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Abstract

This dissertation studies the convergence of an adaptive method of gra-
dient descent called Hypergradient Descent. We review some methods of
gradient descent and their proofs of convergence for smooth and strongly
convex functions. We show that the proof of convergence of Adam, a
modern popular method of gradient descent, is incomplete. We derive
a multiplicative rule of Hypergradient Descent and justify some choices
made by, among other things, proposing a method of gradient descent and
proving its convergence. The core of the dissertation is the convergence
analysis of an instance of Hypergradient Descent. We prove convergence
for quadratic functions and for a simple family of unidimensional func-
tions. We also show that the method diverges if some properties are not
assumed. We have implemented the algorithms reviewed in this disserta-
tion and some Hypergradient Descent variants and we have applied them
to two large scale optimization problems. We compare the executions
and conclude that Hypergradient Descent is a good method in practice,
specially because it does not need tuning of the learning rate.
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Chapter 1

Introduction

This dissertation is about a family of adaptive algorithms for performing large
scale optimization, that we call Hypergradient Descent. These algorithms belong to
the category of the gradient descent methods. Almost every algorithm that belongs
to this category needs a parameter as input, called learning rate, and the perfor-
mance of the optimization process depends heavily on the value of this parameter.
Finding an optimal value for the learning rate is often essential and requires a lot
of computational, and sometimes human, effort. The class of algorithms we treat in
this dissertation are adaptive in the sense that they adapt the value of the learning
rate in order to remove the dependency of the optimization process on the initial
input. Moreover, the adaptation occurs during the optimization process, exploiting
the geometry of the function to obtain an approximation to the best value of the
learning rate at each moment. This reduces the time that is needed for solving hard
optimization problems.

We begin chapter 2 introducing the context of our problem: unconstrained opti-
mization over convex functions with some restrictions. After the context has been
presented we describe three important methods of gradient descent, namely Stochas-
tic Gradient Descent, Nesterov’s Accelerated Gradient Descent and Adam. The first
two of them are two classical and very important algorithms in the field. We give
proofs and rates of convergence for them. The third one is a very modern method
that is widely used nowadays in the process of training neural networks. There is a
convergence analysis under some quite restrictive assumptions in the original paper
where Adam appeared for the first time. We have found that the proof is flawed and
we will explain the error at the end of chapter 2. This only implies that the proof is
incomplete, we do not claim the algorithm does not converge.
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Chapter 3 is the core of the dissertation. In it, we present the derivation of
Hypergradient Descent based in [2] and [3]; we argue that the rules presented in
the latter are not necessarily optimal and we derive a different set of rules. Then
we proceed with the exposition of the main results of this dissertation, that is, we
analyse the convergence of a particular instance of Hypergradient Descent. We prove
that the algorithm does not converge in a more general context than the one we
assume. We also prove convergence for quadratic functions and for a particular set
of unidimensional convex functions. This proof sheds some light on the difficulty of
the problem for more general functions. It is left for future work to prove or refute
the convergence of the method for general L-smooth (2.1.2) and µ-strongly convex
(2.1.3) functions.

Finally, in chapter 4 we explain an implementation we have done of some of the
algorithms presented in this dissertation and we compare some Hypergradient Descent
algorithms with the rest in a couple of large scale optimization problems that arise
often in Machine Learning. We conclude that Hypergradient Descent algorithms are
good at adapting the learning rate, removing the need to feed the algorithm with an
optimal one and they are as good as, in fact slightly better than, the other algorithms.

1.1 Maximum Likelihood Estimation in Linear Re-

gression

We start with a motivating example of a classical problem in Statistics and in Ma-
chine Learning that requires optimization of quadratic functions: Linear Regression.

Suppose we have that for each x ∈ Rn there is a value y ∈ R that we will want to
predict and that depends on x through a linear model with noise. In other words

y = w0 + wTx+ ε

where w0 ∈ R, w ∈ Rn. Here ε ∼ N(0, σ2) is a term that models the noise and
encapsulates irregularities of some process that in practice does not always really
behave linearly. We will train the model using some observations {(xi, yi)}ki=1 that
are given. The aim is to find the best w0, w that better fit the data in the sense that
we explain now.

The points {xi}ki=0 are usually obtained from some distribution over Rn. However,
in this example we only focus on the relationship between xi and yi. We want to
find parameters w0, w that maximize the probability of the observed {yi}ki=0 given
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{xi}ki=0, w0, w, σ. In order to simplify the notation we will relabel the points so xi ∈
{1}×Rn and w ∈ Rn+1 contains w0 as the first coordinate. We will make the common
assumption that the noise in each sample is independent from the others. Therefore
we want to find w ∈ Rn+1 to maximize:

p(y1, . . . , yk | x1, . . . , xk, w, σ) =
k∏
i=1

p(yi | xi, w, σ)

=
k∏
i=1

1√
2πσ2

exp

(
−(yi − wTxi)2

2σ2

)

=

(
1

2πσ2

)k/2
exp

(
−

k∑
i=1

(yi − wTxi)2

2σ2

)
.

Since we only want to find the argument w that maximizes this expression, we
can get rid off the first factor, that is constant. As it is usual, we can then take
logarithms and maximize the resulting expression, since the logarithm is a monotone
increasing function. Finally, we can remove the 1

2σ2 from the expression and find w
so we maximize −

∑k
i=1(yi −wTxi)2 or equivalently, as it is usually written, we want

to find:

w∗ = argminw∈Rn+1

k∑
i=0

(yi − wTxi)2 (1.1)

This problem is known as least squares. Most of the tasks in training Machine
Learning models, including neural networks, require a similar optimization task, in
which we have to minimize a function depending on some training data over Rn. If
the model is suitable for the problem at hand, finding the best parameters will let us
predict quite precisely future outputs based on inputs. In the case of linear regression,
the prediction is y′ = w0 + wTx′, for a new input x′.

Training a model requires a lot of computational effort and in practice, in an at-
tempt to speed-up the optimization algorithms used for training, it is common to use
heuristics for which there are not even theoretical guarantees of finding an approxi-
mation of the problem solution. Hypergradient Descent is one of these heuristics. In
chapter 3 we will get a better understanding of Hypergradient Descent and in partic-
ular we will be able to prove that an instance of Hypergradient Descent converges to
the minimum for the problem of least squares.

It is common when working with involved optimization methods to begin by
analysing their performance on quadratic functions, as we have done in this dis-
sertation. See for example [23].
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We would like to remark that there is a closed form solution for the least squares
problem. However in large scale optimization problems, i.e. for large n and large k,
gradient descent methods are the only feasible computational procedure.
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Chapter 2

Gradient descent methods

2.1 Convexity and gradient descent

The main results of this dissertation are on Convex Optimization. We start with
the definitions of convex functions and convex sets in Rn.

Definition 2.1.1. A set C ⊂ Rn is convex if it contains all the points in the segment
formed by any two of its points. Formally, for all x, y ∈ C and for all λ ∈ [0, 1] we
have

(1− λ)x+ λy ∈ C.

A function f : C → R is convex if its graph is below its chords. Formally, for all
x, y ∈ C and for all λ ∈ [0, 1] it is

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

A central research in Optimization, Machine Learning and many other areas of
Computer Science is the study of fast iterative methods for approximately finding
the minimum of convex functions. The most widely used methods of optimization for
large scale programs are first-order iterative methods, that is, methods that iteratively
optimize a function by using only evaluations of the function and its gradient. These
are convenient methods for large scale programs due to their memory and time efficient
iterations. They are often highly parallelizable as well.

The convex problems we have mentioned take the form

argminx∈Cf(x) (2.1)

for a convex function f : Rn → R and a closed convex set C ⊆ Rn, which is known
as the constraint set of the problem. First order methods can be modelled in a black
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box fashion. These first order black box algorithms use an oracle that given a point
x ∈ C answers with the pair (f(x),∇f(x)). The complexity of a first order method is
usually measured, given ε > 0 and a norm ‖·‖, in the number of times it is necessary
to use the oracle to obtain a point x that approximates a minimizer of the problem
x∗ by an error of ε, i.e. a point x such that ‖x− x∗‖ < ε.

Almost every first-order iterative method with provable convergence guarantees
uses at least one of two fundamental algorithmic ideas: gradient descent and mirror
descent. Gradient descent takes a primal approach by finding points that decrease the
objective at every step, generally moving towards directions opposing the gradient,
whereas mirror descent follows a complementary dual approach by finding points
whose evaluations are no further than a bound from the optimum and it iteratively
improves the bound. We will focus on gradient descent methods for unconstrained
optimization.

We will make some assumptions on f that are usual in this context. In particular,
we will assume that the first derivative of f is L-Lipschitz continuous. Such functions
are called L-smooth. Algebraically, this property is the following:

Definition 2.1.2. A differentiable function is said to be L-smooth if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2.

Almost every existent gradient descent method assumes that the objective func-
tion is smooth. There is a huge literature on gradient descent methods and their
rates of convergence in the case in which the only assumptions on the objective func-
tion are convexity and L-smoothness. However, in this dissertation we will adopt a
more particular framework. The one we have chosen to work with is usual in Ma-
chine Learning or any other discipline that requires solving large scale optimization
problems with real data whose behaviour is not very erratic. We will work with
functions that are also µ-strongly convex (see definition below). Note that if we add
a quadratic regularizer to a smooth function, as it is commonly done in Machine
Learning, we guarantee that the resultant function is strongly convex and smooth.
So this condition is not very restrictive in practice. For convex functions that are
only assumed to be L-smooth, the rates of convergence that can be guaranteed are
immensely much slower than those in our framework. In particular, regular gradient
descent needs O(1/ε) steps to obtain a solution with an error of at most ε. There is
a lower bound of O(1/

√
ε) on the number of queries to the oracle that are needed to

obtain a solution that approximates a minimizer of a general L-smooth function with
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an error of at least ε. There are algorithms whose complexity in the worst case are
precisely O(1/

√
ε). Nesterov’s Accelerated Gradient Descent [16], of which we will

talk later, Linear Coupling [1] and Geometric Gradient Descent [5] are some exam-
ples. For most methods, at least for the deterministic ones, the rates of convergence
in our framework will only need a logarithmic number of steps with respect to 1/ε. In
the literature, this rate of convergence is called linear, in the sense that the number
of queries to the oracle needed is linear with respect to the size of the input ε. We
will prove in this section the rates of convergence for some of these methods.

Definition 2.1.3. A function f is µ-strongly convex, for µ > 0, if it is differentiable
and satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2.

Note that in the case in which f is a twice differentiable function, the assumption
of L-smoothness and µ-strong convexity is equivalent to say that if λ is an eigenvalue
of the Hessian of f then 0 < µ ≤ λ ≤ L.

Recently, in some contexts the hypothesis of strong convexity has been replaced by
a weaker hypothesis: the Polyak-Łojasiewicz (PL) inequality. It is weaker in the sense
that an L-smooth function that is µ-strongly convex, satisfies the PL inequality with
parameter 4µ2

L
. Several classical methods and some recent ones have been analysed

[13] assuming the PL inequality instead of strong convexity. Surprisingly, the proofs
are often simpler; we will make use of it to simplify our exposition.

Definition 2.1.4 (Polyak-Łojasiewicz inequality). Assume f : Rn → R has a non
empty solution set C∗ for the problem (2.1) and denote by f ∗ the optimal function
value. A function satisfies the PL inequality if the following holds for some µ > 0,

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f ∗),

for all x ∈ Rn.

There are key qualitative differences between µ-strong convexity and the PL in-
equality. Strong convexity implies that the minimizer is unique. This is not true
for functions that satisfy the PL inequality. In fact, functions that satisfy the PL
inequality are not necessarily convex.

