
AN INTRODUCTION TO THE

USA COMPUTING OLYMPIAD

Darren Yao
2020

� � � C++ Edition

Contents

I Basic Techniques 1

1 The Beginning 2

1.1 Competitive Programming . 2
1.2 Contests and Resources . 3
1.3 Competitive Programming Practice . 3
1.4 About This Book . 4

2 Elementary Techniques 5

2.1 Input and Output . 5
2.2 Data Types . 6

3 Time/Space Complexity and Algorithm Analysis 7

3.1 Big O Notation and Complexity Calculations 7
3.2 Common Complexities and Constraints . 8

4 Built-in Data Structures 10

4.1 Iterators . 10
4.2 Dynamic Arrays . 11
4.3 Stacks and the Various Types of Queues . 12
4.4 Sets and Maps . 13
4.5 Problems . 16

II Bronze 18

5 Simulation 19

5.1 Example 1 . 19
5.2 Example 2 . 20
5.3 Problems . 21

6 Complete Search 22

6.1 Example 1 . 22
6.2 Generating Permutations . 24
6.3 Problems . 24

ii

CONTENTS iii

7 Additional Bronze Topics 26

7.1 Square and Rectangle Geometry . 26
7.2 Ad-hoc . 26
7.3 Problems . 27

III Silver 28

8 Sorting and Comparators 29

8.1 Comparators . 29
8.2 Sorting by Multiple Criteria . 30
8.3 Problems . 31

9 Greedy Algorithms 32

9.1 Introductory Example: Studying Algorithms 32
9.2 Example: The Scheduling Problem . 33
9.3 Failure Cases of Greedy Algorithms . 34
9.4 Problems . 35

10 Graph Theory 36

10.1 Graph Basics . 36
10.2 Trees . 37
10.3 Graph Representations . 38
10.4 Graph Traversal Algorithms . 43
10.5 Floodfill . 46
10.6 Disjoint-Set Data Structure . 49
10.7 Bipartite Graphs . 52
10.8 Problems . 53

11 Prefix Sums 55

11.1 Prefix Sums . 55
11.2 Two Dimensional Prefix Sums . 56
11.3 Problems . 58

12 Binary Search 59

12.1 Binary Search on the Answer . 59
12.2 Example . 60
12.3 Problems . 61

13 Elementary Number Theory 63

13.1 Prime Factorization . 63
13.2 GCD and LCM . 64
13.3 Modular Arithmetic . 65
13.4 Problems . 65

CONTENTS iv

14 Additional Silver Topics 66

14.1 Two Pointers . 66
14.2 Line sweep . 68
14.3 Bitwise Operations and Subsets . 70
14.4 Ad-hoc . 73
14.5 Problems . 73

IV Problem Set 75

15 Parting Shots 76

Part I

Basic Techniques

1

Chapter 1

The Beginning

1.1 Competitive Programming

Welcome to the world of competitive programming! If you’ve had some basic programming
experience with C++ (perhaps at the level of an introductory course), and are interested in
competitive programming, then this book is for you. (If your primary language is Java, we
also have a Java edition of this book; please refer to that instead). If you currently do not
know how to code, there are numerous resources available online to help you learn.

This book aims to guide you through your competitive programming journey by providing
a framework in which to learn the important contest topics. From competitive programming,
not only do you improve at programming, but you improve your problem-solving skills which
will help you in other areas. If at any point you have questions, feedback, or notice any
mistakes, please contact me at darren.yao@gmail.com. Best of luck, and enjoy the ride!

The goal of competitive programming is to write code to solve given problems quickly.
These problems are not open problems; they are problems that are designed to be solved in
the short timeframe of a contest, and have already been solved by the problem writer and
testers. In general, each problem in competitive programming is solved by a two-step process:
coming up with the algorithm, and then implementing it into working code. The degree of
mathematics knowledge varies from contest to contest, but generally the level of mathematics
required is relatively elementary, and we will review important topics in this book.

A contest generally lasts for several hours, and consists of a set of problems. For each
problem, when you complete your code, you submit it to a grader, which checks the answers
calculated by the your program against a set of predetermined test cases. For each problem,
you are given a time limit and a memory limit that your program must satisfy. Grading
varies between contests; sometimes there is partial credit for passing some cases, while other
times grading is all-or-nothing. For those of you with experience in software development,
note that competitive programming is quite di↵erent, as the goal is to write programs that
compute the correct answer, run quickly, and can be implemented quickly. Note that nowhere
was maintainability of code mentioned. This means that you should throw away everything
you know about traditional code writing; you don’t need to bother documenting your code,
because it only needs to be readable to you, during the contest.

2

CHAPTER 1. THE BEGINNING 3

1.2 Contests and Resources

The USA Computing Olympiad is a national programming competition that occurs four
times a year, with December, January, February, and US Open contests. The regular contests
are four hours long, and the US Open is five hours long. Each contest contains three problems.
Solutions are evaluated and scored against a set of predetermined test cases that are not
visible to the student. Scoring is out of 1000 points, with each problem being weighted
equally. There are four divisions of contests: Bronze, Silver, Gold, and Platinum. After each
contest, students who meet the contest-dependent cuto↵ for promotion will compete in the
next division for future contests.

While this book is primarily focused on the USACO, CodeForces is another contest
programming platform that many students use for practice. CodeForces holds 2-hour contests
very frequently, which are more focused on fast solving compared to USACO. However, we
do think CodeForces is a valuable training platform, so many exercises and problems will
come from there. We encourage you to create a CodeForces account and solve the provided
problems there. CodeForces submissions are all-or-nothing; unlike USACO, there is no partial
credit and you only receive credit for a problem if you pass all of the test cases.

We will also include some exercises from Antti Laaksonen’s website CSES. It contains a
selection of standard problems that you can use to learn and practice well-known algorithms
and techniques. You should note that CSES’s grader is very slow, so don’t worry if you
encounter a Time Limit Exceeded verdict; as long as you pass the majority of test cases
within the time limit, and your time complexity is reasonable, you can consider the problem
solved, and move on.

1.3 Competitive Programming Practice

Reaching a high level in competitive programming requires dedication and motivation.
For many people, their practice is ine�cient because they do problems that are too easy, too
hard, or simply of the wrong type. This book aims to correct that by providing comprehensive
problem sets for each topic covered on the USA Computing Olympiad, as well as an extensive
selection of problems across all topics in the final chapter.

In the lower divisions, most problems use relatively elementary algorithms; the main
challenge is deciding which algorithm to use, and implementing it correctly. In a contest,
you should spend the bulk of your time thinking about the problem and coming up with the
algorithm, rather than typing code. Thus, you should practice your implementation skills,
so that during the contest, you can implement the algorithm quickly and correctly, without
resorting to debugging.

On Exercises and Practice Problems

You improve at competitive programming by solving problems, so we strongly recommend
that you make use of the included exercises in each section before moving on. Some of the
problems will be easy, and some of them will be hard. This is because problems that you
practice with should be of the appropriate di�culty. You don’t necessarily need to complete
all the exercises at the end of each chapter, just do what you think is right for you. A

CHAPTER 1. THE BEGINNING 4

problem at the right level of di�culty should be one of two types: either you struggle with
the problem for a while before coming up with a working solution, or you miss it slightly and
need to consult the solution for some small part. If you instantly come up with the solution,
a problem is likely too easy, and if you’re missing multiple steps, it might be too hard.

In general, especially on harder problems, I think it’s fine to read the solution relatively
early on, as long as you’re made several di↵erent attempts at it and you can learn e↵ectively
from the solution.

• On a bronze problem, read the solution after 15-20 minutes of no meaningful progress,
after you’ve exhausted every idea you can think of.

• On a silver problem, read the solution after 30-40 minutes of no meaningful progress.

When you get stuck and consult the solution, you should not read the entire solution at
once, and you certainly shouldn’t look at the solution code. Instead, it’s better to read the
solution step by step until you get unstuck, at which point you should go back and finish the
problem, and implement it yourself. Reading the full solution or its code should be seen as a
last resort.

IDEs and Text Editors

Here’s some IDEs and text editors often used by competitive programmers:

• Java: Visual Studio Code or IntelliJ/Eclipse

• C++: Visual Studio Code, CodeBlocks, vim/gvim, Sublime Text.

• Do not use online IDEs that display your code publicly, like the free version of ideone.
This allows other users to copy your code, and you may get flagged for cheating.

1.4 About This Book

This book aims to prepare students for the Bronze and Silver division of the USACO, with
the goal of qualifying for Gold. We will do this by covering all the necessary algorithms, data
structures, and skills to pass the Bronze and Silver contests. Many examples and practice
problems have been provided; these are the most important part of studying competitive
programming, so make sure you pay careful attention to the examples and solve the practice
problems, which usually come from previous USACO contests. This book is intended for
those who have some programming experience – Basic knowledge of C++ at the level of an
introductory class is expected. This book begins with some necessary background knowledge,
which is then followed by lessons on common topics that appear on the Bronze and Silver
divisions of USACO, and then examples. At the end of each chapter will be a set of problems
from USACO, CodeForces, and CSES, where you can practice what you’ve learned in the
chapter.

The primary purpose of this book is to compile all of the topics needed for a beginner in
one book, and provide all the resources needed, to make the process of studying for contests
easier.

Chapter 2

Elementary Techniques

2.1 Input and Output

In CodeForces and CSES, input and output are standard, meaning that using the library
<iostream> su�ces.

However, in USACO, input is read from a file called problemname.in, and printing output
to a file called problemname.out. Note that you’ll have to rename the .in and .out files.
You will need the <cstdio> or the <fstream> library. Essentially, replace every instance of
the word template in the word below with the input/output file name, which should be given
in the problem.

In order to test a program, create a file called problemname.in, and then run the program.
The output will be printed to problemname.out.

Below, we have included C++ example code for input and output. We use using
namespace std; so that we don’t have to preface standard library functions with std:: each
time we use them. These templates are kept short so that you can type them each time, as
prewritten code is no longer allowed in USACO as of the 2020-2021 season.

For USACO:
If <cstdio> is used:

#include <cstdio>

using namespace std;

int main() {

freopen("template.in", "r", stdin);

freopen("template.out", "w", stdout);

}

If <fstream> is used (note that if you use <fstream>, you must replace cin and cout
with fin and fout):

5

CHAPTER 2. ELEMENTARY TECHNIQUES 6

#include <fstream>

using namespace std;

int main() {

ifstream fin("template.in");

ofstream fout("template.out");

}

For CodeForces, CSES, and other contests that use standard input and output, simply
use the standard input / output from <iostream>.

When using C++, arrays should be declared globally if at all possible. This
avoids the common issue of initialization to garbage values. If you declare an array locally,
you’ll need to initialize the values to zero.

2.2 Data Types

There are several main data types that are used in contests: 32-bit and 64-bit integers,
floating point numbers, booleans, characters, and strings.

The 32-bit integer supports values between �2 147 483 648 and 2 147 483 647, which is
roughly equal to ± 2⇥109. If the input, output, or any intermediate values used in calculations
exceed the range of a 32-bit integer, then a 64-bit integer must be used. The range of the
64-bit integer is between �9 223 372 036 854 775 808 and 9 223 372 036 854 775 807 which is
roughly equal to ± 9⇥ 1018. Contest problems are usually set such that the 64-bit integer is
su�cient. If it’s not, the problem will ask for the answer modulo m, instead of the answer
itself, where m is a prime. In this case, make sure to use 64-bit integers, and take the
remainder of x modulo m after every step using x %= m;.

Floating point numbers are used to store decimal values. It is important to know that
floating point numbers are not exact, because the binary architecture of computers can only
store decimals to a certain precision. Hence, we should always expect that floating point
numbers are slightly o↵. Contest problems will accommodate this by either asking for the
greatest integer less than 10k times the value, or will mark as correct any output that is
within a certain ✏ of the judge’s answer.

Boolean variables have two possible states: true and false. We’ll usually use booleans to
mark whether a certain process is done, and arrays of booleans to mark which components of
an algorithm have finished.

Character variables represent a single Unicode character. They are returned when you
access the character at a certain index within a string. Characters are represented using the
ASCII standard, which assigns each character to a corresponding integer; this allows us to do
arithmetic with them, for example, cout << ('f' - 'a'); will print 5.

Strings are stored as an array of characters. You can easily access the character at a
certain index and take substrings of the string. String problems on USACO are generally
very easy and don’t involve any special data structures.

Chapter 3

Time/Space Complexity and

Algorithm Analysis

In programming contests, there is a strict limit on program runtime. This means that in
order to pass, your program needs to finish running within a certain timeframe. For USACO,
this limit is 2 seconds for C++ submissions. A conservative estimate for the number of
operations the grading server can handle per second is 108

3.1 Big O Notation and Complexity Calculations

We want a method of characterizing how many operations it takes to run each algorithm,
in terms of the input size n. Fortunately, this can be done relatively easily using Big O
notation, which expresses worst-case complexity as a function of n, as n gets arbitrarily large.
Complexity is an upper bound for the number of steps an algorithm requires, as a function of
the input size. In Big O notation, we denote the complexity of a function as O(f(n)), where
f(n) is a function without constant factors or lower-order terms. We’ll see some examples of
how this works, as follows.

