
 1

Oracle Database 11g/12c
To Amazon Aurora with PostgreSQL Compatibility (9.6.x)

Migration Playbook

Version: 1.1, January 2018

Written by: David Yahalom, Nimrod Keinan

 2

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved. Document written by David Yahalom and Nimrod
Keinan.

Notices
This document is provided for informational purposes only. It represents AWS’s current product offerings and practices
as of the date of issue of this document, which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document and any use of AWS’s products or
services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document
does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its
affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

 3

Introduction

To migrate an Oracle database to Amazon Aurora with PostgreSQL Compatibility, you usually need to perform
both automated and manual tasks. The automated tasks involve data migration and schema conversion using
the AWS Database Migration Service (AWS DMS) and AWS Schema Conversion Tool (AWS SCT). The manual
tasks involve post-migration “touch-ups” for certain database objects that can’t be migrated automatically.

This whitepaper primarily focuses on the manual aspects of database migration and includes step-by-step
instructions that you can adapt for your own requirements. In this document, we focus on how to manually
migrate specific Oracle database objects and features to Amazon Aurora with PostgreSQL Compatibility
equivalents. We also include a brief overview that explains how to use the AWS Schema Conversion Tool (AWS
SCT) for automatic migrations of schema objects. You can use this document as a supplementary guide for
your database migrations – both as a guide to expand your PostgreSQL competency if you come from an
Oracle database background and as a reference to help build Oracle-comparable functionality in Amazon
Aurora with PostgreSQL compatibility

This document does not yet cover all Oracle Database features and capabilities from a migration perspective.
For the first release, we focus on some of the most important features and will continue to expand the
Playbook document over time. Not all Oracle features have direct and fully compatible equivalents in
PostgreSQL. In these cases, we present our recommendations for the best-possible equivalent features in
Amazon Aurora with PostgreSQL compatibility.

We also plan to expand this document in the future and add new chapters specifically dedicated to advanced
topics such as Oracle security, High Availability and Disaster Recovery, Performance Tuning, and more.

Disclaimer

The various code snippets, commands, guides, best practices, and scripts included in this document should be
used for reference only and are provided as-is without warranty. Please be sure to test all of the code,
commands, best practices, and scripts outlined in this document in a non-production environment first.
Amazon and its affiliates are not responsible for any direct or indirect damage that can occur from the
information contained in this document.

 4

Automatic Schema Migration
 Help Section
Link Using the AWS Schema Conversion Tool for automatic schema conversion

SQL & PL/SQL (Manual)

 Oracle Feature Aurora PostgreSQL
Feature

Compatibility

Link Anonymous Block Do Yes
Link Execute Immediate Execute & Prepare Yes
Link DBMS_RANDOM random() Yes*
Link DBMS_OUTPUT RAISE Yes
Link Procedures & Functions Functions Yes*
Link User Defined Functions

(UDFs)
Functions Yes*

Link UTL_FILE N/A None
Link JSON Document Support JSON Document Support Yes*
Link OLAP Functions Window Functions Yes
Link PL/SQL Cursors Cursors Yes
Link Single Row & Aggregate

Functions
Single Row & Aggregate
Functions

Yes

Link Merge SQL Merge Yes
Link Create Table As Select (CTAS) Create Table As Select (CTAS) Yes
Link Common Table Expression

(CTE)
Common Table Expression
(CTE)

Yes

Link Insert From Select Insert From Select Yes
Link Inline Views Inline Views Yes
Link DB Hints Query Planning Yes*

 5

Tables & Indexes (Manual)

 Oracle Feature Aurora PostgreSQL
Feature

Compatibility

Link Index Organized Tables (IOTs) PostgreSQL “Cluster” Tables Yes*
Link Common Data Types Common Data Types Yes

Link Table Constraints Table Constraints Yes
Link Table Partitioning including:

RANGE, LIST, HASH,
COMPOSITE, Automatic LIST

Table Partitioning including:
RANGE, LIST

Yes*

Link Exchange and Split Partitions N/A None
Link Temporary Tables Temporary Tables Yes*
Link Unused Columns ALTER TABLE DROP COLUMN Yes
Link Virtual Columns Views and/or Function as a

Column
Yes*

Link User Defined Types (UDTs) User Defined Types (UDTs) Yes
Link Read Only Tables and Table

Partitions
Read Only Roles and/or
Triggers

Yes*

Link Index Types Index Types Yes*
Link B-Tree Indexes B-Tree Indexes Yes
Link Composite Indexes Multi-Column Indexes Yes
Link BITMAP Indexes BRIN Indexes Minimal
Link Function-Based Indexes Expression Indexes Yes
Link Local and Global Partitioned

Indexes
Partitioned Indexes Yes*

Link Identity Columns Serial Data Type Yes*
Link MVCC

(Table and Row Locks)
MVCC
(Table and Row Locks)

Yes*

Link Character Sets Encoding Yes*
Link Transaction Model Transactional Model Yes*
Link LOBs and SecureFile LOBs LOBs Yes*

Database Objects (Manual)

 Oracle Feature Aurora PostgreSQL
Feature

Compatibility

Link Materialized Views Materialized Views Yes*
Link Common Data Types Common Data Types Yes
Link Oracle Triggers PostgreSQL Trigger Procedure Yes*
Link Views Views Yes
Link Sequences Sequences Yes

 6

Link Database Links PostgreSQL DBLink and
FDWrapper

Yes*

 7

Database Administration (Manual)

 Oracle Feature Aurora PostgreSQL
Feature

Compatibility

Link Recovery Manager (RMAN) Amazon Aurora Snapshots Yes
Link Flashback Database Amazon Aurora Snapshots Yes
Link 12c Multi-Tenant

Architecture: PDBs and CDB
Databases Yes*

Link Tablespaces and DataFiles Tablespaces Yes*

Link Data Pump pg_dump and pg_restore Yes
Link Resource Manager Separate Amazon Aurora

Clusters
Yes

Link Database Users Database Roles Yes
Link Database Roles Database Roles Yes
Link SGA & PGA Memory Memory Buffers Yes
Link V$ Views & the Data

Dictionary
System Catalog Tables,
Statistics Collector, Amazon
Aurora Performance Insights

Yes*

Link Log Miner Logging Options Yes
Link Instance & Database

Parameters (SPFILE)
Amazon Aurora Parameter
Groups

Yes

Link Session Parameters Session Parameters Yes
Link Alert.log (error log) Error Log via AWS

Management Console
Yes

Link Automatic and Manual
Statistics Collection

Automatic and Manual
Statistics Collection

Yes

Link Viewing Execution Plans Viewing Execution Plans Yes

 8

Automatic Migration of Oracle Schema Objects
Using the AWS Schema Conversion Tool

 9

Automatic Schema Migration
[Back to TOC]

This section provides a step-by-step process for using the AWS Schema Conversion Tool (AWS SCT) to migrate
an Oracle database to an Aurora with PostgreSQL compatibility database cluster. Amazon SCT can
automatically migrate most of the database objects.

While this document primarily covers the best practices, feature-parity aspects of manual database
migrations, and Oracle to Amazon Aurora with PostgreSQL compatibility migration best practices, we
recommend using AWS SCT as the first step of the process.

AWS SCT is a downloadable Java utility that runs locally on your computer. It connects to the source and
target databases, scans the source database schema objects (tables, views, indexes, procedures, etc.), and
converts them to the target database objects.

For more information, see
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

 10

Download AWS SCT and Install JDBC Drivers
JDBC drivers are required for database connectivity to both the source and target databases.

1. Download SCT:
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.h
tml

2. Download the Oracle JDBC Driver (ojdbc7.jar):
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

3. Download the PostgreSQL JDBC Driver (postgresql-9.4-1204.jdbc42.jar):
https://jdbc.postgresql.org/download.html

Configure SCT for Database Migration

1. Launch SCT.

2. Choose the JAR files path under SCTs Global Settings

3. Click Global Settings > Drivers

4. Add the file path to the Oracle and the PostgreSQL JDBC drivers

5. Use the following filenames:

Oracle JDBC JAR - ojdbc7.jar
PostgreSQL JDBC JAR - postgresql-9.4-1204.jdbc42.jar

6. Click OK.

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.Installing.html
http://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://jdbc.postgresql.org/download.html

 11

AWS SCT – Database Migration Project Configuration
Create a new SCT project which will guide you, step-by-step, through the schema conversion process.

1. Click SCT > File > New Project Wizard

2. Select a source database for migration (the Oracle Database to migrate to Aurora with PostgreSQL

Compatibility).

3. Enter a project name, specify the location of the SCT project files, choose the source database
workload characteristics (OLTP or OLAP), and select the source database engine (Oracle).

 12

4. Configure the source database connection properties:
• Server hostname
• Oracle Net Listener port number
• Oracle Database SID
• Privileged username and password. For example, the Oracle system user.

5. Click Next.

6. Select the source Oracle schema for migration.

 13

7. SCT analyzes the source database schema objects and produces the Database Migration

Assessment report. Review the report.

8. Specify the target database configuration:

• Target Database Engine: Amazon Aurora (PostgreSQL compatible).

• Server hostname: Aurora Cluster Endpoint.

• Server port number: 5432 (default PostgreSQL network port).

• Database: The name of the target database that will store the migrated schema objects.

• The privileged target database username and password. Deployment of the converted
schema in the target database will use these credentials.

 14

9. Click Finish when you are done. Note that at this stage in the process the migrated target schema
has not yet been deployed to your target database.

10. Explore the AWS SCT Project Main Page and the other information pages. Select Oracle schema
objects from the left Oracle pane to view the Oracle syntax.

Source - Oracle
Schema Details

Source - Oracle
Object Details

Target -PostgreSQL
Object Details

Target - PostgreSQL
Schema Details

 15

AWS SCT – Database Migration Assessment

1. Explore the objects in your source database and be sure to note any database objects that SCT

cannot automatically migrate to your target database syntax. SCT flags objects with potential
migration issues with a RED exclamation mark. These objects require manual intervention for
successful migration.

2. Right click the Oracle schema for migration and select Create Report to view the complete
Database Migration Assessment report.

3. Click the Action Items tab. This section of the report provides information about potential
migration issues.

 16

4. Click the migration issues highlighted by SCT to view a detailed overview of the exact source syntax
that failed the automatic migration process.

 17

AWS SCT – Convert Source to Target Database Syntax
This step converts the source database schema objects to your target database using target database syntax.

1. Right click the Oracle Schema and select Convert Schema.

2. The new schema and objects appear in the right-side pane under the target database. Compare the
source database objects (left-side pane) to the converted target database objects (right-side pane).
Note that the converted schema has not yet been deployed to the target PostgreSQL database.

3. Examine any gaps in objects that AWS SCT could not automatically convert.

 18

AWS SCT – Deploy the Converted Schema to the Target Database

1. In the right-side Target Database pane, right click the PostgreSQL schema corresponding to the
source database schema name.

2. Select Apply to database.

3. Click Yes to continue. This step creates the new schema in the target database.

 19

Manual Migration and Best Practices of
Oracle Schema Objects and Database Features

 20

 Migrating from: Oracle Anonymous Block
[Back to TOC]

Overview
Oracle’s PL/SQL is a procedural extension of SQL. The PL/SQL program structure divides the code into blocks
that can be distinguished by the following keywords: DECLARE, BEGIN, EXCEPTION, and END.

An unnamed PL/SQL code block (code not stored in the database as a procedure, function, or package) is
known as an anonymous block. An anonymous block serves as the basic unit of Oracle PL/SQL and contains
the following code sections:

• The Declarative Section (Optional)
Contains variables (names, data types, and initial values).

• The Executable Section (Mandatory)
Contains executable statements (each block structure must contain at least one executable PL/SQL
statement).

• The Exception-Handling Section (Optional)
Contains elements for handling exceptions or errors in the code.

Examples
Simple structure of an Oracle Anonymous Block:

SQL> SET SERVEROUTPUT ON;
SQL> BEGIN
 DBMS_OUTPUT.PUT_LINE('hello world');
 END;
/
hello world

PL/SQL procedure successfully completed.

 21

Oracle PL/SQL Anonymous blocks can contain advanced code elements such as functions, cursors, dynamic
SQL, and conditional logic. The following anonymous block uses a cursor, conditional logic, and exception-
handling:

The above example calculates the years each employee has worked based on the HIRE_DATE column of the
EMPLOYEES table. If the employee has worked for ten or more years and has a salary of $6000 or less, the
system prints the message “Consider a Bonus for: <employee name>”.

For additional details:
https://docs.oracle.com/cd/B28359_01/appdev.111/b28370/controlstructures.htm#CJAEDEIH

SQL> SET SERVEROUTPUT ON;
SQL> DECLARE
 v_sal_chk NUMBER;
 v_emp_work_years NUMBER;
 v_sql_cmd VARCHAR2(2000);
 BEGIN

FOR v IN (SELECT EMPLOYEE_ID, FIRST_NAME||' '||LAST_NAME AS
 EMP_NAME, HIRE_DATE, SALARY FROM EMPLOYEES)

 LOOP
 v_emp_work_years:=EXTRACT(YEAR FROM SYSDATE) - EXTRACT (YEAR FROM
v.hire_date);

 IF v_emp_work_years>=10 and v.salary <= 6000 then
 DBMS_OUTPUT.PUT_LINE('Consider a Bonus for: '||v.emp_name);
 END IF;
 END LOOP;
 EXCEPTION WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('CODE ERR: '||sqlerrm);
 END;
/

https://docs.oracle.com/cd/B28359_01/appdev.111/b28370/controlstructures.htm#CJAEDEIH

 22

 Migration to: PostgreSQL DO
[Back to TOC]

Overview
PostgreSQL version 9.6 supports capabilities similar to Oracle’s anonymous blocks. In PostgreSQL, you can
execute PL/pgSQL code that is not stored in the database as an independent code segment using a PL/pgSQL
DO statement.

PL/pgSQL is a PostgreSQL extension to the ANSI SQL and has many similar elements to Oracle PL/SQL.
PostgreSQL DO uses a similar code structure to an Oracle anonymous block:

• Declarative Section (Optional)
• Executable Section (Mandatory)
• Exception-Handling Section (Optional)

Examples
PostgreSQL DO simple structure:

The PostgreSQL PL/pgSQL DO statement supports the use of advanced code elements such as functions,
cursors, dynamic SQL, and conditional logic.

psql=> SET CLIENT_MIN_MESSAGES = 'debug';
-- Equivalent To Oracle SET SERVEROUTPUT ON

psql=> DO $$

 BEGIN
 RAISE DEBUG USING MESSAGE := 'hello world';

 END $$;

DEBUG: hello world
DO

 23

The following example is a more complex PL/pgSQL DO code structure converted from Oracle’s “employee
bonus” PL/SQL anonymous block example presented in the previous section:

For additional information on PostgreSQL DO:
https://www.postgresql.org/docs/current/static/sql-do.html

psql=> DO $$
 DECLARE

 v_sal_chk DOUBLE PRECISION;
 v_emp_work_years DOUBLE PRECISION;
 v_sql_cmd CHARACTER VARYING(2000);
 v RECORD;

 BEGIN
 FOR v IN
 SELECT employee_id, CONCAT_WS('', first_name, ' ', last_name) AS
 emp_name, hire_date, salary
 FROM employees
 LOOP
 v_emp_work_years := EXTRACT (YEAR FROM now()) - EXTRACT (YEAR FROM
v.hire_date);

 IF v_emp_work_years >= 10 AND v.salary <= 6000 THEN
 RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'Consider a Salary
 Raise for: ', v.emp_name);
 END IF;
 END LOOP;
 EXCEPTION
 WHEN others THEN
 RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'CODE ERR: ',

 SQLERRM);
 END $$;

https://www.postgresql.org/docs/current/static/sql-do.html

 24

 Migrating from: Oracle EXECUTE IMMEDIATE
[Back to TOC]

Overview
Oracle’s EXECUTE IMMEDIATE statement can be used to parse and execute a dynamic SQL statement or an
anonymous PL/SQL block. It also supports bind variables.

Example
Run a dynamic SQL statement from within a PL/SQL procedure:

1. Create a PL/SQL procedure named raise_sal.

2. Define a SQL Statement with a dynamic value for the column name included in the where statement.

3. Use the EXECUTE IMMEDIATE command supplying the two bind variables to be used as part of the

SELECT statement:
 - amount
 - col_val

4. Run the DDL operation from within an EXECUTE IMMEDIATE command:

5. Run an anonymous block with bind variables using EXECUTE IMMEDIATE:

For additional details:
https://docs.oracle.com/database/121/LNPLS/dynamic.htm#LNPLS01115

CREATE OR REPLACE PROCEDURE raise_sal (col_val NUMBER,
 emp_col VARCHAR2, amount NUMBER) IS
 col_name VARCHAR2(30);
 sql_stmt VARCHAR2(350);
BEGIN
 -- determine if a valid column name has been given as input
 SELECT COLUMN_NAME INTO col_name FROM USER_TAB_COLS
 WHERE TABLE_NAME = 'EMPLOYEES' AND COLUMN_NAME = emp_col;

 -- define the SQL statment (with bind variables)
 sql_stmt := 'UPDATE employees SET salary = salary + :1 WHERE '
 || col_name || ' = :2';

 -- Execute the command
 EXECUTE IMMEDIATE sql_stmt USING amount, col_val;

END raise_sal;
/

EXECUTE IMMEDIATE 'CREATE TABLE link_emp (idemp1 NUMBER, idemp2 NUMBER)';
EXECUTE IMMEDIATE 'ALTER SESSION SET SQL_TRACE TRUE';

EXECUTE IMMEDIATE 'BEGIN raise_sal (:col_val, :col_name, :amount); END;'
USING 134, 'EMPLOYEE_ID', 10;

https://docs.oracle.com/database/121/LNPLS/dynamic.htm#LNPLS01115

 25

 Migration to: PostgreSQL PL/pgSQL Execute & Prepare
[Back to TOC]

Overview
The PostgreSQL EXECUTE command prepares and executes commands dynamically. The EXECUTE command
can also run DDL statements and retrieve data using SQL commands. Similar to Oracle, the PostgreSQL
EXECUTE command can be used with bind variables.

Example
1. Execute a SQL SELECT query with the table name as a dynamic variable using bind variables. This query

returns the number of employees under a manager with a specific ID.

2. Execute a DML command – first with no variables and then with variables:

Notes

• %s formats the argument value as a simple string. A null value is treated as an empty string.
• %I treat the argument value as an SQL identifier and double-quoting it if necessary. It is an error for

the value to be null.

3. Execute a DDL command:

For additional details:
https://www.postgresql.org/docs/9.3/static/functions-string.html

DO $$DECLARE
 Tabname varchar(30) := 'employees';
 num integer := 1;
 cnt integer;
BEGIN
 EXECUTE format('SELECT count(*) FROM %I WHERE manager = $1', tabname)
 INTO cnt
 USING num;
 RAISE NOTICE 'Count is % int table %', cnt, tabname;
END$$;
;

DO $$DECLARE
BEGIN
 EXECUTE 'INSERT INTO numbers (a) VALUES (1)';

EXECUTE format('INSERT INTO numbers (a) VALUES (%s)', 42);
END$$;
;

DO $$DECLARE
BEGIN
 EXECUTE 'CREATE TABLE numbers (num integer)';
END$$;
;

https://www.postgresql.org/docs/9.3/static/functions-string.html

 26

PostgreSQL Prepare
Using a PREPARE statement can improve performance for reusable SQL statements.
The PREPARE command can receive a SELECT, INSERT, UPDATE, DELETE, or VALUES statement and
parse it with a user-specified qualifying name so the EXECUTE command can be used later without the need
to re-parse the SQL statement on each execution.

• When using PREPARE to create a prepared statement, it will be viable for the scope of the current
session.

• If a DDL command is executed on a database object referenced by the prepared SQL statement, the
next EXECUTE command requires a hard parse of the SQL statement.

Example
Use PREPARE and EXECUTE commands in tandem:

The SQL command is prepared with a user-specified qualifying name.

The SQL command is executed several times, without the need for re-parsing.

PL/pgSQL EXECUTE vs. Oracle implicit cursor

Functionality PostgreSQL - EXECUTE Oracle – EXECUTE IMMEDIATE
Execute SQL
with results
and bind
variables

EXECUTE format('select salary
from employees WHERE %I = $1',
col_name) INTO amount USING
col_val;

EXECUTE IMMEDIATE 'select salary
from employees WHERE ' || col_name
|| ' = :1' INTO amount USING
col_val;

Execute DML
with variables
and bind
variables

EXECUTE format('UPDATE employees
SET salary = salary + $1 WHERE
%I = $2', col_name) USING
amount, col_val;

EXECUTE IMMEDIATE 'UPDATE
employees SET salary = salary + :1
WHERE ' || col_name || ' = :2'
USING amount, col_val;

Execute DDL EXECUTE 'CREATE TABLE link_emp
(idemp1 integer, idemp2
integer)';

EXECUTE IMMEDIATE 'CREATE TABLE
link_emp (idemp1 NUMBER, idemp2
NUMBER)';

Execute
Anonymous
block

DO $$DECLARE
BEGIN
 ...
END$$;

EXECUTE IMMEDIATE ‘BEGIN
DBMS_OUTPUT.PUT_LINE(‘’Anonymous
Block’’); END;’;

For additional details:
https://www.postgresql.org/docs/current/static/plpgsql-statements.html

PREPARE numplan (int, text, bool) AS
 INSERT INTO numbers VALUES($1, $2, $3);

EXECUTE numplan(100, 'New number 100', 't');
EXECUTE numplan(101, 'New number 101', 't');
EXECUTE numplan(102, 'New number 102', 'f');
EXECUTE numplan(103, 'New number 103', 't');

https://www.postgresql.org/docs/current/static/plpgsql-statements.html

 27

 Migrating From: Oracle DBMS_RANDOM
[Back to TOC]

Overview
Oracle’s DBMS_RANDOM package enables you to generate a random number or string as part of a SQL
statement or PL/SQL procedure.

DBMS_RANDOM Package Stored Procedures include:

1. NORMAL – returns random numbers in a standard normal distribution.
2. SEED – resets the seed that generates random numbers or strings.
3. STRING – returns a random string.
4. VALUE – returns a number that is greater than or equal to 0 and less than 1 with 38 digits to the

right of the decimal. Alternatively, you could get a random Oracle number that is greater than or
equal to a low parameter and less than a high parameter.

Notes:

• DBMS_RANDOM.RANDOM produces integers in [-2^^31, 2^^31).
• DBMS_RANDOM.VALUE produces numbers in [0,1] with 38 digits of precision.

Example
1. Generate a random number:

SQL> select dbms_random.value() from dual;

DBMS_RANDOM.VALUE()

 .859251508

SQL> select dbms_random.value() from dual;

DBMS_RANDOM.VALUE()

 .364792387

 28

2. Generate a random string. The first character determines the returned string type and the number
specifies the length:

For additional details:
https://docs.oracle.com/database/121/ARPLS/d_random.htm

SQL> select dbms_random.string('p',10) from dual;

DBMS_RANDOM.STRING('P',10)
--
la'?z[Q&/2

SQL> select dbms_random.string('p',10) from dual;

DBMS_RANDOM.STRING('P',10)
--
t?!Gf2M60q

https://docs.oracle.com/database/121/ARPLS/d_random.htm

 29

 Migration To: PostgreSQL random()
[Back to TOC]

Overview
PostgreSQL does not provide a dedicated package equivalent to Oracle DBMS_RANDOM – a 1:1 migration is
not possible. However, other PostgreSQL functions can be used as workarounds under certain conditions. For
example, generating random numbers can be performed using the random() function. For generating
random strings, you can use the value returned from the random() function coupled with an md5()
function.

Example
1. Generate a random number:

2. Generate a random string:

mydb=> select random();
 random

 0.866594325285405
(1 row)

mydb=> select random();
 random

 0.524613124784082
(1 row)

mydb=> select md5(random()::text);
 md5

 f83e73114eccfed571b43777b99e0795
(1 row)

mydb=> select md5(random()::text);
 md5

 d46de3ce24a99d5761bb34bfb6579848
(1 row

 30

Oracle dbms_random vs. PostgreSQL random()

Description Oracle PostgreSQL
Generate a random
number

select dbms_random.value()
from dual;

select random();

Generate a random
number between 1 to
100

select
dbms_random.value(1,100)
from dual;

select random()*100;

Generate a random
string

select
dbms_random.string('p',10)
from dual;

select md5(random()::text);

Generate a random
string in upper case

select
dbms_random.string('U',10)
from dual;

select
upper(md5(random()::text));

For additional details:
https://www.postgresql.org/docs/current/static/functions-math.html
https://www.postgresql.org/docs/current/static/functions-string.html

https://www.postgresql.org/docs/current/static/functions-math.html
https://www.postgresql.org/docs/current/static/functions-string.html

 31

 Migrating from: Oracle DBMS_OUTPUT
[Back to TOC]

Overview
Oracle’s DBMS_OUTPUT package is typically used for debugging or for displaying output messages from
PL/SQL procedures.

Example
In the following example, DBMS_OUTPUT with PUT_LINE is used with a combination of bind variables to
dynamically construct a string and print a notification to the screen from within an Oracle PL/SQL procedure.

In order to display notifications on to the screen, you must configure the session with SET SERVEROUPUT
ON.

In addition to the output of information on the screen, the PUT and PUT_LINE procedures in the
DBMS_OUTPUT package enable you to place information in a buffer that can be read later by another PL/SQL
procedure or package. You can display the previously buffered information using the GET_LINE and
GET_LINES procedures.

For additional details:
https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS036

SET SERVEROUTPUT ON

DECLARE
 CURSOR c1 IS
 SELECT last_name, job_id FROM employees
 WHERE REGEXP_LIKE (job_id, 'S[HT]_CLERK')
 ORDER BY last_name;
 v_lastname employees.last_name%TYPE; -- variable to store last_name
 v_jobid employees.job_id%TYPE; -- variable to store job_id
BEGIN
 OPEN c1;
 LOOP -- Fetches 2 columns into variables
 FETCH c1 INTO v_lastname, v_jobid;
 DBMS_OUTPUT.PUT_LINE ('The employee id is:' || v_jobid || ' and his
 last name is:' || v_lastname);
 EXIT WHEN c1%NOTFOUND;
 END LOOP;
 CLOSE c1;
END;

https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS036

 32

 Migration to: PostgreSQL RAISE
[Back to TOC]

Overview
The PostgreSQL RAISE statement can be used as an alternative to DBMS_OUTPUT. You can combine RAISE
with several levels of severity including:

Severity Usage

DEBUG1..DEBUG5 Provides successively-more-detailed information for use by developers.
INFO Provides information implicitly requested by the user
NOTICE Provides information that might be helpful to users
WARNING Provides warnings of likely problems
ERROR Reports an error that caused the current command to abort.
LOG Reports information of interest to administrators, e.g., checkpoint activity.
FATAL Reports an error that caused the current session to abort.
PANIC Reports an error that caused all database sessions to abort.

Examples
1. Use RAISE DEBUG (where DEBUG is the configurable severity level) for similar functionality as Oracle’s

DBMS_OUTPUT.PUT_LINE feature.

2. Use the client_min_messages parameter to control the level of message sent to the client. The

default is NOTICE. Use the log_min_messages parameter to control which message levels are
written to the server log. The default is WARNING.

For additional details:
https://www.postgresql.org/docs/current/static/plpgsql-errors-and-messages.html

For additional details:
https://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

psql=> SET CLIENT_MIN_MESSAGES = 'debug';
-- Equivalent To Oracle SET SERVEROUTPUT ON

psql=> DO $$

 BEGIN
 RAISE DEBUG USING MESSAGE := 'hello world';

 END $$;

DEBUG: hello world
DO

SET CLIENT_MIN_MESSAGES = 'debug';

https://www.postgresql.org/docs/current/static/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

 33

Oracle DBMS_OUTPUT.PUT_LINE vs. PostgreSQL RAISE

Feature Oracle PostgreSQL
Disables message output DISABLE Configure “client_min_message”

or “log_min_message” for the
desired results

Enables message output ENABLE

Retrieves one line from
buffer

GET_LINE Consider storing messages in an array or
temporary table so that you can retrieve
them from another procedure or
package

Retrieves an array of lines
from buffer

GET_LINES

Terminates a line created
with PUT

PUT + NEW_LINE
BEGIN
DBMS_OUTPUT.PUT ('1,');
DBMS_OUTPUT.PUT('2,');
DBMS_OUTPUT.PUT('3,');
DBMS_OUTPUT.PUT('4');
DBMS_OUTPUT.NEW_LINE();
END;
/

Store and concatenate the message
string in a varchar variable before raising

do $$
DECLARE
 message varchar :='';
begin
 message := message ||
'1,';
 message := message ||
'2,';
 message := message ||
'3,';
 message := message ||
'4';
 RAISE NOTICE '%',
message;
END$$;

Places a partial line in the
buffer

Places line in buffer PUT_LINE

DBMS_OUTPUT.PUT_LINE
('The employee id is:' ||
v_jobid || ' and his last
name is:' || v_lastname);

RAISE

RAISE NOTICE 'The employee
id is: % and his last name
is: %', v_jobid,
v_lastname;

Returns the number code of
the most recent exception

SQLCODE + SQLERRM

SQLSTATE + SQLERRM

Returns the error message
associated with its error-
number argument.

DECLARE
Name
employees.last_name%TYPE;
BEGIN
 SELECT last_name INTO
name
 FROM employees WHERE
 employee_id = -1;
 EXCEPTION
 WHEN OTHERS then
DBMS_OUTPUT.PUT_LINE('Error
code ' || SQLCODE || ': '
|| sqlerrm);
END;
/

do $$
declare
 Name employees%ROWTYPE;
BEGIN
 SELECT last_name INTO
name
 FROM employees WHERE
 employee_id = -1;
 EXCEPTION
 WHEN OTHERS then
 RAISE NOTICE
'Error code %: %',
sqlstate, sqlerrm;
end$$;

For additional details:
https://www.postgresql.org/docs/9.6/static/errcodes-appendix.html

https://www.postgresql.org/docs/9.6/static/errcodes-appendix.html

 34

 Migrating from: Oracle Procedures and Functions
[Back to TOC]

Overview
Oracle PL/SQL is Oracle’s built-in database programming language providing several methods to store and
execute reusable business logic from within the database. Procedures and functions are reusable snippets of
code created using the CREATE PROCEDURE and the CREATE FUNCTION statements.

Stored Procedures and Stored Functions are PL/SQL units of code consisting of SQL and PL/SQL statements
that solve specific problems or perform a set of related tasks.

• Procedure – used to perform database actions with PL/SQL.
• Function – used to perform a calculation and return a result.

Privileges for Creating Procedures and Functions

• To create procedures and functions in their own schema, Oracle database users must have the
CREATE PROCEDURE system privilege.

• To create procedures or functions in other schemas, the database user must have the CREATE
ANY PROCEDURE privilege.

• To execute a procedure or function, the database user must have the EXECUTE privilege.

Package and Package Body
In addition to stored procedures and functions, Oracle also provides “Packages” that encapsulate related
procedures, functions, and other program objects.

• Package: declares and describes all the related PL/SQL elements.
• Package body: contains the executable code.

To execute a stored procedure or function created inside a package, the package name and the stored
procedure or function name must be specified.

SQL> EXEC PKG_EMP.CALCULTE_SAL('100');

 35

Examples
1. Create an Oracle stored procedure using the CREATE OR REPLACE PROCEDUER statement. The

optional OR REPLACE clause overwrites an existing stored procedure with the same name, if exists.

SQL> CREATE OR REPLACE PROCEDURE EMP_SAL_RAISE
 (P_EMP_ID IN NUMBER, SAL_RAISE IN NUMBER)

AS
V_EMP_CURRENT_SAL NUMBER;
BEGIN

SELECT SALARY INTO V_EMP_CURRENT_SAL FROM EMPLOYEES WHERE
EMPLOYEE_ID=P_EMP_ID;

 UPDATE EMPLOYEES
 SET SALARY=V_EMP_CURRENT_SAL+SAL_RAISE
 WHERE EMPLOYEE_ID=P_EMP_ID;

DBMS_OUTPUT.PUT_LINE('New Salary For Employee ID: '||P_EMP_ID||' Is
'||(V_EMP_CURRENT_SAL+SAL_RAISE));

 EXCEPTION WHEN OTHERS THEN

RAISE_APPLICATION_ERROR(-20001,'An error was encountered -
'||SQLCODE||' -ERROR- '||SQLERRM);

 ROLLBACK;

 COMMIT;
END;

/

-- Execute

SQL> EXEC EMP_SAL_RAISE(200, 1000);

 36

2. Create a function using the CREATE OR REPLACE FUNCTION statement:

3. Create a Package using the CREATE OR REPLACE PACKAGE statement:

SQL> CREATE OR REPLACE FUNCTION EMP_PERIOD_OF_SERVICE_YEAR
(P_EMP_ID NUMBER)
RETURN NUMBER
AS
V_PERIOD_OF_SERVICE_YEARS NUMBER;
BEGIN
 SELECT EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM TO_DATE(HIRE_DATE))
INTO V_PERIOD_OF_SERVICE_YEARS
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID=P_EMP_ID;

 RETURN V_PERIOD_OF_SERVICE_YEARS;
END;

/

SQL> SELECT EMPLOYEE_ID,
 FIRST_NAME,
 EMP_PERIOD_OF_SERVICE_YEAR(EMPLOYEE_ID) AS PERIOD_OF_SERVICE_YEAR
 FROM EMPLOYEES;

SQL> EMPLOYEE_ID FIRST_NAME PERIOD_OF_SERVICE_YEAR
 ----------- -------------------- ----------------------
 174 Ellen 13
 166 Sundar 9
 130 Mozhe 12
 105 David 12
 204 Hermann 15
 116 Shelli 12
 167 Amit 9
 172 Elizabeth 10
…

SQL> CREATE OR REPLACE PACKAGE PCK_CHINOOK_REPORTS
 AS
 PROCEDURE GET_ARTIST_BY_ALBUM(P_ARTIST_ID ALBUM.TITLE%TYPE);
 PROCEDURE CUST_INVOICE_BY_YEAR_ANALYZE;
END;

 37

4. Create a new Package using the CREATE OR REPLACE PACKAGE BODY statement:

The above examples demonstrate basic Oracle PL/SQL procedure and function capabilities. Oracle PL/SQL
provides a vast number of features and capabilities that are not within the scope of this document.

For additional details:
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/create_procedure.htm
https://docs.oracle.com/database/121/LNPLS/create_procedure.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/create_function.htm
https://docs.oracle.com/database/121/LNPLS/create_function.htm#LNPLS01370
https://docs.oracle.com/database/121/LNPLS/create_package.htm#LNPLS01371

SQL> CREATE OR REPLACE PACKAGE BODY PCK_CHINOOK_REPORTS
AS
PROCEDURE GET_ARTIST_BY_ALBUM(P_ARTIST_ID ALBUM.TITLE%TYPE)
IS

V_ARTIST_NAME ARTIST.NAME%TYPE;
BEGIN
 SELECT ART.NAME INTO V_ARTIST_NAME
 FROM ALBUM ALB JOIN ARTIST ART USING(ARTISTID)
 WHERE ALB.TITLE=P_ARTIST_ID;

 DBMS_OUTPUT.PUT_LINE('ArtistName: '||V_ARTIST_NAME);
END;

PROCEDURE CUST_INVOICE_BY_YEAR_ANALYZE
AS
 V_CUST_GENRES VARCHAR2(200);
BEGIN

FOR V IN(SELECT CUSTOMERID, CUSTNAME, LOW_YEAR, HIGH_YEAR, CUST_AVG
FROM TMP_CUST_INVOICE_ANALYSE)

 LOOP
 IF SUBSTR(V.LOW_YEAR, -4) > SUBSTR(V.HIGH_YEAR , -4) THEN

SELECT LISTAGG(GENRE, ',') WITHIN GROUP (ORDER BY
GENRE) INTO V_CUST_GENRES

 FROM (SELECT DISTINCT
 FUNC_GENRE_BY_ID(TRC.GENREID) AS GENRE

FROM TMP_CUST_INVOICE_ANALYSE TMPTBL JOIN INVOICE INV
USING(CUSTOMERID)

 JOIN INVOICELINE INVLIN
 ON INV.INVOICEID = INVLIN.INVOICEID
 JOIN TRACK TRC
 ON TRC.TRACKID = INVLIN.TRACKID
 WHERE CUSTOMERID=V.CUSTOMERID);

 DBMS_OUTPUT.PUT_LINE('Customer: '||UPPER(V.CUSTNAME)||' -
 Offer a Discount According To Preferred Genres:
 '||UPPER(V_CUST_GENRES));
 END IF;
 END LOOP;
 END;
END;

SQL> EXEC PCK_CHINOOK_REPORTS.GET_ARTIST_BY_ALBUM();
SQL> EXEC PCK_CHINOOK_REPORTS.CUST_INVOICE_BY_YEAR_ANALYZE;

https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/create_procedure.htm
https://docs.oracle.com/database/121/LNPLS/create_procedure.htm
https://docs.oracle.com/cd/E18283_01/appdev.112/e17126/create_function.htm
https://docs.oracle.com/database/121/LNPLS/create_function.htm#LNPLS01370
https://docs.oracle.com/database/121/LNPLS/create_package.htm#LNPLS01371

 38

 Migration to: PostgreSQL Functions
[Back to TOC]

Overview
PostgreSQL version 9.6 provides support for both stored procedures and stored functions using the CREATE
FUNCTION statement. To emphasize, the procedural statements used by PostgreSQL version 9.6 support the
CREATE FUNCTION statement only. The CREATE PROCEDURE statement is not compatible with this
PostgreSQL version.

PL/pgSQL is the main database programming language used for migrating from Oracle’s PL/SQL code.
PostgreSQL support additional programming languages, also available in Amazon Aurora PostgreSQL:

• PL/pgSQL
• PL/Tcl
• PL/Perl

Use the psql=> show.rds.extensions command to view all available extensions for Amazon Aurora.

Interchangeability Between Oracle PL/SQL and PostgreSQL PL/pgSQL
PostgreSQL’s PL/pgSQL language is often considered the ideal candidate to migrate from Oracle’s PL/SQL code
because many of the Oracle PL/SQL syntax elements are supported by PostgreSQL PL/pgSQL code.

For example, Oracle’s CREATE OR REPLACE PROCEDURE statement is supported by PostgreSQL
PL/pgSQL. Many other PL/SQL syntax elements are also supported making PostgreSQL and PL/pgSQL natural
alternatives when migrating from Oracle.

PostgreSQL create function privileges
To create a function, a user must have USAGE privilege on the language. When creating a function, a language
parameter can be specified as shown in the examples.

Examples
Converting Oracle Stored Procedures and Functions to PostgreSQL PL/pgSQL:

1. Use the PostgreSQL CREATE FUNCTION command to create a new function named FUNC_ALG:

• Using a CREATE OR REPLACE statement creates a new function, or replaces an existing
function, with these limitations:

- You cannot change the function name or argument types.
- The statement does not allow changing the existing function return type.
- The user must own the function to replace it.

psql=> CREATE OR REPLACE FUNCTION FUNC_ALG(P_NUM NUMERIC)
 RETURNS NUMERIC

 AS $$
 BEGIN

 RETURN P_NUM * 2;
 END; $$
 LANGUAGE PLPGSQL;

 39

• INPUT parameter (P_NUM) is implemented similarly to Oracle’s PL/SQL INPUT parameter.
• The $$ signs are used to prevent the need to use single-quoted string escape elements. With the

$$ sign, there is no need to use escape characters in the code when using single quotation marks ('
). The $$ sign appears after the keyword AS and after the function keyword END.

• Use the LANGUAGE PLPGSQL parameter to specify the language for the created function.

2. Convert the Oracle EMP_SAL_RAISE PL/SQL function to PostgreSQL PL/pgSQL:

3. Convert the Oracle EMP_PERIOD_OF_SERVICE_YEAR PL/SQL function to PostgreSQL PL/pgSQL:

psql=> CREATE OR REPLACE FUNCTION EMP_SAL_RAISE
 (IN P_EMP_ID DOUBLE PRECISION, IN SAL_RAISE DOUBLE PRECISION)

 RETURNS VOID
 AS $$
 DECLARE
 V_EMP_CURRENT_SAL DOUBLE PRECISION;
 BEGIN
 SELECT SALARY INTO STRICT V_EMP_CURRENT_SAL
 FROM EMPLOYEES WHERE EMPLOYEE_ID = P_EMP_ID;

 UPDATE EMPLOYEES
 SET SALARY = V_EMP_CURRENT_SAL + SAL_RAISE
 WHERE EMPLOYEE_ID = P_EMP_ID;

RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'NEW SALARY FOR EMPLOYEE ID: ', P_EMP_ID, ' IS
', (V_EMP_CURRENT_SAL + SAL_RAISE));

 EXCEPTION
 WHEN OTHERS THEN
 RAISE USING ERRCODE := '20001', MESSAGE :=
 CONCAT_WS('', 'AN ERROR WAS ENCOUNTERED - ', SQLSTATE, ' -ERROR-
 ', SQLERRM);
 END; $$
 LANGUAGE PLPGSQL;

psql=> select emp_sal_raise(200, 1000);

psql=> CREATE OR REPLACE FUNCTION EMP_PERIOD_OF_SERVICE_YEAR
 (IN P_EMP_ID DOUBLE PRECISION)

 RETURNS DOUBLE PRECISION
 AS $$
DECLARE
 V_PERIOD_OF_SERVICE_YEARS DOUBLE PRECISION;
 BEGIN
 SELECT
 EXTRACT (YEAR FROM NOW()) - EXTRACT (YEAR FROM (HIRE_DATE))
 INTO STRICT V_PERIOD_OF_SERVICE_YEARS
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = P_EMP_ID;
 RETURN V_PERIOD_OF_SERVICE_YEARS;
 END; $$
 LANGUAGE PLPGSQL;

psql=> SELECT EMPLOYEE_ID,
 FIRST_NAME,
 EMP_PERIOD_OF_SERVICE_YEAR(EMPLOYEE_ID) AS
 PERIOD_OF_SERVICE_YEAR

 FROM EMPLOYEES;

 40

Oracle Packages and Package Bodies
PostgreSQL version 9.6 does not support Oracle Packages and Package Bodies. All PL/SQL objects must be
converted to PostgreSQL functions. The following examples describe how the Amazon Schema Conversion
Tool (SCT) handles Oracle Packages and Package Body names:

Oracle:

• Package Name: PCK_CHINOOK_REPORTS
• Package Body: GET_ARTIST_BY_ALBUM

PostgreSQL (converted using Amazon SCT):
• The $ sign separates the package and the package name.

Examples
Convert an Oracle Package and Package Body to PostgreSQL PL/pgSQL:

1. Oracle Package - PCK_CHINOOK_REPORT, Oracle Package Body - GET_ARTIST_BY_ALBUM:

SQL> EXEC PCK_CHINOOK_REPORTS.GET_ARTIST_BY_ALBUM('');

psql=> SELECT PCK_CHINOOK_REPORTS$GET_ARTIST_BY_ALBUM('');

psql=> CREATE OR REPLACE FUNCTION
 chinook."PCK_CHINOOK_REPORTS$GET_ARTIST_BY_ALBUM"
 (p_artist_id text)
 RETURNS void
 LANGUAGE plpgsql
 AS $function$
 DECLARE
 V_ARTIST_NAME CHINOOK.ARTIST.NAME%TYPE;
 BEGIN
 SELECT
 art.name
 INTO STRICT V_ARTIST_NAME
 FROM chinook.album AS alb
 JOIN chinook.artist AS art
 USING (artistid)
 WHERE alb.title = p_artist_id;
 RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'ArtistName: ',
 V_ARTIST_NAME);
 END;
 $function$;

-- Procedures (Packages) Verification
psql=> set client_min_messages = 'debug';
-- Equivalent to Oracle SET SERVEROUTPUT ON

psql=> select chinook.pck_chinook_reports$get_artist_by_album(' Fireball’);

 41

2. Oracle Package - PCK_CHINOOK_REPORTS, Oracle Package Body - CUST_INVOICE_BY_YEAR_ANALYZE:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createfunction.html
https://www.postgresql.org/docs/9.6/static/plpgsql.html
https://www.postgresql.org/docs/9.6/static/xplang.html
https://www.postgresql.org/docs/9.6/static/xfunc-sql.html

psql=> CREATE OR REPLACE FUNCTION
 chinook."pck_chinook_reports$cust_invoice_by_year_analyze"()
 RETURNS void
 LANGUAGE plpgsql
 AS $function$
 DECLARE
 v_cust_genres CHARACTER VARYING(200);
 v RECORD;
 BEGIN
 FOR v IN
 SELECT
 customerid, custname, low_year, high_year, cust_avg
 FROM chinook.tmp_cust_invoice_analyse
 LOOP
 IF SUBSTR(v.low_year, - 4) > SUBSTR(v.high_year, - 4) THEN

 -- Altering Oracle LISTAGG Function With PostgreSQL STRING_AGG
 Function
 select string_agg(genre, ',') into v_cust_genres
 from (
 select distinct
 chinook.func_genre_by_id(trc.genreid)
 as genre
 from chinook.tmp_cust_invoice_analyse tmptbl
 join chinook.INVOICE inv using(customerid)
 join chinook.INVOICELINE invlin
 on inv.invoiceid = invlin.invoiceid
 join chinook.TRACK trc
 on trc.trackid = invlin.trackid
 where customerid=v.CUSTOMERID) a;

 -- PostgreSQL Equivalent To Oracle DBMS_OUTPUT.PUT_LINE()
 RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'Customer: ',
 UPPER(v.custname), ' - Offer a Discount According To Preferred
 Genres: ', UPPER(v_cust_genres));
 END IF;
 END LOOP;
 END;
 $function$;

-- Executing
psql=> SELECT chinook.pck_chinook_reports$cust_invoice_by_year_analyze();

https://www.postgresql.org/docs/9.6/static/sql-createfunction.html
https://www.postgresql.org/docs/9.6/static/plpgsql.html
https://www.postgresql.org/docs/9.6/static/xplang.html
https://www.postgresql.org/docs/9.6/static/xfunc-sql.html

 42

 Migrating from: Oracle UDFs
[Back to TOC]

Overview
You can create an Oracle User-Defined Function (UDF) using PL/SQL, Java, or C. UDFs are useful for providing
functionality not available in SQL or SQL built-in functions. They can appear in your SQL statements wherever
built-in SQL functions appear.

UDFs Usage:

• Can be used to return a single value from a SELECT statement (scalar function).
• Can be used while performing DML operations.
• Can be used in WHERE, GROUP BY, ORDER BY, HAVING, CONNECT BY, and START

WITH clauses.

Example
Create a simple Oracle UDF that receives each employee’s HIRE_DATE and SALARY values as INPUT
parameters and calculates the overall salary over the employee’s years of service for the company.

For additional details:
https://docs.oracle.com/cd/E24693_01/server.11203/e17118/functions256.htm

SQL> CREATE OR REPLACE FUNCTION TOTAL_EMP_SAL_BY_YEARS
 (p_hire_date DATE, p_current_sal NUMBER)

RETURN NUMBER
AS
v_years_of_service NUMBER;
v_total_sal_by_years NUMBER;
BEGIN
 SELECT EXTRACT(YEAR FROM SYSDATE) - EXTRACT(YEAR FROM to_date(p_hire_date))
 INTO v_years_of_service FROM dual;

 v_total_sal_by_years:=p_current_sal*v_years_of_service;
 RETURN v_total_sal_by_years;
END;
/

-- Verifying
SQL> SELECT EMPLOYEE_ID,
 FIRST_NAME,
 TOTAL_EMP_SAL_BY_YEARS(HIRE_DATE, SALARY)AS TOTAL_SALARY
 FROM EMPLOYEES; 2 3 4

EMPLOYEE_ID FIRST_NAME TOTAL_SALARY
----------- -------------------- ------------
 100 Steven 364000
 101 Neena 204000
 102 Lex 272000
 103 Alexander 99000
 104 Bruce 60000
 105 David 57600
 …

https://docs.oracle.com/cd/E24693_01/server.11203/e17118/functions256.htm

 43

 Migration to: PostgreSQL User-Defined Functions
[Back to TOC]

Overview
PostgreSQL supports the creation of User-Defined Functions using the CREATE FUNCTION statement. The
PostgreSQL extended SQL language, PL/pgSQL, is the primary language to use while migrating from Oracle’s
PL/SQL User-Defined Functions.

PostgreSQL Create Function Privileges
To create a function, a user must have USAGE privilege on the language.

Example
Convert the Oracle User-Defined Function from the previous Oracle section to a PostgreSQL PL/pgSQL
function:

For additional details:
https://www.postgresql.org/docs/current/static/xfunc.html
https://www.postgresql.org/docs/9.6/static/sql-createfunction.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

psql=> CREATE OR REPLACE FUNCTION total_emp_sal_by_years
 (P_HIRE_DATE DATE, P_CURRENT_SAL NUMERIC)
 RETURNS NUMERIC
 AS
 $BODY$
 DECLARE
 V_YEARS_OF_SERVICE NUMERIC;
 V_TOTAL_SAL_BY_YEARS NUMERIC;
 BEGIN
 SELECT EXTRACT(YEAR FROM NOW()) - EXTRACT(YEAR FROM
 (P_HIRE_DATE)) INTO V_YEARS_OF_SERVICE;

 V_TOTAL_SAL_BY_YEARS:=P_CURRENT_SAL*V_YEARS_OF_SERVICE;
 RETURN V_TOTAL_SAL_BY_YEARS;
END;
$BODY$
LANGUAGE PLPGSQL;

psql=> SELECT EMPLOYEE_ID,
 FIRST_NAME,
 TOTAL_EMP_SAL_BY_YEARS(HIRE_DATE, SALARY)AS TOTAL_SALARY

 FROM EMPLOYEES;

 employee_id | first_name | total_salary
-------------+-------------+--------------
 100 | Steven | 364000.00
 101 | Neena | 204000.00
 102 | Lex | 272000.00
 103 | Alexander | 99000.00
 104 | Bruce | 60000.00
 105 | David | 57600.00
 106 | Valli | 52800.00
 107 | Diana | 42000.00
…

https://www.postgresql.org/docs/current/static/xfunc.html
https://www.postgresql.org/docs/9.6/static/sql-createfunction.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

 44

 Migrating from: Oracle UTL_FILE
[Back to TOC]

Overview
Oracle’s UTL_FILE PL/SQL package enables you to read and write files stored outside of the database server,
such as files stored on the O/S, your database server, or a connected storage volume. The
UTL_FILE.FOPEN, UTL_FILE.GET_LINE, and UTL_FILE .PUT_LINE are procedures within the
UTL_FILE package used to open, read, and write files.

Example
Run an anonymous PL/SQL block that reads a single line from file1 and writes it to file2.

• Use UTL_FILE.FILE_TYPE to create a handle for the file.
• Use UTL_FILE.FOPEN to open streamable access to the file and specify:

o The logical Oracle directory object that was created pointing to the O/S folder where the file
resides.

o The file name.
o The file access mode:

 A: append mode.
 W: write mode.

• Use UTL_FILE.GET_LINE to read a line from the input file into a variable.
• Use UTL_FILE.PUT_LINE to write a single line to the output file.

For additional details:
https://docs.oracle.com/database/121/ARPLS/u_file.htm

DECLARE
 strString1 VARCHAR2(32767);
 fileFile1 UTL_FILE.FILE_TYPE;
BEGIN
 fileFile1 := UTL_FILE.FOPEN('FILES_DIR','File1.tmp','R');
 UTL_FILE.GET_LINE(fileFile1,strString1);
 UTL_FILE.FCLOSE(fileFile1);
 fileFile1 := UTL_FILE.FOPEN('FILES_DIR','File2.tmp','A');
 utl_file.PUT_LINE(fileFile1,strString1);
 utl_file.fclose(fileFile1);
END;
/

https://docs.oracle.com/database/121/ARPLS/u_file.htm

 45

 Migration to:

Amazon Aurora PostgreSQL does not support a direct comparable alternative for Oracle UTL_FILE.

 46

 Migrating from: Oracle JSON Document Support
[Back to TOC]

Overview
JSON documents are based on JavaScript syntax and allow serialization of objects. Oracle support for JSON
document storage and retrieval enables you to extend the database capabilities beyond purely relational use-
cases and allows the Oracle database to support semi-structured data. Oracle JSON support also includes full-
text search and several other functions dedicated to querying JSON documents.

