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Abstract. The estimation of the median and mean is a central prob-
lem in statistics. When it comes to permutation data the median
estimation problem is called aggregation problem. The problem is
challenging both computationally and statistically, since provable
algorithms are known only for a hand-full of cases.

In this paper, we consider the permutation aggregation problem
in a general probabilistic setting. This algorithm is given a data-set
drawn form a distribution P and a choose for a distance function
d and outputs the provably good estimator for the median of P in
polynomial time. For the first time, one algorithm can be shown to
work for different generating distributions.

1 Introduction
The permutation aggregation problem (PA) has been studied in differ-
ent communities, such as Social Choice [2], Machine Learning [16]
and Operation Research [1, 11], under a variety of names such as
Rank Aggregation Problem, Linear Ordering Problem (LOP) or Ke-
meny ranking problem. A metric-based approach to PA looks for
the permutation that minimizes the sum of the distances to a sample
of permutations. For most choices of distances this problem is NP-
hard [11, 12]. Statistical-based approaches characterize generating
distribution for which algorithm converge towards correct estima-
tors [16, 4]. In this paper, we take a statistical perspective to the
permutation aggregation problem and propose an algorithm that is
shown to recover the correct estimator with high probability in poly-
nomial time when for several generating distributions of the given
sample, thus the name Universal aggregation.

The depth functions offer theoretical foundation to extend statistical
concepts of quantiles or robustness to multivariate data. Recently, the
notion of depth has been generalized to permutation spaces and differ-
ent applications have been studied. One of these applications is a rank
aggregation algorithm that trims data points until a median trivially
arises. In this paper, we improve this algorithm by (i) generalizing the
distances and (ii) proposing a Markov Chain framework for the sake
of analysis.

Problem statement: aggregating permutations Let P be a dis-
tribution for permutations centered at σ0 ∈ Sn. The problem of
aggregation consists on obtaining an estimator for σ0 given sample S
drawn from P .

Contribution We give an algorithm for the aggregation problem
that returns an estimator for σ0 with provable guarantees for different
distributions P , in particular:
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• We give the first provable aggregation algorithm for samples dis-
tributed according Plackett-Luce, Mallows and Generalized Mal-
lows under Spearman’s-ρ and Spearman’s-footrule, Ulam and Cay-
ley distances.

• We give a new provable algorithm for Mallows and Generalized
Mallows under Kendall’s-τ and Hamming distances.

2 Preliminaries
We start by recalling basic definition and previous results. Throughout
the paper, permutations are denoted with Greek letters. The group
operation is the composition σ · π, denoted σπ, and the inverse of
σ is denoted σ−1. The group of permutations of n items is denoted
Symmetric group, Sn.

2.1 Ranking models
Probability models for permutations [5] assign a probability value
to each permutation σ ∈ Sn, P : Sn → R+. The universality of
the proposed algorithm comes for the fact that it can be shown to
return the correct estimator with high probability for a number of
distributions. In particular,we consider the distributions that satisfy
the next property. Later, we give examples of distributions that satisfy
it.

The next definition generalizes a property presented in [5] for
distributions on permutations. Intuitively, it says that the probability
P is non-increasing as it moves farther from the mode, along a certain
type of path. The original definition considers transpositions, i.e.,
the Kendall’s-τ distance, while the following definition extends it to
Cayley and Hamming distances, i.e., swaps and insertions.

Definition 1 (STRONGLY-UNI-MODAL RANKING MODELS). Let P
be a distribution for permutations with mode in σ0. Let d be one
of Kendall’s-τ , Cayley or Ulam. Let τ be a permutation that moves
from any permutation σ to another permutation στ at distance 1, i.e.,
d(σ, στ) = 1 for all σ. Then P is strongly-uni-modal w.r.t. d if for
every τ, σ, d(σ0, στ) > d(σ0, σ)⇐⇒ P (σ) ≥ P (στ).

We now characterize the best know models under the extension of
the strongly-uni-modal condition (summary in Table 1):

• The Plackett-Luce [18, 19], Mallows model based on Kendall’s-
τ , Spearman’s-ρ and Spearman’s-footrule and the Generalized
Mallows model under the same distances (for a decreasing value
of the dispersion parameters) [5, 9, 8, 12] are strongly-uni-modal
w.r.t. the Kendall’s-τ distance.

• The Mallows and Generalized Mallows (for a decreasing value of
the dispersion parameters) under the Cayley [13, 12] and Hamming
distances [14, 12] are strongly-uni-modal w.r.t. Cayley distance.

• The Mallows model under the Ulam [15, 12] distance is strongly-
uni-modal w.r.t. Ulam distance.
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Table 1. Summary of the pairs of distributions P and distances d such that
P is strongly-uni-modal w.r.t. d.