The following code is O(1), because it executes a constant number of operations.

int a = 5;

int b = 7;

int c = 4;

int d = a + b + c + 153;

Input and output operations are also assumed to be O(1).
In the following examples, we assume that the code inside the loops is O(1).
The time complexity of loops is the number of iterations that the loop runs multiplied by

the amount of operations per iteration. The following code examples are both O(n).

for(int i = 1; i <= n; i++){

// constant time code here

}

7

CHAPTER 3. TIME/SPACE COMPLEXITY AND ALGORITHM ANALYSIS 8

int i = 0;

while(i < n){

// constant time node here

i++;

}

Because we ignore constant factors and lower order terms, for loops where we loop up to
5n+ 17 or n+ 457737 would also be O(n):

We can find the time complexity of multiple loops by multiplying together the time
complexities of each loop. The following example is O(nm), because the outer loop runs O(n)
iterations and the inner loop O(m).

for(int i = 1; i <= n; i++){

for(int j = 1; j <= m; j++){

// constant time code here

}

}

If an algorithm contains multiple blocks, then its time complexity is the worst time
complexity out of any block. For example, if an algorithm has an O(n) block and an O(n2)
block, the overall time complexity is O(n2).

Functions of di↵erent variables generally are not considered lower-order terms with respect
to each other, so we must include both terms. For example, if an algorithm has an O(n2)
block and an O(nm) block, the overall time complexity would be O(n2 + nm).

3.2 Common Complexities and Constraints

Complexity factors that come from some common algorithms and data structures are as
follows:

• Mathematical formulas that just calculate an answer: O(1)

• Unordered set/map: O(1) per operation

• Binary search: O(log n)

• Ordered set/map or priority queue: O(log n) per operation

• Prime factorization of an integer, or checking primality or compositeness of an integer:
O(
p
n)

• Reading in n items of input: O(n)

• Iterating through an array or a list of n elements: O(n)

CHAPTER 3. TIME/SPACE COMPLEXITY AND ALGORITHM ANALYSIS 9

• Sorting: usually O(n log n) for default sorting algorithms (mergesort and quicksort
used in std::sort())

• Iterating through all subsets of size k of the input elements: O(nk). For example,
iterating through all triplets is O(n3).

• Iterating through all subsets: O(2n)

• Iterating through all permutations: O(n!)

Here are conservative upper bounds on the value of n for each time complexity. You can
probably get away with more than this, but this should allow you to quickly check whether
an algorithm is viable.

n Possible complexities

n  10 O(n!), O(n7), O(n6)
n  20 O(2n · n), O(n5)
n  80 O(n4)
n  400 O(n3)
n  7500 O(n2)
n  7 · 104 O(n

p
n)

n  5 · 105 O(n log n)
n  5 · 106 O(n)
n  1012 O(

p
n log n), O(

p
n)

n  1018 O(log2 n), O(log n), O(1)

Chapter 4

Built-in Data Structures

A data structure determines how data is stored. (is it sorted? indexed? what operations
does it support?) Each data structure supports some operations e�ciently, while other
operations are either ine�cient or not supported at all. This chapter introduces the data
structures in the C++ standard library that are frequently used in competitive programming.

The C++ standard library data structures are designed to store any type of data. We put
the desired data type within the <> brackets when declaring the data structure, as follows:

vector<string> v;

This creates a vector structure that only stores objects of type string.
For our examples below, we will primarily use the int data type, but note that you can

use any data type including string and user-defined structures.
Essentially every standard library data structure supports the size() method, which

returns the number of elements in the data structure, and the empty() method, which returns
true if the data structure is empty, and false otherwise.

4.1 Iterators

Before the data structures are introduced, you should understand an iterator. An iterator
allows you to traverse a container by providing a pointer. For example, vector.begin()
returns an iterator pointing to the first element of the vector. Apart from the standard way
of traversing a vector (by treating it as an array), you can also use iterators:

for (vector<int>::iterator it = myvector.begin(); it != myvector.end(); ++it) {

cout << *it; //prints the values in the vector using the pointer

}

However, a more generic way to do this is with a for-each loop and auto (C++11 and later
versions) that automatically infers the type of an object:

10

CHAPTER 4. BUILT-IN DATA STRUCTURES 11

for(auto element : v) {

cout << element; //prints the values in the vector

}

4.2 Dynamic Arrays

You’re probably already familiar with regular (static) arrays. Now, there are also dynamic
arrays (vector in C++) that support all the functions that a normal array does, and can
resize itself to accommodate more elements. In a dynamic array, we can also add and delete
elements at the end in O(1) time.

However, we need to be careful that we only add elements to the end of the vector;
insertion and deletion in the middle of the vector is O(n).

vector<int> v;

v.push_back(2); // [2]

v.push_back(3); // [2, 3]

v.push_back(7); // [2, 3, 7]

v.push_back(5); // [2, 3, 7, 5]

v[1] = 4; // sets element at index 1 to 4 -> [2, 4, 7, 5]

v.erase(v.begin() + 1); // removes element at index 1 -> [2, 7, 5]

// this remove method is O(n); to be avoided

v.push_back(8); // [2, 7, 5, 8]

v.erase(v.end()-1); // [2, 7, 5]

// here, we remove the element from the end of the list; this is O(1).

v.push_back(4); // [2, 7, 5, 4]

v.push_back(4); // [2, 7, 5, 4, 4]

v.push_back(9); // [2, 7, 5, 4, 4, 9]

cout << v[2]; // 5

v.erase(v.begin(), v.begin()+3); // [4, 4, 9]

// this erases the first three elements; O(n)

To iterate through a static or dynamic array, we can use either the regular for loop or the
for-each loop.

In order to sort a dynamic array, use sort(v.begin(), v.end()), whereas static arrays
require sort(arr, arr + N) where N is the number of elements to be sorted. The default
sort function sorts the array in ascending order.

In array-based contest problems, we’ll use one-, two-, and three-dimensional static arrays
most of the time. However, we can also have static arrays of dynamic arrays, dynamic arrays
of static arrays, and so on. Usually, the choice between a static array and a dynamic array is
just personal preference.

CHAPTER 4. BUILT-IN DATA STRUCTURES 12

4.3 Stacks and the Various Types of Queues

Stacks

A stack is a Last In First Out (LIFO) data structure that supports three operations:
push, which adds an element to the top of the stack, pop, which removes an element from
the top of the stack, and top, which retrieves the element at the top without removing it, all
in O(1) time. Think of it like a real-world stack of papers.

stack<int> s;

s.push(1); // [1]

s.push(13); // [1, 13]

cout << s.size() << endl; // 2

s.pop(); // [1]

cout << s.top() << endl; // 1

s.pop(); // []

cout << s.size() << endl; // 0

Queues

A queue is a First In First Out (FIFO) data structure that supports three operations
of push, insertion at the back of the queue, pop, deletion from the front of the queue, and
front, which retrieves the element at the front without removing it, all in O(1) time.

queue<int> q;

q.push(1); // [1]

q.push(3); // [3, 1]

q.pop(); // [3]

q.push(4); // [4, 3]

cout << q.size() << endl; // 2

cout << q.front() << endl; // 4

Deques

A deque (usually pronounced “deck”) stands for double ended queue and is a combination
of a stack and a queue, in that it supports O(1) insertions and deletions from both the front and
the back of the deque. The four methods for adding and removing are push_back, pop_back,
push_front, and pop_front. The methods for retrieving the first and last elements without
removing are front and back.

deque<int> d;

d.push_front(1); // [1]

d.push_back(2); // [1, 2]

d.push_front(3); // [3, 1, 2]

CHAPTER 4. BUILT-IN DATA STRUCTURES 13

d.push_back(4); // [3, 1, 2, 4]

d.pop_back(); // [3, 1, 2]

d.pop_front(); // [1, 2]

Priority Queues

A priority queue supports the following operations: insertion of elements, deletion of
the element considered highest priority, and retrieval of the highest priority element, all in
O(log n) time according to the number of elements in the priority queue. Priority is based
on a comparator function, and in C++ the highest element is put at the front of the queue.
The priority queue is one of the most important data structures in competitive programming,
so make sure you understand how and when to use it.

priority_queue<int> pq;

pq.push(4); // [4]

pq.push(2); // [2, 4]

pq.push(1); // [1, 2, 4]

pq.push(3); // [1, 2, 3, 4]

cout << pq.top() << endl; // 4

pq.pop(); // [1, 2, 3]

pq.pop(); // [1, 2]

pq.push(5); // [1, 2, 5]

4.4 Sets and Maps

A set is a collection of objects that contains no duplicates. There are two types of sets:
unordered sets (unordered_set in C++), and ordered set (set in C++).

Unordered Sets

The unordered set works by hashing, which is assigning a usually-unique code to every
variable/object which allows insertions, deletions, and searches in O(1) time, albeit with a
high constant factor, as hashing requires a large constant number of operations. However,
as the name implies, elements are not ordered in any meaningful way, so traversals of an
unordered set will return elements in some arbitrary order. The operations on an unordered
set are insert, which adds an element to the set if not already present, erase, which deletes
an element if it exists, and count, which returns 1 if the set contains the element and 0 if it
doesn’t.

unordered_set<int> s;

s.insert(1); // [1]

s.insert(4); // [1, 4] in arbitrary order

CHAPTER 4. BUILT-IN DATA STRUCTURES 14

s.insert(2); // [1, 4, 2] in arbitrary order

s.insert(1); // [1, 4, 2] in arbitrary order

// the add method did nothing because 1 was already in the set

cout << s.count(1) << endl; // 1

set.erase(1); // [2, 4] in arbitrary order

cout << s.count(5) << endl; // 0

s.erase(0); // [2, 4] in arbitrary order

// if the element to be removed does not exist, nothing happens

for(int element : s){

cout << element << " ";

}

cout << endl;

// You can iterate through an unordered set, but it will do so in arbitrary

order,!

Ordered Sets

The second type of set data structure is the ordered or sorted set. Insertions, deletions,
and searches on the ordered set require O(log n) time, based on the number of elements
in the set. As well as those supported by the unordered set, the ordered set also allows
four additional operations: begin(), which returns an iterator to the lowest element in
the set, end(), which returns an iterator to the highest element in the set, lower_bound,
which returns an iterator to the least element greater than or equal to some element k,
and upper_bound, which returns an iterator to the least element strictly greater than some
element k.

set<int> s;

s.insert(1); // [1]

s.insert(14); // [1, 14]

s.insert(9); // [1, 9, 14]

s.insert(2); // [1, 2, 9, 14]

cout << *s.upper_bound(7) << '\n'; // 9

cout << *s.upper_bound(9) << '\n'; // 14

cout << *s.lower_bound(5) << '\n'; // 9

cout << *s.lower_bound(9) << '\n'; // 9

cout << *s.begin() << '\n'; // 1

auto it = s.end();

cout << *(--it) << '\n'; // 14

s.erase(s.upper_bound(6)); // [1, 2, 14]

The primary limitation of the ordered set is that we can’t e�ciently access the kth largest
element in the set, or find the number of elements in the set greater than some arbitrary x.
These operations can be handled using a data structure called an order statistic tree, but
that is beyond the scope of this book.

CHAPTER 4. BUILT-IN DATA STRUCTURES 15

Maps

A map is a set of ordered pairs, each containing a key and a value. In a map, all keys
are required to be unique, but values can be repeated. Maps have three primary methods:
one to add a specified key-value pairing, one to retrieve the value for a given key, and one to
remove a key-value pairing from the map. Like sets, maps can be unordered (unordered_map
in C++) or ordered (map in C++). In an unordered map, hashing is used to support O(1)
operations. In an ordered map, the entries are sorted in order of key. Operations are O(log n),
but accessing or removing the next key higher or lower than some input k is also supported.

Unordered Maps

In an unordered map m, the m[key] = value operator assigns a value to a key and places
the key and value pair into the map. The operator m[key] returns the value associated with
the key. The count(key) method returns the number of times the key is in the map (which is
either one or zero), and therefore checks whether a key exists in the map. Lastly, erase(key)
and erase(it) removes the map entry associated with the specified key or iterator. All of
these operations are O(1), but again, due to the hashing, this has a high constant factor.

unordered_map<int, int> m;

m[1] = 5; // [(1, 5)]

m[3] = 14; // [(1, 5); (3, 14)]

m[2] = 7; // [(1, 5); (3, 14); (2, 7)]

m.erase(2); // [(1, 5); (3, 14)]

cout << m[1] << '\n'; // 5

cout << m.count(7) << '\n' ; // 0

cout << m.count(1) << '\n' ; // 1

Ordered Maps

The ordered map supports all of the operations that an unordered map supports, and
additionally supports lower_bound and upper_bound, returning the iterator pointing to the
lowest entry not less than the specified key, and the iterator pointing to the lowest entry
strictly greater than the specified key respectively.

map<int, int> m;

m[3] = 5; // [(3, 5)]

m[11] = 4; // [(3, 5); (11, 4)]

m[10] = 491; // [(3, 5); (10, 491); (11, 4)]

cout << m.lower_bound(10)->first << " " << m.lower_bound(10)->second << '\n'; //

10 491,!

cout << m.upper_bound(10)->first << " " << m.upper_bound(10)->second << '\n'; //

11 4,!

m.erase(11); // [(3, 5); (10, 491)]

if (m.upper_bound(10) == m.end())

CHAPTER 4. BUILT-IN DATA STRUCTURES 16

{

cout << "end" << endl; // Prints end

}

A note on unordered sets and maps: In USACO contests, they’re generally fine, but in
CodeForces contests, you should always use sorted sets and maps. This is because the built-in
hashing algorithm is vulnerable to pathological data sets causing abnormally slow runtimes,
in turn causing failures on some test cases.

