
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modern cloud applications:
Do they lock you in?

A R C 2 0 7

Gregor Hohpe

Enterprise Strategist

Amazon Web Services

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modern cloud applications

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modern isn’t just the runtime

VM Container Serverless

“Modern”
APIs?

“Traditional”

Granularity?

CI/CD?
Progr. languages?

Managed services?
Automation?

Observability?

State management?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverless – Not just a runtime

AWS

Lambda

AWS

Fargate

Compute

Data stores

Amazon Aurora

Serverless

Amazon

S3

Amazon

DynamoDB

AWS

AppSync

Amazon

API Gateway

Amazon

SNS

Amazon

SQS

AWS

Step Functions

Integration

Amazon

EventBridge

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thinking like an architect

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Famous architects sketch

Oscar Niemeyer, sketch of the Brazilian National Congress

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Famous architects sketch

Oscar Niemeyer, sketch of the Brazilian National Congress

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Famous architects sketch

Agência Senado

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architects see more dimensions

This is
a circle!

This is a
rectangle!

Folks, you’re both right!

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architects see shades of gray

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architects raise the level of
abstraction to deepen
everyone’s thinking.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Seeing more
cloud dimensions

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dear Annie, I feel that my platform
is too clingy. How can I get the
most of out of our relationship
while retaining my freedom?

Freedom Seeker

Las Vegas, NV

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The single-dimensional view

Traditional

Monolithic

Ops toil

“Freedom”

Modern

Fine-grained

Managed services

“Lock-in”

In the one-dimensional view, there is no happy place

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Architects see more dimensions

“Lock-in”

Platform usage

X factor

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“Lock-in” has many dimensions

• Vendor

• Product

• Version

• Architecture

• Skills

• Legal

• Mental

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Each represents potential switching costs

• Vendor

• Product

• Version

• Architecture

• Skills

• Legal

• Mental

https://martinfowler.com/articles/oss-lockin.html

How much does a switch from vendor A to B cost?

How much does a migration to another product cost?

How difficult to upgrade?

How difficult to refactor?

What learning paths and how much cognitive load?

Can I renegotiate or influence the regulator?

How to shed old assumptions?

https://martinfowler.com/articles/oss-lockin.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Seeing more dimensions gives us new insights

Open-source software reduces vendor

lock-in but retains most other forms,

specifically product and architecture lock-in

Mental lock-in is the most subtle but also the

most difficult kind to overcome

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Changing providers –
Service mappings

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vendors appear to offer comparable services

Message queue

Serverless function

NoSQL database

“Over here” “Over there”

Virtual machine

🤔

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

There’s a lot behind one service icon

Amazon

EventBridge

Build event-driven

applications at

scale across AWS,

existing systems, or

SaaS applications

• Global endpoints
• API destinations
• Archive and replay events
• AWS Glue Schema Registry
• Fully managed and scalable event bus
• SaaS integration
• Over 100 built-in event sources and targets
• Decoupled event publishers and subscribers
• Event filtering
• Reliable event delivery
• Automatic response to operational changes in AWS services
• Scheduled events
• Monitoring and auditing
• Security and compliance

Features (straight from the docs)

Plus, services don’t stand in isolation; they’re part of an integrated platform

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Service mappings don’t work

Needs and ideas

Runtime

“Requirements”

Design time

“Over here” “Over there”

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Abstraction layers

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We can solve any problem
by introducing an extra level
of indirection.

David J. Wheeler

The fundamental theorem of software engineering

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agreeing on common elements
affords flexibility

Java

“Over here” “Over there”

API layer API layer

HTTPS, JSON, OAuth, etc.

“Architects sell options.”

Hohpe, Software Architect Elevator

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Options aren’t free

Effort Complexity Underutilization
Opportunity

cost

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Excessive complexity is nature’s
punishment for organizations that
are unable to make decisions.

Gregor’s Law

https://architectelevator.com/gregors-law/

https://architectelevator.com/gregors-law/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Options trading: Option price vs. strike price

Source: Hohpe, Cloud Strategy

Total cost =

option price +

strike price x likelihood of use

Zero strike price means it’s no longer

an option; it’s a purchase

Option price incurs today, payoff

is potential and in the future;

future money is worth less than

today’s money

(Simplified)

Liability =

Switching cost

× Likelihood

Total cost =

Liability + Invest

“Strike price”“Option price”

$$

Naive OverinsuredSensible

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fast-moving companies rarely
build a complex portability
framework. The cost to them
(in time and expense) would be
far too high.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“We need something like SQL”

• Developed by one vendor for a specific product

• Designed to make interacting with relational databases easier, not to
achieve portability

• Rests on a solid computational model: relational algebra

• 587-page specification (ANSI X3.135-1992, ISO 9075:1992) – now in parts

• Virtually every vendor includes proprietary extensions

• Improves vendor and skill switching dimensions, but not versions,
architecture, commercial

• Doesn’t shield you from underlying runtime considerations; you can’t abstract
away the laws of physics or failure with a logical layer

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The lowest common denominator problem

Service X “Equivalent”

Service X*

F
e

a
tu

re
 s

e
t

A

F
e

a
tu

re
 s

e
t

A

F
e

a
tu

re
 s

e
t

B

F
e

a
tu

re
 s

e
t

B

Build these?

