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Chapter 1. About Raspberry Pi Pico
Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip.

Figure 1. The

Raspberry Pi Pico

Rev3 board.

Raspberry Pi Pico has been designed to be a low cost yet flexible development platform for RP2040, with the following

key features:

• RP2040 microcontroller with 2MB Flash

• Micro-USB B port for power and data (and for reprogramming the Flash)

• 40 pin 21×51 'DIP' style 1mm thick PCB with 0.1" through-hole pins also with edge castellations

◦ Exposes 26 multi-function 3.3V General Purpose I/O (GPIO)

◦ 23 GPIO are digital-only and 3 are ADC capable

◦ Can be surface mounted as a module

• 3-pin ARM Serial Wire Debug (SWD) port

• Simple yet highly flexible power supply architecture

◦ Various options for easily powering the unit from micro-USB, external supplies or batteries

• High quality, low cost, high availability

• Comprehensive SDK, software examples and documentation

For full details of the RP2040 microcontroller please see the RP2040 Datasheet, however the headline features are:

• Dual-core cortex M0+ at up to 133MHz

◦ On-chip PLL allows variable core frequency

• 264kB multi-bank high performance SRAM

• External Quad-SPI Flash with eXecute In Place (XIP) and 16kB on-chip cache

• High performance full-crossbar bus fabric
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• On-board USB1.1 (device or host)

• 30 multi-function General Purpose IO (4 can be used for ADC)

◦ 1.8-3.3V IO Voltage (NOTE Pico IO voltage is fixed at 3.3V)

• 12-bit 500ksps Analogue to Digital Converter (ADC)

• Various digital peripherals

◦ 2 × UART, 2 × I2C, 2 × SPI, 16 × PWM channels

◦ 1 × Timer with 4 alarms, 1 × Real Time Counter

• 2 × Programmable IO (PIO) blocks, 8 state machines total

◦ Flexible, user-programmable high-speed IO

◦ Can emulate interfaces such as SD Card and VGA

Pico provides minimal (yet flexible) external circuitry to support the RP2040 chip: flash (Winbond W25Q16JV), crystal

(Abracon ABM8-272-T3), power supplies and decoupling, and USB connector. The majority of the RP2040

microcontroller pins are brought to the user IO pins on the left and right edge of the board. Four RP2040 IO are used for

internal functions - driving an LED, on-board Switched Mode Power Supply (SMPS) power control and sensing the

system voltages.

Pico has been designed to use either soldered 0.1" pin-headers (it is one 0.1" pitch wider than a standard 40-pin DIP

package) or can be used as a surface mountable 'module', as the user IO pins are also castellated. There are SMT pads

underneath the USB connector and BOOTSEL button, which allow these signals to be accessed if used as a reflow-

soldered SMT module.

Figure 2. The pinout of

the Raspberry Pi Pico

Rev3 board

Pico uses an on-board buck-boost SMPS which is able to generate the required 3.3V (to power RP2040 and external

circuitry) from a wide range of input voltages (~1.8 to 5.5V). This allows significant flexibility in powering the unit from

various sources such as a single Lithium-Ion cell, or 3 AA cells in series. Battery chargers can also be very easily

integrated with the Pico powerchain.

Reprogramming the Pico Flash can be done using USB (simply drag and drop a file onto the Pico which appears as a

mass storage device), or the standard Serial Wire Debug (SWD) port can reset the system and load and run code

without any button presses. The SWD port can also be used to interactively debug code running on the RP2040.
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Getting started with Raspberry Pi Pico

The Getting started with Raspberry Pi Pico-series book walks through loading programs onto the

board, and shows how to install the C/C++ SDK and build the example C programs. See the Raspberry

Pi Pico-series Python SDK book to get started with MicroPython, which is the fastest way to get code

running on Pico.

1.1. Raspberry Pi Pico design files

The source design files, including the schematic and PCB layout, are made available openly, with no limitations.

Schematic The full schematic is reproduced in Appendix B. The schematic is also distributed alongside the

layout files here.

