T = (((x ∧ a) ∨ A) ∧ a1) ∨ (x ∧ c) and q = (x ∧ b) ∨ B . (4.24)

Then (4.23) can be recast as the following relation between the points p and q

〈RST 〉 = −〈RTS 〉 = −[p ∧ ((q ∧ k) ∨ C) ∧ b1]

= [((q ∧ k) ∨ C) ∧ b1 ∧ p] = 0 . (4.25)
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Fig. 9. Constructing algorithm for a plane cubic.
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We note three properties of the curve.

(i) p = 0 if and only if x equals a, c, (a1 ∧ c) ∨ A, (or, of course, scalar multiples thereof).
This is obvious for x = a or x = c. By (3.14) we have

p = [((x ∧ a) ∨ A)a1x]c − [((x ∧ a) ∨ A)a1c]x ,

and
(x ∧ a) ∨ A = [Aa]x − [Ax]a ,

hence
p = −[Ax][aa1x]c − ([Aa][xa1c] − [Ax][aa1c])x .

Therefore, for x 6= c, p = 0 if and only if either [Ax] = 0 and [xa1c] = 0 or [aa1x] = 0
and [Aa][xa1c] = [Ax][aa1c]. In the first case, x lies on A and a1 ∧ c, hence, we must have
x = (a1∧c)∨A. In the second case, [aa1x] = 0 implies that x lies on a∧a1, so we can write
x = λa + µa1. If we substitute this for x in the second condition, we get µ[Aa1][aa1c] = 0,
hence µ = 0 and x = λa.

(ii) p = x if and only if [Ax] = 0 or [aa1x] = 0; q = x if and only if [Bx] = 0.
The solutions of p = x are equivalent to the solutions of p ∧ x = 0 if p 6= 0, similarly for

q. Thus, the above claims follow from the expressions

p ∧ x = −[Ax][aa1x]c ∧ x,

q ∧ x = ((x ∧ b) ∨ B) ∧ x = ([Bh]x − [Bx]b) ∧ x = −[Bx]b ∧ x.

(iii) If A, B, C are concurrent, then their ppint of intersection, e, lies on the curve 〈RST 〉 =
0.

According to (ii), if x = A ∨ B or x = (a ∧ a1) ∨ B, then p = x = q. Hence, (4.25) can
be cast in the form

〈RST 〉 = ((x ∧ k) ∨ C) ∧ b1 ∧ x = −[Cx][kb1x] .

Therefore 〈RST 〉 = 0 implies either [kb1x] = 0 or [Cx] = 0. Hence, if the points A ∨ B
and (a ∧ a1) ∨ B lie on the cubic, then they must lie either on k ∧ b1 or C. The last case
implies (iii).
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We are now ready to show that the plane cubic (4.23) can be made to pass through nine
points a, b, c, d, e, f, g, h, i no three of which lie on a line. Obviously, the cubic goes through
a, b, c. Since (a1 ∧C)∨A lies on the cubic according to (i), we define d = (a1 ∧ c)∨A. Let
A, B, C be concurrent in e, then (iii) implies that e is on the cubic. This allows us to write
A = d∧ e. From (iii), we conclude that if (a∧a1)∨B lies on b1∧k then it lies on the cubic.
Accordingly, we define f = (a ∧ a1) ∨ B such that f ∧ b1 ∧ k = 0, and we may now write
B = e ∧ f , since both e and f lie on B. Expanding d = (a1 ∧ c) ∨ A and f = (a1 ∧ a) ∨ B
according to (3.14) implies [a1cd] = 0 and [a1af ] = 0, respectively; hence a1 lies both on
c ∧ d and a ∧ f and we may write a1 = (a ∧ f) ∨ (c ∧ d).

Now we substitute g, h, i respectively for x in the expressions (4.24) for p and q to get
six points g1, h1, i1 and g2, h2, i2 respectively, all of which can be obtained from the nine
given points by linear constructions. For example,

g1 = (((g ∧ a) ∨ A)a1) ∨ (g ∧ c) and g2 = (g ∧ b) ∨ B .

The points p and q are related by (4.25), hence we have

((g2 ∧ k) ∨ C) ∧ b1 ∧ g1 = 0, (4.26a)

((h2 ∧ k) ∨ C) ∧ b1 ∧ h1 = 0, (4.26b)

((i2 ∧ k) ∨ C) ∧ b1 ∧ i1 = 0. (4.26c)

These relations determine k, C, b which were only partially determined by the conditions
[Ce] = 0 and [fb1k] = 0. Let C and k be such that they satisfy (4.26c) without conditioning
b1. With the help of (3.16), (4.26c) can be cast in the form

i2 ∧ k ∧ (C ∨ (b1 ∧ i1)) = i2 ∧ k ∧ ([Cb1]i1 − [Ci1]b1) = 0 .