Multisets

Lastly, there is the multiset, which is essentially a sorted set that allows multiple copies
of the same element. In addition to all of the regular set operations, the multiset count()
method returns the number of times an element is present in the multiset. The time complexity
of this operation is O(log n+ f) where f is the number of occurrences of the specified element
in the multiset. This is because the log n factor searches for the element, and the f factor
iterates linearly through the sorted set to find the number of occurrences.

multiset<int> ms;

ms.insert(1); // [1]

ms.insert(14); // [1, 14]

ms.insert(9); // [1, 9, 14]

ms.insert(2); // [1, 2, 9, 14]

ms.insert(9); // [1, 2, 9, 9, 14]

ms.insert(9); // [1, 2, 9, 9, 9, 14]

cout << ms.count(4) << '\n'; // 0

cout << ms.count(9) << '\n'; // 3

cout << ms.count(14) << '\n'; // 1

The begin(), end(), lower_bound(), and upper_bound() operations work the same way
they do in the normal sorted set.

4.5 Problems

Again, note that CSES’s grader is very slow, so don’t worry if you encounter a Time
Limit Exceeded verdict; as long as you pass the majority of test cases within the time limit,
you can consider the problem solved, and move on.

1. CSES Problem Set Task 1621: Distinct Numbers
https://cses.fi/problemset/task/1621

2. CSES Problem Set Task 1084: Apartments
https://cses.fi/problemset/task/1084

3. CSES Problem Set Task 1091: Concert Tickets
https://cses.fi/problemset/task/1091

CHAPTER 4. BUILT-IN DATA STRUCTURES 17

4. CSES Problem Set Task 1163: Tra�c Lights
https://cses.fi/problemset/task/1163

5. CSES Problem Set Task 1164: Room Allocation
https://cses.fi/problemset/task/1164

Part II

Bronze

18

Chapter 5

Simulation

In many problems, we can simply simulate what we’re told to do by the problem statement.
Since there’s no formal algorithm involved, the intent of the problem is to assess competence
with one’s programming language of choice and knowledge of built-in data structures. At
least in USACO Bronze, when a problem statement says to find the end result of some
process, or to find when something occurs, it’s usually su�cient to simulate the process.

5.1 Example 1

Alice and Bob are standing on a 2D plane. Alice starts at the point (0, 0), and Bob
starts at the point (R, S) (1  R, S  1000). Every second, Alice moves M units to the
right, and N units up. Every second, Bob moves P units to the left, and Q units down.
(1 M,N, P,Q  10). Determine if Alice and Bob will ever meet (be at the same point at
the same time), and if so, when.

INPUT FORMAT:

The first line of the input contains R and S.
The second line of the input contains M , N , P , and Q.

OUTPUT FORMAT:

Please output a single integer containing the number of seconds after the start at which Alice
and Bob meet. If they never meet, please output �1.
Solution

We can simulate the process. After inputting the values of R, S, M , N , P , and Q, we can
keep track of Alice’s and Bob’s x- and y-coordinates. To start, we initialize variables for their
respective positions. Alice’s coordinates are initially (0, 0), and Bob’s coordinates are (R, S)
respectively. Every second, we increase Alice’s x-coordinate by M and her y-coordinate by
N , and decrease Bob’s x-coordinate by P and his y-coordinate by Q.

Now, when do we stop? First, if Alice and Bob ever have the same coordinates, then we
are done. Also, since Alice strictly moves up and to the right and Bob strictly moves down
and to the left, if Alice’s x- or y-coordinates are ever greater than Bob’s, then it is impossible
for them to meet. Example code will be displayed below (Here, as in other examples, input
processing will be omitted):

19

CHAPTER 5. SIMULATION 20

int ax = 0; int ay = 0; // alice's x and y coordinates

int bx = r; int by = s; // bob's x and y coordinates

int t = 0; // keep track of the current time

while(ax < bx && ay < by){

// every second, update alice's and bob's coordinates and the time

ax += m; ay += n;

bx -= p; by -= q;

t++;

}

if(ax == bx && ay == by){ // if they are in the same location

cout << t << endl; // they meet at time t

} else {

cout << -1 << endl; // they never meet

}

5.2 Example 2

There are N buckets (5  N  105), each with a certain capacity Ci (1  Ci  100). One
day, after a rainstorm, each bucket is filled with Ai units of water (1  Ai  Ci). Charlie
then performs the following process: he pours bucket 1 into bucket 2, then bucket 2 into
bucket 3, and so on, up until pouring bucket N � 1 into bucket N . When Charlie pours
bucket B into bucket B + 1, he pours as much as possible until bucket B is empty or bucket
B + 1 is full. Find out how much water is in each bucket once Charlie is done pouring.

INPUT FORMAT:

The first line of the input contains N .
The second line of the input contains the capacities of the buckets, C1, C2, . . . , Cn.
The third line of the input contains the amount of water in each bucket A1, A2, . . . , An.

OUTPUT FORMAT:

Please print one line of output, containing N space-separated integers: the final amount of
water in each bucket once Charlie is done pouring.

Solution:

Once again, we can simulate the process of pouring one bucket into the next. The amount of
water poured from bucket B to bucket B + 1 is the smaller of the amount of water in bucket
B (after all previous operations have been completed) and the remaining space in bucket
B + 1, which is CB+1 � AB+1. We can just handle all of these operations in order, using an
array C to store the maximum capacities of each bucket, and an array A to store the current
water level in each bucket, which we update during the process. Example code is below (note
that arrays are zero-indexed, so the indices of our buckets go from 0 to N � 1 rather than
from 1 to N).

for(int i = 0; i < n-1; i++){

int amt = min(A[i], C[i+1]-A[i+1]);

CHAPTER 5. SIMULATION 21

// the amount of water to be poured is the lesser of

// the amount of water in the current bucket and

// the amount of additional water that the next bucket can hold

A[i] -= amt; // remove the amount from the current bucket

A[i+1] += amt; // add it to the next bucket

}

for(int i = 0; i < n; i++){

cout << A[i] << " ";

// print the amount of water in each bucket at the end

}

cout << endl;

5.3 Problems

1. USACO December 2018 Bronze Problem 1: Mixing Milk
http://www.usaco.org/index.php?page=viewproblem2&cpid=855

2. USACO December 2017 Bronze Problem 3: Milk Measurement
http://www.usaco.org/index.php?page=viewproblem2&cpid=761

3. USACO US Open 2017 Bronze Problem 1: The Lost Cow
http://www.usaco.org/index.php?page=viewproblem2&cpid=735

4. USACO February 2017 Bronze Problem 3: Why Did the Cow Cross the Road III
http://www.usaco.org/index.php?page=viewproblem2&cpid=713

5. USACO January 2016 Bronze Problem 3: Mowing the Field
http://www.usaco.org/index.php?page=viewproblem2&cpid=593

6. USACO December 2017 Bronze Problem 2: The Bovine Shu✏e
http://usaco.org/index.php?page=viewproblem2&cpid=760

7. USACO February 2016 Bronze Problem 2: Circular Barn
http://usaco.org/index.php?page=viewproblem2&cpid=616

Chapter 6

Complete Search

In many problems (especially in Bronze), it’s su�cient to check all possible cases in
the solution space, whether it be all elements, all pairs of elements, or all subsets, or all
permutations. Unsurprisingly, this is called complete search (or brute force), because it
completely searches the entire solution space.

6.1 Example 1

You are given N (3  N  5000) integer points on the coordinate plane. Find the square
of the maximum Euclidean distance (aka length of the straight line) between any two of the
points.

INPUT FORMAT:

The first line contains an integer N .
The second line contains N integers, the x-coordinates of the points: x1, x2, . . . , xn (�1000 
xi  1000).
The third line contains N integers, the y-coordinates of the points: y1, y2, . . . , yn (�1000 
yi  1000).

OUTPUT FORMAT:

Print one integer, the square of the maximum Euclidean distance between any two of the
points.

Solution:

We can brute-force every pair of points and find the square of the distance between them,
by squaring the formula for Euclidean distance: distance2 = (x2 � x1)2 + (y2 � y1)2. Thus,
we store the coordinates in vectors X[] and Y[], such that X[i] and Y[i] are the x- and
y-coordinates of the ith point, respectively. Then, we iterate through all possible pairs of
points, using a variable max to store the maximum square of distance between any pair seen
so far, and if the square of the distance between a pair is greater than our current maximum,

22

CHAPTER 6. COMPLETE SEARCH 23

we set our current maximum to it.

Algorithm: Finds the maximum Euclidean distance between any two of the given
points

Function maxDist
Input : points an array of n ordered pairs
Output : the maximum Euclidean distance between any two of the points
max 0
for i 1 to n do

for j i+ 1 to n do

if dist(points[i], points[j])2 > max then

max dist(points[i], points[j])2

end

end

end

return max

int high = 0; // storing the current maximum

for(int i = 0; i < n; i++){ // for each first point

for(int j = i+1; j < n; j++){ // for each second point

int dx = x[i] - x[j];

int dy = y[i] - y[j];

high = max(high, dx*dx + dy*dy);

// if the square of the distance between the two points is greater than

// our current maximum, then update the maximum

}

}

cout << high << endl;

A couple notes: first, since we’re iterating through all pairs of points, we start the j loop
from j = i+ 1 so that point i and point j are never the same point. Furthermore, it makes
it so that each pair is only counted once. In this problem, it doesn’t matter whether we
double-count pairs or whether we allow i and j to be the same point, but in other problems
where we’re counting something rather than looking at the maximum, it’s important to be
careful that we don’t overcount. Secondly, the problem asks for the square of the maximum
Euclidean distance between any two points. Some students may be tempted to maintain the
maximum distance in a variable, and then square it at the end when outputting. However,
the problem here is that while the square of the distance between two integer points is always
an integer, the distance itself isn’t guaranteed to be an integer. Thus, we’ll end up shoving a
non-integer value into an integer variable, which truncates the decimal part. Using a floating
point variable isn’t likely to work either, due to precision errors (use of floating point decimals
should generally be avoided when possible).

CHAPTER 6. COMPLETE SEARCH 24

6.2 Generating Permutations

A permutation is a reordering of a list of elements. Some problems will ask for an
ordering of elements that satisfies certain conditions. In these problems, if N  10, we can
probably iterate through all permutations and check each permutation for validity. For a list
of N elements, there are N ! ways to permute them, and generally we’ll need to read through
each permutation once to check its validity, for a time complexity of O(N ·N !).

In C++, this is already implemented for us in the next_permutation() function. To
iterate through all permutations, we simply place this inside a do-while loop, and the
next_permutation() function will proceed to iterate through permutations in lexicographical
order.

As an example, here are the permutations generated by Heap’s Algorithm for [1, 2, 3]:

[1, 2, 3], [2, 1, 3], [3, 1, 2], [1, 3, 2], [2, 3, 1], [3, 2, 1]

Code for iterating over all permutations is as follows:

do {

check(v); // process or check the current permutation for validity

} while(next_permutation(v.begin(), v.end()));

6.3 Problems

1. USACO February 2020 Bronze Problem 1: Triangles
http://usaco.org/index.php?page=viewproblem2&cpid=1011

2. USACO January 2020 Bronze Problem 2: Photoshoot
http://www.usaco.org/index.php?page=viewproblem2&cpid=988
(Hint: Figure out what exactly you’re complete searching)

3. USACO December 2019 Bronze Problem 1: Cow Gymnastics
http://usaco.org/index.php?page=viewproblem2&cpid=963
(Hint: Brute force over all possible pairs)

4. USACO February 2016 Bronze Problem 1: Milk Pails
http://usaco.org/index.php?page=viewproblem2&cpid=615

5. USACO January 2018 Bronze Problem 2: Lifeguards
http://usaco.org/index.php?page=viewproblem2&cpid=784
(Hint: Try removing each lifeguard one at a time).

6. USACO December 2019 Bronze Problem 2: Where Am I?
http://usaco.org/index.php?page=viewproblem2&cpid=964
(Hint: Brute force over all possible substrings)

CHAPTER 6. COMPLETE SEARCH 25

7. (Permutations) USACO December 2019 Bronze Problem 3: Livestock Lineup
http://usaco.org/index.php?page=viewproblem2&cpid=965

8. (Permutations) CSES Problem Set Task 1624: Chessboard and Queens
https://cses.fi/problemset/task/1624

9. USACO US Open 2016 Bronze Problem 3: Field Reduction
http://www.usaco.org/index.php?page=viewproblem2&cpid=641
(Hint: For this problem, you can’t do a full complete search; you have to do a reduced
search)

10. USACO December 2018 Bronze Problem 3: Back and Forth
http://www.usaco.org/index.php?page=viewproblem2&cpid=857
(This problem is relatively hard)

Chapter 7

Additional Bronze Topics

7.1 Square and Rectangle Geometry

The extent of “geometry” problems on USACO Bronze are usually quite simple and
limited to intersections and unions of squares and rectangles. These usually only include two
or three squares or rectangles, in which case you can simply draw out cases on paper, which
should logically lead to a solution.

