
Introduction to DevOps on AWS

October 2020

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Continuous Integration .. 2

AWS CodeCommit ... 2

AWS CodeBuild .. 3

AWS CodeArtifact .. 3

Continuous Delivery .. 4

AWS CodeDeploy .. 4

AWS CodePipeline ... 5

Deployment Strategies .. 6

Blue-Green Deployments ... 7

Canary Deployments .. 7

Linear Deployments ... 7

All-at-once Deployments .. 7

Deployment Strategies Matrix ... 7

AWS Elastic Beanstalk Deployment Strategies .. 8

Infrastructure as Code ... 9

AWS CloudFormation .. 10

AWS Cloud Development Kit ... 12

AWS Cloud Development Kit for Kubernetes .. 12

Automation ... 12

AWS OpsWorks ... 13

AWS Elastic Beanstalk... 14

Monitoring and Logging ... 15

Amazon CloudWatch Metrics .. 15

Amazon CloudWatch Alarms ... 15

Amazon CloudWatch Logs .. 15

Amazon CloudWatch Logs Insights ... 16

Amazon CloudWatch Events ... 16

Amazon EventBridge ... 16

AWS CloudTrail .. 17

Communication and Collaboration .. 18

Two-Pizza Teams... 18

Security .. 19

AWS Shared Responsibility Model .. 19

Identity Access Management ... 20

Conclusion ... 21

Contributors ... 21

Document Revisions.. 22

Abstract

Today more than ever, enterprises are embarking on their digital transformation journey

to build deeper connections with their customers to achieve sustainable and enduring

business value. Organizations of all shapes and sizes are disrupting their competitors

and entering new markets by innovating more quickly than ever before. For these

organizations, it is important to focus on innovation and software disruption, making it

critical to streamline their software delivery. Organizations that shorten their time from

idea to production making speed and agility a priority could be tomorrow's disruptors.

While there are several factors to consider in becoming the next digital disruptor, this

whitepaper focuses on DevOps, and the services and features in the AWS platform that

will help increase an organization's ability to deliver applications and services at a high

velocity.

Amazon Web Services Introduction to DevOps on AWS

 1

Introduction

DevOps is the combination of cultural, engineering practices and patterns, and tools

that increase an organization's ability to deliver applications and services at high

velocity and better quality. Over time several essential practices have emerged when

adopting DevOps: Continuous Integration, Continuous Delivery, Infrastructure as Code,

and Monitoring and Logging.

This paper highlights AWS capabilities that help you accelerate your DevOps journey,

and how AWS services can help remove the undifferentiated heavy lifting associated

with DevOps adaptation. We also highlight how to build a continuous integration and

delivery capability without managing servers or build nodes, and how to leverage

Infrastructure as Code to provision and manage your cloud resources in a consistent

and repeatable manner.

• Continuous Integration: is a software development practice where developers

regularly merge their code changes into a central repository, after which

automated builds and tests are run.

• Continuous Delivery: is a software development practice where code changes

are automatically built, tested, and prepared for a release to production.

• Infrastructure as Code: is a practice in which infrastructure is provisioned and

managed using code and software development techniques, such as version

control, and continuous integration.

• Monitoring and Logging: enables organizations to see how application and

infrastructure performance impacts the experience of their product’s end user.

• Communication and Collaboration: practices are established to bring the

teams closer and by building workflows and distributing the responsibilities for

DevOps.

• Security: should be a cross cutting concern. Your continuous integration and

continuous delivery (CI/CD) pipelines and related services should be

safeguarded and proper access control permissions should be setup.

An examination of each of these principles reveals a close connection to the offerings

available from Amazon Web Services (AWS).

Amazon Web Services Introduction to DevOps on AWS

 2

Continuous Integration

Continuous Integration (CI) is a software development practice where developers

regularly merge their code changes into a central code repository, after which

automated builds and tests are run. CI helps find and address bugs quicker, improve

software quality, and reduce the time it takes to validate and release new software

updates.

AWS offers the following three services for continuous integration:

AWS CodeCommit

AWS CodeCommit is a secure, highly scalable, managed source control service that

hosts private git repositories. CodeCommit eliminates the need for you to operate your

own source control system and there is no hardware to provision and scale or software

to install, configure, and operate. You can use CodeCommit to store anything from code

to binaries, and it supports the standard functionality of Git, allowing it to work

seamlessly with your existing Git-based tools. Your team can also use CodeCommit’s

online code tools to browse, edit, and collaborate on projects. AWS CodeCommit has

several benefits:

Collaboration - AWS CodeCommit is designed for collaborative software development.