Layout The full CAD files, including PCB layout, can be found here. Note that Raspberry Pi Pico was

designed in Cadence Allegro PCB Editor, and opening in other PCB CAD packages requires an

import script or plugin.

STEP 3D A STEP 3D model of Raspberry Pi Pico, for 3D visualisation and fit check of designs which include

Raspberry Pi Pico as a module, can be found here.

Fritzing A Fritzing part for use in e.g. breadboard layouts can be found here.

Permission to use, copy, modify, and/or distribute this design for any purpose with or without fee is hereby granted.

THE DESIGN IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS DESIGN

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE

LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS DESIGN.

Other RP2040 design resources

The Hardware design with RP2040 book walks through designing a minimal RP2040-based 2-layer

board (KiCad files here), and another board which uses Raspberry Pi Pico as a module (KiCad files

here), explaining the relevant design considerations along the way, at both the schematic and layout

level.
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Chapter 2. Mechanical specification
The Raspberry Pi Pico is a single sided 51×21mm 1mm thick PCB with a micro-USB port overhanging the top edge and

dual castellated/through-hole pins around the remaining edges. Pico is designed to be usable as a surface mount

module as well as being in Dual Inline Package (DIP) type format, with the 40 main user pins on a 2.54mm (0.1") pitch

grid with 1mm holes and hence compatible with veroboard and breadboard. Pico also has 4× 2.1mm (± 0.05mm) drilled

mounting holes to provide for mechanical fixing, see Figure 3.

Figure 3. The

dimensions of the

Raspberry Pi Pico

Rev3 board.

2.1. Raspberry Pi Pico pinout

The Pico pinout has been designed to directly bring out as much of the RP2040 GPIO and internal circuitry function as

possible, while also providing a suitable number of ground pins to reduce EMI (Electro Magnetic Interference) and

signal crosstalk. This is important in general but especially for RP2040 which is built on a modern 40nm silicon process

and hence the digital IO edge rates are very fast.
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Figure 4. The pin

numbering of the

Raspberry Pi Pico

Rev3 board.

 NOTE

The physical pin numbering is shown in Figure 4, for the pin allocation see Figure 2 or the full Raspberry Pi Pico

schematics in Appendix B.

A few RP2040 GPIO pins are used for internal board functions, these are:

GPIO29 IP Used in ADC mode (ADC3) to measure VSYS/3

GPIO25 OP Connected to user LED

GPIO24 IP VBUS sense - high if VBUS is present, else low

GPIO23 OP Controls the on-board SMPS Power Save pin (Section 4.4)

Apart from GPIO and ground pins, there are 7 other pins on the main 40-pin interface:

PIN40 VBUS

PIN39 VSYS

PIN37 3V3_EN

PIN36 3V3

PIN35 ADC_VREF

PIN33 AGND

PIN30 RUN

VBUS is the micro-USB input voltage, connected to micro-USB port pin 1. This is nominally 5V (or 0V if the USB is not

connected or not powered).

VSYS is the main system input voltage, which can vary in the allowed range 1.8V to 5.5V, and is used by the on-board

SMPS to generate the 3.3V for the RP2040 and its GPIO.

3V3_EN connects to the on-board SMPS enable pin, and is pulled high (to VSYS) via a 100kΩ resistor. To disable the

3.3V (which also de-powers the RP2040), short this pin low.
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3V3 is the main 3.3V supply to RP2040 and its I/O, generated by the on-board SMPS. This pin can be used to power

external circuitry (maximum output current will depend on RP2040 load and VSYS voltage, it is recommended to keep

the load on this pin less than 300mA).

ADC_VREF is the ADC power supply (and reference) voltage, and is generated on Pico by filtering the 3.3V supply. This

pin can be used with an external reference if better ADC performance is required.

AGND is the ground reference for GPIO26-29, there is a separate analog ground plane running under these signals and

terminating at this pin. If the ADC is not used or ADC performance is not critical, this pin can be connected to digital

ground.

