
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building modern cloud
applications? Think integration

Gregor Hohpe

A P I 3 0 8

Enterprise Strategist
Amazon Web Services

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

My modern cloud application

us-east-1a

us-east-1b

My app

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gregor Hohpe – Enterprise Strategist

As an AWS Enterprise Strategist, Gregor
helps enterprise leaders rethink their IT

strategy to get the most out of their
cloud journey.

@ghohpe
ArchitectElevator.com

www.linkedin.com/in/ghohpe/

http://www.linkedin.com/in/ghohpe/

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Application integration
in the cloud

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Connected Systems – Concept & reality

A B

EAI EIIETL ESB SOA
(WS-*)

CEP iPaaS Service
Mesh

Data
Mesh

202x201x200x199x198x

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

History of AWS Integration Services

Am
az

on SQS

Am
az

on SNS

Am
az

on M
Q

Am
az

on A
ppFlo

w

AW
S Ste

p Fu
ncti

ons

Am
az

on Eve
ntB

rid
ge

AW
S A

ppSyn
c

Am
az

on A
PI G

at
ew

ay

Am
az

on M
W

AA

‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 ‘21

A B

Am
az

on SW
F

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cataloging integration approaches

Approach Level of
Control

Delivery
Lifecycle Team Example (indicative)

Migration Low One-time One-off Amazon AppFlow
Amazon SWF

Data synchronization /
traditional integration Low Slow Separate Amazon AppFlow

Enterprise service bus Some Faster
(slower than endpoints) Likely separate

Amazon MQ,
Amazon SQS,

Amazon API Gateway

Modern cloud apps
serverless EDA High Same pace Embedded Amazon EventBridge,

AWS Step Functions

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

In modern cloud applications,
integration isn’t an afterthought.
It’s an integral part of the
application architecture and the
software delivery lifecycle.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Of boxes and lines

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Two system designs

A

B

C

D

A B

C D

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How your components are
interconnected defines your
system’s essential properties.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Software Systems Architecture

A B

C D

“The fundamental structures of a software
system and the discipline of creating such
structures and systems.
Each structure comprises software elements,
relations among them, and properties of both
elements and relations.”

Documenting Software Architectures
Clements, Bass, Garlan, et al.

https://en.wikipedia.org/wiki/Software_system

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Great architects are like
great chefs.
It’s not just about selecting
ingredients; it’s how you put
them together.
Gregor

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration Architecture:
Considerations

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration approaches

File Transfer Shared Database

Remote Procedure Invocation Messaging

Source: Enterprise Integration Patterns

Coupling

Abstraction

Asynchrony

Timeliness

Complexity

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coupling – Integration’s magic word

Coupling is a measure of independent variability
between connected systems.

Decoupling has a cost, both at design and run-time.

Coupling isn’t binary.

Coupling isn’t one-dimensional.

A B

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The many facets of coupling
• Technology dependency: Java vs. C++

• Location dependency: IP addresses, DNS

• Data format dependency: Binary, XML, JSON, ProtoBuf, Avro

• Data type dependency: int16, int32, string, UTF-8, null, empty

• Semantic dependency: Name, Middlename, ZIP

• Temporal dependency: sync, async

• Interaction style dependency: messaging, RPC, query-style (GraphQL)

• Conversation dependency: pagination, caching, retries

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The appropriate level of
coupling depends on the
level of control you have
over the endpoints.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modern Cloud
Applications

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Small pieces,
loosely joined

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless is much more than compute

AWS
Lambda

AWS
Fargate

COMPUTE

DATA STORES

Amazon Aurora
Serverless

Amazon
S3

Amazon
DynamoDB

AWS
AppSync

Amazon
API Gateway

Amazon
SNS

Amazon
SQS

AWS
Step Functions

INTEGRATION

Amazon
EventBridge

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless is about much more
than application run-times.
Modern serverless architectures
are inherently integrated.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A modern cloud application:
The Loan Broker

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A simple distributed application

Source: EnterpriseIntegrationPatterns.com

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The central pattern: Scatter-Gather

“How do you maintain the overall message flow when a message needs to
be sent to multiple recipients, each of which may send a reply?”

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The central pattern: Scatter-Gather
Design Decisions:
- How to determine set of recipients
- Are recipients required to respond?
- When to complete aggregation:

- Known number (“wait for all”)
- Time limit (“time-out”)
- Sufficient number of responses
- First best (1 is sufficient)
- Existence of favorable response
- External event (“gavel drops”)

- How to combine responses
- Concatenate
- Select best answers
- Combine answers (sum, avg)

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scatter-Gather: Step Functions Map State
• Fetch Lambda function names from

DynamoDB table

• Iterate over the list, invoking Lambda
functions (synchronously but
concurrently - MaxConcurrency)

• Filter results to just bank ID and rate

• Concatenate results as they are returned
(Map State does that for us)

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scatter-(Gather): EventBridge Targets

EventBus

Rule

Target

Lambda
function

SNS
topic

SQS
queue …

Yup, UML!