You can easily commit, branch, and merge your code enabling you to easily maintain

control of your team’s projects. CodeCommit also supports pull requests, which provide

a mechanism to request code reviews and discuss code with collaborators.

Encryption - You can transfer your files to and from AWS CodeCommit using HTTPS

or SSH, as you prefer. Your repositories are also automatically encrypted at rest

through AWS Key Management Service (AWS KMS) using customer-specific keys.

Access Control - AWS CodeCommit uses AWS Identity and Access Management

(IAM) to control and monitor who can access your data as well as how, when, and

where they can access it. CodeCommit also helps you monitor your repositories through

AWS CloudTrail and Amazon CloudWatch.

High Availability and Durability - AWS CodeCommit stores your repositories in

Amazon Simple Storage Service (Amazon S3) and Amazon DynamoDB. Your

encrypted data is redundantly stored across multiple facilities. This architecture

increases the availability and durability of your repository data.

https://aws.amazon.com/codecommit/
https://aws.amazon.com/kms/
https://aws.amazon.com/iam/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/

Amazon Web Services Introduction to DevOps on AWS

 3

Notifications and Custom Scripts - You can now receive notifications for events

impacting your repositories. Notifications will come in the form of Amazon Simple

Notification Service (Amazon SNS) notifications. Each notification will include a status

message as well as a link to the resources whose event generated that notification.

Additionally, using AWS CodeCommit repository triggers, you can send notifications

and create HTTP webhooks with Amazon SNS or invoke AWS Lambda functions in

response to the repository events you choose.

AWS CodeBuild

AWS CodeBuild is a fully managed continuous integration service that compiles source

code, runs tests, and produces software packages that are ready to deploy. You don’t

need to provision, manage, and scale your own build servers. CodeBuild can use either

of GitHub, GitHub Enterprise, BitBucket, AWS CodeCommit, or Amazon S3 as a source

provider.

CodeBuild scales continuously and can processes multiple builds concurrently.

CodeBuild offers various pre-configured environments for various version of Windows

and Linux. Customers can also bring their customized build environments as docker

containers. CodeBuild also integrates with open source tools such as Jenkins and

Spinnaker.

CodeBuild can also create reports for unit, functional or integration tests. These reports

provide a visual view of how many tests cases were executed and how many passed or

failed. The build process can also be executed inside an Amazon Virtual Private Cloud

(Amazon VPC) which can be helpful if your integration services or databases are

deployed inside a VPC.

With AWS CodeBuild, your build artifacts are encrypted with customer-specific keys that

are managed by the KMS. CodeBuild is integrated with IAM, so you can assign user-

specific permissions to your build projects.

AWS CodeArtifact

AWS CodeArtifact is a fully managed artifact repository service that can be used by

organizations securely store, publish, and share software packages used in their

software development process. CodeArtifact can be configured to automatically fetch

software packages and dependencies from public artifact repositories so developers

have access to the latest versions.

https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/lambda/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/vpc/
https://aws.amazon.com/codeartifact/

Amazon Web Services Introduction to DevOps on AWS

 4

Software development teams are increasingly relying on open-source packages to

perform common tasks in their application package. It has now become critical for the

software development teams to maintain control on a particular version of the open-

source software is vulnerability free. With CodeArtifact you can set up controls to

enforce the above.

CodeArtifact works with commonly used package managers and build tools like Maven,

Gradle, npm, yarn, twine, and pip, making it easy to integrate into existing development

workflows.

Continuous Delivery

Continuous delivery is a software development practice where code changes are

automatically prepared for a release to production. A pillar of modern application

development, continuous delivery expands upon continuous integration by deploying all

code changes to a testing environment and/or a production environment after the build

stage. When properly implemented, developers will always have a deployment-ready

build artifact that has passed through a standardized test process.

Continuous delivery lets developers automate testing beyond just unit tests so they can

verify application updates across multiple dimensions before deploying to customers.

These tests may include UI testing, load testing, integration testing, API reliability

testing, etc. This helps developers more thoroughly validate updates and pre-emptively

discover issues. With the cloud, it is easy and cost-effective to automate the creation

and replication of multiple environments for testing, which was previously difficult to do

on-premises.

