Raspberry Pi Microcontrollers

Raspberry Pi Ltd

Getting started with
Raspberry Pi Pico-series
C/C++ development with
Raspberry Pi1 Pico-series

and other Raspberry P1
microcontroller-based boards

Getting started with Raspberry Pi Pico-series

Colophon

Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2350 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2024-08-08
build-version: 124b387-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found in the Raspberry Pi Pico-series C/C++ SDK book. Source code included in the documentation is
Copyright © 2023-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-
Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY Pl PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME ("RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Getting started with Raspberry Pi Pico-series

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
ToIntroducCtion. « .. 4
2. Install Visual Studio Code 5
3. Install the Raspberry Pi Pico VS Code Extension 6
3.1, Install Dependencies. 6
3.1.1. Raspberry PiOS and Windows 6

B2 LINUX o 6
3.1.3.maclS . i 6
3.2.Install the EXtension 7

4. Load @ Project. 8
4.1. Compile and RUNBLinko 9
4.2. Make a Code Change and Re-TUN 9
A.3.DebUQG . oo 10
5.Say "HelloWorld" in C 13
5.1. Serial input and output on Pico-series devices 13
5.2.Create @ Project.o 14
5.3.Build your project 15
5.4.See console OUtPUL. 15
Appendix A: Debugprobe. 16
Building OpenOCD 16
Install OpenOCD 16
Debug Probe 17
Debug Probe Wiring 17
Debug withasecond Picoor Pico 2. 18
Install debugprobe 19
debugprobe WIFING - . . .o 19
Debug Probe interfaces. 20
Usethe UART 20
LiNUX. 20
WINAOWS oo 21
MaACOS i 22
Debug with OpenOCD. 23
Debug with SWD . .. 23
Appendix B: Picotool 25
Getting pPicotool 25
Building picotool. oo 25
Using picotool. 26
Display information 27
Savethe program 29
Binary Information 30
Basicinformation 30

PINS oo 31

Full Information. o 31
Appendix C: Manual toolchain setup 32
Configure your environment via SCript. 32
Manually Configure your Environment. 33
Getthe SDK and examples 33
Install the Toolchain. 33
Enable UART serial communications. 33
Updatethe SDK. . .. i 34
Usethe CLIto Blinkan LED in C 35
Building "BlinK" . 35

Load and run "BlinK" 36
Manually Create your own Project 38

Table of contents 2

Getting started with Raspberry Pi Pico-series
]

Debugging your project 40
Appendix D: Use other Integrated Development Environments 42
Use ECliPSe . . 42
Setting up Eclipse for Picoona Linux machine 42

Use CLION .o 47
Setting up CLIONo 47

Other ENVIrONMENtSo 51
Appendix H: Documentation Release History 52
August 8 2024, . oo 52

Table of contents 3

Getting started with Raspberry Pi Pico-series

Chapter 1. Introduction

To follow this guide you will need the following:
® Raspberry Pi Pico-series device
® a Micro USB cable
The following are required for some of the later steps:
® Raspberry Pi Debug Probe, or a second Raspberry Pi Pico-series device

The following instructions assume that you are using a Pico-series device; some details may differ if you use a different
Raspberry Pi microcontroller-based board.

Pico-series devices are built around microcontrollers designed by Raspberry Pi. Development on the boards is fully
supported with both a C/C++ SDK, and an official MicroPython port. This book talks about how to get started with the
SDK, and walks you through how to build, install, and work with the SDK toolchain.

@ TP

The main method covered in this book uses a VSCode extension to make your life easy. If you would like to set up
your development environment manually, see Manually Configure your Environment.

For more information on the official MicroPython port, see Raspberry Pi Pico-series Python SDK and Get started with
MicroPython on Raspberry Pi Pico. For more information on the C/C++ SDK, see Raspberry Pi Pico-series C/C++ SDK.

Chapter 1. Introduction 4

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://hsmag.cc/picobook
https://hsmag.cc/picobook
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

Getting started with Raspberry Pi Pico-series

Chapter 2. Install Visual Studio Code

Visual Studio Code (VS Code) is a popular open source editor developed by Microsoft. The Raspberry Pi Pico VS Code
Extension makes it easy to install dependencies and build software for Pico-series devices.

@ TIP

If you don’t want to use VS Code, you can either use VSCodium (the community-driven libre alternative) or configure
your environment manually.

To install Visual Studio Code (VS Code) on Raspberry Pi OS or Linux, run the following commands:

$ sudo apt update
$ sudo apt install code

On macOS and Windows, you can install VS Code from https://code.visualstudio.com/Download.

Chapter 2. Install Visual Studio Code 5

https://vscodium.com/
https://code.visualstudio.com/Download

Getting started with Raspberry Pi Pico-series

Chapter 3. Install the Raspberry P1
Pico VS Code Extension

The Raspberry Pi Pico VS Code extension helps you create, develop, run, and debug projects in Visual Studio Code. It
includes a project generator with many templating options, automatic toolchain management, one click project
compilation, and offline documentation of the Pico SDK.

The VS Code extension supports all Raspberry Pi Pico-series devices.

3.1. Install Dependencies

3.1.1. Raspberry Pi OS and Windows

No dependencies needed.

3.1.2. Linux

Most Linux distributions come preconfigured with all of the dependencies needed to run the extension. However, but
some distributions may require additional dependencies. The extension requires the following:

® Python 3.9 or later

* Git

® Tar

® anative C and C++ compiler (the extension supports GCC)

You can install these with:

S sudo apt install python3 git tar build-essential

3.1.3. macOS

To install all requirements for the extension on macOS, run the following command:
$ xcode-select --install

This installs the following dependencies:
* Git
® Tar

® A native C and C++ compiler (the extension supports GCC and Clang)

]
3.1. Install Dependencies 6

Getting started with Raspberry Pi Pico-series

3.2. Install the Extension

You can find the extension in the VS Code Extensions Marketplace. Search for the Raspberry Pi Pico extension,
published by Raspberry Pi. Click the Install button to add it to VS Code.
Figure 1. Debuggingin & @ B cordon@gordonpi: ~ |36 Extension: Raspberry. ok R

Extension: Raspberry Pi Pico - histogram - Visual Studio Code
VS Code. ey 2]
File Edit Selection View Go Run Terminal Help

Raspberry Pi Pico v
Raspberry Pi &
[———

Instal |

©

Node-RED

You can find the store entry at https://marketplace.visualstudio.com/items?itemName=raspberry-pi.raspberry-pi-pico.
You can find the extension source code and release downloads at https://github.com/raspberrypi/pico-vscode.

When installation completes, check the Activity sidebar (by default, on the left side of VS Code). If installation was
successful, a new sidebar section appears with a Raspberry Pi Pico icon, labelled "Raspberry Pi Pico Project".

3.2. Install the Extension 7

https://marketplace.visualstudio.com/items?itemName=raspberry-pi.raspberry-pi-pico
https://github.com/raspberrypi/pico-vscode

Getting started with Raspberry Pi Pico-series

Chapter 4. Load a Project

The VS Code extension can create projects based on the examples provided by Pico Examples. For an example, we'll
walk you through how to create a project that blinks the LED on your Pico-series device:

1. In the VSCode left sidebar, select the Raspberry Pi Pico icon, labelled "Raspberry Pi Pico Project".
2. Select New Project from Examples.

3. In the Name field, select the blink example.

4. Choose the board type that matches your device.

5. Specify a folder where the extension can generate files. VS Code will create the new project in a sub-folder of the
selected folder.

6. Click Create to create the project.

The extension will now download the SDK and the toolchain, install them locally, and generate the new project. The first
project may take 5-10 minutes to install the toolchain. VSCode will ask you whether you trust the authors because we've
automatically generated the .vscode directory for you. Select yes.

Figure 2. Debuggingin & @ B8 sorcon@gordonpi: ~. 3 New Example Pico Pr. 23 7L e
VS Code. New Example Pico Project - istogram - Visual Studio Code. SoE

File Edit Selection View Go Run Terminal Help

Raspberry Pi

Basic Settings

Debugger

°

O NoOTE

The CMake Tools extension may display some notifications at this point. Ignore and close them.

On the left Explorer sidebar in VS Code, you should now see a list of files.
Open blink.c to view the blink example source code in the main window.
The Raspberry Pi Pico extension adds some capabilities to the status bar at the bottom right of the screen.
Compile

Compiles the sources and builds the target UF2 file. You can copy this binary onto your device to program it.
Run

Finds a connected device, flashes the code into it, and runs that code.

Chapter 4. Load a Project 8

https://github.com/raspberrypi/pico-examples
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools

Getting started with Raspberry Pi Pico-series

The extension sidebar also contains some quick access functions. Click on the Pico icon in the side menu and you'll see
Compile Project.

Hit Compile Project and a terminal tab will open at the bottom of the screen displaying the compilation progress.

4.1. Compile and Run blink

To run the blink example:

1. Hold down the B0OOTSEL button on your Pico-series device while plugging it into your development device using a
micro USB cable to force it into USB Mass Storage Mode.

2. Press the Run button in the status bar or the Run project button in the sidebar.

You should see the terminal tab at the bottom of the window open. It will display information concerning the upload of
the code. Once the code uploads, the device will reboot, and you should see the following output:

The device was rebooted to start the application.

Your blink code is now running. If you look at your device, the LED should blink twice every second.

4.2. Make a Code Change and Re-run

To check that everything is working correctly, click on the blink.c file in VS Code. Navigate to the definition of
LED_DELAY_MS at the top of the code:

#ifndef LED_DELAY_MS
#define LED_DELAY_MS 250
#endif LED_DELAY_MS

1. Change the 250ms (a quarter of a second) to 100 (a tenth of a second):

#ifndef LED_DELAY_MS
#define LED_DELAY_MS 100
#endif LED_DELAY_MS

2. Disconnect your device, then reconnect while holding the BOOTSEL button.
3. Press the Run button in the status bar or the Run project button in the sidebar.

You should see the terminal tab at the bottom of the window open. It will display information concerning the upload of
the code. Once the code uploads, the device will reboot, and you should see the following output:

The device was rebooted to start the application.

Your blink code is now running. If you look at your device, the LED should flash faster, ten times every second.

]
4.1. Compile and Run blink 9

Getting started with Raspberry Pi Pico-series

Figure 3. Debug Probe
wiring

4.3. Debug

The Raspberry Pi Debug Probe is a debug solution for any Arm-based computer. You can use other debug hardware
with Pico-series devices, but we recommend the Debug Probe to make configuration as simple as possible. If you'd like
to use a Pico-series device as a Debug Probe, see Debug with a second Pico or Pico 2.

First, connect the Debug Probe to your Pico-series device through the debug connector on the board. Depending on
which Pico device you have, different connectors will be required. For Pico, Pico W, and Pico 2, use a soldering iron to
solder the Debug Probe connectors onto the board. For Pico H, Pico WH, and Pico with headers, the debug header is
already added. Just connect the Debug Probe with the supplied cable.

IIIII+
aesees |
lllll+
aEsees 1

ane s ane
ane a an ae
OU L) (] DU
O U L) (] DU
O U L) (] DU
+ - + -

For more information, see the Debug Probe documentation.