The problems given at the end of the chapter should encompass all the techniques you
need to know for geometry problems in the Bronze division.

7.2 Ad-hoc

Ad-hoc problems are problems that don’t fall into any standard algorithmic category
with well known solutions. They are usually unique problems intended to be solved with
unconventional techniques. In ad-hoc problems, it’s helpful to look at the constraints given in
the problem and devise potential time complexities of solutions; this, combined with details
in the problem statement itself, may give an outline of the solution.

Unfortunately, since ad-hoc problems don’t have solutions consisting of well known
algorithms, we can’t systematically teach you how to do them. The best way of learning how
to do ad-hoc is to practice. Of course, the problem solving intuition from math contests (if
you did them) is quite helpful, but otherwise, you can develop this intuition from practicing
ad-hoc problems.

While solving these problems, make sure to utilize what you’ve learned about the built-in
data structures and algorithmic complexity analysis, from chapters 2, 3, and 4. Since ad-hoc
problems comprise a significant portion of bronze problems, we’ve included a large selection
of them below for your practice.

26

CHAPTER 7. ADDITIONAL BRONZE TOPICS 27

7.3 Problems

Square and Rectangle Geometry

1. USACO December 2017 Bronze Problem 1: Blocked Billboard
http://usaco.org/index.php?page=viewproblem2&cpid=759

2. USACO December 2018 Bronze Problem 1: Blocked Billboard II
http://usaco.org/index.php?page=viewproblem2&cpid=783

3. CodeForces Round 587 (Div. 3) Problem C: White Sheet
https://codeforces.com/contest/1216/problem/C

4. USACO December 2016 Bronze Problem 1: Square Pasture
http://usaco.org/index.php?page=viewproblem2&cpid=663

Ad-hoc problems

5. USACO January 2016 Bronze Problem 1: Promotion Counting
http://usaco.org/index.php?page=viewproblem2&cpid=591

6. USACO January 2020 Bronze Problem 1: Word Processor
http://usaco.org/index.php?page=viewproblem2&cpid=987

7. USACO US Open 2019 Bronze Problem 1: Bucket Brigade
http://usaco.org/index.php?page=viewproblem2&cpid=939

8. USACO January 2018 Bronze Problem 3: Out of Place
http://usaco.org/index.php?page=viewproblem2&cpid=785

9. USACO December 2016 Bronze Problem 2: Block Game
http://usaco.org/index.php?page=viewproblem2&cpid=664

10. USACO February 2020 Bronze Problem 3: Swapity Swap
http://usaco.org/index.php?page=viewproblem2&cpid=1013
(This problem is quite hard for bronze.)

11. USACO February 2018 Bronze Problem 1: Teleportation
http://usaco.org/index.php?page=viewproblem2&cpid=807

12. USACO February 2018 Bronze Problem 2: Hoofball
http://usaco.org/index.php?page=viewproblem2&cpid=808

13. USACO US Open 2019 Bronze Problem 3: Cow Evolution
http://usaco.org/index.php?page=viewproblem2&cpid=941
(Warning: This problem is extremely di�cult for bronze.)

Part III

Silver

28

Chapter 8

Sorting and Comparators

8.1 Comparators

C++ has a built-in function for sorting: std::sort(first, last) that sorts the elements
in the range in ascending order. In particular, sort(arr, arr + N) sorts an entire array of
size N , and sort(v.begin(), v.end()) sorts a vector v. However, if we we want to sort
elements in a self-defined order, then we’ll need to use a custom comparator.

Normally, sorting functions rely on moving objects with a lower value in front of objects
with a higher value if sorting in ascending order, and vice versa if in descending order. This
is done through comparing two objects at a time. What a comparator does is compare two
objects as follows, based on our comparison criteria:

• If object x is less than object y, return true

• If object x is greater than or equal to object y, return false

Essentially, the comparator determines whether object x belongs to the left of object y in
a sorted ordering.

In addition to returning the correct answer, comparators should also satisfy the following
conditions:

• The function must be consistent with respect to reversing the order of the arguments:
if x 6= y and compare(x, y) is positive, then compare(y, x) should be negative and
vice versa

• The function must be transitive. If compare(x, y) is true and compare(y, z) is true,
then compare(x, z) should also be true. If the first two compare functions both return
false, the third must also return false.

A generic way of implementing a custom comparator is to define a function. For our
example, we’ll use a struct of a Person that contains a person’s height and weight, and sort
in ascending order by height. A struct is essentially a user-defined data structure:

29

CHAPTER 8. SORTING AND COMPARATORS 30

struct Person {

int height;

int weight;

};

int main() {

Person p;

p.height = 60; // assigns 60 to the height of p

p.weight = 100; // assigns 100 to the weight of p

}

Let’s say we have an array Person arr[N]. To sort the array, we need to make a custom
comparator which will be a function, and then pass the function as a parameter into the
build-in sort function:

bool cmp(Person a, Person b) {

return a.height < b.height;

}

int main() {

sort(arr, arr+N, cmp); // sorts the array in ascending order by height

}

If we instead wanted to sort in descending order, this is also very simple. Instead of the
cmp function returning return a.height < b.height;, it should do return a.height >
b.height;.

8.2 Sorting by Multiple Criteria

Now, suppose we wanted to sort a list of Person in ascending order, primarily by height
and secondarily by weight. We can do this quite similarly to how we handled sorting by one
criterion earlier. What the comparator function needs to do is to compare the weights if the
heights are equal, and otherwise compare heights, as that’s the primary sorting criterion.

bool cmp(Person a, Person b) {

if(a.height == b.height) {

return a.weight < b.weight;

}

return a.height < b.height;

}

int main() {

sort(arr, arr+N, cmp); // sorts the array in ascending order by height and

then weight if the heights are equal,!

}

CHAPTER 8. SORTING AND COMPARATORS 31

Sorting with more criteria is done similarly.
An alternative way of representing custom objects is with the data structure pair<int,

int>. In the above example, instead of creating a struct, we can simply declare an array of
pairs. The sort function automatically uses the first element of the pair for comparison and
the second element as a secondary point of comparison:

pair<int, int> arr[N];

int main() {

sort(arr, arr+N); // sorts the array in ascending order by height and weight

as a secondary if height is equal,!

}

8.3 Problems

1. USACO US Open 2018 Silver Problem 2: Lemonade Line
http://www.usaco.org/index.php?page=viewproblem2&cpid=835

2. CodeForces Round 633 (Div. 2) Problem B: Sorted Adjacent Di↵erences
https://codeforces.com/problemset/problem/1339/B

3. CodeForces Round 579 (Div. 3) Problem E: Boxers
https://codeforces.com/problemset/problem/1203/E

4. USACO January 2019 Silver Problem 3: Mountain View
http://www.usaco.org/index.php?page=viewproblem2&cpid=896

5. USACO US Open 2016 Silver Problem 1: Field Reduction
http://www.usaco.org/index.php?page=open16results

Chapter 9

Greedy Algorithms

Greedy algorithms are algorithms that select the most optimal choice at each step, instead
of looking at the solution space as a whole. This reduces the problem to a smaller problem at
each step. However, as greedy algorithms never recheck previous steps, they sometimes lead
to incorrect answers. Moreover, in a certain problem, there may be more than one possible
greedy algorithm; usually only one of them is correct. This means that we must be extremely
careful when using the greedy method. However, when they are correct, greedy algorithms
are extremely e�cient.

Greedy is not a single algorithm, but rather a way of thinking that is applied to problems.
There’s no one way to do greedy algorithms. Hence, we use a selection of well-known examples
to help you understand the greedy paradigm.

Usually, when using a greedy algorithm, there is a heuristic or value function that
determines which choice is considered most optimal.

9.1 Introductory Example: Studying Algorithms

Steph wants to improve her knowledge of algorithms over winter break. She has a total of
X (1  X  104) minutes to dedicate to learning algorithms. There are N (1  N  100)
algorithms, and each one of them requires ai (1  ai  100) minutes to learn. Find the
maximum number of algorithms she can learn.

The solution is quite simple. The first observation we make is that Steph should prioritize
learning algorithms from easiest to hardest; in other words, start with learning the algorithm
that requires the least amount of time, and then choose further algorithms in increasing order
of time required. Let’s look at the following example:

X = 15, N = 6, ai = {4, 3, 8, 4, 7, 3}

After sorting the array, we have {3, 3, 4, 4, 7, 8}. Within the maximum of 15 minutes, Steph
can learn four algorithms in a total of 3 + 3 + 4 + 4 = 14 minutes. The implementation
of this algorithm is very simple. We sort the array, and then take as many elements as
possible while the sum of times of algorithms chosen so far is less than X. Sorting the array
takes O(N logN) time, and iterating through the array takes O(N) time, for a total time
complexity of O(N logN).

32

CHAPTER 9. GREEDY ALGORITHMS 33

// read in the input, store the algorithms in a vector, algorithms

sort(algorithms.begin(), algorithms.end());

int minutes = 0; // number of minutes used so far

int i = 0;

while(minutes + algorithms[i] <= x){

// while there is enough time, learn more algorithms

minutes += algorithms[i];

i++;

}

cout << i << endl; // print the ans

9.2 Example: The Scheduling Problem

There are N events, each described by their starting and ending times. Jason would like
to attend as many events as possible, but he can only attend one event at a time, and if he
chooses to attend an event, he must attend the entire event. Traveling between events is
instantaneous.

Earliest Ending Next Event (Correct)

The correct approach to this problem is to always select the next possible event that ends
as soon as possible.

A brief explanation of correctness is as follows. If we have two events E1 and E2, with
E2 ending later than E1, then it is always optimal to select E1. This is because selecting E1

gives us more choices for future events. If we can select an event to go after E2, then that
event can also go after E1, because E1 ends first. Thus, the set of events that can go after E2

is a subset of the events that can go after E1, making E1 the optimal choice.
For the following code, let’s say we have the array events of events, which each contain a

start and an end point. We’ll be using the C++ built in container pair to store each event.
Note that since the standard sort in C++ sorts by first element, we will store each event as
pair<end, start>.

// read in the input, store the events in pair<int, int>[] events.

sort(events, events + n); // sorts by first element (ending time)

int currentEventEnd = -1; // end of event currently attending

int ans = 0; // how many events were attended?

for(int i = 0; i < n; i++){ // process events in order of end time

if(events[i].second >= currentEventEnd){ // if event can be attended

CHAPTER 9. GREEDY ALGORITHMS 34

// we know that this is the earliest ending event that we can attend

// because of how the events are sorted

currentEventEnd = events[i].first;

ans++;

}

}

cout << ans << endl;

Earliest Starting Next Event (Incorrect)

To emphasize the importance of selecting the right criteria, we review an incorrect solution
that always selects the next possible event that begins as soon as possible. Let’s look at the
following example, where the selected events are highlighted in red:

In this case, the greedy algorithm selects to attend only one event. However, the optimal
solution would be the following:

9.3 Failure Cases of Greedy Algorithms

We’ll provide a few common examples of when greedy fails, so that you can avoid falling
into obvious traps and wasting time getting wrong answers in contest.

Coin Change

This problem gives several coin denominations, and asks for the minimum number of
coins needed to make a certain value. The greedy algorithm of taking the largest possible
coin denomination that fits in the remaining capacity can be used to solve this problem only
in very specific cases (it can be proven that it works for the American as well as the Euro
coin systems). However, it doesn’t work in the general case.

Knapsack

The knapsack problem gives a number of items, each having a weight and a value, and
we want to choose a subset of these items. We are limited to a certain weight, and we want
to maximize the value of the items that we take.

Let’s take the following example, where we have a maximum capacity of 4:

CHAPTER 9. GREEDY ALGORITHMS 35

Item Weight Value Value Per Weight

A 3 18 6
B 2 10 5
C 2 10 5

If we use greedy based on highest value first, we choose item A and then we are done, as
we don’t have remaining weight to fit either of the other two. Using greedy based on value
per weight again selects item A and then quits. However, the optimal solution is to select
items B and C, as they combined have a higher value than item A alone. In fact, there is no
working greedy solution. The solution to this problem uses dynamic programming, which is
beyond the scope of this book.

9.4 Problems

1. USACO December 2015 Silver Problem 2: High Card Wins
http://usaco.org/index.php?page=viewproblem2&cpid=571

2. USACO February 2018 Silver Problem 1: Rest Stops
http://www.usaco.org/index.php?page=viewproblem2&cpid=810

3. USACO February 2017 Silver Problem 1: Why Did The Cow Cross The Road
http://www.usaco.org/index.php?page=viewproblem2&cpid=714

Chapter 10

Graph Theory

Graph theory is one of the most important topics at the Silver level and above. Graphs
can be used to represent many things, from images to wireless signals, but one of the simplest
analogies is to a map. Consider a map with several cities and highways connecting the cities.
Some of the problems relating to graphs are:

• If we have a map with some cities and roads, what’s the shortest distance I have to
travel to get from point A to point B?