RUN is the RP2040 enable pin, and has an internal (on-chip) pull-up resistor to 3.3V of about ~50kΩ. To reset RP2040,

short this pin low.

Finally, there are also 6 Test Points (TP1-TP6) which can be accessed if required, for example if using as a surface

mount module. These are:

TP1 Ground (close coupled ground for differential USB signals)

TP2 USB DM

TP3 USB DP

TP4 GPIO23/SMPS PS pin (do not use)

TP5 GPIO25/LED (not recommended to be used)

TP6 BOOTSEL

TP1, TP2 and TP3 can be used to access the USB signals instead of using the micro-USB port. TP6 can be used to drive

the system into mass-storage USB programming mode (by shorting it low at power-up). Note that TP4 is not intended to

be used externally, and TP5 is not really recommended to be used as it will only swing from 0V to the LED forward

voltage (and hence can only really be used as an output with special care).

2.2. Surface-mount footprint

The following footprint (Figure 5) is recommended for systems which will be reflow-soldering Pico units as modules.
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Figure 5. The SMT

footprint of the

Raspberry Pi Pico

Rev3 board.

The footprint shows the test point locations and pad sizes as well as the 4 USB connector shell ground pads (A,B,C,D).

The USB connector on Pico is a through-hole part, which provides it with mechanical strength. The USB socket pins do

not protrude all the way through the board, however solder does pool at these pads during manufacture and can stop

the module sitting completely flat. Hence we provide pads on the SMT module footprint to allow this solder to reflow in

a controlled manner when Pico goes through reflow again.

For test points that are not used, it is acceptable to void any copper under these (with suitable clearance) on the carrier

board.

Through trials with customers, we have determined that the paste stencil must be bigger than the footprint. Over-

pasting the pads ensures the best possible results when soldering. The following paste stencil (Figure 6) indicates the

dimensions of solder paste zones on the Pico. We recommend paste zones 163% larger than the footprint.
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Figure 6. The paste

stencil of the

Raspberry Pi Pico

Rev3 board.
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2.3. Recommended operating conditions

Operating conditions for the Raspberry Pi Pico are largely a function of the operating conditions specified by its

components.

Operating Temp Max 85°C (including self-heating)

Operating Temp Min -20°C

VBUS 5V ± 10%.

VSYS Min 1.8V

VSYS Max 5.5V

Note that VBUS and VSYS current will depend on use-case, some examples are given in the next section.

Recommended maximum ambient temperature of operation is 70°C.
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Chapter 3. Electrical specification

3.1. Power consumption

The power consumption tables and graphs show the VBUS current consumption on three typical Raspberry Pi Pico

devices, with four different software use cases. These results are not guaranteed maximum values; they are an

indication of the current consumption a user can typically expect the device to draw when used in these scenarios.

For more detailed current consumption data, please see the RP2040 Datasheet.

3.1.1. Popcorn

The 'Popcorn' media player demo uses the VGA, SD card, and audio board. This demo uses VGA video, I2S audio and 4-

bit SD card access. This has been performed both with power-saving mode (Table 1), and without power-saving mode

(Table 2). The power saving (PS) mode of Raspberry Pi Pico’s voltage regulator is controlled by GPIO23. The 'Average'

data shows the mean current consumption over several seconds of video, with varying colour and intensity. The

'Maximum' data is obtained during periods of white video, when the current required is at its highest.

Table 1. Popcorn

running on the VGA

board (VGA video, SD

card and I2S audio)

Pico board Average VBUS current @5V (mA) Maximum VBUS current @5V (mA)

Temperature (°C) Temperature (°C)

-25 25 85 -25 25 85

#1 84.8 83.4 87.3 90.9 87.8 93.1

#2 87.5 89.9 89.8 93.4 94.1 94.0

#3 84.4 86.2 86.9 90.6 92.9 91.3

Mean 85.6 86.5 88.0 91.6 91.6 92.8

 NOTE

Includes current consumed by VGA board (e.g. I2S DAC) in addition to the Raspberry Pi Pico. For more information

on the VGA board see the Hardware design with RP2040 book.
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Figure 7. Popcorn

running on the VGA

board (average

current)