The following proof is an adaptation of [13] (Appendix A). See the original source
for more general results.

Proposition 2.1.5. Let f be an L-smooth, µ-strongly convex function. Then f sat-
isfies the PL inequality with constant µ2

4L
.
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Proof. Let x∗ be the minimizer of f . By the definition of µ-strong convexity the
following holds:

f ∗ ≥ f(x) + 〈∇f(x), x∗ − x〉+
µ

2
‖x∗ − x‖2.

Using f ∗ − f(x) ≤ 0 and rearranging we obtain

〈∇f(x), x− x∗〉 ≥ µ

2
‖x∗ − x‖2.

We can bound the left hand side by using Cauchy-Schwartz, divide both sides by
‖x∗ − x‖ and we get

‖∇f(x)‖ ≥ µ

2
‖x∗ − x‖.

Now using the definition of L-smoothness with x∗ and x, taking into account that
∇f(x∗) = 0 and using the previous inequality we have the inequality

f(x) ≤ f ∗ + 〈∇f(x∗), x− x∗〉+
L

2
‖x∗ − x‖2 ≤ f ∗ +

2L

µ2
‖∇f(x)‖2,

from which we finally obtain the PL inequality.

1

2
‖∇f(x)‖2 ≥ µ2

4L
(f(x)− f ∗).

We will start with the most simple method of gradient descent, which is usually
called just gradient descent. This algorithm starts with a point x0 ∈ Rn and it
iteratively moves against the direction of the gradient at that point a distance that is
proportional to the norm of the gradient. This will guarantee monotone improvement
and convergence. The following proof is taken from [13].

Theorem 2.1.6. Let f : Rn → R L-smooth and assume it satisfies the PL inequality
with parameter µ. Assume the solution set of problem (2.1) is non empty and let f ∗

be the minimum value of f . The gradient descent algorithm with α = 1
L
, i.e., with

update rule

xt+1 = xt − α∇f(xt), (2.2)

converges and it has the following linear convergence rate

f(xt)− f ∗ ≤
(

1− µ

L

)t
(f(x0)− f ∗).

8



Proof. By using the smoothness condition with xt+1 and xt and using the update rule
we obtain

f(xt+1)− f(xt) ≤ −
1

2L
‖∇f(xt)‖2.

Using the PL inequality, the latter is bounded by −µ
L

(f(xt)− f ∗). Rearranging and
subtracting f ∗ from both sides we get

f(xt+1)− f ∗ ≤
(

1− µ

L

)
(f(xt)− f ∗).

The result follows applying this last inequality recursively.

The rest of the section is devoted to the exposition of other important gradient
descent methods and their convergence proofs. We have implemented these methods
and we show in the last section the results of several experiments optimizing some
common functions that arise in Machine Learning. We also implemented some of
them using the Hypergradient Descent approach. The comparison between these
experiments will give an idea of how the method behaves in practice. We first present
Stochastic Gradient Descent. The proof of its convergence is an adaptation of the one
that appears in [13]. We note that the proof had a small error that we have corrected,
the original version did not take expectations with respect to the right variables. After
this, we present one of the most influential methods in the field, and the first one to
achieve an optimal rate of convergence for L-smooth functions: Nesterov’s Accelerated
Gradient Descent. We proof convergence in the case that the function is L-smooth
and µ-strongly convex. Nesterov’s is a method of theoretical importance that gives
ideas of how these methods usually work and how their proofs of convergence are done.
But also, it serves as an example of a method for which Hypergradient Descent cannot
be applied, at least not directly. The proof of convergence is an adaptation of the one
in [5]. Finally, we present Adam, a modern (2015) popular adaptive method that is
used nowadays in practice to perform large scale optimization. The original paper [14]
contains an appendix with a proof that under some very restricted assumptions shows
that if the method does not diverge, then it converges and its rate is optimal. It is a
surprise that such a popular method does not have a strong theoretical analysis that
at least guarantees convergence. In addition, we have found an error in this proof. In
the subsection devoted to Adam, we will present the method and we will follow an
adaptation of the proof to the point where the error occurs in order to explain it.
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2.2 Stochastic Gradient Descent

Stochastic gradient methods apply to the stochastic optimization problem

argminx∈Rnf(x) = argminx∈RnEi∈I [fi(x)], (2.3)

The main application of these methods is the optimization of finite sums

f(x) =
1

m

m∑
i=1

fi(x).

In Machine Learning, fi usually represents the fit of a model on an individual training
example. These methods are suitable when the number of training examples is so
big that the computation of the gradient of f in each iteration requires too many
resources. The update rule of stochastic gradient methods is

xt+1 = xt − αt∇f̃t(xt) (2.4)

where ∇f̃t(xt) is an randomized estimation of ∇f(xt) such that E[∇f̃t(xt)] = ∇f(xt).
In the case above in which f is a sum of functions we can let ∇f̃t(xt) be ∇fit(xt),
where 1 ≤ it ≤ m is chosen uniformly at random. However, it is more common to
estimate the gradient with the so called minibatches. These consist of taking a set Jt
of samples of fixed size uniformly at random and define ∇f̃t := 1

j

∑
j∈J ∇fj(xt). The

next theorem will prove convergence of this method. We will use ∇f̃t(xt) = ∇fit(xt)
only to simplify the notation. Note that the proof is the same for any ∇f̃t(xt) that
satisfies E[∇f̃t(xt)] = ∇f(xt).

Theorem 2.2.1. In the context of problem (2.3), assume that each fi is L-smooth, f
has a non-empty solution set, f satisfies the PL inequality and E[‖∇fit(xt)2‖] ≤ D2

for all xt and some D. If we iteratively use the update rule (2.4) with αt = 2t+1
2µ(t+1)2

,
then we get a convergence rate of

E[f(xt)− f ∗] ≤
LD2

2tµ2
.

Proof. By using the update rule in the L-smoothness inequality we obtain

f(xt+1) ≤ f(xt)− αt 〈∇f(xt),∇fit(xt)〉+
Lα2

t

2
‖∇fit(xt)‖

2.

Taking expectations with respect to It := {i0, . . . , it} we get

EIt [f(xt+1)] ≤ EIt−1

[
f(xt)− αt 〈∇f(xt),Eit [∇fit(xt)]〉+

Lα2
t

2
Eit [‖∇fit(xt)‖

2]

]
≤ EIt−1

[
f(xt)− αt‖∇f(xt)‖2

]
+
LD2α2

t

2

≤ EIt−1 [f(xt)− 2µαt(f(xt)− f ∗)] +
LD2α2

t

2
.
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In the second inequality we have used Eit [∇fit(xt)] = ∇f(xt) and Eit [‖∇fit(xt)‖
2] ≤

D2. We have used the PL inequality in the third line. Subtracting f ∗ from both sides
gives us:

EIt [f(xt+1)− f ∗] ≤ (1− 2µαt)EIt−1 [f(xt)− f ∗] +
LD2α2

t

2
. (2.5)

Substituting αt = 2t+1
2µ(t+1)2

we obtain

EIt [f(xt+1)− f ∗] ≤
t2

(t+ 1)2
EIt−1 [(f(xt)− f ∗] +

LD2(2t+ 1)2

8µ2(t+ 1)4
.

Multiplying both sides by (t+ 1)2 it is

(t+ 1)2EIt [f(xt+1)− f ∗]− t2EIt−1 [f(xt)− f ∗] ≤
LD2(2t+ 1)2

8µ2(t+ 1)2
≤ LD2

2µ2
.

Adding up this inequality from t = 0 to t we obtain

(t+ 1)2EIt [f(xt+1)− f ∗] ≤
LD2(t+ 1)

2µ2
,

where we use by convention that I−1 = ∅.

Theorem 2.2.2. Under the conditions of the previous theorem, using a constant
learning rate α < 1

2µ
we get a convergence rate of

E[f(xt)− f ∗] ≤ (1− 2µα)k(f(x0)− f ∗) +
LD2α

4µ
.

Proof. Applying inequality (2.5), that was proved for the previous theorem, recur-
sively with αk = α we obtain

E[f(xt+1)− f ∗] ≤ (1− 2αµ)t(f(x0)− f ∗)+
LD2α2

2

t∑
i=0

(1− 2αµ)i

≤ (1− 2αµ)t(f(x0)− f ∗)+
LD2α2

2

∞∑
i=0

(1− 2αµ)i

= (1− 2αµ)t(f(x0)− f ∗)+
LD2α

4µ
,

where in the last line we have used α < 1
2µ

and the limit of the geometric series.

Note that in practice if we don’t need more than a fixed accuracy then the result
with a constant step-size is perhaps the more useful strategy.
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2.3 Nesterov’s Accelerated Gradient Descent

As we said previously, this algorithm was the first algorithm to achieve optimal
convergence rate in the case of optimization of L-smooth functions. It is surprising
that it does not move from one iteration to the next one by following the exact
opposite direction of the gradient. Instead, it uses a strategy to combine the gradient
with the direction of previous updates.

The algorithm for a function f : Rn → R that is L-smooth and µ-strongly convex
is the following. We will denote by κ the condition number, i.e. L

µ
.

Algorithm 2.3.1. (Nesterov’s Accelerated Gradient Descent)

1 input: α: learning rate
2 input: f
3 input: x0: Initial parameter vector
4 t← 0

5 y0 ← x0

6 do
7 t← t+ 1

8 xt = yt−1 − α∇f(yt−1)

9 yt = xt
(
1 + (

√
κ− 1)/

(√
κ+ 1

))
−
(√
κ− 1

)
/
(√
κ+ 1

)
xt−1

10 until convergence

Theorem 2.3.2. Let f be L-smooth and µ-strongly convex. Then Nesterov’s accel-
erated gradient descent with α = 1

L
satisfies

f(xt)− f(x∗) ≤ µ+ L

2
‖x0 − x∗‖2 exp

(
− t√

κ

)
.

Proof. We define µ-strongly convex quadratic functions Φt, t ≥ 0 by induction as
follows:

Φ0(x) = f(y0) +
µ

2
‖x− y0‖2,

Φt+1(x) =

(
1− 1√

κ

)
Φt(x)

+
1√
κ

(
f(yt) +∇f(yt)

>(x− yt) +
µ

2
‖x− yt‖2

)
.

(2.6)

Intuitively Φt becomes a finer and finer approximation to f in the following sense:

Φt(x) ≤ f(x) +

(
1− 1√

κ

)t
(Φ0(x)− f(x)). (2.7)

Let’s prove it by induction. For t = 0, it is Φ0(x) ≤ Φ0(x). For the inductive step,
we substitute Φt by its definition and using f(x) ≥ f(yt)+∇f(yt)

>(x−yt)+µ
2
‖x− yt‖2

12



it suffices to prove(
1− 1√

κ

)
Φt−1(x) +

1√
κ
f(x) ≤ f(x) +

(
1− 1√

κ

)t
(Φ0(x)− f(x))

which is trivial by the induction hypothesis.
Let vt be the minimizer of Φt, i.e. argminx∈RnΦt(x). Now we will prove the

following by induction:

f(xt) ≤ Φt(vt). (2.8)

The base case t = 0 is trivial since x0 = y0. Using the definition of xt+1, L-smoothness,
convexity, and the induction hypothesis, we obtain

f(xt+1) ≤ f(yt)−
1

2L
‖∇f(yt)‖2

=

(
1− 1√

κ

)
f(xt) +

(
1− 1√

κ

)
(f(yt)− f(xt))

+
1√
κ
f(yt)−

1

2L
‖∇f(yt)‖2

≤
(

1− 1√
κ

)
Φt(vt) +

(
1− 1√

κ

)
∇f(yt)

>(yt − xt)

+
1√
κ
f(yt)−

1

2L
‖∇f(yt)‖2.

