
Microsoft SQL Server
To Amazon Aurora with MySQL Compatibility

Migration Playbook

Version 1.8, September 2018

© 2018 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s current product offer-
ings and practices as of the date of issue of this document, which are subject to change without notice.
Customers are responsible for making their own independent assessment of the information in this
document and any use of AWS’s products or services, each of which is provided “as is” without war-
ranty of any kind, whether express or implied. This document does not create any warranties, rep-
resentations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or
licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agree-
ments, and this document is not part of, nor does it modify, any agreement between AWS and its cus-
tomers.

- 2 -

Table of Contents

Introduction 8

Tables of Feature Compatibility 11

AWS Schema and Data Migration Tools 23

AWS Schema Conversion Tool (SCT) 24

SCT Action Code Index 38

AWS Database Migration Service (DMS) 54

ANSI SQL 57

Migrate from SQL Server Constraints 58

Migrate to Aurora MySQL Constraints 62

Migrate from SQL Server Creating Tables 67

Migrate to Aurora MySQL Creating Tables 71

Migrate from SQL Server Common Table Expressions 77

Migrate to Aurora MySQL Common Table Expressions 80

Migrate from SQL Server Data Types 84

Migrate to Aurora MySQL Data Types 86

Migrate from SQL Server GROUP BY 96

Migrate to Aurora MySQL GROUP BY 100

Migrate from SQL Server Table JOIN 105

Migrate to Aurora MySQL Table JOIN 110

Migrate from SQL Server Views 114

Migrate to Aurora MySQL Views 117

Migrate from SQL Server Window Functions 122

Migrate to Aurora MySQL Window Functions 125

T-SQL 128

Migrate from SQL Server Collations 129

Migrate to Aurora MySQL Collations 132

Migrate from SQL Server Cursors 141

Migrate to Aurora MySQL Cursors 143

- 3 -

Migrate from SQL Server Date and Time Functions 148

Migrate to Aurora MySQL Date and Time Functions 150

Migrate from SQL Server String Functions 153

Migrate to Aurora MySQL String Functions 156

Migrate from SQL Server Databases and Schemas 160

Migrate to Aurora MySQL Databases and Schemas 163

Migrate from SQL Server Transactions 166

Migrate to Aurora MySQL Transactions 170

Migrate from SQL Server DELETE and UPDATE FROM 174

Migrate to Aurora MySQL DELETE and UPDATE FROM 177

Migrate from SQL Server Stored Procedures 180

Migrate to Aurora MySQL Stored Procedures 184

Migrate from SQL Server Error Handling 189

Migrate to Aurora MySQL Error Handling 193

Migrate from SQL Server Flow Control 199

Migrate to Aurora MySQL Flow Control 202

Migrate from SQL Server Full-Text Search 207

Migrate to Aurora MySQL Full-Text Search 211

Migrate from SQL Server JSON and XML 216

Migrate to Aurora MySQL JSON and XML 219

Migrate from SQL Server MERGE 223

Migrate to Aurora MySQL MERGE 226

Migrate from SQL Server PIVOT and UNPIVOT 231

Migrate to Aurora MySQL PIVOT and UNPIVOT 235

Migrate from SQL Server Synonyms 238

Migrate to Aurora MySQL Synonyms 240

Migrate from SQL Server TOP and FETCH 241

Migrate to Aurora MySQL LIMIT (TOP and FETCH Equivalent) 244

Migrate from SQL Server Triggers 247

Migrate to Aurora MySQL Triggers 250

- 4 -

Migrate from SQL Server User Defined Functions 254

Migrate to Aurora MySQL User Defined Functions 257

Migrate from SQL Server User Defined Types 260

Migrate to Aurora MySQL User Defined Types 263

Migrate from SQL Server Sequences and Identity 266

Migrate to Aurora MySQL Sequences and Identity 271

Migrate from SQL Server Managing Statistics 276

Migrate to Aurora MySQL Managing Statistics 278

Configuration 281

Migrate from SQL Server Session Options 282

Migrate to Aurora MySQL Session Options 285

Migrate from SQL Server Database Options 289

Migrate to Aurora MySQL Database Options 290

Migrate from SQL Server Server Options 291

Migrate to Aurora MySQL Server Options 293

High Availability and Disaster Recovery (HADR) 296

Migrate from SQL Server Backup and Restore 297

Migrate to Aurora MySQL Backup and Restore 301

Migrate from SQL Server High Availability Essentials 309

Migrate to Aurora MySQL High Availability Essentials 313

Indexes 322

Migrate from SQL Server Clustered and Non Clustered Indexes 323

Migrate to Aurora MySQL Clustered and Non Clustered Indexes 327

Management 331

Migrate from SQL Server SQL Server Agent 332

Migrate to Aurora MySQL Agent 333

Migrate from SQL Server Alerting 336

Migrate to Aurora MySQL Alerting 338

Migrate from SQL Server Database Mail 342

Migrate to Aurora MySQL Database Mail 345

- 5 -

Migrate from SQL Server ETL 346

Migrate to Aurora MySQL ETL 348

Migrate from SQL Server Viewing Server Logs 374

Migrate to Aurora MySQL Viewing Server Logs 376

Migrate from SQL Server Maintenance Plans 379

Migrate to Aurora MySQL Maintenance Plans 382

Migrate from SQL Server Monitoring 388

Migrate to Aurora MySQL Monitoring 391

Migrate from SQL Server Resource Governor 392

Migrate to Aurora MySQL Resource Governor 394

Migrate from SQL Server Linked Servers 396

Migrate to Aurora MySQL Linked Servers 399

Migrate from SQL Server Scripting 400

Migrate to Aurora MySQL Scripting 402

Performance Tuning 407

Migrate from SQL Server Execution Plans 408

Migrate to Aurora MySQL Execution Plans 410

Migrate from SQL Server Query Hints and Plan Guides 412

Migrate to Aurora MySQL Query Hints and Plan Guides 415

Physical Storage 419

Migrate from SQL Server Partitioning 420

Migrate to Aurora MySQL Partitioning 422

Security 428

Migrate from SQL Server Column Encryption 429

Migrate to Aurora MySQL Column Encryption 431

Migrate from SQL Server Data Control Language 433

Migrate to Aurora MySQL Data Control Language 434

Migrate from SQL Server Transparent Data Encryption 437

Migrate to Aurora MySQL Transparent Data Encryption 438

Migrate from SQL Server Users and Roles 443

- 6 -

Migrate to Aurora MySQL Users and Roles 445

Appendix A: SQL Server 2018 Deprecated Feature List 448

Appendix B: Migration Quick Tips 449

Management 449

SQL 449

Glossary 453

- 7 -

Introduction
The migration process from SQL Server to Amazon Aurora MySQL typically involves several stages. The
first stage is to use the AWS Schema Conversion Tool (SCT) and the AWS Database Migration Service
(DMS) to convert and migrate the schema and data. While most of the migration work can be auto-
mated, some aspects require manual intervention and adjustments to both database schema objects
and database code.