In order not to specify b1 we must have [Ci1] = 0, that is, C passes through i1, and since e
lies also in C, we must assume that C = e∧i1. It follows that k is determined by [ki1i2] = 0.
But we showed already that [fb1k] = 0, hence k is the intersection of i1 ∧ i2 and f ∧ b1

where b1 is as yet any arbitrarily assumed point.
Combining [fb1k] = 0 with the relations (4.26a,b) we see that k must be such that the

three lines k∧f , ((g2 ∧k)∨C)∧g1, ((h2 ∧k)∨C)∧h1 intersect in the same point b1, hence
we can write b1 = (((g2 ∧ k)∨C)∧ g1)∨ (k ∧ f). In addition, k lies on i1 ∧ i2 and therefore
k is one of the points in which i1 ∧ i2 intersects the locus

〈x ∧ f((x ∧ g2) ∨ C) ∧ g1((x ∧ h2) ∨ C) ∧ h1 〉 = 0 . (4.27)

It can be proved that the cubic curve represented by (4.27) degenerates into three straight
lines, namely B, C, and

K = {(((h1 ∧ g1) ∨ C) ∧ g2) ∨ (f ∧ h1)} ∧ {(((g1 ∧ h1) ∨ C) ∧ h2) ∨ (f ∧ g1)}

and that if k is made to lie on B or C, then the cubic (4.23) degenerates into a straight
line and a conic (see [20, p. 236f.]). The only case left is the case in which k lies in K.
This implies that k = (i1 ∧ i2) ∨ K since [ki1i2] = 0. Accordingly, with these assumptions,
Equations (4.26a,b,c) are satisfied.
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To sum up, we have proved that Equation (4.23) represents a nondegenerate cubic curve
which passes through nine arbitrarily assumed points a, b, c, d, e, f, g, h, i provided that

A = d ∧ e, B = e ∧ f, C = e ∧ i,

a1 = (a ∧ f) ∨ (c ∧ d), k = (i1 ∧ i2) ∨ K,

b1 = (((g2 ∧ k) ∨ C) ∧ g1) ∨ (k ∧ f),

where g1, h1, i1, g2, h2, i2 and K are determined by the linear constructions mentioned
above.

Note that the linear construction leading to (4.23) is satisfied by any point x on the cubic
and represents a ten-cornered figure x, a, b, c, d, e, f, g, h, i inscribed in the cubic. It is the
analogue for plane cubics of Pascal’s theorem for conics. The corresponding theorem for
space cubics will be derived in Section 5.3.

5. Three-Dimensional Projective Geometry

The most prominent configurations in three-dimensional projective geometry involve tetra-
hedrons; two examples are given in Section 5.1. The projective method for generating
higher-order loci from projective primitive forms in terms of geometric algebra is exhibited
in a fairly extensive treatment of reguli, twisted cubics, and quadrics in Sections 5.3 through
5.5. In Section 5.6 we treat classical line geometry as simply the geometry of bivectors in
the geometric algebra G4.

The use of algebraic identities to prove theorems of projective geometry owes a great deal
to H. W. Turnbull (see, for example, [19]). Much of Turnbull’s work was absorbed and
reformulated in terms of Grassmann algebra by Forder [5]. The same has been done for the
projective theory of reguli, twisted cubics, and quadrics by Whitehead [20] and Mehmke
[14]. Forder provides a rich source of examples demonstrating the power and flexibility of
Grassmann algebra. For this reason his book is particularly useful, although it does not go
beyond Whitehead, or for that matter, Grassmann, in any important aspect of the theory
proper.

5.1. ALGEBRA OF POINTS, LINES, AND PLANES

Points, lines, and planes in P3 are represented by vectors, 2-blades, and 3-blades respectively
in G4. By duality, a sum of 3-blades in G4 can always be reduced to a 3-blade. However, a
bivector generated by adding 2-blades in G4 cannot generally be reduced to a 2-blade. This
is the fundamental fact underlying classical line geometry.

A point p or a line A lies on a plane Φ if and only if p∨Φ = p or A∨Φ = A, respectively.
The line of intersection of two planes Φ = a ∧ b ∧ c and Φ = a′ ∧ b′ ∧ c′ is given by their
meet Φ ∨ Φ′ which can be expanded according to (2.16) and (2.22):

Φ ∨ Φ′ = Φ̃ · Φ′ = Φ̃ · (a′ ∧ b′ ∧ c′)

= [Φa′]b′ ∧ c′ + [Φb′]c′ ∧ a′ + [Φc′]a′ ∧ b′ . (5.1)
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Similarly, the intersection point of a plane Φ = a ∧ b ∧ c and a line A = p ∧ q is given by

Φ ∨ A = Φ̃ · A = Φ̃ · (p ∧ q) = [Φp]q − [Φq]p (5.2)

or, equivalently,

Φ ∨ A = Ã · Φ = Ã · (a ∧ b ∧ c) = [Aab]c + [Aca]b + [Abc]a . (5.3)

Hence, we have the identity

[abcp]q − [abcq]p = [pqab]c + [pqca]b + [pqbc]a . (5.4)

5.2. PAIRS OF TETRAHEDRONS

The three-dimensional analogue of Desargues’ theorem says that if the joins of correspond-
ing vertices of two tetrahedra concur, then the lines of intersection of corresponding face
planes are coplanar. To prove this (see [5, p. 108f.]), take a, b, c, d and a′, b′, c′, d′ as the
vertices of the two tetrahedra. If p is the center of perspectivity, we can write

α′a′ = p + αa, β′b′ = p + βb, γ′c′ = p + γc, δ′d′ = p + δd .