1..5

1..*

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scatter-(Gather): Simple Notification Service

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Comparing implementations (simplified)

Fan-out Interaction
Model

Subscription
Method Entity Visibility Coupling

Step Functions
Map/DynamoDB

Medium
(dozens)

Sync /
parallel

DynamoDB:
UpdateItem Sender Poor Loose

EventBridge Small
(5 per rule)

Sync EventBridge:
PutTargets Broker Good Tight (?)

SNS
Large

(12.5 mio
per topic)

Async /
push SNS:Subscribe Channel Good Loose

Subscription via: API / CLI / CFN / CDK / Console

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fine-grained serverless
applications make the
solution’s intent explicit.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Power of Patterns

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Design Patterns

20031994 1996 2002

q Known solution to a recurring problem within a given context
q Bite-size, technology-independent design wisdom
q Express intent, the “why”, not just the “how”
q Shared vocabulary to express design choices and trade-offs

ü
ü
ü

``

ü

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A Pattern Language for Integration

Source: Enterprise Integration Patterns

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration Patterns in AWS Integration

Integration patterns to express
your solution

• Better express design decisions
and trade-offs

• Hide implementation details
• Create visually appealing diagrams

Integration Patterns built
into AWS services

• Straightforward mapping to AWS
service

• Easier learning curve
• Better composability of services

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A cloud-native serverless implementation
• Scatter-Gather

• Pub-Sub Channel

• Msg Channel

• Message Filter

• Content Filter

• Aggregator

• Dead-Letter Queue

Patterns express intent in a
service-neutral fashion.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integration Patterns in AWS Serverless

AWS Step FunctionsAmazon EventBridge

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Patterns express intent and nuances

Amazon EventBridge

Message Translator Content Filter

Claim Check Normalizer

Source: Enterprise Integration Patterns

Messaging Patterns

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

(Not just) Infrastructure as
(actual) code

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

An automation stack

Endpoint

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Declarative provisioning ≠ Declarative
language

Desired state Actual state

srv1.resize(4GB)
srv2 = new Server(4GB)
lb = new LoadBalancer(srv1, srv2)

Language type

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless + integration +
automation = AWSome!

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A cloud-native serverless implementation

Look ma, no k8s! ;-)

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deployment Config

Composition

private createBank(name: string, env: BankConfig, eventBus: EventBus) {

return new lambda.Function(this, name, {

runtime: lambda.Runtime.NODEJS_14_X,

code: lambda.Code.fromAsset('bank'), handler: 'app.handler',

functionName: name, environment: env,

onSuccess: new destinations.EventBridgeDestination(eventBus)

});

}

Serverless Composition with CDK

const bankRecipientPawnshop = this.createBank(

'BankRecipientPawnshop', { BANK_ID: 'PawnShop', BASE_RATE: '5',

MAX_LOAN_AMOUNT: '500000', MIN_CREDIT_SCORE: '400‘ }, mortgageQuotesBus);

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless automation isn’t
about provisioning but about
composition and configuration.
Your Cloud Architect

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CDK: Domain modeling for serverless automation

“The AWS Construct Library
includes higher-level constructs,

which we call patterns. These
constructs are designed to help
you complete common tasks in
AWS, often involving multiple

kinds of resources.”

https://docs.aws.amazon.com/
cdk/latest/guide/constructs.html

Business Domain
Constructs

Integration Patterns

CDK Constructs
(CloudFormation

Resources)

• Bank
• Loan Broker
• LoanQuote

• Message Filter
• Content Filter
• Aggregator
• Publish-Subscribe

• Lambda Function
• Lambda Destination
• SQS Queues
• Step Function Tasks
• EventBridge Rules

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Adding a Message Filter and Content Filter

Look ma, no k8s! ;-)

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Message Filter and Content Filter

Use a special kind of Message Router, a Message
Filter, to eliminate undesired messages from a
channel based on a set of criteria.