The purpose of this Playbook is to assist administrators tasked with migrating SQL Server databases to
Aurora MySQL with the aspects that can't be automatically migrated using the Amazon Web Services
Schema Conversion Tool (AWS SCT). It focuses on the differences, incompatibilities, and similarities
between SQL Server and Aurora MySQL in a wide range of topics including T-SQL, Configuration, High
Availability and Disaster Recovery (HADR), Indexing, Management, Performance Tuning, Security, and
Physical Storage.

The first section of this document provides an overview of AWS SCT and the AWS Data Migration Ser-
vice (DMS) tools for automating the migration of schema, objects and data. The remainder of the doc-
ument contains individual sections for SQL Server features and their Aurora MySQL counterparts. Each
section provides a short overview of the feature, examples, and potential workaround solutions for
incompatibilities.

You can use this playbook either as a reference to investigate the individual action codes generated by
the AWS SCT tool, or to explore a variety of topics where you expect to have some incompatibility
issues. When using the AWS SCT, you may see a report that lists Action codes , which indicates some
manual conversion is required, or that a manual verification is recommended. For your convenience,
this Playbook includes an SCT Action Code Index section providing direct links to the relevant topics
that discuss the manual conversion tasks needed to address these action codes. Alternatively, you can
explore the Tables of Feature Compatibility section that provides high-level graphical indicators and
descriptions of the feature compatibility between SQL Server and Aurora MySQL. It also includes a
graphical compatibility indicator and links to the actual sections in the playbook.

There are two appendices at the end of this playbook: Appendix A: SQL Server 2008 Deprecated
Feature List provides focused links on features that were deprecated in SQL Server 2008R2. Appendix
B: Migration Quick Tips provides a list of tips for SQL Server administrators or developers who have
little experience with MySQL. It briefly highlights key differences between SQL Server and Aurora
MySQL that they are likely to encounter.

- 8 -

Note that not all SQL Server features are fully compatible with Aurora MySQL, or have simple work-
arounds. From a migration perspective, this document does not yet cover all SQL Server features and
capabilities. This first release focuses on some of the most important features and will be expanded
over time.

- 9 -

Disclaimer

The various code snippets, commands, guides, best practices, and scripts included in this document
should be used for reference only and are provided as-is without warranty. Test all of the code, com-
mands, best practices, and scripts outlined in this document in a non-production environment first.
Amazon and its affiliates are not responsible for any direct or indirect damage that may occur from the
information contained in this document.

- 10 -

Tables of Feature Compatibility
Feature Compatibility Legend

Compatibility Score Symbol Description

Very high compatibility: None or minimal low-risk and low-
effort rewrites needed

High compatibility: Some low-risk rewrites needed, easy work-
arounds exist for incompatible features

Medium compatibility: More involved low-medium risk
rewrites needed, some redesign may be needed for incom-
patible features

Low compatibility: Medium to high risk rewrites needed, some
incompatible features require redesign and reasonable-effort
workarounds exist

Very low compatibility: High risk and/or high-effort rewrites
needed, some features require redesign and workarounds are
challenging

Not compatible: No practical workarounds yet, may require an
application level architectural solution to work around incom-
patibilities

SCT Automation Level Legend

SCT Automation Level Symbol Description

Full Automation SCT performs fully automatic conversion, no
manual conversion needed.

High Automation: Minor, simple manual conversions may be
needed.

Medium Automation: Low-medium complexity manual con-
versions may be needed.

Low Automation: Medium-high complexity manual con-
versions may be needed.

- 11 -

SCT Automation Level Symbol Description

Very Low Automation: High risk or complex manual con-
versions may be needed.

No Automation: Not currently supported by SCT, manual con-
version is required for this feature.

- 12 -

ANSI SQL

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Constraints Constraints

l Unsupported CHECK

l Indexing require-
ments for UNIQUE

Creating Tables Creating Tables

l IDENTITY vs. AUTO_
INCREMENT

l Primary key always
clustered

l CREATE TEMPORARY
TABLE syntax

l Unsupported @table
variables

Common Table Expres-
sions

Common Table Expres-
sions

l Rewrite non- recurs-
ive CTE to use views
and derived tables

l Redesign recursive
CTE code

Data Types Data Types

l Minor syntax and
handling differences

l No special UNICODE
data types

GROUP BY GROUP BY

l Basic syntax com-
patible

l Advanced options
like ALL, CUBE,
GROUPING SETS will
require rewrites to
use multiple queries
with UNION

Table JOIN Table JOIN

l Basic syntax com-
patible

l FULL OUTER, APPLY,

- 13 -

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

and ANSI SQL 89
outer joins will need
to be rewritten

Views Views

l Minor syntax and
handling differences

l Indexes, Triggers,
and temporary
views not supported

Windowed Functions Windowed Functions

l Rewrite window
functions to use
alternative SQL syn-
tax

- 14 -

T-SQL

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Collations Collations

l UNICODE uses
CHARACTER SET
property instead of
NCHAR/NVARCHAR
data types

Cursors Cursors

l Only static, forward
only, read-only curs-
ors are supported in
Aurora MySQL

Date and Time Func-
tions

Date and Time Func-
tions

l Timezone handling

l Syntax differences

String Functions String Functions

l UNICODE paradigm
(See Collations)

l Syntax and option
differences

Databases and
Schemas

Databases and
Schemas

l SCHEMA and
DATABASE are syn-
onymous

Transactions Transactions

l Default isolation
level REPEATABLE
READ

l Default mechanism
CONSISTENT
SNAPSHOT is similar
to SQL Server's
READ COMMITTED
SNAPSHOT isolation

l Syntax and option

- 15 -

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

differences

DELETE and UPDATE
FROM

DELETE and UPDATE
FROM

l Rewrite to use sub-
queries

Stored Procedures Stored Procedures

l No support for
Table Valued Para-
meters

l Syntax and option
differences

Error Handling Error Handling

l Different paradigm
and syntax requires
rewrite of error
handling code

Flow Control Flow Control
l Syntax and option

differences, similar
functionality

Full Text Search Full Text Search

l Syntax and option
differences, less
comprehensive but
simpler

l Most common basic
functionality is sim-
ilar

l Requires rewrite of
administration logic
and queries

JSON and XML JSON and XML

l Minimal XML sup-
port, extensive JSON
support

l No XQUERY support,
optionally convert to

- 16 -

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

JSON

MERGE MERGE

l Rewrite to use
REPLACE and ON
DUPLICATE KEY, or
individual con-
stituent DML state-
ments

PIVOT PIVOT
l Straight forward

rewrite to use tra-
ditional SQL syntax

Triggers Triggers

l Only FOR EACH ROW
processing

l No DDL or EVENT
triggers

l BEFORE triggers
replace INSTEAD OF
triggers

User Defined Functions User Defined Functions

l Scalar functions
only, rewrite inline
TVF as views or
derived tables, and
multi-statememt
TVF as stored pro-
cedures

User Defined Types User Defined Types

l Replace scalar UDT
with base types

l Rewrite Stored Pro-
cedures that use
table-type input
parameters to use
strings with CSV,
XML, or JSON, or to
process row-by-row

- 17 -

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Sequences and Identity Sequences and Identity

l SEQUENCE objects
not supported

l Rewrite IDENTITY to
AUTO_INCREMENT

l Last value evaluated
as MAX(Existing
Value) + 1 on every
restart!