Now, plug the Debug Probe USB into your computer. The Debug Probe does not power the Pico device, it must be
powered separately.

To start the debugger:
1. Open the extension sidebar by clicking on the Pico icon.
2. Select Debug Project or press F5.
3. If prompted to select a debugger, choose pico-debug

The debugger will automatically download the code to the device, insert a breakpoint at the beginning of your main

4.3. Debug

10

https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html

Getting started with Raspberry Pi Pico-series
___|

function, and run until that breakpoint is hit.

Figure 4. Debugging in
VS Code. blink.c - blink - Visual Studio Code

4 UTFs CRF () C Bauldur2 D

Once in debugging mode, the sidebar has a number of windows displaying useful information about the current state of
the device. At the top, a small control bar contains buttons that control code execution. Hover over the buttons to
identify them. You've already used Run (F5).

Press Step-over (F10) once. The highlighted line, which indicates the next line to be executed, will advance to the
pico_led_init function call. To step into this function, press Step-into (F11). The source window will update to indicate
execution is now at the beginning of the function. You can either continue to step over code until the function returns to
main, or select Step-out (Shift+F11) to finish executing the function.

After returning to the main function, check the Local Variables window to see that the value of rc is @ (P1C0_0K).

Press Restart (Ctrl+Shift+F5) to go back to the beginning of main. Then move the cursor down to the pico_set_led line
and press F9. When you create the breakpoint, you'll see a red dot indicating the breakpoint location:

___|
4.3. Debug 1

Getting started with Raspberry Pi Pico-series
___|

Figure 5. Debugging in
VS Code.

® @ B Bl oortonooordonpi ~. 3 New Example Pico Pr. 3¢ biink.c- blink- Visua ¢ 3 1 1308
bink.c - blink - Visual Studio Code v o ox

File Edit Selection View Go Run Terminal Help

pico_led_init(void) {

pico_set_led(

gpio_put

1 48,Col15_Spaces 4 UTF8 CALF () C_MBuIdUF2 D Aun _Pico SOK: 235

You can add and remove a breakpoint by clicking on the red dot.

Press Run (F5); execution should halt on the breakpoint. Next, press Step-over (F10) and you should see the LED light
up.

4.3. Debug

12

Getting started with Raspberry Pi Pico-series

Chapter 5. Say "Hello World"

1 C

After blinking an LED on and off, the next thing that most developers will want to do is create and use a serial port, and
say "Hello World."

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/hello_world/serial/hello_serial.c Lines 10 - 16

10 int main() {

printf("Hello, world!\n");

11 stdio_init_all();
12 while (true) {

13

14 sleep_ms(16000);
15 }

16 }

5.1. Serial input and output on Pico-series devices

Serial input (stdin) and output (stdout) can be directed to serial UART and/or to USB CDC (USB serial).

Default UARTO | Physical Pin | GPIO Pin
GND 3 N/A
UARTO_TX 1 GPO
UART@_RX 2 GP1

]
5.1. Serial input and output on Pico-series devices

13

https://github.com/raspberrypi/pico-examples/blob/master/hello_world/serial/hello_serial.c#L10-L16

Getting started with Raspberry Pi Pico-series
]

Figure 6. Debug Probe
wiring

+ -] I -
(N} - == (N}
am - . (]
(] - . (]
(N} : :: (]
e :l II e
a o n
(] o i (N}
] = = (N}
(N} - '. (N}
(N} : :: (N}
(N} - = . (N}
[} ecn »

u. [} (ocm » =.
(] (N}
[} (ecm »

(] (]
[] (ecm »

(] (N}
am Do A " " []
[} O]

(N} - .- (N}
G] (N}
A N
- [] (ocm » -
- s m)el ocm ® 00
s =8)e) [ecm
5 m me] [ecm =
== ssaes (N} ==
e ssms ssms e
:: [N NN ssmss ::
- [N NN ssmss -
N N NN ssmss
+ —‘ scocronty |+ -

5.2. Create a project

O NoTE

The SDK makes use of CMake to control its build system, see Manually Create your own Project if you don't want to
use the VSCode extension

1. In the VSCode left sidebar, select the Raspberry Pi Pico icon, labelled "Raspberry Pi Pico Project".
2. Select New Project.

3. In the Name field, name your project. For example "hello_world".

4. Choose the board type that matches your device.

5. Specify a folder where the extension can generate files. VS Code will create the new project in a sub-folder of the
selected folder.

6. Under "STDIO support”, select which consoles you would like (you can select both)
7. Click Create to create the project.

The extension will now generate the new project. VSCode will ask you whether you trust the authors because we've

]
5.2. Create a project 14

Getting started with Raspberry Pi Pico-series

Figure 7. VSCode
serial monitor

automatically generated the .vscode directory for you. Select yes.

5.3. Build your project

To run the "Hello world" example:

1. Hold down the BOOTSEL button on your Pico-series device while plugging it into your development device using a
micro USB cable to force it into USB Mass Storage Mode.

2. Press the Run button in the status bar or the Run project button in the sidebar.

You should see the terminal tab at the bottom of the window open. It will display information concerning the upload of
the code. Once the code uploads, the device will reboot, and you should see the following output:

The device was rebooted to start the application.

Your "Hello world" code is now running.

Although the "Hello World" example is now running, we cannot yet see the text.

5.4. See console output

If using STDIO UART make sure you have wired it up first. STDIO USB does not need any wiring other than being
connected to your computer.

In VSCode. Go to the view menu, and select "Terminal” to open the bottom pane. In this pane, you will find the "Serial
Monitor" tab. Select the serial port. There may be more than one. The baud rate should be 115200. Select "Start
Monitoring" to see the output.

@ ﬂ bw.c - histogram - Vi.. w blink.c - blink - Visua.. n hello_world.c - hello.
orld Wor

gordon@gordonpi: ~.. @ * Tl 1222

Studio Code v o x

File Edit Selection View Go Run Terminal Help

main()

stdio_init_all();

PROBLEM: TPUT DEBUC TERMINAL EM RTOS SERIAL MONITOR

-+ Open an additional monitor

M \ ex v - Ra v drate | 115200

[Stop Monitoring =

5.3. Build your project 15

Getting started with Raspberry Pi Pico-series

Appendix A: Debugprobe

Raspberry Pi provides two ways to debug Pico-series devices:
® the Raspberry Pi Debug Probe
® debugprobe firmware running on a second Pico or Pico 2

Both methods provide a way to debug Pico-series devices on platforms that lack GPIOs to connect directly to UART or
SWD, such as Windows, macOS, and Linux. The debugging device connects to your usual computer using USB, and to
the Pico using SWD and UART.

Building OpenOCD

Shortly after RP2350 launch you will likely need to build openocd from source if not using the VS Code extension. You
can get a binary release from https://github.com/raspberrypi/pico-sdk-tools.

$ git clone https://github.com/raspberrypi/openocd.git
$ cd openocd

$./bootstrap

$./configure --disable-werror

S make -j4

To start openocd from the build directory, you can use:

For RP2350:
sudo src/openocd -s tcl -f interface/cmsis-dap.cfg -f target/rp2350.cfg -c "adapter speed 5000"
For RP2040:

sudo src/openocd -s tcl -f interface/cmsis-dap.cfg -f target/rp2040.cfg -c "adapter speed 5000"

Install OpenOCD

To get started, you'll need OpenOCD.

To install OpenOCD, run the following command in a terminal:
$ sudo apt install openocd
To install OpenOCD on macQS, run the following command:

S brew install openocd

]
Building OpenOCD 16

https://www.raspberrypi.com/products/debug-probe/
https://github.com/raspberrypi/pico-sdk-tools

Getting started with Raspberry Pi Pico-series

Figure 8. Wires
included with the
Debug Probe.

To run OpenOCD, use the openocd command in your terminal.

Debug Probe

The simplest way to debug a Pico-series device is the Raspberry Pi Debug Probe. The Raspberry Pi Debug Probe

provides Serial Wire Debug (SWD), and a generic USB-to-Serial bridge.

© NoTE

For more information about the Debug Probe, see the documentation site.

Debug Probe wiring

(1) (2] (3]
™ ™ il

@ 3-pin debug to 3-pin debug

@ 3-pin debug to 0.1-inch header (female)
|| I“ © 3-pin debug to 0.1-inch header (male)
anad

Debug Probe

17

https://www.raspberrypi.com/products/debug-probe/
https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html

Getting started with Raspberry Pi Pico-series

Figure 9. Wiring
between the Debug
Probe (left) and Pico
(right).

+ - -
(N} (N
am am
(N} (N}
(N} (N}
() am
[N} am
(] (N}
(N} (N}
(N} =m
() am
() am
(N} =s
(N} =m
(N} (N
() =m
() =s
(N} (N}
(N} (N
() (N
(N} =s
(N} (N}
(N} (N}
(N} (N
() =s
(N} (N}
+ - =

To connect Debug Probe to Pico H, connect the following:
® Debug Probe "D" port to Pico H "DEBUG" SWD JST-SH connector
® Debug Probe "U" port, with the three-pin JST-SH connector to 0.1-inch header (male):
o Debug Probe RX connected to Pico H TX pin
o Debug Probe TX connected to Pico H RX pin
o Debug Probe GND connected to Pico H GND pin

Then, connect two USB cables: one from your computer to the microUSB port on Debug Probe and another from your
computer to the microUSB port on Pico.

O NoOTE

If you have a non-H Pico, Pico 2 or Pico W (without a JST-SH connector) you can still connect it to a Debug Probe.
Solder a male connector to the SWCLK, GND, and SWDIO header pins on the board. Using the alternate 3-pin JST-SH
connector to 0.1-inch header (female) cable included with the Debug Probe, connect to the Debug Probe "D" port.
Connect SWCLK, GND, and SWDIO on the Pico or Pico W to the S, GND, and SD pins on the Debug Probe, respectively.

The wiring loom between Pico and the Debug Probe is shown in Figure 8.

Debug with a second Pico or Pico 2

One Pico or Pico 2 can reprogram and debug another using the debugprobe firmware, which transforms the Pico or Pico 2
into a USB — SWD and UART bridge.

Debug with a second Pico or Pico 2 18

Getting started with Raspberry Pi Pico-series
]

Figure 10. Wiring
between Pico A (left)
and Pico B (right) with
Pico A acting as a
debugger and Pico B
as a system under
test. You must
connect at least the
ground and the two
SWD wires. Connect
the UART serial port to
provide access to the
UART serial output of
Pico B. You can also
bridge the power
supply to power both
boards with one USB
cable. For more
information, see
debugprobe wiring.

+ amnsm mmmss msmms =

Install debugprobe

You can download a UF2 binary of debugprobe from the Pico-series documentation.

Boot the debugger Pico or Pico 2 with the BOOTSEL button pressed. Copy debugprobe_on_pico.uf2 onto the device to begin
debugging.

© NOTE

Use debugprobe_on_pico.uf2 to use a Pico for debugging. Use debugprobe.uf2 for the Debug Probe accessory hardware.

Build debugprobe

Alternatively, you can build debugprobe using the following instructions:

These build instructions assume you are running on Linux, and have installed the SDK.