Additional details:
http://www.oracle.com/technetwork/database/soda-wp-2531583.pdf

Examples
Create a table to store a JSON document in a data column and insert a JSON document into the table:

Unlike XML data, which is stored using the SQL data type XMLType, JSON data is stored in an Oracle Database
using the SQL data types VARCHAR2, CLOB, and BLOB. Oracle recommends that you always use
an is_json check constraint to ensure the column values are valid JSON instances. Or, add a constraint at the
table-level (CONSTRAINT json_docs_json_chk CHECK (data IS JSON).

CREATE TABLE json_docs (

 id RAW(16) NOT NULL,

 data CLOB,

 CONSTRAINT json_docs_pk PRIMARY KEY (id),

 CONSTRAINT json_docs_json_chk CHECK (data IS JSON)

);

INSERT INTO json_docs (id, data)

VALUES (SYS_GUID(),

 '{

 "FName" : "John",

 "LName" : "Doe",

 "Address" : {

 "Street" : "101 Street",

 "City" : "City Name",

 "Country" : "US",

 "Pcode" : "90210"

 }

 }');

http://www.oracle.com/technetwork/database/soda-wp-2531583.pdf

 47

You can query a JSON document directly from a SQL query without the use of special functions. Querying
without functions is called Dot Notation.

In addition, Oracle provides multiple SQL functions that integrate with the SQL language and enable querying
JSON documents (such as IS JSON, JSON_VAUE, JSON_EXISTS , JSON_QUERY , and JSON_TABLE).

For additional details:
http://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6246

SELECT a.data.FName,

 a.data.LName,

 a.data.Address.Pcode AS Postcode

FROM json_docs a;

FNAME LNAME POSTCODE

--------------- --------------- ----------

John Doe 90210

1 row selected.

http://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6246

 48

 Migration to: PostgreSQL JSON Support
[Back to TOC]

Overview
PostgreSQL provides native JSON Document support using the JSON data types JSON and JSONB.

JSON: Stores an exact copy of the input text, which processing functions must reparse on each execution. It
also preserves semantically-insignificant white space between tokens and the order of keys within JSON
objects.

JSONB: Stores data in a decomposed binary format causing slightly slower input performance due to added
conversion to binary overhead. But, it is significantly faster to process since no reparsing is needed on reads.

● Does not preserve white space.
● Does not preserve the order of object keys.
● Does not keep duplicate object keys. If duplicate keys are specified in the input, only the last value is

retained.

Most applications store JSON data as JSONB unless there are specialized needs.

For additional information about the differences between JSON and JSOB datatypes:
https://www.postgresql.org/docs/9.6/static/datatype-json.html

In order to adhere to the full JSON specification, database encoding must be set to UTF8. If the database
codepage is set to non-UTF8, characters that can be represented in the database encoding, but not in UTF8,
are allowed. This condition is not desirable.

Creating JSON Tables in PostgreSQL and Inserting Data:

1. Create a PostgreSQL table named json_docs with a single JSON column:

2. Create a PostgreSQL table named employees with two scalar datatype columns and a single JSON column:

3. Insert JSON data into the table:

Oracle uses VARCHAR/BLOB/CLOB data types to store JSON data, but PostgreSQL uses the special JSON
and JSONB data types. Validations of proper JSON formats are performed during insert. You cannot store
invalid JSON in a JSON/JSONB data type.

INSERT INTO employees VALUES (1, 'First Employee',
'{ "address": "1234 First Street, Capital City", "phone numbers": { "home":
"123456789", "mobile": "98765431" } }');

CREATE TABLE json_docs (data jsonb);

CREATE TABLE employees (emp_id int, emp_name varchar(100), emp_data jsonb);

https://www.postgresql.org/docs/9.6/static/datatype-json.html

 49

Query JSON/JSONB data with operators
Querying JSON data in PostgreSQL uses different query syntax from Oracle – you must change application
queries. Examples of PostgreSQL-native JSON query syntax are provided below:

1. Return the JSON document stored in the emp_data column associated with emp_id=1:

2. Return all JSON documents stored in the emp_data column having a key named address:

3. Return all JSON items that have an address key or a hobbies key:

4. Return all JSON items that have both an address key and a hobbies key:

5. Return the value of home key in the phone numbers array:

6. Return all JSON documents where the address key is equal to a specified value and return all JSON
documents where address key contains a specific string (using like):

For additional details:
https://www.postgresql.org/docs/9.6/static/functions-json.html

SELECT emp_data FROM employees WHERE emp_id = 1;

SELECT emp_data FROM employees WHERE emp_data ? ' address';

SELECT * FROM employees WHERE emp_data ?| array['address', 'hobbies'];

SELECT * FROM employees WHERE emp_data ?& array['a', 'b'];

SELECT emp_data ->'phone numbers'->>'home' FROM employees;

SELECT * FROM employees WHERE emp_data->>'address' = '1234 First Street,
Capital City';

SELECT * FROM employees WHERE emp data->>'address' like '%Capital City%';

https://www.postgresql.org/docs/9.6/static/functions-json.html

 50

Oracle vs. PostgreSQL JSON Support

Feature Oracle (Dot-Notation) PostgreSQL
Return the full JSON
document / all JSON
documents

emp_data is a column that stores
json documents:

SELECT emp_data FROM
employees;

emp_data is a column that stores
JSON documents:

SELECT emp_data FROM
employees;

Return a specific
element from a JSON
document

Return only the address property:

SELECT e.emp_data.address
FROM employees e;

Return only the address property, for
emp_id 1 from the emp_data JSON
column in the employees table:

select emp_data->>'address'
from employees
where emp_id = 1;

Return JSON
documents matching a
pattern in any field

Return the JSON based on a search
of on all JSON properties. Could be
returned even if element is equal to
the pattern

SELECT e.emp_data FROM
employees e
WHERE e.emp_data like
'%patten%';

Either use jsonb_pretty to flatten the
JSON and search or, preferably, convert
it to text and make like search on value

select *
from
(select
jsonb_pretty(emp_data) as
raw_data
from employees) raw_jason
where raw_data like
'%1234%';

SELECT key, value FROM
card, lateral
jsonb_each_text(data)
WHERE value LIKE
'%pattern%';

Return JSON
documents matching a
pattern in specific
fields (root level)

SELECT e.emp_data.name
FROM employees e
WHERE e.data.active =
'true';

Only return results where the
“finished” property in the JSON
document is true:

SELECT * FROM employees
WHERE emp_data->>'active' =
'true';

Define a column in a
table that supports
JSONB documents

1. Create a table with a CLOB
column.
2. Define an “IS JSON” constraint on
the column.

CREATE TABLE json_docs
(id RAW(16) NOT NULL,
data CLOB,
CONSTRAINT json_docs_pk
PRIMARY KEY (id),
CONSTRAINT
json_docs_json_chk CHECK
(data IS JSON)
);

1. Create a table with a column defined
as JSON:

CREATE TABLE json_docs (
id integer NOT NULL,
data jsonb
);

 51

Indexing and Constraints with JSONB Columns
You can use the CREATE UNIQUE INDEX statement to enforce constraints on values inside JSON
documents stored in PostgreSQL. For example, you can create a unique index that forces values of the
address key to be unique.

This index allows the first SQL insert statement to work and causes the second to fail:

For JSON data, PostgreSQL Supports B-Tree, HASH, and GIN indexes (Generalized Inverted Index). A GIN index
is a special inverted index structure that is useful when an index must map many values to a row (such as
indexing JSON documents).

When using GIN indexes, you can efficiently and quickly query data using only the following JSON operators:
@>, ?, ?&, ?|

Without indexes, PostgreSQL is forced to perform a full table scan when filtering data. This condition applies
to JSON data and will most likely have a negative impact on performance since Postgres has to step into each
JSON document.

1. Create an index on the address key of emp_data:

2. Create a GIN index on a specific key or the entire emp_data column:

For additional details:
https://www.postgresql.org/docs/9.6/static/datatype-json.html
https://www.postgresql.org/docs/9.6/static/functions-json.html

CREATE UNIQUE INDEX employee_address_uq ON employees((emp_data->>'address')) ;

INSERT INTO employees VALUES (2, 'Second Employee',
'{ "address": "1234 Second Street, Capital City"}');

INSERT INTO employees VALUES (3, 'Third Employee',
'{ "address": "1234 Second Street, Capital City"}');

ERROR: duplicate key value violates unique constraint "employee_address_uq" SQL
state: 23505 Detail: Key ((emp_data ->> 'address'::text))=(1234 Second Street,
Capital City) already exists.

CREATE idx1_employees ON employees ((emp_data->>'address'));

CREATE INDEX idx2_employees ON cards USING gin ((emp_data->'tags'));

CREATE INDEX idx3 employees ON employees USING gin (emp data);

https://www.postgresql.org/docs/current/static/gin.html
https://www.postgresql.org/docs/9.6/static/datatype-json.html
https://www.postgresql.org/docs/9.6/static/functions-json.html

 52

 Migrating from: Oracle OLAP Functions
[Back to TOC]

Overview
Oracle OLAP functions extend the functionality of standard SQL analytic functions by providing capabilities to
compute aggregate values based on a group of rows. You can apply the OLAP functions to logically
“partitioned” sets of results within the scope of a single query expression. OLAP functions are usually used in
combination with Business Intelligence reports and analytics. They can help boost query performance – an
alternative to achieving the same result using more complex non-OLAP SQL code.

Common Oracle OLAP Functions:

Function Type Related Functions
Aggregate average_rank, avg, count, dense_rank, max, min, rank ,sum
Analytic average_rank, avg, count, dense_rank, lag, lag_variance,

lead_variance_percent, max, min, rank, row_number, sum,
percent_rank, cume_dist, ntile, first_value, last_value

Hierarchical hier_ancestor, hier_child_count,, hier_depth, hier_level,
hier_order, hier_parent, hier_top

Lag lag, lag_variance, lag_variance_percent, lead, lead_variance,
lead_variance_percent

OLAP DML olap_dml_expression
Rank average_rank ,dense_rank, rank, row_number

For additional details:
https://docs.oracle.com/cd/E11882_01/olap.112/e23381/olap_functions.htm#OLAXS169
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#OLAXS174

https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHIGDAG
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHJEIIJ
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHFFDEI
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHFFJAC
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHIEIEA
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHFBFAF
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHDAEBF
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHHDFFE
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHBDDCJ
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHCBHFG
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHDCBFD
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#CIHFEEIF
https://docs.oracle.com/cd/E11882_01/olap.112/e23381/olap_functions.htm#OLAXS169
https://docs.oracle.com/database/121/OLAXS/olap_functions.htm#OLAXS174

 53

 Migration to: PostgreSQL Window Functions
[Back to TOC]

Overview
PostgreSQL refers to ANSI SQL analytical functions as “Window Functions”. They provide the same core
functionality as SQL Analytical Functions and Oracle extended OLAP functions. Window functions in
PostgreSQL operate on a logical “partition” or "window" of the result set and return a value for rows in that
“window”.

From a database migration perspective, you should examine PostgreSQL Window Functions by type and
compare them with the equivalent Oracle’s OLAP functions to verify compatibility of syntax and output.

Note: Even if a PostgreSQL window function provides the same functionality of a specific Oracle OLAP
function, the returned data type may be different and require application changes.

PostgreSQL provides support for two main types of Window Functions:

• Aggregation functions.
• Ranking functions.

PostgreSQL Window Functions by Type:

Function Type Related Functions
Aggregate avg, count, max, min, sum, string_agg
Ranking row_number, rank, dense_rank, percent_rank, cume_dist, ntile, lag,

lead, first_value, last_value, nth_value

Oracle’s OLAP Functions vs. PostgreSQL Window Functions:

Oracle
OLAP Function

Returned
Data Type

PostgreSQL Window
Function

Returned
Data Type

Compatible
Syntax

count number count bigint Yes
max number max numeric, string, date/time,

network or enum type
Yes

min number min numeric, string, date/time,
network or enum type

Yes

avg number avg numeric, double, otherwise
same datatype as the
argument

Yes

sum number sum bigint, otherwise same
datatype as the argument

Yes

rank() number rank() bigint Yes
row_number() number row_number() bigint Yes
dense_rank() number dense_rank() bigint Yes
percent_rank() number percent_rank() double Yes
cume_dist() number cume_dist() double Yes
ntile() number ntile() integer Yes
lag() same

type as
value

lag() same type as value Yes

 54

Oracle
OLAP Function

Returned
Data Type

PostgreSQL Window
Function

Returned
Data Type

Compatible
Syntax

lead() same
type as
value

lead() same type as value Yes

first_value() same
type as
value

first_value() same type as value Yes

last_value() same
type as
value

last_value() same type as value Yes

 55

Example
The Oracle rank() function & PostgreSQL rank() function providing the same results

Oracle:

SQL> SELECT department_id, last_name, salary, commission_pct,
 RANK() OVER (PARTITION BY department_id
 ORDER BY salary DESC, commission_pct) "Rank"
 FROM employees WHERE department_id = 80;

 DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank
 ------------- ------------------------- ---------- -------------- ----------
 80 Russell 14000 .4 1
 80 Partners 13500 .3 2
 80 Errazuriz 12000 .3 3
…

PostgreSQL:

hr=# SELECT department_id, last_name, salary, commission_pct,
 RANK() OVER (PARTITION BY department_id
 ORDER BY salary DESC, commission_pct) "Rank"
 FROM employees WHERE department_id = 80;

 DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank
 ------------- ------------------------- ---------- -------------- ----------
 80 Russell 14000.00 0.40 1
 80 Partners 13500.00 0.30 2
 80 Errazuriz 12000.00 0.30 3…

Note: The returned formatting for certain numeric data types is different.

Oracle CONNECT BY Equivalent in PostgreSQL:
PostgreSQL provides two workarounds as alternatives to Oracle’s hierarchical statements such as the
CONNECT BY function:

• Use PostgreSQL generate_series function.
• Use PostgreSQL recursive views.

For more information:
https://www.postgresql.org/docs/9.6/static/sql-createview.html

https://www.postgresql.org/docs/9.6/static/sql-createview.html

 56

Example
PostgreSQL generate_series function:

For additional details:
https://www.postgresql.org/docs/9.6/static/functions-window.html
https://www.postgresql.org/docs/9.6/static/functions-aggregate.html

Extended Support for Analytic Queries and OLAP

For advanced analytic purposes and use cases, consider using Amazon Redshift as a purpose-built data
warehouse cloud solution. You can run complex analytic queries against petabytes of structured data using
sophisticated query optimization, columnar storage on high-performance local disks, and massive parallel
query execution. Most results are returned in seconds.

Amazon Redshift is specifically designed for online analytic processing (OLAP) and business intelligence (BI)
applications, which require complex queries against large datasets. Because it addresses very different
requirements, the specialized data storage schema and query execution engine that Amazon Redshift uses is
completely different from the PostgreSQL implementation. For example, Amazon Redshift stores data in
columns, also known as a columnar-store database.

demo=> SELECT "DATE"
 FROM generate_series(timestamp '2010-01-01',
 timestamp '2017-01-01',
 interval '1 day') s("DATE");

 DATE

 2010-01-01 00:00:00
 2010-01-02 00:00:00
 2010-01-03 00:00:00
 2010-01-04 00:00:00
 2010-01-05 00:00:00
…

https://www.postgresql.org/docs/9.6/static/functions-window.html
https://www.postgresql.org/docs/9.6/static/functions-aggregate.html

 57

Amazon Redshift Window functions by type:

Function Type Related Functions
Aggregate AVG

COUNT
CUME_DIST
FIRST_VALUE
LAG
LAST_VALUE
LEAD
MAX
MEDIAN
MIN
NTH_VALUE
PERCENTILE_CONT
PERCENTILE_DISC
RATIO_TO_REPORT
STDDEV_POP
STDDEV_SAMP (synonym for STDDEV)
SUM
VAR_POP
VAR_SAMP (synonym for VARIANCE)

Ranking DENSE_RANK
NTILE
PERCENT_RANK
RANK
ROW_NUMBER

For additional details:
http://docs.aws.amazon.com/redshift/latest/dg/c_Window_functions.html
http://docs.aws.amazon.com/redshift/latest/dg/r_Window_function_examples.html

http://docs.aws.amazon.com/redshift/latest/dg/c_Window_functions.html
http://docs.aws.amazon.com/redshift/latest/dg/r_Window_function_examples.html

 58

 Migrating from: Oracle PL/SQL Cursors
[Back to TOC]

Overview
PL/SQL cursors are pointers to data sets on which application logic can iterate. A PL/SQL cursor holds the rows
returned by a SQL statement. Using cursors, PL/SQL code can iterate over the rows and execute business logic
one row at a time. You can refer to the active data set in named cursors from inside a program.

There are two types of cursors in PL/SQL:

1. Implicit Cursors – Session cursors constructed and managed by PL/SQL automatically without being

created or defined by the user. PL/SQL opens an implicit cursor each time you run a SELECT or DML
statement. Implicit cursors are also called “SQL Cursors”.

2. Explicit Cursors – Session cursors created, constructed, and managed by a user. You declare and define an
explicit cursor giving it a name and associating it with a query. Unlike an implicit cursor, you can reference
an explicit cursor using its name. An explicit cursor or cursor variable is called a “named cursor”.

When migrating Oracle PL/SQL Cursors to PostgreSQL, most of the focus is on application-controlled (or
programmatically-controlled) cursors, which are Explicit Cursors.

Examples

1. Define an explicit PL/SQL cursor named c1.
2. The cursor executes an SQL statement to return rows from the database.
3. The PL/SQL Loop reads data from the cursor, row by row, and stores the values into two variables:

- v_lastname
- v_jobid

4. The loop terminates when the last row is read from the database using the %NOTFOUND attribute.

DECLARE
 CURSOR c1 IS
 SELECT last_name, job_id FROM employees
 WHERE REGEXP_LIKE (job_id, 'S[HT]_CLERK')
 ORDER BY last_name;
 v_lastname employees.last_name%TYPE; -- variable to store last_name
 v_jobid employees.job_id%TYPE; -- variable to store job_id
BEGIN
 OPEN c1;
 LOOP -- Fetches 2 columns into variables
 FETCH c1 INTO v_lastname, v_jobid;
 EXIT WHEN c1%NOTFOUND;
 END LOOP;
 CLOSE c1;
END;

 59

1. Define an implicit PL/SQL Cursor using a FOR Loop.
2. The cursor executes a query and stores values returned into a record.
3. A loop iterates over the Cursor data set and prints the result.

For additional details:
https://docs.oracle.com/database/121/LNPLS/explicit_cursor.htm#LNPLS01313
https://docs.oracle.com/database/121/LNPLS/static.htm#GUID-596C1961-5A94-40ED-9920-668BB05632C5

BEGIN
 FOR item IN (
 SELECT last_name, job_id
 FROM employees
 WHERE job_id LIKE '%MANAGER%'
 AND manager_id > 400
 ORDER BY last_name
)
 LOOP
 DBMS_OUTPUT.PUT_LINE
 ('Name = ' || item.last_name || ', Job = ' || item.job_id);
 END LOOP;
END;
/

https://docs.oracle.com/database/121/LNPLS/explicit_cursor.htm#LNPLS01313
https://docs.oracle.com/database/121/LNPLS/static.htm#GUID-596C1961-5A94-40ED-9920-668BB05632C5

 60

 Migration to: PostgreSQL PL/pgSQL Cursors
[Back to TOC]

Overview
Similar to Oracle PL/SQL Cursors, PostgreSQL has PL/pgSQL cursors that enable you to iterate business logic on
rows read from the database. They can encapsulate the query and read the query results a few rows at a time.
All access to cursors in PL/pgSQL is performed through cursor variables, which are always of the refcursor
data type.

Create a PL/pgSQL cursor by declaring it as a variable of type refcursor.

Example: Declare a Cursor

1. Declare a Cursor in PL/pgSQL to be used with any query:

The variable c1 is unbound since it is not bound to any particular query.

2. Declare a Cursor in PL/pgSQL with a bound query:

FOR can be replaced by IS for Oracle compatibility:

3. Declare a Cursor in PL/pgSQL with a parameterized bound query:

• The id variable is replaced by an integer parameter value when the cursor is opened.
• When declaring a Cursor with SCROLL specified, the Cursor can scroll backwards.
• If NO SCROLL is specified, backward fetches are rejected.

4. Declare a backward-scrolling compatible Cursor using the SCROLL option:

Notes:
• SCROLL specifies that rows can be retrieved backwards. NO SCROLL specifies that rows cannot

be retrieved backwards.
• Depending upon the complexity of the execution plan for the query, SCROLL might create

performance issues.
• Backward fetches are not allowed when the query includes FOR UPDATE or FOR SHARE.

DECLARE
 c1 refcursor;

DECLARE
 c2 CURSOR FOR SELECT * FROM employees;

DECLARE
 c2 CURSOR IS SELECT * FROM employees;

DECLARE
 c3 CURSOR (var1 integer) FOR SELECT * FROM employees where id = var1;

DECLARE
 c3 SCROLL CURSOR FOR SELECT id, name FROM employees;

 61

Example: Open a Cursor
You must open a cursor before you can use it to retrieve rows.

1. Open a Cursor variable that was declared as Unbound and specify the query to execute:

2. Open a Cursor variable that was declared as Unbound and specify the query to execute as a string

expression. This approach provides greater flexibility.

Parameter values can be inserted into the dynamic command using format() and USING. For example,
the table name is inserted into the query using format(). The comparison value for col1 is inserted
using a USING parameter.

3. Open a Cursor that was bound to a query when the Cursor was declared and that was declared to take

arguments.

For the c3 Cursor, supply the argument value expressions.

If the Cursor was not declared to take arguments, the arguments can be specified outside the Cursor:

BEGIN
 OPEN c1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 =
$1',tabname) USING keyvalue;

BEGIN
 OPEN c1 FOR SELECT * FROM employees WHERE id = emp_id;

DO $$
DECLARE
 c3 CURSOR (var1 integer) FOR SELECT * FROM employees where id = var1;
BEGIN
 OPEN c3(var1 := 42);
END$$;

DO $$
DECLARE
 var1 integer;
 c3 CURSOR FOR SELECT * FROM employees where id = var1;
BEGIN
 var1 := 1;
 OPEN c3;
END$$;

 62

Example: Fetch a Cursor
The PL/pgSQL FETCH command retrieves the next row from the Cursor into a variable.

1. Fetch the values returned from the c3 Cursor into a row variable:

2. Fetch the values returned from the c3 Cursor into two scalar datatypes:

3. PL/pgSQL supports a special direction clause when fetching data from a Cursor using the NEXT, PRIOR,

FIRST, LAST, ABSOLUTE count, RELATIVE count, FORWARD, or BACKWARD arguments. Omitting
direction is equivalent to as specifying NEXT. For example, fetch the last row from the Cursor into the
declared variables:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-fetch.html

DO $$
DECLARE
 c3 CURSOR FOR SELECT id, name FROM employees;
 emp_id integer;
 emp_name varchar;
BEGIN
 OPEN c3;
 FETCH LAST FROM c3 INTO emp_id, emp_name;
END$$;

DO $$
DECLARE
 c3 CURSOR FOR SELECT * FROM employees;
 rowvar employees%ROWTYPE;
BEGIN
 OPEN c3;
 FETCH c3 INTO rowvar;
END$$;

DO $$
DECLARE
 c3 CURSOR FOR SELECT id, name FROM employees;
 emp_id integer;
 emp_name varchar;
BEGIN
 OPEN c3;
 FETCH c3 INTO emp_id, emp_name;
END$$;

https://www.postgresql.org/docs/9.6/static/sql-fetch.html

 63

Example: Close a Cursor
Close a PL/pgSQL cursor using the close command:

Example: Iterating Through a Cursor
PL/pgSQL supports detecting when a cursor has no more data to return and can be combined with loops to
iterate over all rows of a Cursor reference.

The following PL/pgSQL code uses a loop to fetch all rows from the Cursor and then exit after the last record is
fetched (using EXIT WHEN NOT FOUND):

Example: Move Cursor Without Fetching Data
MOVE repositions a cursor without retrieving any data and works exactly like the FETCH command, except it
only repositions the cursor in the dataset and does not return the row to which the cursor is moved. The
special variable FOUND can be checked to determine if there is a next row.

1. Move to the last row (null or no data found) for cursor c3:

2. Move the Cursor two records back:

3. Move the c3 Cursor two records forward.

DO $$
DECLARE
 c3 CURSOR FOR SELECT id, name FROM employees;
 emp_id integer;
 emp_name varchar;
BEGIN
 OPEN c3;
 FETCH LAST FROM c3 INTO emp_id, emp_name;
 close c3;
END$$;

DO $$
DECLARE
 c3 CURSOR FOR SELECT * FROM employees;
 rowvar employees%ROWTYPE;
BEGIN

OPEN c3;
 LOOP
 FETCH FROM c3 INTO rowvar;
 EXIT WHEN NOT FOUND;
 END LOOP;
 CLOSE c3;
END$$;

MOVE LAST FROM c3;

MOVE RELATIVE -2 FROM c3;

MOVE FORWARD 2 FROM c3;

 64

Example: Update/Delete Current
When a cursor is positioned on a table row, that row can be updated or deleted. There are restrictions on what
the cursor’s query can select for this type of DML to succeed.

For example, the current row to which the C3 Cursor is pointed to is updated:

Example: Use an Implicit Cursor (FOR Loop Over Queries)

Comparing Oracle PL/SQL and PostgreSQL PL/pgSQL syntax:

Action PostgreSQL
PL/pgSQL

Oracle PL/SQL

Declare a bound
explicit cursor

c2 CURSOR FOR
SELECT * FROM
employees;

CURSOR c1 IS
SELECT * FROM
employees;

Open a cursor OPEN c2; OPEN c1;
Move Cursor to next
row and fetch into a
record variable
(rowvar was declared in
the DECLARE section)

FETCH c2 INTO rowvar;

FETCH c1 INTO rowvar;

Move Cursor to next
row and fetch into
multiple scalar data
types
(emp_id, emp_name,
salary was declared in
the DECLARE section)

FETCH c2 INTO emp_id,
emp_name, salary;

FETCH c1 INTO emp_id,
emp_name, salary;

Iterate through an
Implicit Cursor via a
Loop

FOR item IN (
 SELECT last_name,
job_id
 FROM employees

FOR item IN (
 SELECT last_name,
job_id
 FROM employees

UPDATE employee SET salary = salary*1.2 WHERE CURRENT OF c3;

DO $$
DECLARE
 item RECORD;
BEGIN
 FOR item IN (
 SELECT last_name, job_id
 FROM employees
 WHERE job_id LIKE '%MANAGER%'
 AND manager_id > 400
 ORDER BY last_name
)
 LOOP
 RAISE NOTICE 'Name = %, Job=%', item.last_name, item.job_id;
 END LOOP;
END $$;

 65

Action PostgreSQL
PL/pgSQL

Oracle PL/SQL

 WHERE job_id LIKE
'%CLERK%'
 AND manager_id > 120
 ORDER BY last_name
)
 LOOP
 << do something >>
 END LOOP;

 WHERE job_id LIKE
'%CLERK%'
 AND manager_id >
120
 ORDER BY last_name
)
 LOOP
 << do something >>
 END LOOP;

Declare a cursor with
variables

C2 CURSOR (key integer)
FOR SELECT * FROM
employees WHERE id =
key;

CURSOR c1 (key NUMBER)
IS SELECT * FROM
employees WHERE id =
key;

Open a cursor with
variables

OPEN c2(2); or
OPEN c2(key := 2);

OPEN c1(2);

Exit a loop after no data
found

EXIT WHEN NOT FOUND; EXIT WHEN c1%NOTFOUND;

Detect if a Cursor has
rows remaining in its
dataset

FOUND %FOUND

Determine how many
rows were affected
from any DML
statement

Not Supported but you can run with
every DML GET DIAGNOSTICS
integer_var = ROW_COUNT; and
save the results in an array

%BULK_ROWCOUNT

Determine which DML
execution failed with
the relevant error code

- %BULK_EXCEPTIONS

Detect if the Cursor is
open

- %ISOPEN

Detect if a Cursor has no
rows remaining in its
dataset

NOT FOUND %NOTFOUND

Returns the number of
rows affected by a
Cursor

GET DIAGNOSTICS integer_var
= ROW_COUNT;

%ROWCOUNT

For additional information on PostgreSQL Pl/pgSQL:
https://www.postgresql.org/docs/current/static/plpgsql-cursors.html
https://www.postgresql.org/docs/current/static/plpgsql-statements.html

https://www.postgresql.org/docs/current/static/plpgsql-cursors.html
https://www.postgresql.org/docs/current/static/plpgsql-statements.html

 66

 Migrating from: Oracle Single-Row and Aggregative Functions
[Back to TOC]

Overview
Oracle provides two main categories of built-in SQL functions based on the amount of rows used as input and
generated as output.

• Single-row functions (also known as Scalar Functions) return a single result for each row of the queried
table or view. The implementation of single-row functions can be performed with a SELECT
statement in the WHERE clause, the START WITH clause, the CONNECT BY clause, and the HAVING
clause.

The single-row functions are divided into groups according to the datatypes, such as:

o NUMERIC functions.
o CHAR functions.
o DATETIME functions.

• Aggregative functions (also known as Group functions) are used to summarize a group of values into a

single result. Examples include: AVG, MIN, MAX, SUM, COUNT, LISTAGG, FIRST, and
LAST.

See the next section for a comparison of Oracle and PostgreSQL single-row functions.

For additional details:
https://docs.oracle.com/database/121/SQLRF/functions002.htm#SQLRF20031
https://docs.oracle.com/database/121/SQLRF/functions003.htm#SQLRF20035

https://docs.oracle.com/database/121/SQLRF/functions002.htm#SQLRF20031
https://docs.oracle.com/database/121/SQLRF/functions003.htm#SQLRF20035

 67

 Migration to: PostgreSQL Single-Row and Aggregative Functions
[Back to TOC]

Overview
PostgreSQL provides an extensive list of single-row and aggregative functions. Some functions are similar to
their Oracle counterparts (by name and functionality, or under a different name but with similar
functionality). Other functions can have identical names to their Oracle counterparts but offer different
functionality. The “Equivalent” column in the table below indicates functional equivalency.

Oracle
Function Function Definition PostgreSQL Function Function Definition Equivalent

NUMERIC FUNCTIONS
ABS Absolute value of n:

abs (-11.3) -->
11.3

ABS(n) Absolute value of n:
abs (-11.3) -->
11.3

Yes

CEIL Returns the smallest
integer that is greater
than or equal to n:
ceil (-24.9) -->
-24

CEIL / CEILING Returns the nearest
integer greater than or
equal to argument:
ceil (-24.9) --> -
24

Yes

FLOOR Returns the largest
integer equal to or less
than n:
floor (-43.7)
--> -44

FLOOR Returns nearest integer
less than or equal to
argument:
floor (-43.7) -
-> -44

Yes

MOD Remainder of n2 divided
by n1:
mod(10,3) --> 1

MOD Remainder of y/x:
mod (10,3) --> 1

Yes

ROUND Returns n rounded to
integer places to the right
of the decimal point:
round (3.49, 1) -
-> 3.5

ROUND Round to nearest integer:
round (3.49, 1) --
> 3.5

Yes

TRUNC
(Number)

Returns n1 truncated to
n2 decimal places:
trunc(13.5) -->
13

TRUNC
(Number)

Truncate to s decimal
places:
trunc (13.5) -->
13

Yes

CHARACTER FUNCTIONS
CONCAT Returns char1

concatenated with char2:
concat('a', 1) --
> a1

CONCAT Concatenate the text
representations of all the
arguments:
concat('a', 1) -
-> a1
Also, can use the (||)
operators:
select 'a' ||'
'|| 'b' -->
a b

Partly

LOWER /
UPPER

Returns char, with all
letters lowercase or
uppercase:
lower ('MR.
Smith’) --> mr.
smith

LOWER / UPPER Convert string to lower
or upper case:
lower ('MR.
Smith') -->
mr. smith

Yes

 68

LPAD / RPAD Returns expr1, left or
right padded to length n
characters with the
sequence of characters in
expr2:
LPAD('Log-
1',10,'*')
--> *****Log-1

LPAD Fill up the string to
length by prepending the
characters fill left or
right:
LPAD('Log-
1',10,'*’) -->
*****Log-1

Yes

REGEXP_REP
LACE

Search a string for a
regular expression
pattern:
regexp_replace('J
ohn', '[hn].',
'1') --> Jo1

REGEXP_REPLACE Replace substring(s)
matching a POSIX regular
expression:
regexp_replace('J
ohn', '[hn].',
'1') --> Jo1

Yes

REGEXP_SUB
STR

Extends the functionality
of the SUBSTR function by
searching a string for a
regular expression
pattern:
REGEXP_SUBSTR(
'http://www.aws.c
om/products','htt
p://([[:
alnum:]]+\.?){3,4
}/?')
-->
http://www.aws.co
m/

REGEXP_MATCHES
OR
SUBSTRING

Return all captured
substrings resulting from
matching a POSIX regular
expression against the
string:
REGEXP_MATCHES
('http://www.aws.
com/products',
'(http://[[:
alnum:]]+.*/)')
-->
{http://www.aws.c
om/}
OR
SUBSTRING
('http://www.aws.
com/products',
'(http://[[:
alnum:]]+.*/)') -
->
http://www.aws.co
m/

No

REPLACE Returns char with every
occurrence of search
string replaced with a
replacement string:
replace
('abcdef', 'abc',
'123') --> 123def

REPLACE Replace all occurrences
in string of substring
from with substring to:
replace
('abcdef', 'abc',
'123') --> 123def

Yes

LTRIM /
RTRIM

Removes from the left or
right end of char all of the
characters that appear in
set:
ltrim('zzzyaws',
'xyz') -->
aws

LTRIM / RTRIM Remove the longest
string containing only
characters from
characters (a space by
default) from the start of
string:
ltrim('zzzyaws',
'xyz') -->
aws

Yes

SUBSTR Return a portion of char,
beginning at character
position, substring length
characters long:

SUBSTRING Extract substring:
substring (
'John Smith', 6
,1) --> S

No

 69

substr('John
Smith', 6 ,1) -->
S

TRIM Trim leading or trailing
characters (or both) from
a character string:
trim (both 'x'
FROM 'xJohnxx') -
-> John

TRIM Remove the longest
string containing only
characters from
characters (a space by
default) from the start,
end, or both ends:
trim (both from
'yxJohnxx',
'xyz')
--> John

Partly

ASCII Returns the decimal
representation in the
database character set of
the first character of char:
ascii('a') --> a

ASCII ASCII code of the first
character of the
argument:
ascii('a') --> a

Yes

INSTR Search string for
substring

N/A Oracle’s INSTR function
can be simulated using
PostgreSQL built-in
function.

No

LANGTH Return the length of char:
length ('John
S.') --> 7

LANGTH Number of characters in
string:
length ('John
S.') --> 7

Yes

REGEXP_COU
NT

Returning the number of
times, a pattern occurs in
a source string.

N/A The REGEXP_COUNT
function can be used
with Amazon Redshift if
necessary.

No

REGEXP_INST
R

Search a string position
for a regular expression
pattern.

N/A The REGEXP_INSTR
function can be used
with Amazon Redshift if
necessary.

No

DATETIME FUNCTIONS
ADD_MONTH
S

Returns the date plus
integer months:
add_months(
sysdate, 1)

 PostgreSQL can
implement the same
functionality using the
‘<date>+ interval month’
statement:
now () + interval
'1 month'

No

CURRENT_DA
TE

Returns the current date
in the session time zone:
select
current_date from
dual -->
2017-01-01
13:01:01

CURRENT_DATE PostgreSQL
CURRENT_DATE will
return date with no time,
use the now() or the
current_timestamp
function to achieve the
same results:
select
current_timestamp
-->
2017-01-01
13:01:01

Partly

 70

CURRENT_TI
MESTAMP

Returns the current date
and time in the session
time zone:
select current timestamp
from dual; -->
2017-01-01
13:01:01

CURRENT_TIMESTAM
P

Current date and time:
select current_
timestamp; -->
2017-01-01
13:01:01

Yes

EXTRACT
(date part)

Returns the value of a
specified datetime field
from a datetime or
interval expression:
EXTRACT (YEAR
FROM DATE '2017-
03-07') --> 2017

EXTRACT (date part) Retrieves subfields such
as year or hour from
date/time values:
EXTRACT (YEAR
FROM DATE '2017-
03-07') --> 2017

Yes

LAST_DAY Returns the date of the
last day of the month that
contains date

N/A The LAST_DAY function
can be used with Amazon
Redshift if necessary or
can be created using
PostgreSQL built-in
functions.

No

MONTHS_BE
TWEEN

Returns number of
months between dates
date1 and date2:
MONTHS_BETWEEN (
sysdate, sysdate-
100) --> 3.25

N/A As an alternative solution
create a function from
PostgreSQL built-in
functions to achieve the
same functionality.
Example for a possible
solution without decimal
values:
DATE_PART
('month', now())
-
DATE_PART('month'
, now()- interval
'100 days')--> 3

No

SYSDATE Returns the current date
and time set for the
operating system on
which the database
server resides:
select sysdate
from dual -->
2017-01-01
13:01:01

NOW() Current date and time
including fractional
seconds and time zone:
select now () -
-> 2017-01-01
13:01:01.123456+0
0

No

SYSTIMESTA
MP

Returns the system date,
including fractional
seconds and time zone:
Select
systimestamp from
dual --> 2017-01-
01
13:01:01.123456
PM +00:00

NOW() Current date and time
including fractional
seconds and time zone:
select now () --> 2017-
01-01
13:01:01.123456+0
0

No

LOCALTIMES
TAMP

Returns the current date
and time in the session
time zone in a value of
data type TIMESTAMP:

LOCALTIMESTAMP Current date and time:
select
localtimestamp --
> 2017-01-01
10:01:10.123456

Yes

 71

select
localtimestamp
from dual --> 01-
JAN-17
10.01.10.123456
PM

TO_CHAR
(datetime)

Converts a datetime or
timestamp to data type
to a value of VARCHAR2
data type in the format
specified by the date
format:
to_char(sysdate,
'DD-MON-YYYY
HH24:MI:SS')
--> 01-JAN-2017
01:01:01

TO_CHAR (datetime) Convert time stamp to
string:
TO_CHAR(now(), 'DD-
MON-YYYY HH24:MI:SS')
--> 01-JAN-2017
01:01:01

Yes

TRUNC (date) Returns date with the
time portion of the day
truncated to the unit
specified by the format
model:
trunc(systimestam
p) -->
2017-01-01
00:00:00

DATE_TRUNC Truncate to specified
precision:
date_trunc('day',
now()) -->
2017-01-01
00:00:00

No

ENCODING AND DECODING FUNCTIONS
DECODE Compares expr to each

search value one by one
using the functionality of
an IF-THEN-ELSE
statement

DECODE PostgreSQL Decode
function acts differently
from Oracle’s,
PostgreSQL decode
binary data from textual
representation in string
and does not have the
functionality of an IF-
THEN-ELSE statement

No

DUMP Returns a VARCHAR2
value containing the data
type code, length in
bytes, and internal
representation of expr.

N/A N/A No

ORA_HASH Computes a hash value
for a given expression.

N/A N/A No

NULL FUNCTIONS
CASE The CASE statement

chooses from a sequence
of conditions and runs a
corresponding statement:
CASE WHEN
condition THEN
result

CASE The PostgreSQL CASE
expression is a generic
conditional expression,
similar to if/else
statements in other
programming languages:

Yes

 72

 [WHEN ...]
 [ELSE
result]
END

CASE WHEN
condition THEN
result
 [WHEN ...]
 [ELSE
result]
END

COALESCE Returns the first non-null
expr in the expression
list:
coalesce (null,
'a', 'b')
--> a

COALESCE Returns the first of its
arguments that is not
null:
coalesce (null,
'a', 'b')
--> a

Yes

NULLIF Compares expr1 and
expr2. If they are equal,
then the function returns
null. If they are not equal,
then the function returns
expr1:
NULLIF('a', 'b')
--> a

NULLIF Returns a null value if
value1 equals value2
otherwise it returns
value1:
NULLIF ('a', 'b')
--> a

Yes

NVL Replace null (returned as
a blank) with a string in
the results of a query:
NVL (null, 'a')
--> a

COALESCE Returns the first of its
arguments that is not
null:
coalesce (null,
'a') --> a

No

NVL2 Determine the value
returned by a query
based on whether a
specified expression is
null or not null.

N/A Can use the CASE
statement instead.

No

ENVIRONMENT AND IDENTIFIER FUNCTIONS
SYS_GUID Generates and returns a

globally unique identifier
(RAW value) made up of
16 bytes:
select sys_guid()
from dual
-->
5A280ABA8C76201EE
0530100007FF691

UUID_GENERATE_V1() Generates a version 1
UUID:
select
uuid_generate_v1(
) -->
90791a6-a359-
11e7-a61c-
12803bf1597a

No

UID Returns an integer that
uniquely identifies the
session user (the user
who logged on):
select uid from
dual --> 84

N/A Consider using the
PostgreSQL current_user
function along with other
PostgreSQL buit-in
function to generate a
UID.

No

USER Returns the name of the
session user:
select user from
dual

USER
SESSION_USER
CURRENT_USER
CURRENT_SCHEMA()

User name or schema of
current execution
context:
Select user;
or
select
current_schema();

No

 73

USERENV Returns information
about the current session
using parameters:
SELECT
USERENV('LANGUAGE
') "Language"
FROM DUAL

N/A Please refer to the
PostgreSQL
documentation for a list
of all system functions:
https://www.postgresql.
org/docs/9.1/static/funct
ions-info.html

No

CONVERSION FUNCTIONS
CAST Converts one built-in data

type or collection-typed
value into another built-
in data type or collection-
typed value:
cast ('10' as
int) + 1 --> 11

CAST Converting one data type
into another:
cast (
'10' as int) + 1
--> 11

Yes

CONVERT Converts a character
string from a one-
character set to another:
select convert
('Ä Ê Í Õ Ø A B C
D E ',
'US7ASCII',
'WE8ISO8859P1')
from dual

N/A N/A No

TO_CHAR
(string /
numeric)

Converts NCHAR,
NVARCHAR2, CLOB, or
NCLOB data to the
database character set:
select
to_char('01234')
from dual -->
01234

TO_CHAR Converts the first
argument to the second
argument:
select
to_char(01234,
'00000') -->
01234

No

TO_DATE Converts char of CHAR,
VARCHAR2, NCHAR, or
NVARCHAR2 data type to
a value of DATE data
type:
to_date('01Jan201
7', 'DDMonYYYY')
--> 01-JAN-17

TO_DATE Convert string to date:
to_date('01Jan201
7', 'DDMonYYYY')
--> 2017-01-01

Partly

TO_NUMBER Converts expr to a value
of NUMBER data type:
to_number('01234'
) --> 1234
or
to_number('01234'
, '99999') -->
1234

TO_NUMBER Convert string to
numeric:
to_number('01234'
, '99999') -->
1234

Partly

AGGREGATE FUNCTIONS
AVG AVG returns average

value of expr:
select
avg(salary)
from employees

AVG Average (arithmetic
mean) of all input values:
select
avg(salary)
from employees

Yes

https://www.postgresql.org/docs/9.1/static/functions-info.html
https://www.postgresql.org/docs/9.1/static/functions-info.html
https://www.postgresql.org/docs/9.1/static/functions-info.html

 74

For additional details:
https://www.postgresql.org/docs/current/static/functions.html
https://www.postgresql.org/docs/current/static/functions-math.html
https://www.postgresql.org/docs/current/static/functions-string.html
https://www.postgresql.org/docs/current/static/uuid-ossp.html

COUNT Returns the number of
rows returned by the
query:
select count(*)
from employees

COUNT The number of input
rows:
select count(*)
from employees

Yes

LISTAGG Orders data within each
group specified in the
ORDER BY clause and
then concatenates the
values of the measure
column:
select
listagg(firstname
, ' ,') within
group (order by
customerid)
 from customer

STRING_AGG Input values
concatenated into a
string, separated by
delimiter:
select
string_agg(firstn
ame, ' ,')
from customer
order by 1;

No

MAX Returns maximum value
of expr:
select
max(salary)
from employees

MAX Maximum value of
expression across all
input values:
select
max(salary)
from employees

Yes

MIN Returns minimum value
of expr:
select
min(salary)
from employees

MIN Minimum value of
expression across all
input values:
select
min(salary)
from employees

Yes

SUM Returns the sum of values
of expr:
select
sum(salary)
from employees

SUM Sum of expression across
all input values:
select
sum(salary)
from employees

Yes

Top-N Query Oracle 12c
FETCH Retrieves rows of data

from the result set of a
multi-row query:
select * from
customer
fetch first 10
rows only

FETCH
OR
LIMIT

Retrieve just a portion of
the rows that are
generated by the rest of
the query:
select * from
customer
fetch first 10
rows only

Yes

https://www.postgresql.org/docs/current/static/functions.html
https://www.postgresql.org/docs/current/static/functions-math.html
https://www.postgresql.org/docs/current/static/functions-string.html
https://www.postgresql.org/docs/current/static/uuid-ossp.html

 75

 Migrating from: Oracle Merge SQL Syntax
[Back to TOC]

Overview
The MERGE statement provides a way to specify single SQL statements that can conditionally perform
INSERT, UPDATE, or DELETE operations on the target table – a task that would otherwise require multiple
logical statements. The MERGE statement selects record(s) from the source table and then, by specifying a
logical structure, automatically performs multiple DML operations on the target table. Its main advantage is to
help avoid the use of multiple inserts, updates or deletes. It is important to note that MERGE is a deterministic
statement. That is, once a row has been processed by the MERGE statement, it cannot be processed again
using the same MERGE Statement. MERGE is also sometimes known as UPSERT.

Example
Using Oracle MERGE to insert or update employees who are entitled to a bonus (by year):

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_9016.htm#SQLRF01606

SQL> CREATE TABLE EMP_BONUS
 (
 EMPLOYEE_ID NUMERIC,
 BONUS_YEAR VARCHAR2(4),
 SALARY NUMERIC,
 BONUS NUMERIC,
 PRIMARY KEY (EMPLOYEE_ID, BONUS_YEAR)
);

SQL> MERGE INTO EMP_BONUS E1
 USING (SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES) E2
 ON (E1.EMPLOYEE_ID = E2.EMPLOYEE_ID)
 WHEN MATCHED THEN

 UPDATE SET E1.BONUS = E2.SALARY * 0.5
 DELETE WHERE (E1.SALARY >= 10000)
 WHEN NOT MATCHED THEN
 INSERT (E1.EMPLOYEE_ID, E1.BONUS_YEAR, E1.SALARY , E1.BONUS)
 VALUES (E2.EMPLOYEE_ID, EXTRACT(YEAR FROM SYSDATE), E2.SALARY,
 E2.SALARY * 0.5)
 WHERE (E2.SALARY < 10000);

SQL> SELECT * FROM EMP_BONUS;

EMPLOYEE_ID BONU SALARY BONUS
----------- ---- ---------- ----------
 103 2017 9000 4500
 104 2017 6000 3000
 105 2017 4800 2400
 106 2017 4800 2400
 107 2017 4200 2100
 109 2017 9000 4500
 110 2017 8200 4100
 111 2017 7700 3850
 112 2017 7800 3900
 113 2017 6900 3450
 115 2017 3100 1550

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_9016.htm#SQLRF01606

 76

 Migration to: PostgreSQL Merge SQL Syntax
[Back to TOC]

Overview
Currently, PostgreSQL version 9.6 does not support the use of the MERGE SQL command. As an alternative,
consider using the INSERT… ON CONFLICT clause, which can handle cases where insert clauses might
cause a conflict, and then redirect the operation as an update.

Example
Using the ON ONFLICT clause to handle a similar scenario as shown for the Oracle MERGE command:

Running the same operation multiple times using the ON CONFLICT clause does not generate an error
because the existing records are redirected to the update clause.

demo=> CREATE TABLE EMP_BONUS (
 EMPLOYEE_ID NUMERIC,
 BONUS_YEAR VARCHAR(4),
 SALARY NUMERIC,
 BONUS NUMERIC,
 PRIMARY KEY (EMPLOYEE_ID, BONUS_YEAR));

demo=> INSERT INTO EMP_BONUS (EMPLOYEE_ID, BONUS_YEAR, SALARY)
 SELECT EMPLOYEE_ID,
 EXTRACT(YEAR FROM NOW()),
 SALARY
 FROM EMPLOYEES
 WHERE SALARY < 10000
 ON CONFLICT (EMPLOYEE_ID, BONUS_YEAR)
 DO UPDATE SET BONUS = EMP_BONUS.SALARY * 0.5;

demo=> SELECT * FROM EMP_BONUS;

 employee_id | bonus_year | salary | bonus
-------------+------------+---------+----------
 103 | 2017 | 9000.00 | 4500.000
 104 | 2017 | 6000.00 | 3000.000
 105 | 2017 | 4800.00 | 2400.000
 106 | 2017 | 4800.00 | 2400.000
 107 | 2017 | 4200.00 | 2100.000
 109 | 2017 | 9000.00 | 4500.000
 110 | 2017 | 8200.00 | 4100.000
 111 | 2017 | 7700.00 | 3850.000
 112 | 2017 | 7800.00 | 3900.000
 113 | 2017 | 6900.00 | 3450.000
 115 | 2017 | 3100.00 | 1550.000
 116 | 2017 | 2900.00 | 1450.000
 117 | 2017 | 2800.00 | 1400.000
 118 | 2017 | 2600.00 | 1300.000
…

 77

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-insert.html
https://www.postgresql.org/docs/9.6/static/unsupported-features-sql-standard.htm

https://www.postgresql.org/docs/9.6/static/sql-insert.html
https://www.postgresql.org/docs/9.6/static/unsupported-features-sql-standard.htm

 78

 Migrating from: Oracle Create Table as Select (CTAS)
[Back to TOC]

Overview
To create a new table based on an existing table, use the Create Table As Select (CTAS) statement. The CTAS
statement copies the table DDL definitions (column names and column datatypes) and the data to a new
table. The new table is populated from the columns specified in the SELECT statement, or all columns if you
use SELECT * FROM. You can filter specific data using the WHERE and AND statements. Additionally, you
can create a new table having a different structure using joins, GROUP BY, and ORDER BY.

Example
Oracle Create Table As Select (CTAS):

SQL> CREATE TABLE EMPS
 AS
 SELECT * FROM EMPLOYEES;

SQL> CREATE TABLE EMPS
 AS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY FROM EMPLOYEES
 ORDER BY 3 DESC;

 79

 Migration to: PostgreSQL Create Table As Select (CTAS)
[Back to TOC]

Overview
PostgreSQL conforms to the ANSI/SQL standard for CTAS functionality and is compatible with an Oracle CTAS
statement. For PostgreSQL, the following CTAS standard elements are optional:

• The standard requires parentheses around the SELECT statement; PostgreSQL does not.
• The standard requires the WITH [NO] DATA clause; PostgreSQL does not.

PostgreSQL CTAS Synopsis

Examples

1. PostgreSQL CTAS:

2. PostgreSQL CTAS with no data:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createtableas.html

pg_demo=> CREATE TABLE EMPS
 AS
 SELECT * FROM EMPLOYEES;

 pg_demo=> CREATE TABLE EMPS
 AS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY FROM EMPLOYEES
 ORDER BY 3 DESC;

CREATE
[[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...]) |
WITH OIDS | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

pg_demo=> CREATE TABLE EMPS
 AS
 SELECT * FROM EMPLOYEES
 WITH NO DATA; -- optionally

https://www.postgresql.org/docs/9.6/static/sql-createtableas.html

 80

 Migrating from: Oracle Common Table Expression (CTE)
[Back to TOC]

Overview
Common Table Expressions provide a way to implement the logic of sequential code or to reuse code. You can
define a named subquery and then use it multiple times in different parts of a query statement. CTE is
implemented using a WITH clause, which is part of the ANSI SQL-99 standard and has existed in Oracle since
version 9.2. CTE usage is similar to an inline view or a temporary table. Its main purpose is to reduce query
statement repetition and make complex queries simpler to read and understand.

CTE General Syntax

Example
Create a subquery of the employee count for each department and then use the result set of the CTE in a
query:

SQL> WITH DEPT_COUNT
 (DEPARTMENT_ID, DEPT_COUNT) AS
 (
 SELECT DEPARTMENT_ID, COUNT(*)
 FROM EMPLOYEES
 GROUP BY DEPARTMENT_ID

)

 SELECT E.FIRST_NAME ||' '|| E.LAST_NAME AS EMP_NAME,
 D.DEPT_COUNT AS EMP_DEPT_COUNT
 FROM EMPLOYEES E JOIN DEPT_COUNT D
 USING (DEPARTMENT_ID)
 ORDER BY 2;

WITH <subquery name> AS (
<subquery code>)
[...]
SELECT <Select list> FROM <subquery name>;

 81

 Migration to: PostgreSQL Common Table Expression (CTE)
[Back to TOC]

Overview
PostgreSQL confirms to the ANSI SQL-99 standard. Implementing CTEs in PostgreSQL is done in a similar way
to Oracle as long as you are not using native Oracle elements (for example, connect by).