Lower the bar?

Also to keep in mind

• Runtime characteristics

• Security posture

• Operational complexity

• Integration with other services

• Scaling mechanisms

• Pricing model

• Cost

• …

“Beware the Grim Wrapper”

Hohpe, Platform Strategy

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A product or framework
must help you today and
not just possibly some time
in the future.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Bottom-up abstractions don’t really work, either

Needs and ideas

Runtime

“Requirements”

Magic layer Magic layer

Design time

“Over here” “Over there”

Runtime differences

Lower

denominator

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The X factor: Velocity

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Portability is important, but
only if you have a successful
product first.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Velocity: Good now and in case of migration

Eliminate friction

Continuous integration

Relentless automation

Autonomy, local decisions

Avoid

low-value work

Limit dependencies

Optimize for value delivered

Gather feedback and iterate

AgileDevOps

Reduce inventory

Continuous delivery

Limit work in progress

“Always ready to ship”

Lean

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Switching costs isn’t just a
function of the services you
use; it’s also not an
“infrastructure” concern

It’s largely a function of how you
work; increasing velocity greatly
reduces your switching costs!

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Preserving design intent
with patterns

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The problem with service mappings

Needs and ideas

Runtime

“Requirements”

Design time

“Over here” “Over there”

Lost
intent

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What’s your intent behind using a service?

Message Filter

Message Translator

Content-Based Router

Recipient List?

https://www.enterpriseintegrationpatterns.com/

Amazon

EventBridge

https://www.enterpriseintegrationpatterns.com/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thinking only in platform services
loses your application’s design
intent and mentally locks you in.

Thinking in design patterns
retains the intent.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A central pattern: Scatter-Gather

"How do you maintain the overall message flow when a message needs to

be sent to multiple recipients, each of which may send a reply?”

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

A central pattern: Scatter-Gather

Design decisions
- How to determine set of recipients?

- Is the number known?

- Are recipients required to respond?

- When to complete aggregation:

- Known number (“wait for all”)

- Time limit (“time-out”)

- Sufficient number of responses

- First best (1 is sufficient)

- Existence of favorable response

- External event (“gavel drops”)

- How to combine responses

- Concatenate

- Select “best”

- Combine (sum, avg.)

None of these decisions depend on the service selection;

they can also be suitably discussed with business users

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

You might be overlooking critical design
decisions in favor of service selection.

Capturing those decisions as patterns
reduces your switching cost.

https://architectelevator.com/architecture/important-decisions/

https://architectelevator.com/architecture/important-decisions/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Separate vocabulary by layer

Pub-Sub Channel Msg Channel

AggregatorMsg Filter

Bank Scatter-Gather

Bank

Business domain Integration patterns AWS resources

• Bank

• Loan request

• Loan broker

• Mortgage quote

• Message Filter

• Content Filter

• Aggregator

• Publish-Subscribe

• AWS Lambda function

• Amazon SQS/Amazon SNS

queues and topics

• AWS Step Functions tasks

• Amazon EventBridge rules

LoanData Quote

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coding patterns

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I need to combine several messages

TableName: tableName,
Key: { ID: { S: id } },
UpdateExpression:
"SET #data = list_append(

if_not_exists(#data, empty_list),
:v)",

key = db.key("ID", id)
with db.transaction():
item = db.get(key)
if not item:
item = datastore.Entity(key)
item['data'] = []

item['data'].append({ 'Value': v })
db.put(item)

Transaction limit

Retries (on queue)

TTL (in function code)

Avoid the issue with composite keys/parent entities?

ID=123

SRC=A

V=10

ID=123

SRC=B

V=5

ID=123

SRC=C

V=20

ID=123

V={10, 5, 20}

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

I am building an Aggregator
ID=123

SRC=A

V=10

ID=123

SRC=B

V=5

“Use a stateful filter, an

Aggregator, to collect

and store individual

messages until a com-

plete set of related messages has been

received. Then, the aggregator pub-

lishes a single message distilled from

the individual messages.”