© NoTE

These instructions are for Pico; replace the -DPIC0_BOARD=pico with -DPIC0_BOARD=pico2 for Pico 2

cd ~/pico

git clone https://github.com/raspberrypi/debugprobe.git
cd debugprobe

git submodule update --init

mkdir build

cd build

export PICO_SDK_PATH=../../pico-sdk

cmake -DDEBUG_ON_PICO=ON -DPICO_BOARD=pico ..

make -j4

R SRV 7o SRV R 7o SV 7 Vo B Vo

Boot the debugger Pico or Pico 2 with the BOOTSEL button pressed. Copy debugprobe.uf2 onto the device to begin
debugging.

debugprobe wiring

debugprobe wiring 19

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#debugging-using-another-raspberry-pi-pico

Getting started with Raspberry Pi Pico-series

Figure 11. Wiring
between Pico A (left)
and Pico B (right),
configuring Pico A as
a debugger.

e - . -
o0 S~ .- S~
a8 e as as
as as as as
e e . e
e e s e
e e e e
. e . —
. - _J . - +_J

The wiring loom between the two Pico boards is shown in Figure 11.

Pico A GND -> Pico B GND

Pico A GP2 -> Pico B SWCLK

Pico A GP3 -> Pico B SWDIO

Pico A GP4/UART1 TX -> Pico B GP1/UART@ RX
Pico A GP5/UART1 RX -> Pico B GP@/UART@ TX

The minimum set of connections required to load and run code via OpenOCD is GND, SWCLK and SWDI0. Connect the UART
wires to communicate with Pico B’s UART serial port through Pico A’s USB connection. You can also use the UART
wires to talk to any other UART serial device, such as the boot console on a Raspberry Pi.

To power Pico A with Pico B, connect the following pins:
® When using USB in device mode, or not at all, connect VSYS to VSYS

® When acting as a USB Host, connect VBUS to VBUS to provide 5V on the USB connector.

Debug Probe interfaces

Both the Debug Probe and any Pico-serires device running debugprobe are composite devices with two USB interfaces:
1. A class-compliant CDC UART (serial port), so it works on Windows out of the box.

2. A vendor-specific interface for SWD probe data conforming to CMSIS-DAP v2.

Use the UART

Linux

To use the UART connection on Linux, run the following command:

Debug Probe interfaces 20

Getting started with Raspberry Pi Pico-series

$ sudo minicom -D /dev/ttyACMO -b 115200

Windows

Download and install PUuTTY.

Open Device Manager and locate the COM port number of the device running debugprobe. In this example it is COM7.

ﬁ Device Manager

File Action View Help

]

*

e @B EmIBEIEX®

~ & LIAMDESKTOP
> id Audio inputs and outputs
> 3 Bluetooth

= CATC Analyzers

3 Computer

W

>
> Disk drives
» [Display adapters
> B Firmware
» Human Interface Devices
» =@ |DE ATAJATAPI controllers
> _T; Imaging devices
» Keyboards
> i libusb-win32 devices
> D Mice and other pointing devices
» O Moenitors
> [Metwork adapters
> § Oculus VR Devices
> K7 Other devices
v @ Ports (COM & LPT)
ﬁ Communications Port (COM1)

§ USB Serial Device (COMT)
» = Print queues
> ﬁ Processors
~ A Sensnrs

ﬁ Standard Serial over Bluetooth link (COM3)
ﬁ Standard Serial over Bluetooth link (COME])

Open PuTTY. Select Serial under connection type. Then type the name of your COM port along with 115200 as the

speed.

Use the UART

21

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Getting started with Raspberry Pi Pico-series

ﬁ PuTTY Configuration ? >
Categany:

=g S_essiu:nn Basic options for your PuTTY session
- Logging Specify the destination you want to connect to
=I- Terminal Serial | Sneed

- Keyboard eria 1|ge pee

. Bel |COM7 |[115200 |

- Features Connection type:
= Window (CJRaw (O Telnet (O Rlogin () SSH (@) Serial

f-‘-.ppea.rance Load, save or delete a stored session

- Behaviour

... Translation Saved Sessions

- Selection | |

C':'"D!"rs Default Settings Load
=I- Connection AGWPort Forward

. Data Admin Gateway Save

- Py =

. Telnet Delete

- Rlogin

+- S5H

""" Sefial Close window on exit:

(JAways () Never (@ Only on clean exit
About Help Cpen Cancel

Select Open to start the serial console. You are now ready to run your application.

EP COMT - PuTTY - | X

macOS

First, install minicom using Homebrew:

S brew install minicom

Then, run the following command to use the UART connection:

Use the UART 22

Getting started with Raspberry Pi Pico-series

$ minicom -D /dev/tty.usbmodem1234561 -b 115200

Debug with OpenOCD

With Debug Probe, you can load binaries via the SWD port and OpenOCD.

First, build a binary. Then, run the following command to upload the binary to the Pico, replacing blink.elf with the name
of the ELF file you just built:

$ sudo openocd -f interface/cmsis-dap.cfg -f target/rp2040.cfg -c "adapter speed 5000" -c
"program blink.elf verify reset exit"

If you are using a RP2350 based board, then use

$ sudo openocd -f interface/cmsis-dap.cfg -f target/rp2350.cfg -c "adapter speed 5000" -c
"program blink.elf verify reset exit"

Debug with SWD

You can also use openocd in server mode and connect a debugger that provides break points and more.

O IMPORTANT

To allow debugging, build your binaries with the Debug build type using the DCMAKE_BUILD_TYPE option:

$ cd ~/pico/pico-examples/
S rm -rf build
$ mkdir build

$ cd build

$ export PICO_SDK_PATH=../../pico-sdk

$ cmake -DCMAKE_BUILD_TYPE=Debug -DPICO_BOARD=pico ..
$ cd blink

S make -j4

Note: you should use -DPIC0_BOARD=pico2 for a Raspberry Pi Pico 2.

The debug build provides more information when you run it under the debugger.

First, run an OpenOCD server:

$ sudo openocd -f interface/cmsis-dap.cfg -f target/rp2040.cfg -c "adapter speed 50600

For a RP2350-based device use -f target/rp2350.cfg instead.

Then, open a second terminal window. Start your debugger, passing your binary as an argument:

]
Debug with OpenOCD 23

Getting started with Raspberry Pi Pico-series
]

$ gdb blink.elf

> target remote localhost:3333
> monitor reset init

> continue

GDB doesn’t work on all platforms. Use one of the following alternatives instead of gdb, depending on your operating
system and device:

® On Linux devices that are not Raspberry Pis, use gdb-multiarch.

® On Arm-based macOS devices, use 11db.

]
Debug with OpenOCD 24

Getting started with Raspberry Pi Pico-series

Appendix B: Picotool

It is possible to embed information into a Pico-series binary, which can be retrieved using a command line utility called

picotool.

Getting picotool

The picotool utility is available in its own repository. You will need to clone and build it if you haven't ran the pico-setup
script.

$ git clone https://github.com/raspberrypi/picotool.git
$ cd picotool

You will also need to install libusb if it is not already installed,
$ sudo apt install libusb-1.0-8-dev

© NoTE

If you are building picotool on macOS you can install Libusb using Homebrew,

$ brew install libusb pkg-config

While if you are building on Microsoft Windows you can download and install a Windows binary of libusb directly
from the libusb.info site.

Building picotool

Building picotool can be done as follows,

mkdir build

cd build

export PICO_SDK_PATH=~/pico/pico-sdk
cmake ../

make

oW >

this will generate a picotool command-line binary in the build/picotool directory.

]
Getting picotool 25

https://libusb.info/

Getting started with Raspberry Pi Pico-series

O NoTE

If you are building on Microsoft Windows you should invoke CMake as follows,

C:\Users\pico\picotool> mkdir build

C:\Users\pico\picotool> cd build
C:\Users\pico\picotool\build> cmake .. -G "NMake Makefiles"
C:\Users\pico\picotool\build> nmake

Using picotool

The picotool binary includes a command-line help function,

$ picotool help

PICOTOOL :
Tool for
binary

SYNOPSIS:
picotool
picotool
picotool
picotool
picotool

picotool

picotool

picotool

picotool
picotool
picotool
picotool
picotool
picotool
picotool
picotool
picotool
picotool
picotool

COMMANDS :
info

config

load
encrypt
seal
link
save
verify
reboot
otp

interacting with RP2040/RP2350 device(s) in BOOTSEL mode, or with an RP20408/RP2350

info [-b] [-p] [-d] [--debug] [-1] [-a] [device-selection]

info [-b] [-p] [-d] [--debug] [-1] [-a] <filename> [-t <type>]

config [-s <key> <value>] [-g <group>] [device-selection]

config [-s <key> <value>] [-g <group>] <filename> [-t <type>]

load [-p] [--family <family_id>] [-n] [-N] [-u] [-v] [-x] <filename> [-t <type>]
[-0 <offset>] [device-selection]

encrypt [--quiet] [--verbose] [--hash] [--sign] <infile> [-t <type>] [-0 <offset>]
<outfile> [-t <type>] <aes_key> [-t <type>] [<signing_key>] [-t <type>]

seal [--quiet] [--verbose] [--hash] [--sign] [--clear] <infile> [-t <type>] [-o0
<offset>] <outfile> [-t <type>] [<key>] [-t <type>] [<otp>] [-t <type>] [--major
<major>] [--minor <minor>] [--rollback <rollback> [<rows>..]]

link [--quiet] [--verbose] <outfile> [-t <type>] <infilel> [-t <type>] <infile2>
[-t <type>] [<infile3>] [-t <type>] [-p] <pad>

save [-p] [device-selection]

save -a [device-selection]

save -r <from> <to> [device-selection]

verify [device-selection]

reboot [-a] [-u] [-g <partition>] [-c <cpu>] [device-selection]

otp list|get|set|load|dump|permissions|white-label

partition info|create

uf2 info|convert

version [-s] [<version>]

coprodis [--quiet] [--verbose] <infile> [-t <type>] <outfile> [-t <type>]

help [<cmd>]

Display information from the target device(s) or file.

Without any arguments, this will display basic information for all connected

RP2040 devices in BOOTSEL mode

Display or change program configuration settings from the target device(s) or
file.

Load the program / memory range stored in a file onto the device.

Encrypt the program.

Add final metadata to a binary, optionally including a hash and/or signature.
Link multiple binaries into one block loop.

Save the program / memory stored in flash on the device to a file.

Check that the device contents match those in the file.

Reboot the device

Commands related to the RP2350 OTP (One-Time-Programmable) Memory

Using picotool

26

Getting started with Raspberry Pi Pico-series
]

partition Commands related to RP2350 Partition Tables

uf2 Commands related to UF2 creation and status

version Display picotool version

coprodis Post-process coprocessor instructions in dissassembly files.
help Show general help or help for a specific command

Use "picotool help <cmd>" for more info

O NoOTE

The majority of commands require a Raspberry Pi microcontroller device in BOOTSEL mode to be connected.

© IMPORTANT

If you get an error message No accessible RP2048/RP2350 devices in BOOTSEL mode were found. accompanied with a note
similar to Device at bus 1, address 7 appears to be a RP2040 device in BOOTSEL mode, but picotool was unable to connect
indicating that there was a Pico-series device connected then you can run picotool using sudo, e.g.