We claim that the last term of the previous inequality is at most Φt+1(vt+1), which
suffices to conclude the proof of the theorem. In order to prove the claim it will be
useful to obtain a simpler form of Φt(x). First note that ∇2Φt(x) = µIn. It is true
for t = 0 and assuming it is true for t− 1 we have

∇2Φt(x) =

(
1− 1√

κ

)
∇2Φt−1(x) +

1√
κ
µIn = µIn

Therefore:
Φt(x) = Φt(vt) +

µ

2
‖x− vt‖2.

Now note that by differentiating (2.6), the definition of Φt, and using the above form
we have

∇Φt+1(x) = µ

(
1− 1√

κ

)
(x− vt) +

1√
κ
∇f(yt) +

µ√
κ

(x− yt).

Using ∇Φt+1(vt+1) = 0, we can rearrange the equation above to obtain an expres-
sion for vt+1:

vt+1 =

(
1− 1√

κ

)
vt +

1√
κ
yt −

1

µ
√
κ
∇f(yt). (2.9)
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By evaluating Φt+1 at yt, using the form of Φt and Φt+1, as well as their original
definitions we obtain the following:

Φt+1(vt+1) +
µ

2
‖yt − vt+1‖2

=

(
1− 1√

κ

)
Φt(vt) +

µ

2

(
1− 1√

κ

)
‖yt − vt‖2 +

1√
κ
f(yt).

(2.10)

Using (2.9) we get:

‖yt − vt+1‖2 = 〈yt − vt+1, yt − vt+1〉

=

(
1− 1√

κ

)2

‖yt − vt‖2 +
1

µ2κ
‖∇f(yt)‖2 −

2

µ
√
κ

(
1− 1√

κ

)
∇f(yt)

>(vt − yt),

which combined with (2.10) gives us

Φt+1(vt+1) =

(
1− 1√

κ

)
Φt(vt) +

1√
κ

(
1− 1√

κ

)
∇f(yt)

>(vt − yt) +
1√
κ
f(yt)

− 1

2L
‖∇f(yt)‖2 +

µ

2
√
κ

(
1− 1√

κ

)
‖yt − vt‖2.

Note that our claim is true if vt − yt =
√
κ(yt − xt), since we have that Φt+1(vt+1) is

equal to what we want to bound plus the last summand, which is positive. We will
prove the latter by induction. By definition of yt+1 we have

(yt+1 − xt+1)(
√
κ+ 1) = (

√
κ− 1)xt+1 − (

√
κ− 1)xt ⇔

√
κ(yt+1 − xt+1) =

√
κxt+1 −

(√
κ− 1

)
xt − yt+1

Using the definition of xt+1 the latter is equal to

√
κyt −

√
κ

L
∇f(yt)−

(√
κ− 1

)
xt − yt+1 = − yt√

κ
+

√
κ− 1√
κ

vt −
µ√
κ
∇f(yt)− yt+1

= vt+1 − yt+1

We have used the induction hypothesis in the first equality and the definition of vt+1

in the second one.
Finally, we can combine (2.7) and (2.8) to prove the theorem:

f(xt)− f(x∗) ≤ Φt(x
∗)− f(x∗)

≤
(

1− 1√
κ

)t
(Φ0(x

∗)− f(x∗))

=

(
1− 1√

κ

)t (µ
2
‖x0 − x∗‖2 + f(x0)− f(x∗)

)
≤ µ+ L

2
‖x0 − x∗‖2

(
1− 1√

κ

)t
14



In the last inequality we have used f(x0) − f(x∗) ≤ L
2
‖x0 − x∗‖2, which is true by

L-smoothness.

We will see later that Nesterov’s Accelerated Gradient Descent is a method that is
not compatible with the framework of Hypergradient Descent. We will also compare
the execution of this algorithm with respect to others and their Hypergradient variants
in the last section.

2.4 Adam

The original theoretical framework in which Adam was presented is online convex
optimization. The problem of online convex optimization can be formulated as a
repeated game between a player and an adversary. At round t, the player chooses an
action xt from some convex subset C of Rn, and then the adversary chooses a convex
loss function ft. The player aims to ensure that the total loss,

∑T
t=1 ft(xt) is not much

greater than the smallest total loss minx∈C
∑T

t=1 ft(x), where in this case the action
is fixed for every t. The difference between the total loss and its optimal value for a
fixed action is known as the regret, which we denote by RT .

Zinkevich [25] showed that any algorithm incurs a regret that grows at least as√
T , if ft are arbitrary convex functions. He also gave an algorithm that achieves

this optimal complexity. It was shown later [11] that if every ft is µ-strongly convex,
then it is possible for the regret to grow as log(T ), but the algorithm must know
in advance the value of µ. In [12], the authors present an adaptive algorithm that
achieves a regret of log(T ) if the functions are µ-strongly convex, for some µ and

√
T

otherwise without the need of knowing the parameters in advance.
We now present Adam, an adaptive gradient descent method that has gained pop-

ularity as an optimizer for gradient descent among the machine learning community.
It is adaptive in the sense that the distances and directions between updates are
adapted according to a heuristic that tries to learn the geometry, at least locally, of
the function that is being optimized. As we mentioned before, there is no strong
theoretical analysis of this algorithm. The only one we are aware of is the one that
appears in the original paper of Adam [14]. They present a proof of convergence
under some very restrictive assumptions, like non divergence. We have found that
the proof is flawed. We will follow the proof in order to explain the error.
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In the framework of online convex optimization, we will have an oracle that at step
t returns the pair (ft(x),∇ft(x)), given an input x. We will assume the functions ft are
convex differentiable functions. In practice we usually have a function f : Rn → R and
the randomness comes from the evaluation of this deterministic function at random
subsamples or minibatches or arises from inherent function noise.

The algorithm is the following:

Algorithm 2.4.1. (Adam)

1 input: α: learning rate
2 input: β1, β2 ∈ [0, 1)

3 input: ε: a small value > 0 so last step is always well defined
4 input: f : Stochastic objective
5 input: x0: Initial parameter vector
6 m0 ← 0

7 v0 ← 0

8 t← 0

9 while xt not converged do
10 t← t+ 1

11 compute ∇ft−1(xt−1) //We denote ∇ft−1(xt−1)i the ith component of ∇ft−1(xt−1)

12 for i in 1..n do
13 mt,i ← β1mt−1,i + (1− β1)∇ft−1(xt−1)i

14 vt,i ← β2vt−1,i + (1− β2)∇ft−1(xt−1)2i
15 m̂t,i ← mt,i/(1− βt1)
16 v̂t,i ← vt,i/(1− βt2)
17 xt,i ← xt−1,i − αtm̂t,i/(

√
v̂t,i + ε) //xt,i is the ith component of xt

18 end for
19 end while
20 return xt

We will denote the ith component of ∇ft(xt) by ∇ft(xt)i. In order to simplify the
notation we will denote by gt,i the vector (∇f1(x1)i,∇f2(x2)i, . . . ,∇ft(xt)i). If we
use the norm ‖·‖ with no subindex we will be referring to the `2 norm. We will work
with a different learning rate at each step. Namely the learning rate at step t, given
α, will be αt := α/

√
t.

In the following, we will go through the proof of convergence originally proposed
in [14]. The paper presents two lemmas before the final theorem. We identify an error
in each of the two lemmas and one more in the proof of the theorem. The following
is one of the two lemmas.

Claim 2.4.1. Let β1, β2 ∈ [0, 1) such that γ := β2
1/
√
β2 < 1. Assume ‖∇ft(xt)‖∞ ≤

G∞. Then
T∑
t=1

m̂2
t,i√
tv̂t,i
≤ 2G∞‖gT,i‖

(1− γ)2
√

1− β2
.
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If we unwrap the definition of mt and vt we obtain that it is equal to

mt = (1− β1)
t∑

j=1

βt−j1 ∇fj(xj), vt = (1− β2)
t∑

j=1

βt−j2 ∇fj(xj)2.

Therefore

m̂2
t,i√
tv̂t,i

=

√
1− βt2

(1− βt1)2

(∑t
j=1(1− β1)β

t−j
1 ∇fj(xj)i

)2
√
t
∑t

k=1(1− β2)β
t−k
2 ∇fk(xk)2i

≤
√

1− βt2
(1− βt1)2

t∑
j=1

t
(
(1− β1)βt−j1 ∇fj(xj)i

)2√
t
∑t

k=1(1− β2)β
t−k
2 ∇fk(xk)2i

≤
t∑

j=1

t
(
βt−j1 ∇fj(xj)i

)2√
t(1− β2)βt−j2 ∇fj(xj)2i

=
t√

t(1− β2)

t∑
j=1

γt−j|∇fj(xj)i|

In the last inequality we have used the fact that
√

1− βt2 < 1; (1− β1)2 < (1− βt1)2

and we have decreased the denominator of each fraction.
If we sum for every 1 ≤ t ≤ T we obtain

T∑
t=1

m̂2
t,i√
tv̂t,i
≤

T∑
t=1

|∇ft(xt)i|√
(1− β2)

T−t∑
j=0

√
t+ jγj,

but in the original proof they assert that the right hand side should be

T∑
t=1

|∇ft(xt)i|√
t(1− β2)

T−t∑
j=0

tγj, (2.11)

and they continue saying that, given that
∑t

j=0 jγ
j < 1

(1−γ)2 , then they can bound
the latter by

1

(1− γ2)
√

1− β2

T∑
t=1

|∇ft(xt)i|√
t

≤ 1

(1− γ2)
√

1− β2
2G∞‖gT,i‖. (2.12)

The previous bound is wrong. Firstly, because we have to bound
∑T−t

j=0 tγ
j instead

of
∑T−t

j=0 jγ
j. But even if they have correctly bounded this term using a different

argument than what it seems they explain, the last step is not true in general. As
a counterexample, take T = 10, |∇ft(xt)i| = 1

2
, for 1 ≤ t ≤ T and some i, G∞ = 1

2
.

Then
10∑
t=1

|∇ft(xt)i|√
t

=
1

2

10∑
t=1

1√
t
>

1

2

√
10 = 2G∞‖gT,i‖.
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The last step in (2.12) is precisely the other lemma in the original proof. We note
that the error the authors make in this one is in the last line (cf. [14], Lemma 10.3),
in which they implicitly use

−|∇ft(xt)i|√
T

+
∇ft(xt)2i√

T
≤ 0.

which is not true if |∇ft(xt)i| < 1.
The following claim is the final “theorem” in [14]:

Claim 2.4.2. Assume the function ft has bounded gradients ‖∇ft(xt)‖ ≤ G∞ and the
distance between any xt generated by Adam is bounded ‖xn − xm‖2 ≤ D, ‖xn − xm‖∞ ≤
D∞ for any n,m ∈ {1, . . . , T}. Assume that β1, β2 ∈ [0, 1) satisfy β2

1√
β2
< 1. Let αt = α

t

and let λ ∈ (0, 1). Suppose that the factor in the definition of mt is β1λt instead of
β1. Adam achieves the following guarantee, for all T ≥ 1.

R(T ) ≤ D2

2α(1− β1)

n∑
i=1

√
T v̂T,i +

α(1 + β1)G∞

(1− β1)
√

1− β2(1− γ)2

n∑
i=1

‖gT,i‖

+
n∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ2)
.

Note that v̂T,i is bounded by G2
∞/(1− βt2) and that

∑n
i=1‖gT,i‖ is bounded by nG∞, so

the complexity is optimal.