AWS offers the following services for continuous delivery:

• AWS CodeBuild

• AWS CodeDeploy

• AWS CodePipeline

AWS CodeDeploy

AWS CodeDeploy is a fully managed deployment service that automates software

deployments to a variety of compute services such as Amazon Elastic Compute Cloud

(Amazon EC2), AWS Fargate, AWS Lambda, and your on-premises servers. AWS

CodeDeploy makes it easier for you to rapidly release new features, helps you avoid

https://aws.amazon.com/codedeploy/
https://aws.amazon.com/ec2/
https://aws.amazon.com/fargate/

Amazon Web Services Introduction to DevOps on AWS

 5

downtime during application deployment, and handles the complexity of updating your

applications. You can use CodeDeploy to automate software deployments, eliminating

the need for error-prone manual operations. The service scales to match your

deployment needs.

CodeDeploy has several benefits that align with the DevOps principle of continuous

deployment:

Automated Deployments: CodeDeploy fully automates software deployments,

allowing you to deploy reliably and rapidly.

Centralized control: CodeDeploy enables you to easily launch and track the status of

your application deployments through the AWS Management Console or the AWS CLI.

CodeDeploy gives you a detailed report enabling you to view when and to where each

application revision was deployed. You can also create push notifications to receive live

updates about your deployments.

Minimize downtime: CodeDeploy helps maximize your application availability during

the software deployment process. It introduces changes incrementally and tracks

application health according to configurable rules. Software deployments can easily be

stopped and rolled back if there are errors.

Easy to adopt: CodeDeploy works with any application, and provides the same

experience across different platforms and languages. You can easily reuse your existing

setup code. CodeDeploy can also integrate with your existing software release process

or continuous delivery toolchain (e.g., AWS CodePipeline, GitHub, Jenkins).

AWS CodeDeploy supports multiple deployment options. For more information, see

Deployment Strategies.

AWS CodePipeline

AWS CodePipeline is a continuous delivery service that enables you to model,

visualize, and automate the steps required to release your software. With AWS

CodePipeline, you model the full release process for building your code, deploying to

pre-production environments, testing your application, and releasing it to production.

AWS CodePipeline then builds, tests, and deploys your application according to the

defined workflow every time there is a code change. You can integrate partner tools and

your own custom tools into any stage of the release process to form an end-to-end

continuous delivery solution.

https://aws.amazon.com/codepipeline/

Amazon Web Services Introduction to DevOps on AWS

 6

 AWS CodePipeline has several benefits that align with the DevOps principle of

continuous deployment:

Rapid Delivery: AWS CodePipeline automates your software release process, allowing

you to rapidly release new features to your users. With CodePipeline, you can quickly

iterate on feedback and get new features to your users faster.

Improved Quality: By automating your build, test, and release processes, AWS

CodePipeline enables you to increase the speed and quality of your software updates

by running all new changes through a consistent set of quality checks.

Easy to Integrate: AWS CodePipeline can easily be extended to adapt to your specific

needs. You can use the pre-built plugins or your own custom plugins in any step of your

release process. For example, you can pull your source code from GitHub, use your on-

premises Jenkins build server, run load tests using a third-party service, or pass on

deployment information to your custom operations dashboard.

Configurable Workflow: AWS CodePipeline enables you to model the different stages

of your software release process using the console interface, the AWS CLI, AWS

CloudFormation, or the AWS SDKs. You can easily specify the tests to run and

customize the steps to deploy your application and its dependencies.

Deployment Strategies

Deployment strategies define how you want to deliver your software. Organizations

follow different deployment strategies based on their business model. Some may

choose to deliver software which is fully tested, and other may want their users to

provide feedback and let their users evaluate under development features (e.g. Beta

releases). In the following section we will talk about various deployment strategies.

In-Place Deployments

In this strategy, the deployment is done line with the application on each instance in the

deployment group is stopped, the latest application revision is installed, and the new

version of the application is started and validated. You can use a load balancer so that

each instance is deregistered during its deployment and then restored to service after

the deployment is complete. In-place deployments can be all-at-once, assuming a

service outage, or done as a rolling update. AWS CodeDeploy and AWS Elastic

Beanstalk offer deployment configurations for one at a time, half at a time and all at

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/

Amazon Web Services Introduction to DevOps on AWS

 7

once. These same deployment strategies for in-place deployments are available within

Blue-Green deployments.

Blue-Green Deployments

Blue-Green, sometimes referred to as red-black deployment is a technique for releasing

applications by shift traffic between two identical environments running differing

versions of the application. Blue-green deployments help you minimize downtime during

application updates mitigating risks surrounding downtime and rollback functionality.

Blue-green deployments enable you to launch a new version (green) of your application

alongside the old version (blue), and monitor and test the new version before you

reroute traffic to it, rolling back on issue detection.