$ sudo picotool info -a

If you get this message on Windows you will need to install a driver.

Download and run Zadig, select Picotool from the dropdown box and select 1ibusb-win32 as the driver, and click on
the "Install Driver" button.

As of version 1.1 of picotool it is also possible to interact with Raspberry Pi microcontrollers that are not in BOOTSEL
mode, but are using USB stdio support from the SDK by using the -f argument of picotool.

Display information

So there is now Binary Information support in the SDK which allows for easily storing compact information that picotool
can find (See Binary Information below). The info command is for reading this information.

The information can be either read from one or more connected Raspberry Pi microcontrollers in BOOTSEL mode, or
from a file. This file can be an ELF, a UF2 or a BIN file.

$ picotool help info

INFO:
Display information from the target device(s) or file.
Without any arguments, this will display basic information for all connected RP2040 devices
in BOOTSEL mode

SYNOPSIS:
picotool info [-b] [-p] [-d] [-1] [-a] [--bus <bus>] [--address <addr>] [-f] [-F]
picotool info [-b] [-p] [-d] [-1] [-a] <filename> [-t <type>]

OPTIONS:
Information to display
-b, --basic
Include basic information. This is the default

-p, --pins

Include pin information
-d, --device

Include device information
-1, --build

Include build attributes
-a, --all

]
Using picotool 27

http://zadig.akeo.ie

Getting started with Raspberry Pi Pico-series
]

Include all information

TARGET SELECTION:
To target one or more connected RP2040 device(s) in BOOTSEL mode (the default)

--bus <bus>
Filter devices by USB bus number

--address <addr>
Filter devices by USB device address

-f, --force
Force a device not in BOOTSEL mode but running compatible code to reset so the
command can be executed. After executing the command (unless the command itself is
a 'reboot') the device will be rebooted back to application mode

-F, --force-no-reboot
Force a device not in BOOTSEL mode but running compatible code to reset so the
command can be executed. After executing the command (unless the command itself is
a 'reboot') the device will be left connected and accessible to picotool, but
without the RPI-RP2 drive mounted

To target a file

<filename>
The file name

-t <type>
Specify file type (uf2 | elf | bin) explicitly, ignoring file extension

For example, connect your Pico-series device to your computer as mass storage mode, by pressing and holding the
BOOTSEL button before plugging it into the USB. Then open up a Terminal window and type,

$ sudo picotool info
Program Information

name : hello_world
features: stdout to UART

or,

$ sudo picotool info -a
Program Information

name: hello_world
features: stdout to UART
binary start: ©0x10000000
binary end: 0x1000606C

Fixed Pin Information
20: UART1 TX
21: UART1 RX

Build Information
build date: Dec 31 2020
build attributes: Debug build

Device Information

flash size: 2048K
ROM version: 2

for more information. Alternatively you can just get information on the pins used as follows,

]
Using picotool 28

Getting started with Raspberry Pi Pico-series
]

$ sudo picotool info -bp
Program Information

name: hello_world
features: stdout to UART

Fixed Pin Information

20: UART1 TX
21: UARTT RX

The tool can also be used on binaries still on your local filesystem,

$ picotool info -a lcd_16682_i2c.uf2
File lcd_1602_i2c.uf2:

Program Information

name : lcd_1602_i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/1lcd_1602_i2c
binary start: ©0x10000000

binary end: 0x10003c1c

Fixed Pin Information
4: T12C0O SDA
5: I2Ce SCL

Build Information
build date: Dec 31 2020

Save the program

Save allows you to save a range of memory or a program or the whole of flash from the device to a BIN file or a UF2 file.

$ picotool help save
SAVE :
Save the program / memory stored in flash on the device to a file.

SYNOPSIS:
picotool save [-p] [--bus <bus>] [--address <addr>] [-f] [-F] <filename> [-t <type>]
picotool save -a [--bus <bus>] [--address <addr>] [-f] [-F] <filename> [-t <type>]
picotool save -r <from> <to> [--bus <bus>] [--address <addr>] [-f] [-F] <filename> [-t

<type>]
OPTIONS:
Selection of data to save
-p, --program
Save the installed program only. This is the default
-a, --all
Save all of flash memory
-r, --range
Save a range of memory. Note that UF2s always store complete 256 byte-aligned
blocks of 256 bytes, and the range is expanded accordingly
<from>
The lower address bound in hex
<to>

The upper address bound in hex
Source device selection
--bus <bus>

Using picotool 29

Getting started with Raspberry Pi Pico-series
]

Filter devices by USB bus number

--address <addr>
Filter devices by USB device address

-f, --force
Force a device not in BOOTSEL mode but running compatible code to reset so the
command can be executed. After executing the command (unless the command itself is
a 'reboot') the device will be rebooted back to application mode

-F, --force-no-reboot
Force a device not in BOOTSEL mode but running compatible code to reset so the
command can be executed. After executing the command (unless the command itself is
a 'reboot') the device will be left connected and accessible to picotool, but
without the RPI-RP2 drive mounted

File to save to

<filename>
The file name

-t <type>
Specify file type (uf2 | elf | bin) explicitly, ignoring file extension

For example,

$ sudo picotool info

Program Information

name: lcd_16062_i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/1lcd_1602_i2c
$ picotool save spoon.uf2

Saving file: [==============z===z===z===z===z====] 100%

Wrote 51200 bytes to spoon.uf2

$ picotool info spoon.uf2

File spoon.uf2:

Program Information

name : lcd_1602_i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2¢c/1lcd_1602_i2c

Binary Information

Binary information is machine-locatable and machine-readable information that is embedded in the binary at build time.

Basic information

This information is really handy when you pick up a Pico-series device and don't know what is on it!
Basic information includes

® program name

program description

® program version string

program build date

program url

program end address

program features, this is a list built from individual strings in the binary, that can be displayed (e.g. we will have one
for UART stdio and one for USB stdio) in the SDK

]
Using picotool 30

Getting started with Raspberry Pi Pico-series

* build attributes, this is a similar list of strings, for things pertaining to the binary itself (e.g. Debug Build)

Pins

This is certainly handy when you have an executable called hello_serial.elf but you forgot what Raspberry Pi
microcontroller-based board it was built for, as different boards may have different pins broken out.

Static (fixed) pin assignments can be recorded in the binary in very compact form:

$ picotool info --pins sprite_demo.elf
File sprite_demo.elf:

Fixed Pin Information
0-4: Red 0-4

6-10: Green 0-4
11-15: Blue 0-4

16: HSync

17: VSync

18: Display Enable
19: Pixel Clock
20: UART1T TX

21: UART1 RX

Full Information

Full information is available with the -a option:

$ picotool info -a i2c_bus_scan.elf
File i2c_bus_scan.elf:

Program Information

name : i2c_bus_scan

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/bus_scan
features: UART stdin / stdout

binary start: 0©x10000000

binary end: 0x10004c74

Fixed Pin Information

0: UARTO TX
1: UARTO RX
4: T12C0 SDA
5: TI2Ce SCL

Build Information

sdk version: 2.0.0-develop
pico_board: pico
build date: Aug 1 2024

build attributes: Debug

Using picotool 31

Getting started with Raspberry Pi Pico-series

Appendix C: Manual toolchain setup

Configure your environment via Script

If you are developing for a Pico-series device on the Raspberry Pi 5, the Raspberry Pi 4B, or the Raspberry Pi 400, most
of the installation steps in this Getting Started guide can be skipped by running the pico_setup.sh script.

The script automates the following setup:
® Creates a directory called pico in the folder where you run the pico_setup.sh script
® |nstalls required dependencies
® Downloads the pico-sdk, pico-examples, pico-extras, and pico-playground repositories
® Defines PICO_SDK_PATH, PICO_EXAMPLES_PATH, PICO_EXTRAS_PATH, and PICO_PLAYGROUND_PATH in your ~/.bashrc
® Builds the blink and hello_world examples in pico-examples/build/blink and pico-examples/build/hello_world
* Downloads and builds picotool (see Appendix B), and copy it to /usr/local/bin.
® Downloads and builds debugprobe (see Appendix A).
* Downloads and compiles OpenOCD (for debug support)

* Configures your development Raspberry Pi UART for use with Pico-series devices

@ TIF

This setup script requires approximately 2.5GB of disk space on your SD card, so make sure you have enough free
space before running it. You can check how much free disk space you have with the df -h command.

First, run the following command to install wget:

$ sudo apt install wget

You can get this script by running the following command in a terminal:

$ wget https://raw.githubusercontent.com/raspberrypi/pico-setup/master/pico_setup.sh @

Then mark the script as executable with chmod:

$ chmod +x pico_setup.sh

Run the script with the following command:

$./pico_setup.sh

Finally, reboot your Raspberry Pi to load your UART configuration changes:

Configure your environment via Script 32

Getting started with Raspberry Pi Pico-series
]

$ sudo reboot

Once your Raspberry Pi has rebooted, you can open Visual Studio Code in the "Programming" menu and follow the
instructions from Chapter 4.

Manually Configure your Environment

Get the SDK and examples

The Pico Examples repository provides a set of example applications written using the SDK. To clone these repositories,
create a pico directory where you can store pico-related files. The following commands create a subdirectory named
pico in your home directory:

$ mkdir ~/pico

Then, clone the pico-sdk and pico-examples git repositories:

$ cd ~/pico

$ git clone https://github.com/raspberrypi/pico-sdk.git --branch master

$ cd pico-sdk

$ git submodule update --init

Secd ..

$ git clone https://github.com/raspberrypi/pico-examples.git --branch master

Install the Toolchain

To build the applications in pico-examples, you'll need to install some extra tools. To build projects you'll need CMake, a
cross-platform tool used to build the software, gcc, and the GNU Embedded Toolchain for Arm. Run the following
command to install these dependencies:

$ sudo apt update
$ sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi build-essential

Ubuntu and Debian users might additionally need to do:

apt install g++ libstdc++-arm-none-eabi-newlib

Enable UART serial communications

To enable UART serial communications on your development device. To do so on a Raspberry Pi running Raspberry Pi
OS, run raspi-config:

]
Manually Configure your Environment 33

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-sdk
https://cmake.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

Getting started with Raspberry Pi Pico-series
___|

$ sudo raspi-config

1. Navigate to Interfacing Options > Serial.
2. When asked "Would you like a login shell to be accessible over serial?", answer "No".
3. When asked "Would you like the serial port hardware to be enabled?", answer "Yes".

You should see something like Figure 12:

Figure 12. Enabling a pi@raspberrypi: ~

serial UART using))
.) File Edit Tabs Help
raspi-config on the

Raspberry Pi.

The serial login shell is disabled
The serial interface is enabled

Exit raspi-config with Esc. Choose "Yes" and reboot your Raspberry Pi to enable the serial port.

© IMPORTANT

Raspberry Pi 5 makes the UART on the 3-pin debug header the default for serial0. To use use GPIO pins 15 and 14
instead, append dtparam=uart@_console to /boot/firmware/config.txt.