Example
A PostgreSQL CTE:

PostgreSQL provides an additional feature when using CTE as a recursive modifier. The following example uses
a recursive WITH clause to access its own result set:

For additional details:
https://www.postgresql.org/docs/9.6/static/queries-with.html

SQL> WITH DEPT_COUNT
 (DEPARTMENT_ID, DEPT_COUNT) AS
 (
 SELECT DEPARTMENT_ID, COUNT(*)
 FROM EMPLOYEES
 GROUP BY DEPARTMENT_ID

)

 SELECT E.FIRST_NAME ||' '|| E.LAST_NAME AS EMP_NAME,
 D.DEPT_COUNT AS EMP_DEPT_COUNT
 FROM EMPLOYEES E JOIN DEPT_COUNT D
 USING (DEPARTMENT_ID)
 ORDER BY 2;

demo=> WITH RECURSIVE t(n) AS (
 VALUES (0)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 5
)
 SELECT * FROM t;

WITH RECURSIVE t(n) AS (
 VALUES (0)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 5
)
SELECT * FROM t;

 n

 0
 1
 2
 3
 4
 5

https://www.postgresql.org/docs/9.6/static/queries-with.html

 82

 Migrating from: Oracle Insert From Select
[Back to TOC]

Overview
You can insert multiple records into a table from another table using the INSERT FROM SELECT
statement. The INSERT FROM SELECT statement is a derivative of the basic INSERT statement. The
column ordering and data types must match between the target and the source tables.

Example
Simple INSERT FROM SELECT (Explicit):

Simple INSERT FROM SELECT (Implicit):

The following example produces the same effect as the preceding example using a subquery in the
DML_table_expression_clause:

SQL> INSERT INTO EMPS (EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID)
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000;

SQL> INSERT INTO
 (SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID FROM EMPS)
 VALUES (120, 'Kenny', 10000, 90);

SQL> INSERT INTO EMPS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000;

 83

Logging Errors Using Oracle error_logging_clause:

When inserting an existing EMPLOYEE ID into the EMPS table, the insert does not fail because the invalid
records are redirected to the ERRLOG table.

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_9014.htm#SQLRF01604

SQL> ALTER TABLE EMPS ADD CONSTRAINT PK_EMP_ID PRIMARY KEY(employee_id);

SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('EMPS', 'ERRLOG');

SQL> INSERT INTO EMPS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000
 LOG ERRORS INTO errlog ('Cannot Perform Insert') REJECT LIMIT 100;

0 rows inserted

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_9014.htm#SQLRF01604

 84

 Migration to: PostgreSQL Insert From Select
[Back to TOC]

Overview
PostgreSQL INSERT FROM SELECT syntax is mostly compatible with the Oracle syntax, except for a few
Oracle-only features such as the conditional_insert_clause (ALL|FIRST|ELSE). Also, PostgreSQL does not
support the Oracle error_logging_clause. As an alternative, PostgreSQL provides the ON CONFLICT clause
to capture errors, perform corrective measures, or log errors.

PostgreSQL Insert Synopsis

Example
1. Simple INSERT FROM SELECT (Explicit):

[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [AS alias] [(column_name [, ...])]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) [, ...] | query
}
 [ON CONFLICT [conflict_target] conflict_action]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

where conflict_target can be one of:

 ({ index_column_name | (index_expression) } [COLLATE collation] [opclass
] [, ...]) [WHERE index_predicate]
 ON CONSTRAINT constraint_name

and conflict_action is one of:

 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = ({ expression | DEFAULT } [, ...])
|
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [WHERE condition]

demo=> INSERT INTO EMPS (EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID)
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000;

 85

2. Simple Insert from Select (Implicit):

3. The following example is not compatible with the supported syntax PostgreSQL:

4. Using the PostgreSQL ON CONFLICT clause:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-insert.html

demo=> INSERT INTO
 (SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID FROM EMPS)
 VALUES (120, 'Kenny', 10000, 90);

demo=> INSERT INTO EMPS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000;

demo=> ALTER TABLE EMPS ADD CONSTRAINT PK_EMP_ID PRIMARY KEY(employee_id);

demo=> INSERT INTO EMPS
 SELECT EMPLOYEE_ID, FIRST_NAME, SALARY, DEPARTMENT_ID
 FROM EMPLOYEES
 WHERE SALARY > 10000
 ON CONFLICT on constraint PK_EMP_ID DO NOTHING;

INSERT 0

https://www.postgresql.org/docs/9.6/static/sql-insert.html

 86

 Migrating from: Oracle Index-Organized Table (IOT)
[Back to TOC]

Overview
Oracle’s Index-Organized Table (IOT) is a special type of index/table hybrid that physically controls how data is
stored at the table and index level. A common table, or heap-organized table, stores the data unsorted (as a
heap). In an Index-Organized Table, the actual table data is stored in a B-tree index structure sorted by the
row’s primary key. Each leaf block in the index structure stores both the primary key and non-key columns.

Index-Organized Table benefits include:

• The table records are sorted (clustered) using the primary key, which provides performance benefits.
Accessing data using the primary key is faster because the key and data are located physically in the
same structure.

• The total size of storage is reduced because primary key duplication is prevented.

Example
Create an Oracle Index-Organized Table storing “ordered” table data based on the PK_EVENT_ID primary
key:

Note: The EVENT_ID records are sorted in the reverse order from which they were inserted.

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables012.htm#ADMIN11684
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721

SQL> CREATE TABLE SYSTEM_EVENTS (
 EVENT_ID NUMBER,
 EVENT_CODE VARCHAR2(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR2(200),
 EVENT_TIME DATE NOT NULL,
 CONSTRAINT PK_EVENT_ID PRIMARY KEY(EVENT_ID))
 ORGANIZATION INDEX;

SQL> INSERT INTO SYSTEM_EVENTS VALUES(9, 'EVNT-A1-10', 'Critical', '01-JAN-2017');
SQL> INSERT INTO SYSTEM_EVENTS VALUES(1, 'EVNT-C1-09', 'Warning', '01-JAN-2017');
SQL> INSERT INTO SYSTEM_EVENTS VALUES(7, 'EVNT-E1-14', 'Critical', '01-JAN-2017');

SQL> SELECT * FROM SYSTEM_EVENTS;

 EVENT_ID EVENT_CODE EVENT_DESCIPTION EVENT_TIM
---------- ---------- ------------------------------ ---------
 1 EVNT-C1-09 Warning 01-JAN-17
 7 EVNT-E1-14 Critical 01-JAN-17
 9 EVNT-A1-10 Critical 01-JAN-17

https://docs.oracle.com/cd/B28359_01/server.111/b28310/tables012.htm#ADMIN11684
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721

 87

 Migration to: PostgreSQL “Cluster” Table
[Back to TOC]

Overview
PostgreSQL does not support IOTs directly, but offers partially similar functionality using the CLUSTER
feature. The PostgreSQL CLUSTER statement specifies table sorting based on an index already associated
with the table. When using the PostgreSQL CLUSTER command, the data in the table is physically sorted
based on the index, possibly using a primary key column.

Note: Unlike an Oracle Index-Organized Table which is defined during table creation and persists data sorting
(the IOT will always remain sorted), the PostgreSQL CLUSTER does not provide persistent sorting; it is a one-
time operation. When the table is subsequently updated, the changes are not clustered/sorted.

The CLUSTER statement can be used as needed to re-cluster the table.

 88

Example
Using the PostgreSQL CLUSTER command:

For additional details:
https://www.postgresql.org/docs/current/static/sql-cluster.html
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

demo=> CREATE TABLE SYSTEM_EVENTS (
 EVENT_ID NUMERIC,
 EVENT_CODE VARCHAR(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR(200),
 EVENT_TIME DATE NOT NULL,
 CONSTRAINT PK_EVENT_ID PRIMARY KEY(EVENT_ID));

demo=> INSERT INTO SYSTEM_EVENTS VALUES(9, 'EV-A1-10', 'Critical', '01-JAN-
2017');
demo=> INSERT INTO SYSTEM_EVENTS VALUES(1, 'EV-C1-09', 'Warning', '01-JAN-
2017');
demo=> INSERT INTO SYSTEM_EVENTS VALUES(7, 'EV-E1-14', 'Critical', '01-JAN-
2017');

demo=> CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID;
demo=> SELECT * FROM SYSTEM_EVENTS;

 event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------
 1 | EVNT-C1-09 | Warning | 2017-01-01
 7 | EVNT-E1-14 | Critical | 2017-01-01
 9 | EVNT-A1-10 | Critical | 2017-01-01

demo=> INSERT INTO SYSTEM_EVENTS VALUES(2, 'EV-E2-02', 'Warning', '01-JAN-
2017');
demo=> SELECT * FROM SYSTEM_EVENTS;

 event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------
 1 | EVNT-C1-09 | Warning | 2017-01-01
 7 | EVNT-E1-14 | Critical | 2017-01-01
 9 | EVNT-A1-10 | Critical | 2017-01-01
 2 | EVNT-E2-02 | Warning | 2017-01-01

demo=> CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID; -- Run CLUSTER again to re-
cluster
demo=> SELECT * FROM SYSTEM_EVENTS;

 event_id | event_code | event_desciption | event_time
----------+------------+------------------+------------
 1 | EVNT-C1-09 | Warning | 2017-01-01
 2 | EVNT-E2-02 | Warning | 2017-01-01
 7 | EVNT-E1-14 | Critical | 2017-01-01
 9 | EVNT-A1-10 | Critical | 2017-01-01

https://www.postgresql.org/docs/current/static/sql-cluster.html
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

 89

 Migrating from: Oracle Common Data Types
[Back to TOC]

Overview
Oracle provides a set of primitive data types that can be used for table columns or PL/SQL code variables. The
assigned data types for table column or PL/SQL code (such as stored procedures and triggers) define valid
values that each column or argument can store.

Oracle Data Types vs. PostgreSQL Data Types

Oracle
Data Type
Family

Oracle Data Type Oracle Data Type Characteristic PostgreSQL
Identical
Compatibility

PostgreSQL
Corresponding Data
Type

Character
Data Types

CHAR(n) Maximum size of 2000 bytes √ CHAR(n)
CHARACTER(n) Maximum size of 2000 bytes √ CHARACTER(n)
NCHAR(n) Maximum size of 2000 bytes ☒ CHAR(n)

VARCHAR(n) Maximum size of 2000 bytes √ VARCHAR(n)
NCHAR
VARYING(n)

Varying-length UTF-8 string
Maximum size of 4000 bytes

☒ CHARACTER VARYING(n)

VARCHAR2(n) 11g Maximum size of 4000 bytes
Maximum size of 32KB in PL/SQL

☒ VARCHAR(n)

VARCHAR2(n) 12g Maximum size of 32767 bytes
MAX_STRING_SIZE= EXTENDED

☒ VARCHAR(n)

NVARCHAR2(n) Maximum size of 4000 bytes ☒ VARCHAR(n)

LONG Maximum size of 2GB ☒ TEXT

RAW(n) Maximum size of 2000 bytes ☒ BYTEA

LONG RAW Maximum size of 2GB ☒ BYTEA

Numeric
Data Types

NUMBER Floating-point number ☒ DOUBLE PRECISION

NUMBER(*) Floating-point number ☒ DOUBLE PRECISION

NUMBER(p,s) Precision can range from 1 to 38
Scale can range from -84 to 127

☒ DECIMAL(p,s)

NUMERIC(p,s) Precision can range from 1 to 38 √ NUMERIC(p,s)
FLOAT(p) Floating-point number ☒ DOUBLE PRECISION

DEC(p,s) Fixed-point number √ DEC(p,s)
DECIMAL(p,s) Fixed-point number √ DECIMAL(p,s)
INT 38 digits integer √ INTEGER /

NUMERIC(38,0)
INTEGER 38 digits integer √ INTEGER /

NUMERIC(38,0)
SMALLINT 38 digits integer √ SMALLINT
REAL Floating-point number ☒ DOUBLE PRECISION

DOUBLE
PRECISION

Floating-point number √ DOUBLE PRECISION

Date
&Time
Data Types

DATE DATE data type stores date and
time data (year, month, day, hour,
minute and second)

√ TIMESTAMP(0)

 90

Oracle
Data Type
Family

Oracle Data Type Oracle Data Type Characteristic PostgreSQL
Identical
Compatibility

PostgreSQL
Corresponding Data
Type

TIMESTAMP(p) Date and time with fraction √ TIMESTAMP(p)
TIMESTAMP(p)
WITH TIME ZONE

Date and time with fraction and
time zone

√ TIMESTAMP(p) WITH
TIME ZONE

INTERVAL YEAR(p)
TO MONTH

Date interval √ INTERVAL YEAR TO
MONTH

INTERVAL DAY(p)
TO SECOND(s)

Day and time interval √ INTERVAL DAY TO
SECOND(s)

LOB
Data Types

BFILE Pointer to binary file
Maximum file size of 4G

☒ VARCHAR (255) /
CHARACTER VARYING
(255)

BLOB Binary large object
Maximum file size of 4G

☒ BYTEA

CLOB Character large object
Maximum file size of 4G

☒ TEXT

NCLOB Variable-length Unicode string
Maximum file size of 4G

☒ TEXT

ROWID
Data Types

ROWID Physical row address ☒ CHARACTER (255)

UROWID(n) Universal row id
Logical row addresses

☒ CHARACTER VARYING

XML
Data Type

XMLTYPE XML data ☒ XML

Logical
Data Type

BOOLEAN Values TRUE / FALSE and NULL
Cannot be assign to a database
table column

√ BOOLEAN

Spatial
Types

SDO_GEOMETRY The geometric description of a
spatial object

☒ -

SDO_TOPO_GEO
METRY

Describes a topology geometry ☒ -

SDO_GEORASTER A raster grid or image object is
stored in a single row

☒ -

Media
Types

ORDDicom Supports the storage and
management of audio data

☒ -

ORDDicom Supports the storage and
management of Digital Imaging
and Communications in Medicine
(DICOM),

☒ -

ORDDoc Supports storage and
management of any type of media
data

☒ -

ORDImage Supports the storage and
management of image data

☒ -

ORDVideo Supports the storage and
management of video data

☒ -

Note: The “PostgreSQL Identical Compatibility” column indicates if you can use the exact Oracle data type
syntax when migrating to Amazon Aurora PostgreSQL.

 91

Oracle Character Column Semantics
Oracle supports both BYTE and CHAR semantics for column size, which determines the amount of storage
allocated for CHAR and VARCHAR columns.

• If you define a field as VARCHAR2(10 BYTE), Oracle can use up to 10 bytes for storage. However,

based on your database codepage and NLS settings, you may not be able to store 10 characters in that
field because the physical size of some non-English characters exceeds one byte.

• If you define a field as VARCHAR2(10 CHAR), Oracle can store 10 characters no matter how many
bytes are required to store each non-English character.

By default, Oracle will use BYTE semantics. When using a multi-byte character set such as UTF8, you must
do one of the following:

• Use the CHAR modifier in the VARCHAR2/CHAR column definition
• Modify the session or system parameter NLS_LENGTH_SEMANTICS to change the default from

BYTE to CHAR:

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/sql_elements001.htm#SQLRF0021
https://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#SQLRF30020

CREATE TABLE table1 (col1 VARCHAR2(10 CHAR),
col2 VARCHAR2(10 BYTE));

ALTER system SET nls_length_semantics=char scope=both;
ALTER system SET nls_length_semantics=byte scope=both;

ALTER session SET nls_length_semantics=char;
ALTER session SET nls_length_semantics=byte;

https://docs.oracle.com/cd/E11882_01/server.112/e41084/sql_elements001.htm#SQLRF0021
https://docs.oracle.com/database/121/SQLRF/sql_elements001.htm#SQLRF30020

 92

 Migration to: PostgreSQL Common Data Types
[Back to TOC]

Overview
PostgreSQL provides multiple data types which are equivalent to certain Oracle data types. The following table
provides the full list of PostgreSQL datatypes:

PostgreSQL
Data Type Family

PostgreSQL
Data Type

PostgreSQL Data Type Characteristic

Character
Data Types

CHAR Stores a single character
CHARACTER Stores a single character
CHAR(n) Stores exactly (n) characters
VARCHAR(N) Stores a variable number of characters, up to a

maximum of n characters
TEXT Specific variant of varchar, which does not require you

to specify an upper limit on the number of characters
Numeric
Data Types

NUMERIC (P, S) Exact numeric of selectable precision
REAL Single precision floating-point number (4 bytes)
DOUBLE PRECISION Double precision floating-point number (8 bytes)
INT A signed 4-byte integer that can store –2147483648 to

+2147483647
INTEGER A signed 4-byte integer that can store –2147483648 to

+2147483647
SMALLINT A signed 2-byte integer that can store –32768 to

+32767
BIGINT A signed 8-byte integer, giving approximately 18 digits

of precision
BIT Stores a single bit, 0 or 1
BIT VARYING Stores a string of bits
MONEY Equivalent to NUMERIC (9,2), storing 4 bytes of data.

Its use is discouraged
Date &Time
Data Types

TIMESTAMP Stores dates and times from 4713 BC to 1465001 AD,
with a resolution of 1 microsecond - 8 bytes

INTERVAL Stores an interval of approximately +/– 178,000,000
years, with a resolution of 1 microsecond -
16 bytes

DATE Stores dates from 4713 BC to 32767 AD, with a
resolution of 1 day - 4 bytes

TIME Stores a time of day, from 0 to 23:59:59.99, with a
resolution of 1 microsecond - 8 bytes with no
timezone, 12 bytes with timezone

Logical
Data Type

BOOLEAN Holds a truth value. Will accept values such as TRUE,
't','true', 'y', 'yes', and '1' as true. Uses 1 byte of
storage, and can store NULL. This type can be used
upon table creation

XML
Data Type

XML XML data

Geometric
Data Types

POINT An x,y value
LINE A line (pt1, pt2)
LSEG A line segment (pt1, pt2)

 93

PostgreSQL
Data Type Family

PostgreSQL
Data Type

PostgreSQL Data Type Characteristic

 BOX A box specified by a pair of points
PATH A sequence of points, which may be closed or open
POLYGON A sequence of points, effectively a closed path
CIRCLE A point and a length, which specify a circle

PostgreSQL
Data Types

SERIAL A numeric column in a table that increases each time a
row is added

OID An object identifier. Internally, PostgreSQL adds, by
default, a hidden oid to each row, and stores a 4-byte
integer

CIDR Stores a network address of the form x.x.x.x/y where y
is the netmask

INET Similar to cidr, except the host part can be 0
MACADDR MAC (Media Access Control) address
JSON Textual JSON data
JSONB Binary JSON data, decomposed
PG_LSN PostgreSQL Log Sequence Number
BYTEA Binary data ("byte array")
TSQUERY Text search query
TSVECTOR Text search document
TXID_SNAPSHOT User-level transaction ID snapshot
UUID Universally unique identifier

PostgreSQL Character Column Semantics
PostgreSQL only supports CHAR for column size semantics. If you define a field as VARCHAR (10),
PostgreSQL can store 10 characters regardless of how many bytes it takes to store each non-English character.
VARCHAR(n) stores strings up to n characters (not bytes) in length.

Migration of Oracle Datatypes to PostgreSQL datatypes
Automatic migration and conversion of Oracle Tables and Data Types can be performed using Amazon’s
Schema Conversion Tool (Amazon SCT).

 94

Examples

To demonstrate SCT’s capability for migrating Oracle tables to their PostgreSQL equivalents, a table containing
columns representing the majority of Oracle data types was created and converted using Amazon SCT.

Source Oracle compatible DDL for creating the DATATYPES table:

CREATE TABLE "DATATYPES"(
 "BFILE" BFILE,
 "BINARY_FLOAT" BINARY_FLOAT,
 "BINARY_DOUBLE" BINARY_DOUBLE,
 "BLOB" BLOB,
 "CHAR" CHAR(10 BYTE),
 "CHARACTER" CHAR(10 BYTE),
 "CLOB" CLOB,
 "NCLOB" NCLOB,
 "DATE" DATE,
 "DECIMAL" NUMBER(3,2),
 "DEC" NUMBER(3,2),
 "DOUBLE_PRECISION" FLOAT(126),
 "FLOAT" FLOAT(3),
 "INTEGER" NUMBER(*,0),
 "INT" NUMBER(*,0),
 "INTERVAL_YEAR" INTERVAL YEAR(4) TO MONTH,
 "INTERVAL_DAY" INTERVAL DAY(4) TO SECOND(4),
 "LONG" LONG,
 "NCHAR" NCHAR(10),
 "NCHAR_VARYING" NVARCHAR2(10),
 "NUMBER" NUMBER(9,9),
 "NUMBER1" NUMBER(9,0),
 "NUMBER(*)" NUMBER,
 "NUMERIC" NUMBER(9,9),
 "NVARCHAR2" NVARCHAR2(10),
 "RAW" RAW(10),
 "REAL" FLOAT(63),
 "ROW_ID" ROWID,
 "SMALLINT" NUMBER(*,0),
 "TIMESTAMP" TIMESTAMP(5),
 "TIMESTAMP_WITH_TIME_ZONE" TIMESTAMP(5) WITH TIME ZONE,
 "UROWID" UROWID(10),
 "VARCHAR" VARCHAR2(10 BYTE),
 "VARCHAR2" VARCHAR2(10 BYTE),
 "XMLTYPE" XMLTYPE
);

 95

Target PostgreSQL compatible DDL for creating the DATATYPES table migrated from Oracle with Amazon SCT.

Note: While most of the datatypes were converted successfully, a few exceptions were raised for datatypes
that Amazon SCT is unable to automatically convert and where SCT recommended manual actions:

• PostgreSQL does not have a BFILE data type
BFILEs are pointers to binary files.

Recommended actions: either store a named file with the data and create a routine that retrieves
the file from the file system or store the data inside a blob datatype in your table.

CREATE TABLE IF NOT EXISTS datatypes(
bfile character varying(255) DEFAULT NULL,
binary_float real DEFAULT NULL,
binary_double double precision DEFAULT NULL,
blob bytea DEFAULT NULL,
char character(10) DEFAULT NULL,
character character(10) DEFAULT NULL,
clob text DEFAULT NULL,
nclob text DEFAULT NULL,
date TIMESTAMP(0) without time zone DEFAULT NULL,
decimal numeric(3,2) DEFAULT NULL,
dec numeric(3,2) DEFAULT NULL,
double_precision double precision DEFAULT NULL,
float double precision DEFAULT NULL,
integer numeric(38,0) DEFAULT NULL,
int numeric(38,0) DEFAULT NULL,
interval_year interval year to month(6) DEFAULT NULL,
interval_day interval day to second(4) DEFAULT NULL,
long text DEFAULT NULL,
nchar character(10) DEFAULT NULL,
nchar_varying character varying(10) DEFAULT NULL,
number numeric(9,9) DEFAULT NULL,
number1 numeric(9,0) DEFAULT NULL,
"number(*)" double precision DEFAULT NULL,
numeric numeric(9,9) DEFAULT NULL,
nvarchar2 character varying(10) DEFAULT NULL,
raw bytea DEFAULT NULL,
real double precision DEFAULT NULL,
row_id character(255) DEFAULT NULL,
smallint numeric(38,0) DEFAULT NULL,
timestamp TIMESTAMP(5) without time zone DEFAULT NULL,
timestamp_with_time_zone TIMESTAMP(5) with time zone DEFAULT NULL,
urowid character varying DEFAULT NULL,
varchar character varying(10) DEFAULT NULL,
varchar2 character varying(10) DEFAULT NULL,
xmltype xml DEFAULT NULL
)
WITH (
OIDS=FALSE
);

 96

• PostgreSQL doesn’t have a ROWID data type
ROWIDs are physical row addresses inside Oracle’s storage subsystems. The ROWID datatype is
primarily used for values returned by the ROWID pseudocolumn.

Recommended actions: while PostgreSQL contains a ctid column that is the physical location of
the row version within its table, it does not have a comparable data type. However, you can use
CHAR as a partial datatype equivalent. Note: If you are using ROWID datatypes in your code,
modifications may be necessary.

• PostgreSQL does not have a UROWID data type
Universal rowid, or UROWID, is a single Oracle datatype that supports both logical and physical
rowids of foreign table rowids such as non-Oracle tables accessed through a gateway.

Recommended actions: PostgreSQL does not have a comparable data type. You can use
VARCHAR(n) as a partial datatype equivalent. However, if you are using UROWID datatypes in
your code, modifications may be necessary.

For additional details:
https://www.postgresql.org/docs/current/static/ddl-system-columns.html
https://www.postgresql.org/docs/current/static/datatype.html
https://aws.amazon.com/documentation/SchemaConversionTool

https://www.postgresql.org/docs/current/static/ddl-system-columns.html
https://www.postgresql.org/docs/current/static/datatype.html
https://aws.amazon.com/documentation/SchemaConversionTool

 97

 Migrating from: Oracle Table Constraints
[Back to TOC]

Overview
The Oracle database provides six types of constraints to enforce data integrity on table columns. Constraints
ensure that data inserted into tables is controlled and satisfies logical requirements.

Oracle integrity constraint types:

• Primary key: enforces that row values in a specific column are unique and not null.
• Foreign key: enforces that values in the current table exist in the referenced table.
• Unique: prevents data duplication on a column, or combination of columns, and allows one null value.
• Check: enforces that values comply with a specific condition.
• Not null: enforces that null values cannot be inserted into a specific column.
• REF: references an object in another object type or in a relational table.

Constraint Creation
Oracle allows to create new constraints in two ways:

• Inline: Defines a constraint as part of a table column declaration:

• Out-Of-Line: Defines a constraint as part of the table DDL during table creation:

Note: NOT NULL constraints must be declared using the inline method.

Oracle constraints can be specified with the following syntax:

• CREATE / ALTER TABLE
• CREATE / ALTER VIEW

Note: Views have only a primary key, foreign key, and unique constraints.

SQL> CREATE TABLE EMPLOYEES (
 EMP_ID NUMBER PRIMARY KEY,
 …);

SQL> CREATE TABLE EMPLOYEES (
 EMP_ID NUMBER,
 …,
 CONSTRAINT PK_EMP_ID PRIMARY KEY(EMP_ID));

 98

Major Constraint Types

PRIMARY KEY Constraint
A unique identifier for each record in a database table can appear only once and cannot contain NULL values.
A table can only have one primary key.

When creating a primary key constraint inline, you can specify only the PRIMARY KEY keyword. When you
create the constraint out-of-line, you must specify one column or combination of columns.

Creating a new primary key constraint will also implicitly create a unique index on the primary key column if
no such index already exists. When dropping a primary key constraint, the system generated index is also
dropped. If a user defined Index was used, the index is not dropped.

Limitations

• Primary keys cannot be created on columns defined with the following data types:
LOB, LONG, LONG RAW, VARRAY, NESTED TABLE, BFILE, REF, TIMESTAMP WITH
TIME ZONE. Note: The data type TIMESTAMP WITH LOCAL TIME ZONE is allowed as primary
key.

• Primary keys can be created from multiple columns (composite PK), limited to a total of 32 columns.
• Defining the same column as both a primary key and as a unique constraint is not allowed.

Examples

1. Create an Inline primary key using a system-generated primary key constraint name:

2. Create an inline primary key using a user-specified primary key constraint name:

3. Create an out-of-line primary key:

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25));

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER CONSTRAINT PK_EMP_ID PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25));

SQL> CREATE TABLE EMPLOYEES(
 EMPLOYEE_ID NUMBER,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25));
 CONSTRAINT PK_EMP_ID PRIMARY KEY (EMPLOYEE_ID));

 99

4. Add a primary key to an existing table:

FOREIGN KEY Constraint
Foreign key constraints identify the relationship between column records defined with a foreign key constraint
and a referenced primary key or a unique column. The main purpose of a foreign key is to enforce that the
values in table A also exist in table B, as referenced by the foreign key.

A referenced table is known as a parent table while the table on which the foreign key was created is known
as a child table. Foreign keys created in child tables generally reference a primary key constraint in a parent
table.

Limitations

• Foreign keys cannot be created on columns defined with the following data types:
LOB, LONG, LONG RAW, VARRAY, NESTED TABLE, BFILE, REF, TIMESTAMP WITH
TIME ZONE.

• Composite Foreign key constraints, comprised from multiple columns, cannot have more than 32
columns.

• Foreign key constraints cannot be created in a CREATE TABLE statement with a subquery clause.
• A referenced primary key or unique constraint on a parent table must be created before the foreign

key creation command.

ON DELETE Clause
The ON DELETE clause specifies the effect of deleting values from a parent table on the referenced records
of a child table. If the ON DELETE clause is not specified, Oracle does not allow deletion of referenced key
values in a parent table that has dependent rows in the child table.

• ON DELETE CASCADE: Any dependent foreign key values in a child table are removed along with
the referenced values from the parent table.

• ON DELETE NULL: Any dependent foreign key values in a child table are updated to NULL.

Examples

1. Create an inline foreign key with a user-defined constraint name:

SQL> ALTER TABLE SYSTEM_EVENTS
 ADD CONSTRAINT PK_EMP_ID PRIMARY KEY (EVENT_CODE, EVENT_TIME);

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25) ,

DEPARTMENT_ID REFERENCES DEPARTMENTS(DEPARTMENT_ID));

 100

2. Create an Out-Of-Line foreign key with a system-generated constraint name:

3. Create a foreign key using the ON DELETE CASCADE clause:

4. Add a foreign key to an existing table:

UNIQUE Constraint
A unique constraint is similar to a primary key constraint. A unique constraint specifies that the values in a
single column, or combination of columns, must be unique and cannot repeat in multiple rows.

The main difference from primary key constraint is that the unique constraint can contain NULL values. NULL
values in multiple rows are also supported provided the combination of values is unique.

Limitations

• A unique constraint cannot be created on columns defined with the following data types:
LOB, LONG, LONG RAW, VARRAY, NESTED TABLE, BFILE, REF, TIMESTAMP WITH
TIME ZONE

• A unique constraint comprised from multiple columns cannot have more than 32 columns.
• Primary key and unique constraints cannot be created on the same column or columns.

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25),
 DEPARTMENT_ID NUMBER,
 CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID));

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25),
 DEPARTMENT_ID NUMBER,
 CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID)

 ON DELETE CASCADE);

SQL> ALTER TABLE EMPLOYEES
 ADD CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID)
 REFERENCES DEPARTMENTS(DEPARTMENT_ID);

 101

Example
Create an inline unique Constraint:

Check Constraint
Check constraints are used to validate that values in specific columns meet specific criteria or conditions. For
example, a check constraint on an EMPLOYEE_EMAIL column can be used to validate that each record has
an “@aws.com” suffix, if a record fails the “check” validation, an error is raised and the record is not inserted.

Using a check constraint can help transfer some of the logical integrity validation from the application to the
database.

In-Line vs. Out-Of-Line
When creating a check constraint as inline, it can only be defined on a specific column. When using the out-of-
line method, the check constraint can be defined on multiple columns.

Limitations

• Check constraints cannot perform validation on columns of other tables.
• Check constraints cannot work with functions that not deterministic (e.g. CURRENT_DATE).
• Check constraints cannot work with user-defined functions.
• Check constrains cannot work with pseudo columns such as: CURRVAL, NEXTVAL, LEVEL, or

ROWNUM.

Example
Create an inline check constraint that uses a regular expression to validate that the email suffix of inserted
rows contains “@aws.com”.

Not Null Constraint
The not null constraint prevents a column from containing any null values. In order to enable the not null
constraint, the keywords NOT NULL must be specified during table creation (inline only). Permitting null
values is the default if NOT NULL is not specified.

Example

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25) CONSTRAINT UNIQ_EMP_EMAIL UNIQUE,
 DEPARTMENT_ID NUMBER);

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25)
 CHECK(REGEXP_LIKE (EMAIL, '^[A-Za-z]+@aws.com?{1,3}$')),
 DEPARTMENT_ID NUMBER);

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20) NOT NULL,
 LAST_NAME VARCHAR2(25) NOT NULL,
 EMAIL VARCHAR2(25),
 DEPARTMENT_ID NUMBER);

 102

REF Constraint
REF constraints define a relationship between a column of type REF and the object it references. The REF
constraint can be created both inline and out-of-line. Both methods permit you to define a scope constraint, a
rowid constraint, or a referential integrity constraint based on the REF column.

Example
1. Create a new Oracle type object:

2. Create a table based on the previously created type object:

3. Create the EMPLOYEES table with a reference to the previously created DEPARTMENTS table that is

based on the DEP_TYPE object:

Special Constraint States
Oracle provides granular control of database constraint enforcement. For example, you can disable constraints
temporarily while making modifications to table data.

Constraint states can be defined using the CREATE TABLE / ALTER TABLE statements. The following
constraint states are supported:

• DEFERRABLE: Enables the use of the SET CONSTRAINT clause in subsequent transactions until a

COMMIT statement is submitted.
• NOT DEFERRABLE: Disables the use of the SET CONSTRAINT clause.
• INITIALLY IMMEDIATE: Checks the constraint at the end of each subsequent SQL statement (this state

is the default).
• INITIALLY DEFERRED: Checks the constraint at the end of subsequent transactions.
• VALIDATE | NO VALIDATE: These parameters depend on whether the constraint is ENABLED or

DISABLED.
• ENABLE | DISABLE: Specifies if the constraint should be enforced after creation (ENABLE by default).

Several options are available when using ENABLE | DISABLE:
- ENABLE VALIDATE: Enforces that the constraint applies to all existing and new data.
- ENABLE NOVALIDATE: Only new data complies with the constraint.
- DISABLE VALIDATE: A valid constraint is created in disabled mode with no index.

SQL> CREATE TYPE DEP_TYPE AS OBJECT (
 DEP_NAME VARCHAR2(60),
 DEP_ADDRESS VARCHAR2(300));

SQL> CREATE TABLE DEPARTMENTS_OBJ_T OF DEP_TYPE;

SQL> CREATE TABLE EMPLOYEES (
 EMP_NAME VARCHAR2(60),
 EMP_EMAIL VARCHAR2(60),
 EMP_DEPT REF DEPARTMENT_TYP REFERENCES DEPARTMENTS_OBJ_T);

 103

- DISABLE NOVALIDATE: The constraint is created in disabled mode without validation of new or
existing data.

Example
1. Create a unique constraint with a state of DEFERRABLE:

2. Modify the state of the constraint to ENABLE NOVALIDATE:

Using Existing Indexes to Enforce Constraint Integrity (using_index_clause)
Primary key and unique constraints can be created based on an existing index to enforce the constraint
integrity instead of implicitly creating a new index during constraint creation.

Example
Create a unique constraint based on an existing index:

Required Privileges for Creating Constraints
You must have privileges on the table in which constrains are created and, in case of foreign key constraints,
you must have the REFERENCES privilege on the referenced table.

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28286/clauses002.htm#SQLRF52163
https://docs.oracle.com/database/121/SQLRF/clauses002.htm#SQLRF52180

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER PRIMARY KEY,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25) CONSTRAINT UNIQ_EMP_EMAIL UNIQUE DEFERRABLE,
 DEPARTMENT_ID NUMBER);

SQL> ALTER TABLE EMPLOYEES
 ADD CONSTRAINT CHK_EMP_NAME CHECK(FIRST_NAME LIKE 'a%')
 ENABLE NOVALIDATE;

SQL> CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES(EMPLOYEE_ID);

SQL> ALTER TABLE EMPLOYEES
 ADD CONSTRAINT PK_CON_UNIQ
 PRIMARY KEY(EMPLOYEE_ID) USING INDEX IDX_EMP_ID;

https://docs.oracle.com/cd/B28359_01/server.111/b28286/clauses002.htm#SQLRF52163
https://docs.oracle.com/database/121/SQLRF/clauses002.htm#SQLRF52180

 104

 Migration to: PostgreSQL Table Constraints
[Back to TOC]

Overview
PostgreSQL supports the following types of table constraints:

• PRIMARY KEY
• FOREIGN KEY
• UNIQUE
• CHECK
• NOT NULL
• EXCLUDE (specific to PostgreSQL)

Note: PostgreSQL does not support Oracle’s REF constraint.

Similar to constraint deceleration in Oracle, PostgreSQL allows creating constraints in-line or out-of-line during
table column specification.

PostgreSQL constraints can be specified using CREATE / ALTER TABLE. Views are not supported.

Privileges
You must have privileges on the table in which constrains will be created. With foreign key constraints, you
must also have the REFERENCES privilege.

Primary Key Constraint

• Uniquely identifies each record and cannot contain a NULL value.
• Uses the same ANSI SQL syntax as Oracle.
• Can be created on a single column or on multiple columns (“composite primary keys”) as the only

PRIMARY KEY in a table.
• Create a PRIMARY KEY constraint creates a unique B-Tree index automatically on the column or

group of columns marked as the primary key of the table.
• Constraint names can be generated automatically by PostgreSQL or explicitly specified during

constraint creation.

Examples
1. Create an inline primary key constraint with a system-generated constraint name:

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25));

 105

2. Create an inline primary key constraint with a user-specified constraint name:

3. Create an out-of-line primary key constraint:

4. Add a primary key constraint to an existing table:

5. Drop the primary key:

Foreign Key Constraint

• Enforces referential integrity in the database. Values in specific columns or group of columns must
match the values from another table (or column).

• Creating a FOREIGN KEY constraint in PostgreSQL uses the same ANSI SQL syntax as Oracle.
• Can be created in-line or out-of-line during table creation.
• Use the REFERENCES clause to specify the table referenced by the foreign key constraint.
• When specifying REFERENCES in absence of a column list in the referenced table, the PRIMARY

KEY of the referenced table is used as the referenced column or columns.
• A table can have multiple FOREIGN KEY constraints to describe its relationships with other tables.
• Use the ON DELETE clause to handle cases of FOREIGN KEY parent records deletions (such as

cascading deletes).
• Foreign key constraint names are generated automatically by the database or specified explicitly during

constraint creation.

Foreign Key and the ON DELETE clause
PostgreSQL provides three main options to handle cases where data is deleted from the parent table and a
child table is referenced by a FOREIGN KEY constraint. By default, without specifying any additional options,
PostgreSQL will use the NO ACTION method and raise an error if the referencing rows still exist when the
constraint is verified.

• ON DELETE CASCADE
Any dependent foreign key values in the child table are removed along with the referenced values
from the parent table.

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC CONSTRAINT PK_EMP_ID PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25));

demo=> CREATE TABLE EMPLOYEES(
 EMPLOYEE_ID NUMERIC,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25));
 CONSTRAINT PK_EMP_ID PRIMARY KEY (EMPLOYEE_ID));

demo=> ALTER TABLE SYSTEM_EVENTS
 ADD CONSTRAINT PK_EMP_ID PRIMARY KEY (EVENT_CODE, EVENT_TIME);

demo=> ALTER TABLE SYSTEM_EVENTS
 DROP CONSTRAINT PK_EMP_ID;

 106

• ON DELETE RESTRICT

Prevents the deletion of referenced values from the parent table and the deletion of dependent
foreign key values in the child table.

• ON DELETE NO ACTION

Performs no action (the default action). The fundamental difference between RESTRIC and NO
ACTION is that NO ACTION allows the check to be postponed until later in the transaction;
RESTRICT does not.

Foreign Key and the ON UPDATE clause
Handling updates on FOREIGN KEY columns is also available using the ON UPDATE clause, which shares
the same options as the ON DELETE clause:

• ON UPDATE CASCADE
• ON UPDATE RESTRICT
• ON UPDATE NO ACTION

Note: Oracle does not provide an ON UPDATE clause.

Examples
1. Create an inline foreign key with a user-specified constraint name:

 *PostgreSQL foreign key columns must have a specified data type while Oracle doesn’t

2. Create an out-of-line foreign key constraint with a system-generated constraint name:

3. Create a foreign key using the ON DELETE CASCADE clause:

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25),
 DEPARTMENT_ID NUMERIC,
 CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID));

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25),
 DEPARTMENT_ID NUMERIC REFERENCES DEPARTMENTS(DEPARTMENT_ID));

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25),
 DEPARTMENT_ID NUMERIC,
 CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID)
 ON DELETE CASCADE);

 107

4. Add a foreign key to an existing table:

UNIQUE Constraints
• Ensures that a value in a column, or a group of columns, is unique across the entire table.
• PostgreSQL UNIQUE constraint syntax is ANSI SQL compatible.
• Automatically creates a B-Tree index on the respective column, or a group of columns, when creating a

UNIQUE constraint.
• If duplicate values exist in the column(s) on which the constraint was defined during UNIQUE

constraint creation, the UNIQUE constraint creation fails, returning an error message.
• UNIQUE constraints in PostgreSQL will accept multiple NULL values (similar to Oracle).
• UNIQUE constraint naming can be system-generated or explicitly specified.

Example

Create an inline unique constraint ensuring uniqueness of values in the email column:

CHECK Constraint

• CHECK constraints enforce that values in a column satisfy a specific requirement.
• CHECK constraints in PostgreSQL use the same ANSI SQL syntax as Oracle.
• Can only be defined using a Boolean data type to evaluate the values of a column.
• CHECK constraints naming can be system-generated or explicitly specified by the user during

constraint creation.

Example
Create an inline CHECK constraint, using a regular expression, to enforce that the email column contains
email addresses with an “@aws.com” suffix.

demo=> ALTER TABLE EMPLOYEES
 ADD CONSTRAINT FK_FEP_ID
 FOREIGN KEY(DEPARTMENT_ID)
 REFERENCES DEPARTMENTS(DEPARTMENT ID);

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25) CONSTRAINT UNIQ_EMP_EMAIL UNIQUE,
 DEPARTMENT_ID NUMERIC);

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 EMAIL VARCHAR(25) CHECK(EMAIL ~ '(^[A-Za-z]+@aws.com$)'),
 DEPARTMENT_ID NUMERIC);

 108

NOT NULL Constraints
• NOT NULL constraints enforce that a column cannot accept NULL values. This behavior is different

from the default column behavior in PostgreSQL where columns can accept NULL values.
• NOT NULL constraints can only be defined inline, during table creation (similar to Oracle).
• NOT NULL constraints in PostgreSQL use the same ANSI SQL syntax as Oracle.
• You can explicitly specify names for NOT NULL constraints when used with a CHECK constraint.

Example
Define two not null constraints on the FIRST_NAME and LAST_NAME columns. Define a check
constraint (with an explicitly user-specified name) to enforce not null behavior on the EMAIL column.

Constraint States
Similarly to Oracle, PostgreSQL provides controls for certain aspects of constraint behavior:

• DEFERRABLE | NOT DEFERRABLE

Using the PostgreSQL SET CONSTRAINTS statement, constraints can be defined as:

- DEFERRABLE
Allows you to use the SET CONSTRAINTS statement to set the behavior of constraint
checking within the current transaction until transaction commit.

- IMMEDIATE
Constraints are enforced only at the end of each statement.
Note: Each constraint has its own IMMEDIATE or DEFERRED mode (same as Oracle)

- NOT DEFERRABLE
This statement always runs as IMMEDIATE and is not affected by the SET CONSTRAINTS
command.

PostgreSQL SET CONSTRAINTS Synopsis

• VALIDATE CONSTRAINT | NOT VALID

- VALIDATE CONSTRAINT

Validates foreign key or check constraints (only) that were previously created as NOT VALID.
This action performs a validation check by scanning the table to ensure that all records satisfy
the constraint definition.

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(25) NOT NULL,
 EMAIL VARCHAR(25) CONSTRAINT CHK_EMAIL
 CHECK(EMAIL IS NOT NULL));

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

 109

- NOT VALID
Can be used only for foreign key or check constraints. When specified, new records are not
validated with the creation of the constraint. Only when the VALIDATE CONSTRAINT state
is applied does the constraint state is enforced on all records.

Example

Using Existing Indexes During Constraint Creation (table_constraint_using_index)
PostgreSQL can add a new primary key or unique constraints based on an existing unique Index . All the index
columns are included in the constraint. When creating constraints using this method, the index is owned by
the constraint. When dropping the constraint, the index is also dropped.

Example
Use an existing unique Index to create a primary key constraint:

demo=> ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_DEPT
 FOREIGN KEY (department_id)
 REFERENCES DEPARTMENTS (department_id) NOT VALID;

demo=> ALTER TABLE EMPLOYEES VALIDATE CONSTRAINT FK_DEPT;

demo=> CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES(EMPLOYEE_ID);

demo=> ALTER TABLE EMPLOYEES
 ADD CONSTRAINT PK_CON_UNIQ PRIMARY KEY USING INDEX IDX_EMP_ID;

 110

Oracle Constraints Comparison to PostgreSQL

Oracle
Constraint / Parameter

PostgreSQL
Constraint / Parameter

PRIMARY KEY PRIMARY KEY
FOREIGN KEY FOREIGN KEY
UNIQUE UNIQUE
CHECK CHECK
NOT NULL NOT NULL
REF Not Supported
DEFERRABLE DEFERRABLE
NOT DEFERRABLE NOT DEFERRABLE
SET CONSTRAINTS SET CONSTRAINTS
INITIALLY IMMEDIATE INITIALLY IMMEDIATE
INITIALLY DEFERRED INITIALLY DEFERRED
ENABLE Default, not supported as keyword
DISBALE Not supported as keyword, NOT VALID can use instead
ENABLE VALIDATE Default, not supported as keyword
ENABLE NOVALIDATE NOT VALID
DISABLE VALIDATE Not supported
DISABLE NOVALIDATE Not supported
USING_INDEX_CLAUSE table_constraint_using_index
View Constraints Not Supported
Metadata:
DBA_CONSTRAINTS

Metadata:
PG_CONSTRAINT

For additional details:
https://www.postgresql.org/docs/9.6/static/ddl-constraints.html
https://www.postgresql.org/docs/9.6/static/sql-set-constraints.html
https://www.postgresql.org/docs/9.6/static/sql-altertable.html

https://www.postgresql.org/docs/9.6/static/ddl-constraints.html
https://www.postgresql.org/docs/9.6/static/sql-set-constraints.html
https://www.postgresql.org/docs/9.6/static/sql-altertable.html

 111

 Migrating from: Oracle Table Partitioning
[Back to TOC]

Overview
The purpose of database partitioning is to provide support for very large tables and indexes by splitting them
into smaller pieces, known as partitions. Each partition has its own name and definitions and can be managed
separately from other partitions, or collectively as one object. From an application perspective, partitions are
transparent - partitioned tables act the same as non-partitioned tables allowing your applications to access a
partitioned table using unmodified SQL statements. Table partitioning provides several benefits:

• Performance improvement
Table partitions help improve query performance by accessing a subset of a partitions instead of
scanning a larger set of data. Additional performance improvements can also be achieved when using
partitions and parallel query execution for DML and DDL operations.

• Data Management
Table partitions facilitate easier data management operations (such as data migration), index
management (creation, dropping, or rebuilding indexes), and backup/recovery. These operations are
also referred to as “Information Lifecycle Management” (ILM) activities.

• Maintenance Operations
Table partitions can significantly reduce downtime caused by table maintenance operations.

Oracle basic Table Partitioning methods

• Hash Table Partitioning
When a partition key is specified (for example, a table column with a number data type), Oracle applies
a hashing algorithm to evenly distribute the data (records) among all defined partitions (partitions have
approximately the same size).

Example
Create a hash-partitioned Table:

SQL> CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMBER NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR2(500),

ERROR_CODE VARCHAR2(10))
 PARTITION BY HASH (ERROR_CODE)
 PARTITIONS 3
 STORE IN (TB1, TB2, TB3);

 112

• List Table Partitioning
You can specify a list of discrete values for the table partitioning key in the description of each
partition. This type of table partitioning enables control over partition organization using explicit
values. For example, partition “events” by error code values.

Example
Create a list-partition table:

• Range Table Partitioning
Partition a table based on a range of values. The Oracle database assigns rows to table partitions based
on column values falling within a given range. Range table partitioning is one of the most frequently
used type of partitioning in the Oracle database, primarily with date values. Range table partitioning
can also be implemented with numeric ranges (1-10000, 10001- 20000…).

Example
Create a range-partitioned table:

Composite Table Partitioning
With composite partitioning, a table can be partitioned by one data distribution method and then each
partition can be further subdivided into sub-partitions using the same, or different, data distribution
method(s). For example:

• Composite list-range partitioning
• Composite list-list partitioning
• Composite range-hash partitioning

SQL> CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMBER NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR2(500),

ERROR_CODE VARCHAR2(10))
 PARTITION BY LIST (ERROR_CODE)
 (PARTITION warning VALUES ('err1', 'err2', 'err3') TABLESPACE TB1,

PARTITION critical VALUES ('err4', 'err5', 'err6') TABLESPACE TB2);

SQL> CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMBER NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR2(500))
 PARTITION BY RANGE (EVENT_DATE)
 (PARTITION EVENT_DATE VALUES LESS THAN (TO_DATE('01/01/2015',
 'DD/MM/YYYY')) TABLESPACE TB1,
 PARTITION EVENT_DATE VALUES LESS THAN (TO_DATE('01/01/2016',
 'DD/MM/YYYY')) TABLESPACE TB2,
 PARTITION EVENT_DATE VALUES LESS THAN (TO_DATE('01/01/2017',
 'DD/MM/YYYY')) TABLESPACE TB3);

 113

Partitioning Extensions
Oracle provides additional partitioning strategies that enhance the capabilities of basic partitioning. These
partitioning strategies are:

• Manageability extensions
o Interval partitioning
o Partition advisor

• Partitioning key extensions

o Reference partitioning
o Virtual column-based partitioning

Examples
Split and exchange partitions:

• Split Partitions
The SPLIT PARTITION statement can be used to redistribute the contents of one partition or sub-
partition into multiple partitions or sub-partitions:

• Exchange Partitions

The EXCHANGE PARTITION statement is useful to exchange table partitions in, or out, of a
partitioned table.

Sub-Partitioning Tables

Sub-Partitions are created within partitions to further split the parent partition:

SQL> ALTER TABLE SPLIT PARTITION p0 INTO
 (PARTITION P01 VALUES LESS THAN (100),
 PARTITION p02);

SQL> ALTER TABLE orders
 EXCHANGE PARTITION p_ord3 WITH TABLE orders_year_2016;

SQL> PARTITION BY RANGE(department_id)
 SUBPARTITION BY HASH(last_name)
 SUBPARTITION TEMPLATE
 (SUBPARTITION a TABLESPACE ts1,
 SUBPARTITION b TABLESPACE ts2,
 SUBPARTITION c TABLESPACE ts3,
 SUBPARTITION d TABLESPACE ts4
)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
)

 114

For additional information on Oracle Partitioning:
https://docs.oracle.com/cd/E11882_01/server.112/e25523/partition.htm
https://docs.oracle.com/database/121/VLDBG/GUID-C121EA1B-2725-4464-B2C9-EEDE0C3C95AB.htm
https://docs.oracle.com/database/121/VLDBG/GUID-01C14320-0D7B-48BE-A5AD-003DDA761277.htm
https://docs.oracle.com/database/121/VLDBG/GUID-E08650B4-06B1-43F9-91B0-FBF685A3B848.htm#VLDBG1156

Automatic List Partitioning (Oracle 12c only)
Automatic-list partitioning is an enhancement of Oracle list partitioning. Automatic-list partitioning enables
the automatic creation of new partitions for new values inserted into the list-partitioned table. An automatic
list-partitioned table is created with only one partition. The database creates the additional table partitions
automatically.

Example
Create an automatic list-partitioned table:

For additional information on Oracle Automatic List Partitioning:
http://www.oracle.com/technetwork/database/options/partitioning/partitioning-wp-12c-1896137.pdf

SQL> CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMBER NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR2(500),

ERROR_CODE VARCHAR2(10))
 PARTITION BY LIST (ERROR_CODE) AUTOMATIC
 (PARTITION warning VALUES ('err1', 'err2', 'err3'))

https://docs.oracle.com/cd/E11882_01/server.112/e25523/partition.htm
https://docs.oracle.com/database/121/VLDBG/GUID-C121EA1B-2725-4464-B2C9-EEDE0C3C95AB.htm
https://docs.oracle.com/database/121/VLDBG/GUID-E08650B4-06B1-43F9-91B0-FBF685A3B848.htm#VLDBG1156
http://www.oracle.com/technetwork/database/options/partitioning/partitioning-wp-12c-1896137.pdf

 115

 Migration to: PostgreSQL Table Inheritance
[Back to TOC]

Overview
The table partitioning mechanism in PostgreSQL differs from Oracle. Partitioning in PostgreSQL is
implemented using “table inheritance”. Each table partition is represented by a child table referenced to a
single parent table. The parent table should be empty and is only used to represent the entire table data set
(as a metadata dictionary and as a query source).

