
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Strategies for Migrating Oracle
Databases to AWS

First Published December 2014

Updated January 27, 2022

https://docs.aws.amazon.com/whitepapers/latest/strategies-migrating-oracle-db-to-aws/strategies-migrating-oracle-db-to-aws.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

 iii

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

 iv

Contents

Introduction .. 7

Data migration strategies .. 7

One-step migration ... 8

Two-step migration ... 8

Minimal downtime migration .. 9

Nearly continuous data replication .. 9

Tools used for Oracle Database migration ... 9

Creating a database on Amazon RDS, Amazon EC2, or VMware Cloud on AWS 10

Amazon RDS .. 11

Amazon EC2 .. 11

Data migration methods .. 12

Migrating data for small Oracle databases ... 13

Oracle SQL Developer database copy .. 14

Oracle materialized views .. 15

Oracle SQL*Loader .. 17

Oracle Export and Import utilities... 21

Migrating data for large Oracle databases ... 22

Data migration using Oracle Data Pump ... 23

Data migration using Oracle external tables ... 34

Data migration using Oracle RMAN .. 35

Data replication using AWS Database Migration Service .. 37

Data replication using Oracle GoldenGate ... 38

Setting up Oracle GoldenGate Hub on Amazon EC2 ... 41

Setting up the source database for use with Oracle GoldenGate 43

Setting up the destination database for use with Oracle GoldenGate 43

Working with the Extract and Replicat utilities of Oracle GoldenGate 44

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

 v

Running the Extract process of Oracle GoldenGate ... 44

Transferring files to AWS .. 47

AWS DataSync ... 47

AWS Storage Gateway .. 47

Amazon RDS integration with S3 .. 48

Tsunami UDP ... 48

AWS Snow Family.. 48

Conclusion ... 49

Contributors ... 49

Further reading .. 49

Document versions .. 50

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

 vi

Abstract

Amazon Web Services (AWS) provides a comprehensive set of services and tools for

deploying enterprise-grade solutions in a rapid, reliable, and cost-effective manner.

Oracle Database is a widely used relational database management system that is

deployed in enterprises of all sizes. It manages various forms of data in many phases of

business transactions. This whitepaper describes the preferred methods for migrating

an Oracle Database to AWS, and helps you choose the method that is best for your

business.

https://www.oracle.com/database/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 7

Introduction

This whitepaper presents best practices and methods for migrating Oracle Database

from servers that are on-premises or in your data center to AWS. Data, unlike

application binaries, cannot be recreated or reinstalled, so you should carefully plan

your data migration and base it on proven best practices.

AWS offers its customers the flexibility of running Oracle Database on Amazon

Relational Database Service (Amazon RDS), the managed database service in the

cloud, as well as Amazon Elastic Compute Cloud (Amazon EC2):

• Amazon RDS makes it simple to set up, operate, and scale a relational database

in the cloud. It provides cost-efficient, resizable capacity for an open standard

relational database, and manages common database administration tasks.

• Amazon EC2 provides scalable computing capacity in the cloud. Using Amazon

EC2 removes the need to invest in hardware up front, so you can develop and

deploy applications faster. You can use Amazon EC2 to launch as many or as

few virtual servers as you need, configure security and networking, and manage

storage.

Running the database on Amazon EC2 is very similar to running the database on your

own servers. Depending on whether you choose to run your Oracle Database on

Amazon EC2 or Amazon RDS, the process for data migration can differ. For example,

users don’t have OS-level access in Amazon RDS instances. It’s important to

understand the different possible strategies, so you can choose the one that best fits

your needs.

Data migration strategies
The migration strategy you choose depends on several factors:

• The size of the database

• Network connectivity between the source server and AWS

• The version and edition of your Oracle Database software

• The database options, tools, and utilities that are available

• The amount of time that is available for migration

https://www.oracle.com/database/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 8

• Whether the migration and switchover to AWS will be done in one step or a
sequence of steps over time

The following sections describe some common migration strategies.

One-step migration

One-step migration is a good option for small databases that can be shut down for 24 to

72 hours. During the shut down period, all the data from the source database is

extracted, and the extracted data is migrated to the destination database in AWS. The

destination database in AWS is tested and validated for data consistency with the

source. Once all validations have passed, the database is switched over to AWS.

Two-step migration

Two-step migration is a commonly used method because it requires only minimal

downtime and can be used for databases of any size:

1. The data is extracted from the source database at a point in time (preferably

during non-peak usage) and migrated while the database is still up and running.

Because there is no downtime at this point, the migration window can be

sufficiently large. After you complete the data migration, you can validate the

data in the destination database for consistency with the source and test the

destination database on AWS for performance, connectivity to the applications,

and any other criteria as needed.

2. Data changed in the source database after the initial data migration is

propagated to the destination before switchover. This step synchronizes the

source and destination databases. This should be scheduled for a time when the

database can be shut down (usually over a few hours late at night on a

weekend). During this process, there won’t be any more changes to the source

database because it will be unavailable to the applications.

Normally, the amount of data that is changed after the first step is small

compared to the total size of the database, so this step will be quick and

requires only minimal downtime. After all the changed data is migrated, you can

validate the data in the destination database, perform necessary tests, and, if all

tests are passed, switch over to the database in AWS.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 9

Minimal downtime migration

Some business situations require database migration with little to no downtime. This

requires detailed planning and the necessary data replication tools for proper

completion.

These migration methodologies typically involve two components: an initial bulk

extract/load, followed by the application of any changes that occurred during the time

the bulk step took to run. After the changes have applied, you should validate the

migrated data and conduct any necessary testing.

The replication process synchronizes the destination database with the source

database, and continues to replicate all data changes at the source to the destination.

Synchronous replication can have an effect on the performance of the source database,

so if a few minutes of downtime for the database is acceptable, then you should set up

asynchronous replication instead. You can switch over to the database in AWS at any

time, because the source and destination databases will always be in sync.

There are a number of tools available to help with minimal downtime migration. The

AWS Database Migration Service (AWS DMS) supports a range of database engines,

including Oracle running on-premises, in EC2, or on RDS. Oracle GoldenGate is

another option for real-time data replication. There are also third-party tools available to

do the replication.

Nearly continuous data replication

You can use nearly continuous data replication if the destination database in AWS is

used as a clone for reporting and business intelligence (BI), or for disaster recovery

(DR) purposes. In this case, the process is exactly the same as minimal downtime

migration, except that there is no switchover and the replication never stops.

Tools used for Oracle Database migration

A number of tools and technologies are available for data migration. You can use some

of these tools interchangeably, or you can use other third-party tools or open-source

tools available in the market.

https://aws.amazon.com/dms/
https://www.oracle.com/integration/goldengate/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 10

• AWS DMS helps you move databases to and from AWS easily and securely. It

supports most commercial and open-source databases, and facilitates both

homogeneous and heterogeneous migrations. AWS DMS offers change data

capture technology to keep databases in sync and minimize downtime during a

migration. It is a managed service with no client install required.

• Oracle Recovery Manager (RMAN) is a tool available from Oracle for

performing and managing Oracle Database backups and restorations. RMAN

allows full hot or cold backups, plus incremental backups. RMAN maintains a

catalogue of the backups, making the restoration process simple and

dependable. RMAN can also duplicate, or clone, a database from a backup or

from an active database.

• Oracle Data Pump Export is a versatile utility for exporting and importing data

and metadata from or to Oracle databases. You can perform Data Pump

export/import on an entire database, selective schemas, table spaces, or

database objects. Data Pump export/import also has powerful data-filtering

capabilities for selective export or import of data.

• Oracle GoldenGate is a tool for replicating data between a source and one or

more destination databases. You can use it to build high-availability

architectures. You can also use it to perform real-time data integration,

transactional change data capture, and replication in heterogeneous IT

environments.

• Oracle SQL Developer is a no-cost GUI tool available from Oracle for data

manipulation, development, and management. This Java-based tool is available

for Microsoft Windows, Linux, or iOS X.

• Oracle SQL*Loader is a bulk data-load utility available from Oracle for loading

data from external files into a database. SQL*Loader is included as part of the full

database client installation.