Figure 8. Popcorn

running on the VGA

board (maximum

current)

Table 2. Popcorn

running on the VGA

board (VGA video, SD

card and I2S audio)

with power saving

disabled (GPIO23

pulled high)

Pico board Average VBUS current @5V (mA) Maximum VBUS current @5V (mA)

Temperature (°C) Temperature (°C)

-25 25 85 -25 25 85

#1 90.3 89.3 90.7 94.6 94.5 95.6

#2 91.2 87.1 90.6 95.4 91.0 95.5

#3 90.8 90.2 91.6 95.0 95.1 95.3

Mean 90.8 88.9 91.0 95.0 93.5 95.5
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Figure 9. Popcorn

running on the VGA

board (average

current) with power

saving disabled

(GPIO23 pulled high)

Figure 10. Popcorn

running on the VGA

board (maximum

current) with power

saving disabled

(GPIO23 pulled high)

3.1.2. BOOTSEL mode

Table 3 describes the BOOTSEL mode of RP2040. These measurements are made both with and without USB activity on

the bus, using a Raspberry Pi 4 as a host.

Table 3. BOOTSEL

mode
Pico board USB idle VBUS current @5V (mA) USB active VBUS current @5V (mA)

Temperature (°C) Temperature (°C)

-25 25 85 -25 25 85

#1 9.05 8.50 8.87 10.19 9.66 10.00

#2 9.58 9.12 9.20 10.64 10.35 10.36

#3 9.45 8.63 8.99 10.75 9.81 10.08
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Mean 9.4 8.7 9.0 10.5 9.9 10.1

Figure 11. BOOTSEL

mode, idle current.

Figure 12. BOOTSEL

mode, active current.

3.1.3. DORMANT mode

This use-case employs the hello_dormant binary which puts RP2040 into DORMANT mode, a very low-power state.

Table 4. Raspberry Pi

Pico running the

hello_dormant binary.

Board is in DORMANT

mode

Pico board VBUS current @5V (mA)

Temperature (°C)

-25 25 85

#1 1.16 0.78 1.34

#2 1.19 0.92 1.40
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#3 1.29 0.85 1.33

Mean 1.2 0.8 1.4

Figure 13. Raspberry

Pi Pico running the

hello_dormant binary.

Board is in DORMANT

mode.

3.1.4. SLEEP mode

The final example uses the hello_sleep binary code, which puts RP2040 into SLEEP mode, a low power state which leaves

some clock infrastructure in the chip turned on (which is not the case in the lower-power DORMANT mode).

Table 5. Raspberry Pi

Pico running the

hello_sleep binary.

Board is in SLEEP

mode.

Pico board VBUS current @5V (mA)

Temperature (°C)

-25 25 85

#1 1.35 1.30 1.81

#2 1.53 1.39 1.92

#3 1.40 1.32 1.92

Mean 1.4 1.3 1.9
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Figure 14. Raspberry

Pi Pico running the

hello_sleep binary.

Board is in SLEEP

mode.
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Chapter 4. Applications information

4.1. Programming the flash

The on-board 2MB QSPI Flash can be (re)programmed either using the Serial Wire Debug port or by the special USB

Mass Storage Device mode.

The simplest way to reprogram the Pico’s Flash is to use the USB mode. To do this, depower the board, then hold the

BOOTSEL button down during board power-up (e.g. hold BOOTSEL down while connecting the USB). The Pico will then

appear as a USB Mass Storage Device. Dragging a special '.uf2' file onto the disk will write this file to the Flash and

restart the Pico.

The USB boot code is stored in ROM on RP2040, so can not be accidentally overwritten.

To get started using the SWD port see the Debugging with SWD section in the Getting started with Raspberry Pi Pico-

series book.

4.2. General purpose I/O

The Raspberry Pi Pico’s GPIO is powered from the on-board 3.3V rail and is therefore fixed at 3.3V.