Partitioning management operations are performed directly on the child tables. Querying is performed
directly on the parent table.

For additional information on PostgreSQL Table Inheritance, see:
https://www.postgresql.org/docs/9.6/static/ddl-inherit.html

Implementing List “Table Partitioning”

1. Create a parent table (“master table”) from which all child tables (“partitions”) will inherit.
2. Create child tables (which act similar to Table Partitions) that inherit from the parent table, the child

tables should have and identical structure to the parent table.
3. Create Indexes on each child table. Optionally, add constraints (for example, primary keys or check

constraints) to define allowed values in each table.
4. Create a database trigger to redirect data inserted into the parent table to the appropriate child table.
5. Ensure the PostgreSQL constraint_exclusion parameter is enabled and set to partition.

This parameter insures that the queries are optimized for working with table partitions.

For additional information on PostgreSQL constraint_exclusion parameter:
https://www.postgresql.org/docs/9.6/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

PostgreSQL 9.6 does not support “declarative partitioning” as well as several of the table partitioning features
available in Oracle. Alternatives, such as for replacing Oracle’s interval table partitioning, include using
application-centric methods using PL/pgSQL or other programing languages.

Notes:

• PostgreSQL 9.6 Table Partitioning does not support the creation of foreign keys on the parent table.
Alternative solutions include application-centric methods such as using triggers/functions.

• PostgreSQL 9.6 does not support sub-partitions and does not support SPLIT and EXCHANGE of table
partitions.

demo=# show constraint_exclusion;
 constraint_exclusion

 partition

https://www.postgresql.org/docs/9.6/static/ddl-inherit.html
https://www.postgresql.org/docs/9.6/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

 116

Oracle versus PostgreSQL Partitioning Comparison Table

Oracle Table Partition Type Build-In PostgreSQL Support Link To Example
List Yes PostgreSQL List Partitioning
Range Yes PostgreSQL Range Partitioning
Hash No -
Composite Partitioning No -
Interval Partitioning No -
Partition Advisor No -
Reference Partitioning No -
Virtual Column Based Partitioning No -
Automatic List Partitioning No -
Sub Partitioning No -
Split / Exchange Partitions No -

For additional details:
https://www.postgresql.org/docs/9.6/static/ddl-partitioning.html

https://www.postgresql.org/docs/9.6/static/ddl-partitioning.html

 117

Example
Steps for creating a PostgreSQL “list-partitioned table”:

1. Create the parent table:

2. Create child tables (“partitions”) with check constraints:

3. Create indexes on each of the child tables (“partitions”):

4. Create a function to redirect data inserted into the Parent Table:

5. Attach the trigger function created above to log to the table:

demo=# CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMERIC NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR(500),
 ERROR_CODE VARCHAR(10));

demo=# CREATE INDEX IDX_SYSTEM_LOGS_WARNING ON
 SYSTEM_LOGS_WARNING(ERROR_CODE);

demo=# CREATE INDEX IDX_SYSTEM_LOGS_CRITICAL ON
 SYSTEM_LOGS_CRITICAL(ERROR_CODE);

demo=# CREATE OR REPLACE FUNCTION SYSTEM_LOGS_ERR_CODE_INS()
 RETURNS TRIGGER AS
 $$
 BEGIN
 IF (NEW.ERROR_CODE IN('err1', 'err2', 'err3')) THEN
 INSERT INTO SYSTEM_LOGS_WARNING VALUES (NEW.*);
 ELSIF (NEW.ERROR_CODE IN('err4', 'err5', 'err6')) THEN
 INSERT INTO SYSTEM_LOGS_CRITICAL VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Value out of range, check
 SYSTEM_LOGS_ERR_CODE_INS () Function!';
 END IF;
 RETURN NULL;
 END;
 $$
 LANGUAGE plpgsql;

demo=# CREATE TRIGGER SYSTEM_LOGS_ERR_TRIG
 BEFORE INSERT ON SYSTEM_LOGS
 FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_ERR_CODE_INS();

demo=# CREATE TABLE SYSTEM_LOGS_WARNING (
CHECK (ERROR_CODE IN('err1', 'err2', 'err3')))
INHERITS (SYSTEM_LOGS);

demo=# CREATE TABLE SYSTEM_LOGS_CRITICAL (

CHECK (ERROR_CODE IN('err4', 'err5', 'err6')))
 INHERITS (SYSTEM_LOGS);

 118

6. Insert data directly into the parent table:

7. View results from across all the different child tables:

demo=# INSERT INTO SYSTEM_LOGS VALUES(1, '2015-05-15', 'a...', 'err1');
demo=# INSERT INTO SYSTEM_LOGS VALUES(2, '2016-06-16', 'b...', 'err3');
demo=# INSERT INTO SYSTEM_LOGS VALUES(3, '2017-07-17', 'c...', 'err6');

demo=# SELECT * FROM SYSTEM_LOGS;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...
 2 | 2016-06-16 | b...
 3 | 2017-07-17 | c...

demo=# SELECT * FROM SYSTEM_LOGS_WARNING;
 event_no | event_date | event_str | error_code
 ----------+------------+-----------+------------
 1 | 2015-05-15 | a... | err1
 2 | 2016-06-16 | b... | err3

demo=# SELECT * FROM SYSTEM_LOGS_CRITICAL;
 event_no | event_date | event_str | error_code
 ----------+------------+-----------+------------
 3 | 2017-07-17 | c... | err6

 119

Example
Steps for creating a PostgreSQL “range-partitioned table”:

1. Create the parent table:

2. Create the child tables (“partitions”) with check constraints:

3. Create indexes on each child table (“partitions”):

demo=# CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMERIC NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR(500));

demo=# CREATE TABLE SYSTEM_LOGS_2015 (
 CHECK (EVENT_DATE >= DATE '2015-01-01'
 AND EVENT_DATE < DATE '2016- 01-01')
) INHERITS (SYSTEM_LOGS);

demo=# CREATE TABLE SYSTEM_LOGS_2016 (
 CHECK (EVENT_DATE >= DATE '2016-01-01'
 AND EVENT_DATE < DATE '2017-01-01')
) INHERITS (SYSTEM_LOGS);

demo=# CREATE TABLE SYSTEM_LOGS_2017 (
 CHECK (EVENT_DATE >= DATE '2017-01-01'
 AND EVENT_DATE <= DATE '2017-12-31')

) INHERITS (SYSTEM_LOGS);

demo=# CREATE INDEX IDX_SYSTEM_LOGS_2015 ON
SYSTEM_LOGS_2015(EVENT_DATE);
demo=# CREATE INDEX IDX_SYSTEM_LOGS_2016 ON
SYSTEM_LOGS_2016(EVENT_DATE);
demo=# CREATE INDEX IDX_SYSTEM_LOGS_2017 ON
SYSTEM_LOGS_2017(EVENT_DATE);

 120

4. Create a function to redirect data inserted into the parent table:

5. Attach the trigger function created above to log to the SYSTEM_LOGS table:

6. Insert data directly to the parent table:

7. Test the solution by selecting data from the parent and child tables:

demo=# CREATE OR REPLACE FUNCTION SYSTEM_LOGS_INS ()
 RETURNS TRIGGER AS

 $$
 BEGIN
 IF (NEW.EVENT_DATE >= DATE '2015-01-01' AND NEW.EVENT_DATE <
 DATE '2016-01-01') THEN
 INSERT INTO SYSTEM_LOGS_2015 VALUES (NEW.*);
 ELSIF (NEW.EVENT_DATE >= DATE '2016-01-01' AND NEW.EVENT_DATE <
 DATE '2017-01-01') THEN
 INSERT INTO SYSTEM_LOGS_2016 VALUES (NEW.*);
 ELSIF (NEW.EVENT_DATE >= DATE '2017-01-01' AND NEW.EVENT_DATE <=
 DATE '2017-12-31') THEN
 INSERT INTO SYSTEM_LOGS_2017 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. check SYSTEM_LOGS_INS ()
 function!';
 END IF;
 RETURN NULL;
 END;
 $$
 LANGUAGE plpgsql;

demo=# CREATE TRIGGER SYSTEM_LOGS_TRIG
 BEFORE INSERT ON SYSTEM_LOGS
 FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_INS ();

demo=# INSERT INTO SYSTEM_LOGS VALUES (1, '2015-05-15', 'a...');
demo=# INSERT INTO SYSTEM_LOGS VALUES (2, '2016-06-16', 'b...');
demo=# INSERT INTO SYSTEM_LOGS VALUES (3, '2017-07-17', 'c...');

demo=# SELECT * FROM SYSTEM_LOGS;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...
 2 | 2016-06-16 | b...
 3 | 2017-07-17 | c...

demo=# SELECT * FROM SYSTEM_LOGS_2015;
 event_no | event_date | event_str
 ----------+------------+-----------
 1 | 2015-05-15 | a...

 121

 Migrating from: Oracle Temporary Tables
[Back to TOC]

Overview
Oracle enables you to create temporary tables for storing data that should exist only for the duration of a
session or transaction.

Oracle uses the CREATE GLOBAL TEMPORARY TABLE statement to create a temporary table. This type of
table has a persistent DDL structure, but not persistent data, and does not generate redo during DML. Two of
the primary use-cases for temporary tables include:

• Processing many rows as part of a batch operation while requiring staging tables to store intermediate
results.

• Data is required only for the duration of a specific session. When the session ends, the session data
should be cleared.

When using temporary tables, the data is visible only to the session that inserts the data into the table.

Oracle Global Temporary Tables Notes:

● Global Temporary Tables store data inside the Oracle Temporary Tablespace.

● DDL operations on a temporary table are permitted including: ALTER TABLE, DROP TABLE,
CREATE INDEX.

● Temporary tables cannot be partitioned, clustered, or created as Index-Organized Tables. Also, they do
not support parallel UPDATE, DELETE and MERGE.

● Foreign key constraints cannot be created on temporary tables.

● Processing DML operations on a Temporary Table does not generate Redo Data. However, Undo Data
for the rows and Redo Data for the Undo Data itself are generated.

● Indexes can be created for a Temporary Table and are treated as Temporary Indexes. Temporary
Tables also support Triggers.

● Temporary Tables cannot be named after an existing table object and cannot be dropped while
containing records, even from another session.

 122

Session-specific and Transaction-specific Temporary Table syntax:

● ON COMMIT

This clause is associated only with Temporary Tables. It specifies whether the temporary table data
persists for the duration of a transaction or a session.

- PRESERVE ROWS

When the session ends, all data is truncated but persists beyond the end of the transaction.

- DELETE ROWS

The default behavior. Data is truncated after each commit.

Oracle 12c Temporary Table enhancements:

● Global Temporary Table statistics
Prior to Oracle 12c, statistics on temporary tables were common to all sessions.
Oracle 12c introduces session-specific statistics for Temporary Tables. Statistics can be configured
using the DBMS_STATS preference GLOBAL_TEMP_TABLE_STATS, which can be set to SHARED or
SESSION.

● Global Temporary Table Undo
Performing DML operations on a Temporary Table does not generate Redo data, but does generate
Undo Data that eventually, by itself, will generate Redo records. Oracle 12c provides an option to store
the temporary Undo Data in the Temporary Tablespace itself. This feature is configured using the
temp_undo_enabled parameter with the options TRUE or FALSE.

For additional details:
https://docs.oracle.com/database/121/REFRN/GUID-E2A01A84-2D63-401F-B64E-C96B18C5DCA6.htm#REFRN10326

https://docs.oracle.com/database/121/REFRN/GUID-E2A01A84-2D63-401F-B64E-C96B18C5DCA6.htm#REFRN10326

 123

Examples
Create an Oracle Global Temporary Table (with ON COMMIT PRESERVE ROWS):

Create an Oracle Global Temporary Table (with ON COMMIT DELETE ROWS):

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7002.htm#SQLRF01402
https://docs.oracle.com/database/121/SQLRF/statements_7002.htm

SQL> CREATE GLOBAL TEMPORARY TABLE EMP_TEMP (
 EMP_ID NUMBER PRIMARY KEY,
 EMP_FULL_NAME VARCHAR2(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL)
 ON COMMIT PRESERVE ROWS;

SQL> CREATE INDEX IDX_EMP_TEMP_FN ON EMP_TEMP(EMP_FULL_NAME);

SQL> INSERT INTO EMP_TEMP VALUES(1, 'John Smith', '5000');

SQL> COMMIT;

SQL> SELECT * FROM SCT.EMP_TEMP;

 EMP_ID EMP_FULL_NAME AVG_SALARY
---------- -------------------- ----------
 1 John Smith 5000

SQL> CREATE GLOBAL TEMPORARY TABLE EMP_TEMP (
 EMP_ID NUMBER PRIMARY KEY,
 EMP_FULL_NAME VARCHAR2(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL)
 ON COMMIT DELETE ROWS;

SQL> INSERT INTO EMP_TEMP VALUES(1, 'John Smith', '5000');

SQL> COMMIT;

SQL> SELECT * FROM SCT.EMP_TEMP;

 l t d

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7002.htm#SQLRF01402
https://docs.oracle.com/database/121/SQLRF/statements_7002.htm

 124

 Migration to: PostgreSQL Temporary Tables
[Back to TOC]
Overview
PostgreSQL Temporary Tables share many similarities with Oracle Global Temporary Tables.
From a syntax perspective, PostgreSQL Temporary Tables are referred to as “Temporary Tables” (without
Oracle’s Global definition). The implementation is mostly identical.

In terms of differences, Oracle stores the temporary table structure (DDL) for repeated use – even after a
database restart – but does not store rows persistently. PostgreSQL implements temporary tables differently:
the table structure (DDL) is not stored in the database. When a session ends, the temporary table is dropped.

● Session-specific - In PostgreSQL, every session is required to create its own Temporary Tables. Each
session can create its own “private” Temporary Tables, using identical table names.

● LOCAL / GLOBAL syntax - PostgreSQL temporary tables do not support cross-session data access.
PostgreSQL does not distinguish between “GLOBAL” and “LOCAL” temporary tables. The use of these
keywords is permitted in PostgreSQL, but they have no effect because PostgreSQL creates Temporary
Tables as local and session-isolated tables.

Note: use of the GLOBAL keyword is deprecated.

● In the Oracle Database, the default behavior when the ON COMMIT clause is omitted is ON COMMIT
DELETE ROWS. In PostgreSQL, the default is ON COMMIT PRESERVE ROWS.

PostgreSQL Temporary Tables ON COMMIT clause:

● ON COMMIT
The clause specifies the state of the data as it persists for the duration of a transaction or a session.

- PRESERVE ROWS
The PostgreSQL default. When a session ends, all data is truncated but persists beyond the end
of the transaction.

- DELETE ROWS

The data is truncated after each commit.

 125

Examples

1. Create a use a Temporary Table, with ON DELTE PRESERVE ROWS:

2. Create and use a Temporary Table, with ON COMMIT DELETE ROWS:

demo=> CREATE GLOBAL TEMPORARY TABLE EMP_TEMP (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL)
 ON COMMIT PRESERVE ROWS;

demo=> CREATE INDEX IDX_EMP_TEMP_FN ON EMP_TEMP(EMP_FULL_NAME);

demo=> INSERT INTO EMP_TEMP VALUES(1, 'John Smith', '5000');

demo=> COMMIT;

demo=> SELECT * FROM SCT.EMP_TEMP;

 emp_id | emp_full_name | avg_salary
--------+---------------+------------
 1 | John Smith | 5000

demo=> DROP TABLE EMP_TEMP;
DROP TABLE

demo=> CREATE GLOBAL TEMPORARY TABLE EMP_TEMP (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL)
 ON COMMIT DELETE ROWS;

demo=> INSERT INTO EMP_TEMP VALUES(1, 'John Smith', '5000');

demo=> COMMIT;

demo=> SELECT * FROM SCT.EMP_TEMP;

 emp_id | emp_full_name | avg_salary
--------+---------------+------------
(0 rows)

demo=> DROP TABLE EMP_TEMP;
DROP TABLE

 126

Oracle Global Temporary Tables vs. PostgreSQL Temporary Tables:

 Oracle Temporary Tables PostgreSQL Temporary Tables
Semantic Global Temporary Table Temporary Table / Temp Table

Create table CREATE GLOBAL TEMPORARY…

CREATE GLOBAL
TEMPORARY…
CREATE TEMPORARY…
CREATE TEMP…

Accessible from multiple sessions Yes No
Temp table DDL persist after
session end / database restart Yes No (dropped at the end of the

session)
Create index support Yes Yes
Foreign key support Yes Yes

ON COMMIT default COMMIT DELETE ROWS ON COMMIT PRESERVE
ROWS

ON COMMIT PRESERVE ROWS Yes Yes
ON COMMIT DELETE ROWS Yes Yes
Alter table support Yes Yes

Gather statistics dbms_stats.gather_table_st
ats

ANALYZE

Oracle 12c
GLOBAL_TEMP_TABLE_STATS

dbms_stats.set_table_prefs ANALYZE

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createtable.html

https://www.postgresql.org/docs/9.6/static/sql-createtable.html

 127

 Migrating from: Oracle Unused Columns
[Back to TOC]

Overview
Oracle provides a method to mark columns as “unused”. Unused columns are not physically dropped, but are
treated as if they were dropped. Unused columns cannot be restored. Select statements do not retrieve data
from columns marked as unused and are not displayed when executing a DESCRIBE table command.

The main advantage of setting a column to UNUSED is to reduce possible high database load when dropping a
column from a large table. To overcome this issue, a column can be marked as unused and then be physically
dropped later.

To set a column as unused, use the SET UNUSED clause.

Example

Display unused columns:

Drop the Column Permanently (physically drop the column):

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_3001.htm
http://docs.oracle.com/database/121/SQLRF/statements_3001.htm

SQL> ALTER TABLE EMPLOYEES SET UNUSED (COMMISSION_PCT);
SQL> ALTER TABLE EMPLOYEES SET UNUSED (JOB_ID, COMMISSION_PCT);

SQL> SELECT * FROM USER_UNUSED_COL_TABS;

TABLE_NAME COUNT
------------------------------ ----------
EMPLOYEES 3

SQL> ALTER TABLE EMPLOYEES DROP UNUSED COLUMNS;

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_3001.htm
http://docs.oracle.com/database/121/SQLRF/statements_3001.htm

 128

 Migration to: PostgreSQL Alter Table
[Back to TOC]

Overview
PostgreSQL does not support marking table columns as “unused”. However, when executing the ALTER
TABLE… DROP COLUMN command, the drop column statement does not physically remove the column; it
only makes it invisible to SQL operations. As such, dropping a column is a “fast” action, but does not reduce
the on-disk size of your table immediately because the space occupied by the dropped column is not
reclaimed.

The unused space is reclaimed by new DML actions, as they use the space that once was occupied by the
dropped column. To force an immediate reclamation of storage space, the VACUUM FULL command should
be used. Alternatively, execute an ALTER TABLE statement to forces a rewrite.

Example
1. PostgreSQL “crop column” statement:

2. Verify the operation:

3. Use the VACUUM FULL command to reclaim unused space from storage:

4. Run the VACUUM FULL statement with the VERBOSE option to display an activity report of the vacuum

process that includes the tables vacuumed and the time taken to perform the vacuum operation:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-altertable.html
https://www.postgresql.org/docs/9.6/static/sql-vacuum.html

demo=> ALTER TABLE EMPLOYEES DROP COLUMN COMMISSION_PCT;

demo=> SELECT TABLE_NAME, COLUMN_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_NAME = 'emps1' AND COLUMN_NAME=LOWER('COMMISSION_PCT');

 table_name | column_name
------------+-------------
(0 rows)

demo=> VACUUM FULL EMPLOYEES;

demo=> VACUUM FULL VERBOSE EMPLOYEES;

https://www.postgresql.org/docs/9.6/static/sql-altertable.html
https://www.postgresql.org/docs/9.6/static/sql-vacuum.html

 129

 Migrating from: Oracle Virtual Columns
[Back to TOC]

Overview
Oracle Virtual Columns appear as normal columns but their values are calculated instead of being stored in the
database. Virtual Columns cannot be created based on other Virtual Columns and can only reference columns
from the same table. When creating a Virtual Column, you can explicitly specify the datatype or let the
database choose the datatype based on the expression.

Notes

• Virtual Columns can be used with Constraints, Indexes, Table Partitioning, and Foreign Keys.
• Functions in expressions must be deterministic at the time of table creation.
• Virtual Columns cannot be manipulated by DML operations.
• Virtual Columns can be used in a WHERE clause and as part of DML commands.
• When creating an index on a virtual column, a Function Based Index is created.
• Virtual columns do not support Index-Organized Tables, external, objects, Clusters, or Temporary

Tables.
• The output of a Virtual Column expression must be a Scalar value.
• The Virtual Column keyword GENERATED ALWAYS AS and VIRTUAL are not mandatory and

provided for clarity only.

• The keyword AS after the column name can indicate the column is created as a Virtual Column.
• A Virtual Column does not need to be specified in an INSERT statement.

Example

1. Create a table that includes two Virtual Columns:

COLUMN_NAME [datatype] [GENERATED ALWAYS] AS (expression) [VIRTUAL]

SQL> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMBER,

FIRST_NAME VARCHAR2(20),
LAST_NAME VARCHAR2(25),
USER_NAME VARCHAR2(25),
EMAIL AS (LOWER(USER_NAME) || '@aws.com'),
HIRE_DATE DATE,
BASE_SALARY NUMBER,
SALES_COUNT NUMBER,
FINEL_SALARY NUMBER GENERATED ALWAYS AS
(CASE WHEN SALES_COUNT >= 10 THEN BASE_SALARY + (BASE_SALARY *
(SALES_COUNT * 0.05)) END) VIRTUAL);

 130

2. Insert a new record into the table without specifying values for the Virtual Column:

3. Select the email Virtual Column from the table:

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7002.htm#SQLRF01402
https://docs.oracle.com/database/121/SQLRF/statements_7002.htm#SQLRF01402

SQL> INSERT INTO EMPLOYEES
(EMPLOYEE_ID, FIRST_NAME, LAST_NAME, USER_NAME, HIRE_DATE,
 BASE_SALARY, SALES_COUNT)

 VALUES(1, 'John', 'Smith', 'jsmith', '17-JUN-2003', 5000, 21);

SQL> SELECT email FROM EMPLOYEES;

EMAIL FINEL_SALARY
-------------------- ------------
jsmith@aws.com 10250

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7002.htm#SQLRF01402
https://docs.oracle.com/database/121/SQLRF/statements_7002.htm#SQLRF01402

 131

 Migration to: PostgreSQL Virtual Columns
[Back to TOC]

Overview
PostgreSQL does not provide a feature that is directly equivalent to a Virtual Column in Oracle. However, there
are workarounds to emulate similar functionality.

Alternatives for Virtual Columns:

• Views
Create a View using the function for the “Virtual Column” as part of the View syntax.

• Function as a column
Create a function that receives column values from table records (as parameters) and returns a
modified value according to a specific expression. The function serves as a Virtual Column equivalent.
You can create a PostgreSQL Expression Index (equivalent to Oracle’s Function Based index) that is
based on the function.

Example
The email address for a user is calculated based on the USER_NAME column that is a physical property of the
table.

1. Create a table that includes a USER_NAME column but does not include an email address column:

2. Create a PL/pgSQL function which receives the USER_NAME value and return the full email address:

3. Insert data to the table, including a value for USER_NAME. During insert, no reference to the
USER_EMAIL function is made:

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,
 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 USER_NAME VARCHAR(25));

demo=> CREATE OR REPLACE FUNCTION USER_EMAIL(EMPLOYEES)
 RETURNS text AS $$
 SELECT (LOWER($1.USER_NAME) || '@aws.com')
 $$ STABLE LANGUAGE SQL;

demo=> INSERT INTO EMPLOYEES
 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, USER_NAME)
 VALUES(1, 'John', 'Smith', 'jsmith'),
 (2, 'Steven', 'King', 'sking');

 132

4. Use the USER_EMAIL function as part of a SELECT statement:

5. Create a view that incorporates the USER_EMAIL function:

6. Create an Expression Based Index on the USER_EMAIL column for improved performance:

7. Verify the Expression Based Index with EXPLAIN:

demo=> SELECT EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 USER_NAME,
 USER_EMAIL(EMPLOYEES)
 FROM EMPLOYEES;

 employee_id | first_name | last_name | user_name | user_email
-------------+------------+-----------+-----------+----------------
 1 | John | Smith | jsmith | jsmith@aws.com
 2 | Steven | King | sking | sking@aws.com

demo=> CREATE INDEX IDX_USER_EMAIL ON
EMPLOYEES(USER_EMAIL(EMPLOYEES));

demo=> SET enable_seqscan = OFF;

demo=> EXPLAIN

 SELECT * FROM EMPLOYEES
 WHERE USER_EMAIL(EMPLOYEES) = 'jsmith@aws.com';

 QUERY PLAN

Index Scan using idx_user_email on employees (cost=0.13..8.14 rows=1
width=294)
Index Cond: ((lower((user_name)::text) || '@aws.com'::text) =
'jsmith@aws.com'::text)

demo=> CREATE VIEW employees_function AS
SELECT EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 USER_NAME,
 USER_EMAIL(EMPLOYEES)
 FROM EMPLOYEES;

 133

DML Support

Using triggers, you can populate column values automatically as “Virtual Columns”. For this approach, create
two PostgreSQL objects:

• Create a function containing the data modification logic based on table column data.
• Create a trigger to use the function and execute it as part of the DML.

Example
In the following example, the FULL_NAME column s automatically populated by the values using data from
the FIRST_NAME and LAST_NAME columns.

1. Create the table:

2. Create a function to concatenate the FIRST_NAME and LAST_NAME columns:

3. Create a trigger that uses the function created in the previous step. The function will execute before an
insert:

4. Verify the functionality of the trigger:

demo=> CREATE OR REPLACE FUNCTION FUNC_USER_FULL_NAME ()
 RETURNS trigger as '
 BEGIN
 NEW.FULL_NAME = NEW.FIRST_NAME || '' '' || NEW.LAST_NAME;
 RETURN NEW;
 END;

' LANGUAGE plpgsql;

demo=> CREATE TABLE EMPLOYEES (
 EMPLOYEE_ID NUMERIC PRIMARY KEY,

 FIRST_NAME VARCHAR(20),
 LAST_NAME VARCHAR(25),
 FULL_NAME VARCHAR(25));

demo=> CREATE TRIGGER TRG_USER_FULL_NAME BEFORE INSERT OR UPDATE
 ON EMPLOYEES FOR EACH ROW
 EXECUTE PROCEDURE FUNC_USER_FULL_NAME();

demo=> INSERT INTO EMPLOYEES (EMPLOYEE_ID, FIRST_NAME, LAST_NAME)
 VALUES(1, 'John', 'Smith'),(2, 'Steven', 'King');

demo=> SELECT * FROM EMPLOYEES;

 employee_id | first_name | last_name | full_name
-------------+------------+-----------+-------------
 1 | John | Smith | John Smith
 2 | Steven | King | Steven King

 134

5. Create an Index based on the “virtual” FULL_NAME column:

6. Verify the Expression Based Index with EXPLAIN:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createtrigger.html

demo=> SET enable_seqscan = OFF;

demo=> EXPLAIN

 SELECT * FROM EMPLOYEES
 WHERE FULL_NAME = 'John Smith';

 QUERY PLAN

 Index Scan using idx_user_full_name on employees (cost=0.13..8.14 rows=1
width=226)
 Index Cond: ((full_name)::text = 'John Smith'::text)

demo=> CREATE INDEX IDX_USER_FULL_NAME
 ON EMPLOYEES(FULL_NAME);

https://www.postgresql.org/docs/9.6/static/sql-createtrigger.html

 135

 Migrating from: Oracle User Defined Types
[Back to TOC]

Overview
Oracle refers to User Defined Types (UDTs) as OBJECT TYPES. They are managed using PL/SQL.
User Defined Types enable you to create application-dedicated, complex data types that are based on, and
extend, the built-in Oracle data types.

The CREATE TYPE statement supports creating:

• Objects Types
• Varying Array (varray) types
• Nested Table types
• Incomplete Types
• Additional types such as an SQLJ object type (Java class mapped to SLQ user defined type)

Examples

1. Create an Oracle Object Type to store an employee phone number:

SQL> CREATE OR REPLACE TYPE EMP_PHONE_NUM AS OBJECT (
 PHONE_NUM VARCHAR2(11));

SQL> CREATE TABLE EMPLOYEES (
 EMP_ID NUMBER PRIMARY KEY,
 EMP_PHONE EMP_PHONE_NUM NOT NULL);

SQL> INSERT INTO EMPLOYEES VALUES(1, EMP_PHONE_NUM('111-222-333'));

SQL> SELECT a.EMP_ID, a.EMP_PHONE.PHONE_NUM FROM EMPLOYEES a;

 EMP_ID EMP_PHONE.P
---------- -----------
 1 111-222-333

 136

2. Create an Oracle Object Type as a “collection of attributes” for the employees table:

For additional details:
http://docs.oracle.com/cloud/latest/db112/SQLRF/statements_8001.htm#SQLRF01506
http://docs.oracle.com/cloud/latest/db112/LNPLS/create_type.htm#LNPLS01375

SQL> CREATE OR REPLACE TYPE EMP_ADDRESS AS OBJECT (
 STATE VARCHAR2(2),
 CITY VARCHAR2(20),
 STREET VARCHAR2(20),
 ZIP_CODE NUMBER);

SQL> CREATE TABLE EMPLOYEES (
 EMP_ID NUMBER PRIMARY KEY,
 EMP_NAME VARCHAR2(10) NOT NULL,
 EMP_ADDRESS EMP_ADDRESS NOT NULL);

SQL> INSERT INTO EMPLOYEES
 VALUES(1, 'John Smith',
 EMP_ADDRESS('AL', 'Gulf Shores', '3033 Joyce Street', '36542'));

SQL> SELECT a.EMP_ID,
 a.EMP_NAME,
 a.EMP_ADDRESS.STATE,
 a.EMP_ADDRESS.CITY,
 a.EMP_ADDRESS.STREET,
 a.EMP_ADDRESS.ZIP_CODE
 FROM EMPLOYEES a;

EMP_ID EMP_NAME STATE CITY STREET ZIP_CODE
------ ----------- ------ ------------ ------------------ ------
1 John Smith AL Gulf Shores 3033 Joyce Street 36542

http://docs.oracle.com/cloud/latest/db112/SQLRF/statements_8001.htm#SQLRF01506
http://docs.oracle.com/cloud/latest/db112/LNPLS/create_type.htm#LNPLS01375

 137

 Migration to: PostgreSQL User Defined Types
[Back to TOC]

Overview
Similar to Oracle, PostgreSQL enables creation of User Defined Types using the CREATE TYPE statement.
A User Defined Type is owned by the user who creates it. If a schema name is specified, the type is created
under the specified schema.

PostgreSQL supports the creation of several different User Defined Types:

• Composite Types
Stores a single named attribute that is attached to a data type or multiple attributes as an attribute
collection. In PostgreSQL, you can also use the CREATE TYPE statement standalone with an
association to a table.

• Enumerated Types (enum)
Stores a static ordered set of values. For example, product categories:

• Range Types
Stores a range of values, for example, a range of timestamps used to represent the ranges of time of
when a course is scheduled.

For more information on PostgreSQL Range Types:
https://www.postgresql.org/docs/9.6/static/rangetypes.html

• Base Types
These types are the system core types (abstract types) and are implemented in a low-level language
such as C.

• Array Types
Support definition of columns as multidimensional arrays. An array column can be created with a
built-in type or a user-defined base type, enum type, or composite.

For additional details:
https://www.postgresql.org/docs/9.1/static/arrays.html

demo=> CREATE TYPE PRODUCT_CATEGORT AS ENUM
 ('Hardware', 'Software', 'Document');

demo=> CREATE TYPE float8_range AS RANGE
 (subtype = float8, subtype_diff = float8mi);

demo=> CREATE TABLE COURSE_SCHEDULE (
 COURSE_ID NUMERIC PRIMARY KEY,

 COURSE_NAME VARCHAR(60),
 COURSE_SCHEDULES text[]);

https://www.postgresql.org/docs/9.6/static/rangetypes.html
https://www.postgresql.org/docs/9.1/static/arrays.html

 138

PostgreSQL CREATE TYPE Synopsis

PostgreSQL syntax differences from Oracle’s CREATE TYPE Statement:
• PostgreSQL does not support: CREATE OR REPLACE TYPE.
• PostgreSQL does not accept: AS OBJECT.

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

 139

Examples
1. Create a User Define Type as a dedicated type for storing an employee phone number:

2. Create a PostgreSQL Object Type as a collection of Attributes for the employees table:

For additional information on PostgreSQL User Defined Types:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createtype.html
https://www.postgresql.org/docs/9.6/static/rowtypes.htm

demo=> CREATE TYPE EMP_PHONE_NUM AS (
 PHONE_NUM VARCHAR(11));

demo=> CREATE TABLE EMPLOYEES (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_PHONE EMP_PHONE_NUM NOT NULL);

demo=> INSERT INTO EMPLOYEES VALUES(1, ROW('111-222-333'));

demo=> SELECT a.EMP_ID, (a.EMP_PHONE).PHONE_NUM FROM EMPLOYEES a;

 emp_id | phone_num
--------+-------------
 1 | 111-222-333
(1 row)

demo=> CREATE OR REPLACE TYPE EMP_ADDRESS AS OBJECT (
 STATE VARCHAR(2),
 CITY VARCHAR(20),
 STREET VARCHAR(20),
 ZIP_CODE NUMERIC);

demo=> CREATE TABLE EMPLOYEES (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_NAME VARCHAR(10) NOT NULL,
 EMP_ADDRESS EMP_ADDRESS NOT NULL);

demo=> INSERT INTO EMPLOYEES
 VALUES(1, 'John Smith',
 ('AL', 'Gulf Shores', '3033 Joyce Street', '36542'));

demo=> SELECT a.EMP_NAME,
 (a.EMP_ADDRESS).STATE,
 (a.EMP_ADDRESS).CITY,
 (a.EMP_ADDRESS).STREET,
 (a.EMP_ADDRESS).ZIP_CODE

 FROM EMPLOYEES a;

 emp_name | state | city | street | zip_code
------------+-------+-------------+-------------------+----------
 John Smith | AL | Gulf Shores | 3033 Joyce Street | 36542

https://www.postgresql.org/docs/9.6/static/sql-createtype.html
https://www.postgresql.org/docs/9.6/static/rowtypes.htm

 140

 Migrating from: Oracle Read-Only Tables & Partitions
[Back to TOC]

Overview
Beginning with Oracle 11g, tables can be marked as “read-only”, which prevents DML operations from altering
table data.

Prior to Oracle 11g, the only way to set a table to “read only” mode was by limiting table privileges to
SELECT. The table owner was still able to perform read and write operations. Starting with Oracle 11g, users
can execute an ALTER TABALE statement and change the table mode to either READ ONLY or READ
WRITE.

Oracle 12c Release 2 introduces greater granularity for read-only objects and supports “read only” table
partitions. Any attempt to perform a DML operation on a partition, or sub-partition, set to READ ONLY in
Oracle 12.2 results in an error.

Notes:

• SELECT FOR UPDATE statements are not allowed.
• DDL operations are permitted if they do not modify table data.
• Operations on indexes are allowed on tables set to READ ONLY mode.

Example
Oracle READ ONLY and READ WRITE Modes:

SQL> CREATE TABLE EMP_READ_ONLY (
 EMP_ID NUMBER PRIMARY KEY,
 EMP_FULL_NAME VARCHAR2(60) NOT NULL);

SQL> INSERT INTO EMP_READ_ONLY VALUES(1, 'John Smith');
1 row created

SQL> ALTER TABLE EMP_READ_ONLY READ ONLY;

SQL> INSERT INTO EMP_READ_ONLY VALUES(2, 'Steven King');
ORA-12081: update operation not allowed on table "SCT"."TBL_READ_ONLY"

SQL> ALTER TABLE EMP_READ_ONLY READ WRITE;

SQL> INSERT INTO EMP_READ_ONLY VALUES(2, 'Steven King');
1 row created

SQL> COMMIT;

SQL> SELECT * FROM EMP_READ_ONLY;

 EMP_ID EMP_FULL_NAME
---------- --------------------
 1 John Smith
 2 Steven King

 141

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_3001.htm
http://docs.oracle.com/database/121/SQLRF/statements_3001.htm
https://docs.oracle.com/database/122/VLDBG/release-changes.htm#GUID-387B86B7-DBE7-440D-9BCA-E5469E7AE88B__READ-ONLYPARTITIONS-
5B55A563

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_3001.htm
http://docs.oracle.com/database/121/SQLRF/statements_3001.htm
https://docs.oracle.com/database/122/VLDBG/release-changes.htm#GUID-387B86B7-DBE7-440D-9BCA-E5469E7AE88B__READ-ONLYPARTITIONS-5B55A563
https://docs.oracle.com/database/122/VLDBG/release-changes.htm#GUID-387B86B7-DBE7-440D-9BCA-E5469E7AE88B__READ-ONLYPARTITIONS-5B55A563

 142

 Migration to: PostgreSQL “Read Only” Roles/DB/Triggers
[Back to TOC]

Overview
PostgreSQL does not provide an equivalent to the READ ONLY mode supported in Oracle.

The following alternatives could be used as workarounds:

• “Read-only” User or Role.
• “Read-only” database.
• Creating a “read-only” database trigger or a using a “read-only” constraint.

PostgreSQL “read-only” User or Role
To achieve some degree of protection from unwanted DML operations on table for a specific Database User,
you can grant the user only the SELECT privilege on the table and set the user
default_transaction_read_only parameter to ON.

Example
Create a PostgreSQL User with READ ONLY privileges:

demo=> CREATE TABLE EMP_READ_ONLY (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL);

demo=> CREATE USER aws_readonly PASSWORD 'aws_readonly';
CREATE ROLE

demo=> ALTER USER aws_readonly SET DEFAULT_TRANSACTION_READ_ONLY=ON;
ALTER ROLE

demo=> GRANT SELECT ON EMP_READ_ONLY TO aws_readonly;
GRANT
 -- Open a new session with user “aws_readonly”
demo=> SELECT * FROM EMP_READ_ONLY;

 emp_id | emp_full_name
--------+---------------
(0 rows)

demo=> INSERT INTO EMP_READ_ONLY VALUES(1, 'John Smith');
ERROR: cannot execute INSERT in a read-only transaction

 143

PostgreSQL “read-only” database
As an alternative solution for restricting write operations on database objects, a dedicated “read-only”
PostgreSQL database can be created to store all “read-only” tables. PostgreSQL supports multiple databases
under the same database instance. Adding a dedicated “read-only” database is a simple and straightforward
solution.

• Set the DEFAULT_TRANSACTION_READ_ONLY to ON for a database. If a session attempts to
perform DDL or DML operations, and error will be raised.

• The database can be altered back to READ WRITE mode when the parameter is set to “OFF”.

Example
Create a PostgreSQL READ ONLY database:

“Read-only” Database Trigger
An INSTEAD OF trigger can by created to prevent data modifications on a specific table, such as restricting
INSERT, UPDATE, DELETE and TRUNCATE.

Example

1. Create PostgreSQL function which contains the logic for restricting to “read-only” operations:

demo=> CREATE DATABASE readonly_db;
CREATE DATABASE

demo=> ALTER DATABASE readonly_db SET DEFAULT_TRANSACTION_READ_ONLY=ON;
ALTER DATABASE

 -- Open a new session connected to the “readonly_db” database

demo=> CREATE TABLE EMP_READ_ONLY (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL);
ERROR: cannot execute CREATE TABLE in a read-only transaction

 -- In case of an existing table

demo=> INSERT INTO EMP_READ_ONLY VALUES(1, 'John Smith');
ERROR: cannot execute INSERT in a read-only transaction

demo=> CREATE OR REPLACE FUNCTION READONLY_TRIGGER_FUNCTION()
 RETURNS
 TRIGGER AS $$
 BEGIN

RAISE EXCEPTION 'THE "%" TABLE IS READ ONLY!',
TG_TABLE_NAME using hint = 'Operation Ignored';

 RETURN NULL;
 END;
 $$ language 'plpgsql';

 144

2. Create a trigger which will execute the function that was previously created:

3. Test DML & truncate commands against the table with the new trigger:

For additional details:
https://www.postgresql.org/docs/9.6/static/ddl-priv.html
https://www.postgresql.org/docs/9.6/static/sql-grant.html
https://www.postgresql.org/docs/9.6/static/runtime-config-client.html

demo=> CREATE TRIGGER EMP_READONLY_TRIGGER
 BEFORE INSERT OR UPDATE OR DELETE OR TRUNCATE
 ON EMP_READ_ONLY FOR EACH STATEMENT
 EXECUTE PROCEDURE READONLY TRIGGER FUNCTION();

demo=> INSERT INTO EMP_READ_ONLY VALUES(1, 'John Smith');
 ERROR: THE "EMP_READ_ONLY" TABLE IS READ ONLY!
 HINT: Operation Ignored
 CONTEXT: PL/pgSQL function readonly_trigger_function() line 3 at
 RAISE

demo>= TRUNCATE TABLE SRC;
 ERROR: THE " EMP_READ_ONLY" TABLE IS READ ONLY!

 HINT: Operation Ignored
CONTEXT: PL/pgSQL function readonly_trigger_function() line 3 at
RAISE

https://www.postgresql.org/docs/9.6/static/ddl-priv.html
https://www.postgresql.org/docs/9.6/static/sql-grant.html
https://www.postgresql.org/docs/9.6/static/runtime-config-client.html

 145

 Migration to: PostgreSQL Indexes
[Back to TOC]

Overview
PostgreSQL supports multiple types of Indexes using different indexing algorithms that can provide
performance benefits for different types of queries. The built-in PostgreSQL Index types include:

• B-Tree
Default indexes that can be used for equality and range for the majority of queries.
These indexes can operate against all datatypes and can be used to retrieve NULL values.
B-Tree index values are sorted in ascending order by default.

• Hash
Hash Indexes are practical for equality operators. These types of indexes are rarely used because they
are not transaction-safe. They need to be rebuilt manually in case of failures.

• GIN (Generalized Inverted Indexes)
GIN indexes are useful when an index needs to map a large amount of values to one row, while B-Tree
indexes are optimized for cases when a row has a single key value. GIN indexes work well for indexing
full-text search and for indexing array values.

• GiST (Generalized Search Tree)
GiST indexes are not viewed as a single type of index but rather as an index infrastructure; a base to
create different indexing strategies. GiST indexes enable building general B-Tree structures that can be
used for operations more complex than equality and range comparisons. They are mainly used to
create indexes for geometric data types and they support full-text search indexing.

• BRIN (Block Range Indexes)
BRIN Indexes store summary data for values stored in sequential physical table block ranges. A BRIN
index contains only the minimum and maximum values contained in a group of database pages. Its
main advantage is that it can rule out the presence of certain records and therefore reduce query run
time.

Additional PostgreSQL indexes (such as SP-GiST) exist but are currently not supported because they require a
loadable extension not currently available in Amazon Aurora PostgreSQL.

 146

PostgreSQL CREATE INDEX Synopsis

By default, the CREATE INDEX statement creates a B-Tree index.

Examples
Oracle CREATE/DROP Index:

PostgreSQL CREATE/DROP Index:

Oracle ALTER INDEX - RENAME:

PostgreSQL ALTER INDEX - RENAME:

Oracle ALTER INDEX - TABLESPACE:

PostgreSQL ALTER INDEX - TABLESPACE:

Oracle REBUILD INDEX:

PostgreSQL REINDEX (REBUILD) INDEX:

CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name]
ON table_name [USING method]
 ({ column_name | (expression) } [COLLATE collation] [opclass]
[ASC | DESC] [NULLS { FIRST | LAST }] [, ...])
 [WITH (storage_parameter = value [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate]

SQL> CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES (EMPLOYEE_ID DESC);
SQL> DROP INDEX IDX_EMP_ID;

demo=> CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES (EMPLOYEE_ID DESC);
demo=> DROP INDEX IDX_EMP_ID;

SQL> ALTER INDEX IDX_EMP_ID RENAME TO IDX_EMP_ID_OLD;

demo=> ALTER INDEX IDX_EMP_ID RENAME TO IDX_EMP_ID_OLD;

SQL> ALTER INDEX IDX_EMP_ID REBUILD TABLESPACE USER_IDX;

demo=> CREATE TABLESPACE PGIDX LOCATION '/data/indexes';
demo=> ALTER INDEX IDX_EMP_ID SET TABLESPACE PGIDX;

SQL> ALTER INDEX IDX_EMP_ID REBUILD;

demo=> REINDEX INDEX IDX_EMP_ID;

 147

Oracle REBUILD INDEX ONLINE:

PostgreSQL REINDEX (REBUILD) INDEX ONLINE:

For additional information on PostgreSQL Indexes:
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
https://www.postgresql.org/docs/9.6/static/sql-alterindex.html
https://www.postgresql.org/docs/current/static/sql-reindex.html

Oracle vs. PostgreSQL Indexes

Oracle Indexes Types / Features PostgreSQL Compatibility PostgreSQL Equivalent
B-Tree Index Supported B-Tree Index
Index-Organized Tables Supported PostgreSQL CLUSTER
Reverse key indexes Not supported -
Descending indexes Supported ASC (default) / DESC
B-tree cluster indexes Not supported -
Unique / non-unique Indexes Supported Syntax is identical
Function-Based Indexes Supported PostgreSQL Expression

Indexes
Application Domain indexes Not supported -
BITMAP Index / Bitmap Join Indexes Not supported Consider BRIN index*
Composite Indexes Supported Multicolumn Indexes
Invisible Indexes Not supported Extension “hypopg” is not

currently supported*
Local and Global Indexes Not supported -
Partial Indexes for Partitioned Tables (Oracle
12c)

Not supported -

CREATE INDEX… / DROP INDEX… Supported High percentage of syntax
similarity

ALTER INDEX… (General Definitions) Supported -
ALTER INDEX… REBUILD Supported REINDEX
ALTER INDEX… REBUILD ONLINE Limited support CONCURRENTLY
Index Metadata PG_INDEXES

(Oracle USER_INDEXES)
-

Index Tablespace Allocation Supported SET TABLESPACE
Index Parallel Operations Not supported -
Index Compression Not direct equivalent to Oracle

index key compression or advanced
index compression

-

SQL> ALTER INDEX IDX_EMP_ID REBUILD ONLINE;

demo=> CREATE INDEX CONCURRENTLY IDX_EMP_ID1 ON EMPLOYEES(EMPLOYEE_ID);
demo=> DROP INDEX CONCURRENTLY IDX_EMP_ID;

https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
https://www.postgresql.org/docs/9.6/static/sql-alterindex.html
https://www.postgresql.org/docs/current/static/sql-reindex.html

 148

 Migrating from: Oracle B-Tree Indexes
[Back to TOC]

Overview
B-Tree indexes (“B” stands for balanced), are the most common index type in Relational Database and are
used for a variety of common query performance enhancing tasks. B-Tree indexes can be defined as an
ordered list of values divided into ranges. They provide superior performance by associating a key with a row
or range of rows.

B-Tree indexes contain two types of blocks: branch blocks for searching and leaf blocks for storing values. The
branch blocks also contain the root branch, which points to lower-level index blocks in the B-Tree index
structure.

B-Tree indexes are useful for Primary Keys and other high-cardinality columns. They provide excellent data
access performance for a variety of query patterns such as exact match searches and range searches. B-Tree
indexes serve as the default index type when creating a new index.

Example
Creating an Oracle B-Tree Index:

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721

SQL> CREATE INDEX IDX_EVENT_ID ON SYSTEM_LOG(EVENT_ID);

https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721

 149

 Migration to: PostgreSQL B-Tree Indexes
[Back to TOC]

Overview
When creating an Index in PostgreSQL, a B-Tree Index is created by default, similarly to the behavior in the
Oracle Database. PostgreSQL B-Tree indexes have the same characteristics as Oracle and these types of
indexes can handle equality and range queries on data. The PostgreSQL optimizer considers using B-Tree
indexes especially when using one or more of the following operators in queries: >, >=, <, <=, =

In addition, performance improvements can be achieved when using IN, BETWEEN, IS NULL or IS
NOT NULL.

Example
Create a PostgreSQL B-Tree Index:

demo=> CREATE INDEX IDX_EVENT_ID ON SYSTEM_LOG(EVENT_ID);
 OR
demo=> CREATE INDEX IDX_EVENT_ID1 ON SYSTEM_LOG USING BTREE (EVENT_ID);

 150

 Migrating from: Oracle Composite Indexes
[Back to TOC]

Overview
An index that is created on multiple table columns is known as a multi-column, concatenated or Composite
Index. The main purpose of these indexes is to improve the performance of data retrieval for SELECT
statements when filtering on all or some of the Composite Index columns. When using Composite Indexes, it is
beneficial to place the most restrictive columns at the first position of the index to improve query
performance. Column placement order is crucial when using Composite Indexes as the most prevalent
columns are accessed first.

Example
Create a Composite Index on the HR.EMPLOYEES table:

Drop a Composite Index:

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28274/data_acc.htm#i2773
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT88833

CREATE INDEX IDX_EMP_COMPI
 ON EMPLOYEES (FIRST_NAME, EMAIL, PHONE_NUMBER);

DROP INDEX IDX_EMP_COMPI;

https://docs.oracle.com/cd/B28359_01/server.111/b28274/data_acc.htm#i2773
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT88833

 151

 Migration to: PostgreSQL Multi-Column Indexes
[Back to TOC]

Overview
PostgreSQL Multi-Column Indexes are similar to Oracle Composite Indexes.

• Currently, only B-tree, GiST, GIN, and BRIN support Multi-Column Indexes.
• 32 columns can be specified when creating a Multi-Column Index.

PostgreSQL uses the exact same syntax as Oracle to create Multi-Column Indexes.

Example
Create a Multi-Column Index on the EMPLOYEES table:

Drop a Multi-Column Index:

For additional details:
https://www.postgresql.org/docs/9.6/static/indexes-multicolumn.html

CREATE INDEX IDX_EMP_COMPI
 ON EMPLOYEES (FIRST_NAME, EMAIL, PHONE_NUMBER);

DROP INDEX IDX_EMP_COMPI;

 152

 Migrating from: Oracle BITMAP Indexes
[Back to TOC]

Overview
BITMAP indexes are task-specific indexes that are best suited for providing fast data retrieval for OLAP
workloads. BITMAP Indexes are generally very fast for read-mostly scenarios. BITMAP indexes do not perform
well in heavy-DML or OLTP-type workloads.

Unlike B-Tree Indexes where an index entry points to a specific table row, when using BITMAP Indexes, the
index stores a BITMAP for each index key.

BITMAP Indexes are ideal for low-cardinality data filtering, where the number of distinct values in a column is
relatively small.

Example
Create an Oracle BITMAP Index:

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_5011.htm#SQLRF01209
https://docs.oracle.com/database/121/SQLRF/statements_5013.htm#SQLRF01209

SQL> CREATE BITMAP INDEX IDX_BITMAP_EMP_GEN ON EMPLOYEES(GENDER);

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_5011.htm#SQLRF01209
https://docs.oracle.com/database/121/SQLRF/statements_5013.htm#SQLRF01209

 153

 Migration to: PostgreSQL BRIN Indexes
[Back to TOC]

PostgreSQL Index Overview
PostgreSQL does not provide native support for BITMAP indexes. However, a BRIN index, which splits table
records into block ranges with MIN/MAX summaries, can be used as a partial alternative for certain analytic
workloads. For example, BRIN indexes are suited for queries that rely heavily on aggregations to analyze large
numbers of records.

However, Oracle BITMAP indexes and PostgreSQL BRIN indexes are not implemented in the same way and
cannot be used as direct equivalents.

Example
PostgreSQL BRIN Index Creation:

For additional details:
https://www.postgresql.org/docs/9.6/static/indexes-types.html
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

demo=> CREATE INDEX IDX_BRIN_EMP ON EMPLOYEES USING BRIN(salary);

https://www.postgresql.org/docs/9.6/static/indexes-types.html
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

 154

 Migrating from: Oracle Function-Based Indexes
[Back to TOC]

Overview
Function-Based Indexes allow functions to be used in the WHERE clause of queries on indexes columns.
Function-Based Indexes store the output of a Function applied on the values of a table column. The Oracle
Query Optimizer will only use a Function-Based Index when the function itself is used in the query itself. To
maintain Function-Based Indexes updated, when the Oracle Database processes DML operations it will also
evaluate the output of the Function on updated column values.