ID=123

SRC=C

V=20

DBFunc.Channel

ID=123

V={10, 5, 20}

new Aggregator(
corrID = "/ID".
payload = "/data/V",
Completeness = Aggregator.Completeness.MinCount(2).

Timeout(10),
Aggregation = Aggregator.Aggregation.Concatenate,
Duplicates = Aggregator.Duplicates.Ignore,
MinRetention = 3600

)

Func.

Retry TTL

Purge
PurgeRetry: N/A

TTL: N/A

De-dupe

De-dupe: N/A

“Over here” “Over there”
https://www.enterpriseintegrationpatterns.com

/Aggregator.html

https://www.enterpriseintegrationpatterns.com/Aggregator.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Patterns are design-time abstractions
used to be

“Automation and CDK

elevate patterns to

programmable

deployment-time

constructs.“

class MessageContentFilter extends Construct {
public readonly eventPattern: EventPattern;
constructor(scope: Construct, id: string, props: MessageContentFilterProps) {
super(scope, id);
const rule = new Rule(scope, id + 'Rule',
{ eventBus: props.sourceEventBus, ruleName: id + 'Rule' });

rule.addEventPattern(props.messageFilter.eventPattern);
rule.addTarget(new targets.SqsQueue(props.targetQueue,

{message: prop.contentFilter.ruleTargetInput}));
}

}

nonEmptyQuotesOnly = MessageFilter.fieldExists(this, 'name', 'bankId');
payloadOnly = ContentFilter.payloadFilter(this, 'Filter’);

new MessageContentFilter(this, 'FilterMortgageQuotes',
{ sourceEventBus: mortgageQuotes, targetQueue: quotesQueue,
messageFilter: nonEmptyQuotesOnly, contentFilter: payloadOnly });

https://github.com/aws-samples/aws-cdk-loan-broker

Message

filter

Content

filter

Amazon EventBridge

https://github.com/aws-samples/aws-cdk-loan-broker

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lost intent

Rethinking abstractions and switching costs

Needs and ideas

Runtime

“Requirements”

Magic layer Magic layer

Design time

“Over here” “Over there”

Runtime differences

Lower

denominator

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rethinking abstractions and switching costs

Needs and ideas

Runtime

“Requirements”

Magic layer Magic layer

Design time

Lost intent

Lower

denominator

“Over here” “Over there”

Preserve intent

Meaningful abstractions

Match your needs

Runtime differences

Patterns

Deploy time
Automation

CDK

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rethinking abstractions and switching costs

Needs and ideas

Runtime

“Requirements”

Magic layer Magic layer

Design time

Lost intent

Lower

denominator

“Over here” “Over there”

Preserve intent

Meaningful abstractions

Match your needs

Runtime differences

Patterns

Deploy time
Automation

CDK

1. “Lock-in” denotes switching costs

2. Options are valuable but have a price

3. Service mappings don’t really work

4. Abstraction layers from the bottom up also don’t

5. Thinking in services is mental lock-in

6. Increased velocity lowers switching cost

7. Design patterns capture your application’s intent

and abstract platform differences

8. You can code those abstractions in modern

automation tools like CDK

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Rethinking abstractions and switching costs

Needs and ideas

Runtime

“Requirements”

Magic layer Magic layer

Design time

Lost intent

Lower

denominator

“Over here” “Over there”

Preserve intent

Meaningful abstractions

Match your needs

Runtime differences

Patterns

Deploy time
Automation

CDK

1. “Lock-in” denotes switching costs

2. Options are valuable but have a price

3. Service mappings don’t really work

4. Abstraction layers from the bottom up also don’t

5. Thinking in services is mental lock-in

6. Increased velocity lowers switching cost

7. Design patterns capture your application’s intent

and abstract platform differences

8. You can code those abstractions in modern

automation tools like CDK

Using design patterns and

abstractions, plus good software

delivery discipline with automation,

is the best way to build better

applications and keep your switching

costs low, especially for modern

cloud applications

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Want more?

https://ArchitectElevator.com

• “Multi-cloud: From Buzzword to Decision Model”

• “Concerned about Serverless Lock-in?

Consider Patterns!”

• “Good abstractions are obvious but difficult to

find, even in the cloud”

www.EnterpriseIntegrationPatterns.com

• Loan broker on AWS Serverless

• Serverless automation with AWS CDK

• Porting a serverless application

Architect Elevator

Blog

https://architectelevator.com/
http://www.enterpriseintegrationpatterns.com/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session
survey in the mobile app

Gregor Hohpe

@ghohpe

www.linkedin.com/in/ghohpe