• Consider a map of cities and roads. Is city A connected to city B? Consider a region to
be a group of cities such that each city in the group can reach any other city in said
group, but no other cities. How many regions are in this map, and which cities are in
which region?

10.1 Graph Basics

Graphs are made up of nodes and edges, where nodes are connected by edges. Graphs
can have either weighted edges, in which each edge has a certain length, or unweighted, in
which case all edges have the same length. Edges are either directed, which means they can
be traveled upon in one direction, or undirected, which means that they can be traveled
upon in both directions.

1

2

3

4

5 6

1

2

3

4

5 6

2

4

5

3

�1

2

5

Figure 10.1: An undirected unweighted graph (left) and a directed weighted graph (right)

36

CHAPTER 10. GRAPH THEORY 37

A connected component is a set of nodes within which any node can reach any other
node. For example, in this graph, nodes 1, 2, and 3 are a connected component, nodes 4 and
5 are a connected component, and node 6 is its own component.

1 2

3

4 5

6

Figure 10.2: Connected components in a graph

10.2 Trees

A tree is a special type of graph satisfying two constraints: it is acyclic, meaning there
are no cycles, and the number of edges is one less than the number of nodes. Trees satisfy
the property that for any two nodes A and B, there is exactly one way to travel between A

and B.

1

2 3

4 5 6 7

Figure 10.3: A tree graph

The root of a tree is the one vertex that is placed at the top, and is where we usually
start our tree traversals from. Usually, problems don’t tell us where the tree is rooted at, and
it usually doesn’t matter either; trees can be arbitrarily rooted (here, we’ll use the convention
of rooting at index 1).

Every node except the root node has a parent. The parent of a node s is defined as
follows: On the path from the root to s, the node that is one closer to the root than s is the
parent of s. Each non-root node has a unique parent.

Child nodes are the opposite. They lie one farther away from the root than their parent
node. Unlike parent nodes, these are not unique. Each node can have arbitrarily many child
nodes, and nodes can also have zero children. If a node s is the parent of a node t, then t is
the child node of s.

A leaf node is a node that has no children. Leaf nodes can be identified quite easily
because there is only one edge adjacent to them.

CHAPTER 10. GRAPH THEORY 38

In our example tree above, node 1 is the root, nodes 2 and 3 are children of node 1, nodes
4, 5, and 6 are children of 2, and node 7 is the child of 3. Nodes 4, 5, 6, and 7 are leaf nodes.

10.3 Graph Representations

Usually, in a graph with N edges and M edges, we’ll number the nodes 0 through N � 1.
If the problem gives the nodes numbered 1 through N , simply decrease the endpoint node
numbers of edges by 1 as you input them, in order to accommodate zero-indexing of arrays.
However, in problem statements, input and output, the node labels will usually be 1 through
N , so that’s what we’ll use in our examples.

Graphs will usually be given in an input format similar to the following: First, integers
N and M denoting the number of nodes and edges, respectively. Then, M lines, each with
integers a and b, representing edges; if the graph is undirected, then there is an edge between
nodes a and b, and if the graph is directed, then there is an edge from a to b.

For example, the input below would be for the following graph (without the comments):

6 7 // 6 nodes, 7 edges
// the following lines represent edges.
1 2
1 4
1 5
2 3
2 4
3 5
4 6

1

2

3

4

5 6

Figure 10.4: The graph corresponding to the above input

Graphs can be represented in three ways: Adjacency List, Adjacency Matrix, and Edge
List. Regardless of how the graph is represented, it’s important that it be stored globally
and statically, because we need to be able to access it from outside the main method, and
call the graph searching and traversal methods on it.

CHAPTER 10. GRAPH THEORY 39

Adjacency List

The adjacency list is the most commonly used method of storing graphs. When we use
DFS, BFS, Dijkstra’s, or other single-source graph traversal algorithms, we’ll want to use an
adjacency list. In an adjacency list, we maintain a length N array of lists. Each list stores
the neighbors of one node. In an undirected graph, if there is an edge between node a and
node b, we add a to the list of b’s neighbors, and b to the list of a’s neighbors. In a directed
graph, if there is an edge from node a to node b, we add b to the list of a’s neighbors, but
not vice versa.

1

2

3

4

5 6

9

4

3

5

2

4
1

3

Figure 10.5: An example of a weighted undirected graph

Adjacency list representation of the graph in fig. 10.5:

adj[0] (1, 9), (3, 4), (4, 3)
adj[1] (0, 9), (2, 5), (3, 2)
adj[2] (1, 5), (4, 4), (5, 1)
adj[3] (0, 4), (1, 2), (5, 3)
adj[4] (0, 3), (2, 4)
adj[5] (2, 1), (3, 3)

Adjacency lists take up O(N +M) space, because each node corresponds to one list of
neighbors, and each edge corresponds to either one or two endpoints (directed vs undirected).
In an adjacency list, we can find (and iterate through) the neighbors of a node easily. Hence,
the adjacency list is the graph representation we should be using most of the time.

Often, we’ll want to maintain a array visited, which is a boolean array representing
whether each node has been visited. When we visit node k (0-indexed), we mark visited[k]
true, so that we know not to return to it.

Code for setting up an adjacency list is as follows:

int n, m; // number of nodes and edges

vector<int> adj[MAXN]; // adjacency list where MAXN is max possible # of nodes

bool visited[MAXN]; // visited array of size MAXN as well (use MAXN for global

declaration),!

int main(){

CHAPTER 10. GRAPH THEORY 40

cin >> n; // reads in number of nodes

cin >> m; // reads in number of edges

for(int i = 0; i < m; i++){ // reading in each of the m edges

int a, b;

cin >> a >> b;

a--; b--; // we subtract 1 because our array is zero-indexed

adj[a].push_back(b);

adj[b].push_back(a); // omit this line if the graph is directed

}

return 0;

}

If we’re dealing with a weighted graph, we’ll declare an Edge class or struct that stores
two variables: the second endpoint of the edge, and the weight of the edge, and we store an
array of lists of edges rather than an array of lists of integers.

struct Edge

{

int to, weight;

Edge(int dest, int w):

to(dest), weight(w)

{

}

};

Adjacency Matrix

Another way of representing graphs is the adjacency matrix, which is an N by N 2-
dimensional array that stores for each pair of indices (a, b), stores whether there is an
edge between a and b. Start by initializing every entry in the matrix to zero (this is done
automatically in C++ if you declare the array globally), and then for undirected graphs,
for each edge between indices a and b, set adj[a][b] and adj[b][a] to 1 (if unweighted)
or the edge weight (if weighted). If the graph is directed, for an edge from a to b, only set
adj[a][b].

1

2

3

4

5 6

9

4

3

5

2

4
1

3

CHAPTER 10. GRAPH THEORY 41

Figure 1.5 repeated for convenience

Adjacency matrix representation of the graph in fig. 1.5:

⇥ 0 1 2 3 4 5
0 0 9 0 4 3 0
1 9 0 5 2 0 0
2 0 5 0 0 4 1
3 4 2 0 0 0 3
4 3 0 4 0 0 0
5 0 0 1 3 0 0

At the Silver level, we generally won’t be using the adjacency matrix much, but it’s helpful
to know if it does come up. The primary use of the adjacency matrix is the Floyd-Warshall
algorithm, which is beyond the scope of this book.

Code for setting up an adjacency matrix is as follows:

int n, m; // number of nodes and edges

int adj[MAXN][MAXN]; // adj matrix of size MAXN by MAXN in order to globally

declare,!

int main(){

cin >> n >> m;

for(int i = 0; i < m; i++){ // read in each of the m edges

int a, b;

cin >> a >> b;

a--; b--; // we subtract 1 because our array is zero-indexed

adj[a][b] = 1; // or set equal to w if graph is weighted

adj[b][a] = 1; // or set equal to w if graph is weighted;

// ignore above line if graph is directed

}

return 0;

}

Edge List

The last graph representation is the edge list. Usually, we use this in weighted undirected
graphs when we want to sort the edges by weight (for DSU, for example; see section 10.6).
In the edge list, we simply store a single list of all the edges, in the form (a, b, w) where a
and b are the nodes that the edge connects, and w is the edge weight. Note that in an edge
list, we do NOT add each edge twice; there is only one place for us to add the edges, so we
only do so once.

CHAPTER 10. GRAPH THEORY 42

1

2

3

4

5 6

9

4

3

5

2

4
1

3

Figure 1.5 repeated for convenience

Edge list representation of the graph in fig. 1.5:

(0, 1, 9), (0, 3, 4), (0, 4, 3), (1, 3, 2), (3, 5, 3), (2, 4, 4), (2, 1, 5), (2, 5, 1)

We’ll need an edge struct, such as the following:

struct Edge{

int a, b, w;

Edge(int start, int end, int weight):

a(start), b(end), w(weight)

{

}

bool operator<(const Edge & e)

const{ // sort order is ascending, by weight

// to sort in descending order, just negate the value of the compare

function.,!

return w < e.w;

}

};

Code for the edge list is as follows, using the above edge class:

int n, m; // number of nodes and edges

vector<Edge> edges;

int main(){

cin >> n >> m;

for(int i = 0; i < m; i++){ // for each of the m edges

int a, b, w;

cin >> a >> b >> w;

a--; b--; // subtract 1 to maintain zero-indexing of vertices

edges.push_back(Edge(a, b, w)); // add the edge to the list

}

CHAPTER 10. GRAPH THEORY 43

sort(edges.begin(), edges.end());

return 0;

}

10.4 Graph Traversal Algorithms

Graph traversal is the process of visiting or checking each vertex in a graph. This is useful
when we want to determine which vertices can be visited, whether there exists a path from
one vertex to another, and so forth. There are two algorithms for graph traversal, namely
depth-first search (DFS) and breadth-first search (BFS).

Depth-first search

Depth-first search continues down a single path to the end, then it backtracks to check
other vertices. Depth-first search will process all nodes that are reachable (connected by
edges) to the starting node. Let’s look at an example of how this works. Depth first-search
can start at any node, but by convention we’ll start the search at node 1. We’ll use the
following color scheme: blue for nodes we have already visited, red for nodes we are currently
processing, and black for nodes that have not been visited yet.

The DFS starts from node 1 and then goes to node 2, as it’s the only neighbor of node 1:

1 2 3

5 4

1 2 3

5 4

Now, the DFS goes to node 3 and then 4, following a single path to the end until it has no
more nodes to process:

1 2 3

5 4

1 2 3

5 4

Lastly, the DFS backtracks to visit node 5, which was skipped over previously.

1 2 3

5 4

CHAPTER 10. GRAPH THEORY 44

Algorithm: Recursive implementation for depth-first traversal of a graph

Function DFS
Input : start, the 0-indexed number of the starting vertex
visited(start) true
foreach vertex k adjacent to start do

if visited(k) is false then

DFS (k)
end

end

Code:

void dfs(int node){

visited[node] = true;

for(int next : adj[node]){

if(!visited[next]){

dfs(next);

}

}

}

Breadth-first search

Breadth-first search visits nodes in order of distance away from the starting node; it first
visits all nodes that are one edge away, then all nodes that are two edges away, and so on.

Let’s use the same example graph that we used earlier: The BFS starts from node 1 and
then goes to node 2, as it’s the only neighbor of node 1:

1 2 3

5 4

1 2 3

5 4

Now, the BFS goes to node 3, and then node 5, because both of them are two edges away
from node 1:

1 2 3

5 4

1 2 3

5 4

Lastly, the BFS visits node 4, which is farthest.

CHAPTER 10. GRAPH THEORY 45

1 2 3

5 4

The breadth-first search algorithm cannot be implemented recursively, so it’s significantly
longer. Thus, when both BFS and DFS work, DFS is usually the better option.

BFS can be used for finding the distance away from a starting node for all nodes in an
unweighted graph, as we show below:

The algorithm is as follows:

Algorithm: Breadth-first traversal of a graph

Function BFS
Input : start, the 0-indexed number of the starting vertex
foreach vertex v do

dist[v] �1
visited[v] false

end

dist[start] 0
Let q be a queue of integers
Add start to q

while q is not empty do

Pop the first element from q, call it v
foreach neighbor u of v do

if node u has not yet been visited then

dist[u] dist[v] + 1
Add u to q

end

end

end

Once the BFS finishes, the array dist contains the distances from the start node to each
node.

Example code is below. Note that the array dist[] is initially filled with -1’s to denote
that none of the nodes have been processed yet.

void bfs(int start){

memset(dist, -1, sizeof dist) // fill distance array with -1's

queue<int> q;

dist[start] = 0;

q.push(start);

while(!q.empty()){

int v = q.front();

q.pop();

CHAPTER 10. GRAPH THEORY 46

for(int e : adj[v]){

if(dist[e] == -1){

dist[e] = dist[v] + 1;

q.push(e);

}

}

}

}

Iterative DFS

If you encounter stack overflows while using recursive DFS, you can write an iterative
DFS, which is just BFS but with nodes stored on a stack rather than a queue.