Hence

α′β′γ′ a′ ∧ b′ ∧ c′ = (p + αa) ∧ (p + βb) ∧ (p + γc)

= p ∧ (βγb ∧ c − αγa ∧ c + αβa ∧ b) + αβγa ∧ b ∧ c .

Therefore, if a point x lies on the line

L = βγb ∧ c − αγa ∧ c + αβa ∧ b

and on the plane a ∧ b ∧ c, then x lies on the plane a′ ∧ b′ ∧ c′. In other words, the line L
is the line of intersection of a ∧ b ∧ c and a′ ∧ b′ ∧ c′. The remaining lines of intersection of
corresponding face planes are

γδc ∧ d − βδb ∧ d + βγb ∧ c, δαd ∧ a − γαc ∧ a + γδc ∧ d,

αβa ∧ b − δβd ∧ b + δαd ∧ a,

and they all lie in the plane

βγδb ∧ c ∧ d − αγδa ∧ c ∧ d + αβγa ∧ b ∧ d − αβγa ∧ b ∧ c .

This concludes the proof.
The following identity was first derived by Forder [5, p. 170f.] who called it the Möbius

identity:

(b ∧ c ∧ a′) ∨ (c ∧ a ∧ b′) ∨ (a ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c′) +
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+ (b′ ∧ c′ ∧ a) ∨ (c′ ∧ a′ ∧ b) ∨ (a′ ∧ b′ ∧ c) ∨ (a ∧ b ∧ c) = 0 . (5.5)

The first term on the left side can be calculated by using (5.1) and (5.2) successively to get

(a ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c′) = [abc′a′]b′ ∧ c′ + [abc′b′]c′ ∧ a′

and

(c ∧ a ∧ b′) ∨ (a ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c′)

= −[abc′a′][cab′c′]b′ + [abc′b′][cab′c′]a′ − [abc′b′][cab′a′]c′ .

Finally, since
(x ∧ y ∧ z) ∨ w = [xyzw] for any x, y, z, w,

we have

(b ∧ c ∧ a′) ∨ (c ∧ a ∧ b′) ∨ (a ∧ b ∧ c′) ∨ (a′ ∧ b′ ∧ c′)

= −[abc′a′][cab′c′][bca′b′] + [a′b′ca][c′a′bc][b′c′ab] .

Exchanging primed and unprimed points, the left side of this equation becomes equal to
the second term on the left side of (5.5), while the right side changes its sign. Thus, (5.5)
is proved.

The Möbius identity may be interpreted as follows: If the planes b ∧ c ∧ a′, c ∧ a ∧ h′,
a ∧ b ∧ c′ meet at a point d lying on the plane a′ ∧ b′ ∧ c′, then the intersection point,
say d′, of the planes b′ ∧ c′ ∧ a, c′ ∧ a′ ∧ b, a′ ∧ b′ ∧ c lies in the plane a ∧ b ∧ c. Cyclical
permutations of the points in this theorem leads to another theorem, namely: If for two
tetrahedra {a, b, c, d} and {a′, b′, c′, d′} the vertices a, b, c, d lie in the face-planes b′ ∧ c′ ∧ d′,
c′ ∧ d′ ∧ a′, d′ ∧ a′ ∧ b′, a′ ∧ b′ ∧ c′, respectively, and a′, b′, c′ lie in b ∧ c ∧ d, c ∧ d ∧ a,
d ∧ a ∧ b, respectively, then d′ lies in a ∧ b ∧ c. This is to say that each tetrahedron has its
vertices on the face-planes of the other. In other words, the two tetrahedra are inscribed
and circumscribed to each other. Such tetrahedra are called Möbius tetrahedra.

5.3. REGULI

The set of all lines joining corresponding points in two projective ranges of points on skew
lines is called a regulus. Let a, a′b, b′c, c′ be any pairs of corresponding points such that
c = a + b and c′ = a′ + b′. Then a + λb and a′ + λb′ correspond to each other for every
λ ∈ < ∪ {−∞,+∞}, and their join is

a ∧ a′ + λ(a ∧ b′ + b ∧ a′) + λ2b ∧ b′ .