Creating a database on Amazon RDS, Amazon

EC2, or VMware Cloud on AWS

To migrate your data to AWS, you need a source database (either on-premises or in a

data center) and a destination database in AWS. Based on your business needs, you

can choose between using Amazon RDS for Oracle, or installing and managing the

https://aws.amazon.com/dms/
https://en.wikipedia.org/wiki/Change_data_capture
https://en.wikipedia.org/wiki/Change_data_capture
https://www.oracle.com/database/technologies/high-availability/rman.html
https://docs.oracle.com/cd/B28359_01/server.111/b28319/dp_export.htm#g1022624
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 11

database on your own in Amazon EC2 instance. To help you choose the service that’s

best for your business, see the following sections.

Amazon RDS

Many customers prefer Amazon RDS for Oracle because it frees them to focus on

application development. Amazon RDS automates time-consuming database

administration tasks, including provisioning, backups, software patching, monitoring,

and hardware scaling. Amazon RDS simplifies the task of running a database by

eliminating the need to plan and provision the infrastructure, as well as install, configure,

and maintain the database software.

Amazon RDS for Oracle makes it easy to use replication to enhance availability and

reliability for production workloads. By using the Multi-Availability Zone (AZ) deployment

option, you can run mission-critical workloads with high availability and built-in

automated failover from your primary database to a synchronously replicated secondary

database. As with all AWS services, no upfront investments are required, and you pay

only for the resources you use. For more information, see Amazon RDS for Oracle.

To use Amazon RDS, log in to your AWS account and start an Amazon RDS Oracle

instance from the AWS Management Console. A good strategy is to treat this as an

interim migration database from which the final database will be created. Do not enable

the Multi-AZ feature until the data migration is completely done, because replication for

Multi-AZ will hinder data migration performance. Be sure to give the instance enough

space to store the import data files. Typically, this requires you to provision twice as

much capacity as the size of the database.

Amazon EC2

Alternatively, you can run an Oracle database directly on Amazon EC2, which gives you

full control over setup of the entire infrastructure and database environment. This option

provides a familiar approach, but also requires you to set up, configure, manage, and

tune all the components, such as Amazon EC2 instances, networking, storage volumes,

scalability, and security, as needed (based on AWS architecture best practices). For

more information, see the Advanced Architectures for Oracle Database on Amazon EC2

whitepaper for guidance about the appropriate architecture to choose, and for

installation and configuration instructions.

https://aws.amazon.com/rds/oracle/
https://aws.amazon.com/console/
https://d1.awsstatic.com/whitepapers/aws-advanced-architectures-for-oracle-db-on-ec2.pdf

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 12

VMware Cloud on AWS

VMware Cloud on AWS is the preferred service for AWS for all vSphere-based

workloads. VMware Cloud on AWS brings the VMware software designed data center

(SDDC) software to the AWS Cloud with optimized access to native AWS services. If

your Oracle workload runs on VMware on-premises, you can easily migrate the Oracle

workloads to the AWS Cloud using VMware Cloud on AWS.

VMware Cloud on AWS has the capability to run Oracle Real Application Clusters

(RAC) workloads. It allows multi-cast protocols, and provides shared storage capability

across VMs running in VMware Cloud on AWS SDDC. VMware provides native

migration capabilities such as VMware VMotion and VMware HCX to move virtual

machines (VMs) from on-premises to the VMware Cloud on AWS. Depending on Oracle

workload performance patterns, service-level agreement (SLA), and the bandwidth

availability, you can choose to migrate the VM either live or using cold migration

methods.

Data migration methods

The remainder of this whitepaper provides details about each method for migrating data

from Oracle Database to AWS. Before you get to the details, you can scan the following

table for a quick summary of each method.

Each method depends upon business recovery point objective (RPO), recovery time

objective (RTO), and overall availability SLA. Migration administrators must evaluate

and map these business agreements with the appropriate methods. Choose the method

depending upon your application SLA, RTO, RPO, tool, and license availability.

Table 1 – Migration methods and tools

Data migration

method

Database size Works for: Recommended for:

AWS Database

Migration Service

Any size Amazon RDS

Amazon EC2

Minimal downtime migration

Database size limited by

internet bandwidth

Oracle SQL

Developer

Database copy

Up to 200 MB Amazon RDS

Amazon EC2

Small databases with any

number of objects

https://www.vmware.com/products/vmc-on-aws.html
https://www.oracle.com/database/real-application-clusters/
https://www.vmware.com/pdf/vmotion_datasheet.pdf
https://www.vmware.com/products/hcx.html
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r31/DatabaseCopy/DatabaseCopy.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 13

Data migration

method

Database size Works for: Recommended for:

Oracle Materialized

Views

Up to 500 MB Amazon RDS

Amazon EC2

Small databases with limited

number of objects

Oracle SQL*Loader Up to 10 GB Amazon RDS

Amazon EC2

Small to medium size

databases with limited

number of objects

Oracle Export and

Import

Oracle Utilities

Up to 10 GB Amazon RDS

Amazon EC2

Small to medium size

databases with large

number of objects

Oracle Data Pump Up to 5 TB Amazon RDS

Amazon EC2

VMware Cloud

on AWS

Preferred method for any

database from 10 GB to 5

TB

External tables Up to 1 TB Amazon RDS

Amazon EC2

VMware Cloud

on AWS

Scenarios where this is the

standard method in use

Oracle RMAN Any size Amazon EC2

VMware Cloud

on AWS

Databases over 5 TB, or if

database backup is already

in Amazon Simple Storage

Service (Amazon S3)

Oracle GoldenGate Any size Amazon RDS

Amazon EC2

VMware Cloud

on AWS

Minimal downtime migration

Migrating data for small Oracle databases

You should base your strategy for data migration on the database size, reliability, and

bandwidth of your network connection to AWS, and the amount of time available for

migration. Many Oracle databases tend to be medium to large in size, ranging

anywhere from 10 GB to 5 TB, with some as large as 20 TB or more. However, you also

might need to migrate smaller databases. This is especially true for phased migrations

https://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96652/part1.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96652/part1.htm
https://www.oracle.com/industries/utilities/
https://docs.oracle.com/cd/B19306_01/server.102/b14215/dp_overview.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14215/et_concepts.htm
https://www.oracle.com/database/technologies/high-availability/rman.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.oracle.com/integration/goldengate/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 14

where the databases are broken up by schema, making each migration effort small in

size.

If the source database is under 10 GB, and if you have a reliable high-speed internet

connection, you can use one of the following methods for your data migration. All the

methods discussed in this section work with Amazon RDS Oracle or Oracle Database

running on Amazon EC2.

Note: The 10 GB size is just a guideline; you can use the same methods
for larger databases as well. The migration time varies based on the data
size and the network throughput. However, if your database size exceeds
50 GB, you should use one of the methods listed in the Migrating data for
large Oracle databases section in this whitepaper.

Oracle SQL Developer database copy

If the total size of the data you are migrating is under 200 MB, the simplest solution is to

use the Oracle SQL Developer Database Copy function. Oracle SQL Developer is a

no- cost GUI tool available from Oracle for data manipulation, development, and

management. This easy-to-use, Java-based tool is available for Microsoft Windows,

Linux, or Mac OS X. With this method, data transfer from a source database to a

destination database is done directly, without any intermediary steps.

Because SQL Developer can handle a large number of objects, it can comfortably

migrate small databases, even if the database contains numerous objects. You will need

a reliable network connection between the source database and the destination

database to use this method. Keep in mind that this method does not encrypt data

during transfer.

To migrate a database using the Oracle SQL Developer Database Copy function,

perform the following steps:

1. Install Oracle SQL Developer.

2. Connect to your source and destination databases.

3. From the Tools menu of Oracle SQL Developer, choose the Database Copy

command to copy your data to your Amazon RDS or Amazon EC2 instance.

4. Follow the steps in the Database Copy Wizard. You can choose the objects

you want to migrate and use filters to limit the data.

https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 15

The following screenshot shows the Database Copy Wizard.