The proof uses the previous lemma to obtain the second summand of the bound,
and we have already seen that it is wrong. We also note that the argument made to
derive the first summand is also wrong. In the last step of this argument they want
to bound

n∑
i=1

(x1,i − x∗i )
2
√
v̂1,i

2α1(1− β1)
+

n∑
i=1

T∑
t=2

(xt,i − x∗i )
2

2(1− β1)

(√
v̂t,i

αt
−
√
v̂t−1,i

αt−1

)
by using ‖xt − x∗‖∞ ≤ D∞ and telescoping the result, obtaining

n∑
i=1

D2
∞
√
v̂1,i

2α1(1− β1)
+

n∑
i=1

T∑
t=2

D2
∞

2(1− β1)

(√
v̂t,i

αt
−
√
v̂t−1,i

αt−1

)

=
D2
∞

2α(1− β1)

n∑
i=1

√
T v̂T,i

The problem is that we can only bound the second summand if
√
v̂t,i/αt −√

v̂t−1,i/αt−1 ≥ 0, or equivalently

t2vt,i
1− βt2

≤ (t− 1)2vt−1,i

1− βt−12

⇐⇒ t2
(
vt−1,iβ2 + (1− β2)∇ft(xt)2i

)
≥ (t− 1)2vt−1,i

1− βt2
1− βt−12

.
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Grouping all the terms with vt−1,i we obtain

vt−1,i

(
t2β2 − (t− 1)2

(1− βt2)
1− βt−12

)
+t2(1− β2)∇ft(xt)2i ≥ 0.

The latter is always true only if what multiplies vt−1,i is positive, since ∇ft(xt)2i could
be very small at some steps. So it should be

(t2β2−t2βt2)−(t2−2t+1)+(t2βt2−2tβt2+βt2) ≥ 0⇔ t2(β2−1)+2t(1−βt2)+(βt2−1) ≥ 0.

But the latter is no true, for t big enough since β2 < 1.
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Chapter 3

Hypergradient Descent

This section is devoted to a scheme of gradient descent methods that when applied
to some of the most commonly used methods of gradient descent, like Stochastic
Gradient Descent and Adam, seems to improve the time required for optimizing large
scale unconstrained problems that often arise in Machine Learning. It is a scheme
in the sense that given a gradient descent method of a particular kind, that will be
described later, it gives another gradient descent method. The original update rule is
kept but it is also used to obtain a heuristic to adapt the learning rate to the geometry
of the function at each step.

This scheme is called Hypergradient Descent (HD). It was rediscovered and pub-
lished in [3]. We say rediscovered because in the research for this dissertation the
following paper [2] was found. In it, a scheme almost identical to HD is presented,
along with some variations. In this section, we will explain the derivation of HD,
based on an intuitive idea regarding the maximization of the objective value, or its
expectation in the case of SGD, at the next step of optimization. We will describe an
additive rule for adapting the learning rate, that is the one described in [3]. We will
discuss why the additive rule is not intuitively the best choice for HD, we propose a
multiplicative rule for the adaptation of the learning rate, that was designed by the
author of this dissertation before we knew of the existence of [2]. This paper also
proposes a multiplicative rule for HD and other variations that we will describe.

Although the algorithm of HD was discovered some time ago, there is no theoret-
ical analysis of its convergence that we are aware of. In this section, we analyse HD
applied to the deterministic gradient descent algorithm and prove its convergence for
quadratic functions. We discuss some of the practical problems that the method has
and propose some solutions. The resultant scheme seems to be quite independent of
the initial learning rate and in practice it seems to work better than the algorithms
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without the HD rules. We present experiments showing a comparison of the execu-
tions of some of the gradient descent methods studied in this dissertation and their
HD counterparts. We also show how the executions for HD are almost independent
of the choice of the initial learning rate. Even if the execution barely depends on the
initial learning rate, HD has an extra hyperparameter. However, we argue that for
most applications it is not necessary to tune this hyperparameter.

3.1 Derivation of Hypergradient Descent and vari-

ants

Here we explain where Hypergradient Descent comes from and propose some vari-
ations. We comment as well on the form of a HD variant proposed in [2]. The key
idea is to perform gradient descent over the learning rate for performing gradient
descent. Assume we have a function f : Rn → R and that we have access to an
oracle that given a point xt ∈ Rn returns the evaluation of f at xt and a noisy es-
timate of ∇f(xt), say ∇f(xt) + εt, where E[εt] = 0. For the derivation of HD in
the deterministic setting εt = 0, for all t. Let Xt = (x0, x1, . . . , xt) be the sequence
of all the points visited during the course of optimization and let αt be the learning
rate at step t. We will assume the update rule of a point can be seen as a function
xt = u(Xt−1, αt−1, εt−1). The expected value of the objective value at iteration t is
E[f(xt)] = E[f(u(Xt−1, αt−1, εt−1))]. We would like to set αt−1 = α∗t−1, where α∗t−1
is the value that minimizes the previous expectation. We can approximate such a
value by performing gradient descent over E[f(xt)]. If we differentiate the previous
expression with respect to αt we obtain
∂E[f ◦ u]

∂αt−1

∣∣∣∣
X=Xt−1

= E
[
∇f(xt) ·

∂u(Xt−1, αt−1, εt−1)

∂αt−1

]
= E [(∇f(xt) + εt) · ∇αut−1]

(3.1)

where we have used the shorthand ∇αut−1 = ∂u(Xt−1,αt−1,εt−1)
∂αt−1

. The last equality is
true if we assume, as it is usual, that εt and εt−1 are independent. We cannot compute
α∗t−1 directly from (3.1). Firstly, because we need to pick a value for αt−1 in order
to compute ∇f(xt) + εt and secondly because in general we cannot compute the
expectation on the right hand side. However, this expectation is 0 for the optimal
parameter α∗t−1. So, if we knew these values, we could try to approximate α∗t−1 by
performing a step of gradient descent

αt−1 = αt−2 − β(∇f(xt) + εt) · ∇αut−1.
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If we make the assumption that the optimal learning rate for each iteration does not
change much across iterations, we could instead use the rule for optimizing the value
of the learning rate at the previous iteration

αt−1 = αt−2 − β(∇f(xt−1) + εt−1) · ∇αut−2,

and this is something we can compute because we know all these values from the
previous iteration. This is the general rule that HD uses for adapting the learning
rate. If β is a constant, we call this the additive rule of HD, because the learning rate
changes in an additive fashion. This additive rule is the one described in [3]. We will
argue that there are better choices than the additive rule.

Note that the problem of not knowing ∇f(xt) can also be fixed by computing the
partial derivative of x′t := xt−1 − αt−2∇f(xt−1) with respect to the direction ∇αut−1

to obtain an approximation to the right term with a little more computational effort.
During the research conducted in [3] we took this approach in the first place, but then
we suggested and tried the other approach and we saw that, at least in practice, the
result of optimization of both is more or less the same, while the first approach that
was explained requires less computation.

Let’s compute an example of a method of HD. We will use the regular gradient
descent update rule (2.2). The value of ∇αut−2 is −∇f(xt−2) and therefore in this
case the HD update rules are:

xt = xt−1 − αt−1∇f(xt−1), αt = αt−1 + β∇f(xt)∇f(xt−1).

Note that for better readability we have shifted the indices of the update rule for the
learning rate by 1.

The update rule of HD for α has a geometric interpretation. For a point on the line
gt−2(α) := xt−2−α∇f(xt−2) we have that the gradient of f at gt−2(α) is perpendicular
to ∇f(xt−2) if and only if the value of f(gt−2(α)) is optimal on the line, and therefore
the was no better alpha to improve the local optimization at step t − 2. Similarly,
the dot product between ∇f(gt−2(α)) and ∇f(xt−2) is negative (resp. positive) if α
is less than (resp. greater than) an optimal value for α in the line. The update rule
for gradient descent in this case increases or decreases α for the next step if it had to
be greater or lower at the current one, hoping that the optimal value of α does not
change much across iterations.

This geometrical interpretation tells us that the gradient should change in one
direction or the other, but in the derivation of HD descent we obtained a precise
amount for this change. However, this quantity was picked quite arbitrarily. It is
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not clear, in principle, why β should be a constant. In regular gradient descent we
have that the distance from one point and the one computed in the next iteration
is α‖∇f(xt−1)‖, i.e. it is something that depends on the norm of the gradient and
a constant. This is what we have done for the additive rule of HD, we subtract a
quantity proportional to the norm of the derivative ∂(f◦u)

∂αt−1
. In the context of gradient

descent it makes sense to do it because assuming that the function is L-smooth
and that we are at a point xt, we can guarantee improvement and the maximal
improvement that can be guaranteed occurs when we move against the gradient a
distance of 1

L
∇f(xt), for any xt. However in HD, the process of optimizing αt is

analogous as the one of optimizing f(gt(α)), and this function is L‖∇f(xt)‖2-smooth,
which suggests that β should not be a constant and at step t, it should instead be
proportional to 1

‖∇f(xt)‖2
or something along those lines. In fact it should be something

close to 1
L‖∇f(xt)‖2

. This is better understood with the method of gradient descent
we present now, that uses this idea along with the looking ahead rule to improve
monotonically the objective value. The proof of convergence suggests that β should
also be proportional to α and making this assumption the proof arises naturally. It
makes sense that β is proportional to the learning rate since for an L-smooth function
we want α to be close to 1/L, and in this case we have just argued that we want β
to be proportional to 1/L (and 1/‖∇f(xt)‖2). Similarly, if the function f is not L′-
smooth but it is in some big enough region, the HD algorithm will try to make α close
to 1/L′, and we can apply the same reasoning as before to see that in this region a
good value of β is proportional to 1/L′. So β depending linearly on α seems a good
choice. The following, of course, is only a simplification in which the learning rate
adaptations are not accumulated across iterations, which lets us guarantee monotone
convergence. However it is useful as an illustrative example.

The algorithm is the following:

Algorithm 3.1.1. (HD variation)

1 input f, x0, α
2 t← 0

3 repeat
4 t← t+ 1

5 β ← α

‖∇f(xt−1)‖2

6 yt ← xt−1 − α · ∇f(xt−1)

7 α′ ← α+ β · ∇f(yt) · ∇f(xt−1)

8 xt ← xt−1 − α′ · ∇f(xt−1)

9 until convergence
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Theorem 3.1.2. Assume f : Rn → R is L-smooth and satisfies the PL inequality with
parameter µ, assume f has a non empty solution set and let f ∗ be the optimal value.
The gradient descent method above with α = 1

L
converges and it has the following

linear convergence rate

f(xt)− f ∗ ≤ (f(x0)− f ∗)
(

1− µ

L

)t t∏
i=1

(
1− µ cos2(ϕi)

L

)
.

where ϕi is the angle that the vectors ∇f(xi−1) and ∇f(yi) form.

Proof. By L-smoothness we have

f(yt)− f(xt−1) ≤ 〈∇f(xt−1), yt − xt−1〉+
L

2L2
‖∇f(xt−1)‖2 ≤ −

1

2L
‖∇f(xt−1)‖2,

(3.2)

and
f(xt)− f(yt) ≤ 〈∇f(yt), xt − yt〉+

L

2
‖xt − yt‖2

On the other hand we have

xt − yt = −∇f(yt) · ∇f(xt−1)

L‖∇f(xt−1)‖2
∇f(xt−1) = −‖∇f(yt)‖ cos(ϕi)

L‖∇f(xt−1)‖
∇f(xt−1)

Combining the last two expressions we obtain

f(xt)− f(yt) ≤ −
‖∇f(yt)‖ cos(γ)

L‖∇f(x)‖
〈∇f(yt),∇f(x)〉+

‖∇f(yt)‖2 cos2(γ)

2L

≤ −cos2(γ)

2L
‖∇f(yt)‖2.