Example
Creation of a Function-Based Index:

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721
https://docs.oracle.com/database/121/SQLRF/statements_5013.htm#SQLRF01209

SQL> CREATE TABLE SYSTEM_EVENTS(
 EVENT_ID NUMERIC PRIMARY KEY,
 EVENT_CODE VARCHAR2(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR2(200),
 EVENT_TIME TIMESTAMPNOT NULL);

SQL> CREATE INDEX EVNT_BY_DAY ON SYSTEM_EVENTS(EXTRACT(DAY FROM EVENT_TIME));

https://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721
https://docs.oracle.com/database/121/SQLRF/statements_5013.htm#SQLRF01209

 155

 Migration to: PostgreSQL Expression Indexes

Overview
PostgreSQL supports Expression Indexes which are similar to Function-Based Indexes in Oracle.

Examples
1. Creating an Expression Index in PostgreSQL:

2. Inserting records to the SYSTEM_EVENTS table, gathering table statistics using the ANALYZE statement
and verifying that the Expression Index (“EVNT_BY_DAY”) is being used for data access.

demo=> CREATE TABLE SYSTEM_EVENTS(
 EVENT_ID NUMERIC PRIMARY KEY,
 EVENT_CODE VARCHAR(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR(200),
 EVENT_TIME TIMESTAMP NOT NULL);

Demo=> CREATE INDEX EVNT_BY_DAY ON SYSTEM_EVENTS(EXTRACT(DAY FROM EVENT_TIME));

demo=> INSERT INTO SYSTEM_EVENTS
 SELECT ID AS event_id,

 'EVNT-A'||ID+9||'-'||ID AS event_code,
 CASE WHEN mod(ID,2) = 0 THEN 'Warning' ELSE 'Critical' END AS
event_desc,
 now() + INTERVAL '1 minute' * ID AS event_time
 FROM
 (SELECT generate_series(1,1000000) AS ID) A;
INSERT 0 1000000

demo=> ANALYZE SYSTEM_EVENTS;
ANALYZE

demo=> EXPLAIN
 SELECT * FROM SYSTEM_EVENTS
 WHERE EXTRACT(DAY FROM EVENT_TIME) = '22';

 QUERY PLAN

 Bitmap Heap Scan on system_events (cost=729.08..10569.58 rows=33633 width=41)
 Recheck Cond: (date_part('day'::text, event_time) = '22'::double precision)
 -> Bitmap Index Scan on evnt_by_day (cost=0.00..720.67 rows=33633 width=0)
 Index Cond: (date_part('day'::text, event_time) = '22'::double precision)

 156

Partial Indexes
PostgreSQL also offers “partial indexes”, which are indexes that use a WHERE clause when created. The
biggest benefit of using “partial indexes” is reduction of the overall subset of indexed data allowing users to
index relevant table data only. “Partial indexes” can be used to increase efficiency and reduce the size of the
index.

Example
Create a PostgreSQL “partial Index”:

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

demo=> CREATE TABLE SYSTEM_EVENTS(
 EVENT_ID NUMERIC PRIMARY KEY,
 EVENT_CODE VARCHAR(10) NOT NULL,
 EVENT_DESCIPTION VARCHAR(200),
 EVENT_TIME DATE NOT NULL);

Demo=> CREATE INDEX IDX_TIME_CODE ON SYSTEM_EVENTS(EVENT_TIME)
 WHERE EVENT_CODE like '01-A%';

https://www.postgresql.org/docs/9.6/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

 157

 Migrating from: Oracle Local and Global Partitioned Indexes
[Back to TOC]

Overview
Local and Global Indexes are used for Partitioned Tables:

• Local Partitioned Index
Maintain a one-to-one relationship between the Index Partitions and the Table Partitions. For each
Table Partition, a separate Index Partition will be created. This type of index is created using the
LOCAL clause. Because each Index Partition is independent, index maintenance operations are easier
and can be performed independently. Local Partitioned Indexes are managed automatically by the
Oracle Database during creation or deletion of Table Partitions.

• Global Partitioned Index

Each Global Index contains keys from multiple table partitions in a single index partition. This type of
index is created using the GLOBAL clause during index creation. A Global index can be
partitioned or non-partitioned (default).

Certain restrictions exist when creating Global Partitioned Indexes on Partitioned Tables, specifically
for index management and maintenance. For example, dropping a Table Partition causes the Global
Index to become unusable without an index rebuild.

Example
Create a Local and Global Index on a Partitioned Table:

For additional details:
https://docs.oracle.com/cd/E18283_01/server.112/e16541/partition.htm
https://docs.oracle.com/database/121/VLDBG/GUID-81DD6045-A269-4BD2-9EBF-E430F8C3E51B.htm#VLDBG1354

SQL> CREATE INDEX IDX_SYS_LOGS_LOC ON SYSTEM_LOGS (EVENT_DATE)
 LOCAL
 (PARTITION EVENT_DATE_1,
 PARTITION EVENT_DATE_2,
 PARTITION EVENT_DATE_3);

SQL> CREATE INDEX IDX_SYS_LOGS_GLOB ON SYSTEM_LOGS (EVENT_DATE)
 GLOBAL PARTITION BY RANGE (EVENT_DATE) (
 PARTITION EVENT_DATE_1 VALUES LESS THAN
(TO_DATE('01/01/2015','DD/MM/YYYY')),
 PARTITION EVENT_DATE_2 VALUES LESS THAN
(TO_DATE('01/01/2016','DD/MM/YYYY')),
 PARTITION EVENT_DATE_3 VALUES LESS THAN
(TO_DATE('01/01/2017','DD/MM/YYYY')),
 PARTITION EVENT_DATE_4 VALUES LESS THAN (MAXVALUE);

https://docs.oracle.com/cd/E18283_01/server.112/e16541/partition.htm
https://docs.oracle.com/database/121/VLDBG/GUID-81DD6045-A269-4BD2-9EBF-E430F8C3E51B.htm#VLDBG1354

 158

 Migration to: PostgreSQL Partitioned Indexes
[Back to TOC]

Overview

The Table Partitioning mechanism in PostgreSQL is different when compared to Oracle. There is no direct
equivalent for Oracle Local and Global Indexes. The implementation of partitioning in PostgreSQL (“Table
Inheritance“) includes the use of a Parent Table with Child Tables used as the table partitions.

• Indexes created on the Child Tables behave similarly to Local Indexes in the Oracle database, with per-
table indexes (“partitions”).

• Creating an index on the parent table, similar to a Global Indexes in Oracle, has no effect.

Example

1. Create the Parent Table:

2. Create Child Tables (“partitions”) with a Check Constraint:

3. Create Indexes on each Child Table (“partitions”)

PostgreSQL does not have direct equivalents for Local and Global indexes in Oracle. However, indexes that
have been created on the Child Tables behave similarly to Local Indexes in Oracle.

For additional details:
https://www.postgresql.org/docs/9.6/static/ddl-partitioning.html

demo=# CREATE TABLE SYSTEM_LOGS
 (EVENT_NO NUMERIC NOT NULL,
 EVENT_DATE DATE NOT NULL,
 EVENT_STR VARCHAR(500),
 ERROR_CODE VARCHAR(10));

demo=# CREATE TABLE SYSTEM_LOGS_WARNING (
CHECK (ERROR_CODE IN('err1', 'err2', 'err3')))
INHERITS (SYSTEM_LOGS);

demo=# CREATE TABLE SYSTEM_LOGS_CRITICAL (

CHECK (ERROR_CODE IN('err4', 'err5', 'err6')))
 INHERITS (SYSTEM_LOGS);

demo=# CREATE INDEX IDX_SYSTEM_LOGS_WARNING ON
 SYSTEM_LOGS_WARNING(ERROR_CODE);

demo=# CREATE INDEX IDX_SYSTEM_LOGS_CRITICAL ON
 SYSTEM_LOGS_CRITICAL(ERROR_CODE);

https://www.postgresql.org/docs/9.6/static/ddl-partitioning.html

 159

 Migrating from: Oracle Identity Columns
[Back to TOC]

Overview
Oracle 12c introduced support for automatic generation of values to populate columns in database tables. The
IDENTITY type generates a sequence and associates it with a table column without the need to manually
create a separate Sequence object. The IDENTITY type relies (internally) on Sequences, which can also be
manually configured.

Example

1. Create a table with an Oracle 12c Identity Column:

2. Insert data into the table. The Identity Column automatically generates values for COL1.

For additional details:
https://docs.oracle.com/database/121/SQLRF/statements_6017.htm#SQLRF01314
http://www.oracle.com/technetwork/issue-archive/2013/13-sep/o53asktom-1999186.html

SQL> CREATE TABLE IDENTITY_TST (
 COL1 NUMBER GENERATED BY DEFAULT AS IDENTITY
 (START WITH 100
 INCREMENT BY 10),
 COL2 VARCHAR2(30));

SQL> INSERT INTO IDENTITY_TST(COL2) VALUES('A');
SQL> INSERT INTO IDENTITY_TST(COL1, COL2) VALUES(DEFAULT, 'B');
SQL> INSERT INTO IDENTITY_TST(col1, col2) VALUES(NULL, 'C');

SQL> SELECT * FROM IDENTITY_TST;
 COL1 COL2
---------- ------------------------------
 100 A
 110 B

https://docs.oracle.com/database/121/SQLRF/statements_6017.htm#SQLRF01314
http://www.oracle.com/technetwork/issue-archive/2013/13-sep/o53asktom-1999186.html

 160

 Migration to: PostgreSQL SERIAL Type
[Back to TOC]

Overview
PostgreSQL enables you to create a Sequence that is similar to the AUTO_INCREMENT property supported by
Oracle 12c’s Identity column feature. When creating a new table using the SERIAL pseudo-type, a Sequence
is created. Additional types from the same family are SMALLSERIAL and BIGSERIAL.

By assigning a SERIAL type to a column as part of table creation, PostgreSQL creates a Sequence using
default configuration and adds the NOT NULL constraint to the column. The new Sequence can be altered
and configured as a regular Sequence.

Example
Using the PostgreSQL SERIAL pseudo-type (with a Sequence that is created implicitly):

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createsequence.html
https://www.postgresql.org/docs/9.6/static/functions-sequence.html
https://www.postgresql.org/docs/9.6/static/datatype-numeric.html

psql=> CREATE TABLE SERIAL_SEQ_TST(
 COL1 SERIAL PRIMARY KEY,
 COL2 VARCHAR(10));

psql=> \ds

 Schema | Name | Type | Owner
--------+-------------------------+----------+-------
 public | serial_seq_tst_col1_seq | sequence | pg_tst_db

psql=> ALTER SEQUENCE SERIAL_SEQ_TST_COL1_SEQ RESTART WITH 100
 INCREMENT BY 10;

psql=> INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');
psql=> INSERT INTO SERIAL_SEQ_TST(COL1, COL2) VALUES(DEFAULT, 'B');

psql=> SELECT * FROM SERIAL_SEQ_TST;

 col1 | col2
------+------
 100 | A
 110 | B

https://www.postgresql.org/docs/9.6/static/sql-createsequence.html
https://www.postgresql.org/docs/9.6/static/functions-sequence.html
https://www.postgresql.org/docs/9.6/static/datatype-numeric.html

 161

 Migrating from: Oracle MVCC
[Back to TOC]

Overview
Two primary lock types exist in the Oracle database: exclusive locks and share locks which implement the
following high-level locking semantics:

• Writers never block readers.
• Readers never block writers.
• Oracle never escalates locks from row to page and table level, which reduces potential deadlocks.
• Oracle allows the user to issue an explicit lock on a specific table using the LOCK TABLE statement.

Lock types can be divided into four categories:

• DML Locks
Preserving data integrity accessed concurrently by multiple users, DML statements acquire locks
automatically both on row and table levels.

• Row Locks (TX) – obtained on a single row of a table by one the following statements:
INSERT, UPDATE, DELETE, MERGE, and SELECT ... FOR UPDATE.
If a transaction obtains a row lock, a table lock is also acquired to prevent DDL modifications to
the table that might cause conflicts. The lock exists until the transaction ends with a COMMIT or
ROLLBACK.

• Table Locks (TM) - When performing one of the following DML operations: INSERT,

UPDATE, DELETE, MERGE, and SELECT ... FOR UPDATE, a transaction
automatically acquires a table lock to prevent DDL modifications to the table that might cause
conflicts if the transaction did not issue a COMMIT or ROLLBACK.

 162

The following table provides additional information regarding row and table locks:

Statement Row
Locks

Table Lock
Mode

RS RX S SRX X

SELECT ... FROM table... — none Y Y Y Y Y

INSERT INTO table... Yes SX Y Y N N N

UPDATE table ... Yes SX Y Y N N N

MERGE INTO table ... Yes SX Y Y N N N

DELETE FROM table... Yes SX Y Y N N N

SELECT ... FROM
table FOR UPDATE OF...

Yes SX Y Y N N N

LOCK TABLE table IN... —

 ROW SHARE MODE SS Y Y Y Y N

 ROW EXCLUSIVEMODE SX Y Y N N N

 SHARE MODE S Y N Y N N

 SHARE ROWEXCLUSIVE MODE SSX Y N N N N

 EXCLUSIVE MODE X N N N N N

• DDL Locks
The main purpose of a DDL lock is to protect the definition of a schema object while it is modified by an
ongoing DDL operation such as ALTER TABLE EMPLOYEES ADD <COLUMN>.

• Explicit (Manual) Data Locking
The user has the ability to explicitly create a lock to achieve transaction-level read consistency for
when an application requires transactional exclusive access to a resource without waiting for other
transactions to complete. Explicit data locking can be done at the transaction level or the session level:

Transaction Level:
• SET TRANSACTION ISOLATION LEVEL
• LOCK TABLE
• SELECT … FOR UPDATE

Session Level:

• ALTER SESSION SET ISOLATION LEVEL

• System Locks
Oracle lock types such as Latches, Mutexes, and internal locks.

 163

Examples

Explicit data lock using the LOCK TABLE command:

Explicit data lock using the SELECT… FOR UPDATE command. Oracle obtains exclusive row-level locks on
all the rows identified by the SELECT FOR UPDATE statement:

 Oracle Real-Time Locks Monitoring V$ Views

1. v$lock;
2. v$locked_object;
3. v$session_blockers;

For additional details:
https://docs.oracle.com/cloud/latest/db112/SQLRF/statements_9015.htm#SQLRF01605
http://docs.oracle.com/cd/E18283_01/server.112/e17118/ap_locks002.htm
https://docs.oracle.com/database/121/SQLRF/ap_locks001.htm#SQLRF55502
https://docs.oracle.com/database/121/SQLRF/ap_locks003.htm#SQLRF55513
https://docs.oracle.com/database/121/SQLRF/ap_locks002.htm#SQLRF55509

-- Session 1
SQL> LOCK TABLE EMPLOYEES IN EXCLUSIVE MODE;

-- Session 2
SQL> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=114;

-- Session 2 waits for session 1 to COMMIT or ROLLBACK

-- Session 1
SQL> SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=114 FOR UPDATE;

-- Session 2
SQL> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=114;

-- Session 2 waits for session 1 to COMMIT or ROLLBACK

https://docs.oracle.com/cloud/latest/db112/SQLRF/statements_9015.htm#SQLRF01605
http://docs.oracle.com/cd/E18283_01/server.112/e17118/ap_locks002.htm
https://docs.oracle.com/database/121/SQLRF/ap_locks001.htm#SQLRF55502
https://docs.oracle.com/database/121/SQLRF/ap_locks003.htm#SQLRF55513
https://docs.oracle.com/database/121/SQLRF/ap_locks002.htm#SQLRF55509

 164

 Migration to: PostgreSQL MVCC
[Back to TOC]

Overview
PostgreSQL provides various lock modes to control concurrent access to data in tables. Data consistency is
maintained using a Multi-Version Concurrency Control (MVCC) mechanism. Most PostgreSQL commands
automatically acquire locks of appropriate modes to ensure that referenced tables are not dropped or
modified in incompatible ways while the command executes.

The MVCC mechanism prevents viewing inconsistent data produced by concurrent transactions performing
updates on the same rows. MVCC in PostgreSQL provides strong transaction isolation for each database
session and minimizes lock-contention in multiuser environments.

• Similarly, to Oracle, MVCC locks acquired for querying (reading) data do not conflict with locks acquired
for writing data. Reads will never block writes and writes never blocks reads.

• Similarly to Oracle, Postgres does not escalate locks to table-level, such as where an entire table is
locked for writes when a certain threshold of row locks is exceeded.

Implicit and Explicit Transactions (Auto-Commit Behavior)
Unlike Oracle, PostgreSQL uses auto-commit for transactions by default. However, there are two options to
support explicit transactions, which are similar to the default behavior in Oracle (non-auto-commit):

• Use the START TRANSACTION (or BEGIN TRANSACTION) statements and then COMMIT or
ROLLBACK .

• Set AUTOCOMMIT to OFF at the session level:

With explicit transactions:

• Users can explicitly issue a lock similar to the LOCK TABLE statement in Oracle.

• SELECT… FOR UPDATE is supported.

psql=> \set AUTOCOMMIT off

 165

Similarly to Oracle, PostgreSQL automatically acquires the necessary locks to control concurrent access to
data. PostgreSQL implements the following types of locks:

1. Table-level Locks:

Requested Lock Mode VS
current

ACCESS
SHARE

ROW
SHARE

ROW
EXCLUSIVE

SHARE
UPDATE

EXCLUSIVE

SHARE SHARE
ROW

EXCLUSIVE

EXCLUSIVE ACCESS
EXCLUSIVE

ACCESS SHARE X

ROW SHARE X X

ROW EXCLUSIVE X X X X

SHARE UPDATE EXCLUSIVE X X X X X

SHARE X X X X X

SHARE ROW EXCLUSIVE X X X X X X

EXCLUSIVE X X X X X X X

ACCESS EXCLUSIVE X X X X X X X X

2. Row-level Locks:

Requested Lock Mode VS current FOR KEY

SHARE
FOR

SHARE
FOR NO KEY UPDATE FOR UPDATE

FOR KEY SHARE X

FOR SHARE X X

FOR NO KEY UPDATE X X X

FOR UPDATE X X X X

3. Page-level Locks: Shared/Exclusive locks used to control read or write access to table pages in the

shared buffer pool. They are released immediately after a row is fetched or updated.

4. Deadlocks: Occur when two or more transactions are waiting for one another to release each lock.

Transaction-level locking:
PostgreSQL does not support session isolation levels, although it can be controlled via transactions:

• SET TRANSACTION ISOLATION LEVEL
• LOCK TABLE
• SELECT … FOR UPDATE

PostgreSQL LOCK TABLE Synopsis

LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:
 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

 166

Notes:
• If ONLY and [*] are specified, the command aborts with an error.
• There is no UNLOCK TABLE command. Locks are always released at the end of a transaction

(COMMIT / ROLLBACK).
• The LOCK TABLE command can be used inside a transaction and should appear after the START

TRANSACTION statement.

 167

Examples
1. Obtain an explicit lock on a table using the LOCK TABLE command:

2. Explicit lock via the SELECT… FOR UPDATE command. PostgreSQL obtains exclusive row-level locks
on rows referenced by the SELECT FOR UPDATE statement. Must be executed inside a transaction.

PostgreSQL Deadlocks
Deadlocks occur when two or more transactions acquired locks on each other’s process resources (table or
row). PostgreSQL can detect Deadlocks automatically and resolve the event by aborting one of the
transactions, allowing the other transaction to complete.

Example
Simulating a Deadlock:

Session 1 is waiting for Session 2 and Session 2 is waiting for Session 1 = deadlock.

-- Session 1
psql=> START TRANSACTION;
psql=> SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=114 FOR UPDATE;

-- Session 2
psql=> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=114;

-- Session 2 waits for session 1 to COMMIT or ROLLBACK

Session 2
Step2:
UPDATE accounts SET balance =
balance + 100.00 WHERE
acctnum = 22222;

Step3:
UPDATE accounts SET balance =
balance - 100.00 WHERE
acctnum = 11111;

Session 1
Step1:
UPDATE accounts SET balance =
balance + 100.00 WHERE acctnum
= 11111;

Step4:
UPDATE accounts SET balance =
balance - 100.00 WHERE acctnum
= 22222;

-- Session 1
psql=> START TRANSACTION;
psql=> LOCK TABLE EMPLOYEES IN EXCLUSIVE MODE;

-- Session 2
psql=> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=114;

-- Session 2 waits for session 1 to COMMIT or ROLLBACK

 168

Real-time Monitoring of Locks using Catalog Tables
• pg_locks
• pg_stat_activity

Examples

1. Monitor locks using a SQL query:

2. Generate an explicit lock using the SELECT… FOR UPDATE statement:

psql=> SELECT
 block.pid AS block_pid,
 block_stm.usename AS blocker_user,
 block.mode AS block_mode,
 block.locktype AS block_locktype,
 block.relation::regclass AS block_table,
 block_stm.query AS block_query,
 block.GRANTED AS block_granted,
 waiting.locktype AS waiting_locktype,
 waiting_stm.usename AS waiting_user,
 waiting.relation::regclass AS waiting_table,
 waiting_stm.query AS waiting_query,
 waiting.mode AS waiting_mode,
 waiting.pid AS waiting_pid
 from pg_catalog.pg_locks AS waiting JOIN
 pg_catalog.pg_stat_activity AS waiting_stm
 ON (waiting_stm.pid = waiting.pid)

join pg_catalog.pg_locks AS block
 ON ((waiting."database" = block."database"
 AND waiting.relation = block.relation)
 OR waiting.transactionid = block.transactionid)

join pg_catalog.pg_stat_activity AS block_stm
 ON (block_stm.pid = block.pid)

where NOT waiting.GRANTED
and waiting.pid <> block.pid;

-- Session 1
psql=> START TRANSACTION;
psql=> SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=114 FOR UPDATE;

-- Session 2
psql=> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=114;

-- Session 2 waits for session 1 to COMMIT or ROLLBACK

 169

3. Run the SQL query from step #1 monitoring locks while distinguishing between the “blocking” and

“waiting” session:

Comparing “Locks”, Oracle vs. PostgreSQL

Description Oracle PostgreSQL
“Dictionary” tables to obtain
information about locks

v$lock;
v$locked_object;
v$session_blockers;

pg_locks
pg_stat_activity

Lock a table BEGIN;
LOCK TABLE employees IN
SHARE ROW EXCLUSIVE MODE;

LOCK TABLE employees IN
SHARE ROW EXCLUSIVE MODE

Explicit Locking SELECT * FROM employees
WHERE employee_id=102 FOR
UPDATE;

BEGIN;
SELECT * FROM employees WHERE
employee_id=102 FOR UPDATE;

Explicit Locking , options SELECT…FOR UPDATE SELECT … FOR…
KEY SHRE
SHARE
NO KEY UPDATE
UPDATE

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-lock.html
https://www.postgresql.org/docs/9.6/static/explicit-locking.html

-[RECORD 1]----+---
block_pid | 31743
blocker_user | aurora_admin
block_mode | ExclusiveLock
block_locktype | transactionid
block_table |
block_query | SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=114 FOR UPDATE;
block_granted | t
waiting_locktype | transactionid
waiting_user | aurora_admin
waiting_table |
waiting_query | UPDATE EMPLOYEES
 | SET SALARY=SALARY+1000
 | WHERE EMPLOYEE_ID=114;
waiting_mode | ShareLock
waiting_pid | 31996

https://www.postgresql.org/docs/9.6/static/sql-lock.html
https://www.postgresql.org/docs/9.6/static/explicit-locking.html

 170

 Migrating from: Oracle Character Sets
[Back to TOC]

Overview
Oracle supports most national and international encoded character set standards including extensive support
for Unicode character sets.

Oracle provides two scalar string-specific data types:

1. VARCHAR2: stores variable-length character strings with a string length between 1 and 4000 bytes.
The Oracle database can be configured to use the VARCHAR2 data type to store either Unicode or
Non-Unicode characters.

2. NVARCHAR2: scalar data type used to store Unicode data. Supports AL16UTF16 or UTF8, specified
during database creation.

Character sets in the Oracle database are defined at Instance (Oracle 11g) or Pluggable Database level (Oracle
12c R2) level. In Pre-12cR2 Oracle databases, the character set for the root Container and all Pluggable
Databases were required to be identical.

UTF8 Unicode
Oracle's implementation is done using the AL32UTF8 Character Set and offers encoding of ASCII characters as
single-byte for Latin characters, two-bytes for some European and Middle-Eastern languages, and three-bytes
for certain South and East-Asian characters. Therefore, Unicode storage requirements are usually higher when
compared non-Unicode character sets.

Character Set Migration
Two options exist for modifying existing Instance-level or database-level character sets:

1. Export/Import from the source Instance/PDB to a new Instance/PDB with a modified CS.
2. Database Migration Assistant for Unicode (DMU) which simplifies the migration process to the Unicode

CS.

As of 2012, using the CSALTER utility for CS migrations is deprecated.

Notes:

1. Oracle Database 12c Release 1 (12.1.0.1) complies with version 6.1 of the Unicode Standard.
2. Oracle Database 12c Release 2 (12.1.0.2) extends the compliance to version 6.2 of the Unicode

standard.
3. UTF-8 is supported through the AL32UTF8 CS and is valid as both the client and database character

sets.
4. UTF-16BE is supported through AL16UTF16 and is valid as the national (NCHAR) character set.

 171

For additional details:
https://docs.oracle.com/database/121/SQLRF/ap_standard_sql015.htm#SQLRF55539
https://docs.oracle.com/database/121/NLSPG/applocaledata.htm#NLSPG584
https://docs.oracle.com/database/121/NLSPG/ch11charsetmig.htm

https://docs.oracle.com/database/121/SQLRF/ap_standard_sql015.htm#SQLRF55539
https://docs.oracle.com/database/121/NLSPG/applocaledata.htm#NLSPG584
https://docs.oracle.com/database/121/NLSPG/ch11charsetmig.htm

 172

 Migration to: PostgreSQL Encoding
[Back to TOC]

Overview
PostgreSQL supports a variety of different character sets, also known as encoding, including support for both
single-byte and multi-byte languages. The default character set is specified when initializing your
PostgreSQL database cluster with initdb. Each individual database created on the PostgreSQL cluster
supports individual character sets defined as part of database creation.

Notes:

1. All supported character sets can be used by clients. However, some client-side only characters are not
supported for use within the server.

2. Unlike Oracle, PostgreSQL does not natively support an NVARHCHAR data type and does not offer
support for UTF-16.

Example

1. Create a database named test01 which uses the Korean EUC_KR Encoding the and the ko_KR
locale.

2. View the character sets configured for each database by querying the System Catalog:

Type Function Implementation Level
Encoding Defines the basic rules on how alphanumeric characters

are represented in binary format, for example – Unicode
Encoding.

Database

Locale Superset which include LC_COLLATE and LC_CTYPE,
among others.
For example, LC_COLLATE defines how strings are
sorted and needs to be a subset supported by the database
Encoding.

Table-Column

CREATE DATABASE test01 WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr'
LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;

select datname, datcollate, datctype from pg_database;

 173

Changing Character Sets / Encoding
In-place modification of the database encoding is not recommended nor supported. You must export all data,
create a new database with the new encoding, and import the data.

Example

1. Export the data using the pg_dump utility:

2. Rename (or delete) your current database:

3. Create a new database using the modified encoding:

4. Import the data using the pg_dump file previously created. Verify that you set your client encoding to
the encoding of your “old” database.

Note: Using the client_encoding parameter overrides the use of PGCLIENTENCODING.

Client/Server Character Set Conversions
PostgreSQL supports conversion of character sets between server and client for specific character set
combinations as described in the pg_conversion system catalog.

PostgreSQL includes predefined conversions, for a complete list:
https://www.postgresql.org/docs/current/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

You can create a new conversion using the SQL command CREATE CONVERSION. By using CREATE
CONVERSION.

Examples

1. Create a conversion from UTF8 to LATIN1 using a custom-made myfunc1 function:

2. Configure the PostgreSQL client character set:

Method 1
========
psql \encoding SJIS

Method 2
========
SET CLIENT_ENCODING TO 'value';

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc1;

CREATE DATABASE mydb1_new_encoding WITH ENCODING 'UNICODE'
TEMPLATE=template0;

pg_dump mydb1 > mydb1_export.sql

ALTER DATABASE mydb1 TO mydb1_backup;

PGCLIENTENCODING=OLD_DB_ENCODING psql -f mydb1_export.sql
mydb1_new_encoding

https://www.postgresql.org/docs/current/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

 174

3. View the client character set and reset it back to the default value.

Table Level Collation
PostgreSQL supports specifying the sort order and character classification behavior on a per-column level.

Example
Specify specific collations for individual table columns:

Oracle vs. PostgreSQL Character Sets

 Oracle PostgreSQL
View database character set SELECT * FROM

NLS_DATABASE_PARAMETER
S;

select datname,
pg_encoding_to_char(encoding
), datcollate, datctype from
pg_database;

Modify the database character
set

1. Full Export/Import.
2. When converting to

Unicode, use the Oracle
DMU utility.

• Export the database.
• Drop or rename the database.
• Re-create the database with the

desired new character set.
• Import database data from the

exported file into the new
database.

Character set granularity Instance (11g + 12cR1)
Database (Oracle 12cR2)

Database

UTF8 Supported via VARCHAR2 and
NVARCHAR data types

Supported via VARCHAR datatype

UTF16 Supported via NVARCHAR2
datatype

Not Supported

NCHAR/NVARCHAR data types Supported Not supported

For additional details:
https://www.postgresql.org/docs/9.6/static/multibyte.html

SHOW client_encoding;

RESET client_encoding;

CREATE TABLE test1 (
 col1 text COLLATE "de_DE",
 col2 text COLLATE "es_ES");

https://www.postgresql.org/docs/9.6/static/multibyte.html

 175

 Migrating from: Oracle Transaction Model
[Back to TOC]

Overview
Database transactions are a logical, atomic units of processing that contains one or more SQL statements and
may run concurrently alongside other transactions. The primary purpose of a transaction is to ensure the
ACID model is enforced, including:

• Atomicity
Every statement in a transaction is processed as one logical unit or none are processed. If a single part
of a transaction fails, the entire transaction is aborted and no changes are persisted (“all or nothing”).

• Consistency

All data integrity constraints are checked and all triggers are processed before a transaction is
processed. If any of the constraint are violated, the entire transaction fails.

• Isolation

One transaction is not affected by the behavior of other concurrently-running transactions. The effect
of a transaction is not visible to other transactions until the transaction is committed.

• Durability

Once a transaction commits, its results will not be lost, regardless of subsequent failures.
After a transaction completes, changes made by committed transactions are permanent. The database
ensures that committed transactions cannot be lost.

Database Transaction Isolation Levels
Four levels of isolation are defined by the ANSI/ISO SQL standard (SQL92). Each level offers a different
approach to handle the concurrent execution of database transactions. Transaction isolation levels are meant
to manage the visibility of the changed data, as seen by other running transactions. In addition, when
accessing the same data with several concurrent transactions, the selected level of transaction isolation
affects the way different transactions interact with each other.

 176

Example
If a bank account is shared by two individuals, what will happen if both parties attempt to perform a
transaction on the shared account at the same time? One checks the account balance while the other
withdraws money.

• Read Uncommitted Isolation Level
A currently processed transaction can see uncommitted data made by the other transaction. If a
rollback is performed, all data is restored to its previous state.

• Read Committed Isolation Level
A currently processed transaction only sees data changes that were committed; “dirty reads”
(uncommitted changes) are not possible.

• Repeatable Read Isolation Level
A currently processed transaction can view changes made by the other transaction only after both
transactions issue a Commit or both are rolled-back.

• Serializable Isolation Level
The strictest isolation level. Any concurrent execution of a set of serializable transactions is guaranteed
to produce the same effect as running them, one at a time, in the same order.

Using different isolation levels will affect the following in terms of database behavior:

• Dirty Reads
A transaction can read data that was written by another transaction, but is not yet committed.

• Non-Repeatable (fuzzy) Reads
When reading the same data several times, a transaction can find that the data has been modified by
another transaction that has just committed. The same query executed twice can return different
values for the same rows.

• Phantom Reads
Similar to a non-repeatable read, but it is related to new data created by another transaction. The
same query executed twice can return a different numbers of records.

 177

Isolation level Dirty read Non-repeatable

read
Phantom read

Read Uncommitted Permitted Permitted Permitted
Read Committed Not permitted Permitted Permitted
Repeatable Read Not permitted Not permitted Permitted
Serializable Not permitted Not permitted Not permitted

Isolation Levels Supported by the Oracle Database
Oracle supports the Read Committed and Serializable isolation levels. Oracle also provides a Read-Only
isolation level which is not a part of the ANSI/ISO SQL standard (SQL92). Read Committed is the default
isolation level in the Oracle Database.

• Read Committed
Default transaction isolation level in the Oracle database. Each query, executed inside a transaction,
only sees data that was committed before the query itself. The Oracle database will never allow
reading “dirty pages” and uncommitted data.

• Serializable
Serializable transactions do not experience non-repeatable reads or phantom reads because they are
only able to “see” changes that were committed at the time the transaction began, in addition to the
changes made by the transaction itself performing DML operations.

• Read-Only
As implemented, the read-only isolation level does not allow any DML operations during the
transaction and only sees data committed at the time the transaction began.

Oracle Multiversion Concurrency Control (MVCC)
Oracle uses the MVCC mechanism to provide automatic read consistency across the entire database and all
sessions. Using MVCC, database sessions “see” data based on a single point in time, ensuring that only
committed changes is viewable. Oracle relies on using the SCN (System Change Number) of the current
transaction to obtain a consistent view of the database. Therefore, every database query only returns data
which was committed with respect to the SCN that is taken at the time of query execution.

 178

Setting Isolation Levels in Oracle
Oracle database isolation levels can be altered. The isolation level can be changed at the transaction-level and
at the session-level.

Example
Altering the isolation-level at the transaction-level:

Altering the isolation-level at a session-level:

For additional details:
http://docs.oracle.com/cd/E25054_01/server.1111/e25789/transact.htm
https://docs.oracle.com/database/121/CNCPT/transact.htm#CNCPT041

SQL> SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SQL> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SQL> SET TRANSACTION READ ONLY;

SQL> ALTER SESSION SET ISOLATION_LEVEL = SERIALIZABLE;
SQL> ALTER SESSION SET ISOLATION_LEVEL = READ COMMITTED;

http://docs.oracle.com/cd/E25054_01/server.1111/e25789/transact.htm
https://docs.oracle.com/database/121/CNCPT/transact.htm#CNCPT041

 179

 Migration to: PostgreSQL Transaction Model
[Back to TOC]

Overview
The same ANSI/ISO SQL (SQL92) isolation levels apply to PostgreSQL, with several similarities and some
differences:

Isolation Level Dirty Reads Non-Repeatable
Reads

Phantom Reads

Read Uncommitted Permitted but
not implemented
in PostgreSQL

Permitted Permitted

Read Committed Not permitted Permitted Permitted
Repeatable Read Not permitted Not permitted Permitted but not

implemented in
PostgreSQL

Serializable Not permitted Not permitted Not permitted

PostgreSQL technically supports the use of any of the above four transaction isolation levels, but only three
can practically be used. The Read-Uncommitted isolation level serves as Read-Committed.

The way the Repeatable-Read isolation-level is implemented does not allow for phantom reads, which is
similar to the Serializable isolation-level. The primary difference between Repeatable-Read and Serializable is
that Serializable guarantees that the result of concurrent transactions will be precisely the same as if they
were executed serially, which is not always true for Repeatable-Reads.

Isolation Levels Supported by PostgreSQL
PostgreSQL supports the Read-Committed, Repeatable-Reads, and Serializable isolation levels. Read-
Committed is the default isolation level (similar to the default isolation level in the Oracle database).

• Read-Committed
The default PostgreSQL transaction isolation level. Preventing sessions from “seeing” data from
concurrent transactions until it is committed. Dirty reads are not permitted.

• Repeatable-Read
Queries can only see rows committed before the first query or DML statement was executed in the
transaction.

 180

• Serializable

Provides the strictest transaction isolation level. The Serializable isolation level assures that the result
of the concurrent transactions will be the same as if they were executed serially. This is not always the
case for the Repeatable-Read isolation level.

Multiversion Concurrency Control (MVCC)
PostgreSQL implements a similar MVCC mechanism when compared to Oracle. In PostgreSQL, the MVCC
mechanism allows transactions to work with a consistent snapshot of data ignoring changes made by other
transactions which have not yet committed or rolled back. Each transaction “sees” a snapshot of accessed
data accurate to its execution start time, regardless of what other transactions are doing concurrently.

Setting Isolation Levels in Aurora PostgreSQL
Isolation levels can be configured at several levels:

• Session level.
• Transaction level.
• Instance level using Aurora “Parameter Groups”.

Example
Configure the isolation level for a specific transaction:

 Configure the isolation level for a specific session:

View the current isolation level:

Modifying instance-level parameters for Aurora PostgreSQL is done using “Parameter Groups”. For example
altering the default_transaction_isolation parameter using the AWS Console or the AWS CLI.

For additional details:
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

PostgreSQL Transaction Synopsis

Comparing Transaction Isolation Levels Between Oracle and PostgreSQL:

Demo=> SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
Demo=> SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Demo=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Demo=> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;
Demo=> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Demo=> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Demo=> SELECT CURRENT_SETTING('TRANSACTION_ISOLATION'); -- Session
Demo=> SHOW DEFAULT_TRANSACTION_ISOLATION; -- Instance

SET TRANSACTION transaction_mode [...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [...]

where transaction_mode is one of:

ISOLATION LEVEL {
SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED
}

READ WRITE | READ ONLY [NOT] DEFERRABLE

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

 181

Database Feature Oracle PostgreSQL Comments
AutoCommit Off On Can be set to

OFF
MVCC Yes Yes
Default Isolation Level Read Committed Read Committed
Supported Isolation Levels Serializable

Read-only
Repeatable Reads
Serializable
Read-only

Configure Session Isolation Levels Yes Yes
Configure Transaction Isolation Levels Yes Yes
Nested Transaction Support Yes No

Consider using
SAVEPOINT
instead

Support for Transaction SAVEPOINTs Yes Yes

 182

Example
Read-Committed Isolation Level

TX1 TX2 Comment
select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

Same results returned from
both sessions

begin;
update employees set
salary=27000 where
employee_id=100;

begin;
set transaction isolation
level read committed;

TX1 starts a transaction;
performs an update.
TX2 starts a transaction
with read-committed
isolation level

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 27000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

TX1 will “see” the modified
results (27000.00) while
TX2 “sees” the original data
(24000.00)

 update employees set
salary=29000 where
employee_id=100;

Waits as TX2 is blocked by
TX1

Commit; TX1 issues a commit, and
the lock is released

 Commit; TX2 issues a commit
select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 29000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 29000.00

Both queries return the
value - 29000.00

 183

Example
Serializable Isolation Level

TX1 TX2 Comment
select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

Same results returned from
both sessions

begin;
update employees set
salary=27000 where
employee_id=100;

begin;
set transaction isolation
level serializable;

TX1 starts a transaction;
performs an update.
TX2 starts a transaction
with isolation level of read
committed

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 27000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 24000.00

TX1 will “see” the modified
results (27000.00) while
TX2 “sees” the original data
(24000.00)

 update employees set
salary=29000 where
employee_id=100;

Waits as TX2 is blocked by
TX1

Commit; TX1 issues a commit, and
the lock is released

 ERROR: could not serialize
access due to concurrent
update

TX2 received an error
message

 Commit;

ROLLBACK

TX2 trying to issue a
commit but receives a
rollback message, the
transaction failed due to
the serializable isolation
level

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 27000.00

select employee_id, salary
from EMPLOYEES
where employee_id=100;

employee_id | salary
------------+----------
 100 | 27000.00

Both queries will return the
data updated according to
TX1

For additional details:
https://www.postgresql.org/docs/9.6/static/tutorial-transactions.html
https://www.postgresql.org/docs/9.6/static/transaction-iso.html
https://www.postgresql.org/docs/9.6/static/sql-set-transaction.htm

https://www.postgresql.org/docs/9.6/static/tutorial-transactions.html
https://www.postgresql.org/docs/9.6/static/transaction-iso.html
https://www.postgresql.org/docs/9.6/static/sql-set-transaction.htm

 184

 Migrating from: Oracle Materialized Views
[Back to TOC]

Overview
Oracle Materialized Views (also known as MViews) are table segments where the contents are periodically
refreshed based on the results of a stored query. Oracle Materialized Views are defined with a specific user-
supplied query and can be manually or automatically refreshed based on user-supplied configuration. A
Materialized View will run its associated query and store the results as a table segment.

Oracle Materialized Views are especially useful for:

• Replication of data across multiple databases.
• Data warehouse use-cases.
• Performance enhancements by persistently storing the results of complex queries, as database tables.

Like ordinary views, Materialized Views are created with a SELECT query. The FROM clause of the MView
query can reference other tables, views, and other Materialized Views. The source objects the Mview uses as
data sources are also called “master tables” (replication terminology) or “detail tables” (data warehouse
terminology).

Examples

1. Create a simple Materialized View named mv1 which executes a simple SELECT statement on the

employees table:

2. Create a more complex Materialized View using a Database Link (remote) to obtain data from a table

located in a remote database. This Materialized View also contains a subquery. The FOR UPDATE clause
enables the Materialized View to be updated.

Immediate vs. Deferred Refresh
When creating Materialized Views, the BUILD IMMEDIATE option can be specified to instruct Oracle to
immediately update the contents of the Materialized View by running the underlying query. This is different
from the deferred update where the Materialized View is populated only on the first requested refresh.

CREATE MATERIALIZED VIEW mv1 AS SELECT * FROM hr.employees;

CREATE MATERIALIZED VIEW foreign_customers FOR UPDATE
 AS SELECT * FROM sh.customers@remote cu
 WHERE EXISTS (SELECT * FROM sh.countries@remote co
 WHERE co.country_id = cu.country_id);

 185

Fast and Complete Refresh

1. REFRESH FAST – incremental data refresh. Only updates rows that have changed since the last refresh
of the Materialized View instead of performing a complete refresh. This type of refresh fails if Materialized
View Logs have not been created.

2. COMPLETE - the table segment used by the Materialized View is truncated (data is cleared) and
repopulated entirely by running the associated query.

Materialized View Logs
When creating Materialized Views, a Materialized View Log can be used to instruct Oracle to store any
changes performed by DML commands on the “master tables” that are used to refresh the Materialized View
thus providing faster Materialized View refreshes. Without Materialized View Logs, Oracle must re-execute
the query associated with the Materialized View each time (also known as a “complete refresh”). This process
is slower compared with using Materialized View Logs.

Materialized View Refresh Strategy
1. ON COMMIT – refreshes the Materialized View upon any commit made on the underlying associated

tables.
2. ON DEMAND – the refresh is initiated via a scheduled task or manually by the user.

Example
1. Create a Materialized View on two source tables – times and products. This approach enables FAST

refresh of the Materialized View instead of the slower COMPLETE refresh.
2. Create a new Materialized View named sales_mv which will be refreshed inclemently (REFRESH

FAST) each time changes in data are detected (ON COMMIT) on one, or more, of the tables associated
with the Materialized View query.

For additional details:
https://docs.oracle.com/database/121/DWHSG/basicmv.htm
https://docs.oracle.com/database/121/REPLN/repmview.htm#REPLN003

CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID, SEQUENCE (time_id, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON products
 WITH ROWID, SEQUENCE (prod_id)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sales_mv
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS SELECT t.calendar_year, p.prod_id,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

https://docs.oracle.com/database/121/DWHSG/basicmv.htm
https://docs.oracle.com/database/121/REPLN/repmview.htm#REPLN003

 186

 Migration to: PostgreSQL Materialized Views
[Back to TOC]

Overview
PostgreSQL supports Materialized Views with associated queries similar to the Oracle implementation. The
query associated with the Materialized View is executed and used to populate the Materialized View at the
time the REFRESH command is issued. The PostgreSQL implementation of Materialized Views has three
primary limitations when compared to Oracle Materialized Views:

1. PostgreSQL Materialized Views may be refreshed either manually or using a job running the REFRESH
MATERIALIZED VIEW command. Automatic refresh of Materialized Views require the creation of a
trigger.

2. PostgreSQL Materialized Views only support complete (full) refresh.

3. DML on Materialized Views is not supported.

Examples

1. Create a materialized view named sales_summary using the sales table as the source for the

Materialized View:

2. Execute a manual refresh of the Materialized View:

Note: The Materialized View data will not be refreshed automatically if changes occur to its underlying tables.
For automatic refresh of materialized view data, a trigger on the underlying tables must be created.

Creating a Materialized View
When you create a Materialized View in PostgreSQL, it uses a regular database table underneath. You can
create database indexes on the Materialized View directly and improve performance of queries that access
the Materialized View.

CREATE MATERIALIZED VIEW sales_summary AS
 SELECT
 seller_no,
 sale_date,
 sum(sale_amt)::numeric(10,2) as sales_amt
 FROM sales
 WHERE sale_date < CURRENT_DATE
 GROUP BY
 seller_no,
 sale_date
 ORDER BY
 seller_no,
 sale_date;

REFRESH MATERIALIZED VIEW sales summary;

 187

Example
Create an index on the sellerno and sale_date columns of the sales_summary Materialized View.

Oracle vs. PostgreSQL Materialized Views

 ORACLE PostgreSQL
Create
Materialized
View

CREATE MATERIALIZED VIEW mv1
AS SELECT * FROM employees;

CREATE MATERIALIZED VIEW
mv1
AS SELECT * FROM
employees;

Manual refresh
of a Materialized
View

DBMS_MVIEW.REFRESH('mv1',
'cf');
The--cf parameter configured the
refresh method: c is complete and f is
fast

REFRESH MATERIALIZED VIEW
mv1;

Online refresh of
a Materialized
View

CREATE MATERIALIZED VIEW mv1
REFRESH FAST ON COMMIT AS
SELECT * FROM employees;

Create a trigger that will initiate a
refresh after every DML command on
the underlying tables:

CREATE OR REPLACE FUNCTION
refresh_mv1()
returns trigger language
plpgsql
as $$
begin
 refresh materialized view
mv1;
 return null;
end $$;

create trigger refresh_ mv1
after insert or update or
delete or truncate
on employees for each
statement
execute procedure
refresh_mv1();

Automatic
incremental
refresh of a
Materialized
View

CREATE MATERIALIZED VIEW LOG ON
employees…
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW mv1
REFRESH FAST AS SELECT * FROM
employees;

Not Supported

DML on
Materialized
View data

Supported Not Supported

For additional information on PostgreSQL materialized views:
https://www.postgresql.org/docs/current/static/rules-materializedviews.htm

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, sale_date);

https://www.postgresql.org/docs/current/static/rules-materializedviews.html

 188

 Migrating from: Oracle Triggers
[Back to TOC]

Overview
A trigger in Oracle is a “named program” written in PL/SQL that is stored in the database and fired (or
executed) when a specified event occurs. The associated event that causes a trigger to execute can either be
tied to a specific database table, database view, database schema, or the database itself.

Triggers can be executed after:

• Data Manipulation Language (DML) statements (DELETE, INSERT, or UPDATE).
• Data Definition Language (DDL) statements (CREATE, ALTER, or DROP).
• Certain database events and operations (SERVERERROR, LOGON, LOGOFF, STARTUP,

or SHUTDOWN).

Oracle trigger types:

1. DML Trigger – can be created on Tables or Views. The trigger fires when one of the following events
occur on the object on which the trigger was created: inserting data, updating data, and deleting data.

a. Triggers can be fired before or after a DML command occurred.

2. INSTED OF Trigger – a special type of DML trigger that is created on a non-editable view. INSTEAD OF
triggers provide an application-transparent method to modify views that cannot be modified via DML
statements.

3. SYSTEM Event Triggers – these are defined at the database level or schema level. These include
triggers that fire after specific events:

a. User logon and logoff.
b. Database events (startup/shutdown), DataGuard events, server errors.

Examples
1. Create a trigger that is executed after a row is deleted from the PROJECTS table or if the primary key of a

project is updated:

SQL> CREATE OR REPLACE TRIGGER PROJECTS_SET_NULL
 AFTER DELETE OR UPDATE OF PROJECTNO ON PROJECTS
 FOR EACH ROW
 BEGIN

 IF UPDATING AND :OLD.PROJECTNO != :NEW.PROJECTNO OR DELETING THEN
 UPDATE EMP SET EMP.PROJECTNO = NULL
 WHERE EMP.PROJECTNO = :OLD.PROJECTNO;
 END IF;
 END;
/

Trigger created.

SQL> DELETE FROM PROJECTS WHERE PROJECTNO=123;
SQL> SELECT PROJECTNO FROM EMP WHERE PROJECTNO=123;

PROJECTNO

NULL

 189

2. Create a SYSTEM/Schema trigger on a table. The trigger fires if a DDL DROP command is executed for an object in the
HR schema and prevents dropping of the object while raising an application error.

For additional details:
https://docs.oracle.com/database/121/LNPLS/create_trigger.htm#LNPLS01374

SQL> CREATE OR REPLACE TRIGGER PREVENT_DROP_TRIGGER
 BEFORE DROP ON HR.SCHEMA
 BEGIN

RAISE_APPLICATION_ERROR (
 num => -20000,
 msg => 'Cannot drop object');
 END;
/

Trigger created.

SQL> DROP TABLE HR.EMP

ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-20000: Cannot drop object
ORA-06512: at line 2

https://docs.oracle.com/database/121/LNPLS/create_trigger.htm#LNPLS01374

 190

 Migration to: PostgreSQL Trigger Procedure
[Back to TOC]

Overview
PostgreSQL triggers can be associated with a specific table, view, or foreign table and will invoke execution of
a function when a certain events occur. DML triggers in PostgreSQL share much of the functionality that exists
in Oracle triggers.

1. DML triggers (triggers that fire based on table related events such as DML).
2. Event triggers (triggers that fire after certain database events such as running DDL commands).

Unlike Oracle triggers, PostgreSQL triggers must call a function and do not support anonymous blocks of
PL/pgSQL code as part of the trigger body. The user-supplied function is declared with no arguments and has a
return type of trigger.

PostgreSQL DML Triggers

1. PostgreSQL triggers can run BEFORE or AFTER a DML operation.
a. Fire before the operation is attempted on a row.

i. Before constraints are checked and the INSERT, UPDATE, or DELETE is attempted.
ii. If the trigger fires before or instead of the event, the trigger can skip the operation for

the current row or change the row being inserted (for INSERT and UPDATE operations
only).

b. After the operation was completed, after constraints are checked and the INSERT, UPDATE,
or DELETE command completed.

i. If the trigger fires after the event, all changes, including the effects of other triggers, are
"visible" to the trigger.

2. PostgreSQL triggers can run INSTEAD OF a DML command when created on views.
3. PostgreSQL triggers can run FOR EACH ROW affected by the DML statement or FOR EACH STATEMENT

running only once as part of a DML statement.

When Fired Database Event Row-Level Trigger
(FOR EACH ROW)

Statement-Level Trigger
(FOR EACH STATEMENT)

BEFORE INSERT, UPDATE,
DELETE

Tables and foreign tables Tables, views, and foreign tables

TRUNCATE — Tables
AFTER INSERT, UPDATE,

DELETE
Tables and foreign tables Tables, views, and foreign tables

TRUNCATE — Tables
INSTEAD OF INSERT, UPDATE,

DELETE
Views —

TRUNCATE — —

 191

PostgreSQL Event Triggers
An event trigger executes when a specific event that is associated with the trigger occurs in the database.
Supported events include: ddl_command_start, ddl_command_end, table_rewrite and
sql_drop.

1. ddl_command_start - occurs before the execution of a CREATE, ALTER, DROP, SECURITY
LABEL, COMMENT, GRANT, REVOKE or SELECT INTO command.

2. ddl_command_end – occurs after the command completed and before the transaction commits.
3. sql_drop – fired only for the DROP DDL command. Fires before ddl_command_end trigger fire.