The next definition describes a graph pn the permutations in Sn

where the adjacency matrix is parameterized by a distance, which
again is one of Kendall’s-τ , Cayley or Ulam. This graph will be the
base for the Markov Chain.

Definition 2. The Cayley-Graph Γd = Γ(Sn, d) is defined on Sn:
each permutation σ ∈ Sn is associated to a node; There is an edge
in σ, σ′ ⇐⇒ d(σ, σ′) = 1. It follows that the Cayley-Graph differs
depending on the distance d considered.
The three distances are editing distances [6] w.r.t. three generating
sets , i.e., inversions, swaps and insertions. These generating sets can
be used in the definition of the Cayley-Graph to obtain equivalent
definitions.

2.2 Aggregation problem
Statistical approach The statistical framework for the aggregation
problem assumes that there exists a generative distribution P for the
data. We want to find the median permutation, defined as the σ∗ that
satisfies

LP (σ
∗) = min

σ∈Sn

LP (σ), (1)

where

LP (σ) = EΣ∼P [d(σ,Σ)] (2)

and P is one of: Plackett-Luce, Mallows and Generalized Mallows
under Spearman’s-ρ and Spearman’s-footrule, Kendall’s-τ , Hamming,
Ulam, Cayley distances. When P is strongly-uni-modal w.r.t. dis-
tance d its easy to see that the minimizer is σ0, i.e., σ∗ = σ0. Full
statistical problem analysis for Kendall’s-τ is given in [16] and refer-
ences therein. Moreover, its known that Borda algorithm [3] returns
an unbiased estimator of the median permutation with low sample
complexity and in quasi-linear time for data distributed according to
MM under Kendall’s-τ but it does not return an unbiased estimator
when other distances are considered [4, 8]. The statistical problem
under Hamming has also been considered in [14].

2.3 Depth functions
The concept of statistical depth was introduced to allow defining
a center-outward ordering of points in the support of a probability
distribution P on Rd, so as to extend the notions of order and (signed)
rank statistics, see e.g. and [17, 20]. This idea has recently been
generalized to permutation spaces [10], and several depth properties
(such as invariance, maximality at center and monotonicity) have
been shown to be satisfied for distributions on permutations. A depth
function for permutation data DP : Sn → R+ relative to P : Sn →

Algorithm 1: Universal permutation aggregation
Data: {σ1, . . . , σN} ∼ P , a distance d
Result: σ̂∗

1 σ ← random permutation of n items;
2 while True do
3 T ← {π : d(σ, π) = 1} ;
4 if T is empty then return σ;
5 ∀π ∈ T , with probability pσ,π σ ← π ;

R+ should ideally assign the highest values DP (x) to points x ∈ Sn

near the “center” of the distribution. The next lines provide a formal
description.

Definition 3. (METRIC-BASED RANKING DEPTH [10]) Let d be a
distance and P a distribution on Sn. The ranking depth based on d

is defined as: D(d)
P : ∀σ ∈ Sn, D(d)

P (σ) = EP [||d||∞ − d(σ,Σ)] =
||d||∞ − LP (σ), with ||d||∞ = max(σ,σ′)∈S2

n
d(σ, σ′).

As the distribution P of interest is generally unknown in prac-
tice, its analysis relies on the observation of N ≥ 1 independent
realizations X1, . . . , XN of P . A statistical version of DP (x)

can be built by replacing P with its empirical counterpart P̂N =
(1/N)

∑N
i=1 δXi , yielding the empirical depth function DP̂N

(x). Its
consistency and asymptotic normality have been studied for various
notions of depth, refer to e.g. [7, 21],

3 Contribution: Aggregation as a random process
based on depths

In this section, we detail the main contribution of this paper, an
algorithm for permutation aggregation with theoretical guarantees.
The pseudo-code of our proposal is given in Algorithm 1. It takes
as input (i) the data-set S i.i.d. with regard to P and (ii) a distance
function d. This algorithm is guaranteed to output the median ranking
of the data-set with high probability if P is strongly-uni-modal w.r.t.
d.

Algorithm 1 is a random process defined by a Markov chain over
the Cayley-Graph defined by d, Γd. The transition probability matrix
assigns equal probability to all the neighbouring nodes that have a
larger depth D̂(π), i.e.,

pσ,π =
1[D̂N (π)− D̂N (σ) > 0]

|
∑

π′ 1[D̂N (π′)− D̂N (σ) > 0]|
(3)

Esentially, the algorithm works as follows: It starts from a random
permutation σ. It evaluates the neighbours permutations σ′, i.e., the
permutations at distance 1 from σ. It moves to the first neighbour with
greater empirical depth D(σ) < D(σ′).