(3.3)

Now applying the PL inequality to (3.2) and (3.3) we get

f(yt)− f(xt−1) ≤ −
µ

L
(f(xt−1)− f ∗), f(xt)− f(yt) ≤ −

µ cos2(γ)

L
(f(yt)− f ∗).

Rearranging and subtracting f ∗ to both equation gives us

f(yt)− f ∗ ≤
(

1− µ

L

)
(f(xt−1)− f ∗), f(xt)− f ∗ ≤

(
1− µ cos2(γ)

L

)
(f(yt)− f ∗).

and combining them we have the following, which applied iteratively proves the result

f(xt)− f ∗ ≤
(

1− µ

L

)(
1− µ cos2(ϕt)

L

)
(f(xt−1)− f ∗).
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Note that the algorithm seems to use two gradients of f in every iteration, which
seems to suggest that the method is worse that regular gradient descent since with
two steps of gradient descent we can guarantee that

f(xt)− f ∗ ≤
(

1− µ

L

)2
(f(xt−2)− f ∗),

which is strictly better than the guarantee progress that we obtain with one step of
the previous algorithm. However, it is not necessary to compute ∇f(yt) since we only
want ∇f(yt) · ∇f(xt−1), which can be seen as a partial derivative of f at the point
yt with respect to the direction of ∇f(xt−1) and multiplied by ‖∇f(xt−1)‖. There
are efficient methods and software packages that compute this partial derivative in
O
(
1
n

)
of the time that is needed to compute the whole gradient [9]. Recall that n is

the dimension of the domain of f . So this method can indeed perform much better,
with respect to the computational time, than gradient descent. The main purpose of
showing this algorithm was only to support our argument against the additive rule of
HD, so we will not study in more detail the possible advantages of this method over
gradient descent.

As alternative, we propose the following modification in the update rule for the
learning rate

αt = αt−1

(
1− β′ ∇f̃(xt−1) · ∇αut−2∥∥∇f̃(xt−1)

∥∥∥∥∇αut−2
∥∥
)
. (3.4)

Here we have denoted by ∇f̃(xt−1) to the noisy estimate of ∇f(xt−1) and β′ is a
constant. This update just makes β proportional to αt−1 and to the inverse of the
norms in the dot product. The only difference between this rule and what we had
mentioned before is that β is proportional to the inverse of the normalization constant

in the dot product instead of
∥∥∥∇f̃(xt−1)

∥∥∥2. This should not matter too much. We
decided to do it in this way because in such a case the method is invariant under
rescaling, which is a desirable property for a gradient descent method. We call this
rule the multiplicative rule of HD.

If we apply this rule to gradient descent as we did before with the additive one,
we obtain the following algorithm. Our convergence analysis will be performed over
this algorithm. We use β for the hyperparameter instead of β′, we had only used
β′ before to make clear the relation between this constant and the constant in the
additive rule.

Algorithm 3.1.3. (Multiplicative Hypergradient Descent)
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1 input f : Rn → R
2 input x0, α0, β

3 t← 0

4 repeat
5 t← t+ 1

6 xt ← xt−1 − αt−1∇f(xt−1)

7 αt ← αt−1

(
1 + β

∇f(xt)·∇f(xt−1)

‖∇f(xt)‖‖∇f(xt−1)‖

)
8 until convergence

Note that in the case n = 1 the two last lines in the body of the loop are equivalent
to

1 xt ← xt−1 − αt−1f ′(xt−1)

2 if f ′(xt)f ′(xt−1) > 0

3 αt ← αt−1 (1 + β)

4 else if f ′(xt)f ′(xt−1) < 0

5 αt ← αt−1 (1− β)

If we think about HD with multiplicative rule a posteriori, we see that it also
has a very convenient property: If at some step t the optimal learning rate is ᾱt
and it does not change much in the next few executions, the learning rate αt will
change geometrically until it reaches ᾱt whereas with the additive rule the learning
rate changes linearly. In principle, geometric adaptation is much faster. It is also
more precise when we want to approximate small values. Note that this does not
imply that the multiplicative rule has less precision when adapting large values, since
the adaptation also depends on the value of the normalized dot product.

In [2], the authors have proposed a variation of HD. Coincidentally, they also
suggest a HD method based on a multiplicative rule, but they do not give any justifi-
cation for this choice besides what we have just said about the geometric adaptation.
They say “We know from our extensive experience with the batch mode adaptive step
sizes procedure that it is convenient to adapt step sizes in a geometric way”. The
authors only do it for gradient descent and momentum, which is other method of
gradient descent. Their approach consists of using a learning rate for each dimension,
and adapting each of them with a HD rule. They choose a different way to normalize
the dot product that appears in HD. The choice seems a bit arbitrary. The whole
algorithm is the following:

Algorithm 3.1.4. (Hypergradient Descent proposed in [2])

1 input f : Rn → R
2 input A0: Diagonal matrix with initial learning rate parameters
3 input x0, β
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4 input γ ∈ [0, 1) − A parameter generally close to 1 used to computer the normalizer factor
5 v0 = (0, . . . , 0) − Each component of vt ∈ Rn is a normalizer factor
6 t← 0

7 repeat
8 t← t+ 1

9 xt ← xt−1 −At−1∇f(xt−1)

10 for i in 1..n

11 vt,i ← γvt−1,i + (1− γ)∇f(xt−1)2i

12 αt,i ← αt−1,i

(
1 + β

∇f(xt)i∇f(xt−1)i
vt,i

)
//αt,i is the ith element in the diagonal of At.

13 until convergence

There is no previous theoretical analysis of HD in the literature. But it is worth
mentioning the work in [18], [19] and [7]. The authors study the convergence of two
methods that adapt the learning rate and have some similarities with HD. They only
study the convergence of those adaptive algorithms restricting that the learning rate
be less than 1

L
and in the stochastic case. Unfortunately, their techniques and insights

are not applicable to the problem studied in this dissertation, in which we study the
deterministic case and we do not restrict the learning rate.

3.2 Convergence analysis

In this analysis we will consider HD with the multiplicative rule applied to de-
terministic gradient descent, i.e. Algorithm 3.1.3, that was presented at the end of
the previous section. We will prove that the algorithm does not converge if f is
not L-smooth, we will prove convergence in the case of quadratic functions, starting
with the ones in 1 dimension, and we prove the convergence of the algorithm for one
more 1-dimensional function. The proof of the latter is quite involved, which suggests
that the problem of proving convergence in the general case of L-smooth, µ-strongly
functions is not easy, not even in the 1-dimensional case.

Proposition 3.2.1. Algorithm 3.1.3 can diverge if f is not L-smooth.

Proof. Take f(x) = x4, which clearly is not L-smooth, for any L. Assume β < 8
9
.

Then if for some t we have that |xt| ≥
√

1
αt

then

|xt+1| = |xt − αt−1∇f(xt)| = |xt(1− 4αt−1x
2
t )| ≥ 3|xt|,

αt+1 = αt (1− β) ≥ αt
9
≥ 1

9x2t
≥ 1

x2t+1

.

The last inequality implies |xt+1| ≥
√

1
αt+1

. Hence if we start with |x0| ≥
√

1
α0

the
norm of the objective increases at every step of the algorithm and thus it diverges.
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In the following, given a function f and hyperparameter β we will identify the
execution of Algorithm 3.1.3 with the points and learning rates {(xi, αi)}∞i=0 that
would be computed starting in x0 with initial learning rate α0. If the algorithm finds
the optimizer x∗ of f in a finite number of points, say xT = x∗, we will also consider
that the sequence is infinite and that xi = x∗, αi = αT for i > T . Note that we are not
making explicit the dependence of the sequence on f and β, since this will be always
clear from the context. Whenever we refer to an arbitrary sequence {(xi, αi)}∞i=0, we
will be referring to one in which x0 ∈ dom (f ) and α0 > 0, that is, the initial values
will be in the set of those for which the algorithm is well defined.

We will denote by xji to be the jth component of xi.

Lemma 3.2.2. Let 0 < µ < L be real constants, let f : Rn → R be a twice differen-
tiable, µ-strongly convex and L-smooth function and let {(xi, αi)}∞i=0 be the sequence
generated by algorithm 3.1.3. If we have that αi > 1

µ
and xi 6= x∗, then αi+1 < αi.

Similarly, if αi < 1
L
and xi 6= x∗, then αi+1 > αi.

Proof. We will prove that αi > 1
µ
implies αi+1 < αi. This is true if and only if

∇f(xi+1)∇f(xi) < 0. The other case is analogous.
Let g(y) := f

(
xi − y ∇f(xi)‖∇f(xi)‖

)
. The second derivative of g is

g′′(y) = ∇2f

(
xi − y

∇f(xi)

‖∇f(xi)‖

)
−∇f(xi)

‖∇f(xi)‖
−∇f(xi)

‖∇f(xi)‖
= ∇2f

(
xi − y

∇f(xi)

‖∇f(xi)‖

)
.

Therefore g is µ-strongly convex and it has a unique minimum, let y∗ be its minimizer.
Due to the assumption xi 6= x∗, the value of g′(0) = −‖∇f(xi)‖ must be negative.
Since g is convex and g′(0) < 0 it must be that the minimizer y∗ is greater than 0.
We have ∇f(xi+1)∇f(xi) < 0 if and only if y∗ ∈ (0, αi‖∇f(xi)‖). Assume the latter
is not true, so y∗ ≥ αi‖∇f(xi)‖. Since g′(y∗) = 0, by the Mean Value Theorem there
is y ∈ (0, y∗) such that

g′′(y) =
g′(0)− g′(y∗)
−y∗

=
‖∇f(xi)‖

y∗
≤ ‖∇f(xi)‖
αi‖∇f(xi)‖

< µ.

But this contradicts the fact that g is µ-strongly convex.

Corollary 3.2.3. Let f be a function as in Lemma 3.2.2, with n = 1. Let I be the
interval

(
1
L
, 1
µ
(1 + β)

)
. If x0 6= x∗ and α0 6∈ I then there is n ∈ Z+ such that αn ∈ I,

αi 6∈ I for i < n. Also, for 0 < i < n, if α0 <
1
L

then αi+1 = αi(1 + β) and if
α0 >

1
µ
(1 + β) then αi+1 = αi(1− β).
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Proof. It is a straightforward consequence of Lemma 3.2.2 noting that the learning
rate changes by a factor of 1 − β or 1 + β if f ′(xt)f ′(xt−1) is positive or negative
respectively. We only have to prove that xi 6= x∗ for 0 ≤ i < n. Assuming that
xi−1 6= x∗ and using the lemma we get that αi−1 6= αi and thus f ′(xi) 6= 0 which
implies xi 6= x∗. Since x0 6= x∗ the result follows by induction.

We should clarify why I was defined in a way that seems so unnatural. The
definition used ensures that the learning rate cannot jump over the entire interval I
in a single update.

Our final goal is to prove the convergence of Algorithm 3.1.3 for quadratic func-
tions. We start proving the one dimensional case, whose ideas are crucial for the
general case. A one dimensional quadratic function has an important property that
makes the convergence analysis quite simple: the value that the learning rate αt needs
to take so the point xt+1 is the minimizer of f is the same for every possible value
of xt. Moreover, if the value of αt is close to this optimal value, the point xt+1 gets
close to the minimizer of f .