Full list of supported PostgreSQL event trigger types:
https://www.postgresql.org/docs/9.6/static/event-trigger-matrix.html

Example
Create a DML trigger:
1. In order to create an equivalent version of the Oracle DML trigger in PostgreSQL, first create a function

trigger which will store the execution logic for the trigger:

2. Create the trigger itself:

psql=> CREATE OR REPLACE FUNCTION PROJECTS_SET_NULL()
 RETURNS TRIGGER
 AS $$
 BEGIN

IF TG_OP = 'UPDATE' AND OLD.PROJECTNO != NEW.PROJECTNO OR
 TG_OP = 'DELETE' THEN

UPDATE EMP
 SET PROJECTNO = NULL
 WHERE EMP.PROJECTNO = OLD.PROJECTNO;
 END IF;

 IF TG_OP = 'UPDATE' THEN RETURN NULL;
 ELSIF TG_OP = 'DELETE' THEN RETURN NULL;
 END IF;

 END; $$
 LANGUAGE PLPGSQL;

CREATE FUNCTION

psql=> CREATE TRIGGER TRG_PROJECTS_SET_NULL
 AFTER UPDATE OF PROJECTNO OR DELETE
 ON PROJECTS
 FOR EACH ROW
 EXECUTE PROCEDURE PROJECTS_SET_NULL();

CREATE TRIGGER

https://www.postgresql.org/docs/9.6/static/event-trigger-matrix.html

 192

3. Test the trigger by deleting a row from the PROJECTS table:

Example
Create a DDL trigger:
1. In order to create an equivalent version of the Oracle DDL System/Schema level triggers, such as a trigger

that prevent running a DDL DROP on objects in the HR schema: first create an event trigger function.
Note that trigger functions are created with no arguments and must have a return type of TRIGGER or
EVENT_TRIGGER:

2. Create the event trigger, which will fire before the start of a DDL DROP command:

3. Test the trigger by attempting to drop the EMPLOYEES table:

For additional details:
https://www.postgresql.org/docs/9.6/static/plpgsql-trigger.html

psql=> DELETE FROM PROJECTS WHERE PROJECTNO=123;
psql=> SELECT PROJECTNO FROM EMP WHERE PROJECTNO=123;

 projectno

(0 rows)

psql=> CREATE OR REPLACE FUNCTION ABORT_DROP_COMMAND()
 RETURNS EVENT_TRIGGER
 AS $$

 BEGIN
 RAISE EXCEPTION 'The % Command is Disabled', tg_tag;

 END; $$
 LANGUAGE PLPGSQL;

CREATE FUNCTION

psql=> CREATE EVENT TRIGGER trg_abort_drop_command
 ON DDL_COMMAND_START
 WHEN TAG IN ('DROP TABLE', 'DROP VIEW', 'DROP FUNCTION', 'DROP
 SEQUENCE', 'DROP MATERIALIZED VIEW', 'DROP TYPE')
 EXECUTE PROCEDURE abort_drop_command();

psql=> DROP TABLE EMPLOYEES;

ERROR: The DROP TABLE Command is Disabled
CONTEXT: PL/pgSQL function abort_drop_command() line 3 at RAISE

https://www.postgresql.org/docs/9.6/static/plpgsql-trigger.html

 193

Oracle vs. PostgreSQL Triggers Comparison

 Oracle PostgreSQL
“Before update” trigger,
row level

CREATE OR REPLACE TRIGGER
check_update
 BEFORE UPDATE ON projects
 FOR EACH ROW
BEGIN
/*Trigger body*/
END;
/

CREATE TRIGGER check_update
 BEFORE UPDATE ON
employees
 FOR EACH ROW
 EXECUTE PROCEDURE
myproc();

“Before update” trigger,
statement level

CREATE OR REPLACE TRIGGER
check_update
 BEFORE UPDATE ON projects
BEGIN
/*Trigger body*/
END;
/

CREATE TRIGGER check_update
 BEFORE UPDATE ON
employees
 FOR EACH STATEMENT
 EXECUTE PROCEDURE
myproc();

System / event trigger CREATE OR REPLACE TRIGGER
drop_trigger
 BEFORE DROP ON hr.SCHEMA
 BEGIN
 RAISE_APPLICATION_ERROR (
 num => -20000,
 msg => 'Cannot drop
object');
 END;
/

CREATE EVENT TRIGGER
trg_drops
 ON ddl_command_start
 EXECUTE PROCEDURE
trg_drops();

Referencing :old and :new
values in triggers

Use ":NEW" and ":OLD" in trigger body:

CREATE OR REPLACE TRIGGER
UpperNewDeleteOld
BEFORE INSERT OR UPDATE OF
first_name ON employees
FOR EACH ROW
BEGIN
 :NEW.first_name :=
UPPER(:NEW.first_name);

 :NEW.salary := :OLD.salary;
END;
/

Use ".NEW" and ".OLD" in trigger
Procedure body:

CREATE OR REPLACE FUNCTION
log_ emp_name_upd()
 RETURNS trigger
 LANGUAGE plpgsql
 AS $$
BEGIN
 IF NEW.last_name <>
OLD.last_name THEN
 INSERT INTO
employee_audit
(employee_id,last_name,chan
ged_on)
VALUES(OLD.id,OLD.last_name
,now());
 END IF;
RETURN NEW;
END;
$$

CREATE TRIGGER
last_name_change_trg
BEFORE UPDATE
ON employees
FOR EACH ROW
EXECUTE PROCEDURE
log_last_emp_name_upd();

Database event
level trigger

CREATE TRIGGER
register_shutdown
 ON DATABASE
 SHUTDOWN
 BEGIN
 Insert into logging values
(‘DB was

N/A

 194

 Oracle PostgreSQL

shutdown’, sysdate);
 commit;
 END;
/

Drop a trigger DROP TRIGGER
last_name_change_trg
;

DROP TRIGGER
last_name_change_trg
on employees;

Modify logic executed by a
trigger

Can be used with create or replace

CREATE OR REPLACE TRIGGER
UpperNewDeleteOld
BEFORE INSERT OR UPDATE OF
first_name ON employees
FOR EACH ROW
BEGIN
 <<NEW CONTENT>>
END;
/

Use CREATE OR REPLACE on the
called function in the trigger (trigger stay
the same)

CREATE or replace FUNCTION
UpperNewDeleteOld() RETURNS
trigger AS
$UpperNewDeleteOld$
BEGIN
<<NEW CONTENT>>
END;
$UpperNewDeleteOld$
LANGUAGE plpgsql;

Enable a trigger ALTER TRIGGER
UpperNewDeleteOld ENABLE;

alter table employees
enable trigger
UpperNewDeleteOld;

Disable a trigger ALTER TRIGGER
UpperNewDeleteOld DISABLE;

alter table employees
disable trigger
UpperNewDeleteOld;

 195

 Migrating from: Oracle Views
[Back to TOC]

Overview
Database Views store a named SQL query in the Oracle Data Dictionary with a predefined structure. A view
does not store actual data and may be considered as a “virtual table” or a “logical table” and is based on the
data from one or more “physical” database tables.

Oracle view main privileges as a prerequisite for Creation

• A user must have the CREATE VIEW privilege to create a view in their own schema.
• A user must have the CREATE ANY VIEW privilege to create a view in any schema.
• The owner of a view must have all the necessary privileges on the source tables or views on which the

view is based (SELECT or DML privileges).

Oracle views CREATE (OR REPLACE) statements
• CREATE VIEW to create a new view.
• CREATE OR REPLACE to overwrite an existing view and change the view definition without having

to manually drop and re-create the original view and without deleting the previously granted
privileges.

Example:

Oracle common view parameters

Oracle View Parameter Description PostgreSQL
Compatible

CREATE OR
REPLACE

Re-create an existing view (if one exists) or create a new
view. Yes

FORCE Create the view regardless the existence of the source tables
or views and regardless to view privileges. No

VISIBLE |
INVISIBLE

Specify if a column based on the view will be visible or
invisible.

No

WITH READ ONLY Disable DML commands. No

WITH CHECK
OPTION

Specifies the level of enforcement when performing DML
commands on the view Yes

CREATE VIEW "HR"."EMP_DETAILS_VIEW"…

CREATE OR REPLACE VIEW "HR"."EMP_DETAILS_VIEW"…

 196

Running DML Commands On views
Views are classified as follows:

• Simple View
A view having a single source table with no aggregate functions.
DML operations can be performed on simple views and affect the base table(s).

Example: Simple view + update operation

• Complex View
A view with several source tables or views containing joins, aggregate (group) functions, or an order
by clause. Performing DML operations on complex views cannot be done directly, but INSTEAD OF
triggers can be used as a workaround.

Example: Complex view + update operation

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_8004.htm#SQLRF01504
https://docs.oracle.com/database/121/SQLRF/statements_8004.htm

SQL> CREATE OR REPLACE VIEW VW_EMP
 AS
 SELECT EMPLOYEE_ID, LAST_NAME, EMAIL, SALARY
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID BETWEEN 100 AND 130;

 UPDATE VW_EMP
 SET EMAIL=EMAIL||'.org'
 WHERE EMPLOYEE_ID=110;

 1 rows updated.

SQL> CREATE OR REPLACE VIEW VW_DEP
 AS
 SELECT B.DEPARTMENT_NAME, COUNT(A.EMPLOYEE_ID) AS CNT
 FROM EMPLOYEES A JOIN DEPARTMENTS B USING(DEPARTMENT_ID)
 GROUP BY B.DEPARTMENT_NAME;

 UPDATE VW_DEP
 SET CNT=CNT +1
 WHERE DEPARTMENT_NAME=90;

ORA-01732: data manipulation operation not legal on this view

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_8004.htm#SQLRF01504
https://docs.oracle.com/database/121/SQLRF/statements_8004.htm

 197

 Migration to: PostgreSQL Views
[Back to TOC]

Overview
PostgreSQL views share functionality with Oracle views. Creating a view defines a stored query based on one
or more physical database tables which executes every time the view is accessed.

PostgreSQL View Synopsis

PostgreSQL View Privileges
A Role or user must be granted SELECT and DML privileges on the bases tables or views in order to create a
view.

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-grant.html

PostgreSQL View Parameters

• CREATE [OR REPLACE] VIEW
Similar to the Oracle syntax. Note that when re-creating an existing view, the new view must have the
same column structure as generated by the original view (column names, column order and data
types). As such, it is sometimes preferable to drop the view and use the CREATE VIEW statement
instead.

 * The IF EXISTS parameter is optional

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(
column_name [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

hr=# CREATE [OR REPLACE] VIEW VW_NAME AS
 SELECT COLUMNS
 FROM TABLE(s)
 [WHERE CONDITIONS];

hr=# DROP VIEW [IF EXISTS] VW_NAME;

https://www.postgresql.org/docs/9.6/static/sql-grant.html

 198

• WITH [CASCADED | LOCAL] CHECK OPTION

DML INSERT and UPDATE operations are verified against the view based tables to ensure that new
rows satisfy the original structure conditions or the view-defining condition. If a conflict is detected,
the DML operation fails.

CHECK OPTION

o LOCAL - Verifies against the view without a hierarchical check.
o CASCADED - Verifies all underlying base views using a hierarchical check.

• Executing DML Commands On views

PostgreSQL simple views are automatically updatable. Unlike Oracle views, no restrictions exist when
performing DML operations against views. An updatable view may contain a combination of
updatable and non-updatable columns. A column is updatable if it references an updatable column of
the underlying base table. If not, the column is read-only and an error is raised if an INSERT or
UPDATE statement is attempted on the column.

Example 1
Creating and updating a view without the CHECK OPTION parameter:

Example 2
Creating and updating a view with the LOCAL CHECK OPTION parameter:

For additional details:
https://www.postgresql.org/docs/9.6/static/tutorial-views.html
https://www.postgresql.org/docs/9.6/static/sql-createview.html

hr=# CREATE OR REPLACE VIEW VW_DEP AS
 SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
 FROM DEPARTMENTS
 WHERE LOCATION_ID=1700;

view VW_DEP created.

hr=# UPDATE VW_DEP
 SET LOCATION_ID=1600;

21 rows updated.

hr=# CREATE OR REPLACE VIEW VW_DEP AS
 SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
 FROM DEPARTMENTS
 WHERE LOCATION_ID=1700
 WITH LOCAL CHECK OPTION;

view VW_DEP created.

hr=# UPDATE VW_DEP
 SET LOCATION_ID=1600;

SQL Error: ERROR: new row violates check option for view "vw dep"

https://www.postgresql.org/docs/9.6/static/sql-createview.html

 199

 Migrating from: Oracle Sequences
[Back to TOC]

Overview
Sequences are database objects that serve as a unique identity value generators, such as for automatically
generating primary key values. Oracle treats sequences as independent objects and the same sequence can
generate values for multiple tables.

Sequences can be configured with multiple parameters which control their value-generating behavior. For
example, the INCREMENT BY sequence parameter defines the interval between each generated sequence
value. If more than one database user is generating incremented values from the same sequence, each user
may encounter gaps in the generated values that are visible to them.

Oracle Sequence Options
By default, the initial and increment values for a sequence are both 1, with no upper limit.

• INCREMENT BY
Controls the sequence interval value of the increment or decrement (if a negative value is specified). If
the INCREMENT BY parameter is not specified during sequence creation, the value is set to 1. The
increment cannot be assigned a value of 0.

• START WITH
Defines the initial value of a sequence. The default value is 1.

• MAXVALUE | NOMAXVALUE
Allows controlling the maximum limit for values generated by a sequence. Must be equal or greater
than the START WITH parameter and must be greater in value than the MINVALUE parameter. The
default for NOMAXVALUE is 1027 for an ascending sequence.

• MINVALUE | NOMINVALUE
Allows controlling the minimum limit for values generated by a sequence. Must be less than or equal
to the START WITH parameter and must be less than the MAXVALUE parameter. The default for
NOMINVALUE is -1026 for a descending sequence.

• CYCLE | NOCYCLE
Instructs a sequence to continue generating values despite reaching the maximum value or the
minimum value. If the sequence reaches one of the defined ascending limits, it generates a new value
according to the minimum value. If it reaches a descending limit, it generates a new value according to
the maximum value. NOCYCLE is the default.

 200

• CACHE | NOCACHE

The CACHE parameter enables controlling the number of sequence values to keep cached in memory
for improved performance. CACHE has a minimum value of “2”.

Using the NOCACHE parameter will cause a sequence not to cache any values in memory. Specifying
neither CACHE or NOCACHE will cache 20 values to memory. In the event of a database failure, all
cached sequence values that have not been used, will be lost and gaps in sequence values may occur.

Example
Creating a sequence:

Dropping a sequence:

Viewing sequences created for the current schema/user:

Using sequence as part of an INSERT INTO statement:

Query the current value of a sequence:

Manually increment the value of a sequence, according to the INCREMENT BY specification:

SQL> CREATE SEQUENCE SEQ_EMP
 START WITH 100
 INCREMENT BY 1
 MAXVALUE 99999999999
 CACHE 20
 NOCYCLE;

SQL> SELECT * FROM USER_SEQUENCES;

SQL> DROP SEQUENCE SEQ_EMP;

SQL> CREATE TABLE EMP_SEQ_TST (
 COL1 NUMBER PRIMARY KEY,
 COL2 VARCHAR2(30));

SQL> INSERT INTO EMP_SEQ_TST VALUES(SEQ_EMP.NEXTVAL, 'A');

 COL1 COL2
---------- ------------------------------
 100 A

SQL> SELECT SEQ_EMP.CURRVAL FROM DUAL;

SQL> SELECT SEQ_EMP.NEXTVAL FROM DUAL;

 201

Altering an existing sequence:

Oracle 12c Default Values Using Sequences
Starting with Oracle 12c, you can assign a sequence to a table column with the CREATE TABLE statement
and specify the NEXTVAL configuration of the sequence during table creation.

Example
Generating DEFAULT values using sequences in Oracle 12c:

Oracle 12c Session Sequences (Session/Global)
Starting with Oracle 12c, sequences can be created as session-level or global-level sequences. By adding the
SESSION parameter to CREATE SEQUENCE, the sequence will be created as a session-level sequence.
Optionally, the GLOBAL keyword can be used to create a sequence as a global sequence to provide consistent
results across sessions in the database. Global sequences are the default. Session sequences return a unique
range of sequence numbers only within a session.

Example
Oracle 12c SESSION and GLOBAL sequences:

Oracle 12c Identity Columns
Sequences can be used as an IDENTITY type, which automatically creates a sequence and associates it with
the table column. The main difference is that there is no need to create a sequence manually; the IDENTITY
type does that for you. An IDENTITY type is a sequence that can be configured.

Example
Oracle 12c Identity Columns:
Inserting records using an Oracle 12c IDENTITY column explicitly/implicitly:

SQL> ALTER SEQUENCE SEQ_EMP MAXVALUE 1000000;

SQL> CREATE TABLE SEQ_TST (
 COL1 NUMBER DEFAULT SEQ_1.NEXTVAL PRIMARY KEY,
 COL2 VARCHAR(30));

SQL> INSERT INTO SEQ_TST(COL2) VALUES('A');

SQL> SELECT * FROM SEQ_TST;

 COL1 COL2
---------- ------------------------------
 100 A

SQL> CREATE SEQUENCE SESSION_SEQ SESSION;
SQL> CREATE SEQUENCE SESSION_SEQ GLOBAL;

SQL> INSERT INTO IDENTITY_TST(COL2) VALUES('A');
SQL> INSERT INTO IDENTITY_TST(COL1, COL2) VALUES(DEFAULT, 'B');
SQL> INSERT INTO IDENTITY_TST(col1, col2) VALUES(NULL, 'C');

SQL> SELECT * FROM IDENTITY_TST;
 COL1 COL2
---------- ------------------------------
 120 A
 130 B

 202

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_6015.htm#SQLRF01314
https://docs.oracle.com/database/121/SQLRF/statements_6017.htm#SQLRF01314
http://www.oracle.com/technetwork/issue-archive/2013/13-sep/o53asktom-1999186.html

https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_6015.htm#SQLRF01314
https://docs.oracle.com/database/121/SQLRF/statements_6017.htm#SQLRF01314
http://www.oracle.com/technetwork/issue-archive/2013/13-sep/o53asktom-1999186.html

 203

 Migration to: PostgreSQL Sequences
[Back to TOC]

Overview
The PostgreSQL CREATE SEQUENCE command is mostly compatible with the Oracle CREATE SEQUENCE
command. Sequences in PostgreSQL serve the same purpose as in Oracle; they generate numeric identifiers
automatically. A sequence object is owned by the user that created it.

PostgreSQL Sequence Synopsis

Most Oracle CREATE SEQUENCE parameters are compatible with PostgreSQL. Similar to Oracle 12c, in
PostgreSQL you can create a sequence and use it directly as part of a CREATE TABLE statement.

Sequence Parameters

• TEMPORARY or TEMP
PostgreSQL can create a temporary sequence within a session. Once the session ends, the sequence is
automatically dropped.

• IF NOT EXISTS
Creates a sequence even if a sequence with an identical name already exists. Replaces the existing
sequence.

• INCREMENT BY
Optional parameter with a default value of 1. Positive values generate sequence values in ascending
order. Negative values generate sequence values in descending sequence.

• START WITH
The same as Oracle. This is an optional parameter having a default of 1. It uses the MINVALUE for
ascending sequences and the MAXVALUE for descending sequences.

• MAXVALUE | NO MAXVALUE
Defaults are between 263 for ascending sequences and -1 for descending sequences.

• MINVALUE | NO MINVALUE
Defaults are between 1 for ascending sequences and -263 for descending sequences.

CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name
[INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]

 204

• CYCLE | NO CYCLE
If the sequence value reaches MAXVALUE or MINVALUE, the CYCLE parameter instructs the
sequence to return to the initial value (MINVALUE or MAXVALUE). The default is NO CYCLE.

• CACHE
Note that in PostgreSQL, the NOCACHE is not supported. By default, when not specifying the CACHE
parameter, no sequence values will be pre-cached into memory, which is equivalent to the Oracle
NOCACHE parameter. The minimum value is 1.

• OWNED BY | OWNBY NON
Specifies that the sequence object is to be associated with a specific column in a table, which is not
supported by Oracle. When dropping this type of sequence, an error will be returned because of the
sequence/table association.

Example
Create a sequence:

* Identical to Oracle syntax, except for the whitespace in the NO CYCLE parameter.

Drop a sequence:

View sequences created in the current schema and sequence specifications:

Use a PostgreSQL sequence as part of a CREATE TABLE and an INSERT statement:

demo=> SELECT * FROM INFORMATION_SCHEMA.SEQUENCES;
OR
demo=> \ds

demo=> CREATE SEQUENCE SEQ_1
 START WITH 100
 INCREMENT BY 1
 MAXVALUE 99999999999
 CACHE 20
 NO CYCLE;

demo=> DROP SEQUENCE SEQ_1;

demo=> CREATE TABLE SEQ_TST (
 COL1 NUMERIC DEFAULT NEXTVAL('SEQ_1') PRIMARY KEY,
 COL2 VARCHAR(30));

demo=> INSERT INTO SEQ_TST (COL2) VALUES('A');

demo=> SELECT * FROM SEQ_TST;

 col1 | col2
------+------
 100 | A

 205

Use the OWNED BY parameter to associate the sequence with a table:

Query the current value of a sequence:

Manually increment a sequence value according to the INCREMENT BY value:

Alter an existing sequence:

Generating Sequence by SERIAL Type
PostgreSQL enables you to create a sequence that is similar to the AUTO_INCREMENT property supported by
identity columns in Oracle 12c. When creating a new table, the sequence is created through the SERIAL
pseudo-type. Other types from the same family are SMALLSERIAL and BIGSERIAL.

By assigning a SERIAL type to a column on table creation, PostgreSQL creates a sequence using the default
configuration and adds a NOT NULL constraint to the column. The newly created sequence behaves as a
regular sequence.

Example
Using a SERIAL Sequence:

demo=> SELECT NEXTVAL('SEQ_1');
OR
demo=> SELECT SETVAL('SEQ_1', 200);

demo=> SELECT CURRVAL('SEQ_1);

demo=> ALTER SEQUENCE SEQ_1 MAXVALUE 1000000;

demo=> CREATE SEQUENCE SEQ_1
 START WITH 100
 INCREMENT BY 1
 OWNED BY SEQ_TST.COL1;

demo=> CREATE TABLE SERIAL_SEQ_TST(
 COL1 SERIAL PRIMARY KEY,
 COL2 VARCHAR(10));

demo=> INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');

demo=> SELECT * FROM SERIAL_SEQ_TST;

 col1 | col2
------+------
 1 | A

demo=> \ds

 Schema | Name | Type | Owner
--------+-------------------------+----------+-------
 public | serial_seq_tst_col1_seq | sequence | pg_tst_db

 206

Oracle Sequences vs. PostgreSQL Sequences:

Parameter/Feature Compatibility with
PostgreSQL

Comments

Create sequence syntax Full, with minor differences See Exceptions
INCREMENT BY Full
START WITH Full
MAXVALUE |
NOMAXVALUE

Full Use “NO MAXVALUE”

MINVALUE |
NOMINVALUE

Full Use “NO MINVALUE”

CYCLE | NOCYCLE Full USE “NO CYCLE”
CACHE | NOCACHE PostgreSQL does not support

the NOCACHE parameter but
the default behavior is
identical. The CACHE
parameter is compatible with
Oracle.

Default values using sequences
(Oracle 12c)

Supported by PostgreSQL CREATE TABLE TBL(
COL1 NUMERIC
DEFAULT
NEXTVAL('SEQ_1')…

Session sequences (session /
global), Oracle 12c

Supported by PostgreSQL by
using the TEMPORARY
sequence parameter to Oracle
SESSION sequence

Oracle 12c identity columns Supported by PostgreSQL by
using the SERIAL data type
as sequence

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createsequence.html
https://www.postgresql.org/docs/9.6/static/functions-sequence.html
https://www.postgresql.org/docs/9.6/static/datatype-numeric.html

https://www.postgresql.org/docs/9.6/static/sql-createsequence.html
https://www.postgresql.org/docs/9.6/static/functions-sequence.html
https://www.postgresql.org/docs/9.6/static/datatype-numeric.html

 207

 Migrating from: Oracle Database Links
[Back to TOC]

Overview
Database Links are schema objects that are used to interact with remote database objects such as tables.
Common use cases for database links include selecting data from tables that reside in a remote database.

Note: To use database links, Oracle net services must be installed on both the local and remote database
servers to facilitate communications.

Example:

1. Create a database link named remote_db. When creating a database link, you have the option to
either specify the remote database destination using a TNS Entry or specify the full TNS Connection
string.

2. After the database link is created, you can use the database link directly as part of a SQL query using
the database link name (@remote_db) as a postfix to the table name.

3. Database links also support DML commands:

For additional details:
https://docs.oracle.com/database/121/SQLRF/statements_5006.htm#SQLRF01205

CREATE DATABASE LINK remote_db
 CONNECT TO username IDENTIFIED BY password
 USING 'remote';

CREATE DATABASE LINK remotenoTNS
 CONNECT TO username IDENTIFIED BY password
 USING '(DESCRIPTION=(ADDRESS_LIST=(ADDRESS = (PROTOCOL = TCP)(HOST
=192.168.1.1)(PORT = 1521)))(CONNECT_DATA =(SERVICE_NAME = orcl)))';

SELECT * FROM employees@remote_db;

INSERT INTO employees@remote_db
 (employee_id, last_name, email, hire_date, job_id)
 VALUES (999, 'Claus', 'sclaus@example.com', SYSDATE, 'SH_CLERK');

UPDATE jobs@remote_db SET min_salary = 3000
 WHERE job_id = 'SH_CLERK';

DELETE FROM employees@remote_db
 WHERE employee_id = 999;

https://docs.oracle.com/database/121/SQLRF/statements_5006.htm#SQLRF01205

 208

 Migration to: PostgreSQL DBLink and FDWrapper
[Back to TOC]

Overview
Querying data in remote databases in PostgreSQL is available via two primary options:

1. dblink database link function.
2. postgresql_fdw (Foreign Data Wrapper, FDW) extension.

The Postgres foreign data wrapper extension is new to PostgreSQL and offers functionality that is similar to
dblink. However, the Postgres foreign data wrapper aligns closer with the SQL standard and can provide
improved performance.

Example using the dblink function

1. Load the dblink extension into PostgreSQL:

2. Create a persistent connection to a remote PostgreSQL database using the dblink_connect function

specifying a connection name (myconn), database name (postgresql), port (5432), host
(hostname), user (username) and password (password).

The connection can be used to execute queries against the remote database.

3. Execute a query using the previously created connection (myconn) via the dblink function.
The query returns the id and name columns from the employees table. On the remote database, you
must specify the connection name and the SQL query to execute as well as parameters and datatypes for
selected columns (id and name in this example).

4. Close the connection using the dblink_disconnect function.

CREATE EXTENSION dblink;

SELECT dblink_connect('myconn', 'dbname=postgres port=5432
 host=hostname user=username password=password');

SELECT *
from dblink('myconn', 'SELECT id, name FROM EMPLOYEES')
 AS p(id int,fullname text);

SELECT dblink_disconnect('myconn');

 209

5. Alternatively, you can use the dblink function specifying the full connection string to the remote

PostgreSQL database, including: database name, port, hostname, username, and password. This can be
done instead of using a previously defined connection. You must also specify the SQL query to execute as
well as parameters and datatypes for the selected columns (id and name, in this example).

6. DML commands are supported on tables referenced via the dblink function. For example, you can insert

a new row and then delete it from the remote table.

7. Create a new local table (new_employees_table) by querying data from a remote table.

8. Join remote data with local data.

9. Execute DDL statements in the remote database.

For additional details:
https://www.postgresql.org/docs/9.6/static/dblink.html

SELECT *
from dblink('dbname=postgres port=5432
 host=hostname user=username password=password',
 'SELECT id, name FROM EMPLOYEES')
 AS p(id int,fullname text);

SELECT * FROM dblink('myconn',$$INSERT into employees VALUES (3,'New
Employees No. 3!')$$) AS t(message text);

SELECT * FROM dblink('myconn',$$DELETE FROM employees WHERE id=3$$) AS
t(message text);

SELECT emps.* INTO new_employees_table FROM dblink('myconn','SELECT *
FROM employees') AS emps(id int, name varchar);

SELECT local_emps.id , local_emps.name, s.sale_year, s.sale_amount,
FROM local_emps INNER JOIN dblink('myconn','SELECT * FROM
working_hours') AS s(id int, hours_worked int) ON
local_emps.id = s.id;

SELECT * FROM dblink('myconn',$$CREATE table new_remote_tbl
 (a int, b text)$$) AS t(a text);

https://www.postgresql.org/docs/9.6/static/dblink.html

 210

Example using the PostgreSQL Foreign Data Wrapper

1. Load the fdw Extension into PostgreSQL.

2. Create a connection to the remote PostgreSQL database specifying the remote server (hostname),
database name (postgresql) and the port (5432).

3. Create the user mapping, specifying:

o The local_user is a user with permissions in the current database.
o Specify the server connection created in the previous command (remote_db).
o The user and password arguments specified in the options clause must have the

required permissions in the remote database.

After the connection with login credentials for the remote database was created, we can either import
individual tables or the entire schema containing all, or some, of the tables and views.

4. Create a FOREIGN TABLE named foreign_emp_tbl using the remote_db remote connection
created earlier specifying both the schema name and table name in the remote database to be
queried. For example, the hr.employees table.

5. Queries running on the local foreign_emp_tbl table will actually query data directly from the
remote hr.employees table.

6. You can also “import” an entire schema, or specific tables, without specifying a specific table name:

CREATE EXTENSION postgres_fdw;

CREATE SERVER remote_db
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'hostname', dbname 'postgresql', port '5432');

CREATE USER MAPPING FOR local_user
SERVER remote_db
OPTIONS (user 'remote_user', password 'remote_password');

CREATE FOREIGN TABLE foreign_emp_tbl (
 id int, name text)
 SERVER remote_db
 OPTIONS (schema_name 'hr', table_name 'employees');

SELECT * FROM foreign_emp_tbl;

IMPORT FOREIGN SCHEMA hr LIMIT TO (employees)
 FROM SERVER remote_db INTO local_hr;

 211

Notes:
1. Both dblink and FDW store the remote database username and password as plain-text, in two

locations:
a. The pg_user_mapping view, accessible only to “super users” in the database.
b. When using the dblink function, passwords can be stored in your code or procedures inside

the database.

2. Any changes to PostgreSQL user passwords require changing the FDW/dblink specifications as well.

3. When using FDW, if columns in the remote tables have been dropped or renamed, the queries will fail.
The FDW tables must be re-created.

For additional details:
https://www.postgresql.org/docs/current/static/postgres-fdw.html

Oracle Database Links vs. PostgreSQL DBLink

Description Oracle PostgreSQL DBlink
Create a permanent
“named” database
link

CREATE DATABASE LINK
remote
 CONNECT TO username
IDENTIFIED BY password
 USING 'remote';

Not Supported.

You have to manually open the
connection to the remote database in
your sessions / queries:

SELECT
dblink_connect('myconn',
'dbname=postgres
port=5432

host=hostname
user=username
password=password');

Query using a
database link

SELECT * FROM
employees@remote;

SELECT * FROM
dblink('myconn','SELECT *
FROM employees') AS p(id
int,fullname text,
address text);

DML using
database link

INSERT INTO
employees@remote
 (employee_id,
last_name, email,
hire_date, job_id)
 VALUES (999, 'Claus',
'sclaus@example.com',
SYSDATE, 'SH_CLERK');

SELECT * FROM
dblink('myconn',$$INSERT
into employees VALUES
(45,'Dan','South side
7432, NY')$$) AS t(id
int, name text, address
text);

Heterogeneous
database link
connections, such
as Oracle to

Supported.

create extension
oracle_fdw not supported by
Amazon RDS.

https://www.postgresql.org/docs/current/static/postgres-fdw.html

 212

Description Oracle PostgreSQL DBlink
PostgreSQL or vice-
versa
Run DDL via a
database link

Not supported directly, but you can
run a procedure or create a job on
the remote database and executes
the desired DDL commands.

dbms_job@remote.submit(
l_job, 'execute immediate
''create table t (x int
)''');
commit;

SELECT * FROM
dblink('myconn',$$CREATE
table my_remote_tbl
(a int, b text)$$) AS t(a
text);

Delete a database
link

drop database link
remote;

Not supported.
Close the DBLink connection instead.

SELECT
dblink_disconnect('myconn
');

PostgreSQL DBLink vs. FDW

Description PostgreSQL DBlink PostgreSQL FDW
Create a permanent
reference to a
remote table using
a database link

Not supported After creating:

- DFW Server definition.
- User Mapping.
- Run:

CREATE FOREIGN TABLE
foreign_emp_tbl (id int,
name text, address text
)
SERVER foreign_server
OPTIONS (schema_name
'hr', table_name
'employees');

Query remote data SELECT * FROM
dblink('myconn','SELECT *
FROM employees') AS p(id
int,fullname text,
address text);

SELECT * FROM
foreign_emp_tbl;

DML on remote data SELECT * FROM
dblink('myconn',$$INSERT
into employees VALUES
(45,'Dan','South side
7432, NY')$$) AS t(id
int, name text, address
text);

INSERT into
foreign_emp_tb VALUES
(45,'Dan','South side
7432, NY');

(Regular DML)

Run DDL on remote
objects

SELECT * FROM
dblink('myconn',$$CREATE
table my_remote_tbl

Not Supported

 213

(a int, b text)$$) AS t(a
text);

 214

 Migrating from: Oracle Inline Views
[Back to TOC]

Overview
Inline views refer to a SELECT statement located in the FROM clause of secondary (or more) SELECT
statement. Inline views can help make complex queries simpler by removing compound calculations or
eliminating join operations while condensing several separate queries into a single simplified query.

Example
Inline View in the Oracle database:

The SQL statement marked in red represents the inline view code. In our example above, the query will return
each employee matched to their salary and department id. In addition, the query will return the average
salary for each department, using the inline view column - SAL_AVG.

Migration to: PostgreSQL Inline Views

Overview
PostgreSQL semantics may refer to inline views as “Subselect” or as “Subquery”. In either case, the
functionality is the same. Running the Oracle inline view example above, as is, will result in an error: “ERROR:
subquery in FROM must have an alias”. This is because Oracle supports omitting aliases for the inner statement
while in PostgreSQL the use of aliases is mandatory. “B” will be used as an alias in the example provided
below.

Mandatory aliases are the only major difference when migrating Oracle inline views to PostgreSQL.

Example

SELECT A.LAST_NAME, A.SALARY, A.DEPARTMENT_ID, B.SAL_AVG
 FROM EMPLOYEES A,
 (SELECT DEPARTMENT_ID, ROUND(AVG(SALARY)) AS SAL_AVG
 FROM EMPLOYEES
 GROUP BY DEPARTMENT_ID)
WHERE A.DEPARTMENT_ID = B.DEPARTMENT_ID;

SELECT A.LAST_NAME, A.SALARY, A.DEPARTMENT_ID, B.SAL_AVG
 FROM EMPLOYEES A,
 (SELECT DEPARTMENT_ID, ROUND(AVG(SALARY)) AS SAL_AVG
 FROM EMPLOYEES
 GROUP BY DEPARTMENT_ID) B
WHERE A.DEPARTMENT_ID = B.DEPARTMENT_ID;

 215

Migrating from: Oracle Database Hints
[Back to TOC]

Overview
Oracle provides users with the ability to influence how the query optimizer behaves and the decisions made to
generate query execution plans. Controlling the behavior of a database optimizer is done via the use of special
“Database Hints”. These can be defined as a directive operation to the optimizer and as such, alter the
decisions on how execution plans are generated.

The Oracle Database supports over 60 different database hints and each database hint can receive 0 or more
arguments. Database hints are divided into different categories such as optimizer hints, join order hints,
parallel execution hints, etc.

Note: Database hints are embedded directly into the SQL queries immediately following the SELECT keyword
using the following format: /* <DB_HINT> */

Example

1. Force the Query Optimizer to use a specific index for data access using a database hint embedded into the

query:

For additional details:
http://docs.oracle.com/cd/E25178_01/server.1111/e16638/hintsref.htm#CHDIDIDI
https://docs.oracle.com/database/121/TGSQL/tgsql_influence.htm#TGSQL246

SQL> SELECT /* INDEX(EMP, IDX_EMP_HIRE_DATE)*/ * FROM EMPLOYEES EMP
 WHERE HIRE_DATE >= '01-JAN-2010';

Execution Plan
--
Plan hash value: 3035503638

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
|
--
| 0 | SELECT STATEMENT | | 1 | 62 | 2 (0)| 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 1 | 62 | 2 (0)| 00:00:01
|* 2 | INDEX RANGE SCAN | IDX_HIRE_DATE | 1 | | 1 (0)| 00:00:01
--

Predicate Information (identified by operation id):

 2 - access("HIRE_DATE">=TO_DATE(' 2010-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

http://docs.oracle.com/cd/E25178_01/server.1111/e16638/hintsref.htm#CHDIDIDI
https://docs.oracle.com/database/121/TGSQL/tgsql_influence.htm#TGSQL246

 216

 Migration to: PostgreSQL DB Query Planning
[Back to TOC]

Overview
PostgreSQL does not support “database hints” to influence the behavior of the query planner and we cannot
influence how execution plans are generated from within SQL queries. Although database hints are not
directly supported, session parameters (also known as “Query Planning Parameters”) can influence the
behavior of the query optimizer at a session level.

Example

1. Set the query planner to use indexes instead of full table scans (disable SEQSCAN):

2. Sets the query planner’s estimated “cost” of a disk page fetch that is part of a series of sequential fetches

(SEQ_PAGE_COST) and set the planner's estimate of the cost of a non-sequentially-fetched disk page
(RANDOM_PAGE_COST). Reducing the value of RANDOM_PAGE_COST relative to SEQ_PAGE_COST
will cause the query planner to prefer index scans, while raising the value will make index scans more
“expensive”.

3. Enables or disables the query planner's use of nested-loops when performing joins. While it is impossible

to completely disable the usage of nested-loop joins, setting the ENABLE_NESTLOOP to an OFF value
discourages the query planner from choosing nested-loop joins compared to alternative join methods.

For additional details:
https://www.postgresql.org/docs/9.6/static/runtime-config-query.html

psql=> SET ENABLE_SEQSCAN=FALSE;

psql=> SET SEQ_PAGE_COST to 4;
psql=> SET RANDOM PAGE COST to 1;

psql=> SET ENABLE_NESTLOOP to FALSE;

https://www.postgresql.org/docs/9.6/static/runtime-config-query.html

 217

 Migrating from: Oracle Recovery Manager (RMAN)
[Back to TOC]

Overview
RMAN, or Oracle Recovery Manager, is Oracle’s primary backup and recovery tool. RMAN provides its own
scripting syntax, which can be used to take full or incremental backups of your Oracle database.

1. Full RMAN backup – you can take a full backup of an entire database or individual Oracle data files. For

example, a level 0 full backup.
2. Differential incremental RMAN backup – performs a backup of all database blocks that have changed

from the previous level 0 or 1 backup.
3. Cumulative incremental RMAN backup – perform a backup all of the blocks that have changed from the

previous level 0 backup.

Notes
• RMAN supports online backups of your Oracle database if your database has been configured to run in

Archived Log Mode.
• RMAN is used to take backups of the following files:

o Database data files.
o Database control file.
o Database parameter file.
o Database Archived Redo Logs.

Examples

1. Connect using the RMAN CLI to the Oracle database you wish to back-up:

2. Perform a full backup of the database and the database archived redo logs:

3. Perform an incremental level 0 or level 1 backup of the database:

export ORACLE_SID=ORCL
rman target=/

BACKUP DATABASE PLUS ARCHIVELOG;

BACKUP INCREMENTAL LEVEL 0 DATABASE;
BACKUP INCREMENTAL LEVEL 1 DATABASE;

 218

4. Restore the database using RMAN:

5. Restore a specific pluggable database (Oracle 12c):

6. Restore a database to a specific point in time:

7. Report (list) on all current database backups created via RMAN:

For additional details:
https://docs.oracle.com/database/121/BRADV/toc.htm

RUN {
 SHUTDOWN IMMEDIATE;
 STARTUP MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
 ALTER DATABASE OPEN;
}

RUN {
 SHUTDOWN IMMEDIATE;
 STARTUP MOUNT;
 SET UNTIL TIME "TO_DATE('20-SEP-2017 21:30:00','DD-MON-YYYY
HH24:MI:SS')";
 RESTORE DATABASE;
 RECOVER DATABASE;
 ALTER DATABASE OPEN RESETLOGS;
}

RUN {
 ALTER PLUGGABLE DATABASE pdbA, pdbB CLOSE;
 RESTORE PLUGGABLE DATABASE pdbA, pdbB;
 RECOVER PLUGGABLE DATABASE pdbA, pdbB;
 ALTER PLUGGABLE DATABASE pdbA, pdbB OPEN;
}

LIST BACKUP OF DATABASE;

https://docs.oracle.com/database/121/BRADV/toc.htm

 219

 Migration to: Amazon Aurora Snapshots
[Back to TOC]

Overview
The primary backup mechanism for Amazon Aurora is using snapshots. Taking a snapshot is an extremely fast
and non-intrusive operation for your database. Both taking snapshots and restoring your database from a
snapshot can be done using the Amazon RDS Management Console or using the AWS CLI. Unlike RMAN, there
is no need for incremental backups. You can choose to restore your database to the exact time when a
snapshot was taken, or to any other point in time.

• Automated backups. Always enabled on Amazon Aurora. Backups do not impact database performance.
• Manual backups. You can create a snapshot at any given time. There is no performance impact when

taking snapshots of your Aurora database. Restoring data from snapshots requires you to create a new
instance. Up to 100 manual snapshots are supported per database.

Example:

Enable Aurora automatic backups and configure the backup retention window as part of the database creation
process. Doing this is equivalent to setting the Oracle RMAN backup retention policy (using the “configure
retention policy to recovery window of X days” command).

1. Go to the Amazon RDS page in your AWS Management Console:

2. Click Instances

 220

3. Select Launch DB Instance.

 221

4. Select the Aurora PostgreSQL-compatible database engine.

5. Configure your database settings and parameters.

6. On the next page, you can configure a backup retention policy for your Aurora database,
defined as the number of days for Amazon RDS to automatically to retain your snapshots:

 222

Example:

Perform a manual snapshot backup of your Aurora database, equivalent to creating a full Oracle RMAN
backup (“BACKUP DATABASE PLUS ARCHIVELOG”).

1. Go to the Amazon RDS page in your AWS Management Console:

2. Click Instances.

Region Default Backup Window
US West (Oregon) Region 06:00–14:00 UTC
US West (N. California) Region 06:00–14:00 UTC
US East (Ohio) Region 03:00–11:00 UTC
US East (N. Virginia) Region 03:00–11:00 UTC
Asia Pacific (Mumbai) Region 16:30–00:30 UTC
Asia Pacific (Seoul) Region 13:00–21:00 UTC
Asia Pacific (Singapore) Region 14:00–22:00 UTC
Asia Pacific (Sydney) Region 12:00–20:00 UTC
Asia Pacific (Tokyo) Region 13:00–21:00 UTC
Canada (Central) Region 06:29–14:29 UTC
EU (Frankfurt) Region 20:00–04:00 UTC
EU (Ireland) Region 22:00–06:00 UTC
EU (London) Region 06:00–14:00 UTC
South America (São Paulo) Region 23:00–07:00 UTC
AWS GovCloud (US) 03:00–11:00 UTC

 223

3. Select your Aurora PostgreSQL instance, click Instance actions and select Take snaphot:

Example

Restore an Aurora database from a snapshot. Similar to Oracle RMAN “RESTORE DATABASE” and
“RECOVER DATABASE” commands. However, note that instead of running in-place, restoring an
Amazon Aurora database will create a new cluster.

1. Navigate to the Amazon RDS page in your AWS Management Console:

2. Click on the Snapshots link on the left-hand menu to see the list of snapshots you have available

across your database instances.

 224

3. Select Snapshots.

4. Select the snapshot to restore.

5. Click Snapshot Actions on the context menu and select Restore snapshot.

Note: This creates a new instance.

6. You will be presented with a wizard for creating your new Aurora database instance from the
selected snapshot. Fill the required configuration options and click Restore DB Instance.

 225

Example

Restore an Aurora PostgreSQL database backup to a specific previous point in time, similar to running
an Oracle RMAN “SET UNTIL TIME "TO_DATE('XXX')" command, before running RMAN
RESTORE DATABASE and RECOVER DATABASE.

1. Navigate to the Amazon RDS page in your AWS Management Console.

 226

2. Click Instances.

3. Select your Aurora instance and click Instance Actions.

4. Select Restore to Point in Time on the context menu.

5. This process will launch a new instance. Select the date and time to which you want to restore your
database. The selected date and time must be within the configured backup retention for this
instance.

 227

Example

Modify your Aurora backup retention policy after a database was already created. You need to
configure how long your Aurora database backups should be stored. When restoring an Aurora
database to a previous point in time, the selected time must be within the configured backup retention
window.

1. Navigate to the Amazon RDS page in your AWS Management Console.

2. Click Instances.

 228

3. Select your Aurora instance, click Instance Actions.

4. Select Modify from the menu.

5. Configure the desired backup retention policy (maximum retention allowed is up to 35 days).

 229

Using the AWS CLI for Amazon Aurora backup and restore operations

In addition to using the AWS web console user-interface to backup and restore your Aurora instance to
a previous point in time or using a specific snapshot, you can also use the AWS CLI to perform the same
actions. This is especially useful in case you need to convert your existing automated Oracle RMAN
scripts to an Amazon Aurora environment.

Examples

1. Use describe-db-cluster-snapshots to view all current Aurora PostgreSQL snapshots.
2. Use create-db-cluster-snapshot to create a snapshot (“Restore Point”).
3. Use restore-db-cluster-from-snapshot to restore a new cluster from an existing database

snapshot.
4. Use create-db-instance to add new instances to the restored cluster.

5. Use restore-db-instance-to-point-in-time to perform point-in-time recovery.

aws rds describe-db-cluster-snapshots

aws rds create-db-cluster-snapshot --db-cluster-snapshot-iden
tifier Snapshot_name --db-cluster-identifier Cluster_Name

aws rds restore-db-cluster-from-snapshot --db-cluster-identifier
NewCluster --snapshot-identifier SnapshotToRestore --engine aurora-
postgresql

aws rds create-db-instance --region us-east-1 --db-subnet-group default -
-engine aurora-postgresql --db-cluster-identifier NewCluster --db-
instance-identifier newinstance-nodeA --db-instance-class db.r4.large

aws rds restore-db-cluster-to-point-in-time --db-cluster-identifier
clustername-restore --source-db-cluster-identifier clustername --restore-
to-time 2017-09-19T23:45:00.000Z

aws rds create-db-instance --region us-east-1 --db-subnet-group default -
-engine aurora-postgresql --db-cluster-identifier clustername-restore --
db-instance-identifier newinstance-nodeA --db-instance-class db.r4.large

 230

Oracle RMAN vs. Aurora snapshot backups

Description Oracle Amazon Aurora
Scheduled backups Create DBMS_SCHEDULER job that

will execute your RMAN script on a
scheduled basis.

Automatic

Manual full database
backups

BACKUP DATABASE PLUS
ARCHIVELOG;

Use Amazon RDS dashboard or the AWS CLI
command to take a snapshot on the cluster:

aws rds create-db-cluster-
snapshot --db-cluster-snapshot-
identifier Snapshot_name --db-
cluster-identifier Cluster_Name

Restore database RUN {
 SHUTDOWN IMMEDIATE;
 STARTUP MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
 ALTER DATABASE OPEN;
}

Create new cluster from a cluster snapshot:

aws rds restore-db-cluster-
from-snapshot --db-cluster-
identifier NewCluster --
snapshot-identifier
SnapshotToRestore --engine
aurora-postgresql

Add a new instance to the new/restored
cluster:

aws rds create-db-instance --
region us-east-1 --db-subnet-
group default --engine aurora-
postgresql --db-cluster-
identifier clustername-restore
--db-instance-identifier
newinstance-nodeA --db-
instance-class db.r4.large

Incremental
differential

BACKUP INCREMENTAL LEVEL 0
DATABASE;
BACKUP INCREMENTAL LEVEL 1
DATABASE;

N/A

Incremental
cumulative

BACKUP INCREMENTAL LEVEL 0
CUMULATIVE DATABASE;
BACKUP INCREMENTAL LEVEL 1
CUMULATIVE DATABASE;

N/A

Restore database to a
specific point-in-time

RUN {
 SHUTDOWN IMMEDIATE;
 STARTUP MOUNT;
 SET UNTIL TIME
"TO_DATE('19-SEP-2017
23:45:00','DD-MON-YYYY
HH24:MI:SS')";
 RESTORE DATABASE;
 RECOVER DATABASE;
 ALTER DATABASE OPEN
RESETLOGS;
}

Create new cluster from a cluster snapshot by
given custom time to restore:

aws rds restore-db-cluster-to-
point-in-time --db-cluster-
identifier clustername-restore
--source-db-cluster-identifier
clustername --restore-to-time
2017-09-19T23:45:00.000Z

Add a new instance to the new/restored
cluster:

 231

Description Oracle Amazon Aurora
aws rds create-db-instance --
region us-east-1 --db-subnet-
group default --engine aurora-
postgresql --db-cluster-
identifier clustername-restore
--db-instance-identifier
newinstance-nodeA --db-
instance-class db.r4.large

Backup database
Archive logs

BACKUP ARCHIVELOG ALL; N/A

Delete old database
Archive logs

CROSSCHECK BACKUP;
DELETE EXPIRED BACKUP;

N/A

Restore a single
Pluggable database
(12c)

RUN {
 ALTER PLUGGABLE DATABASE
pdb1, pdb2 CLOSE;
 RESTORE PLUGGABLE
DATABASE pdb1, pdb2;
 RECOVER PLUGGABLE
DATABASE pdb1, pdb2;
 ALTER PLUGGABLE DATABASE
pdb1, pdb2 OPEN;
}

Create new cluster from a cluster snapshot:

aws rds restore-db-cluster-
from-snapshot --db-cluster-
identifier NewCluster --
snapshot-identifier
SnapshotToRestore --engine
aurora-postgresql

Add a new instance to the new/restored
cluster:

aws rds create-db-instance --
region us-east-1 --db-subnet-
group default --engine aurora-
postgresql --db-cluster-
identifier clustername-restore
--db-instance-identifier
newinstance-nodeA --db-
instance-class db.r4.large

Use pg_dump and pg_restore to copy the
database to the original instance:

pgdump -F c -h
hostname.rds.amazonaws.com -U
username -d hr -p 5432 >
c:\Export\hr.dmp

pg_restore -h
restoredhostname.rds.amazonaws.
com -U hr -d hr_restore -p 5432
c:\Export\hr.dmp

Optionally, replace with the old database using
ALTER DATABASE RENAME

For additional details:
http://docs.aws.amazon.com/cli/latest/reference/rds/index.html#cli-aws-rds
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html

http://docs.aws.amazon.com/cli/latest/reference/rds/index.html#cli-aws-rds
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html

 232

 Migrating from: Oracle 12c PDBs & CDB
[Back to TOC]

Overview
Oracle 12c introduces a new multitenant architecture which provides the ability to create additional
independent “pluggable” databases under a single Oracle instance. Prior to Oracle 12c, a single Oracle
database instance only supported running single Oracle database, as shown in the picture below.

The Pre-12c Oracle Database Architecture

Oracle 12c introduces a new multi-container database, or CDB, that supports one or more “Pluggable
Databases”, or PDBs. The CDB can be thought of as a single “superset” database with multiple pluggable
database. The relationship between The Oracle instance and databases is now 1:N.

The Multitenant Oracle 12c Database Architecture

 233

Advantages of the Oracle 12c multitenant architecture
• PDBs can be used to isolate applications from one another.
• PDBs can be used as portable collection of schemas.
• PDBs can cloned and transported to different CDBs/Oracle instances.
• Management of many databases (individual PDBs) as a whole.
• Separate security, users, permissions, and resource management per PDB provides greater

application isolation.
• Enables a consolidated database model of many individual applications sharing a single Oracle

server.
• Provide an easier way to patch and upgrade individual clients and/or applications, using PDBs.
• Backups are supported at both a multitenant container-level as well as at an individual PDB-

level (both for physical and logical backups).

The Oracle multitenant architecture
- A multitenant Container Database (CDB) can support one or more “pluggable databases” (PDBs).
- Each pluggable database contains its own copy of SYSTEM and application tablespaces.
- The PDBs will share the Oracle Instance memory and background processes. The use of PDBs

enables consolidation of many databases and applications into individual containers under the
same Oracle instance.

- A single “Root Container” (or CDB$ROOT) exists in a CDB and contains the Oracle Instance Redo
Logs, undo tablespace (unless Oracle 12.2 local undo mode is enabled) and control files.