Canary Deployments

Traffic is shifted in two increments. A canary deployment is a blue-green strategy that is

more risk-adverse, in which a phased approach is used. This can be two step or linear

in which new application code is deployed and exposed for trial, and upon acceptance

rolled out either to the rest of the environment or in a linear fashion.

Linear Deployments

Linear deployments mean traffic is shifted in equal increments with an equal number of

minutes between each increment. You can choose from predefined linear options that

specify the percentage of traffic shifted in each increment and the number of minutes

between each increment.

All-at-once Deployments

All-at-once deployments means all traffic is shifted from the original environment to the

replacement environment all at once.

Deployment Strategies Matrix

The following matrix lists the supported deployment strategies for Amazon Elastic

Container Service (Amazon ECS), AWS Lambda, and Amazon EC2/On-Premise.

• Amazon ECS is a fully managed orchestration service.

• AWS Lambda lets you run code without provisioning or managing servers.

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/

Amazon Web Services Introduction to DevOps on AWS

 8

• Amazon EC2 enables you to run secure, resizable compute capacity in the cloud.

 A B C D

1

Deployment

Strategies Matrix

Amazon ECS

AWS Lambda

Amazon EC2/On-

Premise

2

In-Place

✓

✓

✓

3

Blue-Green

✓

✓

✓*

4

Canary

✓

✓

☓

5

Linear

✓

✓

☓

6

All-at-Once

✓

✓

☓

Note: Blue-Green deployment with EC2/On-Premise only works with EC2
instances.

AWS Elastic Beanstalk Deployment Strategies

AWS Elastic Beanstalk supports the following type of deployment strategies:

• All-at-Once: Performs in place deployment on all instances.

• Rolling: Splits the instances into batches and deploys to one batch at a time.

Amazon Web Services Introduction to DevOps on AWS

 9

• Rolling with Additional Batch: Splits the deployments into batches but for the

first batch creates new EC2 instances instead of deploying on the existing EC2

instances.

• Immutable: If you need to deploy with a new instance instead of using an

existing instance.

• Traffic Splitting: Performs immutable deployment and then forwards percentage

of traffic to the new instances for a pre-determined duration of time. If the

instances stay healthy then forward all traffic to new instances and terminate old

instances.

Infrastructure as Code
A fundamental principle of DevOps is to treat infrastructure the same way developers

treat code. Application code has a defined format and syntax. If the code is not written

according to the rules of the programming language, applications cannot be created.

Code is stored in a version management or source control system that logs a history of

code development, changes, and bug fixes. When code is compiled or built into

applications, we expect a consistent application to be created, and the build is

repeatable and reliable.

Practicing infrastructure as code means applying the same rigor of application code

development to infrastructure provisioning. All configurations should be defined in a

declarative way and stored in a source control system such as AWS CodeCommit, the

same as application code. Infrastructure provisioning, orchestration, and deployment

should also support the use of the infrastructure as code.

Infrastructure was traditionally provisioned using a combination of scripts and manual

processes. Sometimes these scripts were stored in version control systems or

documented step by step in text files or run-books. Often the person writing the run

books is not the same person executing these scripts or following through the run-

books. If these scripts or runbooks are not updated frequently, they can potentially

become a show-stopper in deployments. This results in the creation of new

environments is not always repeatable, reliable, or consistent.

In contrast to the above, AWS provides a DevOps-focused way of creating and

maintaining infrastructure. Similar to the way software developers write application

code, AWS provides services that enable the creation, deployment and maintenance of

infrastructure in a programmatic, descriptive, and declarative way. These services

provide rigor, clarity, and reliability. The AWS services discussed in this paper are core

https://aws.amazon.com/codecommit/

Amazon Web Services Introduction to DevOps on AWS

 10

to a DevOps methodology and form the underpinnings of numerous higher-level AWS

DevOps principles and practices.

AWS offers following services to define Infrastructure as a code.

• AWS CloudFormation

• AWS Cloud Development Kit (AWS CDK)

• AWS Cloud Development Kit for Kubernetes

AWS CloudFormation

AWS CloudFormation is a service that enables developers create AWS resources in an

orderly and predictable fashion. Resources are written in text files using JavaScript

Object Notation (JSON) or Yet Another Markup Language (YAML) format. The

templates require a specific syntax and structure that depends on the types of

resources being created and managed. You author your resources in JSON or YAML

with any code editor such as AWS Cloud9, check it into a version control system, and

then CloudFormation builds the specified services in safe, repeatable manner.