If we set A = a ∧ a′, B = b ∧ b′, C = c ∧ c′, then

C = (a + b) ∧ (a′ + b′) = A + B + (a ∧ b′ + b ∧ a′) ,

and the join of corresponding points is given by the linear combination

(1 − λ)A + (λ2 − λ)B + λC .
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Therefore, the lines of a regulus, called generators, are linear combinations of any three lines
in the system. Every point p on a generator of a regulus is given by a linear combination
of the form

p = a + λb + µ(a′ + λb′) . (5.6)

Any line L that cuts three generators of a regulus cuts all of them. For if L intersects
A, B, C, that is, if L ∧ A = L ∧ B = L ∧ C = 0, then L intersects all linear combinations
of A, B, C. Such a line L is called a directrix of the regulus. If L, M, N are directrices of
a regulus, then any linear combination of them is also a directrix. Thus L, M, N generate
a regulus, called the associated regulus, of the regulus generated by A, B, C. It follows
that A, B, C are directrices of the regulus generated by L, M, N ; hence each regulus is the
associated regulus of the other.

To determine the locus of points lying on the lines of a regulus generated by A, B, C,
consider a point x on C and its directrix L, that is, set x = L∨C. The plane ((x∧A)∨B)∧C
contains C and L; hence

(((x ∧ A) ∨ B) ∧ C) ∧ x = 0 . (5.7)

This is the desired equation for the locus.

5.4. TWISTED CUBICS

The locus of points in the intersection of corresponding planes in three projective pencils
of planes is called a twisted cubic. That this locus is in fact a curve of the third order
can be established as follows. Let X = A + λB, X ′ = A′ + λB′, X ′′ = A′′ + λB′′ with
λ ∈ < ∪ {−∞,+∞} be corresponding planes in three projective pencils of planes. Their
point of intersection is given by

X ∨ X ′ ∨ X ′′ = a + λb + λ2c + λ3d ,

where

a = A ∨ A′ ∨ A′′,

b = B ∨ A′ ∨ A′′ + A ∨ B′ ∨ A′′ + A ∨ A′ ∨ B”,

c = A ∨ B′ ∨ B′′ + B ∨ A′ ∨ B′′ + B ∨ B′ ∨ A′′d = B ∨ B′ ∨ B′′.

In general, the curve cuts a plane Φ in three points determined by the equation

a ∧ Φ + λb ∧ Φ + λ2C ∧ Φ + λ3d ∧ Φ = 0 .

The points a and d are intersection points of corresponding planes; hence they belong to
the curve. They are arbitrary points on the curve, since we can choose any set of three
corresponding planes to represent them.

The projection of the cubic onto a plane Ψ from an arbitrary point on the curve, say d,
is determined by the equation

(a ∧ d) ∨ Ψ + λ(b ∧ d) ∨ Ψ + λ2(c ∧ d) ∨ Ψ = 0 .
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Since the coefficients in this quadratic equation for λ represent points, the equation rep-
resents a conic. Therefore, the projection of a twisted cubic from any of its points forms
a quadratic cone. Projecting a twisted cubic from two of its points, we see that it is the
intersection of two quadratic cones with a common generator.

Consider seven distinct points p, a, b, c, a′, b′, c′ on a twisted cubic. Since the projection
of the curve from point p forms a quadratic cone, the lines

(p ∧ b′ ∧ c) ∨ (p ∧ b ∧ c′), (p ∧ c′ ∧ a) ∨ (p ∧ c ∧ a′),

(p ∧ a′ ∧ b) ∨ (p ∧ a ∧ b′)

are coplanar, by Pascal’s theorem. Therefore, the points

l = (b′ ∧ c) ∨ (p ∧ b ∧ c′), m = (c ∧ a′) ∨ (p ∧ c′ ∧ a),

n = (a′ ∧ b) ∨ (p ∧ a ∧ b′)

are coplanar with p, that is, l ∧ m ∧ n ∧ p = 0 or, equivalently,

((b′ ∧ c) ∨ (p ∧ b ∧ c′)) ∧ ((c ∧ a′) ∨ (p ∧ c′ ∧ a)) ∧ ((a′ ∧ b) ∨ (p ∧ a ∧ b′)) ∧ p = 0 . (5.8)

With respect to the heptagon {p, c′, b, a′, c, b′, a} inscribed to the twisted cubic, (5.8) ex-
presses the fact that the lines b′ ∧ c, c ∧ a′, a′ ∧ b meet their opposite planes p ∧ c′ ∧ b,
a ∧ p ∧ c′, b′ ∧ a ∧ p in the points l, m, n in such a way that p is incident with the plane
l ∧ m ∧ n. The same line of argument applied to the cones which project the twisted cubic
from a, b, c, a′, b′, or c′ leads to the following theorem concerning seven points on a twisted
cubic which is the analogue of Pascal’s theorem for six points on a conic: The edges of a
simple heptagon inscribed to a twisted cubic intersect their opposite faces in the vertices of
another simple heptagon which is both inscribed and circumscribed to the given heptagon.