The Database Copy Wizard in the Oracle SQL Developer guides you through your data transfer

Oracle materialized views

You can use Oracle Database materialized views to migrate data to Oracle databases

on AWS, for either Amazon RDS or Amazon EC2. This method is well suited for

databases under 500 MB.

Because materialized views are available only in Oracle Database Enterprise Edition,

this method works only if Oracle Database Enterprise Edition is used for both the source

database and the destination database. With materialized view replication, you can do a

one-time migration of data to AWS while keeping the destination tables continuously in

sync with the source. The result is a minimal downtime cut over. Replication occurs over

a database link between the source and destination databases. For the initial load, you

must do a full refresh so that all the data in the source tables gets moved to the

destination tables.

https://docs.oracle.com/cd/E11882_01/server.112/e25554/basicmv.htm#DWHSG008

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 16

Important: Because the data is transferred over a database link, the
source and destination databases must be able to connect to each other
over SQL*Net. If your network security design doesn’t allow such a
connection, then you cannot use this method.

Unlike the preceding method (the Oracle SQL Developer Database Copy function) in

which you copy an entire database, for this method you must create a materialized view

for each table that you want to migrate. This gives you the flexibility of selectively

moving tables to the database in AWS. However, it also makes the process more

cumbersome if you need to migrate a large number of tables. For this reason, this

method is better suited for migrating a limited number of tables.

For best results with this method, complete the following steps. Assume the source

database user ID is SourceUser with password PASS:

1. Create a new user in the Amazon RDS or Amazon EC2 database with sufficient

privileges.

Create user MV_DBLink_AWSUser identified by password

2. Create a database link to the source database.

CREATE DATABASE LINK SourceDB_lnk CONNECT TO SourceUser

IDENTIFIED BY PASS USING

'(description=(address=(protocol=tcp) (host=

crmdb.acmecorp.com) (port=1521)) (connect_data=(sid=ORCLCRM)))’

3. Test the database link to make sure you can access the tables in the source

database from the database in AWS through the database link.

Select * from tab@ SourceDB_lnk

4. Log in to the source database and create a materialized view log for each table

that you want to migrate.

CREATE MATERIALIZED VIEW LOG ON customers

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 17

5. In the destination database in AWS, create materialized views for each table for

which you set up a materialized view log in the source database.

CREATE MATERIALIZED VIEW customer BUILD IMMEDIATE REFRESH

FAST AS SELECT * FROM customer@ SourceDB_lnk

Oracle SQL*Loader

Oracle SQL*Loader is well suited for small to moderate databases under 10 GB that

contain a limited number of objects. Because the process involved in exporting from a

source database and loading to a destination database is specific to a schema, you

should use this process for one schema at a time. If the database contains multiple

schemas, you need to repeat the process for each schema. This method can be a good

choice even if the total database size is large, because you can do the import in multiple

phases (one schema at a time).

You can use this method for Oracle Database on either Amazon RDS or Amazon EC2,

and you can choose between the following two options:

Option 1

1. Extract data from the source database, such as into flat files with column and row

delimiters.

2. Create tables in the destination database exactly like the source (use a

generated script).

3. Using SQL*Loader, connect to the destination database from the source machine

and import the data.

Option 2

1. Extract data from the source database, such as into flat files with column and row

delimiters.

2. Compress and encrypt the files.

3. Launch an Amazon EC2 instance, and install the full Oracle client on it (for

SQL*Loader). For the database on Amazon EC2, this can be the same instance

where the destination database is located. For Amazon RDS, this is a temporary

instance.

4. Transport the files to the Amazon EC2 instance.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 18

5. Decompress and unencrypt files in the Amazon EC2 instance.

6. Create tables in the destination database exactly like the source (use a

generated script).

7. Using SQL*Loader, connect to the destination database from the temporary

Amazon EC2 instance and import the data.

Use the first option if your database size is small, if you have direct SQL*Net access to

the destination database in AWS, and if data security is not a concern. Otherwise, use

the second option, because you can use encryption and compression during the

transportation phase. Compression substantially reduces the size of the files, making

data transportation much faster.

You can use either SQL*Plus or SQL Developer to perform data extraction, which is the

first step in both options. For SQL*Plus, use a query in a SQL script file and send the

output directly to a text file, as shown in the following example:

set pagesize 0

set head off

set feed off

set line 200

SELECT col1|| '|' ||col2|| '|' ||col3|| '|' ||col4|| '|'

||col5 from SCHEMA.TABLE;

exit;

To create encrypted and compressed output in the second option (see step 2 of the

preceding Option 2 procedure), you can directly pipe the output to a zip utility.

You can also extract data by using Oracle SQL Developer:

1. In the Connections pane, select the tables you want to extract data from.

2. From the Tools menu, choose the Database Export command, as shown in the

following screenshot.

https://docs.oracle.com/cd/B19306_01/server.102/b14357/qstart.htm
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 19

Database export command

3. On the Source/Destination page of the Export Wizard (see the next

screenshot), select the Export DDL option to generate the script for creating the

table, which will simplify the entire process.

4. In the Format drop-down on the same page, choose loader.

5. In the Save As box on the same page, choose Separate Files.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 20

Export Wizard options on the Source/Destination page

Continue to follow the Export Wizard steps to complete the export. The Export Wizard

helps you create the data file, control file, and table creation script in one step for

multiple tables in a schema, making it easier than using Oracle SQL*Plus to do the

same tasks.

If you use Option 1 as specified, you can run Oracle SQL*Loader from the source

environment using the extracted data and control files to import data into the destination

database. To do this, use the following command:

sqlldr userid=userID/password@$service control=control.ctl

log=load.log bad=load.bad discard=load.dsc data=load.dat direct=y

skip_index_maintenance=true errors=0

If you use Option 2, then you need an Amazon EC2 instance with the full Oracle client

installed. Additionally, you need to upload the data files to that Amazon EC2 instance.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 21

For the database on Amazon EC2, this could be the same Amazon EC2 instance where

the destination database is located. For Amazon RDS, this will be a temporary Amazon

EC2 instance.

Before you do the upload, we recommend that you compress and encrypt your files. To

do this, you can use a combination of TAR and ZIP/GZIP in Linux or a third-party utility

such as WinZip or 7-Zip. After the Amazon EC2 instance is up and running and the files

are compressed and encrypted, upload the files to the Amazon EC2 instance using

Secure File Transfer Protocol (SFTP).

From the Amazon EC2 instance, connect to the destination database using Oracle

SQL*Plus to ensure you can establish the connection. Run the sqlldr command

shown in the preceding example for each control file that you have from the extract. You

can also create a shell/bat script that will run sqlldr for all control files, one after the

other.

Note: Enabling skip_index_maintenance=true significantly increases

data-load performance. However, table indexes are not updated, so you
will need to rebuild all indexes after the data load is complete.

Oracle Export and Import utilities

Despite being replaced by Oracle Data Pump, the original Oracle Export and Import

utilities are useful for migrations of databases with sizes less than 10 GB where the data

lacks binary float and double data types. The import process creates the schema

objects, so you do not need to run a script to create them beforehand. This makes the

process well suited for databases with a large number of small tables. You can use this

method for Amazon RDS for Oracle and Oracle Database on Amazon EC2.

The first step is to export the tables from the source database by using the following

command. Substitute the user name and password as appropriate:

exp userID/password@$service FILE=exp_file.dmp LOG=exp_file.log

The export process creates a binary dump file that contains both the schema and data

for the specified tables. You can import the schema and data into a destination

database.

Choose one of the following two options for the next steps:

https://www.gnu.org/software/tar/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 22

Option 1

1. Export data from the source database into a binary dump file using exp.

2. Import the data into the destination database by running imp directly from the

source server.

Option 2

1. Export data from the source database into a binary dump file using exp.

2. Compress and encrypt the files.

3. Launch an Amazon EC2 instance and install the full Oracle client on it (for the

emp/imp utility). For the database on Amazon EC2, this could be the same

instance where the destination database is located. For Amazon RDS, this will

be a temporary instance.