10.5 Floodfill

Floodfill is an algorithm that identifies and labels the connected component that a
particular cell belongs to, in a multi-dimensional array. Essentially, it’s DFS, but on a grid,
and we want to find the connected component of all the connected cells with the same number.
For example, let’s look at the following grid and see how floodfill works, starting from the
top-left cell. The color scheme will be the same: red for the node currently being processed,
blue for nodes already visited, and uncolored for nodes not yet visited.

2 2 1
2 1 1
2 2 1

2 2 1
2 1 1
2 2 1

2 2 1
2 1 1
2 2 1

2 2 1
2 1 1
2 2 1

2 2 1
2 1 1
2 2 1

2 2 1
2 1 1
2 2 1

CHAPTER 10. GRAPH THEORY 47

As opposed to an explicit graph where the edges are given, a grid is an implicit graph.
This means that the neighbors are just the nodes directly adjacent in the four cardinal
directions.

Usually, grids given in problems will be N by M , so the first line of the input contains the
numbers N and M . In this example, we will use an two-dimensional integer array to store the
grid, but depending on the problem, a two-dimensional character array or a two-dimensional
boolean array may be more appropriate. Then, there are N rows, each with M numbers
containing the contents of each square in the grid. Example input might look like the following
(varies between problems):

3 4
1 1 2 1
2 3 2 1
1 3 3 3

And we’ll want to input the grid as follows:

int grid[MAXN][MAXM];

int n, m;

int main(){

cin >> n >> m;

for(int i = 0; i < n; i++){

for(int j = 0; j < m; j++){

cin >> grid[i][j];

}

}

return 0;

}

When doing floodfill, we will maintain an N ⇥M array of bools to keep track of which
squares have been visited, and a global variable to maintain the size of the current component
we are visiting. Make sure to store the grid, the visited array, dimensions, and the current
size variable globally.

This means that we want to recursively call the search function from the squares above,
below, and to the left and right of our current square. The algorithm to find the size of a
connected component in a grid using floodfill is as follows (we’ll also maintain a 2d visited

CHAPTER 10. GRAPH THEORY 48

array):

Algorithm: Floodfill of a graph

Function main
// Input/output, global vars, etc hidden
for i 0 to n� 1 do

for j 0 to m� 1 do

if the square at (i, j) is not visited then

currentSize 0
floodfill(i, j, grid[i][j])
Process the connected component

end

end

end

Function floodfill
Input : r, c, color
// row and column index of starting square, target color
if r or c is out of bounds then

return

end

if the cell at (r, c) is the wrong color then

return

end

if the square at (r, c) has already been visited then

return

end

visited[r][c] true
currentSize currentSize+ 1
floodfill(r, c+ 1, color)
floodfill(r, c� 1, color)
floodfill(r � 1, c, color)
floodfill(r + 1, c, color)

The code below shows the global/static variables we need to maintain while doing floodfill,
and the floodfill algorithm itself.

int grid[MAXN][MAXM]; // the grid itself

int n, m; // grid dimensions, rows and columns

bool visited[MAXN][MAXM]; // keeps track of which nodes have been visited

int currentSize = 0; // reset to 0 each time we start a new component

void floodfill(int r, int c, int color){

if(r < 0 || r >= n || c < 0 || c >= m) return; // if outside grid

if(grid[r][c] != color) return; // wrong color

if(visited[r][c]) return; // already visited this square

CHAPTER 10. GRAPH THEORY 49

visited[r][c] = true; // mark current square as visited

currentSize++; // increment the size for each square we visit

// recursively call floodfill for neighboring squares

floodfill(r, c+1, color);

floodfill(r, c-1, color);

floodfill(r-1, c, color);

floodfill(r+1, c, color);

}

int main(){

/**

* input code and other problem-specific stuff here

*/

for(int i = 0; i < n; i++){

for(int j = 0; j < m; j++){

if(!visited[i][j]){

currentSize = 0;

floodfill(i, j, grid[i][j]);

// start a floodfill if the square hasn't

// already been visited, and then

// store or otherwise use the component size for whatever

// it's needed for

}

}

}

return 0;

}

10.6 Disjoint-Set Data Structure

Let’s say we want to construct a graph, one edge at a time. We also want to be able to
add additional nodes, and query whether two nodes are connected. We can naively solve
this problem by adding the edges and running a floodfill each time, before finally checking
whether two nodes have the same color. This yields a time complexity of O(nm) for a graph
of n nodes and m edges.

However, we can do better than this using a data structure known as Disjoint-Set Union,
or DSU for short. This data structure supports two operations:

• Add an edge between two nodes.

• Check if two nodes are connected.

To achieve this, we store sets as trees, with the root of the tree representing the “parent”
of the set. Initially, we store each node as its own set. Then, we combine their sets when we
add an edge between two nodes. The image below illustrates this structure.

CHAPTER 10. GRAPH THEORY 50

In this graph, 1 is the parent of the set containing 3, 2, and 4.
To implement this, let’s store the parent of each node in the tree represented by that

node’s set. Then, to merge two sets, we set the parent of one tree’s root to the other tree’s
root, like so:

The following methods demonstrate this idea:

int parent[MAXN]; //stores the parent nodes

void initialize(int N){

for(int i = 0; i < N; i++){

parent[i] = i; //initially, the root of each set is the node itself

}

}

int find(int x){ //finds the root of the set of x

if(x == parent[x]){ //if x is the parent of itself, it is the root

return x;

}

else{

return find(parent[x]); //otherwise, recurse to the parent of x

}

CHAPTER 10. GRAPH THEORY 51

}

void union(int a, int b){ //merges the sets of a and b

int c = find(a); //find the root of a

int d = find(b); //find the root of b

if(c != d){

parent[d] = c; //merge the sets by setting the parent of d to c

}

}

However, this naive implementation of a DSU isn’t much better than simply running a
floodfill. As the recursing up the tree of a set to find it’s root can be time-consuming for
trees with long chains, the runtime ultimately degrades to still being O(nm) for n nodes and
m edges.

Now that we understand the general idea of a DSU, we can improve the runtime of this
implementation using an optimization known as path compression. The general idea is to
reassign nodes in the tree as you are recursively calling the find method to prevent long
chains from forming. Here is a rewritten find method representing this idea:

int find(int x){

if(x == parent[x]){

return x;

}

else{

// we set the direct parent to the root of the set to reduce path length

return parent[x] = find(parent[x]);

}

}

The following image demonstrates how the tree with parent 1 is compressed after find(6)
is called. All of the bolded nodes in the final tree were visited during the recursive operation,
and now point to the root.

CHAPTER 10. GRAPH THEORY 52

With this new optimization, the runtime reduces to O(n log n), far better than our naive
algorithm. Further optimizations can reduce the runtime of DSU to nearly constant. However,
those techniques and the proof of complexity for these optimizations are both unnecessary for
and out of the scope of the USACO Silver division, so they will not be included in this book.

10.7 Bipartite Graphs

A bipartite graph is a graph such that each node can be colored in one of two colors,
such that no two adjacent nodes have the same color. For example, the following graph is
bipartite:

1 2 3

4 5

A graph is bipartite if and only if there are no cycles of odd length. For example, the
following graph is not bipartite, because it contains a cycle of length 3.

1 2 3

4

The following image depicts how a bipartite graph splits vertices into two “groups”
depending on their color.

CHAPTER 10. GRAPH THEORY 53

In order to check whether a graph is bipartite, we use a modified breadth-first search.

Algorithm: Bipartiteness check

Function bipartite
Input : a graph
Output :whether the graph is bipartite or not
Assign color 1 to the starting vertex
// Use the following modified bfs
foreach vertex v processed in bfs do

d dist(start, v)
if d is odd then

Assign color 2 to vertex v

else

Assign color 1 to vertex v

end

foreach vertex w adjacent to v do

if w and v are the same color then

return false // not bipartite

end

end

end

return true // bipartite

10.8 Problems

DFS/BFS Problems

1. USACO January 2018 Silver Problem 3: MooTube
http://www.usaco.org/index.php?page=viewproblem2&cpid=788

CHAPTER 10. GRAPH THEORY 54

2. USACO December 2016 Silver Problem 3: Moocast
http://www.usaco.org/index.php?page=viewproblem2&cpid=668

3. USACO US Open 2016 Silver Problem 3: Closing the Farm
http://www.usaco.org/index.php?page=viewproblem2&cpid=644

DSU Problems

Many of these problems do not require DSU. However, they become much easier to do if
you understand it.

4. USACO US Open Silver Problem 3: The Moo Particle
http://usaco.org/index.php?page=viewproblem2&cpid=1040

5. USACO January 2018 Silver Problem 3: MooTube
http://www.usaco.org/index.php?page=viewproblem2&cpid=788

6. USACO December 2019 December Problem 3: Milk Visits
http://usaco.org/index.php?page=viewproblem2&cpid=968

7. USACO US Open 2016 Gold Problem 2: Closing the Farm
http://www.usaco.org/index.php?page=viewproblem2&cpid=646

8. USACO January Contest 2020 Silver Problem 3: Wormhole Sort
http://www.usaco.org/index.php?page=viewproblem2&cpid=992

Other Graph Problems

9. (Bipartite Graphs) USACO February 2019 Silver Problem 3: The Great Revegetation
http://www.usaco.org/index.php?page=viewproblem2&cpid=920

10. CodeForces Round 595 (Div. 3) Problem B2: Books Exchange
https://codeforces.com/problemset/problem/1249/B2

Chapter 11

Prefix Sums

11.1 Prefix Sums

Let’s say we have an integer array arr with N elements, and we want to process Q queries
to find the sum of the elements between two indices a and b, inclusive, with di↵erent values
of a and b for every query. For the purposes of this chapter, we will assume that the original
array is 1-indexed, meaning arr[0] = 0 (which is a dummy index), and the actual array
elements occupy indices 1 through N (this means that the array actually has length N + 1).

Let’s use the following example 1-indexed array arr, with N = 6:

Index i 0 1 2 3 4 5 6
arr[i] 0 1 6 4 2 5 3

Naively, for every query, we can iterate through all entries from index a to index b to add
them up. Since we have Q queries and each query requires a maximum of O(N) operations
to calculate the sum, our total time complexity is O(NQ). For most problems of this nature,
the constraints will be N,Q  105, so NQ is on the order of 1010. This is not acceptable; it
will almost always exceed the time limit.

Instead, we can use prefix sums to process these array sum queries. We designate a prefix
sum array prefix. First, because we’re 1-indexing the array, set prefix[0] = 0, then for
indices k such that 1  k  n, define the prefix sum array as follows:

prefix[k] =
kX

i=1

arr[i]

Basically, what this means is that the element at index k of the prefix sum array stores the
sum of all the elements in the original array from index 1 up to k. This can be calculated
easily in O(N) by the following formula:

prefix[k] = prefix[k-1]+ arr[k]

For the example case, our prefix sum array looks like this:

Index i 0 1 2 3 4 5 6
prefix[i] 0 1 7 11 13 18 21

55

CHAPTER 11. PREFIX SUMS 56

Now, when we want to query for the sum of the elements of arr between (1-indexed)
indices a and b inclusive, we can use the following formula:

bX

i=a

arr[i] =
bX

i=1

arr[i]�
a�1X

i=1

arr[i]

Using our definition of the elements in the prefix sum array, we have

bX

i=a

arr[i] = prefix[b]� prefix[a-1]

Since we are only querying two elements in the prefix sum array, we can calculate subarray
sums in O(1) per query, which is much better than the O(N) per query that we had before.
Now, after an O(N) preprocessing to calculate the prefix sum array, each of the Q queries
takes O(1) time. Thus, our total time complexity is O(N +Q), which should now pass the
time limit.

Let’s do an example query and find the subarray sum between indices a = 2 and b = 5,
inclusive, in the 1-indexed arr. From looking at the original array, we see that this isP5

i=2 arr[i] = 6 + 4 + 2 + 5 = 17.

Index i 0 1 2 3 4 5 6
arr[i] 0 1 6 4 2 5 3

Using prefix sums: Using prefix sums: prefix[5]� prefix[1] = 18� 1 = 17.

Index i 0 1 2 3 4 5 6
prefix[i] 0 1 7 11 13 18 21

11.2 Two Dimensional Prefix Sums

Now, what if we wanted to process Q queries for the sum over a subrectangle of a N

rows by M columns matrix in two dimensions? Let’s assume both rows and columns are
1-indexed, and we use the following matrix as an example:

0 0 0 0 0 0
0 1 5 6 11 8
0 1 7 11 9 4
0 4 6 1 3 2
0 7 5 4 2 3

Naively, each sum query would then take O(NM) time, for a total of O(QNM). This is
too slow.

Let’s take the following example region, which we want to sum:

CHAPTER 11. PREFIX SUMS 57

0 0 0 0 0 0
0 1 5 6 11 8
0 1 7 11 9 4
0 4 6 1 3 2
0 7 5 4 2 3

Manually summing all the cells, we have a submatrix sum of 7 + 11 + 9 + 6 + 1 + 3 = 37.
The first logical optimization would be to do one-dimensional prefix sums of each row.

Then, we’d have the following row-prefix sum matrix. The desired subarray sum of each row
in our desired region is simply the green cell minus the red cell in that respective row. We do
this for each row, to get (28� 1) + (14� 4) = 37.