5.5. QUADRICS

Let us call the set of all lines or planes passing through point a a bundle with center a. Now,
take A, B, C as three noncoplanar lines meeting at d and Φ, Ψ, Ω as three noncollinear
planes meeting at a 6= d. Then A + λB + µC with λ, µ ∈ < ∪ {−∞,+∞} represents an
arbitrary line through d, that is, a bundle of lines with center d. Similarly, Φ + λΨ + µΩ
represents an arbitrary plane passing through a, that is, a bundle of planes with center a.
The two bundles are said to be projectively related (or correlative) if each line of the first
corresponds to a plane of the second with the same values of λ and µ. The locus of the
intersection points

p = (A + λB + µC) ∨ (Φ + λΨ + µΩ) (5.9)

of corresponding elements is a surface of the second degree, that is, a quadric.
Without loss of generality, we may assume that A passes through a and that Ψ, Ω pass

through d; hence A, a∧d, and Ψ∨Ω all represent the same line (Figure 10). If C is replaced
by B + εC and Ω by Ψ + εΩ, then ε can be chosen to make the coefficient of λµ in (5.9)
vanish; for, with this substitution, the coefficient has the form 2B ∨Ψ + ε(B ∨Ω + C ∨Ψ),
and B ∨ Ψ, B ∨ Ω, and C ∨ Ψ are points coinciding with d. Then (5.9) takes the form

p = a + λb + µc + (λ2α + µ2β)d , (5.10)
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Fig. 10. Generation of a quadratic from two projective bundles.

where
a = A ∨ Φ, b = B ∨ Φ, c = C ∨ Φ, αd = B ∨ Ψ, βd = C ∨ Ω ,

and α, β are fixed while λ, µ are variable. Of course, the points a and d lie on the surface
given respectively by the values λ = µ = ∞ and λ = µ = 0 in (5.10).

It can be shown that this generation of a surface of the second degree does not depend
on the choice of a and d (see [14, §63] or [5, §29.4]).

To prove that every surface with a parametric equation of the form (5.10) can be gen-
erated by two correlative bundles, we assume that a ∧ b ∧ c ∧ d 6= 0 and Φ = a ∧ b ∧ c,
A = a∧ d, B = b∧ d, C = c∧ d. Let Ψ, Ω be two distinct planes through a∧ d, so the free
parameters are fixed such that a = A ∨ Φ, b = B ∨ Φ, c = C ∨ Φ, and B ∨ Φ + C ∨ Ψ = 0.
Then

p = (A + λB + µC) ∨ (Φ + λΨ + µΩ) = a + λb + µc + λ2B ∨ Ψ + µ2C ∨ Ω ,

where d, B ∨ Ψ, and C ∨ Ω represent the same point.
It is easy now to prove that the set of points lying on the generators of a regulus lie on

a quadric. For, according to (5.6), any point on a generator of a regulus is of the form
p = a + ρb + σ(c + ρd). But this can be written as

p = a + λ(b + c) + µ(b − c) + (λ2 − µ2)d

where λ = (ρ + σ)/2 and µ = (ρ − σ)/2.
Three linearly independent quadric loci have, in general, eight points in common and

every quadric that passes through seven of these points is a linear combination of the given
quadrics and, hence, contains the eighth point (see [17, p. 340]). These points are therefore
symmetrically related and form a set of eight associated points. The problem of finding
an explicit construction for the eighth associated point from seven arbitrary points was a
rather famous challenge in the 19th century, and it has been solved in many different ways.
Within geometric algebra, the problem is to find an algebraic criterion which determines
whether or not eight given points form a set of associated points. A criterion of this kind
was first determined by Turnbull [18].

According to (5.7), a quadric containing the lines L, M, N is determined by the equation

(((x ∧ L) ∨ M) ∧ N) ∧ x = 0 .
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Let M = a ∧ b, then, by (5.2),

(x ∧ L) ∨ (a ∧ b) = [xLa]b − [xLb]a ,

so the equation for the quadric can be cast in the form

[Lax][Nbx] = [Lbx][Nax] . (5.11)

When the condition that the entire line a∧ b lies in the quadric is relaxed, Equation (5.11)
generalizes to

[Lax][Nbx] = λ[Lbx][Nax] . (5.12)

Assuming that this quadric passes through a point c, λ is given by

λ =
[Lac][Nbc]

[Lbc][Nac]
,

and (5.12) becomes

[Lbc][Lax][Nac][Nbx] − [Lac][Lbx][Nbc][Nax] = 0 . (5.13)

This is the equation for a quadric passing through points a, b, c and lines L, N . Writing
L = a′ ∧ b′, N = c′ ∧ d′ and setting x = d, we have

[a′b′bc][a′b′ad][c′d′ac][c′d′bd] − [a′b′ac][a′b′bd][c′d′bc][c′d′ad] = 0 . (5.14)

This is the desired relation which must be satisfied if the eight points a, b, c, d, a′, b′, c′, d′

are to form a set of associated points.

5.6. LINE GEOMETRY

Classical line geometry is concerned with families of lines, especially in P3. To show how
the subject can be developed in the language of geometric algebra, we discuss some corre-
sponding families of 2-blades in G4. We limit our attention to the case of real scalars.