4. Transport the files to the Amazon EC2 instance.

5. Decompress and unencrypt the files in the Amazon EC2 instance.

6. Import the data into the destination database by running imp.

If your database size is larger than a gigabyte, use Option 2, because it includes

compression and encryption. This method will also have better import performance.

For both Option 1 and Option 2, use the following command to import into the

destination database:

imp userID/password@$service FROMUSER=cust_schema

TOUSER=cust_schema FILE=exp_file.dmp LOG=imp_file.log

There are many optional arguments that can be passed to the exp and imp commands

based on your needs. For details, see the Oracle documentation.

Migrating data for large Oracle databases

For larger databases, use one of the methods described in this section rather than one

of the methods described in Migrating Data for small Oracle Databases. For the

purpose of this whitepaper, define a large database as any database 10 GB or more.

This section describes three methods for migrating large databases:

https://docs.oracle.com/cd/E11882_01/server.112/e22490/original_import.htm#SUTIL1637

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 23

• Data migration using Oracle Data Pump – Oracle Data Pump is an excellent

tool for migrating large amounts of data, and it can be used with databases on

either Amazon RDS or Amazon EC2.

• Data migration using Oracle external tables – The process involved in data

migration using Oracle external tables is very similar to that of Oracle Data

Pump. Use this method if you already have processes built around it; otherwise,

it is better to use the Oracle Data Pump method.

• Data migration using Oracle RMAN – Migration using RMAN can be useful if

you are already backing up the database to AWS, or using the AWS

Import/Export service to bring the data to AWS. Oracle RMAN can be used only

for databases on Amazon EC2, not Amazon RDS.

Data migration using Oracle Data Pump

When the size of the data to be migrated exceeds 10 GB, Oracle Data Pump is

probably the best tool to use for migrating data to AWS. This method allows flexible

data- extraction options, a high degree of parallelism, and scalable operations, which

enables high-speed movement of data and metadata from one database to another.

Oracle Data Pump is introduced with Oracle 10g as a replacement for the original

Import/Export tools. It is available only on Oracle Database 10g Release 1 or later.

You can use the Oracle Data Pump method for both Amazon RDS for Oracle, and

Oracle Database running on Amazon EC2. The process involved is similar for both,

although Amazon RDS for Oracle requires a few additional steps.

Unlike the original Import/Export utilities, the Oracle Data Pump import requires the data

files to be available in the database-server instance to import them into the database.

You cannot access the file system in the Amazon RDS instance directly, so you need to

use one or more Amazon EC2 instances (bridge instances) to transfer files from the

source to the Amazon RDS instance, and then import that into the Amazon RDS

database. You need these temporary Amazon EC2 bridge instances only for the

duration of the import; you can end the instances soon after the import is done. Use

Amazon Linux-based instances for this purpose. You do not need an Oracle Database

installation for an Amazon EC2 bridge instance; you only need to install the Oracle

Instance Client.

https://docs.oracle.com/cd/B19306_01/server.102/b14215/dp_overview.htm

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 24

Note: To use this method, your Amazon RDS database must be version
11.2.0.3 or later.

The following is the overall process for data migration using Oracle Data Pump for

Oracle Database on Oracle for Amazon EC2 and Amazon RDS.

Migrating data to a database in Amazon EC2

1. Use Oracle Data Pump to export data from the source database as multiple

compressed and encrypted files.

2. Use Tsunami UDP to move the files to an Amazon EC2 instance running the

destination Oracle database in AWS.

3. Import that data into the destination database using the Oracle Data Pump

import feature.

Migrating data to a database in Amazon RDS

1. Use Oracle Data Pump to export data from the source database as multiple files.

2. Use Tsunami UDP to move the files to Amazon EC2 bridge instances in AWS.

3. Using the provided Perl script that makes use of the UTL_FILE package, move

the data files to the Amazon RDS instance.

4. Import the data into the Amazon RDS database using a PL/SQL script that

utilizes the DBMS_DATAPUMP package (an example is provided at the end of this

section).

Using Oracle Data Pump to export data on the source instance

When you export data from a large database, you should run multiple threads in parallel

and specify a size for each file. This speeds up the export, and also makes files

available quickly for the next step of the process. There is no need to wait for the entire

database to be exported before moving to the next step.

As each file completes, it can be moved to the next step. You can enable compression

by using the parameter COMPRESSION=ALL, which substantially reduces the size of the

extract files. You can encrypt files by providing a password, or by using an Oracle

wallet and specifying the parameter ENCRYPTION= all. To learn more about the

compression and encryption options, see the Oracle Data Pump documentation.

http://tsunami-udp.sourceforge.net/
https://docs.oracle.com/cd/E11882_01/server.112/e22490/part_dp.htm

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 25

The following example shows the export of a 500 GB database, running eight threads in

parallel, with each output file up to a maximum of 20 GB. This creates 22 files totaling

175 GB. The total file size is significantly smaller than the actual source database size

because of the compression option of Oracle Data Pump:

expdp demoreinv/demo full=y

dumpfile=data_pump_exp1:reinvexp1%U.dmp,

data_pump_exp2:reinvexp2%U.dmp,

data_pump_exp3:reinvexp3%U.dmp filesize=20G parallel=8

logfile=data_pump_exp1:reinvexpdp.log compression=all

ENCRYPTION= all ENCRYPTION_PASSWORD=encryption_password

job_name=reInvExp

Using Oracle Data Pump to export data from the source database instance

Spreading the output files across different disks enhances input/output (I/O)

performance. In the following examples, three different disks are used to avoid I/O

contention.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 26

Parallel run in multiple threads writing to three different disks

Dump files generated in each disk

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 27

The most time-consuming part of this entire process is the file transportation to AWS, so

optimizing the file transport significantly reduces the time required for the data

migration. The following steps show how to optimize the file transport:

1. Compress the dump files during the export.

2. Serialize the file transport in parallel. Serialization here means sending the files

one after the other; you don’t need to wait for the export to finish before

uploading the files to AWS. Uploading many of these files in parallel (if enough

bandwidth is available) further improves the performance. We recommend that

you parallel upload as many files as there are disks being used, and use the

same number of Amazon EC2 bridge instances to receive those files in AWS.

3. Use Tsunami UDP or a commercial wide area network (WAN) accelerator to

upload the data files to the Amazon EC2 instances.

Using Tsunami to upload files to Amazon EC2

The following example shows how to install Tsunami on both the source database

server and the Amazon EC2 instance:

yum -y install make

yum -y install automake

 yum -y install gcc

yum -y install autoconf

yum -y install cvs

wget http://sourceforge.net/projects/tsunami-

udp/files/latest/download?_test=goal tar -xzf tsunami*gz

cd tsunami-udp*

./recompile.sh

 make install

After you’ve installed Tsunami, open port 46224 to enable Tsunami communication. On

the source database server, start a Tsunami server, as shown in the following example.

If you do parallel upload, then you need to start multiple Tsunami servers:

http://tsunami-udp.sourceforge.net/
http://sourceforge.net/projects/tsunami-

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 28

cd/mnt/expdisk1

 tsunamid *

On the destination Amazon EC2 instances, start a Tsunami server, as shown in the

following example.

If you do multiple parallel file uploads, then you need to start a Tsunami server on each

Amazon EC2 bridge instance.

If you do not use parallel file uploads, and if the migration is to an Oracle database on

Amazon EC2 (not Amazon RDS), then you can avoid the Amazon EC2 bridge instance.

Instead, you can upload the files directly to the Amazon EC2 instance where the

database is running. If the destination database is Amazon RDS for Oracle, then the

bridge instances are necessary because a Tsunami server cannot be run on the

Amazon RDS server:

cd /mnt/data_files

tsunami

tsunami> connect source.db.server

 tsunami> get *

From this point forward, the process differs for a database on Amazon EC2 versus a

database on Amazon RDS. The following sections show the processes for each service.

Next steps for a database on an Amazon EC2 instance

If you used one or more Amazon EC2 bridge instances in the preceding steps, then

bring all the dump files from the Amazon EC2 bridge instances into the Amazon EC2

database instance. The easiest way to do this is to detach the Amazon Elastic Block

Store (Amazon EBS) volumes that contain the files from the Amazon EC2 bridge

instances, and connect them to the Amazon EC2 database instance.