The Pico exposes 26 of the 30 possible RP2040 GPIO pins by routing them straight out to Pico header pins. GPIO0 to

GPIO22 are digital only and GPIO 26-28 are able to be used either as digital GPIO or as ADC inputs (software

selectable).

One thing to note is that the ADC capable GPIO26-29 have an internal reverse diode to the VDDIO (3V3) rail and so the

input voltage must not exceed VDDIO plus about 300mV. Also, if the RP2040 is unpowered, applying a voltage to these

GPIO pins will 'leak' through the diode into the VDDIO rail. Normal digital GPIO pins 0-25 (and also the debug pins) do

not have this restriction and therefore voltage can safely be applied to these pins when RP2040 is unpowered.

4.3. Using the ADC

The RP2040 ADC does not have an on-board reference and therefore uses its own power supply as a reference. On Pico

the ADC_AVDD pin (the ADC supply) is generated from the SMPS 3.3V by using an R-C filter (201Ω into 2.2μF). This is a

simple solution but does have the following drawbacks:

1. We are relying on the 3.3V SMPS output accuracy which isn’t great

2. We can only do so much filtering and therefore ADC_AVDD will be somewhat noisy

3. The ADC draws current (about 150μA if the temperature sense diode is disabled, but it varies from chip to chip)

and therefore there will be an inherent offset of about 150μA*200 = ~30mV. There is a small difference in current

draw when the ADC is sampling (about +20μA) so that offset will also vary with sampling as well as operating

temperature.

Changing the resistance between the ADC_VREF and 3V3 pin can reduce the offset at the expense of more noise -

which may be OK especially if the use case can support averaging over multiple samples.

Driving high the SMPS mode pin (GPIO23), to force the power supply into PWM mode, can greatly reduce the inherent

ripple of the SMPS at light load, and therefore the ripple on the ADC supply. This does reduce the power efficiency of the

board at light load, so the low-power PFM mode can be re-enabled between infrequent ADC measurements by driving

GPIO23 low once more. See Section 4.4.

The ADC offset can be reduced by tying a second channel of the ADC to ground, and using this zero-measurement as an
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approximation to the offset.

For much improved ADC performance, an external 3.0V shunt reference, such as LM4040, can be connected from the

ADC_VREF pin to ground. Note that if doing this the ADC range is limited to 0-3.0V signals (rather than 0-3.3V), and the

shunt reference will draw continuous current through the 200Ω filter resistor (3.3V-3.0V)/200 = ~1.5mA.

Note that the 1Ω resistor on Pico (R9) is designed to (maybe) help with shunt references that would otherwise become

unstable when directly connected to 2.2μF. It also makes sure there is a little filtering even in the case that 3.3V and

ADC_VREF are shorted together (which is a valid thing to do if you don’t care about noise and want to reduce the

inherent offset).

Finally, R7 is a physically large 1608 metric (0603) package resistor, so can be relatively easily removed if a user wants

to isolate ADC_VREF and do their own thing with the ADC voltage, for example powering it from an entirely separate

voltage (e.g. 2.5V). Note that the ADC on RP2040 has only been qualified at 3.0/3.3V but should work down to about 2V.

4.4. Powerchain

Raspberry Pi Pico has been designed with a simple yet flexible power supply architecture and can easily be powered

from other sources such as batteries or external supplies. Integrating the Pico with external charging circuits is also

straightforward. Figure 15 shows the power supply circuitry.

Figure 15. The

powerchain of the

Raspberry Pi Pico

Rev3 board.

VBUS is the 5V input from the micro-USB port, which is fed through a Schottky diode to generate VSYS. The VBUS to

VSYS diode (D1) adds flexibility by allowing power ORing of different supplies into VSYS.

VSYS is the main system 'input voltage' and feeds the RT6150 buck-boost SMPS, which generates a fixed 3.3V output

for the RP2040 device and its IO (and can be used to power external circuitry). VSYS is R-C filtered and divided by 3 (by

R5, R6 and C3 in the Pico schematic) and can be monitored on ADC channel 3. This can be used for example as a crude

battery voltage monitor.