The development of line geometry in the 19th century was greatly influenced by the fact
that the action of a single force on a rigid body can be represented geometrically by a
unique oriented line (along which the force acts) and a positive scalar (for the magnitude
of the force). Each such force (action) can be represented by a unique 2-blade in G4. Note
that this differs from the representation of a projective line by a 2-blade only by fixing the
scale of the blade. Thus, there is a one parameter family of forces associated with each line.
The superposition of forces acting on a rigid body determines a unique resultant force, and
this is expressed quantitatively by the addition of the corresponding 2-blades. This idea
is abstracted and generalized in line geometry as a ‘geometrical rule’ for combining lines.
It requires, however, the introduction of new geometric concepts, for the bivector sum of
2-blades in G4 is not necessarily reducible to a 2-blade. One geometrical name for such a
bivector is ‘screw,’ since it can be interpreted kinematically as a infinitesimal screw motion
along a line (sometimes called a twist). A line can be regarded as a degenerate screw,
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represented by a bivector with only a single blade. The mechanical analogue of a screw
is sometimes called a wrench. A wrench is a bivector in G4 representing the action of a
system of forces on a rigid body. It represents a single resultant force only if it degenerates
to a 2-blade. In general, a wrench represents a resultant force and couple (see Section 6.1
of [9]).

Generalized line geometry has been treated extensively in terms of Grassmann algebra
by Whitehead [20]. He called it the ‘non-metrical theory of forces.’ His use of the obsolete
term ‘force’ is unfortunate, because it distracts from the purely mathematical character of
his treatment. His ‘forces’ are just general bivectors in G4, and his theory is concerned with
systems of bivectors. It is ‘nonmetrical’ in its study of bivector properties which do not
depend on signature. Our subject here is the same. We hope that our discussion will renew
interest in Whitehead’s important work, which has not received the attention it deserves.
The ideas have applications far beyond classical mechanics, though the applications to
mechanics are still of interest.

Any sum of coplanar lines is a line in the same plane. This relation is well-defined as
bivector addition as long as the arbitrary scale factor is the same for all lines. In general, a
linear combination of lines which are not coplanar is a screw (or bivector) which cannot be
reduced to a line. However, every screw can be expressed as a sum of two lines. In fact, any
screw S can be resolved into the sum of a line passing through a given point p and a line
Iying in a given plane Π which does not contain p. This can be proved from the identity

(S ∧ p) · Π̃ = S(p · Π̃) − (S · Π̃) ∧ p ,

an application of (2.16). Adjusting the magnitude of the vector Π̃ = ΠI−1 so that p∧Π =

(p · Π̃)I = I, we have

S = (S · Π̃) ∧ p + (S ∧ p) · Π̃ . (5.15)

The first term on the right is obviously a 2-blade because S · Π̃ is a vector, and the second
term is a 2-blade because the trivector S ∧ p is necessarily a blade in G4 even if S is not.
Thus (5.15) is the desired resolution of an arbitrary screw S into two lines. The result

can be expressed in terms of meet and join by writing a = s · Π̃ = −S̃ · Π = −S ∨ Π and
Φ = −S ∧ p so that (S ∧ p) · Π̃ = −Φ · Π̃ = Φ̃ · Π = Φ ∧ Π. Then (5.15) takes the form

S = a ∧ p + Φ ∨ Π . (5.16)

The screw S is a line if and only if the lines on the right side of this decomposition intersect.
A bivector S is a blade (or line) if and only if S ∧S = 0. For if S is expressed as a linear

combination

S = λL + M (5.17)

of lines L and M , then S ∧ S = 2λL∧M , which vanishes if and only if L and M intersect.
If S ∧ S 6= 0, then the lines L and M are said to be conjugate with respect to S.

Every line L has a unique conjugate M with respect to a given screw S. For if M is
defined in terms of S and L by (5.17), then we require

M ∧ M = (S − λL) ∧ (S − λL) = 0 ,
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which is satisfied only if λ has the unique value

λ =
1

2

S ∧ S

L ∧ S
. (5.18)

A line N is said to be a null line of a bivector S if S ∧ N = 0. (This is not to be confused
with the more common metrical definition of a ‘null line’ used in relativity.) The set of all
null lines of S is called a linear complex if S∧S 6= 0 or a special linear complex if S∧S = 0.
In the latter case, S is a line and its null lines are those lines which intersect it. In the former
case, if L is any line intersected by N , then the conjugate of L with respect to S is also
intersected by N . This follows immediately from (5.17); thus, M∧N = S∧N−λL∧N = 0.
It follows that any line intersecting a pair of lines which are conjugate with respect to S is a
null line of S. On the other hand, it is easily proved that if every null line which intersects
the line L also intersects a line M , then L and M are conjugate.

Two screws S, S′ are said to be reciprocal if S ∧ S′ = 0. In this case, if L is a null
line of S′, then its conjugate M with respect to S is also a null line of S′. For by (5.17),
S′ ∧ M = S′ ∧ (S − λL) = 0.