Once all the dump files are available in the Amazon EC2 database instance, use the

Oracle Data Pump import feature to get the data into the destination Oracle database

on Amazon EC2, as shown in the following example:

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 29

impdp demoreinv/demo full=y DIRECTORY=DPUMP_DIR dumpfile=

reinvexp1%U.dmp,reinvexp2%U.dmp, reinvexp3%U.dmp parallel=8

logfile=DPimp.log ENCRYPTION_PASSWORD=encryption_password

job_name=DPImp

This imports all data into the database. Check the log file to make sure everything went

well, and validate the data to confirm that all the data was migrated as expected.

Next steps for a database on Amazon RDS

Because Amazon RDS is a managed service, the Amazon RDS instance does not

provide access to the file system. However, an Oracle RDS instance has an externally

accessible Oracle directory object named DATA_PUMP_DIR. You can copy Oracle Data

Pump dump files to this directory by using an Oracle UTL_FILE package.

Amazon. RDS supports S3 integration as well. You could transfer files between the S3

bucket and Amazon RDS instance through S3 integration of RDS. The S3 integration

option is recommended when you want to transfer moderately large files to the RDS

instance dba_directories. Alternatively, you can use a Perl script to move the files

from the bridge instances to the DATA_PUMP_DIR of the Amazon RDS instance.

Preparing a bridge Instance

To prepare a bridge instance, make sure that Perl DBI and Oracle DBD modules are

installed so that Perl can connect to the database. You can use the following commands

to verify if the modules are installed:

$perl -e 'use DBI; print $DBI::VERSION,"\n";'

$perl -e 'use DBD::Oracle; print

$DBD::Oracle::VERSION,"\n";'

If the modules are not already installed, use the following process below to install them

before proceeding further:

1. Download Oracle Database Instant Client from the Oracle website and unzip it

into ORACLE_HOME.

2. Set up the environment variable, as shown in the following example:

https://www.perl.org/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 30

$ export ORACLE_BASE=$HOME/oracle

$ export ORACLE_HOME=$ORACLE_BASE/instantclient_11_2

$ export PATH=$ORACLE_HOME:$PATH

$ export TNS_ADMIN=$HOME/etc

$ export LD_LIBRARY_PATH=$ORACLE_HOME:$LD_LIBRARY_PATH

3. Download and unzip DBD::Oracle, as shown in the following example:

$ wget http://www.cpan.org/authors/id/P/PY/PYTHIAN/DBD- Oracle-

1.74.tar.gz

$ tar xzf DBD-Oracle-1.74.tar.gz $

$ cd DBD-Oracle-1.74

4. Install DBD::Oracle, as shown in the following example:

$ mkdir $ORACLE_HOME/log

$ perl Makefile.PL

$ make

$ make install

Transferring files to an Amazon RDS instance

To transfer files to an Amazon RDS instance, you need an Amazon RDS instance with

at least twice as much storage as the actual database, because it needs to have space

for the database and the Oracle Data Pump dump files. After the import is successfully

completed, you can delete the dump files so that space can be utilized.

It might be a better approach to use an Amazon RDS instance solely for data

migration. Once the data is fully imported, take a snapshot of RDS DB. Create a new

Amazon RDS instance using the snapshot and then decommission the data migration

instance. Use a single Availability Zone instance for data migration.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 31

The following example shows a basic Perl script to transfer files to an Amazon RDS

instance. Make changes as necessary. Because this script runs in a single thread, it

uses only a small portion of the network bandwidth. You can run multiple instances of

the script in parallel for a quicker file transfer to the Amazon RDS instance, but make

sure to load only one file per process so that there won’t be any overwriting and data

corruption. If you have used multiple bridge instances, you can run this script from all of

the bridge instances in parallel, thereby expediting file transfer into the Amazon RDS

instance:

RDS instance info

my $RDS_PORT=4080;

my $RDS_HOST="myrdshost.xxx.us-east-1-devo.rds-

dev.amazonaws.com";

my $RDS_LOGIN="orauser/orapwd";

my $RDS_SID="myoradb";

my $dirname = "DATA_PUMP_DIR";

my $fname= $ARGV[0];

my $data = ‘‘dummy’’;

my $chunk = 8192;

my $sql_open = "BEGIN perl_global.fh :=

utl_file.fopen(:dirname, :fname, 'wb', :chunk); END;";

my $sql_write = "BEGIN utl_file.put_raw(perl_global.fh,

:data, true); END;";

my $sql_close = "BEGIN utl_file.fclose(perl_global.fh);

END;";

my $sql_global = "create or replace package perl_global as

fh utl_file.file_type; end;";

my $conn =

DBI-

>connect('dbi:Oracle:host='.$RDS_HOST.';sid='.$RDS_SID.';por

t='.$RDS_PORT,$RDS_LOGIN, '') || die ($DBI::errstr . "\n")

;

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 32

my $updated=$conn->do($sql_global);

my $stmt = $conn->prepare ($sql_open);

$stmt->bind_param_inout(":dirname", \$dirname, 12);

$stmt->bind_param_inout(":fname", \$fname, 12);

$stmt->bind_param_inout(":chunk", \$chunk, 4);

$stmt->execute() || die ($DBI::errstr . "\n");

open (INF, $fname) || die "\nCan't open $fname for reading:

$!\n";

binmode(INF);

$stmt = $conn->prepare ($sql_write);

my %attrib = ('ora_type’,’24’);

my $val=1;

while ($val > 0) {

 $val = read (INF, $data, $chunk);

 $stmt->bind_param(":data", $data , \%attrib);

 $stmt->execute() || die ($DBI::errstr . "\n"); };

die "Problem copying: $!\n" if $!;

close INF || die "Can't close $fname: $!\n";

$stmt = $conn->prepare ($sql_close);

$stmt->execute() || die ($DBI::errstr . "\n");

You can check the list of files in the DBMS_DATAPUMP directory using the following query:

SELECT * from

table(RDSADMIN.RDS_FILE_UTIL.LISTDIR('DATA_PUMP_DIR'));

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 33

Once all files are successfully transferred to the Amazon RDS instance, connect to the

Amazon RDS database as a database administrator (DBA) user and submit a job by

using a PL/SQL script that uses DBMS_DATAPUMP to import the files into the database,

as shown in the following PL/SQL script. Make any changes as necessary:

Declare

 h1 NUMBER;

begin

h1 := dbms_datapump.open (operation => 'IMPORT', job_mode

=> 'FULL', job_name => 'REINVIMP', version => 'COMPATIBLE');

 dbms_datapump.set_parallel(handle => h1, degree => 8);

dbms_datapump.add_file(handle => h1, filename =>

'IMPORT.LOG', directory => 'DATA_PUMP_DIR', filetype => 3);

dbms_datapump.set_parameter(handle => h1, name =>

'KEEP_MASTER', value => 0);

 dbms_datapump.add_file(handle => h1, filename =>

'reinvexp1%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>

1);

 dbms_datapump.add_file(handle => h1, filename =>

'reinvexp2%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>

1);

 dbms_datapump.add_file(handle => h1, filename =>

'reinvexp3%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>

1);

 dbms_datapump.set_parameter(handle => h1, name =>

'INCLUDE_METADATA', value => 1);

 dbms_datapump.set_parameter(handle => h1, name =>

'DATA_ACCESS_METHOD', value => 'AUTOMATIC');

 dbms_datapump.set_parameter(handle => h1, name =>

'REUSE_DATAFILES', value => 0);

https://www.oracle.com/database/technologies/appdev/plsql.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 34

 dbms_datapump.set_parameter(handle => h1, name =>

'SKIP_UNUSABLE_INDEXES', value => 0);

 dbms_datapump.start_job(handle => h1, skip_current => 0,

abort_step => 0);

 dbms_datapump.detach(handle => h1);

end;

/

Once the job is complete, check the Amazon RDS database to make sure all the data

has been successfully imported. At this point, you can delete all the dump files using

UTL_FILE.FREMOVE to reclaim disk space.