The buck-boost SMPS, as its name implies, can seamlessly switch from buck to boost mode, and therefore can

maintain an output voltage of 3.3V from a wide range of input voltages, ~1.8V to 5.5V, which allows a lot of flexibility in

the choice of power source.

GPIO24 monitors the existence of VBUS, while R10 and R1 act to pull VBUS down to make sure it is 0V if VBUS is not

present.

GPIO23 controls the RT6150 PS (Power Save) pin. When PS is low (the default on Pico) the regulator is in Pulse

Frequency Modulation mode, which, at light loads, saves considerable power by only turning on the switching MOSFETs

occasionally to keep the output capacitor topped up. Setting PS high forces the regulator into Pulse Width Modulation

(PWM) mode. PWM mode forces the SMPS to switch continuously, which reduces the output ripple considerably at light

loads (which can be good for some use cases) but at the expense of much worse efficiency. Note that under heavy load

the switcher will be in PWM mode irrespective of the PS pin state.

The SMPS EN pin is pulled up to VSYS by a 100kΩ resistor and made available on Pico pin 37. Shorting this pin to

ground will disable the switcher and put it into a low power state.
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 NOTE

The RP2040 has an on-chip linear regulator (LDO) that powers the digital core at 1.1V (nominal) from the 3.3V

supply, which is not shown in Figure 15.

4.5. Powering Pico

The simplest way to power Pico is to plug in the micro-USB, which will power VSYS (and therefore the system) from the

5V USB VBUS voltage, via D1 (so VSYS becomes VBUS minus the Schottky diode drop).

If the USB port is the only power source, VSYS and VBUS can be safely shorted together to eliminate the Schottky diode

drop (which improves efficiency and reduces ripple on VSYS).

If the USB port is not going to be used, it is safe to power Pico by connecting VSYS to your preferred power source (in

the range ~1.8V to 5.5V).

 IMPORTANT

If you are using Raspberry Pi Pico in USB Host mode (e.g. using one of the TinyUSB host examples) then you must

power Pico by providing 5V to the VBUS pin.

The simplest way to safely add a second power source to Pico is to feed it into VSYS via another Schottky diode (see

Figure 16). This will 'OR' the two voltages, allowing the higher of either the external voltage or VBUS to power VSYS, with

the diodes preventing either supply from back-powering the other. For example a single Lithium-Ion cell* (cell voltage

~3.0V to 4.2V) will work well, as will 3×AA series cells (~3.0V to ~4.8V) and any other fixed supply in the range ~2.3V to

5.5V. The downside of this approach is that the second power supply will suffer a diode drop in the same way as VBUS

does, and this may not be desirable from an efficiency perspective or if the source is already close to the lower range of

input voltage allowed for the RT6150.

Figure 16. Raspberry

Pi Pico power ORing

using diodes.

An improved way to power from a second source is using a P-channel MOSFET (P-FET) to replace the Schottky diode as

shown in Figure 17. Here, the gate of the FET is controlled by VBUS, and will disconnect the secondary source when

VBUS is present. The P-FET should be chosen to have low on resistance, and therefore overcomes the efficiency and

voltage-drop issues with the diode-only solution.

Note that the Vt (threshold voltage) of the P-FET must be chosen to be well below the minimum external input voltage,

to make sure the P-FET is turned on swiftly and with low resistance. When the input VBUS is removed, the P-FET will not

start to turn on until VBUS drops below the P-FET’s Vt, meanwhile the body diode of the P-FET may start to conduct
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(depending on whether Vt is smaller than the diode drop). For inputs that have a low minimum input voltage, or if the P-

FET gate is expected to change slowly (e.g. if any capacitance is added to VBUS) a secondary Schottky diode across

the P-FET (in the same direction as the body diode) is recommended. This will reduce the voltage drop across the P-

FET’s body diode.