- A single Seed PDB exists in a CDB and used as a template for creating new PDBs.

The Oracle Multitenant Oracle 12c Database Architecture

 234

CDB & PDB Semantics
• CDB (Container Database)

- A “Super” database that contains the Root Container – cdb$root (one per instance) and
one or more Pluggable Databases (with user-provided naming).

- Created as part of the Oracle 12c software installation.
- Contains the Oracle control files, its own set of system tablespaces, the instance undo

tablespaces (unless Oracle 12.2 local undo mode is enabled), and the instance redo logs.
- Holds the data dictionary for the root container and for all of the PDBs.

• PDB (Pluggable Database)

- Independent database that exists under a CDB. Also known as a “container”.
- Used to store application-specific data.
- Can be created from a the pdb$seed (template database) or as a clone of an existing PDB
- Stores metadata information specific to its own objects (data-dictionary)
- Has its own set of application and system data files and tablespaces along with temporary

files to manage objects.

Examples

1. List existing PDBs created in an Oracle CDB instance:

2. Provisioning of a new PDB from the template seed$pdb:

3. Alter a specific PDB to READ/WRITE and verify:

SQL> SHOW PDBS;

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 PDB1 READ WRITE NO

SQL> CREATE PLUGGABLE DATABASE PDB2 admin USER ora_admin IDENTIFIED BY
 ora_admin FILE_NAME_CONVERT=('/pdbseed/','/pdb2/');

SQL> ALTER PLUGGABLE DATABASE PDB2 OPEN READ WRITE;

SQL> show PDBS;

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 PDB1 READ WRITE NO
 4 PDB2 READ WRITE NO

 235

4. Clone a PDB from an existing PDB:

For additional details:
http://docs.oracle.com/database/122/CNCPT/overview-of-the-multitenant-architecture.htm#CNCPT89250
http://docs.oracle.com/database/122/ADMIN/managing-a-multitenant-environment.htm#ADMIN13506

SQL> CREATE PLUGGABLE DATABASE PDB3 FROM PDB2 FILE_NAME_CONVERT=
 ('/pdb2/','/pdb3/');

SQL> SHOW PDBS;
 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 PDB1 READ WRITE NO
 4 PDB2 READ WRITE NO
 5 PDB3 MOUNTED

http://docs.oracle.com/database/122/CNCPT/overview-of-the-multitenant-architecture.htm#CNCPT89250
http://docs.oracle.com/database/122/ADMIN/managing-a-multitenant-environment.htm#ADMIN13506

 236

 Migration to: PostgreSQL Databases
[Back to TOC]

Overview
Amazon Aurora PostgreSQL offers a different and simplified architecture to manage and create a
multitenant database environment. Using Aurora PostgreSQL, it is possible to provide levels of
functionality similar (but not identical) to those offered by Oracle PDBs by creating multiple databases
under the same Aurora PostgreSQL cluster and/or using separate Aurora clusters, when total isolation
of workloads is required.

- Multiple PostgreSQL databases can be created under a single Amazon Aurora PostgreSQL
Cluster.

- Each Amazon Aurora cluster contains a primary instance that can accept both reads and
writes for all cluster databases.

- Up to 15 read-only nodes can be created which provide both scale-out functionality for
application reads as well as for high availability proposes.

Amazon Aurora Database Cluster with Primary (Master) an Read replicas.

In theory, an Oracle CDB/Instance can be considered as the high-level equivalent to an Amazon Aurora
cluster, and an Oracle Pluggable Database (PDB) would be equivalent to PostgreSQL database created
inside the Amazon Aurora cluster. Not all features are comparable between Oracle 12c PDBs and
Amazon Aurora.

 237

 Examples

1. Create a new database in PostgreSQL using the CREATE DATABASE statement:

2. List all databases created under an Amazon Aurora PostgreSQL cluster:

Independent database backups in Amazon Aurora PostgreSQL

Oracle 12c provides the ability to perform both logical backups (via DataPump) and physical backups
(via RMAN) at both CDB and PDB levels. Similarly, Amazon Aurora PostgreSQL provides the ability to
perform logical backups on all or a specific database(s) using pg_dump. However, for physical backups
when using snapshots, the entire cluster and all databases are included in the snapshot, backing up a
specific database with in the cluster is not supported.

This is usually not a concern as volume snapshots are extremely fast operations that occur at the
storage-infrastructure layer and thus incur minimal overhead and operate at extremely fast speeds.
However, you the process of restoring a single PostgreSQL database from an Aurora snapshot requires
additional steps, such as exporting the specific database after a snapshot restore and importing it back
to the original Aurora cluster.

psql=> CREATE DATABASE pg_db1;
CREATE DATABASE

psql=> CREATE DATABASE pg_db2;
CREATE DATABASE

psql=> CREATE DATABASE pg_db3;
CREATE DATABASE

psql=> \l

 Name | Owner | Encoding | Collate | Ctype |
-------------+--------------+----------+-------------+-------------+-----

 admindb | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 pg_db1 | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 pg_db2 | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 pg_db3 | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 postgres | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 rdsadmin | rdsadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | rdsadmin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template1 | rds_pg_admin | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 238

Examples

Physical backup: take an Amazon Aurora PostgreSQL snapshot.

1. On the AWS Management Console, navigate to RDS > Instances > Instance Actions and choose

“Take Snapshot”.

Logical backup: Use PostgreSQL pg_dump (installed on your client machine) to create a logical backup
for a specific PostgreSQL database:

For additional information on PostgreSQL databases:
https://www.postgresql.org/docs/current/static/sql-createdatabase.html

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name
 -f dump_file_name.sql

https://www.postgresql.org/docs/current/static/sql-createdatabase.html

 239

 Migrating from: Oracle Tablespaces & Data Files

Overview
The storage structure of an Oracle database contains both physical and logical elements.

Type Description
Tablespaces Each Oracle database contains one or more tablespaces, which are logical

storage groups, that are used as “containers” when creating new tables and
indexes.

Data files Each tablespace is made up of one or more data files, which are the physical
elements that make up an Oracle database tablespace. Datafiles can be located
on the local file system, raw partitions, managed by Oracle ASM or files located
on network file system.

Storage Hierarchy

• Database: each Oracle database is composed from one or more tablespaces.
• Tablespace: each Oracle tablespace is composed from one or more datafiles.

Tablespaces are logical entities that have no physical manifestation on the file system.
• Data files: physical files, located on a file-system. Each Oracle tablespace is made from

one or more data files.
Segments: each represents a single database object that consumes storage, such as
tables, indexes, undo segments etc.

• Extent: each segment is made from one or more extents. Oracle uses extents as a form
of allocating contiguous sets of database blocks on disk.

• Block: the smallest unit of I/O that can be used by a database for reads and writes. In
case of blocks that store table data, each block can store one or more table rows.

Types of Oracle Database Tablespace
• Permanent Tablespaces: designated to store persistent schema objects for your

applications.
• Undo Tablespace : a special type of system permanent tablespace that is used by Oracle

to manage UNDO data when running the database in automatic undo management
mode.

• Temporary Tablespace: contains schema objects that are valid for the duration of a
session. It is also used for spilling sorts that cannot fit into memory.

Tablespace Privileges
In order to create a tablespace:

• The database user must have the CREATE TABLESAPCE system privilege.
• Create a database and the database must be in open mode.

 240

Examples
1. Create the USERS tablespace comprised of a single data file.

Drop a tablespace:

For additional details:
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7003.htm#SQLRF01403
https://docs.oracle.com/database/121/SQLRF/statements_7003.htm#SQLRF01403
https://docs.oracle.com/cd/E11882_01/server.112/e41084/clauses004.htm#SQLRF01602
https://docs.oracle.com/database/121/SQLRF/clauses004.htm#SQLRF01602
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_9004.htm#SQLRF01807
https://docs.oracle.com/database/121/SQLRF/statements_9004.htm#SQLRF01807

 Migration to: PostgreSQL Tablespaces & Data Files
[Back to TOC]

Overview
The logical storage structure in PostgreSQL shares similar concepts as Oracle, utilizing tablespaces for storing
database objects. Tablespaces in PostgreSQL are made from datafiles and are used to store different
databases and database object.

• Tablespace - the directory where datafiles are stored.
• Data files - file-system files that are placed inside a tablespace (directory) and are used to store

database objects such as tables or indexes. Created automatically by PostgreSQL. Similar to
how Oracle-Managed-Files (OMF) behave.

Notes:

• Unlike Oracle, a PostgreSQL tablespace does not have user-configured segmentation into
multiple and separate data files. When you create the tablespace, PostgreSQL automatically
creates the necessary files to store the data.

• Each table and index are stored in a separate O/S file, named after the table or
index's filenode number.

SQL> CREATE TABLESPACE USERS
 DATAFILE '/u01/app/oracle/oradata/orcl/users01.dbf' SIZE 5242880
 AUTOEXTEND ON NEXT 1310720 MAXSIZE 32767M
 LOGGING ONLINE PERMANENT BLOCKSIZE 8192
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE DEFAULT
 NOCOMPRESS SEGMENT SPACE MANAGEMENT AUTO;

SQL> DROP TABLESPACE USERS;
OR
SQL> DROP TABLESPACE USERS INCLUDING CONTENTS AND DATAFILES;

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_7003.htm#SQLRF01403
https://docs.oracle.com/database/121/SQLRF/statements_7003.htm#SQLRF01403
https://docs.oracle.com/cd/E11882_01/server.112/e41084/clauses004.htm#SQLRF01602
https://docs.oracle.com/database/121/SQLRF/clauses004.htm#SQLRF01602
https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_9004.htm#SQLRF01807
https://docs.oracle.com/database/121/SQLRF/statements_9004.htm#SQLRF01807

 241

Tablespaces in Amazon Aurora PostgreSQL
After an Amazon Aurora PostgreSQL cluster is created, two system tablespaces are automatically provisioned
and cannot be modified or dropped:

• pg_global tablespace

- Used for the shared system catalogs.
- Stores objects that are visible to all Cluster databases.

• pg_default tablespace

- The default tablespace of the template1 and template0 databases.
- Serves as the default tablespace for other databases, by default, unless a different

tablespace was explicitly specified during database creation.

One of the main advantages when using Amazon Aurora PostgreSQL is the absence of complexity for
storage management. Therefore, creating tablespaces in Aurora PostgreSQL is simplified and has several
advantages over a “vanilla” PostgreSQL database deployment:

• When creating tablespaces, the superuser can specify an OS path (location) that does not
currently exist. The directory will be implicitly created.

• A user-specified tablespace directory will be created under an embedded Amazon RDS/Aurora
path. For example, every path specified in the LOCATION clause when creating a new
tablespace will be created under the Amazon RDS path of: /rdsdbdata/tablespaces/

• Amazon Aurora PostgreSQL leverages a unique self-managed shared storage architecture. The
DBA does not need to micro-manage most storage aspects of the database.

Examples

1. Creating a Tablespace via Amazon Aurora PostgreSQL and view its associated directory:

* Notice that the newly specified path was created under the embedded base path for Amazon
Aurora: /rdsdbdata/tablespaces/

demo=> CREATE TABLESPACE TBS_01 LOCATION '/app_data/tbs_01';
CREATE TABLESPACE

demo=> \du

 Name | Owner | Location
------------+----------+--
 pg_default | rdsadmin |
 pg_global | rdsadmin |
 tbs_01 | rdsadmin | /rdsdbdata/tablespaces/app_data/tbs_01

 242

2. View current tablespaces and associated directories:

3. Drop the PostgreSQL TBS_01 tablespace:

4. Alter a tablespace:

5. Assign a database with a specific tablespace:

6. Assign a table with a specific tablespace:

demo=> DROP TABLESPACE TBS_01;
DROP TABLESPACE

demo=> ALTER TABLESPACE TBS_01 RENAME TO IDX_TBS_01;
ALTER TABLESPACE

demo=> ALTER TABLESPACE TO IDX_TBS_01 OWNER TO USER1;
ALTER TABLESPACE

select spcname, pg_tablespace_location(oid) from pg_tablespace;

demo=> CREATE TABLE TBL(
 COL1 NUMERIC, COL2 VARCHAR(10))
 TABLESPACE TBS_01;
CREATE TABLE

demo=> SELECT SCHEMANAME, TABLENAME, TABLESPACE FROM PG_TABLES
 WHERE TABLENAME='tbl';

 schemaname | tablename | tablespace
------------+-----------+------------
 public | tbl | tbs_01

demo=> CREATE DATABASE DB1 TABLESPACE TBS_01;
CREATE DATABASE

demo=> SELECT DATNAME, PG_TABLESPACE_LOCATION(DATTABLESPACE) FROM PG_DATABASE
 WHERE DATNAME='db1';

 datname | pg_tablespace_location
---------+--
 db1 | /rdsdbdata/tablespaces/app_data/tbs_01

 243

7. Assign an index with a specific tablespace:

8. Alter a table to use a different tablespace:

Tablespace Exceptions

• CREATE TABLESPACE cannot be executed inside a transaction block.
• A tablespace cannot be dropped until all objects in all databases using the tablespace have

been removed/moved.

Privileges

• The creation of a tablespace in the PostgreSQL database must be performed by a database
superuser.

• Once a tablespace has been created, it can be used from any database, provided that the
requesting user has sufficient privileges.

Tablespace Parameters

The default_tablespace parameter controls the system default location for newly created
database objects. By default, this parameter is set to an empty value and any newly created database
object will be stored in the default tablespace (pg_default).

The default_tablespace parameter can be altered by using the cluster parameter group.

demo=> CREATE INDEX IDX_TBL ON TBL(COL1)
 TABLESPACE TBS_01;
CREATE INDEX

demo=> SELECT SCHEMANAME, TABLENAME, INDEXNAME, TABLESPACE FROM PG_INDEXES
 WHERE INDEXNAME='idx_tbl';

 schemaname | tablename | indexname | tablespace
------------+-----------+-----------+------------
 public | tbl | idx_tbl | tbs_01

demo=> ALTER TABLE TBL SET TABLESPACE TBS_02;
ALTER TABLE

 244

 To verify and to set the default_tablespace variable:

Oracle vs. PostgreSQL tablespaces

Feature Oracle Aurora PostgreSQL
Tablespace Exists as a logical object and made from one

or more user-specified or system-generated
data files.

Logical object that is tied to a specific directory
on the disk where datafiles will be created.

Data file 1. Can be explicitly created and resized by
the user. Oracle-Managed-Files (OMF)
allows for automatically created data files.

2. Each data file can contain one or more
tables and/or indexes.

Behavior is more akin to Oracle Managed Files
(OMF).

1. Created automatically in the directory
assigned to the tablespace.

2. Single data file stores information for a
specific table or index. Multiple data files can
exist for a table or index.

Additional files are created:

1. Freespace map file
Exists in addition to the datafiles themselves.
The free space map is stored as a file named
with the filenode number plus the _fsm suffix.

2. Visibility Map File
Stored with the _vm suffix and used to track
which pages are known to have no dead tuples.

Creates a new
tablespace with
system-
managed
datafiles

CREATE TABLESPACE sales_tbs
DATAFILE SIZE 400M;

create tablespace sales_tbs
LOCATION '/postgresql/data';

Create a new
tablespace with
user-managed
datafiles

CREATE TABLESPACE sales_tbs
DATAFILE
'/oradata/sales01.dbf' SIZE 1M
AUTOEXTEND ON NEXT 1M;

N/A

Alter the size of
a datafile

ALTER DATABASE DATAFILE
'/oradata/sales01.dbf' RESIZE
100M;

N/A

demo=> SHOW DEFAULT_TABLESPACE; -- No value
 default_tablespace

demo=> SET DEFAULT_TABLESPACE=TBS_01;
demo=> SHOW DEFAULT_TABLESPACE;
 default_tablespace

 tbs_01

 245

Feature Oracle Aurora PostgreSQL
Add a datafile
to an existing
tablespace

ALTER TABLESPACE sales_tbs ADD
DATAFILE
'/oradata/sales02.dbf' SIZE
10M;

N/A

Per-database
tablespace

Supported as part of the Oracle 12c Multi-
Tenant architecture. Different dedicated
tablespaces can be created for different
pluggable databases and set as the default
tablespace for a PDB:

ALTER SESSION SET CONTAINER =
'sales';

CREATE TABLESPACE sales_tbs
DATAFILE
'/oradata/sales01.dbf' SIZE 1M
AUTOEXTEND ON NEXT 1M;

ALTER DATABASE sales
TABLESPACE sales_tds;

Tablespaces are shared across all databases but
a default tablespace can be created and
configured for the database:

create tablespace sales_tbs
LOCATION '/postgresql/data';

CREATE DATABASE sales OWNER
sales_app TABLESPACE sales_tbs;

Metadata
tables

Data Dictionary tables are stored in the
SYSTEM tablespace

System Catalog tables are stored in the
pg_global tablespace

Tablespace
data encryption

Supported

1. Using transparent data encryption.

2. Encryption and decryption are handled
seamlessly so the user does not have to
modify the application to access the data.

Supported

1. Encrypt using keys managed through KMS.

2. Encryption and decryption are handled
seamlessly so the user does not have to modify
the application to access the data

3.Enable encryption while deploying a new
cluster via the AWS Management Console or
API actions.

For additional details:
http://docs.aws.amazon.com/AmazonRDS/late
st/UserGuide/Overview.Encryption.html

For additional details:
https://www.postgresql.org/docs/9.6/static/manage-ag-tablespaces.html
https://www.postgresql.org/docs/9.6/static/sql-createtablespace.html
https://www.postgresql.org/docs/9.6/static/storage-file-layout.html
https://www.postgresql.org/docs/9.6/static/storage-fsm.html
https://www.postgresql.org/docs/9.6/static/functions-info.html#FUNCTIONS-INFO-CATALOG-TABLE
https://www.postgresql.org/docs/9.6/static/sql-droptablespace.html
https://www.postgresql.org/docs/current/static/sql-altertablespace.html

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html

 246

 Migrating from: Oracle Data Pump
[Back to TOC]

Overview
Oracle Data Pump is a utility for exporting/importing data from/to an Oracle database. Data Pump can be used
to copy an entire database, an entire schema(s) or specific objects in a schema. Oracle Data Pump is
commonly used as a part of backup strategy for restoring individual database objects (specific records, tables,
views, stored procedures, etc.) as opposed to snapshots or Oracle RMAN, which provides backup and recovery
capabilities at the database-level. By default, and without using the sqlfile parameter during export, the
“dumpfile” generated by Oracle Data Pump is a binary file and cannot be opened using a text editor.

Oracle Data Pump Supports:

1. Export of data from an Oracle database:

The Data Pump EXPDP command creates a binary dump file containing the exported database objects.
Objects can be exported with data or, as an alternative, containing metadata only. Support for cross-object
consistent exports can be accomplished by requesting the export to be done according to a specific
timestamp or Oracle SCN.

2. Import data to an Oracle database:
The Data Pump IMPDP command will import objects and data from specific dump file created with the
EXPDP Data Pump command. The IMPDP command can filter on import (only import certain objects) and
remap object and schema names during import.

Notes:

• The term “Logical backup” refers to a dump file created by Oracle Data Pump.
• Both EXPDP and IMPDP can only read/write “dumpfiles” from filesystem paths that were pre-

configured in the Oracle database as “directories”. During export/import, users will need to specify the
logical “directory” name where the dumpfile should be created, and not the actual filesystem path.

Examples

Export - using EXPDP to export the Oracle HR schema:

* The command contains the credentials to run Data Pump, logical Oracle directory name for the dump file
location (which maps in the database to a physical filesystem location), schema name to export and dump file
and log files names.

$ expdp system/**** directory=expdp_dir schemas=hr dumpfile=hr.dmp
 logfile=hr.log

 247

Import - Using the IMPDP to import the HR schema and rename to HR_COPY:

* The command contains the database credentials to run Data Pump, logical Oracle directory for where the
export dumpfile is located, dump file name, schema to export, name for the dump file and log file name and
the REMAP_SCHEMA parameter.

For additional details:
https://docs.oracle.com/cloud/latest/db112/SUTIL/part_dp.htm
https://docs.oracle.com/database/121/SUTIL/GUID-501A9908-BCC5-434C-8853-9A6096766B5A.htm

 Migration to: PostgreSQL pg_dump & pg_restore
[Back to TOC]

Overview
PostgreSQL provides native utilities - pg_dump and pg_restore can be used to perform logical database
exports and imports with a degree of comparable functionality to the Oracle Data Pump utility. Such as for
moving data between two databases and creating logical database backups.

• pg_dump equivalent to Oracle expdp
• pg_restore equivalent to Oracle impdp

Amazon Aurora PostgreSQL supports data export and import using both pg_dump and pg_restore, but
the binaries for both utilities will need to be placed on your local workstation or on an Amazon EC2 server as
part of the PostgreSQL client binaries.

PostgreSQL dump files created using pg_dump can be copied, after export, to an Amazon S3 bucket as cloud
backup storage or for maintaining the desired backup retention policy. Later, when dump files are needed for
database restore, the dump files should be copied back to the desktop/server that has a PostgreSQL client
(such as your workstation or an Amazon EC2 server) to issue the pg_restore command.

Notes:

• pg_dump will create consistent backups even if the database is being used concurrently.
• pg_dump does not block other users accessing the database (readers or writers).
• pg_dump only exports a single database, in order to backup global objects that are common to all

databases in a cluster, such as roles and tablespaces, use pg_dumpall.
• Unlike Data Pump, PostgreSQL dump files are plain-text files.

$ impdp system/**** directory=expdp_dir schemas=hr dumpfile=hr.dmp
 logfile=hr.log REMAP_SCHEMA=hr:hr_copy

https://docs.oracle.com/cloud/latest/db112/SUTIL/part_dp.htm
https://docs.oracle.com/database/121/SUTIL/GUID-501A9908-BCC5-434C-8853-9A6096766B5A.htm

 248

Examples

1. Export data using pg_dump:

Use a workstation or server with the PostgreSQL client installed in order to connect to the Aurora
PostgreSQL instance in AWS; providing the hostname (-h), database user name (-U) and database name (-
d) while issuing the pg_dump command:

Note:
The output file, dump_file_name.sql , will be stored on the server where the pg_dump command executed. You
can later copy the outfile file to an S3 Bucket, if needed.

2. Run pg_dump and copy the backup file to an Amazon S3 bucket using pipe and the AWS CLI:

3. Restore data - pg_restore:

Use a workstation or server with the PostgreSQL client installed to connect to the Aurora PostgreSQL
instance providing the hostname (-h), database user name (-U), database name (-d) and the dump file to
restore from while issuing the pg_restore command:

4. Copy the output file from the local server to an Amazon S3 Bucket using the AWS CLI:

Upload the dump file to S3 bucket:

* Note that the {-$(date "+%Y-%m-%d-%H-%M-%S")} format will work only on Linux servers.

 Download the output file from S3 bucket:

Note:
You can create a copy of an existing database without having to use pg_dump or pg_restore. Instead, use
the template keyword to signify the database used as the source:

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name
 -f dump_file_name.sql

$ pg_restore -h hostname.rds.amazonaws.com -U username -d
 dbname_restore dump_file_name.sql

$ aws s3 cp /usr/Exports/hr.dmp s3://my-bucket/backup-$(date "+%Y-
 %m-%d-%H-%M-%S")

$ aws s3 cp s3://my-bucket/backup-2017-09-10-01-10-10
 /usr/Exports/hr.dmp

 psql> CREATE DATABASE mydb_copy TEPLATE mydb;

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name
 -f dump_file_name.sql | aws s3 cp - s3://pg-backup/pg_bck-$(date
 "+%Y-%m-%d-%H-%M-%S")

 249

Oracle Data Pump vs. PostgreSQL pg_dump and pg_restore

Description Oracle data pump PostgreSQL SQL Dump
Export data to
a local file

expdp system/**** schemas=hr
dumpfile=hr.dmp
logfile=hr.log

pgdump -F c -h
hostname.rds.amazonaws.com -U
username -d hr -p 5432 >
c:\Export\hr.dmp

Export data to
a remote file

• Create Oracle directory on
remote storage mount or NFS
directory called EXP_DIR

• Use export command:
expdp system/****
schemas=hr
directory=EXP_DIR
dumpfile=hr.dmp
logfile=hr.log

Export-
pgdump -F c -h
hostname.rds.amazonaws.com -U
username -d hr -p 5432 >
c:\Export\hr.dmp

Upload to S3-
aws s3 cp c:\Export\hr.dmp
s3://my-bucket/backup-$(date
"+%Y-%m-%d-%H-%M-%S")

Import data to
a new
database with
a new name

impdp system/**** schemas=hr
dumpfile=hr.dmp
logfile=hr.log
REMAP_SCHEMA=hr:hr_copy
TRANSFORM=OID:N

pg_restore -h
hostname.rds.amazonaws.com -U
hr -d hr_restore -p 5432
c:\Expor\hr.dmp

For additional details:
https://www.postgresql.org/docs/current/static/backup-dump.html
https://www.postgresql.org/docs/9.6/static/app-pgrestore.html

https://www.postgresql.org/docs/current/static/backup-dump.html
https://www.postgresql.org/docs/9.6/static/app-pgrestore.html

 250

 Migrating from: Oracle Resource Manager
[Back to TOC]

Overview
Oracle’s Resource Manager enables enhanced management of multiple concurrent workloads running under a
single Oracle database. Using Oracle Resource Manager, you can partition server resources for different
workloads. Resource Manager helps with sharing server and database resources without causing excessive
resource contention and helps to eliminate scenarios involving inappropriate allocation of resources across
different database sessions.

Oracle Resource Manager enables you to:

• Guarantee a minimum amount of CPU cycles for certain sessions regardless of other running operations.
• Distribute available CPU by allocating percentages of CPU time to different session groups.
• Limit the degree of parallelism of any operation performed by members of a user group.
• Manage the order of parallel statements in the parallel statement queue.
• Limit the number of parallel execution servers that a user group can use.
• Create an active session pool. An active session pool consists of a specified maximum number of user

sessions allowed to be concurrently active within a user group.
• Monitor used database/server resources by dictionary views.
• Manage runaway sessions or calls and prevent them from overloading the database.
• Prevent the execution of operations that the optimizer estimates will run for a longer time than a specified

limit.
• Limit the amount of time that a session can be connected but idle, thus forcing inactive sessions to

disconnect and potentially freeing memory resources.
• Allow a database to use different resource plans, based on changing workload requirements
• Manage CPU allocation when there is more than one instance on a server in an Oracle Real Application

Cluster environment (also called instance caging).

Oracle Resource Manager introduces three concepts:

Consumer Group – A collection of sessions grouped together based on resource requirements. The Oracle
Resource Manager allocates server resources to resource consumer groups, not to the individual sessions.
Resource Plan – Specifies how the database allocates its resources to different Consumer Groups. You will
need to specify how the database allocates resources by activating a specific resource plan.
Resource Plan Directive – Associates a resource consumer group with a plan and specifies how resources are
to be allocated to that resource consumer group.

Notes:
• Only one Resource Plan can be active at any given time.
• Resource Directives control the resources allocated to a Consumer Group belong to a Resource Plan
• The Resource Plan can refer to Subplans to create even more complex Resource Plans.

 251

Example
Creating a Simple Resource Plan

1. To enable the Oracle Resource Manager, you need to assign a plan name to the

RESOURCE_MANAGER_PLAN parameter. Using an empty string will disable the Resource Manager.

Example
We can also create complex Resource Plans. A complex Resource Plan is one that is not created with the
CREATE_SIMPLE_PLAN PL/SQL procedure and provides more flexibility and granularity.

For additional details:
https://docs.oracle.com/database/121/ADMIN/dbrm.htm#ADMIN027

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75);
END;
/

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'mydb_plan';

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

https://docs.oracle.com/database/121/ADMIN/dbrm.htm#ADMIN027

 252

 Migration to: Dedicated Amazon Aurora Clusters
[Back to TOC]

Overview
PostgreSQL does not have built-in resource management capabilities that are equivalent to the functionality
provided by Oracle Resource Manager. However, due to the elasticity and flexibility provided by “cloud
economics”, workarounds could be applicable and such capabilities might not be as of similar importance to
monolithic on-premises databases.

The Oracle Resource Manager primarily exists because traditionally, Oracle databases were installed on very
powerful monolithic servers that powered multiple applications simultaneously. The monolithic model made
the most sense in an environment where the licensing for the Oracle database was per-CPU and where Oracle
databases were deployed on physical hardware. In these scenarios, it made sense to consolidate as many
workloads as possible into few servers. In cloud databases, the strict requirement to maximize the usage of
each individual “server” is often not as important and a different approach can be employed:

Individual Amazon Aurora clusters can be deployed, with varying sizes, each dedicated to a specific application
or workload. Additional read-only Aurora Replica servers can be used to offload any reporting-style workloads
from the master instance.

The traditional Oracle model where maximizing the usage of each physical Oracle server was essential due to physical
hardware constraints and the per-CPU core licensing model.

 253

With Amazon Aurora, separate and dedicated database clusters can be deployed, each dedicated to a specific
application/workload creating isolation between multiple connected sessions and applications.

Each Amazon Aurora instance (Primary/Replica) can scaled independently in terms of CPU and memory
resources using the different “instance types”. Because multiple Amazon Aurora Instances can be
instantly deployed and much less overhead is associated with the deployment and management of
Aurora instances when compared to physical servers, separating different workloads to different
instance classes could be a suitable solution for controlling resource management.

Instance Type vCPU Memory
(GiB)

PIOPS-
Optimized

Network Performance

Standard
db.m4.large 2 8 Yes Moderate
db.m4.xlarge 4 16 Yes High
db.m4.2xlarge 8 32 Yes High
db.m4.4xlarge 16 64 Yes High
db.m4.10xlarge 40 160 Yes 10 Gigabit
db.m3.medium 1 3.75 - Moderate
db.m3.large 2 7.5 - Moderate
db.m3.xlarge 4 15 Yes High
db.m3.2xlarge 8 30 Yes High

Memory Optimized
db.r3.large 2 15 - Moderate
db.r3.xlarge 4 30.5 Yes Moderate
db.r3.2xlarge 8 61 Yes High
db.r3.4xlarge 16 122 Yes High
db.r3.8xlarge 32 244 - 10 Gigabit
Micro instances

db.t2.micro 1 1 - Low
db.t2.small 1 2 - Low

 254

db.t2.medium 2 4 - Moderate
db.t2.large 2 8 - Moderate

In addition, each Amazon Aurora primary/replica instance can also be directly accessed from your
applications using its own endpoint. This capability is especially useful if you have multiple Aurora
read-replicas for a given cluster and you wish to utilize different Aurora replicas to segment your
workload.

Example

Suppose that you were using a single Oracle Database for multiple separate applications and used
Oracle Resource Manager to enforce a workload separation, allocating a specific amount of server
resources for each application. With Amazon Aurora, you might want to create multiple separate
databases for each individual application. Adding additional replica instances to an existing Amazon
Aurora cluster is easy.

1. In the AWS Management Console, select the Amazon RDS service and click the DB Instances link

from the Resources section of the RDS Dashboard window (highlighted).

 255

2. Select the Amazon Aurora cluster that you want to scale-out by adding an additional read Replica.

3. Click on the Instance Actions button.

4. Select Create Aurora Replica.

5. Select the instance class depending on the amount of compute resources your application requires.

 256

6. Once completed, click Create Aurora Replica.

Oracle Resource Manager vs. Dedicated Aurora PostgreSQL Instances

Oracle Resource Manager Amazon Aurora Instances
Set the maximum CPU usage
for a resource group

Create a dedicated Aurora Instance for a specific application.

Limit the degree of
parallelism for specific
queries

SET max_parallel_workers_per_gather TO x;

Setting the PostgreSQL
max_parallel_workers_per_gather parameter should
be done as part of your application database connection.

Limit parallel execution SET max_parallel_workers_per_gather TO 0;
Limit the number of active
sessions

Manually detect the number of connections that are open from a
specific application and restrict connectivity either via database
procedures or within the application DAL itself.

select pid from pg_stat_activity where
usename in(
select usename from pg_stat_activity where
state = 'active' group by usename having
count(*) > 10) and state = 'active'
order by query_Start;

Restrict maximum runtime of
queries

Manually terminate sessions that exceed the required threshold.
You can detect the length of running queries using SQL
commands and restrict max execution duration using either

 257

Oracle Resource Manager Amazon Aurora Instances
database procedures or within the application DAL itself.

SELECT pg_terminate_backend(pid)
FROM pg_stat_activity
WHERE now()-pg_stat_activity.query_start >
interval '5 minutes';

Limit the maximum idle time
for sessions

Manually terminate sessions that exceed the required threshold.
You can detect the length of your idle sessions using SQL queries
and restrict maximum execution using either database
procedures or within the application DAL itself.

SELECT pg_terminate_backend(pid)
 FROM pg_stat_activity
 WHERE datname = 'regress'
 AND pid <> pg_backend_pid()
 AND state = 'idle'
 AND state_change < current_timestamp -
INTERVAL '5' MINUTE;

Limit the time that an idle
session holding open locks
can block other sessions

Manually terminate sessions that exceed the required threshold.
You can detect the length of blocking idle sessions using SQL
queries and restrict max execution duration using either
database procedures or within the application DAL itself.

SELECT
pg_terminate_backend(blocking_locks.pid)
FROM pg_catalog.pg_locks AS blocked_locks
JOIN pg_catalog.pg_stat_activity AS
blocked_activity
 ON blocked_activity.pid =
blocked_locks.pid
JOIN pg_catalog.pg_locks AS blocking_locks
 ON blocking_locks.locktype =
blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT
DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT
DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT
DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT
DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT
DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS
NOT DISTINCT FROM
blocked_locks.transactionid
 AND blocking_locks.classid IS NOT
DISTINCT FROM blocked_locks.classid

 258

Oracle Resource Manager Amazon Aurora Instances
 AND blocking_locks.objid IS NOT
DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT
DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid !=
blocked_locks.pid
JOIN pg_catalog.pg_stat_activity AS
blocking_activity
 ON blocking_activity.pid =
blocking_locks.pid
WHERE NOT blocked_locks.granted and
blocked_activity.state_change <
current_timestamp - INTERVAL '5' minute;

Use “instance caging” in a
multi-node Oracle RAC
Environment

Similar capabilities can be achieved by separating different
applications to different Aurora clusters or, for read-only
workloads, separate Aurora read replicas within the same Aurora
cluster.

For additional detail:
https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html

 259

 Migrating from: Oracle Database Users
[Back to TOC]

Overview
Database user accounts are used for authenticating connecting sessions as well as authorizing access for
individual users to specific database objects. The Database Administrator grants privileges to database user
accounts that are used by applications to authenticate with the Oracle database.

Steps for Providing Database Access to Applications

1. Create a user account in the database, typically authenticated by using a password. Additional
methods of authenticating users also exist.

2. Assign permissions to the database user account enabling access certain database objects and system
permissions.

3. Connecting applications will use the database username and password combination to authenticate
with the database.

Oracle Database Users Common Properties

1. Granting privileges or roles (collection of privileges) to the database user.
2. Defining the default database tablespace for the user.
3. Assigning tablespace quotas for the database user.
4. Configuring password policy, password complexity, lock or unlock the account.

Authentication Mechanisms

1. Username and password combination (default).
2. External - using OS or third-party (Kerberos).
3. Global - enterprise directory service (such as Active Directory or Oracle Internet Directory).

Oracle Schemas Compared to Users

In the Oracle database, a user equals a schema. This relationship is special because in Oracle, users and
schemas are essentially the same thing. Consider an Oracle database user as the account you use to connect
to a database while a database schema is the set of objects (tables, views, etc.) that belong to that account.

• You cannot create schemas and users separately. When you create a database user, you also create a
database schema with the same name.

• When you run the CREATE USER command in Oracle, you create a user for login and a schema to
store database objects in.

• The schema created will be initially empty, but objects, such tables, can be created inside it.

 260

Database Users in Oracle 12c
Two kinds of users exist in the Oracle 12c database:

• Common users - created in all database containers, root and PDBs. Common user must have
the C## prefix in the username.

• Local users – created only in a specific PDB. Different database users with identical usernames
can be created in multiple PDBs.

Examples
1. Create a common database user, using the default tablespace.
2. Grant privileges and roles to the user.
3. Assign a profile to the user, unlock the account and force the user to change the password

(PASSWORD EXPIRE).
4. Create a local database user in the my_pdb1 pluggable database.

For additional details:
https://docs.oracle.com/database/121/DBSEG/users.htm

CREATE USER c##test_user IDENTIFIED BY password DEFAULT TABLESPACE
USERS;

GRANT CREATE SESSION TO c##test_user;

GRANT RESOURCE TO c##test_user;

ALTER USER c##test_user ACCOUNT UNLOCK;

ALTER USER c##test_user PASSWORD EXPIRE;

ALTER USER c##test_user PROFILE ORA_STIG_PROFILE;

ALTER SESSION SET CONTAINER = my_pdb1;
CREATE USER app_user1 IDENTIFIED BY password DEFAULT TABLESPACE USERS;

https://docs.oracle.com/database/121/DBSEG/users.htm

 261

 Migration to: PostgreSQL Roles
[Back to TOC]

Overview
In a PostgreSQL database, users and roles are identical. Roles with connect permissions are essentially
database users.

• A role is a database entity that can own objects and have database privileges.
• A role can be considered a "user", a "group", or both depending on how it is used.
• Roles are defined at the root level and are valid in all databases in the Amazon Aurora cluster. In terms of

database scope, roles in PostgreSQL can be compared to common users in Oracle 12c as they are global for
all the databases and are not created in the individual scope of a specific database.

• Schemas are created separately from roles/users in PostgreSQL.

The CREATE USER command in PostgreSQL is an alias for the CREATE ROLE command with one important
difference: the CREATE USER command it automatically adds the LOGIN argument so that the role can
access the database and act as a “database user”.

Examples
1. Create a role that can log-in to the database and specify a password:

Notes
• CREATE USER is identical to CREATE ROLE, except that it implies a log-in to the database.
• When we provision a new Amazon Aurora cluster, a master user is created as the most

powerful user in the database:

2. Create a role that can log in to the database and assign a password that has an expiration date:

Oracle PostgreSQL

Common database user (12c) Database role with Login
Local database user (12c) N/A
Database user (11g) Database role with Login
Database role Database role without Login
Database users are identical to schema Database users and schemas are created

separately

CREATE USER test_user1 WITH PASSWORD 'password';

CREATE ROLE test user2 WITH LOGIN PASSWORD 'password';

CREATE ROLE test_user3 WITH LOGIN PASSWORD 'password' VALID UNTIL
'2018-01-01';

 262

3. Create a powerful role db_admin that will allow users to which this role is assigned to create

new databases. Note that this role will not be able to log in to the database. Assign this role to the
test_user1 database user.

4. Create a new schema hello_world and create a new table inside that schema:

Oracle vs. PostgreSQL Database Users

Description Oracle Amazon Aurora PostgreSQL
List all database
users

SELECT * FROM dba_users; SELECT * FROM pg_user;

Create a database
user

CREATE USER c##test_user
IDENTIFIED BY test_user;

CREATE ROLE test_user WITH
LOGIN PASSWORD 'test_user';

Change the password
for a database user

ALTER USER c##test_user
IDENTIFIED BY test_user;

ALTER ROLE test_user WITH
LOGIN PASSWORD 'test_user';

External
authentication

Supported via Externally Identified Users Currently not supported; future support
for AWS Identity and Access
Management (IAM) users is possible

Tablespace quotas Alter User c##test_user
QUOTA UNLIMITED ON
TABLESPACE users;

Not supported

Grant role to user GRANT my_role TO
c##test_user;

GRANT my_role TO test_user;

Lock user ALTER USER c##test_user
ACCOUNT LOCK;

ALTER ROLE test_user WITH
NOLOGIN;

Unlock user ALTER USER c##test_user
ACCOUNT UNLOCK;

ALTER ROLE test_user WITH
LOGIN;

Grant privileges GRANT CREATE TABLE TO
c##test_user;

GRANT create ON DATABASE
postgres to test_user;

Default tablespace ALTER USER C##test_user
default tablespace users;

ALTER ROLE test_user SET
default_tablespace =
'pg_global';

Grant select privilege
on a table

GRANT SELECT ON hr.employees
to c##test_user;

GRANT SELECT ON
hr.employees to test_user;

Grant DML privileges
on a table

GRANT INSERT,DELETE ON
hr.employees to
c##test_user;

GRANT INSERT,DELETE ON
hr.employees to test_user;

Grant execute GRANT EXECUTE ON
hr.procedure_name to
c##test_user;

grant execute on function
"newdate"() to test_user;
Inside the brackets “()” - specify the
arguments types for the function

Limits user
connection

CREATE PROFILE app_users
LIMIT SESSIONS_PER_USER 5;

ALTER ROLE test_user WITH
CONNECTION LIMIT 5;

CREATE ROLE db_admin WITH CREATEDB;

GRANT db admin TO test user1;

CREATE SCHEMA hello_world;

CREATE TABLE hello_world.test_table1 (a int);

 263

ALTER USER C##TEST_USER
PROFILE app_users;

Create a new
database schema

CREATE USER my_app_schema
IDENTIFIED BY password;

CREATE SCHEMA
my_app_schema;

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createrole.html

https://www.postgresql.org/docs/9.6/static/sql-createrole.html

 264

 Migrating from: Oracle SGA & PGA Memory Sizing
[Back to TOC]

Overview
The Oracle instance allocates several individual “pools” of server RAM used as various caches for the database.
These include the Buffer Cache, Redo Buffer, Java Pool, Shared Pool, Large Pool and others. These caches are
contained in the SGA, or System Global Area. These caches are shared across all Oracle sessions.

In addition to the SGA, each connecting Oracle session is granted an additional area of memory used for
session-private operations (sorting, private SQL cursors elements, etc.) called PGA, or Private Global Area.

The size of the various caches is controlled via parameters, either individually on per-cache level or managed
as a whole automatically by the Oracle database by setting a unified “memory size” parameter and allowing
Oracle to take care of individual cache sizes.

• All Oracle memory parameters are set using an ALTER SYSTEM command.
• Some changes to memory parameters may require an instance restart.

Some of the common Oracle parameters that control memory allocations include:

- db_cache_size – size of the cache used for database data.
- log_buffer – cache used to store Oracle redo log buffers, until written to disk.
- shared_pool_size – cache used to store shared cursors, stored procedures, control structures, and

other structures.
- large_pool_size – cached used for parallel queries and RMAN backup / restore operations.
- Java_pool_size – cached used to store Java code and JVM context.

While these parameters can be configured individually, most Database Administrators choose to let Oracle
automatically manage available RAM. The Database Administrator configures the size of the overall size of the
SGA only, and Oracle sizes individual caches based on workload characteristics.

o sga_max_size – specify the hard-limit, maximum size of the SGA as a whole.
o sga_target – sets the required soft-limit for the SGA and within it, the individual caches.

Oracle also grants control over how much private memory is dedicated for each connecting session. The
Database Administrator will configure the total size of memory available for all connecting sessions, and
Oracle will allocate individual dedicated “chunks” from the total amount of available memory for each session.

o pga_aggregate_target – a soft-limit controlling the total amount of memory available for all

sessions, combined.
o pga_aggregate_limit – (Oracle 12c only) a hard-limit for the total amount of memory available for

all sessions, combined.

In addition, instead of manually configuring the SGA and PGA memory areas, we can also configure one overall
memory limit for both the SGA and PGA and let Oracle automatically balance memory between the various
memory pools. This behavior can be enabled using the memory_target and memory_max_target
parameters.

 265

For additional details:
https://docs.oracle.com/database/121/ADMIN/memory.htm#ADMIN11198
https://docs.oracle.com/database/121/TGDBA/memory.htm

 Migration to: PostgreSQL Memory Buffers
[Back to TOC]

Overview
PostgreSQL provides us with control over how server RAM is allocated. Some of the most important PostgreSQL memory
parameters include:

Memory Pool Description
shared_buffers Used to cache database data read from disk.

Approximate Oracle Database Buffer Cache equivalent.

wal_buffers Used to store WAL (Write-Ahead-Log) records before they are written to disk.

Approximate Oracle Redo Log Buffer equivalent.

work_mem Used for parallel queries and SQL sort operations.

Approximate Oracle PGA equivalent and/or the Large Pool (for parallel workloads)

maintenance_work_
mem

Memory used for certain backend database operations such as: VACUUM, CREATE
INDEX, ALTER TABLE ADD FOREIGN KEY

temp_buffers Memory buffers used by each database session for reading data from temporary tables.

Total memory available
for PostgreSQL Cluster

Controlled by choosing the “DB Instance Class” during instance creation:

Notes:
Cluster level parameters, such as shared_buffers and wal_buffers, are configured using
“parameter groups” in the Amazon RDS Management Console.

Examples
1. View the configured value for database parameters:

show shared_buffers

show work_mem

show temp_buffers

https://docs.oracle.com/database/121/ADMIN/memory.htm#ADMIN11198
https://docs.oracle.com/database/121/TGDBA/memory.htm

 266

2. View current configured values for all database parameters:

3. Use of the SET SESSION command to modify the value of parameters that support session-

specific settings. Changing the value using the SET SESSION command for one session will have
no effect on other sessions.

Note
If a SET SESSION command is issued within a transaction that is aborted or rolled back, the
effects of the SET SESSION command disappear. Once the transaction is committed, the effects
will become persistent until the end of the session, unless overridden by another execution of SET
SESSION.

4. Use of the SET LOCAL command to modify the current value of those parameters that can be set
locally to a single transaction. Changing the value using the SET LOCAL command for one
transaction will have no subsequent effect on other transactions from the same session. After
issuing a COMMIT or ROLLBACK, the session-level settings will take effect.

5. Reset a value of a run-time parameter to its default value:

6. Changing parameter values can also be done via a direct update to the pg_settings table:

SET SESSION work_mem='100MB';

Select * from pg_settings;

SET LOCAL work_mem='100MB';

RESET work_mem;

UPDATE pg_settings SET setting = '100MB' WHERE name = 'work_mem';

 267

Common Oracle vs. PostgreSQL Memory Caches
Please note that the table provided below should be used as a general reference only and functionality
might not be identical across Oracle and PostgreSQL.

Description Oracle PostgreSQL
Memory for caching table
data

db_cache_size shared_buffers

Memory for transaction log
records

log_buffer wal_buffers

Memory for parallel queries large_pool_size work_mem

Java code and JVM Java_pool_size N/A
Maximum amount of
physical memory available
for the Instance

sga_max_size
or
memory_max_size

Configured via the Amazon RDS/Aurora
Instance class

For example:
db.r3.large: 15.25GB
db.r3.xlarge: 30.5GB
Etc.

Total amount of private
memory for all sessions

pga_aggregate_target
+
pga_aggregate_limit

temp_buffers
(for reading data from temp tables)

work_mem
(for sorts)

View values for all database
parameters

Select * from
v$parameter;

Select * from pg_settings;

Configure a session-level
parameter

ALTER SESSION SET
...

SET SESSION work_mem='100MB';

Configure instance-level
parameter

ALTER SYSTEM SET ... Configured via “Parameter Groups” in the
Amazon RDS Management Console.

For additional details:
https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/static/runtime-config-wal.html

https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/static/runtime-config-wal.html

 268

 Migrating from: Oracle Roles
[Back to TOC]

Overview
Oracle roles are groups of privileges that can be granted to database users. A database role can contain
individual system and object permissions as well as other roles. Database roles enable you to grant multiple
database privileges to users in one go. It is convenient to group permissions together to ease the management
of privileges.

Oracle 12c introduces a new multi-tenant database architecture that supports the creation of both common as
well as local roles:

1. Common roles – these are roles created at the container database (CDB) level. A common role is a

database role that exists in the root and in every existing, and future, pluggable database (PDB) that will be
created. Common roles are useful for cross-container operations, such as ensuring that a common user
has a role in every container.

2. Local roles – these are roles created in a specific pluggable database (PDB). A local role exists only in a

single pluggable database and can only contain roles and privileges that apply within the pluggable
database in which the role exists.

Notes:
• Common role names must start with a c## prefix. Starting with Oracle 12.1.0.2, these prefixes can be

change using the COMMON_USER_PREFIX parameter.
• A CONTAINER clause can be added to CREATE ROLE statement to choose the container applicable for

the role.

Examples

1. Create a common role:

SQL> show con_name

CON_NAME

CDB$ROOT
SQL> CREATE ROLE c##common_role;

Role created.

 269

2. Create a local role:

3. Grant privileges and roles to the local_role database role.

Any database user to which the local_role role will be granted, will now hold all privileges that
were granted to the role.

4. Revoke privileges and roles from the local_role database role:

For additional details:
https://docs.oracle.com/database/121/DBSEG/authorization.htm
https://docs.oracle.com/database/121/DBSEG/authorization.htm

SQL> show con_name

CON_NAME

ORCLPDB

SQL> CREATE ROLE local_role;

Role created.

GRANT RESOURCE, ALTER SYSTEM, SELECT ANY DICTIONARY TO local_role;

REVOKE RESOURCE, ALTER SYSTEM, SELECT ANY DICTIONARY FROM local_role;

https://docs.oracle.com/database/121/DBSEG/authorization.htm
https://docs.oracle.com/database/121/DBSEG/authorization.htm

 270

 Migration to: PostgreSQL Roles
[Back to TOC]

Overview
In PostgreSQL, roles without login permissions are similar to database roles in Oracle. PostgreSQL roles are
most similar to common roles in Oracle 12c as they are global in scope for all the databases in the instance.

• Roles are defined at the database cluster level and are valid in all databases in the PostgreSQL
cluster. In terms of database scope, roles in PostgreSQL can be compared to common roles in
Oracle 12c as they are global for all the databases and are not created in the individual scope of
each database.

• The CREATE USER command in PostgreSQL is an alias for the CREATE ROLE command with
one important difference: when using CREATE USER command, it automatically adds LOGIN
so the role can access to the database as a “database user”. As such, for creating PostgreSQL
roles that are similar in function to Oracle roles, be sure to use the CREATE ROLE command.

Example

Create a new database role called myrole1 that will allow users (to which the role is assigned) to create
new databases in the PostgreSQL cluster. Note that this role will not be able to login to the database and act
as a “database user”. In addition, grant SELECT, INSERT and DELETE privileges on the hr.employees
table to the role:

Typically, a role being used as a group of permissions would not have the LOGIN attribute, as with the
example above.

Comparing Oracle to PostgreSQL database roles

Description Oracle PostgreSQL
List all roles SELECT * FROM dba_roles; SELECT * FROM pg_roles;
Create a new role CREATE ROLE c##common_role;

Or
CREATE ROLE local_role1;

CREATE ROLE test_role;

Grant one role privilege
to another database role

GRANT local_role1 TO
local_role2;

grant myrole1 to myrole2;

Grant privileges on a
database object to a
database role

GRANT CREATE TABLE TO
local_role;

GRANT create ON DATABASE
postgresdb to test_user;

Grant DML permissions
on a database object to a
role

GRANT INSERT, DELETE ON
hr.employees to myrole1;

GRANT INSERT, DELETE ON
hr.employees to myrole1;

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-createrole.html

CREATE ROLE hr_role;

GRANT SELECT, INSERT,DELETE on hr.employees to hr_role;

https://www.postgresql.org/docs/9.6/static/sql-createrole.html

 271

 Migrating from: Oracle V$ Views and the Data Dictionary
[Back to TOC]

Overview
Oracle provides several built-in views that are used to monitor the database and query its operational state.
These views can be used to track the status of the database, view information about database schema objects
and more.

The data dictionary is a collection of internal tables and views that supply information about the state and
operations of the Oracle database including: database status, database schema objects (tables, views,
sequences, etc.), users and security, physical database structure (datafiles), and more. The contents of the
data dictionary are persistent to disk.

Examples for data dictionary views include:

• DBA_TABLES – information about all of the tables in the current database.
• DBA_USERES – information about all the database users.
• DBA_DATA_FILES – information about all of the physical datafiles in the database.
• DBA_TABLESPACES – information about all tablespaces in the database.
• DBA_TABLES – information about all tables in the database.
• DBA_TAB_COLS – information about all columns, for all tables, in the database.

Note: data dictionary view names can start with DBA_*, ALL_*, USER_* , depending on the level and
scope of information presented (user-level versus database-level).

For the complete list of dba_* data dictionary views:
https://docs.oracle.com/database/121/nav/catalog_views-dba.htm

Dynamic performance views (V$ Views) are a collection of views that provide real-time monitoring
information about the current state of the database instance configuration, runtime statistics and operations.
These views are continuously updated while the database is running.
Information provided by the dynamic performance views includes session information, memory usage,
progress of jobs and tasks, SQL execution state and statistics and various other metrics.