Synonyms Synonyms

l Use stored pro-
cedures and func-
tions to abstract
instance-wide
objects

TOP and FETCH LIMIT (TOP alternative)

l Syntax rewrite, very
similar functionality

l Convert PERCENT
and TIES to sub-
queries

Configuration

SQL Server Aurora MySQL Key Differences Feature Compatibility

Session Options Session Options

l SET options are sig-
nificantly different,
except for trans-
action isolation con-
trol

Database Options Database Options

l SQL Server's data-
base options are
inapplicable to Aur-
ora MySQL

Server Options Server Options
l Use Cluster and

Database Parameter
Groups

High Availability and Disaster Recovery (HADR)

- 18 -

SQL Server Aurora MySQL Key Differences Feature Compatibility

Backup and Restore Backup and Restore
l Storage level backup

managed by
Amazon RDS

High Availability Essen-
tials

High Availability Essen-
tials

l Multi replica, scale
out solution using
Amazon Aurora
clusters and Avail-
ability Zones

Indexes

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Clustered and Non
Clustered Indexes

Clustered and Non
Clustered Indexes

l Clustered primary
keys only

l Filtered indexes and
included columns
not supported

Management

SQL Server Aurora MySQL Key Differences Feature Compatibility

SQL Server Agent SQL Agent
l See Alerting and

Maintenance Plans

Alerting Alerting

l Use Event Noti-
fications Sub-
scription with
Amazon Simple Noti-
fication Service (SNS)

Database Mail Database Mail
l Use Lambda Integ-

ration

ETL ETL
l Use Amazon Glue

for ETL

Viewing Server Logs Viewing Server Logs
l View logs from the

Amazon RDS con-
sole, the Amazon

- 19 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://aws.amazon.com/glue/

SQL Server Aurora MySQL Key Differences Feature Compatibility

RDS API, the AWS
CLI, or the AWS
SDKs

Maintenance Plans Maintenance Plans

l Backups via the RDS
services

l Table maintenance
via SQL

Monitoring Monitoring
l Use Amazon Cloud

Watch service

Resource Governor Resource Governor
l Use Per User

Resource limit

Linked Servers Linked Servers

l Data transfer across
schemas only, use a
custom application
solution to access
remote instances

Scripting Scripting

l Non compatible tool
sets and scripting
languages

l Use MySQL Work-
bench, Amazon RDS
API, AWS Man-
agement Console,
and Amazon CLI

- 20 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/

Performance Tuning

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Execution Plans Execution Plans

l Syntax differences

l Completely different
optimizer with dif-
ferent operators and
rules

Query Hints and Plan
Guides

Query Hints and Plan
Guides

l Very limited set of
hints - Index hints
and optimizer hints
as comments

l Syntax differences

Managing Statistics Managing Statistics

l Statistics contain
only density inform-
ation, and only for
index key columns

Physical Storage

SQL Server Aurora MySQL Key Differences
Feature Compatibility

SCT Automation Level

Partitioning Partitioning

l More partition types
in Aurora MySQL
with more restric-
tions on partitioned
tables

- 21 -

Security

SQL Server Aurora MySQL Key Differences Feature Compatibility

Column Encryption Column Encryption

l Syntax

l Encryption hierarchy
much simpler

Data Control Language Data Control Language
l Simpler permission

hierarchy

Transparent Data
Encryption

Transparent Data
Encryption

l Enable encryption
when creating the
database instance

Users and Roles Users and Roles

l No native role sup-
port in the database

l Use AWS IAM
accounts with the
AWS Authentication
Plugin

- 22 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html

AWS Schema and Data Migration Tools

- 23 -

AWS Schema Conversion Tool (SCT)

Overview

The AWS Schema Conversion Tool (SCT) is a stand alone tool that connects to source and target data-
bases, scans the source database schema objects (tables, views, indexes, procedures, etc.), and con-
verts them to target database objects.

This section provides a step-by-step process for using AWS SCT to migrate an SQL Server database to
an Aurora MySQL database cluster. Since AWS SCT can automatically migrate most of the database
objects, it greatly reduces manual effort.

It is recommended to start every migration with the process outlined in this section and then use the
rest of the Playbook to further explore manual solutions for objects that could not be migrated auto-
matically. Even though AWS SCT can automatically migrate most schema objects, it is highly recom-
mended that you allocate sufficient resources to perform adequate testing, and performance tuning
due to the differences between the SQL Server engine and the Aurora MySQL engine. For more inform-
ation, see http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

Migrating a Database

Note: This walkthrough uses the AWS DMS Sample Database. You can download it from
https://github.com/aws-samples/aws-database-migration-samples.

Download the Software and Drivers

1. Download and install the AWS SCT from https://-
docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html.

2. Download the SQL Server driver from https://www.microsoft.com/en-us/-
download/details.aspx?displaylang=en&id=11774

3. Download the MySQL driver from https://www.mysql.com/products/connector/

Configure SCT

Launch SCT. Click the Settings button and select Global Settings.

- 24 -

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://github.com/aws-samples/aws-database-migration-samples
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://www.mysql.com/products/connector/

On the left navigation bar, click Drivers. Enter the paths for the SQL Server and MySQL drivers down-
loaded in the first step. Click Apply and then OK.

Create a New Migration Project

Click File > New project wizard. Alternatively, use the keyboard shortcut <Ctrl+W>.

- 25 -

Enter a project name and select a location for the project files. Click Next.

Enter connection details for the source SQL Server database and click Test Connection to verify. Click
Next.

- 26 -

Select the schema or database to migrate and click Next.

The progress bar displays the objects being analyzed.

- 27 -

The Database Migration Assessment Report is displayed when the analysis completes. Read the Exec-
utive summary and other sections. Note that the information on the screen is only partial. To read the
full report, including details of the individual issues, click Save to PDF and open the PDF document.

Scroll down to the section Database objects with conversion actions for Amazon Aurora (MySQL
compatible).

- 28 -

Scroll further down to the section Detailed recommendations for Amazon Aurora (MySQL com-
patible) migrations.

The example report below displays a few types of automatic corrections:

l The first issue, 794, has a gray exclamation mark indicating the automatic correction action has
low risk. In this case, the user data type was replaced by the base data type. Note that you must
verify that NULL constraints that may have been assigned to the type are preserved.
For more information, see User Defined Types.

l The next issue, 678, has a yellow mark indicating a more significant higher risk. In this case,
AWS SCT created triggers to replace the original CHECK constraints, which are not supported in
Aurora MySQL.

l The last issue, 811, has a red exclamation mark indicating manual intervention is required. The
scalar function could not be automatically converted and requires manual code changes.