Data migration using Oracle external tables

Oracle external tables are a feature of Oracle Database that allows you to query data in

a flat file as if the file were an Oracle table. The process for using Oracle external tables

for data migration to AWS is almost exactly the same as the one used for Oracle Data

Pump. The Oracle Data Pump-based method is better for large database migrations.

The external tables method is useful if your current process uses this method and you

don’t want to switch to the Oracle Data Pump-based method. Following are the main

steps:

1. Move the external table files to RDS DATA_PUMP_DIR.

2. Create external tables using the files loaded.

3. Import data from the external tables to the database tables.

Depending on the size of the data file, you can choose to either write the file directly to

RDS DATA_PUMP_DIR from an on-premises server, or use an Amazon EC2 bridge

instance, as in the case of the Data Pump-based method. If the file size is large and you

choose to use a bridge instance, use compression and encryption on the files as well as

Tsunami UDP or a WAN accelerator, exactly as described for the Data Pump-based

migration.

To learn more about Oracle external tables, see External Tables Concepts in the Oracle

documentation.

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-external-tables-concepts.html#GUID-44323E01-7D72-45EC-915A-99E596769D9E

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 35

Data migration using Oracle RMAN

If you are planning to migrate the entire database and your destination database is self-

managed on Amazon EC2, you can use Oracle RMAN to migrate data. Data migration

by using Oracle Data Pump is faster and more flexible than data migration using Oracle

RMAN; however, Oracle RMAN is a better option for the following cases:

• You already have an RMAN backup available in Amazon S3 that can be used. If

you are looking for options to migrate RMAN backups to S3, consider AWS

Storage Gateway or AWS DataSync services.

• The database is very large (greater than 5 TB), and you are planning to use AWS

Import/Export.

• You need to make numerous incremental data changes before switching over to

the database on AWS.

Note: This method is for Amazon EC2 and VMware Cloud on AWS. You
cannot use this method if your destination database is Amazon RDS.

To migrate data using Oracle RMAN:

1. Create a full backup of the source database using RMAN.

2. Encrypt and compress the files.

3. Transport files to AWS using the most optimal method.

4. Restore the RMAN backup to the destination database.

5. Capture incremental backups from the source, and apply them to the destination

database until switchover can be performed.

https://aws.amazon.com/storagegateway/
https://aws.amazon.com/storagegateway/
https://aws.amazon.com/datasync/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 36

Creating a full backup of the source database Using RMAN

Create a backup of the source database using RMAN:

$ rman target=/

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON; RMAN> BACKUP DATABASE

PLUS ARCHIVELOG

If you have a license for the compression and encryption option, then you already have

the RMAN backups created as encrypted and compressed files. Otherwise, after the

backup files are created, encrypt and compress them using tools such as ZIP, 7-Zip, or

GZIP. All subsequent actions occur on the server running the destination database.

Transporting files to AWS

Depending on the size of the database and the time available for migration, you can

choose the most optimal method for file transportation to AWS. For small files, consider

AWS DataSync. For moderate to large databases between 100 GB to 5 TB, Tsunami

UDP is an option, as described in Using Tsunami to upload files to EC2. You can

achieve the same results using commercial third-party WAN acceleration tools. For very

large databases over 5 TB, consider using AWS Storage Gateway or AWS Snow

Family devices for offline file transfer.

Migrating data to Oracle Database on AWS

There are two ways to migrate data to a destination database. You can create a new

database and restore from the RMAN backup, or you can create a duplicate database

from the RMAN backup. Creating a duplicate database is easier to perform.

To create a duplicate database, move the transported files to a location accessible to

the Oracle Database instance on Amazon EC2. Start the target instance in NOMOUNT

mode. Now use RMAN to connect to the destination database. For this example, we are

not connecting to the source database or the RMAN catalog, so use the following

command:

http://tsunami-udp.sourceforge.net/
http://tsunami-udp.sourceforge.net/
https://aws.amazon.com/snow/
https://aws.amazon.com/snow/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 37

$ rman AUXILIARY /

DUPLICATE TARGET DATABASE TO DBONEC2

 SPFILE

 NOFILENAMECHECK;

The duration of this process varies based on the size of the database and the type of

Amazon EC2 instance. For better performance, use Amazon Elastic Block Store

(Amazon EBS) General Purpose (SSD) volumes for the RMAN backup files. For more

information about SSD volume types, see Introducing the Amazon EBS General

Purpose (SSD) volume type.

Once the process is finished, RMAN produces a completion message, and you now

have your duplicate instance. After verification, you can delete the Amazon EBS

volumes containing the RMAN backup files. We recommend that you take a snapshot of

the volumes for later use before deleting them if needed.

Data replication using AWS Database Migration

Service

AWS Database Migration Service (AWS DMS) can support a number of migration and

replication strategies including a bulk upload at a point in time, a minimal downtime

migration leveraging Change Data Capture (CDC), or migration of only a subset of the

data. AWS DMS supports sources and targets in EC2, RDS, and on-premises. Because

no client install is required, the following steps are the same for any combination of the

above. AWS DMS also offers the ability to migrate data between databases as easily as

from Oracle to Oracle.

The following steps show how to migrate data between Oracle databases using AWS

DMS and with minimal downtime:

1. Ensure supplemental logging is enabled on the source database.

2. Create the target database and ensure database backups and Multi-AZ are

turned off if the target is on RDS.

3. Perform a no-data export of the schema using Oracle SQL Developer or the tool

of your choice, then apply the schema to the target database.

https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://aws.amazon.com/about-aws/whats-new/2014/06/16/introducing-the-amazon-ebs-general-purpose-ssd-volume-type/
https://aws.amazon.com/about-aws/whats-new/2014/06/16/introducing-the-amazon-ebs-general-purpose-ssd-volume-type/
https://aws.amazon.com/dms/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 38

4. Disable triggers, foreign keys, and secondary indexes (optional) on the target.

5. Create a DMS replication instance.

6. Specify the source and target endpoints.

7. Create a “Migrate existing data and replicate ongoing changes” task, mapping

your source tables to your target tables. (The default task includes all tables.)

8. Start the task.

9. After the full load portion of the tasks is complete and the transactions reach a

steady state, enable triggers, foreign keys, and secondary indexes.

10. Turn on backups and Multi-AZ.

11. Turn off any applications using the original source database.

12. Let the final transactions flow through.

13. Point any applications at the new database in AWS and start.

An alternative method is to use Oracle Data Pump for the initial load and DMS to

replicate changes from the Oracle System Change Number (SCN) point where data

dump stopped. More details on using AWS DMS can be found in the documentation. To

improve the performance of DMS replication, the schemas and tables can be grouped

into multiple DMS tasks. DMS tasks support wildcard entries for the names of the

schemas and tables.

Data replication using Oracle GoldenGate

Oracle GoldenGate is a tool for real-time change data capture and replication. Oracle

GoldenGate creates trail files that contain the most recently changed data from the

source database, then pushes these files to the destination database. You can use

Oracle GoldenGate to perform minimal downtime data migration. Oracle GoldenGate is

a licensed software from Oracle. You can also use it for nearly continuous data

replication. You can use Oracle GoldenGate with both Amazon RDS for Oracle, and

Oracle Database running on Amazon EC2.

The following steps show how to migrate data using Oracle GoldenGate:

1. The Oracle GoldenGate Extract process extracts all the existing data for the first

load. Extract, Pump and Replicat process refers to the GoldenGate Integrated

capture mode.

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://www.oracle.com/integration/goldengate/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 39

2. The Oracle GoldenGate Pump process transports the extracted data to the

Replicat process running in Amazon EC2.

3. The Replicat process applies the data to the destination database.

4. After the first load, the process runs continually to capture changed data and

applies it to the destination database.

GoldenGate Replicat is a key part of the entire system. You can run it from a server in

the source environment, but AWS recommends that you run the Replicat process in an

Amazon EC2 instance within AWS for better performance. This Amazon EC2 instance

is referred to as a GoldenGate Hub. You can have multiple GoldenGate Hubs,

especially if you are migrating data from one source to multiple destinations.