An example of a suitable P-MOSFET for most situations is Diodes DMG2305UX which has a maximum Vt of 0.9V and

Ron of 100mΩ (at 2.5V Vgs).

Figure 17. Raspberry

Pi Pico power ORing

using P channel

MOSFET.

 CAUTION

If using Lithium-Ion cells they must have, or be provided with, adequate protection against over-discharge, over-

charge, charging outside allowed temperature range, and overcurrent. Bare, unprotected cells are dangerous and can

catch fire or explode if over-discharged, over-charged or charged / discharged outside their allowed temperature

and/or current range.

4.6. Using a battery charger

Pico can also be used with a battery charger. Although this is a slightly more complex use case it is still straightforward.

Figure 18 shows an example of using a 'Power Path' type charger (where the charger seamlessly manages swapping

between powering from battery or powering from the input source and charging the battery, as needed).
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Figure 18. Using

Raspberry Pi Pico with

a charger.

In the example we feed VBUS to the input of the charger, and we feed VSYS with the output via the previously mentioned

P-FET arrangement. Depending on your use case you may also want to add a Schottky diode across the P-FET as

described in the previous section.

4.7. USB

RP2040 has an integrated USB1.1 PHY and controller which can be used in both Device and Host mode. Pico adds the

two required 27Ω external resistors and brings this interface to a standard micro-USB port.

The USB port can be used to access the USB bootloader (BOOTSEL mode) stored in the RP2040 boot ROM. It can also

be used by user code, to access an external USB device or host.

4.8. Debugging

Raspberry Pi Pico brings the RP2040 Serial Wire Debug (SWD) interface to a 3 pin debug header on the lower edge of

the board. To get started using the debug port see the Debugging with SWD section in the Getting started with

Raspberry Pi Pico-series book.

 NOTE

The RP2040 chip has internal pull up resistors on the SWDIO and SWCLK pins, both nominally 60kΩ.
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Appendix A: Availability
Raspberry Pi guarantee availability of the Raspberry Pi Pico product until at least January 2028.

Support

For support see the Pico section of the Raspberry Pi website, and post questions on the Raspberry Pi forum.

Ordering code

Table 6. Part Number
Model Order Code EAN Minimal Order

Quantity

RRP

Raspberry Pi Pico SC0915 5056561801445 1+ pcs / Bulk US$4.00

SC0916 0617588405587 1+ pcs / Bulk US$4.00

Raspberry Pi Pico H SC0917 5056561803180 1+ pcs / Bulk US$5.00

 NOTE

RRP was correct at time of publication and excludes taxes.
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Appendix B: Pico schematic
See Figure 19 on the following page.
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Figure 19. The

Raspberry Pi Pico

Rev3 board schematic.
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Appendix C: Pico component
locations

Figure 20. The

Raspberry Pi Pico

Rev3 board

component locations.
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Appendix D: Documentation release
history

Table 7.

Documentation

release history

Release Date Description

1.0 21 Jan 2021 • Initial release

1.1 26 Jan 2021 • Minor corrections

• Extra information about using DMA with ADC

• Clarified M0+ and SIO CPUID registers

• Added more discussion of Timers

• Update Windows and macOS build instructions

• Renamed books and optimised size of output PDFs

1.2 01 Feb 2021 • Minor corrections

• Small improvements to PIO documentation

• Added missing TIMER2 and TIMER3 registers to DMA

• Explained how to get MicroPython REPL on UART

• To accompany the V1.0.1 release of the C SDK

1.3 23 Feb 2021 • Minor corrections

• Changed font

• Additional documentation on sink/source limits for RP2040

• Major improvements to SWD documentation

• Updated MicroPython build instructions

• MicroPython UART example code

• Updated Thonny instructions

• Updated Project Generator instructions

• Added a FAQ document

• Added errata E7, E8 and E9

1.3.1 05 Mar 2021 • Minor corrections

• To accompany the V1.1.0 release of the C SDK

• Improved MicroPython UART example

• Improved Pinout diagram

1.4 07 Apr 2021 • Minor corrections

• Added errata E10

• Note about how to update the C SDK from Github

• To accompany the V1.1.2 release of the C SDK
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Release Date Description

1.4.1 13 Apr 2021 • Minor corrections

• Clarified that all source code in the documentation is under the

3-Clause BSD license.