A CloudFormation template is deployed into the AWS environment as a stack. You can

manage stacks through the AWS Management Console, AWS Command Line

Interface, or AWS CloudFormation APIs. If you need to make changes to the running

resources in a stack you update the stack. Before making changes to your resources,

you can generate a change set, which is a summary of your proposed changes. Change

sets enable you to see how your changes might impact your running resources,

especially for critical resources, before implementing them.

https://aws.amazon.com/cloud9/

Amazon Web Services Introduction to DevOps on AWS

 11

Figure 1 - AWS CloudFormation creating an entire environment (stack) from one template

You can use a single template to create and update an entire environment or separate

templates to manage multiple layers within an environment. This enables templates to

be modularized, and also provides a layer of governance that is important to many

organizations.

When you create or update a stack in the console, events are displayed showing the

status of the configuration. If an error occurs, by default the stack is rolled back to its

previous state. Amazon Simple Notification Service (Amazon SNS) provides

notifications on events. For example, you can use Amazon SNS to track stack creation

and deletion progress via email and integrate with other processes programmatically.

AWS CloudFormation makes it easy to organize and deploy a collection of AWS

resources and lets you describe any dependencies or pass in special parameters when

the stack is configured.

With CloudFormation templates, you can work with a broad set of AWS services, such

as Amazon S3, Auto Scaling, Amazon CloudFront, Amazon DynamoDB, Amazon EC2,

Amazon ElastiCache, AWS Elastic Beanstalk, Elastic Load Balancing, IAM, AWS

OpsWorks, and Amazon VPC. For the most recent list of supported resources, see

AWS resource and property types reference.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

Amazon Web Services Introduction to DevOps on AWS

 12

AWS Cloud Development Kit

The AWS Cloud Development Kit (AWS CDK) is an open source software development

framework to model and provision your cloud application resources using familiar

programming languages. AWS CDK enables you to model application infrastructure

using TypeScript, Python, Java, and .NET. Developers can leverage their existing

Integrated Development Environment (IDE), leveraging tools like autocomplete and in-

line documentation to accelerate development of infrastructure.

AWS CDK utilizes AWS CloudFormation in the background to provision resources in a

safe, repeatable manner. Constructs are the basic building blocks of CDK code. A

construct represents a cloud component and encapsulates everything AWS

CloudFormation needs to create the component. The AWS CDK includes the AWS

Construct Library containing constructs representing many AWS services. By combining

constructs together, you can quickly and easily create complex architectures for

deployment in AWS.

AWS Cloud Development Kit for Kubernetes

AWS Cloud Development Kit for Kubernetes (cdk8s), is an open-source software

development framework for defining Kubernetes applications using general-purpose

programming languages.

Once you have defined your application in a programming language (As of date of

publication only Python and TypeScript are supported) cdk8s will convert your

application description in to pre-Kubernetes YML. This YML file can then be consumed

by any Kubernetes cluster running anywhere. Because the structure is defined in a

programming language you can use the rich features provided by the programming

language. You can use the abstraction feature of the programming language to create

your own boiler-plate code and re-use it across all of the deployments.

Automation

Another core philosophy and practice of DevOps is automation. Automation focuses on

the setup, configuration, deployment, and support of infrastructure and the applications

that run on it. By using automation, you can set up environments more rapidly in a

standardized and repeatable manner. The removal of manual processes is a key to a

successful DevOps strategy. Historically, server configuration and application

https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://aws.amazon.com/blogs/containers/introducing-cdk-for-kubernetes/

Amazon Web Services Introduction to DevOps on AWS

 13

deployment have been predominantly a manual process. Environments become

nonstandard, and reproducing an environment when issues arise is difficult.

The use of automation is critical to realizing the full benefits of the cloud. Internally AWS

relies heavily on automation to provide the core features of elasticity and scalability.

Manual processes are error prone, unreliable, and inadequate to support an agile

business. Frequently an organization may tie up highly skilled resources to provide

manual configuration, when time could be better spent supporting other, more critical,

and higher value activities within the business.

Modern operating environments commonly rely on full automation to eliminate manual

intervention or access to production environments. This includes all software releasing,

machine configuration, operating system patching, troubleshooting, or bug fixing. Many

levels of automation practices can be used together to provide a higher level end-to-end

automated process.

Automation has the following key benefits:

• Rapid changes

• Improved productivity

• Repeatable configurations

• Reproducible environments

• Leveraged elasticity

• Leveraged auto scaling

• Automated testing

Automation is a cornerstone with AWS services and is internally supported in all

services, features, and offerings.