Common dynamic performance views include:

• V$SESSION – information about all current connected sessions in the instance.
• V$LOCKED_OBJECT – information about all objects in the instance on which active “locks” exist.
• V$INSTANCE – dynamic instance properties.
• V$SESSION_LONG_OPS – information about certain “long running” operations in the database

such as queries currently executing.
• V$MEMORY_TARGET_ADVICE – advisory view on how to size the instance memory, based on

instance activity and past workloads.

For additional details:
https://docs.oracle.com/database/121/nav/catalog_views.htm

https://docs.oracle.com/database/121/nav/catalog_views-dba.htm
https://docs.oracle.com/database/121/nav/catalog_views.htm

 272

 Migration to: PostgreSQL System Catalog & The Statistics Collector
[Back to TOC]

Overview
PostgreSQL provides three different sets of metadata tables that are used to retrieve information about the
state of the database and current activities. These tables are similar in nature to the Oracle data dictionary
tables and V$ performance views. In addition, Amazon Aurora PostgreSQL provides a “Performance Insights”
console for monitoring and analyzing database workloads and troubleshooting performance issues.

2. System Catalog Tables
These are a set of tables used to store dynamic and static metadata for the PostgreSQL database and can
be thought of as the “data dictionary” for the database. These tables are used for internal “bookkeeping”-
type activities. All System catalog tables start with the pg_* prefix and can be found in the pg_catalog
schema. Both system catalog tables and statistics collector views can be found on the pg_catalog
schema

Example
Display all tables in the pg_catalog schema:

 Some of the common system catalog tables include:

Category Description
Statistic collection views Subsystem that collects runtime dynamic information about certain

server activities such as statistical performance information.
Some of these tables could be thought as comparable to Oracle V$
views.

System catalog tables Static metadata regarding the PostgreSQL database and static
information about schema objects.
Some of these tables could be thought as comparable to Oracle DBA_*
Data Dictionary tables.

Information schema tables

Set of views that contain information about the objects defined in the
current database. The information schema is specified by the SQL
standard and as such, supported by PostgreSQL.
Some of these tables could be thought as comparable to Oracle USER_*
Data Dictionary tables.

Advance performance
monitoring

Use the Performance Insights Console

Table name Purpose
pg_database Contains information and properties about each database in the PostgreSQL

cluster, such as the database encoding settings as well as others.
pg_tables Information about all tables in the database, such as indexes and the

tablespace for each database table.
pg_index Contains information about all indexes in the database
pg_cursors List of currently available/open cursors

select * from pg tables where schemaname='pg catalog';

 273

For additional details:
https://docs.oracle.com/database/121/nav/catalog_views.htm
https://www.postgresql.org/docs/current/static/catalogs.html

3. Statistics Collector
Special subsystem which collects runtime dynamic information about the current activities in the database
instance. For example, statistics collector views are useful to determine how frequently a particular table is
accessed and if the table is scanned or accessed using an index.

Common statistics collector views include:

For additional details:
https://docs.oracle.com/database/121/nav/catalog_views.htm
https://www.postgresql.org/docs/9.6/static/monitoring-stats.html#MONITORING-STATS-DYNAMIC-VIEWS-
TABLE

4. Information Schema Tables
The information schema consists of views which contain information about objects that were created
in the current database.

• The information schema is specified by the SQL standard and as such, supported by PostgreSQL.
• The owner of this schema is the initial database user.
• Since the information schema is defined as part of the SQL standard, it can be expected to

remain stable across PostgreSQL versions. This is unlike the system catalog tables, which are
specific to PostgreSQL, and subject to changes across different PostgreSQL versions.

• The information schema views do not display information about PostgreSQL-specific features.

Table name Purpose
pg_stat_activity Statistics of currently sessions in the database. Useful for identifying

long running queries
pg_stat_all_tables Performance statistics on all tables in the database, such as

identifying table size, write activity, full scans vs. index access, etc.
pg_statio_all_tables Performance statistics and I/O metrics on all database tables

pg_stat_database One row for each database showing database-wide statistics such as
blocks read from the buffer cache vs. blocks read from disk (buffer
cache hit ratio).

pg_stat_bgwriter Important performance information on PostgreSQL checkpoints and
background writes

pg_stat_all_indexes Performance and usage statistics on indexes, for example, useful for
identifying unused indexes

SELECT * FROM pg_stat_activity WHERE STATE = 'active';

select * from information_schema.tables;

https://docs.oracle.com/database/121/nav/catalog_views.htm
https://www.postgresql.org/docs/current/static/catalogs.html
https://docs.oracle.com/database/121/nav/catalog_views.htm
https://www.postgresql.org/docs/9.6/static/monitoring-stats.html#MONITORING-STATS-DYNAMIC-VIEWS-TABLE
https://www.postgresql.org/docs/9.6/static/monitoring-stats.html#MONITORING-STATS-DYNAMIC-VIEWS-TABLE

 274

For additional details:
https://www.postgresql.org/docs/9.6/static/information-schema.html

Note
By default, all database users (public) can query both the system catalog tables, the statistics collector views
and the information schema.

Common Oracle vs. PostgreSQL system metadata tables

Information Oracle PostgreSQL
Database properties V$DATABASE PG DATABASE
Database sessions V$SESSION PG_STAT_ACTIVITY
Database users DBA_USERS PG_USER
Database tables DBA_TABLES PG_TABLES
Database roles DBA_ROLES PG_ROLES
Table columns DBA_TAB_COLS PG_ATTRIBUTE
Database locks V$LOCKED_OBJECT PG_LOCKS
Currently configured runtime
parameters

V$PARAMETER PG_SETTINGS

All system statistics V$SYSSTAT PG_STAT_DATABASE
Privileges on tables DBA_TAB_PRIVS TABLE_PRIVILEGES
Information about IO operations V$SEGSTAT PG_STATIO_ALL_TABLES

5. Amazon RDS performance Insights

In addition to monitoring database status and activity using queries on metadata tables, Aurora PostgreSQL
provides a visual performance monitoring and status information via the “Performance Insights” feature
accessible as part of the Amazon RDS Management Console.

Performance insights monitors your Amazon RDS/Aurora databases and captures workloads so that you can
analyze and troubleshoot database performance. Performance insights visualizes the database load and
provides advanced filtering using various attributes such as: waits, SQL statements, hosts, or users.

Example
Accessing the Amazon Aurora Performance Insights Console

1. Navigate to the RDS section of the AWS Console.

https://www.postgresql.org/docs/9.6/static/information-schema.html

 275

• Select Performance Insights.

• Once you have accessed the Performance insights console, you will be presented with a visualized
dashboard of your current and past database performance metrics. You can choose the period of time of
the displayed performance data (5m, 1h, 6h or 24h) as well as different criteria to filter and slice the
information presented such as waits, SQL, Hosts or Users, etc.

Enabling Performance Insights
Performance Insights is enabled by default for Amazon Aurora clusters. If you have more than one database
created in your Aurora cluster, performance data for all of the databases is aggregated. Database performance
data is kept for 24 hours.

For additional details:
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

 276

 Migrating from: Oracle Flashback Database
[Back to TOC]

Overview
Oracle flashback database is a special mechanism built into the Oracle database that can help protect against human
errors by providing the capabilities to revert the entire database back to a previous point in time using SQL commands.
Flashback database implements a self-logging mechanism that captures all the changes applied to the database and to
data, essentially storing previous versions of database modifications in the configured database “fast recovery area”
destination.

When using Oracle flashback database, you can choose to restore your entire database to either a user-created restore
point, a timestamp value or to a specific Oracle System Change Number (SCN).

Examples

• Create a database restore point to which you can flashback your database to:

• Flashback your database to a previously created restore point:

• Flashback your database to a specific time:

For additional details:
https://docs.oracle.com/database/121/RCMRF/rcmsynta023.htm#RCMRF194

CREATE RESTORE POINT before_update GUARANTEE FLASHBACK DATABASE;

SQL> shutdown immediate;
SQL> startup mount;
SQL> flashback database to restore point before_update;

SQL> shutdown immediate;
SQL> startup mount;
SQL> FLASHBACK DATABASE TO TIME "TO_DATE('01/01/2017','MM/DD/YY')";

https://docs.oracle.com/database/121/RCMRF/rcmsynta023.htm#RCMRF194

 277

 Migration to: Amazon Aurora Snapshots
[Back to TOC]

Overview
The primary backup mechanism for Amazon Aurora are snapshots. Taking a database snapshot is an extremely
fast and non-intrusive operation for your database. Database snapshots can be used in a similar way to
flashback database in Oracle.

Amazon Aurora provides two types of snapshots:

• Automated - enabled by default.
• Manual – User-initiated backup of the database which can be done at any given time.

Restoring a snapshot will result in creating a new database instance. Up to 100 manual snapshots are
supported for each Amazon Aurora database.

Similarly, to Oracle flashback, Amazon Aurora snapshots support two options for specifying how to restore
your database:

1. Restore your database to a specific snapshot, similar to Oracle flashback database “restore points”.
2. Restore your database to a previous point in time, similar to Oracle Flashback database “restore to

timestamp”.

Example

Enable automatic snapshots for your Amazon Aurora database and set the backup retention window during
database creation (equivalent to setting the DB_FLASHBACK_RETENTION_TARGET parameter in Oracle).

1. Navigate to the Amazon RDS page in your AWS console:

2. Select Instances.

 278

3. Click on Launch DB Instance.

4. Select the Amazon Aurora with the PostgreSQL database engine.

5. Configure your database settings and parameters.

 279

6. Configure your Amazon Aurora cluster backup retention policy as the number of days (“retention
period”) to automatically to store your snapshots:

Example

Perform a manual snapshot backup of your database, equivalent to creating a “guaranteed flashback database
restore point” in Oracle (CREATE RESTORE POINT xxxx GUARANTEE FLASHBACK DATABASE;).

1. Navigate to the Amazon RDS page in your AWS Console:

2. Select Instances.

 280

3. Select your Amazon Aurora PostgreSQL instance.
4. Click Instance actions.
5. Select Take Snaphot in the context menu.

Example
Restore an Amazon Aurora database backup from an existing snapshot, similar to using “flashback
database to restore point xxx;” in Oracle.

1. Navigate to the Amazon RDS page in your AWS Console:

 281

2. Choose Snapshots on the left-hand menu to see the list of snapshots available for your database
instances:

3. Select the snapshot to restore. Choose the snapshot, click on Snapshot Actions and select Restore

snapshot in the context menu.

Note: The restore process will create a new instance.

4. You will be presented with a wizard for creating your new Amazon Aurora instance from the

snapshot you selected. Complete all the required properties for creating your newly restored
database instance.

5. Click Restore DB Instance.

 282

Example

Restore an Amazon Aurora database to a specific (previous) point in time, similar to the “FLASHBACK
DATABASE TO TIME "TO_DATE('xxxx') “ command in Oracle.

1. Navigate to the Amazon RDS page in your AWS Console.

 283

2. Click Instances.

4. Select your Amazon Aurora instance and click on Instance Actions. Select Restore to Point in Time
on the context menu.

5. This process will launch a new instance. Select the date and time to which you want to restore your new
instance. The selected time must be within the configured backup retention for this instance.

 284

Example

Modify the backup retention policy for an Amazon Aurora database, after a database was created. This
process is similar to setting the DB_FLASHBACK_RETENTION_TARGET parameter in Oracle.

This process allows you to control for how long your Aurora database snapshots will be retained. When
restoring an Amazon Aurora database to a previous point in time, the specified date/time must be within the
configured backup retention window.

1. Navigate to the Amazon RDS page in your AWS Console.

2. Click Instances.

3. Select your Aurora instance, click Instance Actions.

 285

4. Select Modify in the context menu.

5. Configure the desired backup retention period. Maximum supported retention is 35 days.

 286

AWS CLI commands for Aurora database backup and database restore

In addition to using the AWS management console to restore your Amazon Aurora database to a previous point in time
or to a specific snapshot, you can also use the AWS CLI to perform the same actions. Some examples include:

1. Use describe-db-cluster-snapshots to view all current Amazon Aurora snapshots.
2. Use create-db-cluster-snapshot to create a new snapshot (“restore point”).
3. Use restore-db-cluster-from-snapshot to restore a new cluster from an existing snapshot.
4. Use create-db-instance to add new instances to the newly restored Amazon Aurora cluster.

5. Use restore-db-instance-to-point-in-time to perform point-in-time recovery.

Oracle Flashback database vs. Amazon Aurora Snapshots

Oracle Amazon Aurora
Create a “restore
point”

CREATE RESTORE POINT
before_update GUARANTEE
FLASHBACK DATABASE;

aws rds create-db-cluster-
snapshot --db-cluster-
snapshot-identifier
Snapshot_name --db-cluster-
identifier Cluster_Name

Configure flashback
“retention period”

ALTER SYSTEM SET
db_flashback_retention_ta
rget=2880;

Configure the “Backup retention
window” setting using the AWS
management console or using the AWS
CLI.

Flashback database
to a previous
“restore point”

shutdown immediate;

startup mount;

flashback database to
restore point
before_update;

1. Create new cluster from a snapshot:

aws rds restore-db-cluster-
from-snapshot --db-cluster-
identifier NewCluster --
snapshot-identifier

aws rds describe-db-cluster-snapshots

aws rds create-db-cluster-snapshot --db-cluster-snapshot-iden
tifier Snapshot_name --db-cluster-identifier Cluster_Name

aws rds restore-db-cluster-from-snapshot --db-cluster-identifier
NewCluster --snapshot-identifier SnapshotToRestore --engine aurora-
postgresql

aws rds create-db-instance --region us-east-1 --db-subnet-group default -
-engine aurora-postgresql --db-cluster-identifier NewCluster --db-
instance-identifier newinstance-nodeA --db-instance-class db.r4.large

aws rds restore-db-cluster-to-point-in-time --db-cluster-identifier
clustername-restore --source-db-cluster-identifier clustername --restore-
to-time 2017-09-19T23:45:00.000Z

aws rds create-db-instance --region us-east-1 --db-subnet-group default -
-engine aurora-postgresql --db-cluster-identifier clustername-restore --
db-instance-identifier newinstance-nodeA --db-instance-class db.r4.large

 287

Oracle Amazon Aurora
 SnapshotToRestore --engine

aurora-postgresql

2. Add new instance to the cluster:

aws rds create-db-instance
--region us-east-1 --db-
subnet-group default --
engine aurora-postgresql --
db-cluster-identifier
clustername-restore --db-
instance-identifier
newinstance-nodeA --db-
instance-class db.r4.large

Flashback database
to a previous point
in time

shutdown immediate;

startup mount;

FLASHBACK DATABASE TO
TIME
"TO_DATE('01/01/2017','MM
/DD/YY')";

1. Create a new cluster from a snapshot
and provide a specific point in time:

aws rds restore-db-cluster-
to-point-in-time --db-
cluster-identifier
clustername-restore --
source-db-cluster-
identifier clustername --
restore-to-time 2017-09-
19T23:45:00.000Z

2. Add a new instance to the cluster:

aws rds create-db-instance
--region us-east-1 --db-
subnet-group default --
engine aurora-postgresql --
db-cluster-identifier
clustername-restore --db-
instance-identifier
newinstance-nodeA --db-
instance-class db.r4.large

For additional details:
http://docs.aws.amazon.com/cli/latest/reference/rds/index.html#cli-aws-rds
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html

http://docs.aws.amazon.com/cli/latest/reference/rds/index.html#cli-aws-rds
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html

 288

Migrating from: Oracle Log Miner
[Back to TOC]

Overview
Oracle Log Miner is a tool that enables you to query the database Redo Logs and the Archived Redo Logs using
a SQL interface. Using Log Miner, you can analyze the content of database “transaction logs” (online and
archived redo logs) and provide historical insight on past database activity, such as reviewing individual DML
statements which have modified data in the database.

Examples
Use Log Miner to view DML statements executed on the employees table:

1. Find current redo log file to analyze:

2. Use the DBMS_LOGMNR.ADD_LOGFILE procedure, pass the file path as a parameter to the Log Miner
API:

3. Start Log Miner using the DBMS_LOGMNR.START_LOGMNR procedure:

4. Run a DML statement as an example which we will analyze using Log Miner:

SQL> SELECT V$LOG.STATUS, MEMBER
 FROM VLOG, VLOGFILE
 WHERE V$LOG.GROUP# = V$LOGFILE.GROUP#
 AND V$LOG.STATUS = 'CURRENT';

STATUS MEMBER
---------------- --
CURRENT /u01/app/oracle/oradata/orcl/redo02.log

SQL> BEGIN
 DBMS_LOGMNR.START_LOGMNR(options=>
 dbms_logmnr.dict_from_online_catalog);
 END;
/

PL/SQL procedure successfully completed.

SQL> UPDATE HR.EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=116;

COMMIT;

SQL> BEGIN
 DBMS_LOGMNR.ADD_LOGFILE('/u01/app/oracle/oradata/orcl/redo02.log');
 END;
/

PL/SQL procedure successfully completed.

 289

5. Querying the V$LOGMNR_CONTENTS table to view the DML commands captured using Log Miner:

For additional information on Oracle LogMiner:
https://docs.oracle.com/cd/E11882_01/server.112/e22490/logminer.htm#SUTIL019

 Migration to: PostgreSQL Logging Options
[Back to TOC]

Overview
PostgreSQL does not provide a feature that is directly equivalent to Oracle Log Miner. However, several
alternatives exist which allow viewing historical database activity in PostgreSQL.

Using PG_STAT_STATEMENTS
Extension module for tracking query execution details with statistical information. The
PG_STAT_STATEMENTS view presents a single row for each database operation that was logged, including
information about the user, query, number of row retrieved by the query and more.

Examples

Configure and use PG_STAT_STATEMENTS to view past database activity:

1. On the AWS Management Console, navigate to RDS > Parameter Groups.

SQL> SELECT TO_CHAR(TIMESTAMP,'mm/dd/yy hh24:mi:ss') TIMESTAMP,
 SEG_NAME, OPERATION, SQL_REDO, SQL_UNDO
 FROM V$LOGMNR_CONTENTS
 WHERE TABLE_NAME = 'EMPLOYEES'
 AND OPERATION = 'UPDATE';

TIMESTAMP SEG_NAME OPERATION SQL_REDO SQL_UNDO
----------------- ---------- ---------- ------------------------------ ------------------------------
10/09/17 06:43:44 EMPLOYEES UPDATE update "HR"."EMPLOYEES" set "S update "HR"."EMPLOYEES" set "S
 ALARY" = '3900' where "SALARY" ALARY" = '2900' where "SALARY"
 = '2900' and ROWID = 'AAAViUA = '3900' and ROWID = 'AAAViUA
 AEAAABVvAAQ'; AEAAABVvAAQ';

https://docs.oracle.com/cd/E11882_01/server.112/e22490/logminer.htm#SUTIL019

 290

2. Select the current database parameter group:

3. Set the following parameters:

shared_preload_libraries = 'pg_stat_statements'
pg_stat_statements.max = 10000
pg_stat_statements.track = all

Note: A database reboot may be required for the updated values to take effect.

4. Connect to the and run the following command:

psql=> CREATE EXTENSION PG_STAT_STATEMENTS;

 291

5. Test the PG_STAT_STATEMENTS view to see captured database activity:

Note: PostgreSQL PG_STAT_STATEMENTS does not provide a feature that is equivalent to
LogMiner’s SQL_UNDO column.

DML / DDL Database Activity Logging

DML and DML operations can be tracked inside the PostgreSQL log file (postgres.log) and
viewed using AWS console.

psql=> UPDATE EMPLOYEES
 SET SALARY=SALARY+1000
 WHERE EMPLOYEE_ID=116;

psql=> SELECT *
 FROM PG_STAT_STATEMENTS
 WHERE LOWER(QUERY) LIKE '%update%';

-[RECORD 1]-------+-----------------------------
userid | 16393
dbid | 16394
queryid | 2339248071
query | UPDATE EMPLOYEES +
 | SET SALARY=SALARY+?+
 | WHERE EMPLOYEE_ID=?
calls | 1
total_time | 11.989
min_time | 11.989
max_time | 11.989
mean_time | 11.989
stddev_time | 0
rows | 1
shared_blks_hit | 15
shared_blks_read | 10
shared_blks_dirtied | 0
shared_blks_written | 0
local_blks_hit | 0
local_blks_read | 0
local_blks_dirtied | 0
local_blks_written | 0
temp_blks_read | 0
temp_blks_written | 0
blk_read_time | 0
blk_write_time | 0

 292

Example

1. On the AWS Console, navigate to RDS > Parameter Groups.

2. Set the following parameters:

log_statement = 'ALL'

log_min_duration_statement = 1

Note: A reboot may be required for the parameters to take effect.

3. Test DDL/DML logging:

- On the AWS Management Console, navigate to RDS > Instances > Select Instance > Logs
- Sort via the Last Written column to show recent logs (click on column header).
- Click View on the relevant log. For example, the PostgreSQL log file shown here with a

logged UPDATE command:

 293

Amazon Aurora Performance Insights
The Amazon Aurora Performance Insights dashboard provides information about current and historical SQL
statements, executions and workloads. Note, enhanced monitoring should be enabled during Amazon Aurora
instance configuration.

Example

1. On the AWS Management Console, navigate to RDS > Instances.
2. Select the relevant instance and choose Instance Actions > Modify.
3. Ensure that Enable Enhanced Monitoring option is set to Yes.
4. Mark the checkbox for Apply Immediately.
5. Click Continue.
6. On the AWS Management Console, navigate to RDS > Performance Insights.
7. Select the relevant instance to monitor.
8. Select the timeframe and monitor scope (Waits, SQL, Hosts and Users).

For additional information:
https://www.postgresql.org/docs/9.6/static/runtime-config-logging.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

https://www.postgresql.org/docs/9.6/static/runtime-config-logging.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

 294

 Migrating from: Oracle Instance Parameters
[Back to TOC]

Overview
Oracle Instance and database-level parameters can be configured via ALTER SYSTEM commands. Certain
parameters can be configured dynamically and take immediate effect, while other parameters require an
instance restart.

1. All Oracle instance and database-level parameters are stored in a binary file known as the SPFILE (or

Server Parameter FILE).
2. The binary server parameter file (SPFILE) can be exported to a text file via the following command:

CREATE PFILE = 'my_init.ora' FROM SPFILE = 's_params.ora';

When modifying parameters, the DBA can choose the persistency of the changed values with one of the three
following options:
• Make the change applicable only after a restart by specifying scope=spfile.
• Make the change dynamically but not persistent after a restart by specifying scope=memory.
• Make the change both dynamically and persistent by specifying scope=both.

Example

Use the ALTER SYSTEM SET command for configuring a value for an Oracle parameter

For additional details about Oracle initialize Parameters and ALTER SYSTEM command:
https://docs.oracle.com/database/121/ADMQS/GUID-EFF3CCE9-DD06-4755-B2DA-32CDD26F7A18.htm#ADMQS0511
https://docs.oracle.com/database/121/SQLRF/statements_2017.htm#SQLRF00902

 Migration to: Amazon Aurora DB Parameter Groups
[Back to TOC]

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE SCOPE=BOTH;

https://docs.oracle.com/database/121/ADMQS/GUID-EFF3CCE9-DD06-4755-B2DA-32CDD26F7A18.htm#ADMQS0511
https://docs.oracle.com/database/121/SQLRF/statements_2017.htm#SQLRF00902

 295

Overview
When running your PostgreSQL databases as Amazon Aurora Clusters, changes to cluster-level and database-
level parameters are performed via Parameter Groups.

Most of the PostgreSQL parameters are configurable in an Amazon Aurora PostgreSQL cluster, but some are
disabled and non-modifiable. Since Amazon Aurora clusters restrict access to the underlying operating system,
modification to PostgreSQL parameters are done using parameter groups.

Amazon Aurora is a cluster of DB instances and, as a direct result, some of the PostgreSQL parameters apply to
the entire cluster, while other parameters apply only to a particular database instance in the cluster.

Aurora PostgreSQL
Parameter Class

Controlled Via

Cluster-level parameters

Single cluster parameter
group per Amazon Aurora
Cluster

Managed via cluster parameter groups

For example:
• The PostgreSQL wal_buffers parameter is controlled via a

cluster parameter group.
• The PostgreSQL autovacuum parameter is controlled via a

cluster parameter group.
• The client_encoding parameter is controlled via a cluster

parameter group.
Database Instance-Level
parameters

Every instance in your
Amazon Aurora cluster can
be associated with a unique
database parameter group

Managed via database parameter groups

For example:
• The PostgreSQL shared_buffers memory cache

configuration parameter is controlled via a database parameter
group with an AWS-optimized default value based on the
configured database class:
{DBInstanceClassMemory/10922}

• The PostgreSQL max_connections parameter which
controls maximum number of client connections allowed to
the PostgreSQL instance, is controlled via a database
parameter group. Default value is optimized by AWS based on
the configured database class:
LEAST({DBInstanceClassMemory/9531392},5000)

• The PostgreSQL effective_cache_size which informs
the query optimizer how much cache is present in the kernel
and helps control how expensive large index scans will be, is
controlled via a database level parameter group. The default
value is optimized by AWS based on database class (RAM):
{DBInstanceClassMemory/10922}

 296

Aurora PostgreSQL
Parameter Class

Controlled Via

• The authentication_timeout parameter, which
controls the maximum time to complete client authentication,
in seconds, is controlled via a database parameter group.

• The superuser_reserved_connections parameter
which determines the number of reserved
connection "slots" for PostgreSQL superusers, is configured via
a database parameter group.

Examples

Create and configure the Amazon Aurora database and cluster parameter groups:

1. Navigate to the RDS Service section of the AWS Console.

2. Click Parameters Group on the left-hand navigation menu and select Create Parameter Group.
Note: you cannot edit the default parameter group, you will need to create a custom parameter
group to apply changes to your Amazon Aurora cluster and its database instances.

3. Complete all the required configuration and click Create.

 297

• Parameter group family – select the database engine type for this group. For example – “aurora-

postgresql9.6” should be selected for Amazon Aurora PostgreSQL clusters.
• Type – cluster or database-level parameter group.
• Specify a custom name for your new parameter group.
• Specify a description for your parameter group.

4. Once the new parameter group is created, you can configure its parameters by clicking Edit

Parameters:

5. Setting the values for specific parameters inside the parameter groups is performed by searching
for the parameter name (for example, the authentication_timeout parameter) and
specifying a new value (for example, 3 minutes). Once the modification is complete, click Save
Changes.

 298

6. To associate an Aurora PostgreSQL Cluster with a specific parameter group, do the following:

• Navigate to the Instances List page.
• Select your desired Amazon Aurora instance.
• Click Instance Actions.
• In the context menu, click Modify.

7. In the configuration page, select the desired parameter group.

 299

Note: These changes will require an instance restart

8. To apply the changes:

• Navigate to the Amazon Aurora instance list page.
• Expand the instance properties (1).
• Click the Details button (2). If the parameter group is listed as “pending reboot”, an instance

restart is required.

9. To restart your Aurora instance, select Instance Actions and click Reboot.

 300

 Migrating from: Oracle Session Parameters
[Back to TOC]

Overview
Certain parameters and configuration options in the Oracle database are modifiable on a per-session level.
This is accomplished using the ALTER SESSION command , which configures parameters for the scope of
the connected session only.

Note:
Not all Oracle configuration options and parameters can be modified on a per-session basis. To view a list of all
configurable parameters that can be set for the scope of a specific session, you will need to query the
v$parameter view:

Example

1. Change the NLS_LANAUGE (codepage) parameter of the current session using an ALTER SESSION command:

2. Specify the format of dates values returned from the database using the NLS_DATE_FORMAT session parameter:

SELECT NAME, VALUE FROM V$PARAMETER WHERE ISSES_MODIFIABLE='TRUE';

SQL> alter session set nls_language='SPANISH';

Sesi≤n modificada.

SQL> alter session set nls_language='ENGLISH';

Session altered.

SQL> alter session set nls_language='FRENCH';

Session modifiΘe.

SQL> alter session set nls_language='GERMAN';

Session wurde geΣndert.

 301

For additional details about Oracle session parameters:
https://docs.oracle.com/database/121/SQLRF/statements_2015.htm#i2143260

 Migration to: PostgreSQL Session Parameters
[Back to TOC]

Overview
PostgreSQL provides session-modifiable parameters that are configured using the SET SESSION command.
Configuration of parameters using SET SESSION will only be applicable in the current session. To view the list of
parameters that can be set with SET SESSION , you can query pg_settings:

Examples of commonly-used session parameters:

1. client_encoding - configures the connected client character set.
2. force_parallel_mode - forces use of parallel query for the session.
3. lock_timeout - sets the maximum allowed duration of time to wait for a database lock to release.
4. search_path - sets the schema search order for object names that are not schema-qualified.
5. transaction_isolation - sets the current Transaction Isolation Level for the session.

Example

SQL> select sysdate from dual;
SYSDATE

SEP-09-17

SQL> alter session set nls_date_format='DD-MON-RR';
Session altered.

SQL> select sysdate from dual;
SYSDATE

09-SEP-17

SQL> alter session set nls_date_format='MM-DD-YYYY';
Session altered.

SQL> select sysdate from dual;

SYSDATE

09-09-2017

SQL> alter session set nls_date_format='DAY-MON-RR';

Session altered.

SELECT * FROM pg_settings where context = 'user';

https://docs.oracle.com/database/121/SQLRF/statements_2015.htm#i2143260

 302

Change the Date format of the connected session:

Oracle vs. PostgreSQL Session parameter examples
Please note that the list below is partial and is meant to highlight various session-level configuration
parameters in both Oracle and PostgreSQL. Not all parameters are directly comparable.

Oracle PostgreSQL
Configure time
and date format

ALTER SESSION SET

nls_date_format =

'dd/mm/yyyy hh24:mi:ss';

SET SESSION datestyle to 'SQL,
DMY';

Configure the
current default
schema/database

ALTER SESSION SET current
schema=’schema_name’

SET SESSION SEARCH_PATH TO
schemaname;

Generate traces
for specific errors

ALTER SESSION SET events
'10053 trace name context
forever';

N/A

Run trace for a
SQL statement

ALTER SESSION SET
sql_trace=TRUE;

ALTER SYSTEM SET EVENTS
'sql_trace [sql:&&sql_id]
bind=true, wait=true';

N/A

Modify query
optimizer cost for
index access

ALTER SESSION SET
optimizer_index_cost_adj =
50

SET SESSION random_page_cost
TO 6;

Modify query
optimizer row
access strategy

ALTER SESSION SET
optimizer_mode=all_rows;

N/A

Memory allocated
to sort operations

ALTER SESSION SET
sort_area_size=6321;

SET SESSION work_mem TO '6MB';

Memory allocated
to hash-joins

ALTER SESSION SET
hash_area_size=1048576000;

SET SESSION work_mem TO '6MB';

For additional details:
https://www.postgresql.org/docs/9.6/static/sql-set.html

mydb=> set session DateStyle to POSTGRES, DMY;
SET
mydb=> select now();
 now

 Sat 09 Sep 11:03:43.597202 2017 UTC
(1 row)

mydb=> set session DateStyle to ISO, MDY;
SET
mydb=> select now();
 now

 2017-09-09 11:04:01.3859+00
(1 row)

https://www.postgresql.org/docs/9.6/static/sql-set.html

 303

 Migrating from: Oracle Alert.log and logs files
 [Back to TOC]

Overview
The primary error log file for the Oracle database is known as the “Alert Log” with a file name that in the
following format: “alert<SID>.log”. The Alert Log contains verbose information regarding the activity
of the Oracle database including informational messages and errors. Each event includes a timestamp
indicating when the event occurred.

When encountering database issues, the Oracle Alert Log is the first place to look for troubleshooting and
to investigate errors, failures or for any other messages that might indicate a potential database problem.

Example

1. Partial contents of the Oracle database Alert Log File:

Common events logged in the Alert Log include:

1. Database startup or shutdown.
2. Database redo log switch.
3. Database errors and warnings, starting with ORA- and followed by an Oracle error number.
4. Network and connection issues
5. Links for a detailed trace files regarding a specific database event

The Oracle Alert Log can be found inside the database Automatic Diagnostics Repository (ADR), a
hierarchical file-based repository for diagnostic information:

$ADR_BASE/diag/rdbms/{DB-name}/{SID}/trace

In addition, several other Oracle server components have their own unique log files, such as the
database listener, Automatic Storage Manager (ASM), etc.

For additional details:
https://docs.oracle.com/cd/B28359_01/server.111/b28310/diag005.htm#ADMIN11267
https://docs.oracle.com/database/121/SUTIL/GUID-E0FF3013-2EBF-4110-88BF-69E7DD2BBD7C.htm#SUTIL1474

https://docs.oracle.com/cd/B28359_01/server.111/b28310/diag005.htm#ADMIN11267
https://docs.oracle.com/database/121/SUTIL/GUID-E0FF3013-2EBF-4110-88BF-69E7DD2BBD7C.htm#SUTIL1474

 304

 Migration to: PostgreSQL Error Log via Amazon RDS Console
[Back to TOC]

PostgreSQL provides detailed logging and reporting of errors that occur during the database and connected
sessions lifecycle. In an Amazon Aurora deployment, these informational and error messages are accessible
using the Amazon RDS console.

PostgreSQL vs. Oracle error codes
Oracle error codes start with the “ORA-” prefix. PostgreSQL messages expressed by assigning five-character
error codes divided by message class such as: successful completion, warning, no data and more.

Oracle PostgreSQL
ORA-00001: unique
constraint
(string.string)
violated

SQLSTATE[23505]: Unique violation: 7 ERROR:
duplicate key value violates unique constraint
"constraint_name"

For additional details about PostgreSQL Error Codes:
https://www.postgresql.org/docs/9.6/static/errcodes-appendix.html

Example
Access the PostgreSQL error log using the Amazon RDS/Aurora Management Console:

• Navigate to: Services > RDS > Instances > Select Instance

• Click Logs.
• Select a specific PostgreSQL log file and select View to review a static version of log file.

Optionally, select Watch for a dynamic (updating) view of log file.

https://www.postgresql.org/docs/9.6/static/errcodes-appendix.html

 305

Notes
1. You can use the search box to search for a specific log file.
2. You can click on the download button to download the log file to your local machine.

Partial contents of a PostgreSQL database error log as viewed from the Amazon RDS Management
Console:

PostgreSQL error log configuration
Several parameters control how and where PostgreSQL log and errors files will be placed:

Common Amazon Aurora configuration options

Oracle PostgreSQL
log_filename Sets the file name pattern for log files.

Modifiable via an Aurora Database Parameter Group
log_rotation_age

(min) Automatic log file rotation will occur after N minutes.
Modifiable via an Aurora Database Parameter Group

log_rotation_size (kB) Automatic log file rotation will occur after N kilobytes.
Modifiable via an Aurora Database Parameter Group

log_min_messages Sets the message levels that are logged (DEBUG, ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group

 306

log_min_error_sta
tement

Causes all statements generating error at or above this level to be logged
(DEBUG, ERROR, INFO, etc.…).
Modifiable via an Aurora Database Parameter Group

log_min_duration_
statement

Sets the minimum execution time above which statements will be logged (ms).
Modifiable via an Aurora Database Parameter Group

Note
Modifications to certain parameters, such as log_directory(which sets the destination directory for
log files) or logging_collector (which start a subprocess to capture stderr output and/or
csvlogs into log files) are disabled for Aurora PostgreSQL instance

Log severity levels supported by PostgreSQL:

Severity Usage
DEBUG1…DEBUG5 Provides successively-more-detailed information for use by developers
INFO Provides information implicitly requested by the user
NOTICE Provides information that might be helpful to users
WARNING Provides warnings of likely problems
ERROR Reports an error that caused the current command to abort
LOG Reports information of interest to administrators
FATAL Reports an error that caused the current session to abort
PANIC Reports an error that caused all database sessions to abort

For additional details about PostgreSQL Error Reporting and Logging:
https://www.postgresql.org/docs/9.6/static/runtime-config-logging.html

https://www.postgresql.org/docs/9.6/static/runtime-config-logging.html

 307

 Migrating from: Oracle Table Statistics
[Back to TOC]

Overview
Table statistics are one of the important aspects that can affect SQL query performance. Table Statistics allow
the query optimizer to make informed assumptions when deciding how to generate the execution plan for
each query. Oracle provides the DBMS_STATS package to manage and control the table statistics which can
be collected automatically or manually.

The following statistics are usually collected on database tables and indexes:

• Number of table rows.
• Number of table blocks.
• Number of distinct values or nulls.
• Data distribution histograms.

Automatic Optimizer Statistics Collection
By default, Oracle will collect table and index statistics by using automated maintenance tasks leveraging the
database scheduler to automatically collect statistics at predefined maintenance windows. Using the data
modification monitoring feature in Oracle, which is responsible for tracking the approximate number of
INSERTs, UPDATEs, and DELETEs for that table, the automatic statistics collection mechanism knows which
table statistics should be collected.

Manual Optimizer Statistics Collection
When the automatic statistics collection is not suitable for a particular use-case, the optimizer statistics
collection can be performed manually, at several levels:

1. GATHER_INDEX_STATS Index statistics
2. GATHER_TABLE_STATS Table, column, and index statistics
3. GATHER_SCHEMA_STATS Statistics for all objects in a schema
4. GATHER_DICTIONARY_STATS Statistics for all dictionary objects
5. GATHER_DATABASE_STATS Statistics for all objects in a database

Example

1. Collecting statistics at the table level (schema - HR, table - EMPLOYEES):

SQL> BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('HR','EMPLOYEES');
 END;
/

PL/SQL procedure successfully completed.

 308

2. Collecting statistics at a specific column-level (schema - HR, table - EMPLOYEES, column -
DEPARTMENT_ID):

For additional information on Oracle Collecting Table Statistics:
http://docs.oracle.com/cd/E25054_01/server.1111/e16638/stats.htm#i41448
https://docs.oracle.com/database/121/TGSQL/tgsql_stats.htm#TGSQL390

 Migration to: PostgreSQL Table Statistics
[Back to TOC]

Overview
Use the ANALYZE command to collect statistics about a database, a table or a specific table column. The
PostgreSQL ANALYZE command collects table statistics which support generation of efficient query execution
plans by the query planner.

1. Histograms - ANALYZE will collect statistics on table columns values and create a histogram of the

approximate data distribution in each column.
2. Pages and rows - ANALYZE will collect statistics on the number of database pages and rows from which

each table is comprised.
3. Data sampling - for large tables, the ANALYZE command will take random samples of values rather than

examining each and every single row. This allows the ANALYZE command to scan very large tables in a
relatively small amount of time.

3. Statistic collection granularity - executing the ANALYZE command without any parameter will instruct
PostgreSQL to examine every table in the current schema. Supplying the table name or column name to
the ANALYZE, will instruct the database to examine a specific table or table column.

Automatic Statistics Collection
By default, PostgreSQL is configured with an “autovacuum daemon” which automates the execution of
statistics collection via the ANALYZE commands (in addition to automation of the VACUUM command).
The “autovacuum daemon” scans for tables which show signs of large modifications in data to collect the
current statistics. Autovacuum is controlled by several parameters.

For additional details:
https://www.postgresql.org/docs/9.6/static/runtime-config-autovacuum.html

SQL> BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('HR','EMPLOYEES',

METHOD_OPT=>'FOR COLUMNS department_id');
 END;
/

PL/SQL procedure successfully completed.

http://docs.oracle.com/cd/E25054_01/server.1111/e16638/stats.htm#i41448
https://docs.oracle.com/database/121/TGSQL/tgsql_stats.htm#TGSQL390
https://www.postgresql.org/docs/9.6/static/runtime-config-autovacuum.html

 309

Manual Statistics Collection
PostgreSQL allows collecting statistics on-demand using the ANALYZE command at a database level, table-
level or table column-level.

1. ANALYZE on indexes is not currently supported.
2. ANALYZE requires only a read-lock on the target table, so it can run in parallel with other activity on the

table.
3. For large tables, ANALYZE takes a random sample of the table contents. Configured via the show

default_statistics_target parameter. The default value is 100 entries. Raising the limit might
allow more accurate planner estimates to be made at the price of consuming more space in
the pg_statistic table.

Examples

1. Gather statistics for the entire database:

2. Gather statistics for a specific table. The VERBOSE keyword displays progress.

3. Gather statistics for a specific column:

4. Specify the default_statistics_target parameter for an individual table column and reset it

back to default:

Larger values will increase the time needed to complete an ANALYZE, but, will improve the quality of the
collected planner's statistics which can potentially lead to better execution plans.

5. View the current (session / global) default_statistics_target, modify it to 150 and analyze the

EMPLOYEES table:

6. View the last time statistics were collected for a table:

psql=> ANALYZE;

psql=> ANALYZE VERBOSE EMPLOYEES;

psql=> ANALYZE EMPLOYEES (HIRE_DATE);

psql=> ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS 150;

psql=> ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS -1;

psql=> SHOW default_statistics_target ;
psql=> SET default_statistics_target to 150;
psql=> ANALYZE EMPLOYEES ;

select relname, last_analyze from pg_stat_all_tables;

 310

Comparing Oracle and PostgreSQL Statistics Collection

Feature Oracle PostgreSQL

Analyze a specific
database table

BEGIN
dbms_stats.gather_tabl
e_stats(ownname
=>'hr', tabname =>
'employees' , …
);
END;

ANALYZE EMPLOYEES;

Analyze a database
table while only
sampling certain rows

Configure via percentage of
table rows to sample:

BEGIN
dbms_stats.gather_tabk
e_stats(
ownname=>'HR',
…
ESTIMATE_PERCENT=>100)
;
END;

Configure via number of entries
for the table:

SET
default_statistics_tar
get to 150;
ANALYZE EMPLOYEES ;

Collect statistics for a
schema

BEGIN
EXECUTE
DBMS_STATS.GATHER_SCHE
MA_STATS(ownname =>
'HR');
END

ANALYZE;

View last time
statistics were
collected

select
owner,table_name,last_
analyzed;

select relname,
last_analyze from
pg_stat_all_tables;

For additional information on PostgreSQL Collecting Table Statistics:
https://www.postgresql.org/docs/9.6/static/sql-analyze.html
https://www.postgresql.org/docs/9.6/static/routine-vacuuming.html#AUTOVACUUM

https://www.postgresql.org/docs/9.6/static/sql-analyze.html
https://www.postgresql.org/docs/9.6/static/routine-vacuuming.html#AUTOVACUUM

 311

Migrating from: Viewing Oracle Execution Plans
[Back to TOC]

Overview
Execution plans represent the choices made by the query optimizer of which actions to perform in order to
access data in the database. Execution Plans are generated by the database optimizer for SELECT, INSERT,
UPDATE and DELETES statements.

Users and DBAs can request the database to present the execution plan for any specific query or DML
operation providing an extensive view on the optimizer’s method of accessing data. Execution Plans are
especially useful for performance tuning of queries, including deciding if new indexes should be created.
Execution plans can be affected by data volumes, data statistics and instance parameters (global or session
parameters).

Execution plans are displayed as a structured tree that presents the following information:
1. Tables access by the SQL statement and the referenced order for each table.
2. Access method for each table in the statement (full table scan vs. index access).
3. Algorithms used for joins operations between tables (hash vs. nested loop joins).
4. Operations that are performed on retrieved data as filtering, sorting and aggregations.
5. Information about rows begin processed (cardinality) and the cost for each operation.
6. Table partitions begin accessed.
7. Information about parallel executions.

Examples
1. Review the potential execution plan for a query using the EXPLAIN PLAN statement:

* SET AUTOT TRACE EXP instructs SQL*PLUS to show the execution plan without actually
running the query itself.

SQL> SET AUTOT TRACE EXP
SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
 WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

Execution Plan
--
Plan hash value: 2077747057

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	16	2 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	16	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	EMP_NAME_IX	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("LAST_NAME"='King' AND "FIRST_NAME"='Steven')

 312

The EMPLOYEES tables contains indexes for both the LAST_NAME and the FIRST_NAME
columns, we can see that in step 2 of the execution plan above, the optimizer is performing an
INDEX RANGE SCAN in order to retrieve the filtered employee name.

2. View a different execution plan, this time showing a FULL TABLE SCAN:

For additional details:
http://docs.oracle.com/cd/E25178_01/server.1111/e16638/ex_plan.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_genplan.htm#TGSQL271

SQL> SET AUTOT TRACE EXP
SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
 WHERE SALARY > 10000;

Execution Plan
--
Plan hash value: 1445457117

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 72 | 1368 | 3 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 72 | 1368 | 3 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 1 - filter("SALARY">10000)

http://docs.oracle.com/cd/E25178_01/server.1111/e16638/ex_plan.htm
https://docs.oracle.com/database/121/TGSQL/tgsql_genplan.htm#TGSQL271

 313

 Migration to: Viewing PostgreSQL Execution Plans
[Back to TOC]

Overview
The PostgreSQL equivalent to EXPLAIN PLAN in the Oracle database is the EXPLAIN keyword which is
used to display the execution plan for a supplied SQL statement. In similar manner to Oracle, the query
planner in PostgreSQL will generate the estimated execution plan for actions such as: SELECT, INSERT,
UPDATE and DELETE and will build a structured tree of plan nodes representing the different actions taken
(the sign “->” represent a root line in the PostgreSQL execution plan). In addition, the EXPLAIN statement
will provide statistical information regarding each action such as: cost, rows, time and loops.

When using the EXPLAIN command as part of a SQL statement, the statement will not execute and the
execution plan would be an estimation. However, by using the EXPLAIN ANALYZE command, the
statement will actually be executed in addition to displaying the execution plan itself.

PostgreSQL EXPLAIN Synopsis:

Examples

1. Displaying the execution plan of a SQL statement using the EXPLAIN command:

2. Running the same statement with the ANALYZE keyword:

EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 BUFFERS [boolean]
 TIMING [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

psql=> EXPLAIN
 SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
 WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

--
 Index Scan using idx_emp_name on employees (cost=0.14..8.16 rows=1 width=18)
 Index Cond: (((last_name)::text = 'King'::text) AND ((first_name)::text =
'Steven'::text))
(2 rows)

 314

By adding the ANALYZE keyword and executing the statement, we get additional information in
addition to the execution plan.

3. Viewing a PostgreSQL execution plan showing a FULL TABLE SCAN:

PostgreSQL can perform several scan types for processing and retrieving data from tables including:
sequential scans, index scans, and bitmap index scans. The sequential scan (“Seq Scan”) is
PostgreSQL equivalent for Oracle “Table access full” (full table scan).

For additional information on PostgreSQL Execution Plans:
https://www.postgresql.org/docs/9.6/static/sql-explain.html

psql=> EXPLAIN ANALYZE
 SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
 WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

--
 Seq Scan on employees (cost=0.00..3.60 rows=1 width=18) (actual
 time=0.012..0.024 rows=1 loops=1)
 Filter: (((last_name)::text = 'King'::text) AND ((first_name)::text =
 'Steven'::text))
 Rows Removed by Filter: 106
 Planning time: 0.073 ms
 Execution time: 0.037 ms
(5 rows)

psql=> EXPLAIN ANALYZE
 SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
 WHERE SALARY > 10000;

--
 Seq Scan on employees (cost=0.00..3.34 rows=15 width=18) (actual time=0.012..0.036 rows=15
loops=1)
 Filter: (salary > '10000'::numeric)
 Rows Removed by Filter: 92
 Planning time: 0.069 ms
 Execution time: 0.052 ms
(5 rows)

https://www.postgresql.org/docs/9.6/static/sql-explain.html

 315

 Migrating from: Oracle SecureFile LOBs
[Back to TOC]

Overview
LOBs – or Large Objects is a mechanism for storing binary data inside the Oracle database. Oracle 11g
introduced a new data type for storing Large Objects (LOBs) binary files directly inside the database using
more efficient storage. This feature is known as Secure File Lobs and implemented using the SECUREFILE
keyword as part of the CREATE TABLE statement

Primary benefits of using SECUREFILE lobs include:

• Compression
With Oracle advanced compression utilized to analyze the SecureFiles LOB data to save disk
space.

• De-Duplication
Automatically detect duplicate LOB data within a LOB column or partition and by removing
duplicates of repeating binary data, reduce storage space.

• Encryption
Combined with Transparent Data Encryption (TDE).

Examples

1. Create a table using a SecureFiles LOB column:

2. Provide additional options for LOB compression during table creation:

For additional details:
https://docs.oracle.com/cd/E11882_01/appdev.112/e18294/adlob_smart.htm#ADLOB45944
https://docs.oracle.com/database/121/ADLOB/adlob_smart.htm#ADLOB4444

SQL> CREATE TABLE sf_tab (
 COL1 NUMBER,
 COL2_CLOB CLOB)
 LOB(COL2_CLOB) STORE AS SECUREFILE;

SQL> CREATE TABLE sf_tab (
 COL1 NUMBER,
 COL2_CLOB CLOB)
 LOB(COL2_CLOB) STORE AS SECUREFILE COMPRESS_LOB(COMPRESS HIGH);

https://docs.oracle.com/cd/E11882_01/appdev.112/e18294/adlob_smart.htm#ADLOB45944
https://docs.oracle.com/database/121/ADLOB/adlob_smart.htm#ADLOB4444

 316

 Migration to: PostgreSQL LOBs
[Back to TOC]

Overview
PostgreSQL does not support the advanced storage, security, and encryption options of Oracle SecureFile
LOBs. Regular Large Objects datatypes (LOBs) are supported by PostgreSQL and provides stream-style access.

Although not designed specifically from LOB columns, for compression PostgreSQL utilizes an internal TOAST
mechanism (The Oversized-Attribute Storage Technique).

For more details about PostgreSQL please use the following link:
https://www.postgresql.org/docs/9.4/static/storage-toast.html

Supported large objected Data Types by PostgreSQL are:

• BYTEA
- Stores a LOB within the table limited to 1GB.
- The storage is octal and supports non printable characters.
- The input / output format is HEX.
- Can be used to store a URL references to an AWS S3 objects used by the database. For

example: storing the URL for pictures stored on AWS S3 on a database table.

• TEXT
- Data type for storing strings with unlimited length.
- When not specifying the (n) integer for specifying the varchar data type, the TEXT datatype

behaves as the text data type.

For data encryption purposes (not only for LOB columns), consider using AWS KMS:
https://aws.amazon.com/kms/

For additional information on PostgreSQL LOB Support:
https://www.postgresql.org/docs/current/static/largeobjects.html

https://www.postgresql.org/docs/9.4/static/storage-toast.html
https://aws.amazon.com/kms/
https://www.postgresql.org/docs/current/static/largeobjects.html

 317

	Download AWS SCT and Install JDBC Drivers
	JDBC drivers are required for database connectivity to both the source and target databases.
	Configure SCT for Database Migration
	AWS SCT – Database Migration Project Configuration
	2. Select a source database for migration (the Oracle Database to migrate to Aurora with PostgreSQL Compatibility).

	AWS SCT – Database Migration Assessment
	AWS SCT – Convert Source to Target Database Syntax
	AWS SCT – Deploy the Converted Schema to the Target Database
	Overview
	Overview
	PostgreSQL CTAS Synopsis
	Overview
	Oracle Data Types vs. PostgreSQL Data Types

	Overview
	Migration of Oracle Datatypes to PostgreSQL datatypes
	Oracle integrity constraint types:
	Oracle constraints can be specified with the following syntax:
	Major Constraint Types
	PRIMARY KEY Constraint
	Limitations
	LOB, LONG, LONG RAW, VARRAY, NESTED TABLE, BFILE, REF, TIMESTAMP WITH TIME ZONE. Note: The data type TIMESTAMP WITH LOCAL TIME ZONE is allowed as primary key.
	Examples
	FOREIGN KEY Constraint
	Limitations
	ON DELETE Clause
	Examples
	UNIQUE Constraint
	Limitations
	Check Constraint
	In-Line vs. Out-Of-Line
	Limitations
	Example
	Not Null Constraint
	Example
	REF Constraint
	Example
	Special Constraint States
	Example
	Example
	Required Privileges for Creating Constraints
	Overview
	Similar to constraint deceleration in Oracle, PostgreSQL allows creating constraints in-line or out-of-line during table column specification.
	Privileges
	Primary Key Constraint
	Examples
	Foreign Key Constraint
	Foreign Key and the ON DELETE clause
	Foreign Key and the ON UPDATE clause
	Examples
	UNIQUE Constraints
	Example
	CHECK Constraint
	Example
	NOT NULL Constraints
	Example
	Constraint States
	PostgreSQL SET CONSTRAINTS Synopsis
	Example
	Example
	Use an existing unique Index to create a primary key constraint:
	Oracle Constraints Comparison to PostgreSQL