Update the SDK

When a new version of the SDK is released, you must update your copy of the SDK. To update, navigate into pico-sdk and
run the following command:

$ cd pico-sdk
$ git pull
$ git submodule update

O NoTE

To be informed of new releases, set up a custom watch on the pico-sdk GitHub repository. Navigate to
https://github.com/raspberrypi/pico-sdk and select Watch — Custom — Releases. You will receive an email
notification when a new SDK release occurs.

___|
Manually Configure your Environment 34

https://github.com/raspberrypi/pico-sdk

Getting started with Raspberry Pi Pico-series

Use the CLI to Blink an LED in C

When you're writing software for hardware, turning an LED on, off, and then on again, is typically the first program that
gets run in a new programming environment. Learning how to blink an LED gets you half way to anywhere.

So let’s blink the LED on a Pico-series device.

This code shown here for the Raspberry Pi Pico and Pico 2 blinks the LED connected to pin 25 of the device.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c Lines 31 - 39

31 int main() {

32 pico_led_init();

33 while (true) {

34 pico_set_led(true);

35 sleep_ms(LED_DELAY_MS) ;
36 pico_set_led(false);

37 sleep_ms(LED_DELAY_MS) ;
38 }

39 }

The actual code for the "blink" example is slightly complicated as it also supports blinking the LED connected to the
Infineon 43439 wireless chip on the Pico W. The full code can be found here sdkexampleref::blink/blink.c

Building "Blink"

From the pico directory we created earlier, navigate into pico-examples and create a build directory:

$ cd pico-examples
$ mkdir build
$ cd build

Then, set the PIC0_SDK_PATH, assuming you cloned the pico-sdk and pico-examples repositories into the same directory:

$ export PICO_SDK_PATH=../../pico-sdk

@ TIF

Throughout this book we use the relative path ../../pico-sdk to the SDK repository for PIC0_SDK_PATH. Depending on
the location of your repository, you could replace this with an absolute path.

Build "Blink"
Prepare your cmake build directory by running the following command:
S cmake ..

Using PICO_SDK_PATH from environment ('../../pico-sdk"')
PICO_SDK_PATH is /home/pi/pico/pico-sdk

]
Use the CLIto Blink an LED in C 35

https://github.com/raspberrypi/pico-examples/blob/master/blink_simple/blink_simple.c#L31-L39

Getting started with Raspberry Pi Pico-series

-- Build files have been written to: /home/pi/pico/pico-examples/build

© IMPORTANT

The SDK builds binaries for the Raspberry Pi Pico 2 by default. To build a binary for a different board, pass the
-DPICO_BOARD=<board> option to CMake, replacing the <board> placeholder with the name of the board you'd like to
target. To build a binary for Pico 2, pass -DPIC0_B0ARD=pico2. To build a binary for Pico W, pass -DPIC0_BOARD=pico_w.
You can specify a Wi-Fi network and password that your Pico W examples should connect to, by passing
-DWIFI_SSID="Your Network" -DWIFI_PASSWORD="Your Password" too.

You can now type make to build all example applications. However, for this example we only need to build blink. To build
a specific subtree of examples, navigate into the corresponding subtree before running make. In this case, we can build
only the blink task by first navigating into the blink directory, then running make:

$ cd blink

S make -j4

Scanning dependencies of target ELF2UF2Build
Scanning dependencies of target boot_stage2_original
[©%] Creating directories for 'ELF2UF2Build’

[160%] Linking CXX executable blink.elf
[160%] Built target blink

@ TP

Invoking make with -j4 speeds the build up by running four jobs in parallel. A Raspberry Pi 5 has four cores, so four
jobs spreads the build evenly across the entire SoC.

Amongst other targets, this builds:

blink.elf

used by the debugger

blink.uf2

the file we'll copy onto the USB Mass Storage Device that represents your Raspberry Pi microcontroller

Load and run "Blink"

To load software onto a Raspberry Pi microcontroller-based board, mount it as a USB Mass Storage Device and copy a
uf2 file onto the board to program the flash.

Hold down the B0OTSEL button (Figure 13) while plugging in your device using a micro-USB cable to force it into USB
Mass Storage Mode.

The device will reboot, unmount itself as a Mass Storage Device, and run the flashed code, see Figure 13.

Use the CLIto Blink an LED in C 36

Getting started with Raspberry Pi Pico-series
]

Figure 13. Blinking the
on-board LED on the
Raspberry Pi Pico 2.
Arrows point to the on-
board LED, and the
BOOTSEL button.

Using the command line

@ TP

You can use picotool to load a UF2 binary onto your Pico-series device, see Appendix B.

Depending on the platform you use to compile binaries, you may have to mount the mass storage device manually:

S dmesg | tail

[371.973555] sd ©:0:0:08: [sda] Attached SCSI removable disk
$ sudo mkdir -p /mnt/pico

$ sudo mount /dev/sdal /mnt/pico

If you can see files in /mnt/pico, the USB Mass Storage Device has mounted correctly:

$ 1s /mnt/pico/
INDEX.HTM INFO_UF2.TXT

Copy your blink.uf2 onto the device:

$ sudo cp blink.uf2 /mnt/pico
$ sudo sync

The microcontroller automatically disconnects as a USB Mass Storage Device and runs your code, but just to be safe,
you should unmount manually as well:

$ sudo umount /mnt/pico

]
Use the CLIto Blink an LED in C 37

Getting started with Raspberry Pi Pico-series

O NoTE

Removing power from the board does not remove the code. When you restore power to the board, the flashed code
will run again.

Aside: Other Boards

If you are not following these instructions on a Raspberry Pi Pico-series device, you may not have a B0OTSEL button (as
labelled in Figure 13). Your board may have some other way of loading code, which the board supplier should have
documented:

® Most boards expose the SWD interface ([debug_probe_section]) which can reset the board and load code without
any button presses

® There may be some other way of pulling down the flash CS pin (which is how the BOOTSEL button works on Pico-
series devices), such as shorting together a pair of jumper pins

® Some boards have a reset button, but no B00TSEL; they might detect a double-press of the reset button to enter the
bootloader

In all cases you should consult the documentation for the specific board you are using, which should describe the best
way to load firmware onto that board.

Manually Create your own Project

Go ahead and create a directory to house your test project sitting alongside the pico-sdk directory,

$ cd ~/pico

$ 1s -la

total 16

drwxr-xr-x 7 aa staff 224 6 Apr 10:41 ./
drwx------ @ 27 aa staff 864 6 Apr 10:41 ../

drwxr-xr-x 10 aa staff 320 6 Apr 09:29 pico-examples/
drwxr-xr-x 13 aa staff 416 6 Apr 09:22 pico-sdk/

S mkdir test

$ cd test

and then create a test.c file in the directory,

#include <stdio.h>

#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "pico/binary_info.h"

const uint LED_PIN = 25;®

0 N O g b~ wWN =

int main() {

=
® ©

bi_decl(bi_program_description("This is a test binary."));®
bi_decl(bi_1pin_with_name(LED_PIN, "On-board LED"));

a4 A
Ww N =

stdio_init_all();

I
(S I

gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);

=
o

]
Manually Create your own Project 38

Getting started with Raspberry Pi Pico-series
]

17 while (1) {

18 gpio_put(LED_PIN, @);
19 sleep_ms(250) ;

20 gpio_put(LED_PIN, 1);
21 puts("Hello World\n");
22 sleep_ms(1000) ;

23 }

24 }

(D The onboard LED is connected to GP25 on Pico and Pico 2,if (2 These lines will add strings to the binary visible using
you're building for Pico W the LED is connected to picotool, see Appendix B.
CYW43_WL_GPIO_LED_PIN. For more information see the Pico W
blink example in the Pico Examples Github repository.

along with a CMakelists.txt file,

cmake_minimum_required(VERSION 3.13)
include(pico_sdk_import.cmake)

project(test_project C CXX ASM)
set (CMAKE_C_STANDARD 11)

set (CMAKE_CXX_STANDARD 17)
pico_sdk_init()

add_executable(test
test.c

pico_enable_stdio_usb(test 1)@
pico_enable_stdio_uart(test 1)@

pico_add_extra_outputs(test)

target_link_libraries(test pico_stdlib)

1. This will enable serial output via USB.
2. This will enable serial output via UART.

Then copy the pico_sdk_import.cmake file from the external folder in your pico-sdk installation to your test project folder.

S cp ../pico-sdk/external/pico_sdk_import.cmake .

You should now have something that looks like this,

$ 1s -1la

total 24

drwxr-xr-x 5 aa staff 160 6 Apr 10:46 ./

drwxr-xr-x 7 aa staff 224 6 Apr 10:41 ../

-rw-r--r--@ 1 aa staff 394 6 Apr 10:37 CMakelLists.txt
-rw-r--r-- 1 aa staff 2744 6 Apr 10:40 pico_sdk_import.cmake
-rw-r--r-- 1 aa staff 383 6 Apr 10:37 test.c

]
Manually Create your own Project 39

https://github.com/raspberrypi/pico-examples/blob/master/pico_w/wifi/blink/picow_blink.c
https://github.com/raspberrypi/pico-examples/blob/master/pico_w/wifi/blink/picow_blink.c

Getting started with Raspberry Pi Pico-series
]

and can build it as we did before with our "Hello World" example.

S mkdir build

$ cd build

S export PICO_SDK_PATH=../../pico-sdk
$ cmake ..

S make

© IMPORTANT

The SDK builds binaries for the Raspberry Pi Pico by default. To build a binary for a different board, pass the
-DPICO_BOARD=<board> option to CMake, replacing the <board> placeholder with the name of the board you'd like to
target. To build a binary for Pico 2, pass -DPIC0_B0OARD=pico2. To build a binary for Pico W, pass -DPIC0_BOARD=pico_w. TO
specify a Wi-Fi network and password that your Pico W should connect to, pass -DWIFI_SSID="Your Network"
-DWIFI_PASSWORD="Your Password".

The make process will produce a number of different files. The important ones are shown in the following table.

File extension Description

.bin Raw binary dump of the program code and data

elf The full program output, possibly including debug information

.uf2 The program code and data in a UF2 form that you can drag-and-drop on to the device

when it is mounted as a USB drive

.dis A disassembly of the compiled binary
.hex Hexdump of the compiled binary
.map A map file to accompany the .elf file describing where the linker has arranged segments
in memory
© NoTE

UF2 (USB Flashing Format) is a Microsoft-developed file format used for flashing Raspberry Pi microcontrollers over
USB. For more information, see the Microsoft UF2 Specification Repo.

© NoOTE

To build a binary to run in SRAM, rather than Flash memory you can either setup your cmake build with
-DPICO_NO_FLASH=1 or you can add pico_set_binary_type(TARGET_NAME no_flash) to control it on a per binary basis in your
CMakeLists.txt file. You can download the RAM binary to Raspberry Pi microcontrollers via UF2. For example, if there
is no flash chip on your board, you can download a binary that runs on the on-chip RAM using UF2 as it simply
specifies the addresses of where data goes. Note you can only download in to RAM or FLASH, not both.

Debugging your project

Debugging your own project from the command line follows the same processes as we used for the "Hello World"
example back in Debug with SWD.

Need more detail?