- 29 -

Return to AWS SCT and click Next. Enter the connection details for the target Aurora MySQL database
and click Finish.

Note: The changes have not yet been saved to the target.

- 30 -

When the connection is complete, AWS SCT displays the main window. In this interface, you can
explore the individual issues and recommendations discovered by AWS SCT.

For example, expand sample database > dbo default schema > SQL scalar functions > rand_int.
This issue has a red marker indicating it could not be automatically converted and requires a manual
code change (issue 811 above). Select the object to highlight the incompatible code section.

- 31 -

Right-click the database and then click Create Report to create a report tailored for the target data-
base type. It can be viewed in AWS SCT.

The progress bar updates while the report is generated.

- 32 -

The executive summary page displays. Click the Action Items tab.

In this window, you can investigate each issue in detail and view the suggested course of action. For
each issue, drill down to view all instances of that issue.

- 33 -

Right-click the database name and click Convert Schema.

Note: Be sure to uncheck the sys and information_schema system schemas. Aurora
MySQL already has an information_schema schema.

Note: This step does not make any changes to the target database.

- 34 -

On the right pane, the new virtual schema is displayed as if it exists in the target database. Drilling
down into individual objects displays the actual syntax generated by AWS SCT to migrate the objects.

For example, the rand_int scalar function was partly migrated using the appropriate Aurora MySQL vari-
able declaration and types. The section with the CHECKSUM function was not migrated. In its place,
AWS SCT inserted a comment block with the specific details about the issue.

- 35 -

Right-click the database on the right pane and choose either Apply to database to automatically
execute the conversion script against the target database, or click Save as SQL to save to an SQL file.
You can control the save file settings per SQL object type in the global settings, which may be very use-
ful during data migrations.

Saving to an SQL file is recommended because it allows you to verify and QA the SCT code. Also, you
can make the adjustments needed for objects that could not be automatically converted.

- 36 -

For more information, see https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Wel-
come.html

- 37 -

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

SCT Action Code Index

Legend

SCT Automation Level Symbol Description

Full Automation SCT performs fully automatic conversion, no
manual conversion needed.

High Automation: Minor, simple manual conversions may be
needed.

Medium Automation: Low-medium complexity manual con-
versions may be needed.

Low Automation: Medium-high complexity manual con-
versions may be needed.

Very Low Automation: High risk or complex manual con-
versions may be needed.

No Automation: Not currently supported by SCT, manual con-
version is required for this feature.

The following sections list the Schema Conversion Tool Action codes for topics that are covered in this
playbook.

Note: The links in the table point to the Microsoft SQL Server topic pages, which are imme-
diately followed by the MySQL pages for the same topics.

Creating Tables

AWS SCT automatically converts the most commonly used constructs of the CREATE TABLE statement
as both SQL Server and Aurora MySQL support the entry level ANSI compliance. These items include
table names, containing security schema (or database), column names, basic column data types,
column and table constraints, column default values, primary, candidate (UNIQUE), and foreign keys.
Some changes may be required for computed columns and global temporary tables.

For more details, see Creating Tables.

- 38 -

Action Code Action Message

659
The scope table-variables and temporary tables is different. You must apply
manual conversion, if you are using recursion

679 A computed column is replaced by the trigger

680 MySQL doesn't support global temporary tables

Constraints

Most constraints are automatically converted by AWS SCT as as both SQL Server and Aurora MySQL
support the entry level ANSI compliance. These items include primary keys, foreign keys, null con-
straints, unique constraints, and default constraints with some exceptions. Manual conversions are
required for some foreign key cascading options. Check constraints are replaced with triggers by
AWS SCT, and some default expressions for DateTime columns are not supported for automatic con-
version. Complex expressions for other default values cannot be automatically converted by AWS SCT.

For more details, see Constraints .

Action Code Action Message

676 MySQL Doesn't support the referential action SET DEFAULT

677
MySQL doesn't support using a function or expressions as a default value and
default value for BLOB/TEXT columns. It is emulated by trigger

678 MySQL does not support check constraints. Emulating triggers created

825 The default value for a DateTime column removed

826 Check the default value for a DateTime variable

827 Unable to convert default value

Data Types

Data type syntax and rules are very similar between SQL Server and Aurora MySQL and most are con-
verted automatically by AWS SCT. Note that date and time handling paradigms are different for SQL
Server and Aurora MySQL and require manual verifications and/or conversion. Also note that due to dif-

- 39 -

ferences in data type behavior between SQL Server and Aurora MySQL, manual verification and strict
testing are highly recommended.

For more details, see Data Types.

Action Code Action Message

601 BLOB and TEXT columns cannot be included in a foreign key

706
Unsupported data type %s of variable/column was replaced. Check the conversion
result

707 Unable convert variable reference of unsupported %s datatype

708 Unable convert complex usage of unsupported %s datatype

775 Check the data type conversion. Possible loss of accuracy

844
MySQL expands fractional seconds support for TIME, DATETIME2 and
DATETIMEOFFSET values, with up to microseconds (6 digits) of precision

Collations

The collation paradigms of SQL Server and Aurora MySQL are significantly different. The AWS SCT tool
can successfully migrate most common use cases including data type differences such as NCHAR and
NVARCHAR in SQL Server that do not exist in Aurora MySQL. Aurora MySQL provides more options and
flexibility in terms of collations. Rewrites are required for explicit collation clauses that are not sup-
ported by Aurora MySQL.

For more details, see Collations.

Action Code Action Message

646
MySQL doesn't support the COLLATE option. Automatic conversion ignores this
clause

Window Functions

Aurora MySQL version 5.7 does not support windowed functions and they cannot be automatically con-
verted by AWS SCT.

- 40 -

For workarounds using traditional SQL syntax, see Window Functions.

Action Code Action Message

647 MySQL doesn't support analytic form of function %s

648 MySQL doesn't support the RANK function

649 MySQL doesn't support the DENSE_RANK function

650 MySQL doesn't support the NTILE function

754 MySQL doesn't support the STDEV function with the DISTINCT clause

755 MySQL doesn't support the STDEVP function with the DISTINCT clause

756 MySQL doesn't support the VAR function with the DISTINCT clause

757 MySQL doesn't support the VARP function with the DISTINCT clause

PIVOT and UNPIVOT

Aurora MySQL version 5.7 does not support the PIVOT and UNPIVOT syntax and it cannot be auto-
matically converted by AWS SCT.

For workarounds using traditional SQL syntax, see PIVOT and UNPIVOT.

Action Code Action Message

905 MySQL doesn't support the PIVOT clause for the SELECT statement

906 MySQL doesn't support the UNPIVOT clause for the SELECT statement

TOP and FETCH

Aurora MySQL supports the non-ANSI compliant (although popular with other common RDBMS
engines) LIMIT... OFFSET operator for paging of results sets. Despite the differences, AWS SCT can auto-
matically convert most common paging queries to use the Aurora MySQL syntax. Some options such
as PERCENT and WITH TIES cannot be automatically converted and require manual conversion.