Theorem 3.2.4. Given a unidimensional convex quadratic function f(x) = ax2 +

bx+ c, a > 0, Algorithm 3.1.3 converges for any x0, α0 and for β < 1.

Proof. The algorithm is invariant under translations, so we can assume without loss
of generality that f(x) = ax2. Note that

∇f(xt)∇f(xt−1) > 0 ⇐⇒ xtxt−1 > 0

and that each side is 0 whenever the other is 0. Also, f(xt) > f(xt−1) ⇐⇒ |xt| >
|xt−1|. The key idea is that in this case for any t we can describe the qualitative
behaviour of one step of the algorithm based only on the value of αt−1, for any t:

• 1
a
< αt−1. By definition we have that xt = xt−1(1 − 2aαt−1) and therefore

|xt| > |xt−1|. Also, αt = αt−1(1− β) by lemma 3.2.2.

• 1
2a

< αt−1 ≤ 1
a
. In this case we also have that xtxt−1 < 0 and thus αt =

αt−1(1− β) but now |xt| ≤ |xt−1|. In particular, if αt−1 ∈
(

1
2a
, 1
2a

(1 + β)
)
then

|xt| = |xt−1(1− 2aαt−1)| ≤ β|xt−1|.

• αt−1 <
1
2a
. In this case αt = αt−1(1 +β), because xtxt−1 > 0. Also |xt| < |xt−1|.

In particular, if αt−1 ∈
(

1
2a

(1− β), 1
2a

)
then

|xt| = |xt−1(1− 2aαt−1)| ≤ β|xt−1|.

29



• αt−1 = 1
2a
. In this case xt = 0 and we have convergence.

So if the algorithm starts with α0 >
1
a
, the value of αt will decrease exponentially,

with ratio 1 − β until the first t0 such that αt0 <
1
2a
. The norm of xt will increase

whenever αt−1 > 1
a
. At this point, for all t > t0 the value of αt will always be in the

interval
(

1
2a

(1− β), 1
2a

(1 + β)
)
. This is because, by the previous analysis, whenever

αt−1 ∈
(

1
2a
, 1
2a

(1 + β)
)
then αt = αt−1(1 − β) > 1

2a
(1 − β). Similarly, whenever

αt−1 ∈
(

1
2a

(1− β), 1
2a

)
we have that αt = αt−1(1 + β) < 1

2a
(1 + β). So the value of xt

decreases exponentially with ratio β for t > t0 therefore we have convergence. In the
case that αt−1 = 1

2a
the algorithm converges in one step.

In the case that α0 <
1
2a

(1 − β) the learning rate will increase until it is also in(
1
2a

(1− β), 1
2a

(1 + β)
)
and therefore the algorithm also converges.

We see that the rate of convergence in the worst case depends not only on the
initial point x0 but also on the initial value of the learning rate α0. In the case
α0 <

1
2a

(1 + β), the norm of the objective function does not increase in any step and
the number of steps needed for the algorithm to find xt such that f(xt) has norm less
than ε is

tε = O
(

(1 + log1+β(1/(2aα0))) + logβ(|x0|2/ε)
)
,

where the first summand comes from the number of steps needed for the learning rate
to reach the interval

(
1
2a

(1− β), 1
2a

(1 + β)
)
and the second one comes from the steps

needed for decreasing the norm of the objective.
The analysis in the case α0 >

1
2a

(1+β) is similar, but now the norm of the objective
increases until the learning rate is less than 1

a
. Let t0 be the number of steps required

for the algorithm to adjust the learning rate such that it is in
(

1
2a

(1− β), 1
2a

(1 + β)
)

for the first time. It is easy to see that the value of t0 is O
(
log1−β (2aα0)

)
. We can

bound |xt0| by using |xt| ≤ (2aα0 − 1)|xt−1| for all t ≤ t0. We conclude that in this
case, given ε > 0, the number of steps tε needed for the algorithm to find f(xt) with
norm less than ε is

tε = O
((

log1−β (2aα0) + logβ
(
|x20|(2aα0 − 1)2t0/ε

)))
.

In order to shed light on the difficulty of the problem of determining if Algorithm
3.1.3 converges or not in the general case for an L-smooth and µ-strongly convex
function, we proceed to prove convergence when the function f consists of two distinct
halves of parabolas spliced at its minimum. This function is quite simple and yet the
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proof of convergence is fairly involved. This suggests that the problem, even in the one
dimensional case, has certain complexity. The proof that follows leverages one of the
key properties of Algorithm 3.1.3: in the one dimensional case, after one decrement
and one increment of the learning rate, the result is smaller than the original learning
rate.

Theorem 3.2.5. Let 0 < µ < L be real constants. Let f : Rn → R be the function
f(x) = 1

2
Lx2 for x ≤ 0 and f(x) = 1

2
µx2 for x > 0. Given f , Algorithm 3.1.3

converges for any x0, α0 and for β small enough.

Proof. If xi > 0 then xi+1 > 0 if and only if αi < 1
µ
. Similarly if xi < 0 then xi+1 < 0

if and only if αi < 1
L
. Using corollary 3.2.3, it suffices to prove convergence when

α0 ∈
(

1
L
, 1
µ
(1 + β)

)
. In such a case if x0 ≤ 0 then x1 ≥ 0. Also, if xi > 0 and αi < 1

µ
,

we obtain xi+1 > 0 and αi+1 = αi(1 + β) < 1
µ
(1 + β). Thus at some point t0, for

the first time, αt0 ∈
(

1
µ
, 1
µ
(1 + β)

)
and xt0 > 0. It is possible that the algorithm

converges before reaching this point, only in the case that the learning rate takes the
value 1

µ
exactly.

We will prove that if we have xt > 0 and αt ∈
(

1
µ
, 1
µ
(1 + β)

)
after a finite number of

steps r, bounded by a constant C, xt+r > 0, αt+r ∈
(

1
µ
, 1
µ
(1 + β)

)
and ‖xt+r‖ ≤ D‖xt‖

with D a constant less than 1. The constants C and D only depend on f and β.
Convergence follows from the previous property.

It must be that xt+1 < 0. We now have two cases:

1. xt+2 > 0. This implies αt+2 = αt(1 − β)2 and now for some steps, say r, the
points xt+2+i will be positive and the learning rate will increase until it surpasses
1
µ
. Since 1

µ
< αt(1 + β)r(1− β)2 < 1

µ
(1 + β) and 1

µ
< αt <

1
µ
(1 + β) the value of

r is s or s + 1, where s is the greatest number such that (1 + β)s(1− β)2 < 1,
i.e.,

s =

⌊
−2 log(1− β)

log(1 + β)

⌋
≥ 2. (3.5)

Also, for all 0 < i < s, we have that 1
µ
(1− β)2 < αt(1− β)2 < αt+2+i so

|xt+2+i+1| = |xt+2+i| (1− αt+2+iµ) ≤ |xt+2+i|
(
1− (1− β)2

)
≤ 2β|xt+2+i|.

Let 0 < δ < 1. Using the former s times we obtain the following bound on the
absolute value of xt+r+2:

|xt+r+2| ≤ |xt+s+2| ≤ (2β)s|xt+2| = (2β)s|1− Lαt+1||1− µαt||xt|

≤ (2β)s
∣∣∣∣1− L

µ

∣∣∣∣β|xt| ≤ (2β)s+1

∣∣∣∣1− L

µ

∣∣∣∣|xt| ?
< δ|xt|.

31



We have used that xt+2 = (1−Lαt+1)(1−µαt)xt. Also, the inequality between
the last term in the first line and the first term in the second line uses 1

L
<

αt+1 <
1
µ
and αt ∈

(
1
µ
, 1
µ
(1 + β)

)
. The inequality with the question mark is

true if

β <
1

2
s+1

√
δ

L
µ
− 1

. (3.6)

2. xt+2 < 0. This can only happen if αt(1−β) < 1
L
, and the latter only happens if

1
µ
(1−β) < 1

L
. Suppose that for some i we have that αi ∈

(
xi

f ′(xi)
(1− β)2, xi

f ′(xi)
(1 + β)

)
.

Note that xi
f ′(xi)

is 1
L
if xi < 0 and 1

µ
if xi > 0. It must be:

|xi+1| = |xi|
∣∣∣∣1− αif ′(xi)xi

∣∣∣∣ ≤ (2β − β2
)
|xi| ≤ 2β|xi|.

Since xt+1, xt+2 < 0. The learning rate increases in step t+2, i.e. αt+2 > αt+1. It
will keep increasing until for some k we have xt+k > 0 for the first time. In that
case αt+k = αt+k−1(1 − β) < 1

µ
(1 + β)(1 − β) < 1

µ
, whereas αt+k−1 > 1

L
. Since

now xt+k > 0 and αt+k < 1
µ
, the learning rate will increase again successively

until the first step t+ r, included, such that αt+r > 1
µ
. We have that αt and αj

are in
(

1
µ
(1− β)2, 1

µ
(1 + β)

)
, for t+ k < j < t+ r because

αt+k+1 = αt+k−1(1 + β)(1− β) ≥ αt+k−1(1− β) ≥ 1

L
(1− β) >

1

µ
(1− β)2,

and αj+1 > αj. We also have that xt and xj are positive. Also, αj ∈
(
1
L

(1− β), 1
L

(1 + β)
)
,

for t+1 ≤ j ≤ t+k. Hence |xt+r| ≤ (2β)r|xt|. During this process, the learning
rate only decreased twice.

We started with αt > 1
µ
and we have finished with αt+r > 1

µ
. That means that

(1 + β)(r−2)−1(1 − β)2 < 1, because otherwise αt+r−1 ≥ αt >
1
µ
. Thus, in this

case r is bounded by a constant that only depends on f and β in the same way
as in the previous case.

Assume β satisfies the inequality (3.6) and is less than 1
2
. It may not seem straight-

forward if this is possible, since the definition of s involves β. However, but as pointed
out in (3.5), s ≥ 2, so we can always pick

β <
1

2
2

√
δ

L
µ
− 1

<
1

2
s+1

√
δ

L
µ
− 1

.

It is clear by the analysis of the previous two cases that we can set C = s + 1

and D = max((2β)s+1, δ) so the aforementioned property holds and the algorithm
converges.
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Theorem 3.2.6. Let A be a diagonal matrix with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤
λn. Let f : Rn → R be the function f(x) = 1

2
xTAx. Any sequence {(xi, αi)}∞i=0

computed by Algorithm 3.1.3 converges, given f and β < 1.

We present two auxiliary lemmas before the proof. Note that f is λn-smooth
and λ1-strongly convex. The fact that f can be decomposed as a sum of quadratic
unidimensional functions is a crucial property that will be used in the proof. This
is because if we have a point xi, the behaviour of a component of xi only depends
on the learning rate, regardless of the value of the other components. On the other
hand, the behaviour of the learning rate is not quite regular. The proof of Theorem
3.2.6 proceeds by induction assuming that the learning rate is always less than a
constant C and then it improves that constant. The following lemma proves that if
the learning rate is always less than a constant less than 2

λj
then the jth component

will converge to zero. The learning rate has to also be lower bounded by a positive
constant, but this is always true for every sequence generated by Algorithm 3.1.3 since
the learning rate always increases if it is less than 1

λn
(1− β). We will use this lemma

to guarantee convergence of the components whose eigenvalues λ satisfy C < 2
λ
, and

thus simplifying the problem.