There should be enough here to show you how to get started, but you may find yourself wondering why
some of these files and incantations are needed. The Raspberry Pi Pico-series C/C++ SDK book dives

]
Manually Create your own Project 40

https://github.com/Microsoft/uf2
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

Getting started with Raspberry Pi Pico-series
]

deeper into how your project is actually built, and how the lines in our CMakeLists. txt files here relate to
the structure of the SDK, if you find yourself wanting to know more at some future point.

]
Manually Create your own Project 41

Getting started with Raspberry Pi Pico-series

Appendix D: Use other Integrated
Development Environments

The recommended Integrated Development Environment (IDE) is Visual Studio Code. However other environments can
be used with Raspberry Pi microcontrollers and Raspberry Pi Pico-series.

Use Eclipse

Eclipse is a multiplatform Integrated Development environment (IDE) available for Linux, macOS, and Windows. The
latest version works well on the Raspberry Pi 4, 400, and 5 (4GB and up) running a 64-bit 0S. The following instructions
describe how to set up Eclipse on a Linux device for to develop on Pico-series devices. Instructions for other systems
will be broadly similar, although the details of connecting to Pico-series devices vary.

Setting up Eclipse for Pico on a Linux machine

Prerequisites:

® Device running a recent version of Linux with at least 4GB of RAM

® 64-bit operating system.

® CMake 3.11 or newer
If using a Raspberry Pi, you should enable the standard UART by adding the following to config.txt
enable_uart=1

You should also install OpenOCD and the SWD debug system. See [debug_probe_section] for instructions on how to do
this.

Installing Eclipse and Eclipse plugins

Install the latest version of Eclipse IDE for Embedded C/C++ Developers using the standard instructions. If you are
running on an ARM platform, you will need to install an AArch64 (64-bit ARM) version of Eclipse. All versions can be
found on the Eclipse website. https://www.eclipse.org/downloads/packages

Download the correct file for your system, and extract it. You can then run it by going to the place where it was extracted
and running the 'eclipse’ executable.

$./eclipse

The Embedded CDT version of Eclipse includes the C/C++ development kit and the Embedded development kit, so has
everything you need to develop for Pico-series devices.

Using pico-examples

The standard build system for the Pico environment is CMake. However Eclipse does not use CMake as it has its own
build system, so we need to convert the pico-examples CMake build to an Eclipse project.

]
Use Eclipse 42

https://www.eclipse.org/downloads/packages

Getting started with Raspberry Pi Pico-series

® Atthe same level as the pico-examples folder, create a new folder, for example pico-examples-eclipse
® Change directory to that folder

® Set the path to the PICO_SDK_PATH

$ export PICO_SDK_PATH=<wherever>

® On the command line enter:

S cmake -G"Eclipse CDT4 - Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug ../pico-examples

O IMPORTANT

The SDK builds binaries for the Raspberry Pi Pico by default. To build a binary for a different board, pass the
-DPIC0_BOARD=<board> option to CMake, replacing the <board> placeholder with the name of the board you'd like to
target. To build a binary for Pico 2, pass -DPIC0_BOARD=pico2. To build a binary for Pico W, pass -DPIC0_BOARD=pico_w. TO
specify a Wi-Fi network and password that your Pico W should connect to, pass -DWIFI_SSID="Your Network"
-DWIFI_PASSWORD="Your Password".

This will create the Eclipse project files in our pico-examples-eclipse folder, using the source from the original CMake
tree.

You can now load your new project files into Eclipse using the Open project From File System option in the File menu.

Building

Right click on the project in the project explorer, and select Build. This will build all the examples.

OpenOCD

This example uses the OpenOCD system to communicate with a Raspberry Pi microcontroller. You will need to have
provided the 2-wire debug connections from the host device to the microcontroller prior to running the code. On a
Raspberry Pi, this can be done via GPIO connections, but on a laptop or desktop device, you need to use extra hardware
for this connection. One way is to use the Debug Probe.

Once OpenOCD is installed and the correct connection made, Eclipse needs to be set up to talk to OpenOCD when
programs are run. OpenOCD provides a GDB interface to Eclipse, and it is that interface that is used when debugging.

To set up the OpenOCD system, select Preferences from the Window menu.
Click on mcu arrow to expand the options and click on Global 0pen0CD path.

For the executable, type in “openocd”. For the folder, select the location in the file system where you have cloned the
Pico OpenOCD fork from github.

Use Eclipse 43

Getting started with Raspberry Pi Pico-series

Figure 14. Semng the | workspace - pico_examples-Debug@pico_examples_eclipse2/[Source directory]/spi/bme280_spi/bme280_spi.c - Eclipse Platform oo
File Edit Source Refactor Navigate Search Project Run Window Help
0CD executable name —_—
[RI][@] [+ pebug Preferences e R T
and path in Eclipse. PE TS~ F S ypefitertext Global OpenoCD Path GvD v § QB B %E
& Project Explorer % » General Configure the location where xPack OpenOCD s installed. TH = O &2 Outl 2 ©Buil HDoc = O
) C/oH stored within Eclipse. Unless redefined more specifically, the: EE XS o % 3§
» % pico_examples (in pi) Help all projects in all workspaces. ® dig P8 int16.t
e les-Deb .
2 pre0-@emPIESDEDUEREC tnstallupdate After installing Open0CD updates, estart Eclipse for the defe ¢ digP9 intio
» Language Servers evaluated and use the Restore Defauits button to configure t »>"4) ; ® dig H1 uini8_t
location g © digHsunG
Global ARM Toolchains Paths N B ® digH6 inEt
ital 16
Global Build Tools Path CLELS B e digH2int6t
Folder: Browse g ® dig.H4 int16.t
Workspace ARM Toolchains Paths 2 e dig H5:inti6t |
Workspace Build Tools Path @ compensate_temp(int32.1) :int
Workspace OpenOCD Path ® compensate_pressure(int32_t)
» Remote Development #® compensate_humidity(int32_t)
» Run/Debug ©* cs_select() - void
» Team g e°cs_deselect():void
» Terminal B o® write_register(uint8_t, uint8_t)

i ° read_registers(uint8_t, uintg_t, 1
= read_compensation_parameters
& ° bme280_read_raw(int32_t*, int3,
D main() :int
Restore Defaults 5 p§ (@& M B ~HN~ = g
3,2020, 123743 PM)

(OP %] Cancel Apply and Close -

(21) faultmask (/1): 0x00

(22) control (/2): 6x00

Cortex-H DWT registers

halted due to debug-request, current mode: Thread

0x01000000 pc: 0x0000012a msp: 0x20041700

Creating a Run configuration

In order to run or debug code in Eclipse you need to set up a Run Configuration. This sets up all the information needed
to identify the code to run, any parameters, the debugger, source paths and SVD information.

From the Eclipse Run menu, select Run Configurations. To create a debugger configuration, select GDB Open0CD Debugging
option, then select the New Configuration button.

Figure 15. Creating a | workspace - pico_examples-Debug@pico_examples_eclipse2/[Source directory)/spi/bme280_spi/bme280_spi.c - Eclipse Platform v oax]
File Edit Soul - ..
new Run/Debug Debug Configurations =
X o EEIN { Create, manage, and run configurations !9~
configuration in Ty B & %
Eclipse. & Project Explor HDoc < O
1 ; E BY >~ Configure launch settings from this dialog: Xooo% §
T t
7 (- PresstheNew Configuraton button o createa configurationof the selected type
» &5 pico_examp . . t
[E1C/C++ Application [#f - Press the 'New Prototype’ button to create a launch configuration prototype of the selected type. A
[E]C/C++ Attach to Application $® - Press the 'Export’ button to export the selected configurations. t
[E1C/C#+ Postmortem Debugger - Press the ‘Duplicate’ button to copy the selected configuration .
C/C++ Remote Applicat
E1C/Ce+ Remote Application - Press the Delete’ button to remove the selected configuration t
@ Debug Adapter Launcher "
[E1GDB Hardware Debugging 7 - Press the Filter button to configure filtering options. A
- Edit or view an existing configuration by selecting it.
(1 - Select launch configuration(s) and then select 'Link Prototype’ menu item to link a prototype. "
[Elpico_examples Debug @ - Select launch configuration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype. t
@ Launch Group - Select launch configuration(s) and then select ‘Reset .. totype Values' menu item to reset with prototype values. | t

& Launch Group (Deprecated)

smp(int32.1) ' int2

Configure launch persp gs from the ! ! preference page. ressure(int32.t)
umidity(int32.1)
d

void

Jint8 1, uint8)

‘Hv =g
Filter matched 11 of 11 items

® Close Debug

Setting up the application to run

Because the pico-examples build creates lots of different application executables, you need to select which specific one
is to be run or debugged.

On the Main tab of the Run configuration page, use the Browse option to select the C/C++ applications you wish to run.

The Eclipse build will have created the executables in sub folders of the Eclipse project folder. In our example case this
is

+/pico-examples-eclipse/<name of example folder>/<optional name of example subfolder>/executable.elf

So for example, if we running the LED blink example, this can be found at:

Use Eclipse 44

Getting started with Raspberry Pi Pico-series
]

Figure 16. Setting the
executable to debug in
Eclipse.

+/pico-examples-eclipse/blink/blink.elf

File Edit Source Refactor Navigate Search Project Run Window Help

[&] 8] [oeug
P E T S

& Project Explorer %%

) 2 les (in pico_exa
» &5 pico_examples-Debug@pic

Edit Configuration

Edit GDB OpenOCD Debugging configuration pico_examples2-Debug_configuration for Debug

Launch C Name: | pico_examples2-Debug,

[© Main| 3+ Debugger| & Startup| & Source| T Common| . SVD Path

workspace - pico_examples-Debug@pico_examples_eclipse2/[Source directory]/spi/bme280_spi/bme280_spi.c - Eclipse Platform v oA X

| [@2 pico_exemples2-Debugc + B-HE ®~A~piDisn S BB -E-G-i#-0~Qvi® &~

v oA x Q i® B E
3 |g=Outl ® ®@Buil ®hoc < B

BB R e % §
uiy_ro ol

dig_P6 int16.t
dig_P7:int16.t
dig_P8:int16_t

Project

pico_examples-Debug@pico_examples_eclipse2

Variables... | Search Project...

Build (if required) before launching

Build Configuration: = Select Automatically

dig P9 int16.t

dig_H1 :uint8_t

dig_H3 :uint8_t

dig H6 :int8_t

dig_H2 :int16t

dig Ha:int6_t

dig_H5 :int6_t

compensate_temp(int32_t) int

compensate_pressure(int32_t)

compensate_humidity(int32_t)

o % cs_select() void

o5 cs_deselect() void

o write_register(uint8_t, uint8_t)

& ° read_registers(uint8_t, uint8_t, 1

= read_compensation_parameters
e ° bme280_read_raw(int32_t*, int3
© main():int

Browse...

1O oo @ o

Browse..

3% 00 0™ 000 0 0 @

%

mom

IEE #8~-d>y =g
0,12:3743 PM)

Enable auto build Disable auto build
© Use workspace settings Configure Workspace Seffings...
@ [ouieste || oo Bz

(22) controt (72): vxoy
===== Cortex-M DWT registers

target halted due to debug-request, current mode: Thread
XPSR: 0x01000000 pc: 0x0000012a msp: 0x20041F00

Info : dropped 'gdb’ connection

Setting up the debugger

Let's set up OpenOCD to talk to the Raspberry Pi microcontroller.