The next result summarizes the main contribution of this paper, the
quality guarantees for Algorithm 1 and the characterization of the
proper choice for the distance for convergence.

Theorem 4. (PROVABLE GUARANTEES FOR ALGORITHM 1) Let
P be strongly-uni-modal w.r.t. distance d and centered in σ0 and let
{σ1, . . . , σN} ∼ P . Algorithm 1 based on distance d returns the
median permutation σ0 with high probability if P is strongly-uni-
modal w.r.t. d (see summary in of these pairs in Table 1). Its time
complexity is characterized in Lemma 6.

To show this result, we first need to proof the following one. Theo-
rem 5 shows that if we move far away from the mode with a particular



type of move then the depth decreases. In particular, it characterizes
the moves and the generating distribution for which this holds.

Theorem 5. (MONOTONICITY ON DEPTHS) Let P be strongly-uni-
modal w.r.t. d and centered at σ0. Let σ, στ ∈ S2

n be two permuta-
tions at distance 1 from each other, d(σ0, σ) + 1 = d(σ0, στ). Let
the depth function D

(d)
P be based on the same distance. Then

D
(d)
P (σ) > D

(d)
P (στ).

Proof. This result was given in [10] for Kendall’s-τ , here we extend
it for Cayley, Hamming and Ulam. By definition, we have

D
(d)
P (σ) > D

(d)
P (στ)⇐⇒ LP (σ) < LP (στ) (4)

Where the left hand side can be written as follows

LP (σ) =
∑

π∈Sn

p(π)d(σ, π) (5)

and the right hand side as follows

LP (στ) =
∑

π∈Sn

p(π)d(στ, π)

=
∑

π∈S+
n

p(π)(d(στ, π) + 1) +
∑

π∈S+
n

p(π)(d(στ, π)− 1)

=
∑

π∈Sn

p(π)d(στ, π) +
∑

π∈S+
n

p(π)−
∑

π∈S−
n

p(π)

(6)

where S+
n is the subsets of Sn closest to σ than to στ (respectively

S−
n the farthest). Noting that for every π ∈ S+

n we can construct
πτ ∈ S−

n (and the other way around) and that p(π) > p(πτ) con-
cludes that LP (στ) > LP (σ) and conclude.

Theorem 5 ensures that for the specific choices of P and d in
Table 1, convergence to the optimum is guaranteed, i.e., the moves
on the Cayley-Graph that decrease the distance to σ0 will increase
the depth. In practice we use D̂N (σ) as an approximation of DP (σ),
and it can be shown that supσ∈Sn

|D̂N (σ)−DP (σ)| gets arbitrarily
small. [10].

We can now provide the proof for Theorem 4.

Proof. (for THEOREM 4) Algorithm 1 visits a sequence of permuta-
tions with increasing depth D

(d)
P . By Theorem 5 this means that the

same sequence is decreasing in distance d to the the median permuta-
tion iff the population is distributed according to P . We end this by
referring to [10] for the learning rates supσ∈Sn

|D̂N (σ)−DP (σ)|
get arbitrarily small.

Regarding the time complexity, we have the following result.

Lemma 6 (Time complexity). The naive time complexity of Algo-
rithm 1 is O(a · b · c) where a is the EΣ∈P [d(Σ, σ)], b is the number
of EOs for d, i.e., the number of permutations at distance 1, and c
the cost of computing the depth under a d. Slight modifications over
the trivial version yield a O(n3) for Kendall’s-τ and O(n2m) for the
Cayley.

4 Experiments
We illustrate the performance of the proposed Algorithm 1 for permu-
tation aggregation via simulated experiments.

Setting 1 We draw a sample of m = 50 permutations of
n = {30, 50} from distribution P (Mallows under Cayley, Kendall’s-
τ , Hamming and Ulam). We run Algorithm 1 with distance d (one of
Cayley, Kendall’s-τ , Hamming and Ulam).

Reading the figures The results of this experiment is shown in
Figure 1 for P being a Mallows model based on Kendall’s-τ and a
depth based on Kendall’s-τ , Figure 2 for P being a Mallows model
based on Cayley and a depth based on Cayley, Figure 3 for P being
a Mallows model based on Ulam and a depth based on Ulam, and
Figure 4 for P being a Mallows model based on Hamming and a
depth based on Cayley. The figures represent the permutations in the
dataset as blue points and the sequence of permutations visited by the
algorithm as a red line.

Each permutation in the sample is plot in the point specified by its
empirical depth (X-axis) and its distance to the median (Y-axis). We
avoid plotting in the same figure every σ ∈ Sn due to the large cardi-
nality of Sn, which is n!. However, we claim based upon previous
results that the empirical depth is close enough to the real one even
with such small sample size m << n!, [10].