- 41 -

For more details, see TOP and FETCH.

Action Code Action Message

604 MySQL doesn't support the PERCENT option, this option is ignored

605 MySQL doesn't support the WITH TIES option, this option is ignored

608 MySQL doesn't support the PERCENT option. A manual conversion is required

612 MySQL doesn't support the PERCENT option. A manual conversion is required

621 MySQL doesn't support the PERCENT option. A manual conversion is required

830 MySQL does not support LIMIT with IN/ALL/ANY/SOME subquery

Common Table Expressions

Aurora MySQL version 5.7 does not support common table expressions and they cannot be auto-
matically converted by AWS SCT.

For workarounds using traditional SQL syntax, see Common Table Expressions.

Action Code Action Message

611
MySQL doesn't support queries using the WITH syntax defined. A manual con-
version is required

619
MySQL doesn't support common table expression (CTE) query definitions. A
manual conversion is required

839 Unused CTE query definition.

840 Conversion of updated CTE is not supported.

Cursors

The most commonly used cursor operations are converted automatically by AWS SCT. These oper-
ations include forward-only, read only cursors, and the DECLARE CURSOR, CLOSE CURSOR, and FETCH

- 42 -

NEXT operations. Modifications through cursors and non-forward-only fetches, which are not sup-
ported by Aurora MySQL, require manual conversions.

For more details, see Cursors.

Action Code Action Message

618
MySQL doesn't support use of a CURRENT OF clause for data manipulation lan-
guage (DML) queries that are in the body of a cursor loop. A manual conversion is
required

624
MySQL doesn't support use of a CURRENT OF clause for data manipulation lan-
guage (DML) queries that are in the body of a cursor loop. A manual conversion is
required

625 MySQL doesn't support procedure arguments of the CURSOR data type

637
MySQL doesn't support the GLOBAL CURSORS option. Manual conversion is
required

638 MySQL doesn't support the SCROLL option in cursors

639 MySQL doesn't support dynamic cursors

667 MySQL doesn't support the %s option in cursors

668 MySQL doesn't support the FIRST option in cursors

669 MySQL doesn't support the PRIOR option in cursors

670 MySQL doesn't support the ABSOLUTE option in cursors

671
MySQL doesn't support the RELATIVE option in cursors. Possibly required manual
conversion in the code somewhere

692 MySQL doesn't support cursor variables

700
The membership and order of rows never changes for cursors in MySQL, so this
option are skipped

701
Setting this option corresponds to the typical behavior of cursors in MySQL, so
this option are skipped

702 Because all MySQL cursors are read-only, so this option are skipped

703 MySQL doesn't support the option SCROLL_LOCKS, so this option are skipped

704 MySQL doesn't support the option OPTIMISTIC, so this option are skipped

705 MySQL doesn't support the option TYPE_WARNING, so this option are skipped

- 43 -

Action Code Action Message

842 MySQL doesn't support the %s option in cursors

Flow Control

Although the flow control syntax of SQL Server differs from Aurora MySQL, the AWS SCT can convert
most constructs automatically including loops, command blocks, and delays. Aurora MySQL does not
support the GOTO command nor the WAITFOR TIME command, which require manual conversion.

For more details, see Flow Control.

Action Code Action Message

628
MySQL doesn't support the GOTO option. Automatic conversion cannot be per-
formed

691 MySQL doesn't support WAITFOR TIME feature

Transaction Isolation

Aurora MySQL supports the four transaction isolation levels specified in the SQL:92 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, all of which are auto-
matically converted by AWS SCT. AWS SCT also converts BEGIN / COMMIT and ROLLBACK commands
that use slightly different syntax. Manual conversion is required for named, marked, and delayed dur-
ability transactions that are not supported by Aurora MySQL.

For more details, see Transaction Isolation.

Action Code Action Message

629
MySQL doesn't support named transactions. Automatic conversion cannot be per-
formed

630
MySQL doesn't support the WITH MARK option. Automatic conversion cannot be
performed

631 MySQL doesn't support distributed transactions

632 MySQL doesn't support named transactions. Automatic conversion cannot be per-

- 44 -

Action Code Action Message

formed

633
MySQL doesn't support the DELAYED_DURABILITY option. Automatic conversion
ignores this clause

Stored Procedures

Aurora MySQL Stored Procedures provide very similar functionality to SQL Server stored procedures
and can be automatically converted by AWS SCT. Manual conversion is required for procedures that
use RETURN values and some less common EXECUTE options such as the RECOMPILE and RESULTS
SETS options.

For more details, see Stored Procedures.

Action Code Action Message

640 The EXECUTE with RECOMPILE option is ignored

641 The EXECUTE with RESULT SETS UNDEFINED option is ignored

642 The EXECUTE with RESULT SETS NONE option is ignored

643 The EXECUTE with RESULT SETS DEFINITION option is ignored

689
MySQL does not support returning a value from a procedure using the RETURN
statement

695 MySQL doesn't support the execution of a procedure as a variable

Triggers

Aurora MySQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE. However, Aur-
ora MySQL triggers differ substantially from SQL Server's triggers, but most common use cases can be
migrated with minimal code changes. Although AWS SCT can automatically migrate trigger code,
manual inspection and potential code modifications may be requiredbecause Aurora MySQL triggers
are executed once per row, not once per statement like SQL Server's triggers.

For more details, see Triggers.

- 45 -

Action Code Action Message

686 MySQL doesn't support triggers with FOR STATEMENT

GROUP BY

GROUP BY queries are automatically converted by AWS SCT, except for CUBE and GROUPING SETS.
These queries can be easily worked around, but they do require manual code changes.

For more details, see GROUP BY.

Action Code Action Message

654
MySQL doesn't support the option GROUP BY CUBE. Automatic conversion cannot
be performed

655
MySQL doesn't support the option GROUP BY GROUPING SETS. Automatic con-
version cannot be performed

Identity and Sequences

Although the syntax for SQL Server IDENTITY and Aurora MySQL AUTO_INCREMENT auto-enumeration
columns differs significantly, it can be automatically converted by AWS SCT. Some limitations imposed
by Aurora MySQL require manual conversion such as explicit SEED and INCREMENT auto-enumeration
columns that are not part of the primary key and the table-independent SEQUENCE objects.

For more details, see Sequences and Identity.

Action Code Action Message

696 MySQL doesn't support an Identity column with seed and increment

697 MySQL doesn't support an Identity column outside a primary key

732 MySQL doesn't support an Identity column in a compound primary key

815 MySQL doesn't support sequences

841
MySQL does not allow numeric (x, 0) or decimal (x, 0) data type to be used in
columns with AUTO_INCREMENT option, data type is replaced with a compatible
one

- 46 -

Error handling

Aurora MySQL and SQL Server's error handling paradigms are significantly different; the former uses
condition and handler objects. The basic error handling constructs are migrated automatically by
AWS SCT, but due to the paradigm differences, it is highly recommended that strict inspection and val-
idation of the migrated code are performed. Manual conversions are required for THROW with vari-
ables and for SQL Server's built in messages.