The set of all linear combinations of two independent bivectors S′ 6= S is called a pencil
of bivectors, or, in geometric parlance, a pencil of linear complexes. A pencil of bivectors
contains two, one, or no lines according as

(S + λS′) ∧ (S + λS′) = S ∧ S + λ(S ∧ S′ + S′ ∧ S) + λ2S′ ∧ S′ = 0 (5.19)

has two, one, or no real roots for λ. With respect to the pencil of linear complexes, these
two uniquely determined lines, if they exist, are called directrices and represent the special
linear complexes of the pencil.

A line which is a null line for every linear complex of a pencil is a null line for each of
its special linear complexes; hence it intersects both directrices (if they exist). Conversely,
every line which intersects both directrices is a common null line of all linear complexes of
the pencil. From this we conclude that the directrices of a pencil of linear complexes are
conjugate lines with respect to every complex of the pencil.

The concept of duality enables us to relate properties of linear complexes to properties
of quadrics. If S is a bivector distinct from its dual S̃ = SI−1 then S̃ and S define a pencil
of linear complexes with directrices determined by the equation

(S + λS̃) ∧ (S + λS̃) = S ∧ S + 2λ(S · S̃) + λ2S̃ ∧ S̃

= S ∧ S + 2λI(S · S) + λ2I2S ∧ S

= S ∧ S

(
1 + 2λI

S · S

S ∧ S
+ λ2I2

)
= 0 . (5.20)

The unit pseudoscalar satisfies I2 = ±1, depending on the signature. Therefore, the solu-
tions of (5.20) are of the form ±λ0, +1/λ0, and the two directrices D1, D2 are

Dl = S + λ0S̃, D2 = ±λ0S + S̃ .

It follows that D̃1 = D2 and D̃2 = ±D1; in other words, D1 and D2 are polar lines with
respect to the quadric determined by the nondegenerate inner product. D1 and D2 exist
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and are distinct if and only if (S · S)2 > I2(S ∧ S)2; they are coincident if and only if
(S · S)2 = I2(S ∧ S)2.

We are now able to prove a theorem which plays a significant role in the kinematics
of projective metric spaces. (In fact, for Euclidean and hyperbolic spaces it implies the
existence and uniqueness of a screw axis for any given moment of a motion.) The theorem
says that in any linear complex S with (S · S)2 > I2(S ∧ S)2 there are exactly two lines
which are conjugate with respect to S as well as polar with respect to a given quadric
(determined by the inner product). In fact, these two lines are the directrices of the pencil

determined by S and S̃ (see above). If there were another such pairs of lines, say E and Ẽ,

which are not directrices of the pencil, then we would have S = E+µẼ, hence S̃ = Ẽ±µE.
Accordingly, E and Ẽ would be directrices of the pencil, in contradiction to the assumption.

6. Discussion

Projective geometry can be developed using synthetic or analytic methods. The two meth-
ods seem so different that synthetic and analytic geometries have developed in parallel into
what some regard as independent branches of mathematics. The analytic method turned
out to be the more powerful of the two. While synthetic geometry has stagnated in the
twentieth century, the analytic method has flowered through linear algebra to diverse appli-
cations throughout mathematics. Synthetic geometry has survived, nevertheless, because
it has decided advantages. Unfortunately, those advantages are not readily available to
mathematicians schooled only in the analytic method. We think that the gap between
synthetic and analytic approaches should be regarded as a deficiency in the design of math-
ematical systems. The greater range and flexibility of the analytic approach suggests that
this deficiency can be corrected by redesigning analytic tools and methods to accommo-
date synthetic ideas. We see our present formulations of projective geometry in terms of
geometric algebra as a step in a redesign process started by Grassmann.

The coordinate-free formulation of projective geometry in terms of geometric algebra is
clearly much closer to the synthetic formulation than the traditional formulation in terms of
coordinates. It provides direct algebraic representations of the synthetic primitives ‘point,
line, plane’ and their relations such as ‘incident’ and ‘dual.’ The theory of duality is one
of the most powerful and yet elementary means to prove a host of theorems in projective
geometry, so its algebraic counterpart should be equally powerful and elementary. The
duality operator in geometric algebra satisfies this requirement perfectly, which cannot be
said of the indirect representation for duality in conventional linear algebra.

Synthetic geometry is much more than a system of primitive elements and relations.
It is a system of constructs with interpretations as geometrical structures which we can
apprehend as conceptual units transcending their primitive constituents. The ultimate goal
of the theory is to develop a hierarchy of geometrical structures based on a morphology
of geometrical objects. Hence, an ideal algebraic system for modeling these characteristics
should enable us to deal with geometrical objects directly without distracting reference to
subordinate structures such as coordinate systems. Geometric algebra has this advantage
over traditional approaches.