0 0 0 0 0 0
0 1 6 12 23 31
0 1 8 19 28 32
0 4 10 11 14 16
0 7 12 16 18 21

Now, if we wanted to find a submatrix sum, we could break up the submatrix into a
subarray for each row, and then add their sums, which would be calculated using the prefix
sums method described earlier. Since the matrix has N rows, the time complexity of this is
O(QN). This is better, but still usually not fast enough.

To do better, we can do two-dimensional prefix sums. In our two dimensional prefix sum
array, we have

prefix[a][b] =
aX

i=1

bX

j=1

arr[i][j]

This can be calculated as follows for row index 1  i  n and column index 1  j  m:

prefix[i][j] = prefix[i-1][j]+ prefix[i][j-1]� prefix[i-1][j-1]+ arr[i][j]

The submatrix sum between rows a and A and columns b and B, can thus be expressed as
follows:

AX

i=a

BX

j=b

arr[i][j] = prefix[A][B]� prefix[a-1][B]

� prefix[A][b-1]+ prefix[a-1][b-1]

Summing the blue region from above using the 2d prefix sums method, we add the value
of the green square, subtract the values of the red squares, and then add the value of the
gray square. In this example, we have 65� 23� 6 + 1 = 37, as expected.

0 0 0 0 0 0
0 1 6 12 23 31
0 2 14 31 51 63
0 6 24 42 65 79
0 13 36 58 83 100

Since no matter the size of the submatrix we are summing, we only need to access 4 values
of the 2d prefix sum array, this runs in O(1) per query after an O(NM) preprocessing. This
is fast enough.

CHAPTER 11. PREFIX SUMS 58

11.3 Problems

1. USACO December 2015 Silver Problem 3: Breed Counting
http://usaco.org/index.php?page=viewproblem2&cpid=572

2. USACO January 2016 Silver Problem 2: Subsequences Summing to Sevens
http://usaco.org/index.php?page=viewproblem2&cpid=595

3. USACO December 2017 Silver Problem 1: My Cow Ate My Homework
http://www.usaco.org/index.php?page=viewproblem2&cpid=762

4. USACO January 2017 Silver Problem 2: Hoof, Paper, Scissors
http://www.usaco.org/index.php?page=viewproblem2&cpid=691

5. (2D Prefix Sums) USACO February 2019 Silver Problem 2: Painting the Barn
http://www.usaco.org/index.php?page=viewproblem2&cpid=919

Chapter 12

Binary Search

12.1 Binary Search on the Answer

You’re probably already familiar with the concept of binary searching for a number in
a sorted array. However, binary search can be extended to binary searching on the answer
itself. When we binary search on the answer, we start with a search space, where we know
the answer lies in. Then, each iteration of the binary search cuts the search space in half,
so the algorithm tests O(logN) values, which is e�cient and much better than testing each
possible value in the search space.

Similarly to how binary search on an array only works on a sorted array, binary search
on the answer only works if the answer function is monotonic. Let’s say we have a function
check(x) that returns true if the answer of x is possible, and false otherwise. Usually, in
such problems, we’ll want to find the maximum or minimum value of x such that check(x)
is true.

In order for binary search to work, the search space must look like something of the
following form, using a check function as we described above.

true true true true true false false false false

Then, we find the point at which true becomes false, using binary search.
Below, we present two algorithms for binary search. The first implementation may be

more intuitive, because it’s closer to the binary search most students learned, while the

59

CHAPTER 12. BINARY SEARCH 60

second implementation is shorter.

Algorithm: Binary searching for the answer

Function binarySearch1
left lower bound of search space
right upper bound of search space
ans �1
while left  right do

mid (left+ right)/2
if check(mid) then

left mid+ 1
ans mid

else

right mid� 1
end

return ans

Algorithm: Binary searching for the answer

Function binarySearch2
pos 0
max upper bound of search space
for (a = max; a � 1; a /= 2) do

while check(pos+ a) do
pos pos+ a

end

end

return pos

12.2 Example

Source: Codeforces Round 577 (Div. 2) Problem C
https://codeforces.com/contest/1201/problem/C

Given an array arr of n integers, where n is odd, we can perform the following operation
on it k times: take any element of the array and increase it by 1. We want to make the
median of the array as large as possible, after k operations.

Constraints: 1  n  2 · 105, 1  k  109 and n is odd.
The solution is as follows: we first sort the array in ascending order. Then, we binary

search for the maximum possible median. We know that the number of operations required
to raise the median to x increases monotonically as x increases, so we can use binary search.
For a given median value x, the number of operations required to raise the median to x is

nX

i=(n+1)/2

max(0, x� arr[i])

CHAPTER 12. BINARY SEARCH 61

If this value is less than or equal to k, then x can be the median, so our check function
returns true. Otherwise, x cannot be the median, so our check function returns false.

Solution code (using the second implementation of binary search):

int n;

long long k;

vector<long long> v;

// checks whether the number of given operations is sufficient

// to raise the median of the array to x

bool check(long long x){

long long operationsNeeded = 0;

for(int i = (n-1)/2; i < n; i++){

operationsNeeded += max(0, x-v[i]);

}

if(operationsNeeded <= k) return true;

else return false;

}

// binary searches for the correct answer

long long search(){

long long pos = 0; long long max = 2E9;

for(long long a = max; a >= 1; a /= 2){

while(check(pos+a)) pos += a;

}

return pos;

}

int main() {

cin >> n >> k;

for(int i = 0; i < n; i++){

int t;

cin >> t;

v.push_back(t);

}

sort(v.begin(), v.end());

cout << search() << '\n';

}

12.3 Problems

1. USACO December 2018 Silver Problem 1: Convention
http://www.usaco.org/index.php?page=viewproblem2&cpid=858

CHAPTER 12. BINARY SEARCH 62

2. USACO January 2016 Silver Problem 1: Angry Cows
http://usaco.org/index.php?page=viewproblem2&cpid=594

3. USACO January 2017 Silver Problem 1: Cow Dance Show
http://www.usaco.org/index.php?page=viewproblem2&cpid=690

4. Educational Codeforces Round 60 Problem C: Magic Ship
https://codeforces.com/problemset/problem/1117/C (Also uses prefix sums)

5. USACO January 2020 Silver Problem 2: Loan Repayment
http://www.usaco.org/index.php?page=viewproblem2&cpid=991
(Warning: extremely di�cult for silver)

Chapter 13

Elementary Number Theory

13.1 Prime Factorization

A number a is called a divisor or a factor of a number b if b is divisible by a, which means
that there exists some integer k such that b = ka. Conventionally, 1 and n are considered
divisors of n. A number n > 1 is prime if its only divisors are 1 and n. Numbers greater
than 1 that are not prime are composite.

Every number has a unique prime factorization: a way of decomposing it into a product
of primes, as follows:

n = p1
a1p2

a2 · · · pkak

where the pi are distinct primes and the ai are positive integers.
Now, we will discuss how to find the prime factorization of an integer.

Algorithm: Finds the prime factorization of a number

Function factor
Input :n, the number to be factorized
Output : v, a list of all the prime factors
v empty list
for i 2 to b

p
nc do

while n is divisible by i do

n n/i

Add i to the list v
end

end

return v ;

This algorithm runs in O(
p
n) time, because the for loop checks divisibility for at mostp

n values. Even though there is a while loop inside the for loop, dividing n by i quickly
reduces the value of n, which means that the outer for loop runs less iterations, which actually
speeds up the code.

63

CHAPTER 13. ELEMENTARY NUMBER THEORY 64

Let’s look at an example of how this algorithm works, for n = 252.

i n v

2 252 {}
2 126 {2}
2 63 {2, 2}
3 21 {2, 2, 3}
3 7 {2, 2, 3, 3}

At this point, the for loop terminates, because i is already 3 which is greater than b
p
7c. In

the last step, we add 7 to the list of factors v, because it otherwise won’t be added, for a
final prime factorization of {2, 2, 3, 3, 7}.

13.2 GCD and LCM

The greatest common divisor (GCD) of two integers a and b is the largest integer
that is a factor of both a and b. In order to find the GCD of two numbers, we use the
Euclidean Algorithm, which is as follows:

gcd(a, b) =

(
a b = 0

gcd(b, a mod b) b 6= 0

This algorithm is very easy to implement using a recursive function, as follows:

int gcd(int a, int b){

if(b == 0) return a;

return gcd(b, a % b);

}

Finding the GCD of two numbers can be done in O(log n) time, where n = min(a, b).
The least common multiple (LCM) of two integers a and b is the smallest integer

divisible by both a and b.
The LCM can easily be calculated from the following property with the GCD:

lcm(a, b) =
a · b

gcd(a, b)

If we want to take the GCD or LCM of more than two elements, we can do so two at a time,
in any order. For example,

gcd(a1, a2, a3, a4) = gcd(a1, gcd(a2, gcd(a3, a4)))

CHAPTER 13. ELEMENTARY NUMBER THEORY 65

13.3 Modular Arithmetic

In modular arithmetic, instead of working with integers themselves, we work with their
remainders when divided by m. We call this taking modulo m. For example, if we take
m = 23, then instead of working with x = 247, we use x mod 23 = 17. Usually, m will be a
large prime, given in the problem; the two most common values are 109 + 7, and 998 244 353.
Modular arithmetic is used to avoid dealing with numbers that overflow built-in data types,
because we can take remainders, according to the following formulas:

(a+ b) mod m = (a mod m+ b mod m) mod m

(a� b) mod m = (a mod m� b mod m) mod m

(a · b) (mod m) = ((a mod m) · (b mod m)) mod m

a
b mod m = (a mod m)b mod m

Under a prime moduli, division does exist; however it’s rarely used in problems and is
beyond the scope of this book.

13.4 Problems

1. CodeForces VK Cup 2012 Wildcard Round 1
https://codeforces.com/problemset/problem/162/C

Chapter 14

Additional Silver Topics

14.1 Two Pointers

The two pointers method iterates two pointers across an array, to track the start and end
of an interval, or two values in a sorted array that we are currently checking. Both pointers
are monotonic; meaning each pointer starts at one end of the array and only move in one
direction.

2SUM Problem

Given an array of N elements (1  N  105), find two elements that sum to X. We can
solve this problem using two pointers; sort the array, then set one pointer at the beginning
and one pointer at the end of the array. Then, we consider the sum of the numbers at the
indices of the pointers. If the sum is too small, advance the left pointer towards the right,
and if the sum is too large, advance the right pointer towards the left. Repeat until either
the correct sum is found, or the pointers meet (in which case there is no solution).

Let’s take the following example array, where N = 6 and X = 15

1 7 11 10 5 13

First, we sort the array:

1 5 7 10 11 13

We then place the left pointer at the start of the array, and the right pointer at the end
of the array.

1 5 7 10 11 13

Then, run and repeat this process: If the sum of the pointer elements is less than X,
move the left pointer one step to the right. If the sum is greater than X, move the right
pointer one step to the left. The example is as follows. First, the sum 1 + 13 = 14 is too
small, so we move the left pointer one step to the right.

1 5 7 10 11 13

66

CHAPTER 14. ADDITIONAL SILVER TOPICS 67

Now, 5 + 13 = 18 overshoots the sum we want, so we move the right pointer one step to
the left.

1 5 7 10 11 13

At this point we have 5 + 11 = 16, still too big. We continue moving the right pointer to
the left.

1 5 7 10 11 13

Now, we have the correct sum, and we are done.
Code is as follows:

int left = 0; int right = n-1;

while(left < right){

if(arr[left] + arr[right] == x){

break;

} else if(arr[left] + arr[right] < x){

left++;

} else {

right--;

}

}

// if left >= right after the loop ends, no answer exists.

Subarray Sum

Given an array of N (1  N  105) positive elements, find a contiguous subarray that
sums to X.

We can do this in a similar manner to how we did the 2SUM problem: except this time we
start both pointers at the left, and the pointers mark the beginning and end of the subarray
we are currently checking. We advance the right pointer one step to the right if the total of
the current subarray is too small, advance the left pointer one step to the right if the current
total is too large, and we are done when we find the correct total.

Maximum subarray sum

Another problem that isn’t quite solved by two pointers, but is somewhat related, is the
maximum subarray sum problem.

Given an array of N integers (1  N  105), which can be positive or negative, find the
maximum sum of a contiguous subarray.

We can solve this problem using Kadane’s algorithm, which works as follows: we iterate
through the elements of the array, and for each index i, we maintain the maximum subarray
sum of a subarray ending at i in the variable current, and the maximum subarray sum of a
subarray ending at or before i, in the variable best.

Example code is below.

CHAPTER 14. ADDITIONAL SILVER TOPICS 68

int best = 0, current = 0;

for(int i = 0; i < n; i++){

current = max(0, current + arr[i]);

best = max(best, current);

}

14.2 Line sweep

Line sweep is the technique of sorting a set of points or line segments and then processing
them in order (this usually means from left to right). The name line sweep comes from the
fact that we are sweeping an imaginary vertical line across the plane containing the points or
segments.

To describe this technique, we’ll be using the 2019 US Open problem, “Cow Steeplechase
II”.

http://usaco.org/index.php?page=viewproblem2&cpid=943
In this problem, we are given some line segments and asked to find one line segment and

remove it such that the resulting segments form no intersections. It is guaranteed that this is
always possible.