AWS OpsWorks

AWS OpsWorks take the principles of DevOps even further than AWS Elastic

Beanstalk. It can be considered an application management service rather than simply

an application container. AWS OpsWorks provides even more levels of automation with

additional features like integration with configuration management software (Chef) and

application lifecycle management. You can use application lifecycle management to

define when resources are set up, configured, deployed, un-deployed, or terminated.

https://aws.amazon.com/opsworks/

Amazon Web Services Introduction to DevOps on AWS

 14

For added flexibility AWS OpsWorks has you define your application in configurable

stacks. You can also select predefined application stacks. Application stacks contain all

the provisioning for AWS resources that your application requires, including application

servers, web servers, databases, and load balancers.

Figure 2 - AWS OpsWorks showing DevOps features and architecture

Application stacks are organized into architectural layers so that stacks can be

maintained independently. Example layers could include web tier, application tier, and

database tier. Out of the box, AWS OpsWorks also simplifies setting up Auto Scaling

groups and Elastic Load Balancing load balancers, further illustrating the DevOps

principle of automation. Just like AWS Elastic Beanstalk, AWS OpsWorks supports

application versioning, continuous deployment, and infrastructure configuration

management.

AWS OpsWorks also supports the DevOps practices of monitoring and logging (covered

in the next section). Monitoring support is provided by Amazon CloudWatch. All lifecycle

events are logged, and a separate Chef log documents any Chef recipes that are run,

along with any exceptions.

AWS Elastic Beanstalk

AWS Elastic Beanstalk is a service to rapidly deploy and scale web

applications developed with Java, .NET, PHP, Node.js, Python, Ruby, Go, and Docker

on familiar servers such as Apache, Nginx, Passenger, and IIS.

https://aws.amazon.com/elasticbeanstalk/

Amazon Web Services Introduction to DevOps on AWS

 15

Elastic Beanstalk is an abstraction on top of Amazon EC2, Auto Scaling, and simplifies

the deployment by giving additional features such as cloning, blue-green deployments,

Elastic Beanstalk Command Line Interface (eb cli) and integration with AWS Toolkit for

Visual Studio, Visual Studio Code, Eclipse, and IntelliJ for increase developer

productivity.

Monitoring and Logging
Communication and collaboration are fundamental in a DevOps philosophy. To facilitate

this, feedback is critical. In AWS, feedback is provided by two core services: Amazon

CloudWatch and AWS CloudTrail. Together they provide a robust monitoring, alerting,

and auditing infrastructure so developers and operations teams can work together

closely and transparently.

AWS provides the following services for monitoring and logging:

Amazon CloudWatch Metrics

Amazon CloudWatch metrics automatically collect data from AWS services such as

Amazon EC2 instances, Amazon EBS volumes, and Amazon RDS DB instances. These

metrics can then be organized as dashboards and alarms or events can be created to

trigger events or perform Auto Scaling actions.

Amazon CloudWatch Alarms

You can setup alarms based on the metrics collected by Amazon CloudWatch Metrics.

The alarm can then send a notification to Amazon Simple Notification Service (Amazon

SNS) topic or initiate Auto Scaling actions. An alarm requires period (length of the time

to evaluate a metric), Evaluation Period (number of the most recent data points), and

Datapoints to Alarm (number of data points within the Evaluation Period).

Amazon CloudWatch Logs

Amazon CloudWatch Logs is a log aggregation and monitoring service. AWS

CodeBuild, CodeCommit, CodeDeploy and CodePipeline provide integrations with

CloudWatch logs so that all of the logs can be centrally monitored. In addition, the

previously mentioned services various other AWS services provide direct integration

with CloudWatch.

With CloudWatch Logs you can:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon Web Services Introduction to DevOps on AWS

 16

• Query Your Log Data

• Monitor Logs from Amazon EC2 Instances

• Monitor AWS CloudTrail Logged Events

• Define Log Retention Policy

Amazon CloudWatch Logs Insights

Amazon CloudWatch Logs Insights scans your logs and enables you to perform

interactive queries and visualizations. It understands various log formats and auto-

discovers fields from JSON Logs.

Amazon CloudWatch Events

Amazon CloudWatch Events delivers a near real-time stream of system events that

describe changes in AWS resources. Using simple rules that you can quickly set up;

you can match events and route them to one or more target functions or streams.

CloudWatch Events becomes aware of operational changes as they occur. CloudWatch

Events responds to these operational changes and takes corrective action as

necessary, by sending messages to respond to the environment, activating functions,

making changes, and capturing state information.