Oracle GoldenGate replication data flow process

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 40

Reference architecture for EC2:

Oracle GoldenGate replication from on-premises to Oracle Database on Amazon EC2

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 41

Reference architecture for RDS:

Oracle GoldenGate replication from on-premises to RDS Oracle Database on AWS

Setting up Oracle GoldenGate Hub on Amazon EC2

To create an Oracle GoldenGate Hub on Amazon EC2, create an Amazon EC2

instance with a full client installation of Oracle DBMS 12c version 12.2.0.3 and Oracle

GoldenGate 12.3.1.4. Additionally, apply Oracle patch 13328193. For more information

about installing GoldenGate, see the Oracle GoldenGate documentation.

This GoldenGate Hub stores and processes all the data from your source database, so

make sure that there is enough storage available in this instance to store the trail files. It

is a good practice to choose the largest instance type that your GoldenGate license

allows. Use appropriate Amazon EBS storage volume types, depending on the

database change rate and replication performance.

The following process sets up a GoldenGate Hub on an Amazon EC2 instance.

https://docs.oracle.com/cd/E35209_01/index.htm

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 42

1. Add the following entry to the tnsname.ora file to create an alias. For more

information about the tnsname.ora file, see the Oracle GoldenGate

documentation.

$ cat /example/config/tnsnames.ora

TEST=

(DESCRIPTION=

 (ENABLE=BROKEN)

 (ADDRESS_LIST=

 (ADDRESS=(PROTOCOL=TCP)(HOST=ec2-dns)(PORT=8200))

) (

CONNECT_DATA=

 (SID=ORCL)

)

)

2. Next, create subdirectories in the GoldenGate directory by using the Amazon

EC2 command line shell and ggsci, the GoldenGate command interpreter. The

subdirectories are created under the gg directory and include directories for

parameter, report, and checkpoint files:

prompt$ cd /gg

prompt$./ggsci

 GGSCI> CREATE SUBDIRS

3. Create a GLOBALS parameter file using the Amazon EC2 command line shell.

Parameters that affect all GoldenGate processes are defined in the GLOBALS

parameter file. The following example creates the necessary file:

prompt$ cd $GGHOME

prompt$ vi GLOBALS

CheckpointTable oggadm1.oggchkpt

https://www.orafaq.com/wiki/Tnsnames.ora
https://www.orafaq.com/wiki/Tnsnames.ora

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 43

4. Configure the manager. Add the following lines to the GLOBALS file, and then

start the manager by using ggsci:

PORT 8199

PurgeOldExtracts ./dirdat/*, UseCheckpoints, MINKEEPDAYS

When you have completed this process, the GoldenGate Hub is ready for use. Next,

you set up the source and destination databases.

Setting up the source database for use with

Oracle GoldenGate

To replicate data to the destination database in AWS, you need to set up a source

database for GoldenGate. Use the following procedure to set up the source database.

This process is the same for both Amazon RDS and Oracle Database on Amazon EC2.

1. Set the compatible parameter to the same as your destination database (for

Amazon RDS as the destination).

2. Enable supplemental logging and force logging.

3. Verify the database is in archivelog mode.

4. Set ENABLE_GOLDENGATE_REPLICATION parameter to TRUE.

5. Set the retention period for archived redo logs for the GoldenGate source

database.

6. Create a GoldenGate user account on the source database.

Setting up the destination database for use with

Oracle GoldenGate

The following steps must be performed on the target database for GoldenGate

replication to work. These steps are the same for both Amazon RDS and Oracle

Database on Amazon EC2.

1. Create a GoldenGate user account on the destination database.

2. Grant the necessary privileges that are listed in the following example to the

GoldenGate user:

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 44

CREATE SESSION

ALTER SESSION

CREATE CLUSTER

CREATE INDEXTYPE

CREATE OPERATOR

CREATE PROCEDURE

CREATE SEQUENCE

CREATE TABLE

CREATE TRIGGER

CREATE TYPE

SELECT ANY DICTIONARY

CREATE ANY TABLE

ALTER ANY TABLE

LOCK ANY TABLE

SELECT ANY TABLE

INSERT ANY TABLE

UPDATE ANY TABLE

DELETE ANY TABLE

Working with the Extract and Replicat utilities of

Oracle GoldenGate

The Oracle GoldenGate Extract and Replicat utilities work together to keep the source

and destination databases synchronized by means of incremental transaction

replication using trail files. All changes that occur on the source database are

automatically detected by Extract, and then formatted and transferred to trail files on the

GoldenGate Hub on-premises or on the Amazon EC2 instance. After the initial load is

completed, the Replicat process reads the data from these files and replicates the data

to the destination database nearly continuously.

Running the Extract process of Oracle GoldenGate

The Extract process of Oracle GoldenGate retrieves, converts, and outputs data from

the source database to trail files. Extract queues transaction details to memory or to

temporary disk storage. When the transaction is committed to the source database,

Extract flushes all of the transaction details to a trail file for routing to the GoldenGate

Hub on-premises or on the Amazon EC2 instance, and then to the destination

database.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 45

The following process enables and starts the Extract process.

1. First, configure the Extract parameter file on the GoldenGate Hub. The following

example shows an Extract parameter file:

EXTRACT EABC

SETENV (ORACLE_SID=ORCL)

SETENV (NLSLANG=AL32UTF8)

USERID oggadm1@TEST, PASSWORD XXXXXX

EXTTRAIL /path/to/goldengate/dirdat/ab IGNOREREPLICATES

GETAPPLOPS

TRANLOGOPTIONS EXCLUDEUSER OGGADM1 TABLE EXAMPLE.TABLE;

2. On the GoldenGate Hub, launch the GoldenGate command line interface

(ggsci). Log in to the source database. The following example shows the format

for logging in:

dblogin userid <user>@<db tnsname>

3. Next, add a checkpoint table for the database:

add checkpointtable

Add transdata to turn on supplemental logging for the database

table:

add trandata <user>.<table>

• Alternatively, you can add transdata to turn on supplemental logging for all

tables in the database:

add trandata <user>.*

4. Using the ggsci command line, use the following commands to enable the

Extract process:

add extract <extract name> tranlog, INTEGRATED tranlog,

begin now

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 46

add exttrail <path-to-trail-from-the param-file> extract

<extractname-from-paramfile>, MEGABYTES Xm

5. Register the Extract process with the database so that the archive logs are not

deleted. This lets you recover old, uncommitted transactions if necessary. To

register the Extract process with the database, use the following command:

register EXTRACT <extract process name>, DATABASE

6. To start the Extract process, use the following command:

start <extract process name>

Running the Replicat process of Oracle GoldenGate

The Replicat process of Oracle GoldenGate is used to push transaction information in

the trail files to the destination database.

The following process enables and starts the Replicat process.

1. First, configure the Replicat parameter file on the GoldenGate Hub (on-premises

or on an Amazon EC2 instance). The following listing shows an example Replicat

parameter file:

REPLICAT RABC

SETENV (ORACLE_SID=ORCL)

SETENV (NLSLANG=AL32UTF8)

USERID oggadm1@TARGET, password XXXXXX

ASSUMETARGETDEFS

MAP EXAMPLE.TABLE, TARGET EXAMPLE.TABLE;

2. Launch the Oracle GoldenGate command line interface (ggsci). Log in to the

destination database. The following example shows the format for logging in:

dblogin userid <user>@<db tnsname>

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 47

3. Using the ggsci command line, add a checkpoint table. Note that user

indicates the Oracle GoldenGate user account, not the owner of the destination

table schema. The following example creates a checkpoint table named

gg_checkpoint:

add checkpointtable <user>.gg_checkpoint

4. To enable the Replicat process, use the following command:

add replicat <replicat name> EXTTRAIL <extract trail file>

CHECKPOINTTABLE <user>.gg_checkpoint

5. To start the Replicat process, use the following command:

start <replicat name>

Transferring files to AWS

Migrating databases to AWS requires the transfer of files to AWS. There are multiple

methods of transferring files to AWS. This section describes the methods you can adopt

during the migration process.