The permutation aggregation problem consists on obtaining the
minimizer in

arg min
σ∈Sn

1

N

∑
Σ∈S

[d(σ,Σ)] (7)

given a sample drawn from P as an approximant of the loss minimizer
Equation (2). Since this in a synthetic experiment, σ0 is known and
so is d(σ, σ0) for all σ in the sample but, in general, its not known.
In this paper, we present an algorithm for estimating σ0 using the
empirical depth D̂

(d)
P , which is always known provided a sample.

A baseline method for the aggregation probem is to get the deepest
permutation in the sample S, given in Equation (??). The deepest per-
mutation in each plot are the top-most permutations. This is justified
by Theorem 5.

We describe now the random-chain of permutations visited by
Algorithm 1 and displayed as red lines in the plots. For each sample
we run the Algorithm 1 3 times and therefore, there are 3 red lines in
each plot. Each algorithm run starts on a random permutation σ (Line 1
in the algorithm). It follows that this point is plotted as the bottom-
most point of the red line, in (d(σ, σ0), D̂

(d)
P (σ)). The sequence of

permutations accepted by the algorithm (Line 5) is a sequence with
increasing depth and (with high probability) with smallest distance
to the median permutation σ∗. The sequence of permutations is plot
in red in the same figures, starting in the bottom-right corner and
increasing in depth. The algorithm halts when there is no permutation
at distance 1 from the current one with larger depth, this point is
displayed with a red cross.

Results Algorithm 1 returns the top-most permutation of the se-
quence (red cross). This algorithm returns the ground truth σ∗ iff the
sequence finishes at X-axis value equals 0. In all the cases the results
improve on the baseline method that consists on returning the deepest
permutation in the sample.

Setting 2: Is the choice of the distance really relevant in Algo-
rithm 1? The next experimental setting is designed to show that
even though the minimizer of all distance functions is the same in
all cases it is still very relevant which distance you choose in Algo-
rithm 1. This point has been already answered in a theoretical way in
Theorem 5 and now we will provide empirical evidence.



Figures 1 corresponds to the case in which the P is strongly-uni-
modal w.r.t. distance d1 and the depth in Algorithm 1 is a different
distance d2. In all the figures, we see, as before, the sequence of visited
permutations in a red line. However, we now see that a increase in
depth does not necessarily imply a decrease in the distance to the
ground truth σ∗, i.e., the red line is not now diagonally increasing
from right to left, but instead it increases vertically.

Moreover, we can see that in all the 3 cases the deepest permutation
(provided we choose the correct distance) is better than the algorithm
returned by Algorithm 1 when the distance chosen in not strongly-
uni-modal w.r.t. the distribution that generated the permutation.

The takeaway for this experiment is that the choose of the distance
in Algorithm 1 is not arbitrary, and we have this point shown both
theoretically and empirically.

5 Conclusions and future work

In this paper, we have proposed the first permutation aggregation
algorithm in a universal setting, i.e., for a wide number of generating
distributions. For some distributions, such as the Plackett-Luce and
Mallows under Hamming and Ulam this is the first algorithm with
guarantees.

A natural improvement is to analyse a randomized version of the
algorithm, i.e., to characterize the number of times one has to run the
algorithm in order to hit the optimum with arbitrary large probability.

The problem of the robustness of the estimators is intrinsic to any
estimation algorithm. Depths are a classical tool for analyzing and
improving robustness. Indeed, the idea of trimming data points based
on their depth has already been studied for permutation problems [10].
We plan to extend our analysis to a fully stochastic approach in which
we use a re-sampling scheme of the sample with probability propor-
tional to this empirical depths to increase robustness.

In a broader perspective, this paper opens a new line in the analysis
of combinatorial optimization problems. In the absence of a well-
established notion of convergence in functions for permutation spaces,
depths are a tool to analyze performance of combinatorial algorithm.
Indeed, the algorithm seen here can be seen as Local search algorithm
for the Linear Ordering Problem (LOP) or Kemeny problem. Under
this perspective, the results in this paper ensure that there exists opti-
mality conditions that depend on the instance and the neighbourhood
system that can be easily identified.
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Figure 1. Distribution with strongly-uni-modal w.r.t. the Kendall’s-τ distance and depth based on Kendall’s-τ .
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Figure 2. Distribution with strongly-uni-modal w.r.t. the Cayley distance and depth based on Cayley.
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Figure 3. Distribution with strongly-uni-modal w.r.t. the Ulam distance and depth based on Ulam.
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Figure 4. Distribution with strongly-uni-modal w.r.t. the Hamming distance and depth based on Cayley.
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Figure 5. Distribution with strongly-uni-modal w.r.t. the a distance different from the one in the depth.