You can configure rules in Amazon CloudWatch Events to alert you to changes in AWS

services and integrate these events with other 3rd party systems using Amazon

EventBridge. The following are the AWS DevOps related services that have integration

with CloudWatch Events.

• Application Auto Scaling Events

• CodeBuild Events

• CodeCommit Events

• CodeDeploy Events

• CodePipeline Events

Amazon EventBridge

Amazon CloudWatch Events and EventBridge are the same underlying service and API,

however, EventBridge provides more features.

https://docs.aws.amazon.com/autoscaling/ec2/userguide/cloud-watch-events.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-build-notifications.html
https://docs.aws.amazon.com/codecommit/latest/userguide/monitoring-events.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-cloudwatch-events.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/detect-state-changes-cloudwatch-events.html

Amazon Web Services Introduction to DevOps on AWS

 17

Amazon EventBridge is a serverless event bus that enables integrations between AWS

services, Software as a services (SaaS), and your applications. In addition to build

event driven applications, EventBridge can be used to notify about the events from the

services such as CodeBuild, CodeDeploy, CodePipeline, and CodeCommit.

AWS CloudTrail

In order to embrace the DevOps principles of collaboration, communication, and

transparency, it’s important to understand who is making modifications to your

infrastructure. In AWS this transparency is provided by AWS CloudTrail service. All

AWS interactions are handled through AWS API calls that are monitored and logged by

AWS CloudTrail. All generated log files are stored in an Amazon S3 bucket that you

define. Log files are encrypted using Amazon S3 server-side encryption (SSE). All API

calls are logged whether they come directly from a user or on behalf of a user by an

AWS service. Numerous groups can benefit from CloudTrail logs, including operations

teams for support, security teams for governance, and finance teams for billing.

https://aws.amazon.com/eventbridge/
http://aws.amazon.com/cloudtrail
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon Web Services Introduction to DevOps on AWS

 18

Communication and Collaboration

Whether you are adopting DevOps Culture in your organization or going through a

DevOps cultural transformation communication, and collaboration is an important part of

you approach. At Amazon we have realized that there is need to bring a changed in the

mindset of the teams and hence adopted the concept of Two-Pizza Teams.

Two-Pizza Teams

 "We try to create teams that are no larger than can be fed by two pizzas," said Bezos.

"We call that the two-pizza team rule."

The smaller the team the better the collaboration. Collaboration is also very important

as the software releases are moving faster than ever. And a team’s ability to deliver the

software can be a differentiating factor for your organization against your competition.

Image a situation in which a new product feature needs to be released or a bug needs

to be fixed you want this to happen as quickly as possible so you can have a smaller

go-to-market timed. This is also important as you don’t want the transformation to be a

slow-moving process rather than an agile approach where waves of changes start to

make an impact.

Communication between the teams is also important we move towards the shared

responsibility model and start moving out of the siloed development approach. This

bring the concept of ownership in the team and shifts their perspective to look at this as

an end-to-end. Your team should not think about your production environments as black

boxes where they have no visibility.

Cultural transformation is also important as you may be building a common DevOps

team or the other approach is that you have a DevOps focused member(s) in your

team. Both of these approaches do introduce Shared Responsibility in to the team.

Amazon Web Services Introduction to DevOps on AWS

 19

Security

Whether you are going through a DevOps Transformation or implementing DevOps

principles for the first time, you should think about Security as integrated in your

DevOps processes. This should be cross cutting concern across your build, test

deployment stages.

Before we talk about Security in DevOps on AWS let’s look at the AWS Shared

Responsibility Model.

AWS Shared Responsibility Model

Security is a shared responsibility between AWS and the customer. The different parts

of the Shared Responsibility Model are explained below:

• AWS responsibility “Security of the Cloud” - AWS is responsible for

protecting the infrastructure that runs all of the services offered in the AWS

Cloud. This infrastructure is composed of the hardware, software, networking,

and facilities that run AWS Cloud services.

• Customer responsibility “Security in the Cloud” – Customer responsibility will

be determined by the AWS Cloud services that a customer selects. This

determines the amount of configuration work the customer must perform as part

of their security responsibilities.

This shared model can help relieve the customer’s operational burden as AWS

operates, manages and controls the components from the host operating system and

virtualization layer down to the physical security of the facilities in which the service

operates. This is critical in the cases where customer want to understand the security of

their build environments.