Lemma 3.2.7. Let f be as in Theorem 3.2.6 and let s = {(xi, αi)}∞i=0 be a sequence
generated by Algorithm 3.1.3. Let i0 ∈ N, j ∈ {1, . . . , n}, 0 < γ1, γ2 < 1. If (1 −
γ1)

1
λj
< αi <

1
λj

(1 + γ2) for all i ≥ i0 then
∣∣xji+1

∣∣ < ∣∣xji ∣∣max(γ1, γ2) <
∣∣xji ∣∣ and in

particular
lim
i→∞

xji = 0.

Proof.

∣∣xji+1

∣∣ =
∣∣xji ∣∣|1− αiλj| ≤ ∣∣xji ∣∣max

(∣∣∣∣1− (1− γ1)
1

λj
λj

∣∣∣∣, ∣∣∣∣1− (1− γ2)
1

λj
λj

∣∣∣∣)
=
∣∣xji ∣∣max(γ1, γ2)< 1.

The second claim is a straightforward consequence of the first one.

Let’s specify the induction hypothesis that we will use in the proof of the theorem.
We will assume that we have convergence if the learning rate is always less than 1

λj

3+β
2

and we will prove convergence in the case in which the learning rate is less than the
same expression for the next lower eigenvalue, that is 1

λj−1

3+β
2
. The magic constant

3+β
2

is just a number less than 2 and greater than 1 + β. It is less than 2 to have
the convergence of the jth coordinate by the previous lemma. Why it is useful that
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the constant is greater than 1 + β is the key of the proof and will be clear later. But
basically, it ensures that at every step i in which the learning rate has increased and
has become at least 1

λj

3+β
2
, we have ∇f(xi−1)∇f(xi) > 0 at the same time that the

summands of the previous expression that depend on the components whose indices
are at least j are negative. On the other hand by the previous lemma we know the
rest of the components converge. So at every step i in which this happens, we know
that the negative components cannot be very big, since the total sum is positive. If
this happened an infinite number of times we could ensure the convergence of the
other components obtaining global convergence. If this does not happen the learning
rate has to only decrease after some point. The following lemma will cover this case
and it will also be useful to reduce the problem to the case α0 <

1
λ1

(1 + β).

Lemma 3.2.8. Let f be as in Theorem 3.2.6 and let {(xi, αi)}∞i=0 be a sequence
generated by Algorithm 3.1.3. Suppose there is i0 such that for every i ≥ i0 the
learning rate only decreases, i.e. αi+1 < αi. Let k = max{j | xj0 6= 0}. Then for i big
enough 1

λk
< αi <

2
λk

and the sequence converges.

Proof. We can assume without loss of generality that k = n because the analysis of a
sequence from some point with some coordinates equal 0 is the same as the analysis
we would obtain if we ignored those coordinates. By the same reason, we can assume
without loss of generality that xji0 6= 0 for every j such that λj = λn.

Recall that f is λn-smooth. Hence by Lemma 3.2.2 it must be αi ≥ 1
λn

for all
i ≥ i0 because otherwise the learning rate would increase. Also, it cannot be αi = 1

λn

because in that case ∇f(xi) · ∇f(xi+1) =
∑n

j=1 λ
2
j

(
xji
)2

(1 − αiλj) ≥ 0 and thus the
learning rate at step i+ 1 would not have decreased. Note that xji 6= 0 for all j such
that λj = λn and for all i ≥ i0 because it can only be 0 if αi = 1

λn
, for some i ≥ i0.

Since the sequence of learning rates is bounded there must exist α := limi→∞ αi.
This means that the difference between one learning rate and the next one gets
arbitrarily small when i increases. Thus ∇f(xi)·∇f(xi−1)

‖∇f(xi)‖‖∇f(xi−1)‖ → 0. There must be the case
that for some j < n, λj < λn because if λ1 = λ2 = · · · = λn then ∇f(xi)·∇f(xi−1)

‖∇f(xi)‖‖∇f(xi−1)‖ =

−1.
If α < 2

λn
then there is i1 such that for all i ≥ i1, αi < 2

λn
≤ 2

λj
, for any j.

Convergence follows in this case by Lemma 3.2.7. So it only remains to prove that
the case α ≥ 2

λn
is impossible. As we will see now, the components whose eigenvalues

are λn grow much faster than the others. We will be able to derive a contradiction
based on this. In particular, we will prove that the cosine of the angle between two
consecutive gradients tends to −1. If xji grows too much, then the ith coordinates of
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two consecutive gradients are also very large and since they will have opposite signs
we will be able to argue that the angle that the gradients form is close to π. In this
case αi > 2

λn
. Let j < n be such that λj < λn. We have

|1− αiλn| − |1− αiλj| ≥ αiλn − 1−max(αiλj − 1, 1− αiλj)

> min

(
2λj
λn

, 2− 2λj
λn

)
> 0.

(3.7)

Call δ = min
(

2λj
λn
, 2− 2λj

λn

)
. We want to prove that for any ε > 0, there is i big

enough, such that
∣∣xji ∣∣/|xni | ≤ ε. So take ε > 0. There is i1 such that for every i ≥ i1

we have λnαi−λnα ≤ δ
2
, or equivalently λnα− δ

2
≥ λnαi−δ. Hence, given any ε′ > 0,

there must also be i2 ≥ i1 such that for all i ≥ i2

ε′
i∏

k=i1

(αkλn − 1) ≥ ε′
i∏

k=i1

(αλn − 1) ≥
i∏

k=i1

(αλn − 1− δ

2
) ≥

i∏
k=i1

(αkλn − 1− δ). (3.8)

The second inequality in the previous expression is true because for a > b there is
always ` big enough, such that ε′a` ≥ b`. Now, if we apply (3.8) with ε′ = ε

∣∣xni1∣∣/∣∣xji1∣∣,
there are i1 and i big enough such that the following holds:

ε|xni | = ε′
∣∣xni1∣∣ i∏

k=i1

|1− αkλn| ≥
∣∣xji1∣∣ i∏

k=i1

(αkλn − 1− δ) ≥
∣∣xji1∣∣ i∏

k=i1

|1− αkλj| =
∣∣xji ∣∣,

which is what we wanted. The last inequality is true by (3.7) and the definition of δ.
Let S = {j | λj < λn}. Let ai be such that aji = ∇f(xi)

j = λjx
j
i if j ∈ S and 0

otherwise and let bi = ∇f(xi)− ai = Axi − ai. Note that bi+1 = (1− αiλn)bi. Given
ε/|S| pick i1 and i big enough such that for every j ∈ S and every k 6∈ S we have
|S|
∣∣λjxji ∣∣ ≤ ε

∣∣λnxki ∣∣, i.e. |S|∣∣aji ∣∣ ≤ ε
∣∣bki ∣∣. In that case we have ‖ai‖ ≤ |S|maxj∈S

∣∣aji ∣∣ ≤
ε‖bi‖. Then, distributing and using Cauchy-Schwarz inequality we have

∇f(xi) · ∇f(xi−1)

‖∇f(xi)‖‖∇f(xi−1)‖
=

(ai + bi) · (ai+1 + bi+1)

‖ai + bi‖‖ai+1 + bi+1‖
≤

≤ ‖ai‖‖ai+1 + bi+1‖+ ‖bi‖‖ai+1‖+ (1− αiλn)‖bi‖2

‖ai + bi‖‖ai+1 + bi+1‖
≤ ε+ ε− 1

ε2 + 1
.

We have used several inequalities here. Since ai⊥bi we have max(‖ai‖, ‖bi‖)≤ ‖ai + bi‖.
Note that since |1− αiλn| > |1− αiλj| then ‖ai+1‖ ≤ |1− αiλn|‖ai‖ and also ‖ai+1 + bi+1‖ ≤
|1− αiλn|‖ai + bi‖. For the bound of the first summand we have used that ‖ai‖ ≤
ε‖bi‖ ≤ ε‖ai + bi‖. For the second one we have used that ‖bi‖ ≤ ‖ai + bi‖ and
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‖ai+1‖ ≤ |1− αiλn|‖ai‖ ≤ ε|1− αiλn|‖bi‖ = ε‖bi+1‖ ≤ ε‖ai+1 + bi+1‖. For the third
one we have used

‖bi‖
‖ai + bi‖

=
1√

‖ai‖2

‖bi‖2
+ 1
≥ 1√

ε2 + 1
and

|1− αiλn|‖bi‖
‖ai+1 + bi+1‖

≥ ‖bi‖
‖ai + bi‖

≥ 1√
ε2 + 1

.

This proves that it is impossible that ∇f(xi)·∇f(xi−1)
‖∇f(xi)‖‖∇f(xi−1)‖ → 0.

Proof of Theorem 3.2.6. As we explained before, we will prove by induction on k that
if there is i0 such that αi < 1

λn−k+1

3+β
2

for every i ≥ i0, then the sequence converges.
In particular, if the sequence starts with α0 >

1
λ1

(1+β), by Lemma 3.2.2 the learning
rate will decrease infinitely or it will be less than 1

λ1
(1 + β) at some point. In the

former case, we have convergence by Lemma 3.2.8. In the latter case the hypothesis
for k = n is true, so the induction proof that follows is sufficient.

The base case is k = 1. It is a direct consequence of Lemma 3.2.7 since the
learning rate is lower bounded by min

(
α0,

1
λn

(1− β)
)
. This lower bound is trivial

considering Lemma 3.2.2.
Assume the property is true for k − 1 < n, now we will prove it for k. So

αi <
1

λn−k+1

3+β
2

(
< 2

λn−k+1
≤ 2

λn−j+1
, j ≥ k

)
for i ≥ i0. In a similar fashion as in the

base case, by Lemma 3.2.7 it must be that for j ≥ k we have
∣∣xn−j+1
i

∣∣ → 0. By
the induction hypothesis there is i1 such that if αi < 1

λn−k+2

3+β
2

for every i ≥ i1

then the sequence converges. Otherwise there is an infinite set of indices I such that
αi ∈

[
1

λn−k+2

3+β
2
, 1
λn−k+1

3+β
2

)
. In fact, by Lemma 3.2.8, either the sequence converges

or there is an infinite subset of indices I ′ ⊂ I such that the learning rate has increased.
That is, for every i ∈ I ′ it is αi−1 < αi. Note that

αi−1 ≥ αi/(1 + β) >
1

λn−k+2

3 + β

2(1 + β)
>

1

λn−k+2

. (3.9)

The fact that αi−1 < αi implies ∇f(xi−1)∇f(xi) > 0 or equivalently

n∑
j=1

λ2j
(
xji−1

)2
(1− αi−1λj) > 0. (3.10)

And here is the key idea of the proof, the idea we exposed before. We have that
some of the previous summands are negative, but those that are positive correspond
to the coordinates whose convergence we have guaranteed by Lemma 3.2.7. Yet, the
sum is positive so the other coordinates must remain small and since I ′ is infinite,
they must converge as we will see now. Let ai = min{j | 1 − αi−1λj < 0} and let
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bi = maxj>ai{x
j
i−1}. We have just seen in (3.9) that αi−1 > 1

λn−k+2
, so ai > n− k + 2

and indeed the coordinates whose indices j satisfy 1 − αiλj > 0 are some of the
coordinates, or all of them, whose convergence we have proved by using Lemma 3.2.7.
Hence bi →i→∞ 0. If we take the negative summands to the right hand side of (3.10)
and divide by λ2ai(αi−1λai − 1) we obtain

∑
j<ai

λ2j
(
xji−1

)2
(1− αi−1λj)

λ2ai(αi−1λai − 1)
>

n∑
j≥ai

λ2j
(
xji−1

)2
(αi−1λj − 1)

λ2ai(αi−1λai − 1)
>

n∑
j≥ai

(
xji−1

)2
.