Synthetic geometry is intimately related to diagrammatic representations of geometric
concepts. Only the simplest projective constructs, such as the configurations of Desargues
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and Pappus, can be fully represented by diagrams. However, it may be possible and it
would certainly be desirable to develop new diagrammatic representations for more complex
concepts. Of course, diagrams have no place in the formal theory, but it must be admitted
that synthetic constructs and the diagrams that go with them are engines of discovery and
development in the theory. How would one be led, for instance, to the rigorous algebraic
formulation of Desargues’ theorem without a diagram depicting the system of relations
involved? We believe that in the pursuit of rigor the significance of diagrams in mathematics
has been underestimated. Diagrams are as important in understanding and applying a
mathematical theory as in developing it. We submit that synthetic constructs and their
associated diagrams perform an essential organizing function within projective geometry.
We propose this as a design principle for integrating the synthetic and analytic approaches.

The algebraic identities underlying the theorems of projective geometry are, of course,
significant in metrical geometry as well. As ably exposed in [1], they belong to the vast
system of identities in classical invariant theory. Since the formalism developed in [1]
is subsumed by the formalism in this article, invariant theory can be given an efficient,
coordinate-free formulation in terms of geometric algebra. To the end of unifying math-
ematics, there is a great need for organizing the multifarious results and applications of
invariant theory, even after deciding that geometric algebra is the appropriate language.
We see this as a need for elucidating the ‘synthetic structure’ of invariant theory, a gen-
eralization of the problem of integrating synthetic and algebraic approaches to projective
geometry. To be more specific about what needs to be done, we note that miscellaneous
relations between projective and metrical geometries have been noticed by many different
people. For example, Fano and Racah [4] have observed that the graphical representation
of angularmomentum recoupling coefficients in quantum mechanics has a ‘Desarguesian
structure’ if triads of quantum numbers are represented by three points on a line. This
has been further elaborated by Robinson [15] and Judd [13]. However, as Judd noted in
his concluding remarks, ‘the deeper issue of why projective geometry should play a role at
all has not been discussed.’ Indeed, such isolated fragments of the synthetic structure of
invariant theory deserve to be studied systematically.

Appendix

The most comprehensive and systematic applications of Grassmann algebra to geometry are
given by Whitehead [20] and Forder [5]. By and large they employ the notations of Grass-
mann. To facilitate the translations of these rich stores of theorems and examples into the
language of geometric algebra, we provide the following brief guide with the nomenclature
and notation of Whitehead in quotation marks.

An ‘extensive magnitude of order r’ is an r-vector; it is said to be ‘simple’ if it is a blade
or ‘compound’ otherwise. The outer product of blades A and B is called the ‘combinatorial
product’ and written ‘(AB)’. The ‘supplement |A’ of blade A is essentially its dual. In
geometric algebra it can be defined by

|A = A†I , (A1)

where I is the unit pseudoscalar. This is identical to Grassmann’s supplement if a Euclidean
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signature is adopted so that I†I = 1. By (2.19),

| |A = (A†I)†I = I†AI = (−1)r(n−r)A . (A2)

For arbitrary signature the definition (A1) is identical to Whitehead’s ‘extended supple-
ment.’ Whitehead applied it to the theory of poles and polars with respect to quadrics
determined by the corresponding inner product (see [20,§§108–124]).

Following Grassmann, Whitehead eventually uses the notation ‘AB’ for both ‘regressive’
and ‘progressive’ products, depending on context to remove the ambiguity. The ‘regressive’
product ‘AB’ of two blades A, B of step r, s with r + s > n is defined in terms of the
‘progressive product’ of |A with |B by

‘|AB = (|A |B)′ . (A3)

If r + s < n, then ‘AB’ denotes a ‘progressive product’ while ‘|A |B’ is ‘regressive,’ as
expressed by

‘|(AB) = |A |B′ . (A4)

For r + s = n both interpretations are allowed.
In our notation (A3) and (A4) correspond to the following relations

(A ∨ B)†I = (A†I) ∧ (B†I) if r + s > n ,

(A ∧ B)†I = (A†I) ∨ (B†I) if r + s < n , (A5)

(A ∧ B)†I = (A ∨ B)†I = [AB] if r + s = n .

Whitehead expands ‘regressive products’ using his ‘extended rule of the middle factor’
[20, §103] which is equivalent to using (2.16) to expand (2.17) with B = I.

Multiple products in Grassmann’s notation must be read from left to right. The rules
given above uniquely determine whether a given product between two blades is ‘progressive’
or ‘regressive.’ Grassmann avoids parentheses by introducing periods as markers. As
examples showing how, take a, b, c, d, x as points and A, B, C, D, X as lines in a plane,
and consider the translations

x = ‘ABa · bc′ = ((A ∨ B) ∧ a) ∨ (b ∧ c),

X = “ABaCbDc” = (((((A ∨ B) ∧ a) ∨ C) ∧ b) ∨ D) ∧ c,

‘(xaAB)(xcAb · ad · xc)’

= {((x ∧ a) ∨ A) ∧ B} {((((x ∧ c) ∨ A) ∧ b) ∨ (a ∧ d)) ∧ (x ∧ c)}

= [((x ∧ a) ∨ A)B] 〈 ((x ∧ c) ∨ A) ∧ b a ∧ d x ∧ c 〉.
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