Use a Content Filter to remove unimportant data
items from a message leaving only important items.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Encoding Integration Patterns with CDK
nonEmptyQuotesOnly = MessageFilter.fromDetail(this, 'nonEmptyQuotes’,

{ "responsePayload": {"bankId": [{ "exists": true }] } });
payloadOnly = ContentFilter.payloadFilter(this, 'PayloadContentFilter’);

new MessageContentFilter(this, 'FilterMortgageQuotes’,
{ sourceEventBus: mortgageQuotesEventBus, targetQueue: mortgageQuotesQueue,

messageFilter: nonEmptyQuotesOnly, contentFilter: payloadOnly });

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Message Filter
nonEmptyQuotesOnly = MessageFilter.fromDetail(this, 'nonEmptyQuotes’,

{ "responsePayload": {"bankId": [{ "exists": true }] } });

interface MessageFilterProps extends EventPattern{}

class MessageFilter extends cdk.Construct {
public readonly eventPattern: EventPattern;

constructor(scope: cdk.Construct, id: string, props: MessageFilterProps) {
super(scope, id); this.eventPattern = props;

}

static fromDetail(scope: cdk.Construct, id: string, detailProps: any) : MessageFilter {
return new MessageFilter(scope, id, { detail: detailProps });

}
}

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

interface ContentFilterProps { readonly jsonPath: string;}

class ContentFilter extends cdk.Construct {
public readonly ruleTargetInput: RuleTargetInput;

constructor(scope: cdk.Construct, id: string, props: ContentFilterProps) {
super(scope, id);
this.ruleTargetInput = RuleTargetInput.fromEventPath(props.jsonPath)

}
static payloadFilter(scope: cdk.Construct, id: string) : ContentFilter {

return new ContentFilter(scope, id, { jsonPath: '$.detail.responsePayload' });
}

}

Content Filter
nonEmptyQuotesOnly = MessageFilter.fromDetail(this, 'nonEmptyQuotes’,

{ "responsePayload": {"bankId": [{ "exists": true }] } });
payloadOnly = ContentFilter.payloadFilter(this, 'PayloadContentFilter’);

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

class MessageContentFilter extends cdk.Construct {
public readonly eventPattern: EventPattern;
constructor(scope: cdk.Construct, id: string, props: MessageContentFilterProps) {

super(scope, id);
const rule = new Rule(scope, id + 'Rule’,

{ eventBus: props.sourceEventBus, ruleName: id + 'Rule’ });
rule.addEventPattern(props.messageFilter.eventPattern);
rule.addTarget(new targets.SqsQueue(props.targetQueue,

{message: prop.contentFilter.ruleTargetInput}));
}

}

Message & Content Filter à EventBridge
nonEmptyQuotesOnly = MessageFilter.fromDetail(this, 'nonEmptyQuotes’,

{ "responsePayload": {"bankId": [{ "exists": true }] } });
payloadOnly = ContentFilter.payloadFilter(this, 'PayloadContentFilter’);

new MessageContentFilter(this, 'FilterMortgageQuotes’,
{ sourceEventBus: mortgageQuotesEventBus, targetQueue: mortgageQuotesQueue,

messageFilter: nonEmptyQuotesOnly, contentFilter: payloadOnly });

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Object Structure and Dependencies

Rule

RuleTarget
Input

targets.SQS

EventPattern

EventBus

aws-cdk/aws-eventscdk-int-patterns

ContentFilter

MessageFilter

MessageContentFilterApplication

“Gateway”
(by M. Fowler)

(almost)

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Taking it a step further

new Pipe()
.attachTo(lambda)
.append(new MessageFilter(‘{"bankId": [{ "exists": true }] }’)
.append(ContentFilter.payloadFilter())
.publishTo(mortgageQuoteQueue)
.generateRuntime(scope);

Amazon
EventBridge

Valid messages
only

Payload only

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Whoa! Isn’t that something?

• Are we deploying, configuring, or programming? All of it!
• We defined a domain-specific language (DSL) for loosely coupled,

distributed solutions – that’s what modern cloud apps are!
• We mapped this DSL to AWS CDK and thus make it an executable

language to deploy runtime components.
• So we are coding serverless solutions in a domain language!
• No way we could have done this without cloud, serverless,

automation, and integration!

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Automation isn’t an afterthought.
Done right, it impacts your
architecture choices and blurs the
lines between building and
deploying.
Your Modern Cloud Architect

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We’re not quite done. Some good questions:
• Can we clean up package dependencies without complicating the

code?
• Mapping from patterns to run-time constructs isn’t 1:1. Can we make

a smart deploy that places as many patterns into one runtime
construct?

• Can we make a mapper that chooses different runtime products for
different pattern complexities, e.g. map a simple JsonPath filter to
EventBridge but a more fancy one to a Lambda function or
StepFunctions?

• Can we regenerate the domain structure from the runtime via
tagging and Control Bus events?

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Cloud
Development Kit (AWS CDK)

Modern Cloud Application Bliss

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Want to learn more?

https://serverlessland.com/reinvent2021/api308 @ghohpe
https://ArchitectElevator.com
https://EnterpriseIntegrationPatterns.com

https://serverlessland.com/reinvent2021/api308
https://architectelevator.com/
https://enterpriseintegrationpatterns.com/

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gregor Hohpe
@ghohpe
ArchitectElevator.com
EnterpriseIntegrationPatterns.com