Now we only have to bound the left hand side. Given j < ai, we have that
(
xji−1

)2≤ b2i ,
λ2j/λ

2
ai
< 1 and 1−αiλj < 1. Also, using (3.9) we have αi−1λai > αi−1λn−k+2 >

3+β
2(1+β)(

> 1
)
. So we can upper bound the left hand side by

(n− ai + 1)b2i
(3 + β)/(2 + 2β)− 1

.

And because bi →i→∞ 0 we have xji →i→∞ 0 for every j and thus the sequence
converges.

Corollary 3.2.9. Algorithm 3.1.3 converges for f(x) = xTAx+ bTx+ c, where A ∈
Mn×n is a symmetric semidefinite-positive matrix, b ∈ Rn and c ∈ R.

Proof. On the one hand, we can assume that c = 0 since argmin
(
xTAx+ bTx+ c

)
=

argmin
(
xTAx+ bTx

)
. On the other hand, Algorithm 3.1.3 is invariant under isome-

tries and translations of the space. An isometry of the space is given by an orthogonal
matrix, and symmetric matrices with real entries are diagonalizable by orthogonal
matrices and they have real eigenvalues. Let P be the orthogonal matrix that diago-
nalizes A, i.e. P TAP = D, with D diagonal. Hence, the algorithm converges if it does
it for f(Px) = xtDx+ bTPx. It is easy to see that there is a translation of the space
such that the previous function does not have linear term on x, i.e. there is z ∈ Rn

such that f(Px + z) = xTD′x + c′, where D′ is also a semidefinite diagonal matrix
and c′ is a constant. Finally argmin(f(Px + z)) = argmin(xTD′x). We can ignore
the coordinates for which D′ has eigenvalues equal to 0, because the gradient of these
coordinates is always 0 and thus they do not change. Therefore, we get by Theorem
3.2.6 that Algorithm 3.1.3 converges for this problem and so it does for f(x).

Corollary 3.2.10. Algorithm 3.1.3 can be used to solve the problem of least squares
1.1.
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Proof. We can represent the function f(w) =
∑k

i=1(yi−wTxi)2 with vector notation.
Let y = (y1, . . . , yk)

T and let X be the matrix whose rows are xT1 , . . . , xTk . Then

f(w) = wtXTXw − 2yTXw + yTy

And the result follows by Corollary 3.2.9 and the fact that XTX is symmetric and
semidefinite-positive. Both properties are straightforward:

(
XTX

)T
= XT

(
XT
)T

=

XTX and wTXTXw = (Xw)T (Xw) ≥ 0.
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Chapter 4

Experimental results

In this section we apply the methods in the previous sections and some of their
HD variants to two problems: fitting a logistic regression classifier and the training of
a multi-layer neural network. The aim of this section is to show that HD algorithms
slightly outperform the executions of the non HD variants but since they adapt the
learning rate there is no need for tuning any hyperparameter. We will start describing
the algorithms used and will conclude commenting on the results of the experiments.

4.1 Algorithms

We have implemented Stochastic Gradient Descent 2.4 (SGD), Adam 2.4.1 and
their HD variants using the multiplicative rule. Using the definition of HD with
multiplicative rule 3.4 we have that the update rule of HD for SGD is

αt ← αt−1

1 + β
∇f̃t(xt) · ∇f̃t−1(xt−1)∥∥∥∇f̃t(xt)∥∥∥∥∥∥∇f̃t−1(xt−1)∥∥∥


while the update rule of HD for Adam is:

yt,i ← m̂t−1,i/(
√
v̂t−1,i + ε), for 1 ≤ i ≤ n

αt ← αt−1

1 + β
∇f̃t(xt) · yt∥∥∥∇f̃t(xt)∥∥∥∥∥∥yt∥∥∥

 .

Note that HD needs to compute the gradient at the point obtained at each iter-
ation. In most gradient descent methods, we need to compute this gradient anyway,
so the extra computation that the HD variants require is quite little. However, in
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Nesterov’s Accelerated Gradient Descent 2.3.1 at each iteration we do not compute
the gradient at the point obtained in each iteration but the gradient of an interme-
diate point, for which we do not have guarantees of convergence. If we were going
to implement the HD variant for Nesterov’s algorithm, we would have to compute
two gradients at each iteration, making the method much worse in practice than just
Nesterov’s algorithm. We have implemented Nesterov’s method without HD in order
to compare its execution to the rest of the algorithms. In fact, we have implemented
a slight different method to the one presented before, since we do not know the con-
dition number a priori. There are two alternatives to solve this problem. We could
treat the condition number as a hyperparameter and execute the method with dif-
ferent values of it and take the best of the executions. However this requires a lot of
extra computation. In his original work, Nesterov also proposed a method that does
not need to know the condition number, although the theoretical bounds of conver-
gence are worse, see [5]. We have implemented this version of Nesterov’s Accelerated
Gradient Descent. This method defines the following numbers:

λ0 = 0, λt =
1 +

√
1 + 4λ2t−1
2

, and γt =
1− λt
λt+1

.

The update rule is the same as in 2.3.1, but substituting (
√
κ − 1)/(

√
κ+ 1) by γt,

that is:

xt = yt−1 − α∇f(yt−1)

yt = (1− γt)xt + γtxt−1,

for t ≥ 1. Recall that the initial point x0 is an input of the algorithm and that
x0 = y0. In the implementation we do not use the gradient in each iteration but an
approximation of it using minibatches.

We saw in the previous section some advantages that the multiplicative rule has
versus the additive one. However, in practice, the multiplicative rule presents a
problem: if the initial learning rate is very small, the multiplicative distance between
this initial learning rate and the optimal learning rate in the beginning could be very
large. This will make the algorithm very slow in the beginning until the learning rate
finds a good approximation of the optimal learning rate. Solving this problem will
make the method almost independent of the choice of the initial learning rate, which
is one of the best properties of our final algorithms. The solution is quite simple:
when the execution starts, detect if the learning rate has to increase or decrease. If
it has to increase (resp. decrease) multiply it by 2 (resp. divide it by 2) successively
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until the learning rate has to decrease (resp. increase). If we were multiplying the
learning rate by 2 we divide it once by 2. Hence after this process the learning
rate is always less than the optimal learning rate at the initial point and the factor
that the learning rate has to be multiplied by is at most 2. Then we start the HD
algorithm. In this way, with a reasonable value of β, the learning rate will not need a
lot of iterations to approximate the optimal learning rate for the first time. We can
detect if the learning rate needs to increase or decrease computing x1 and seeing if
the HD rule would have increased the learning rate. Then we update the learning
rate and repeat the process using x0 and the new learning rate. We have defined this
process in such a way that we start the algorithm with a learning rate less than the
optimal one because otherwise the norm of the objective could increase a lot in the
first iterations. Mathematically, this does not present any problem, since after the
learning rate has been adapted sufficiently well, the objective will decrease quickly.
However, in practice we could incur in overflow errors.

4.2 Experiments

For the experiments we have used the framework and the code used in [3], which
uses Torch [6]. In particular we have used the same architectures for solving Logistic
Regression and training a Multi-Layer Perceptron (MLP). We have implemented all
the HD update rules.

For the logistic regression classifier we have used the MNIST database (http:
//yann.lecun.com/exdb/mnist/) assigning membership probabilities for ten classes
to input vectors of length 784. We use the full 60, 000 images in MNIST for training
and compute the validation loss using the 10, 000 test images. L2 regularization is
used with a coefficient of 10−4. For the algorithms without HD descent, we have tuned
the learning rate so the performances are approximately optimal. The resulting values
for the learning rate are 10−2 for SGD and Nesterov’s method and 10−3 for Adam.

The MLP neural network is executed again on the MNIST database. The net-
work consists of two fully connected hidden layers with 1, 000 units each and ReLU
activations. L2 regularization is applied with a coefficient of 10−4. We also tuned the
learning rate for the algorithms without HD and the optimal values are 10−2 for SGD
and Nesterov’s method and 10−3 for Adam. We use the default values for β1 = 0.9,
β2 = 0.999 and ε = 10−8 which are the values suggested in the original paper [14].

The value of the hyperparameter β indicates the speed of adaptation. We used
β = 0.05 for all the executions. We also note that for most applications this value is
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Logistic Regression. Plots showing 3 epochs (1st row) and 20 epochs (2nd row).
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MLP training. Plots showing 3 epochs (1st row) and 20 epochs (2nd row).
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Figure 4.1
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good enough because the learning rate adapts exponentially fast and this value only
changes the base. That is, the adaptation process is faster than the actual change of
the optimal learning rate needed at each step and thus there is no apparent need to
tune this base to its optimal value.

In Figure 4.1 we show the execution of 3 and 20 epochs for Linear Regression and
MLP with the algorithms SGD, Adam, their HD corresponding algorithms SGD-HD
and Adam-HD and finally SGD-N that is Nesterov’s method. One epoch is one full
pass through the entire training set of 60, 000 images with a minibatch size of 128. In
the same figure, we show executions of 3 and 20 epochs of SGD-HD and Adam-HD
for Linear Regression and MLP starting with very different learning rates. We see
that the learning rate becomes more or less the same for all the cases at any given
time and the training loss is also similar. The validation loss was similar as well.

In both problems we can see how the learning rate for SGD-HD, that started with
a small value, increases quickly to approximate an optimal learning rate that at the
beginning seems to be large and then it adapts little by little to the geometry of the
function at every moment. In the case of Adam the learning rate shows a similar
behaviour but with much smaller values, mainly due to the fact that the parameters
m̂t, v̂t in the Adam algorithm already adapt the distance between one update and
the other making value of the learning rate for this algorithm usually lower than for
SGD.

The logistic regression problem is convex, but it is not the case for MLP. That
is probably the reason why close to epoch 20 each algorithm’s loss decreases very
slowly, because they are in a local minimum. We have executed the same network for
different starting points and the results have been all similar. It seems that SGD-HD
always gets stuck in worst local minima than the others algorithms. In any case, in
these kinds of non convex problems, our interest should be in the first epochs, and it
seems that in this case the HD variants behave a bit better.

However, we are comparing the best execution of the non HD variants against one
HD variant. The execution of the non HD variants are much worse with a different
initial learning rate. The desirable property that HD offers is that the choice of the
initial learning rate is not important, since it will be adapted to the geometry of the
problem. In figures 4.3 we show the executions of SGD-HD and ADAM-HD for both
problems Logistic Regression and MLP with different initial learning rates: 10−6,
10−4, 10−3, 10−2 . We see that the executions are very similar in every case, which is
what we expected.
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Figure 4.2: SGD adaptation

The results in plots showing loss versus iteration or epoch remain virtually the
same when they are plotted versus wall-clock time. This is not unexpected since the
extra computation that the HD rules involve is very small.

We conclude this section with the experiment of Figure 4.2 which shows the loss
function of the same execution in Figure 4.1 of SGD-HD for MLP after each iteration
instead of after each epoch. This plot shows that the behaviour is precisely what we
wanted. We start with a small value for the learning rate that is not optimal for the
starting point and the SGD-HD algorithm adapts the learning rate increasing it until
it is 0.04. The loss function does not decrease so much as the one of the SGD algorithm
at the beginning because SGD-HD needs some iterations to approximate well the
optimal learning rate for the first time but after it has got a good approximation the
loss decreases much faster.

In conclusion, the execution of the HD variants seems to work slightly better than
the best execution of the non HD algorithms while at the same time we do not have to
tune the initial learning rate of the HD algorithms, making them a convenient option
for solving large scale optimization problems.
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Figure 4.3: SGD (left) and Adam (right) executions with different initial values of
the learning rate. The first four plots correspond to Logistic Regression and the four
last plots to MLP.
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