AWS DataSync

AWS DataSync is an online data transfer service that can accelerate moving data

between an on-premises storage system and AWS storage services such as S3, EFS,

or FSx for Windows File Server. AWS DataSync agent connects to the on-premises

storage and copies data and metadata securely to AWS. AWS DataSync is the

recommended option when you have large volume of small files 100 MB or less.

AWS Storage Gateway

AWS Storage Gateway is a service connecting an on-premises software appliance with

cloud-based storage to provide seamless and secure integration between an

organization’s on-premises IT environment and the AWS storage infrastructure. The

service allows you to securely store data in the AWS Cloud for scalable and cost-

effective storage. AWS Storage Gateway supports open standard storage protocols that

work with your existing applications. It provides low-latency performance by maintaining

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 48

frequently accessed data on-premises while securely storing all of your data encrypted

in Amazon S3 or Amazon S3 Glacier. AWS Storage Gateway works with moderate or

large file sizes.

AWS Storage Gateway S3 File Gateway interface provides a Network File

System/Server Message Block (NFS/SMB) file share in your on-premises environment.

They run a local VM in your on-premises data center. Files can be copied at the on-

premises location to this local file-share. These files are copied to the designated S3

bucket in AWS. If your workload uses Windows OS, you can use Amazon FSx File

Gateway to copy files from on-premises via SMB clients to the Amazon FSx for

Windows File Server.

Amazon RDS integration with S3

You can use S3 integration to transfer files between an Amazon S3 bucket and an

Amazon RDS instance. The Amazon RDS instance accesses S3 bucket via a defined

IAM role, so you can have granular bucket or object level policies for the Amazon RDS

instance. S3 integration is useful when you have to use Oracle utilities like utl_file

or datapump. Amazon RDS Oracle rdsadmin package supports both upload and

download from S3 buckets.

Tsunami UDP

Tsunami UDP is an open-source, file transfer protocol that uses TCP control and UDP

data for transfer over long-distance networks at a very fast rate. When you use UDP for

transfer, you gain more throughput than is possible with TCP over the same networks.

You can download Tsunami UDP from the Tsunami UDP Protocol page at

SourceForge.net.1 For moderate to large databases between 100 GB to 5 TB, Tsunami

UDP is an option, as described in Using Tsunami to Upload Files to EC2. You can

achieve the same results using commercial third-party WAN acceleration tools. For very

large databases over 5 TB, using AWS Snow Family devices might be a better option.

For smaller databases, you can also use the Amazon S3 multipart upload capability to

keep it simple and efficient.

AWS Snow Family

AWS Snow Family offers a number of physical devices and capacity points transport up

to exabytes of data into and out of AWS. Snow Family devices are owned and managed

by AWS and integrate with AWS security, monitoring, storage management, and

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/glacier/
https://aws.amazon.com/storagegateway/file/fsx/
https://aws.amazon.com/storagegateway/file/fsx/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/fsx/windows/
http://tsunami-udp.sourceforge.net/
https://sourceforge.net/projects/tsunami-udp/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html
https://aws.amazon.com/snow/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 49

computing capabilities. For example, AWS Snowball Edge has 80 TB of usable capacity

and can be mounted as an NFS mount point in the on-premises location. For smaller

capacity, AWS Snowcone offers 8 TB of storage and has the capability to run the AWS

DataSync agent.

Conclusion

This whitepaper described the preferred methods for migrating Oracle Database to

AWS, for both Amazon EC2 and Amazon RDS. Depending on your business needs and

your migration strategy, you will probably use a combination of methods to migrate your

database. For best performance during migration, it is critical to choose the appropriate

level of resources on AWS, especially for Amazon EC2 instances and Amazon EBS

General Purpose (SSD) volume types.

Contributors

Contributors to this document include:

• Jayaraman Vellore Sampathkumar, AWS Solution Architect – Database, Amazon

Web Services

• Praveen Katari, AWS Partner Solution Architect, Amazon Web Services

Further reading

For additional information on data migration with AWS services, consult the following

resources:

Oracle Database on AWS:

• Advanced Architectures for Oracle Database on Amazon EC2

• Choosing the Operating System for Oracle Workloads on Amazon EC2

• Determining the IOPS Needs for Oracle Database on AWS

• Best Practices for Running Oracle Database on AWS

• AWS Case Study: Amazon.com Oracle DB Backup to Amazon S3

https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html
https://aws.amazon.com/snowcone/
https://aws.amazon.com/datasync/
https://aws.amazon.com/datasync/
https://d1.awsstatic.com/whitepapers/aws-advanced-architectures-for-oracle-db-on-ec2.pdf
https://d1.awsstatic.com/whitepapers/choosing-os-for-oracle-workloads-on-ec2.pdf
https://d1.awsstatic.com/whitepapers/determining-iops-needs-for-oracle-database-on-aws.pdf?did=wp_card&trk=wp_card
https://docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-practices/oracle-database-aws-best-practices.html
http://aws.amazon.com/solutions/case-studies/amazon/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
strategies-migrating-oracle-db-to-aws/strategies-

migrating-oracle-db-to-aws.html

Amazon Web Services Strategies for Migrating Oracle Databases to AWS

 50

Oracle on AWS

• Oracle and Amazon Web Services

• Amazon RDS for Oracle

AWS Database Migration Service (AWS DMS)

• AWS Database Migration Service

Oracle licensing on AWS

• Licensing Oracle Software in the Cloud Computing Environment

AWS service details

• Cloud Products

• AWS Documentation Index

• AWS Whitepapers & Guides

AWS pricing information

• AWS Pricing

• AWS Pricing Calculator

VMware Cloud on AWS

• VMware Cloud on AWS

Document versions

Date Description

January 27, 2022 Update to text on page 30 for clarity

October 8, 2021 General updates, and inclusion of AWS Snowcone and AWS

DataSync services for migration

August 2018 General updates

December 2014 First publication

http://aws.amazon.com/oracle/
http://aws.amazon.com/rds/oracle/
http://aws.amazon.com/dms/
http://www.oracle.com/us/corporate/pricing/cloud-licensing-070579.pdf
http://aws.amazon.com/products/
http://aws.amazon.com/documentation/
http://aws.amazon.com/whitepapers/
http://aws.amazon.com/pricing/
https://calculator.aws/
https://aws.amazon.com/vmware/

	Introduction
	Data migration strategies
	One-step migration
	Two-step migration
	Minimal downtime migration
	Nearly continuous data replication

	Tools used for Oracle Database migration
	Creating a database on Amazon RDS, Amazon EC2, or VMware Cloud on AWS
	Amazon RDS
	Amazon EC2
	VMware Cloud on AWS

	Data migration methods
	Migrating data for small Oracle databases
	Oracle SQL Developer database copy
	Oracle materialized views
	Oracle SQL*Loader
	Option 1
	Option 2

	Oracle Export and Import utilities
	Option 1
	Option 2

	Migrating data for large Oracle databases
	Data migration using Oracle Data Pump
	Migrating data to a database in Amazon EC2
	Migrating data to a database in Amazon RDS
	Using Oracle Data Pump to export data on the source instance
	Using Tsunami to upload files to Amazon EC2
	Next steps for a database on an Amazon EC2 instance
	Next steps for a database on Amazon RDS
	Preparing a bridge Instance

	Transferring files to an Amazon RDS instance

	Data migration using Oracle external tables
	Data migration using Oracle RMAN
	Creating a full backup of the source database Using RMAN
	Transporting files to AWS
	Migrating data to Oracle Database on AWS

	Data replication using AWS Database Migration Service
	Data replication using Oracle GoldenGate
	Setting up Oracle GoldenGate Hub on Amazon EC2

	Setting up the source database for use with Oracle GoldenGate
	Setting up the destination database for use with Oracle GoldenGate
	Working with the Extract and Replicat utilities of Oracle GoldenGate
	Running the Extract process of Oracle GoldenGate
	Running the Replicat process of Oracle GoldenGate

	Transferring files to AWS
	AWS DataSync
	AWS Storage Gateway
	Amazon RDS integration with S3
	Tsunami UDP
	AWS Snow Family

	Conclusion
	Contributors
	Further reading
	Document versions