For more details, see Error Handling.

Action Code Action Message

729 Unable to perform automatic migration of the THROW operator with variables

730 The error code has been truncated

814
Unable to perform an automatic migration of the RAISERROR operator with mes-
sages from sys.messages

837
MySQL and MS SQL Server handle errors differently, so check result of code con-
version

Date and Time Functions

The most commonly used date and time functions are automatically converted by AWS SCT despite the
significant difference in syntax. Be aware of differences in data types, time zone awareness, and locale
handling as well the functions themselves and inspect the expression value output carefully. Some less
commonly used options such as millisecond, nanosecond, and time zone offsets require manual con-
version.

For more details, see Date and Time Functions.

Action Code Action Message

759 MySQL doesn't support the DATEADD function with the [nanosecond] datepart

760 MySQL doesn't support the DATEDIFF function with the [week] datepart

761 MySQL doesn't support the DATEDIFF function with the [millisecond] datepart

- 47 -

Action Code Action Message

762 MySQL doesn't support the DATEDIFF function with the [nanosecond] datepart

763 MySQL doesn't support the DATENAME function with the [millisecond] datepart

764 MySQL doesn't support the DATENAME function with the [nanosecond] datepart

765 MySQL doesn't support the DATENAME function with the [TZoffset] datepart

767 MySQL doesn't support the DATEPART function with the [nanosecond] datepart

768 MySQL doesn't support the DATEPART function with the [TZoffset] datepart

773
Unable to perform an automated migration of arithmetic operations with several
dates

User Defined Functions

Aurora MySQL supports only scalar user defined functions, which are automatically converted by AWS
SCT. Table valued user defined functions, both in-line and multi-statement, require manual con-
version. Workarounds using views or derived tables should be straightforward in most cases.

For more details, see User Defined Functions.

Action Code Action Message

777 MySQL doesn't support the table-valued functions

822 MySQL doesn't support the inline functions

User Defined Types

Aurora MySQL 5.7 does not support user defined types nor user defined table valued parameters. AWS
SCT can convert standard user defined types by replacing it with their base types, but manual con-
version is required for user defined table types, which are used for table valued parameters for stored
procedures.

For more details, see User Defined Types.

- 48 -

Action Code Action Message

690 MySQL doesn't support table types

Synonyms

Aurora MySQL version 5.7 does not support synonyms and they cannot be automatically converted by
AWS SCT.

For more details, see Synonyms.

Action Code Action Message

792 MySQL doesn't support a synonyms

XML and JSON

Aurora MySQL provides minimal support for XML, but it does offer a native JSON data type and more
than 25 dedicated JSON functions. Despite these differences, the most commonly used basic XML func-
tions can be automatically migrated by AWS SCT. Some options such as EXPLICIT, used in functions or
with sub queries, require manual conversion.

For more details, see JSON and XML.

Action Code Action Message

817
Automatic migration of the FOR XML statement with EXPLICIT option is not sup-
ported

818
Automatic migration of correlated subqueries with FOR XML option is not sup-
ported

843 Automatic migration of the FOR XML statement in functions is not supported

Table Joins

- 49 -

The most commonly used join types are automatically converted by AWS SCT including INNER, OUTER,
and CROSS joins. APPLY joins, (AKA LATERAL joins) are not supported by Aurora MySQL and require
manual conversion.

For more details, see Joins.

Action Code Action Message

831
MySQL doesn't have analogue for the operators CROSS APPLY and OUTER APPLY
in case when subquery after the operator has reference to the column of attach-
able table

MERGE

Aurora MySQL version 5.7 does not support the MERGE statement and it cannot be automatically con-
verted by AWS SCT. Manual conversion is straight-forward in most cases.

For more details and potential workarounds, see MERGE.

Action Code Action Message

832 MySQL doesn't support the MERGE statement

Query hints and plan guides

Basic query hints such as index hints can be converted automatically by AWS SCT, except for DML state-
ments. Note that specific optimizations used for SQL Server may be completely inapplicable to a new
query optimizer. It is recommended to start migration testing with all hints removed. Then, selectively
apply hints as a last resort if other means such as schema, index, and query optimizations have failed.
Plan guides are not supported by Aurora MySQL.

For more details, see Query hints and Plan Guides.

Action Code Action Message

610
MySQL doesn't support hints in an update statement. The conversion skips
options in the format WITH (Table_Hint_Limited)

617 MySQL doesn't support hints in update statements. The conversion skips options

- 50 -

Action Code Action Message

in the format WITH (Table_Hint_Limited)

623
MySQL doesn't support hints in update statements. The conversion skips options
in the format WITH (Table_Hint_Limited)

823 MySQL doesn't support table hints in DML statements

Full Text Search

Migrating Full-Text indexes from SQL Server to Aurora MySQL requires a full rewrite of the code that
deals with both creating, managing, and querying of Full-Text indexes. They cannot be automatically
converted by AWS SCT.

For more details, see Full Text Search.

Action Code Action Message

687 MySQL doesn't support the CONTAINS predicate

688 MySQL doesn't support the FREETEXT predicate

Indexes

Basic non-clustered indexes, which are the most commonly used type of indexes are automatically
migrated by AWS SCT. User defined clustered indexes are not supported by Aurora MySQL as they are
always created for the primary key. In addition, filtered indexes, indexes with included columns, and
some SQL Server specific index options can not be migrated automatically and require manual con-
version.

For more details, see Indexes.

Action Code Action Message

602 MySQL has the InnoDB internal maximum key length

681
MySQL doesn't support creating indexes with a CLUSTER option. The user can't cre-
ate CLUSTER INDEX, MySQL will create it automatically

- 51 -

Action Code Action Message

682 MySQL doesn't support the INCLUDE option in indexes

683 MySQL doesn't support the WHERE option in indexes

684 MySQL doesn't support the WITH option in indexes

Partitioning

Because Aurora MySQL stores each table in its own file, and since file management is performed by
AWS and cannot be modified, some of the physical aspects of partitioning in SQL Server do not apply
to Aurora MySQL. For example, the concept of file groups and assigning partitions to file groups. Aur-
ora MySQL supports a much richer framework for table partitioning than SQL Server, with many addi-
tional options such as hash partitioning, and sub partitioning. Due to the vast differences between
partition creation, query, and management between Aurora MySQL and SQL Server, AWS SCT does not
automatically convert table and index partitions. These items require manual conversion.

For more details, see Partitioning.

Action Code Action Message

907
Unable to complete the automatic migration of tables arranged in several par-
titions

Backup

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such as
Aurora MySQL is a complete paradigm shift. You no longer need to worry about transaction logs, file
groups, disks running out of space, and purging old backups. Amazon RDS provides guaranteed con-
tinuous backup with point-in-time restore up to 35 days. Therefor, AWS SCT does not automatically
convert backups.

For more details, see Backup and Restore.

Action Code Action Message

903 MySQL does not have functionality similar to SQL Server Backup

- 52 -

SQL Server Mail

Aurora MySQL does not provide native support sending mail from the database.