Set openocd in the boxes labelled Executable and Actual Executable. We also need to set up OpenOCD to use the Pico
specific configuration, so in the Config options sections add the following. You will need to change the path to point to
the location where the Pico version of OpenOCD is installed.

-f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

Replace rp2040.cfg with rp2350.cfg if you are using a RP2350-based device.

All other OpenOCD settings should be set to the default values.

The actual debugger used is GDB. This talks to the OpenOCD debugger for the actual communications with the
Raspberry Pi microcontroller, but provides a standard interface to the IDE.

The particular version of GDB used is gdb-multiarch, so enter this in the fields labelled Executable Name and Actual

Executable.

Use Eclipse

45

Getting started with Raspberry Pi Pico-series

Figure 17. Setting up
the Debugger and
0Open0CD in Eclipse.

Create, manage, and run configurations

CE®PEX BV~

type filter text

(£)Build Docker Image
[E]C/C++ Application
[E]C/C++ Container Launcher
[E]C/C++ Remote Application
Cii C/C++ Unit

© Docker Compose

[E1GDB Jumper Debugging
~ [£]GDB Open0CD Debugging

[E]GDB PyOCD Debugging
[£16DB QEMU Debugging
[£1GDB SEGGER J-Link Debuggit
» & Launch Group

Launch over Serial
& Run Docker Image
¥ SystemTap

Filter matched 17 of 19 items

Name: ‘ pico_examples-Debug_pico_examples_eclipse Configuration

Main| % Debugger & Stanuﬂ 2 Source] B Qommon] % SVD Path}

Open0CD Setup

v Start OpenOCD I%ﬂhg\
Executable path: /| openocd \ Browse... Variables..
Actual execuiahlq openocd /I

M{ use the global or workspace preferences pages or the project properties page)
GDB port: 333 |
Telnet port: ‘ 4444 ‘
Tel port: 6666

Config options: (Cf interface/raspberrypi-swd.cfg -f target/r2040.cf

! Allocate console for OpenOCD

[Allocate console for the telnet connection

GDB Client Setup
' Start GDB session

@

Setting up the SVD plugin

Executable nam gdb—multlamh\ Browse... | Variables..
Actual executabl gdh—multiamh/ ‘
Other options: ‘ ‘
Commands: set mem inaccessible-by-default off ‘
Revert Apply

SVD provides a mechanism to view and set peripheral registers on the Pico board. An SVD file provides register
locations and descriptions, and the SVD plugin for Eclipse integrates that functionality in to the Eclipse IDE. The SVD
plugin comes as part of the Embedded development plugins.

Select the SVD path tab on the Launch configuration, and enter the location on the file system where the SVD file is
located. This is usually found in the pico-sdk source tree.

E.g.

-+/pico-sdk/src/rp2040/hardware_regs/RP2040.svd or ---/pico-sdk/src/rp2350/hardware_regs/RP2350.svd

Figure 18. Setting the
SVD path in Eclipse.

Create, manage, and run configurations

CEeREX BY~

type filter text

£)Build Docker Image
[E1C/C++ Application
[E1C/C++ Container Launcher
[E]C/C++ Remote Application
Cii C/C++ Unit
O Docker Compose
[£1GDB Jumper Debugging

~ [£1GDB Open0CD Debugging

[£1GDB PyOCD Debugging
[E£1GDB QEMU Debugging
[E1GDB SEGGER J-Link Debuggit
» @ Launch Group
Launch over Serial
& Run Docker Image
¥ SystemTap

Filter matched 17 of 19 items

Name: ‘ pico_examples-Debug_pico_examples_eclipse Configuration

Main f’iﬁ Debuggerf’ Startup (E/ Source (E QommD@

SVD file (used by the peripheral registers viewer)

File path@i/pmjems/pico,sdk/sm/rp?molhardware,regs/rp@

‘;Erowse, || Variables... ‘

Revert Apply

| @

Close

Use Eclipse

46

Getting started with Raspberry Pi Pico-series

Figure 19. The Eclipse
debugger running,
showing some of the
debugging window
available.

Running the Debugger

Once the Run configuration is complete and saved, you can launch immediately using the Run button at the bottom right
of the dialog, or simply Apply the changes and (lose the dialog. You can then run the application using the Run Menu Debug
option.

This will set Eclipse in to debug perspective, which will display a multitude of different debug and source code windows,
along with the very useful Peripherals view which uses the SVD data to provide access to peripheral registers. From this
point on this is a standard Eclipse debugging session.

Fle Edt Souce Refactor Navigate Seach Project Run Window Help

[RIEI] [00sbvg |[@ pco-erampleszDatugov 4| (B v M@ BIEiw »HBNLD L ED £ 6 0 RIS~ cHrc oo Qe aEER

+Debug = o ProptBglorr = 0 | @ omezsospion = o Varabes 2 Breakgonts Gl CNCE N
B% B 3§ © al Ty

~ lpico. examples2-Debug_configuration [(37 NE— erid sintd t 020 (ex)

~ @bmezs0.spiclt | ata fron registers via SPT...\0"); ehumidty N2t 0

~ i Thread #1 1 (Name: 260 cored, 1 wpresswe 32t 268442029

main() at boe280.pi o182 0x1 | T wotemperature 2.t sseaTesiz
+ i Thead £22 (ame b0, e b oy £
& openocd LSk, GrI0 N ST =

. GhIo P Sp1);
M gdb-multiarch B
B | Pepherls 5 48 8 <o
should be oxe0 - o

%A Register block o control ATC

Single-cycle 10 blockn Provides core-local and inter-cor

#5VSCF6
TSYSINFO 0x40000000

Register block for various ehip control signals

B UATOMAN 0do06c000 Testoonch manage Alows the rogammertokiow
ATMER 000500 Convols e and alame\n ime s 5 bitvalue ndica
AT ovdoosdcen

7 ZUART] 0x40038000

ZUSBCTRLAL (XS0110000 USB FSILS contillerdevice regisers
No detaifs 0 disolav for the curent selection
@ Console] Poblems O Executables @Debugges Console O Memory 1 Terminal U 58 % 1 -0

Monitors % New Renderings.
0640030000 0x00000000
0640030004 0x00000000
Ox4003C008 0x00000000
0¢4003C00C 0x00000003
064003010 0x00000000
Ox00sC0T4 0x00000000

Use CLion

CLion is a multiplatform Integrated Development environment (IDE) from JetBrains, available for Linux, Windows and
Mac. This is a commercial IDE often the choice of professional developers (or those who love JetBrains IDEs) although
there are free or reduce price licenses available. It will run on a Raspberry Pi, however the performance is not ideal, so it
is expected you would be using CLion on your desktop or laptop.

Whilst setting up projects, development and building are a breeze, setting up debug is still not very mainstream at the
moment, so be warned.

Setting up CLion

If you are planning to use CLion we assume you either have it installed or can install it from https://www.jetbrains.com/
clion/

Setting up a project
Here we are using pico-examples as the example project.

To open the pico-examples project, select Open--- from the File menu, and then navigate to and select the pico-examples
directory you checked out, and press OK.

Once open you'll see something like Figure 20.

Use CLion

a7

https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/

Getting started with Raspberry Pi Pico-series
]

Figure 20. A newly
opened CLion pico-
examples project.

Figure 21. Configuring
a CMake profile in
CLion.

xamples - README.md o ®

File Edit View Navigate Code Refactor Build Run Tools Git TeamCity Window Help
pico-examples ‘Add Configuration... g Gt v v 20 5BQ
§ = Project) % — i README.md =
#3l > = pico-examples ~/dev/pico/pico-examples) o g
- Il External Libraries %
o 7 "Scratches and Consoles PICO SDK Examples z
i
N Getting started o
% See in httpsigithub. dk for getting started information.
&
; Minimal Examples
App Description Link to prebuilt UF2
hello_world The obligatory Hello World program for Pico (USB and Serial versions) https://pico.raspberrypi.org/uf2/hello_world.uf2
blink Blink an LED on and off. htps://pico.raspberrypi.org/uf2/blink.uf2
ADC
App Description
CMake @ Debug o -
P /hane/grahan/ . 1acal/share/Jet8rains/Tools 1on/cn-8/203.5981 i Linux/bi ~DCHAKE_BUTLD_TYPE=Debug -G "CodeBlacks - Unix Makefiles" /
o | CHake Error at pico sak isport.cnskeiss (nessage):
” | PICO SDK location was not specified. Please set PICO_SDK_PATH or set
5 o PICO_SDK_FETCH_FROM_GIT to on to fetch from git.
4 | call Stack (most recent call first):
& CHakelists.txt:4 (include)
W
-~ Configuring inconplete, errors occurred:
5 [Failed to reload]

g 2
* H
© Problems |+ Git B Terminal [TeamCity = A CMake = TODO Q EventLog

=] LF UTF8 4spaces I pre_release = @ i+

Notice at the bottom that CLion attempted to load the CMake project, but there was an error; namely that we hadn't
specified PICO_SDK_PATH

Configuring CMake Profiles

Select Settings: - from the File menu, and then navigate to and select 'CMake' under Build, Execution, Deployment.

You can set the environment variable PICO_SDK_PATH under Environment: as in Figure 21, or you can set it as
-DPICO_SDK_PATH=xxx under CMake options:. These are just like the environment variables or command line args when
calling cmake from the command line, so this is where you'd specify CMake settings such as PICO_BOARD,
PICO_TOOLCHAIN_PATH etc.

Build, Execution, Deployment > CMake For current project Reset

> Appearance & Behavior Reload cMake project on editing CMakeLists.txt
External changes always trigger project reload. For example, VCS update

Keymap
> Editor Profiles
Plugins Profile is anamed set of build options. For example, create separate profiles for Debug and Release builds and switch between them
> Version Control when needed.
~ Build, Execution, Deployment + - & Enable profile
Toolchains A Debug Name: Debug

Compilation Database Build type: Debug ~ | corresponds to CMAKE_BUILD_TYPE
Custom Build Targets Toolchain: Use: Default ~ | Manage toolchains...

Makefile
CMake options: -DCMAKE BUILD TYPE=Debug

5 B Use -DVAR_NAME=value to setvariables, -G to specify a custom generator.
PEIEET All cMake options
Python Debugger
Python Interpreter

> Build Tools

Build directory: | cmake-build-debug

> Deployment Buildoptions: | -~ -j 9
> console Arguments after ‘' are passed to the build, other arguments are
D CMake command line parameters. Default options depend on the
toolchain’s environment.

> Dynamic Analysis Tools
Environment: | PICO_SDK_PATH=/home/graham/dev/pico/pico-sdk

Embedded Development
Additional variables for CMake generation and build. The values are

Required Plugins added to system and toolchain variables.