First of all, let’s observe it is su�cient to find any two line segments that intersect. Once
we have done this, the solution is guaranteed to be one of these two segments. Then, out of
the two, the segment with multiple intersections is the answer (because removing any other
segment decreases the number of intersections by at most 1, and only removing the segment
with multiple intersections ensures there are no intersections).

If both segments have one intersection, that means the intersect with each other, so we
should return the one with the smallest index (as per the problem statement). Now, the
problem reduces to two parts: checking if two line segments intersect, and processing the line
segments using a line sweep.

Checking If Two Segments Intersect

To check if two line segments intersect, we will use a fact from algebra: if we have the
points A = (xa, ya), B = (xb, yb), and C = (xc, yc), then the (signed) area of 4ABC, denoted
[ABC], is (xb � xa)(yc � ya)� (xc � xa)(yb � ya). This can be derived from the cross product

of the vectors
�!
AB and

�!
AC.

The part that will help us is the fact that this area is signed, which means that [ABC] is

positive if A, B, and C occur in counterclockwise order,

negative if A, B, and C occur in clockwise order, and

zero if A, B, and C are collinear.

Then, the key observation is that two segments PQ and XY intersect if the two conditions
hold:

CHAPTER 14. ADDITIONAL SILVER TOPICS 69

• [XPQ] and [Y PQ] have di↵erent signs

• [PXY] and [QXY] have di↵erent signs

For example, in the figure below, [X1P1Q1] and [Q1X1Y1] are positive because their vertices
occur in counterclockwise order, and [Y1P1Q1] and [P1X1Y1] are negative because their vertices
occur in clockwise order. Therefore, we know that X1Y1 and P1Q1 intersect. Similarly, on
the right, we know that [P2X2Y2] and [Q2X2Y2] have vertices both going in clockwise order,
so their signed areas are the same, and therefore P2Q2 and X2Y2 don’t intersect.

P1 Q1

X1

Y1

P2 Q2

X2

Y2

If the two conditions hold and some of the signs are zero, then this means that the segments
intersect at their endpoints. If the problem does not count these as intersecting, then consider
zero to have the same sign as both positive and negative.

However, there is a special case. If the signs of all four areas are zero, then all four points
lie on a line. To check if they intersect in this case, we just check whether one point is
between the others. In particular, we check if P or Q is on XY or if X is on PQ. We don’t
need to check if Y is on PQ because if the segments do intersect, we will have two instances
of points on the other segments.

Here’s a full implementation:

struct Point

{

int x, y;

Point (int xst, int yst):

x(xst), y(yst)

{

}

};

int sign(Point A, Point B, Point C) {

int area = (B.x-A.x) * (C.y-A.y) - (C.x-A.x) * (B.y-A.y);

if (area > 0) return 1;

if (area < 0) return -1;

return 0;

}

bool between(Point P, Point X, Point Y) {

CHAPTER 14. ADDITIONAL SILVER TOPICS 70

return ((X.x <= P.x && P.x <= Y.x) || (Y.x <= P.x && P.x <= X.x))

&& ((X.y <= P.y && P.y <= Y.y) || (Y.y <= P.y && P.y <= X.y));

}

bool intersectQ(Point P, Point Q, Point X, Point Y) {

int signs[4] = {sign(P, X, Y), sign(Q, X, Y), sign(X, P, Q), sign(Y, P, Q)};

if (signs[0] == 0 && signs[1] == 0 && signs[2] == 0 && signs[3] == 0)

return between(P, X, Y) || between(Q, X, Y) || between(X, P, Q);

return signs[0] != signs[1] && signs[2] != sign[3];

}

Processing Line Segments

Let’s break apart the N line segments into 2N events, one for each start and end point.
We’ll store whether some event is a start point or an end point, and which start points
correspond to each end point.

Then, we process the endpoints in order of x coordinate from left to right, maintaining a
set of currently processed segments, which is sorted by y. When we hit an endpoint, we either
add or remove a segment from the set, depending on whether we start or end a segment.
Every time we add a segment, we check it for intersection with the segment above it and the
segment below it. In addition, every time we remove a segment, we check the segment above
it and the segment below it for intersection. Once we find an intersection, we are done.

14.3 Bitwise Operations and Subsets

Binary Representations of Integers

In programming, numbers are stored as binary representations. This means that a number
x is represented as

x =
nX

i=0

ai2
i
,

where the ais are either 0 or 1 and n = blog2 xc.
For example:

17 = 24 + 20 = 100012

Each digit in the binary representation, which is either 0 or 1, is called a bit.

Bitwise Operations

There are several binary operations on binary numbers called bitwise operations. These
operations are applied separately for each bit position. The common binary operations are
shown in table 14.1:

CHAPTER 14. ADDITIONAL SILVER TOPICS 71

Bit A Bit B A andB A orB A xorB

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Table 14.1: The outputs of bitwise operations on two bits

The AND operation (&) returns 1 if and only if both bits are 1.

19 & 27

1 0 0 1 1 = 19
AND 1 1 0 1 1 = 27
= 1 0 0 1 1 = 19

The OR operation (|) returns 1 if either bit is 1.

19 | 27
1 0 0 1 1 = 19

OR 1 1 0 1 1 = 27
= 1 1 0 1 1 = 27

The XOR operation (^) returns 1 if and only if exactly one of the bits is 1.

19 ^ 26
1 0 0 1 1 = 19

XOR 1 1 0 1 1 = 27
= 0 1 0 0 0 = 8

Finally, the left shift operator x << k multiplies x by 2k. Watch for overflow and use the
long long data type if necessary. For example:

Exercises

Calculate by converting the numbers to binary, applying the bit operations, and then
converting back to decimal numbers:

(a) 19 & 34 Answer: 2

(b) 14 | 29 Answer: 31

(c) 10 ^ 19 Answer: 25

(d) 3 << 5 Answer: 96

CHAPTER 14. ADDITIONAL SILVER TOPICS 72

Generating Subsets

Occasionally in a problem we’ll want to iterate through every possible subset of a given
set, either to find a subset that satisfies some condition, or to find the number of subsets that
satisfy some condition. Also, some problems might ask you to find the number of partitions
of a set into 2 groups that satisfy a certain condition. In this case, we will iterate through all
possible subsets, and check each subset for validity (first adding the non-selected elements to
the second subset if necessary).

In a set of N elements, there are 2N possible subsets, because for each of the N elements,
there are two choices: either in the subset, or not in the subset. Subset problems usually
require a time complexity of O(N · 2N), because each subset has an average of O(N) elements.

Now, let’s look at how we can generate the subsets. We can represent subsets as binary
numbers from 0 to 2N � 1. Then, each bit represents whether or not a certain element is in
the subset. Let’s look at an example set of a, b, c.

number binary subset

0 000 { }
1 001 {a}
2 010 {b}
3 011 {a, b}
4 100 {c}
5 101 {a, c}
6 110 {b, c}
7 111 {a, b, c}

Algorithm: The algorithm for generating all subsets of a given input array

Function generateSubsets
Input :An array arr, and its length n

for i 0 to 2n � 1 do

Declare list
for j = 0 to n-1 do

if the bit in the binary representation of i corresponding to 2j is 1 then

Add arr[j] to the list
end

end

Process the list
end

In the following code, our original set is represented by the array arr[] with length n.

int ans = 0;

for(int i = 0; i < (1<<n); i++){

// this loop iterates through the 2^n subsets, one by one.

// 1 << n is a shortcut for 2^n

CHAPTER 14. ADDITIONAL SILVER TOPICS 73

vector<int> v;

// we create a new list for each subset and add

// the elements to it

for(int j = 0; j < n; j++){

if((i & (1 << j)) > 0){

// (1 << j) is the number where only the bit representing 2^j is 1.

v.push_back(j); // if the respective bit of i is 1,

// add that element to the list

}

}

if(valid(list)){

// code is not included here, but this method will vary depending on the

// problem to check if a certain subset is valid

// and increments the answer counter if so.

ans++;

}

}

14.4 Ad-hoc

The silver division also often has ad hoc problems. They primarily rely on non-standard
algorithmic thinking and problem solving ability. You develop these skills by solving problems;
thus, we don’t have much content to teach you about ad hoc problems, but we provide a
selection of problems at the end of the chapter for your practice.

14.5 Problems

Two Pointers

1. CSES Problem Set Task 1640: Sum of Two Values
https://cses.fi/problemset/task/1640

2. CSES Problem Set Task 1643: Maximum Subarray Sum
https://cses.fi/problemset/task/1643

Line Sweep

3. USACO US Open 2019 Silver Problem 2: Cow Steeplechase II
http://usaco.org/index.php?page=viewproblem2&cpid=943

Subsets

4. (Subsets) CSES Problem Set Task 1623: Apple Division
https://cses.fi/problemset/task/1623

CHAPTER 14. ADDITIONAL SILVER TOPICS 74

Ad hoc problems

5. USACO February 2016 Silver Problem 1: Circular Barn
http://usaco.org/index.php?page=viewproblem2&cpid=618

6. USACO US Open 2019 Silver Problem 1: Left Out
http://www.usaco.org/index.php?page=viewproblem2&cpid=942

7. USACO February 2019 Silver Problem 1: Sleepy Cow Herding
http://www.usaco.org/index.php?page=viewproblem2&cpid=918

8. USACO January 2017 Silver Problem 3: Secret Cow Code
http://www.usaco.org/index.php?page=viewproblem2&cpid=692

9. USACO January 2020 Silver Problem 1: Berry Picking
http://www.usaco.org/index.php?page=viewproblem2&cpid=990

10. USACO December 2019 Silver Problem 2: Meetings
http://www.usaco.org/index.php?page=viewproblem2&cpid=967
(Warning: extremely di�cult)

Part IV

Problem Set

75

Chapter 15

Parting Shots

You improve at competitive programming primarily by doing problems, so we leave you
with an extensive selection of CodeForces problems for your practice. This consists of five
problem sets of ten problems each, increasing in di�culty. The problems mostly use topics
covered in the book, but may require some ingenuity to find the solution. If you get stuck,
you can search for the editorial. Best of luck!

Set 1

1. https://codeforces.com/problemset/problem/1227/B

2. https://codeforces.com/problemset/problem/1196/B

3. https://codeforces.com/problemset/problem/1195/B

4. https://codeforces.com/problemset/problem/1294/B

5. https://codeforces.com/problemset/problem/1288/B

6. https://codeforces.com/problemset/problem/1293/A

7. https://codeforces.com/problemset/problem/1213/B

8. https://codeforces.com/problemset/problem/1207/B

9. https://codeforces.com/problemset/problem/1324/B

10. https://codeforces.com/problemset/problem/1327/A

Set 2

1. https://codeforces.com/problemset/problem/1182/B

2. https://codeforces.com/problemset/problem/1183/D

3. https://codeforces.com/problemset/problem/1183/C

4. https://codeforces.com/problemset/problem/1133/C

76

CHAPTER 15. PARTING SHOTS 77

5. https://codeforces.com/problemset/problem/1249/B2

6. https://codeforces.com/problemset/problem/1194/B

7. https://codeforces.com/problemset/problem/1271/C

8. https://codeforces.com/problemset/problem/1326/C

9. https://codeforces.com/problemset/problem/1294/C

10. https://codeforces.com/problemset/problem/1272/B

Set 3

1. https://codeforces.com/problemset/problem/1169/B

2. https://codeforces.com/problemset/problem/1102/D

3. https://codeforces.com/problemset/problem/978/F

4. https://codeforces.com/problemset/problem/1196/C

5. https://codeforces.com/problemset/problem/1154/D

6. https://codeforces.com/problemset/problem/1272/D

7. https://codeforces.com/problemset/problem/1304/C

8. https://codeforces.com/problemset/problem/1296/C

9. https://codeforces.com/contest/1263/problem/D

10. https://codeforces.com/contest/1339/problem/C

Set 4

1. https://codeforces.com/problemset/problem/1281/B

2. https://codeforces.com/problemset/problem/1196/D2

3. https://codeforces.com/problemset/problem/1165/D

4. https://codeforces.com/problemset/problem/1238/C

5. https://codeforces.com/problemset/problem/1234/D

6. https://codeforces.com/problemset/problem/1198/B

7. https://codeforces.com/problemset/problem/1198/A

8. https://codeforces.com/problemset/problem/1077/D

9. https://codeforces.com/problemset/problem/1303/C

10. https://codeforces.com/problemset/problem/1098/A

CHAPTER 15. PARTING SHOTS 78

Set 5

1. https://codeforces.com/problemset/problem/1185/D

2. https://codeforces.com/problemset/problem/1195/D2

3. https://codeforces.com/problemset/problem/1154/E

4. https://codeforces.com/contest/1195/problem/C

5. https://codeforces.com/problemset/problem/1196/E

6. https://codeforces.com/problemset/problem/1328/D

7. https://codeforces.com/problemset/problem/1253/D

8. https://codeforces.com/problemset/problem/1157/E

9. https://codeforces.com/problemset/problem/1185/C2

10. https://codeforces.com/problemset/problem/1209/D