For more details and potential workarounds, see Database Mail.

Action Code Action Message

900 MySQL does not have functionality similar to SQL Server Database Mail

SQL Server Agent

Aurora MySQL does not provide functionality similar to SQL Server Agent as an external, cross-instance
scheduler. However, Aurora MySQL does provide a native, in-database scheduler. It is limited to the
cluster scope and can't be used to manage multiple clusters. Therefore, AWS SCT can not automatically
convert Agent jobs and alerts.

For more details, see SQL Server Agent.

Action Code Action Message

902 MySQL does not have functionality similar to SQL Server Agent

Linked Servers

Aurora MySQL does not support remote data access from the database. Connectivity between schemas
is trivial, but connectivity to other instances require a custom solution; it can not be automatically con-
verted by AWS SCT.

For more details, see Linked Servers.

Action Code Action Message

645 MySQL doesn't support executing a pass-through command on a linked server

- 53 -

AWS Database Migration Service (DMS)

Overview

The AWS Database Migration Service (DMS) helps you migrate databases to AWS quickly and securely.
The source database remains fully operational during the migration, minimizing downtime to applic-
ations that rely on the database. The AWS Database Migration Service can migrate your data to and
from most widely-used commercial and open-source databases.

The service supports homogenous migrations such as Oracle to Oracle as well as heterogeneous migra-
tions between different database platforms such as Oracle to Amazon Aurora or Microsoft SQL Server
to MySQL. It also allows you to stream data to Amazon Redshift, Amazon DynamoDB, and Amazon S3
from any of the supported sources, which are Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle
Database, SAP ASE, SQL Server, IBM DB2 LUW, and MongoDB, enabling consolidation and easy ana-
lysis of data in a petabyte-scale data warehouse. AWS Database Migration Service can also be used for
continuous data replication with high-availability.

When migrating databases to Aurora, Redshift or DynamoDB, you can use DMS free for six months.

All supported sources for DMS: https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

All supported target for DMS: https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

Migration Tasks That AWS DMS Performs

l In a traditional solution, you need to perform capacity analysis, procure hardware and software,
install and administer systems, and test and debug the installation. AWS DMS automatically man-
ages the deployment, management, and monitoring of all hardware and software needed for
your migration. Your migration can be up and running within minutes of starting the AWS DMS
configuration process.

l With AWS DMS, you can scale up (or scale down) your migration resources as needed to match
your actual workload. For example, if you determine that you need additional storage, you can
easily increase your allocated storage and restart your migration, usually within minutes. On the
other hand, if you discover that you aren't using all of the resource capacity you configured, you
can easily downsize to meet your actual workload.

l AWS DMS uses a pay-as-you-go model. You only pay for AWS DMS resources while you use them
as opposed to traditional licensing models with up-front purchase costs and ongoing main-
tenance charges.

l AWS DMS automatically manages all of the infrastructure that supports your migration server
including hardware and software, software patching, and error reporting.

l AWS DMS provides automatic failover. If your primary replication server fails for any reason, a
backup replication server can take over with little or no interruption of service.

l AWS DMS can help you switch to a modern, perhaps more cost-effective database engine than
the one you are running now. For example, AWS DMS can help you take advantage of the man-
aged database services provided by Amazon RDS or Amazon Aurora. Or, it can help you move to

- 54 -

https://aws.amazon.com/dms/free-dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.html

the managed data warehouse service provided by Amazon Redshift, NoSQL platforms like
Amazon DynamoDB, or low-cost storage platforms like Amazon S3. Conversely, if you want to
migrate away from old infrastructure but continue to use the same database engine, AWS DMS
also supports that process.

l AWS DMS supports nearly all of today’s most popular DBMS engines as data sources, including
Oracle, Microsoft SQL Server, MySQL, MariaDB, PostgreSQL, Db2 LUW, SAP, MongoDB, and
Amazon Aurora.

l AWS DMS provides a broad coverage of available target engines including Oracle, Microsoft SQL
Server, PostgreSQL, MySQL, Amazon Redshift, SAP ASE, S3, and Amazon DynamoDB.

l You can migrate from any of the supported data sources to any of the supported data targets.
AWS DMS supports fully heterogeneous data migrations between the supported engines.

l AWS DMS ensures that your data migration is secure. Data at rest is encrypted with AWS Key Man-
agement Service (AWS KMS) encryption. During migration, you can use Secure Socket Layers (SSL)
to encrypt your in-flight data as it travels from source to target.

How AWS DMS Works

At its most basic level, AWS DMS is a server in the AWS Cloud that runs replication software. You create
a source and target connection to tell AWS DMS where to extract from and load to. Then you schedule
a task that runs on this server to move your data. AWS DMS creates the tables and associated primary
keys if they don't exist on the target. You can pre-create the target tables manually if you prefer. Or you
can use AWS SCT to create some or all of the target tables, indexes, views, triggers, and so on.

The following diagram illustrates the AWS DMS process.

For a complete guide with step-by-step walkthrough, including all the latest notes for
migrating SQL Server to Aurora MySQL with DMS, see https://-
docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html

- 55 -

https://docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_SQLServer2Aurora.html

For more information about DMS, see:

l https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

l https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html

- 56 -

https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_BestPractices.html

ANSI SQL

- 57 -

Migrate from SQL Server Constraints

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Constraints

l Unsupported CHECK

l Indexing requirements for
UNIQUE

Overview

Column and table constraints are defined by the SQL standard and enforce relational data consistency.
There are four types of SQL constraints: Check Constraints, Unique Constraints, Primary Key Con-
straints, and Foreign Key Constraints.

Check Constraints

Syntax

CHECK (<Logical Expression>)

CHECK constraints enforce domain integrity by limiting the data values stored in table columns. They
are logical boolean expressions that evaluate to one of three values: TRUE, FALSE, and UNKNOWN.

Note: CHECK constraint expressions behave differently than predicates in other query
clauses. For example, in a WHERE clause, a logical expression that evaluates to UNKNOWN
is functionally equivalent to FALSE and the row is filtered out. For CHECK constraints, an
expression that evaluates to UNKNOWN is functionally equivalent to TRUE because the
value is permitted by the constraint.

Multiple CHECK constraints may be assigned to a column. A single CHECK constraint may apply to mul-
tiple columns (in this case, it is known as a Table-Level Check Constraint).

In ANSI SQL, CHECK constraints can not access other rows as part of the expression.
SQL Server allows using User Defined Functions in constraints to access other rows, tables, or even
databases.

Unique Constraints

Syntax

UNIQUE [CLUSTERED | NONCLUSTERED] (<Column List>)

UNIQUE constraints should be used for all candidate keys. A candidate key is an attribute or a set of
attributes (columns) that uniquely identify each tuple (row) in the relation (table data).

UNIQUE constraints guarantee that no rows with duplicate column values exist in a table.

- 58 -

A UNIQUE constraint can be simple or composite. Simple constraints are composed of a single
column. Composite constraints are composed of multiple columns. A column may be a part of more
than one constraint.