1.5 07 Jun 2021 • Minor updates and corrections

• Updated FAQ

• Added SDK release history

• To accompany the V1.2.0 release of the C SDK

1.6 23 Jun 2021 • Minor updates and corrections

• ADC information updated

• Added errata E11

1.6.1 30 Sep 2021 • Minor updates and corrections

• Information about B2 release

• Updated errata for B2 release

1.7 03 Nov 2021 • Minor updates and corrections

• Fixed some register access types and descriptions

• Added core 1 launch sequence info

• Described SDK "panic" handling

• Updated picotool documentation

• Additional examples added to Appendix A: App Notes appendix

in the Raspberry Pi Pico-series C/C++ SDK book

• To accompany the V1.3.0 release of the C SDK

1.7.1 04 Nov 2021 • Minor updates and corrections

• Better documentation of USB double buffering

• Picoprobe branch changes

• Updated links to documentation

1.8 17 Jun 2022 • Minor updates and corrections

• Updated setup instructions for Windows in Getting started with

Raspberry Pi Pico-series

• Additional explanation of SDK configuration

• RP2040 now qualified to -40°C, minimum operating temperature

changed from -20°C to -40°C

• Increased PLL min VCO from 400MHz to 750MHz for improved

stability across operating conditions

• Added reflow-soldering temperature profile

• Added errata E12, E13 and E14

• To accompany the V1.3.1 release of the C SDK
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Release Date Description

1.9 30 Jun 2022 • Minor updates and corrections

• Update to VGA board hardware description for launch of

Raspberry Pi Pico W

• To accompany the V1.4.0 release of the C SDK

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 • Minor updates and corrections

• Added RP2040 availability information

• Added RP2040 storage conditions and thermal characteristics

• Replace SDK library documentation with links to the online

version

• Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 • A large number of minor updates and corrections

• SMT footprint of Pico W corrected

• Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK

• Added errata E15

• Added documentation around the new Pico Windows Installer

• Added documentation around the Pico-W-Go extension for

Python development

• Added a wireless networking example to the Python

documentation

• Added package marking specifications

• Added RP2040 baseline power consumption figures

• Added antenna keep out diagram to Pico W datasheet

2.2 14 Jun 2023 • Minor updates and corrections

• Updated for the 1.5.1 release of the Raspberry Pi Pico C SDK

• Documentation around Bluetooth support for Pico W

2.3 02 Feb 2024 • Numerous minor updates and corrections

• Update ROSC register information

• Updated getting started documentation for MS Windows and

Apple macOS

• Updates arising from the release of Raspberry Pi 5

• Reintroduced updated SDK library documentation (was

withdrawn in 2.0 due to XML conflicts)

• Updated to include the new recommended part number for

crystals used with RP2040

• Added new paste stencil information for Pico and Pico W

• Other updates to supporting documentation
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Release Date Description

2.4 02 May 2024 • Numerous minor updates and corrections

• Formatting fixes for Pico C SDK API level documentation

• Renamed picoprobe firmware to debugprobe

• Clarified that CMake build configuration uses cache variables,

not configuration variables

• Fixed incorrect parameter names used in the @asm_pio decorator

and StateMachine initialiser examples

• Expanded MicroPython rshell examples to include a complete

guide on loading and running programs on your device

• Added an example that demonstrates how to reset a Pico from

the command line using OpenOCD

• Enhanced VS Code MicroPico plugin documentation to reflect

the plugin’s new name, removal of the built-in FTP server, and

some additional usage instruction

• Added documentation on the official Raspberry Pi Pico VS Code

extension.

3.0 07 Jul 2024 • Added support for RP2350 and Pico 2

The latest release can be found at https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf.
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