Amazon Web Services Introduction to DevOps on AWS

 20

Figure 3 - AWS Shared Responsibility Model

For DevOps we want to assign permissions based on the least-privilege permissions

model. This model states that “A user (or service) should be granted minimal amount of

permissions that are required to get job done”. Permissions are maintained in IAM. IAM

is a web service that helps you securely control access to AWS resources. You can use

IAM to control who is authenticated (signed in) and authorized (has permissions) to use

resources.

Identity Access Management

AWS Identity and Access Management (IAM) defines the controls and polices that are

used to manage access to AWS Resources. Using IAM you can create users and

groups and define permissions to various DevOps services.

In addition to the users, various services may also need access to AWS resources. e.g.

your CodeBuild project may need access to store Docker images in Amazon Elastic

Container Registry (Amazon ECR) and will need permissions to write to ECR. These

types of permissions are defined by a special type role know as service role.

IAM is one component of the AWS security infrastructure. With IAM, you can centrally

manage groups, users, service roles and security credentials such as passwords,

access keys, and permissions policies that control which AWS services and resources

users can access. IAM Policy lets you define the set of permissions. This policy can

then be attached to either a Role, User, or a Service to define their permission. You can

also use IAM to create roles that are used widely within your desired DevOps strategy.

In some case it can make perfect sent to programmatically AssumeRole instead

directly getting the permissions. When a service or user assumes roles, they are given

temporary credentials to access a service that you normally don’t have access.

https://aws.amazon.com/blogs/security/how-to-define-least-privileged-permissions-for-actions-called-by-aws-services/
https://aws.amazon.com/iam/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon Web Services Introduction to DevOps on AWS

 21

Conclusion
In order to make the journey to the cloud smooth, efficient, and effective; technology

companies should embrace DevOps principles and practices. These principles are

embedded in the AWS platform, and form the cornerstone of numerous AWS services,

especially those in the deployment and monitoring offerings.

 Begin by defining your infrastructure as code using the service AWS CloudFormation or

AWS Cloud Development Kit (CDK). Next, define the way in which your applications are

going to use continuous deployment with the help of services like AWS CodeBuild,

AWS CodeDeploy, AWS CodePipeline, and AWS CodeCommit. At the application level,

use containers like AWS Elastic Beanstalk, AWS Elastic Container Service (Amazon

ECS), or AWS Elastic Kubernetes Service (Amazon EKS), and AWS OpsWorks to

simplify the configuration of common architectures. Using these services also makes it

easy to include other important services like Auto Scaling and Elastic Load Balancing.

Finally, use the DevOps strategy of monitoring such as Amazon CloudWatch, and solid

security practices such as AWS IAM.

 With AWS as your partner, your DevOps principles will bring agility to your business

and IT organization and accelerate your journey to the cloud.

Contributors

Contributors to this document include:

• Muhammad Mansoor, Solutions Architect,

• Ajit Zadgaonkar, World Wide Tech Leader, Modernization

• Juan Lamadrid - Solutions Architect

• Darren Ball - Solutions Architect

• Rajeswari Malladi - Solutions Architect

• Pallavi Nargund - Solutions Architect

• Bert Zahniser - Solutions Architect

• Abdullahi Olaoye – Cloud Solutions Architect

• Mohamed Kiswani – Software Development Manager

• Tara McCann – Manager Solutions Architect

Amazon Web Services Introduction to DevOps on AWS

 22

Document Revisions

Date Description

October 2020 Updated sections to include new services

December

2014

First publication

	Introduction
	Continuous Integration
	AWS CodeCommit
	AWS CodeBuild
	AWS CodeArtifact

	Continuous Delivery
	AWS CodeDeploy
	AWS CodePipeline

	Deployment Strategies
	In-Place Deployments
	Blue-Green Deployments
	Canary Deployments
	Linear Deployments
	All-at-once Deployments

	Deployment Strategies Matrix
	AWS Elastic Beanstalk Deployment Strategies

	Infrastructure as Code
	AWS CloudFormation
	AWS Cloud Development Kit
	AWS Cloud Development Kit for Kubernetes

	Automation
	AWS OpsWorks
	AWS Elastic Beanstalk

	Monitoring and Logging
	Amazon CloudWatch Metrics
	Amazon CloudWatch Alarms
	Amazon CloudWatch Logs
	Amazon CloudWatch Logs Insights
	Amazon CloudWatch Events
	Amazon EventBridge
	AWS CloudTrail

	Communication and Collaboration
	Two-Pizza Teams

	Security
	AWS Shared Responsibility Model
	Identity Access Management

	Conclusion
	Contributors
	Document Revisions