Swift

> Languages & Frameworks

2 BT cencel | appy

Use CLion

48

Getting started with Raspberry Pi Pico-series

© IMPORTANT

The SDK builds binaries for the Raspberry Pi Pico by default. To build a binary for a different board, pass the
-DPIC0_BOARD=<board> option to CMake, replacing the <board> placeholder with the name of the board you'd like to
target. To build a binary for Pico 2, pass -DPIC0_BOARD=pico2. To build a binary for Pico W, pass -DPIC0_BOARD=pico_w. TO
specify a Wi-Fi network and password that your Pico W should connect to, pass -DWIFI_SSID="Your Network"
-DWIFI_PASSWORD="Your Password".

You can have as many CMake profiles as you like with different settings. You probably want to add a Release build by
hitting the + button, and then filling in the PICO_SDK_PATH again, or by hitting the copy button two to the right, and
fixing the name and settings (see Figure 22)

povesa e R R

nd CMak
a second CMake Build, Execution, Deployment > CMake For current project Reset
Profile in CLion. e Reload CMake project on editing CMakeLists.txt
D External changes always trigger project reload. For example, VCS update
5 Editor Profiles
Plugins Profile is a named set of build options. For example, create separate profiles for Debug and Release builds and switch between them
> Version Control i rEEiz
~ Build, Execution, Deployment + - B a [Enable profile
Toolchains A Debug Name: Release
o BFerToaaFace Build type: Release + | Corresponds to CMAKE_BUILD TYPE
Custom Build Targets Toolchain: Use: Default ~ | Manage toolchains...
Makefile
CMake options: -DCMAKE BUILD TYPE=Release
> Build Tools
b Use -DVAR_NAME=value to set variables, -G to specify a custom generator.
> Debugger All cMake options »
Python Debugger .
Build directory: cmake-build-release
Python Interpreter
> Deployment Buildoptions: | -- -7 O
> Console Arguments after ‘' are passed to the build, other arguments are
@D CMake command line parameters. Default options depend on the
toolchain’s environment.
> Dynamic Analysis Tools X —
Embedded Development Environment: | PICO_SDK_PATH=/home/graham/dev/pico/pico-sdk
" " Additional variables For CMake generation and build. The values are
el AL added to system and toolchain variables.
Swift
> Languages & Frameworks
2 T3 cncel | apply
After pressing OK, you'll see something like Figure 23. Note that there are two tabs for the two profiles (Debug and
Release) at the bottom of the window. In this case Release is selected, and you can see that the CMake setup was
successful.
F’gu,e 23. Conflgunng pico_examples - README.md - o @
a second CMake File Edit View Navigate Code Refactor Build Run Tools Git TeamCity Window Help
s . pico-examples “ adc_console|Debug ~ > & G G K # _ & Git ¥ v 2 BQ
prOfIIe in CLIOn. g Project ~ @ = ¥ @ — 5 README.md H
£ > = pico-examples HOHD @ = x| o §
& >l External Libraries g
> " Scratches and Consoles =
H PICO SDK Examples 3
Getting started g
F) 2
g See in https:Jigithub. for getting started information. °
&
E Minimal Examples
App Description Link to prebuilt UF2
hello_world The obligatory Hello World program for Pico (USB and Serial versions) https://pico.raspberrypi.org/uf2/hello_world.uf2
blink Blink an LED on and off. https:/ipico.raspberrypi.org/uf2/blink.uf2
ADC
App Description
CMake: A Debug A Release o -
s -- Found assembler: /usr/bin/arn-none-eabi-gcc
Defaulting PICO target board to pico since not specified.
“® -- Found Python3: /usr/bin/python3.8 (found version "3.8.5") found components: Interpreter
TinyUSB available at Lib/tiny e P! ypi/rp2848; adding USB support.
-- Found Doxygen: /usr/bin/doxygen (found version "1.8.17") found components: doxygen dot
g -- Build files have been written to: ico/pi 1ld-release
]
& [Finished] 3
* &
© Problems 1 Git B Terminal [TeamCity = A CMake = TODO Q Event Log
[=] 18:1 LF UTF-8 4spaces P pre_release m € -

Running a build

Now we can choose to build one or more targets. For example you can navigate to the drop down selector in the middle
of the toolbar, and select or starting typing hello_usb; then press the tool icon to its left to build (see Figure 24).

]
Use CLion 49

Getting started with Raspberry Pi Pico-series
]

Alternatively you can do a full build of all targets or other types of build from the Build menu.

Figure 24. hello_usb

[E——— o o®
successfully built. lle gt View Novigste Code Sefocor Buld Fun Toos Git Teancily Mindow. tielp
pico-sdk src rp2_common . pico_stdio ' 2 stdio.c A [Fihellousb[Debug v | b & G G % % .. Gt v v A0 5 @EQ
K Project ~ @ I £ & — &hello_usb.c & stdio.c a
| — - . z
& > I External Libraries f{
o 7 “oscratches and Consoles g
L]
: °
e g
2 2
H £1¢ pIc0_SToI0_UART L
g =
H Fonaie
-
£i¢ prco_sToro_uss
Sinclue "pico/stato_usb.n"
sonaie
£ PIco_sToT0_senTHoSTING
enae
static stoio_driven_t sdrivers;
static stdiodriver_t sfilter;
£4¢ PIco_sToouT_nuTex
auto_inst_nutex(print autex);
bool stdout_serialize_begin() {
int core_nua = aet_core_nua():
Messages: Build % —
t1sex] surtarng € o
[106%)] Building C ol
[108%] Building C of
[168%] Building C object he’
= [108%) Building C object he
P Daoesd suitang ¢ o
= [108%] Building C ol
& [108%] Building C of v,
& | [108%] Building C object hello_world/ush/CakeFiles/hello_usb.dir/hone/grahan/dev.
[108%] Linking CXX executable hello_usb.elf
[108%] Built target hello_usb
- Build finished
H 2
* B
© Problems 1 Git D Terminal A CMake [ETeamCity & Messages = TODO QEventLog
27:1 LF UTF8 4spaces Chello_usb|Debug V pre release = € - ©

Note that the drop down selector lets you choose both the target you want to build and a CMake profile to use (in this
case one of Debug or Release)

Another thing you'll notice Figure 24 shows is that in the bottom status bar, you can see hello_usb and Debug again.
These are showing you the target and CMake profile being used to control syntax highlighting etc. in the editor (This
was auto selected when you chose hello_usb before). You can visually see in the stdio.c file that has been opened by the
user, that PICO_STDIO_USB is set, but PICO_STDIO_UART is not (which are part of the configuration of hello_usb). Build
time per binary configuration of libraries is heavily used within the SDK, so this is a very nice feature.

Build Artifacts

The build artifacts are located under cmake-build-<profile> under the project root (see Figure 25). In this case this is the
cmake-build-debug directory.

The UF2 file can be copied onto a Raspberry Pi microcontroller in BOOTSEL mode, or the ELF can be used for
debugging.

Figure 25. Locating

[E— I
the hello_usb build Fle Edit View Navigate Code Refactor Bulld Run Tools Git TeamCity Window Help
pleo-examples cmake-build-debug hello_world usb % hello_usb.uf2 A [Thellousb|Debug v | b ¥ G G B £ .. Gt v v 200 @Q
artifacts § = Project - @ I = © — Zhelousbc & stdioc a
£ ' picoexamples ~/dev/pico/pico-examples z B%3 A v z
B made = &
> 5 blink z
> i clocks =
> b cmake 0
4 v mcmakebuilddebug 2
#incuge g
A > madc g
g el #1F PICO_STOIO_UART e
- > mclocks w
K > cmake fendif
H > chakeFiles
> divider #1¢ pIco_soro_use
> mdma #include "pico/staio_usb.n"
> melfaurz senait
> mflash
> M generated #if PICO_STOIO_SEMIHOSTING
> mgpio
~ B hello_world senait
> M CMakeFiles
> mserial static stato_griver_t sarivers;
oD static staio_griver_t sfilter;
> B CMakefiles
A cmake_installcmake 1/ #4F PICO_STOOUT. NUTEX
ot avto_init_nutex(print_nutex);
hello_usb.dis 1
gy bool stdout_serdalize_begin() {
AT int core_nun = get_core_nun();
vints2_t omner;
hello_usb.hex if (tnutex_try_enter(print_nutex, Gowner)) {
it Comner == core_num) {
return fatse:
A cmake_installcmake 117/
Messages: _Build
[168%] Builaing C object hello_worla/ush/CHakeFiles/nello
(106%] Buslding C o vendor/vendor_device.c.obj
(19651 Building o
[108%] 5uitaing ¢ object n
[109%] 5uilaing C object nello_s
[168%] Linking XX executable
¢ = 1180 Built target hello_vsb
i - .
* b7
©Problems 1+ Gt W Terminal A CMake [Teamchy | S Messages| = 1000 Qeventog
607 ms (10 minutes ago) 27:1 LF UTF8 aspaces C:hello_usb|Debug ¥ pre release @ <+

Use CLion

50

Getting started with Raspberry Pi Pico-series

Other Environments

There are too development environments available to describe all of them here. You can use many of them with the
SDK. In general, IDEs require the following features to support Pico-series devices:

® CMake integration
* GDB support with remote options
® SVD. Not essential but makes reading peripheral status much easier

® Optional Arm embedded development plugin. These types of plugin often make support much easier.

Other Environments 51

Getting started with Raspberry Pi Pico-series

Appendix H: Documentation Release
History

August 8 2024

Initial release.

August 8 2024 52

@ Raspberry Pi

Raspberry Pi is a trademark of Raspberry Pi Ltd

Raspberry Pi Ltd

	Getting started with Raspberry Pi Pico-series
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. Introduction
	Chapter 2. Install Visual Studio Code
	Chapter 3. Install the Raspberry Pi Pico VS Code Extension
	3.1. Install Dependencies
	3.1.1. Raspberry Pi OS and Windows
	3.1.2. Linux
	3.1.3. macOS

	3.2. Install the Extension

	Chapter 4. Load a Project
	4.1. Compile and Run blink
	4.2. Make a Code Change and Re-run
	4.3. Debug

	Chapter 5. Say "Hello World" in C
	5.1. Serial input and output on Pico-series devices
	5.2. Create a project
	5.3. Build your project
	5.4. See console output

	Appendix A: Debugprobe
	Building OpenOCD
	Install OpenOCD
	Debug Probe
	Debug Probe wiring

	Debug with a second Pico or Pico 2
	Install debugprobe

	debugprobe wiring
	Debug Probe interfaces
	Use the UART
	Linux
	Windows
	macOS

	Debug with OpenOCD
	Debug with SWD

	Appendix B: Picotool
	Getting picotool
	Building picotool
	Using picotool
	Display information
	Save the program
	Binary Information
	Basic information
	Pins
	Full Information

	Appendix C: Manual toolchain setup
	Configure your environment via Script
	Manually Configure your Environment
	Get the SDK and examples
	Install the Toolchain
	Enable UART serial communications
	Update the SDK

	Use the CLI to Blink an LED in C
	Building "Blink"
	Load and run "Blink"

	Manually Create your own Project
	Debugging your project

	Appendix D: Use other Integrated Development Environments
	Use Eclipse
	Setting up Eclipse for Pico on a Linux machine

	Use CLion
	Setting up CLion

	Other Environments

	Appendix H: Documentation Release History
	August 8 2024