Although the ANSI SQL standard allows multiple rows having NULL values for UNIQUE constraints, SQL
Server allows a NULL value for only one row. Use a NOT NULL constraint in addition to a UNIQUE con-
straint to disallow all NULL values.

To improve efficiency, SQL Server creates a unique index to support UNIQUE constraints. Otherwise,
every INSERT and UPDATE would require a full table scan to verify there are no duplicates. The default
index type for UNIQUE constraints is non- clustered.

Primary Key Constraints

Syntax

PRIMARY KEY [CLUSTERED | NONCLUSTERED] (<Column List>)

A PRIMARY KEY is a candidate key serving as the unique identifier of a table row. PRIMARY KEYS may
consist of one or more columns. All columns that comprise a primary key must also have a NOT NULL
constraint. Tables can have one primary key.

The default index type for PRIMARY KEYS is a clustered index.

Foreign Key Constraints

Syntax

FOREIGN KEY (<Referencing Column List>)
REFERENCES <Referenced Table>(<Referenced Column List>)

FOREIGN KEY constraints enforce domain referential integrity. Similar to CHECK constraints, FOREIGN
KEYS limit the values stored in a column or set of columns.

FOREIGN KEYS reference columns in other tables, which must be either PRIMARY KEYS or have UNIQUE
constraints. The set of values allowed for the referencing table is the set of values existing the ref-
erenced table.

Although the columns referenced in the parent table are indexed (since they must have either a
PRIMARY KEY or UNIQUE constraint), no indexes are automatically created for the referencing columns
in the child table. A best practice is to create appropriate indexes to support joins and constraint
enforcement.

FOREIGN KEY constraints impose DML limitations for the referencing child table and for the parent
table. The constraint's purpose is to guarantee that no "orphan" rows (rows with no corresponding
matching values in the parent table) exist in the referencing table. The constraint limits INSERT and
UPDATE to the child table and UPDATE and DELETE to the parent table. For example, you can not
delete an order having associated order items.

- 59 -

Foreign keys support Cascading Referential Integrity (CRI). CRI can be used to enforce constraints and
define action paths for DML statements that violate the constraints. There are four CRI options:

l NO ACTION: When the constraint is violated due to a DML operation, an error is raised and the
operation is rolled back.

l CASCADE: Values in a child table are updated with values from the parent table when they are
updated or deleted along with the parent.

l SET NULL: All columns that are part of the foreign key are set to NULL when the parent is deleted
or updated.

l SET DEFAULT: All columns that are part of the foreign key are set to their DEFAULT value when
the parent is deleted or updated.

These actions can be customized independently of others in the same constraint. For example, a cas-
cading constraint may have CASCADE for UPDATE, but NO ACTION for UPDATE.

Examples

Create a composite non-clustered PRIMARY KEY.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2)

);

Create a table-level CHECK constraint

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2),

CONSTRAINT CK_MyTableCol1Col2
CHECK (Col2 >= Col1)

);

Create a simple non-null UNIQUE constraint.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2),

CONSTRAINT UQ_Col2Col3

- 60 -

UNIQUE (Col2, Col3)
);

Create a FOREIGN KEY with multiple cascade actions.

CREATE TABLE MyParentTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PK_MyTable
PRIMARY KEY NONCLUSTERED (Col1, Col2)

);

CREATE TABLE MyChildTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 INT NOT NULL,
Col3 INT NOT NULL,
CONSTRAINT FK_MyChildTable_MyParentTable
FOREIGN KEY (Col2, Col3)
REFERENCES MyParentTable (Col1, Col2)
ON DELETE NO ACTION
ON UPDATE CASCADE

);

For more information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-con-
straints

l https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints

- 61 -

https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints

Migrate to Aurora MySQL Constraints

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Constraints

l Unsupported CHECK

l Indexing requirements for
UNIQUE

Overview

Similar to SQL Server, Aurora MySQL supports all ANSI constraint types, except CHECK.

Note: You can work around some of the functionality of CHECK (<Column>) IN (<Value
List>) using the SET and ENUM data types.
For more information, see Data Types.

Unlike SQL Server, constraint names, or symbols in Aurora MySQL terminology, are optional. Identifiers
are created automatically and are similar to SQL Server column constraints that are defined without an
explicit name.

Unique Constraints

Unlike SQL Server where UNIQUE constraints are objects supported by unique indexes, Aurora MySQL
only provides unique indexes. A unique index is the equivalent to a SQL Server UNIQUE constraint.

As with SQL Server, unique indexes enforce distinct values for index columns. If a new row is added or
an existing row is updated with a value that matches an existing row, an error is raised and the oper-
ation is rolled back.

Unlike SQL Server, Aurora MySQL permits multiple rows with NULL values for unique indexes.

Note: If a unique index consists of only one INT type column, the alias _rowid can be used
to reference the index in SELECT statements.

Primary Key Constraints

Similar to SQL Server, a Primary Key constraint in Aurora MySQL is a unique index where all columns
are NOT NULL. Each table can have only one PRIMARY KEY. The name of the constraint is always
PRIMARY.

Primary keys in Aurora MySQL are always clustered. They cannot be configured as NON CLUSTERED
like SQL Server. For more information, see Clustered and Non Clustered Indexes .

Applications can reference a PRIMARY KEY using the alias PRIMARY. If a table has no primary key (not
recommended), Aurora MySQL uses the first NOT NULL and UNIQUE index.

Note: Keep the primary key short to minimize storage overhead for secondary indexes. In
Aurora MySQL, the primary key is clustered. Therefore, every secondary (non clustered)

- 62 -

index maintains a copy of the clustering key as the row pointer.
It is also recommended to create tables and declare the primary key first, followed by the
unique indexes. Then create the non-unique indexes.

If a PRIMARY KEY consists of a single INTEGER column, it can be referenced using the _rowid alias in
SELECT commands.

Foreign Key Constraints

Note: Foreign Key constraints are not supported for partitioned tables.
For more information, see Partitioning.

Aurora MySQL supports foreign key constraints for limiting values in a column, or a set of columns, of
a child table based on their existence in a parent table.

Unlike SQL Server and contrary to the ANSI standard, Aurora MySQL allows foreign keys to reference
non-unique columns in the parent table. The only requirement is that the columns are indexed as the
leading columns of an index, but not necessarily a unique index.

Aurora MySQL supports cascading referential integrity actions using the ON UPDATE and ON DELETE
clauses. The available referential actions are RESTRICT (the default), CASCADE, SET NULL, and NO
ACTION. RESTRICT and NO ACTION are synonymous.

Note: SET DEFAULT is supported by some other MySQL Server engines. Aurora MySQL uses
the InnoDB engine exclusively, which does not support SET DEFAULT.

Note: Some database engines support the ANSI standard for deferred checks. NO ACTION
is a deferred check as opposed to RESTRICT, which is immediate. In MySQL, foreign key con-
straints are always validated immediately. Therefore, NO ACTION is the same as the
RESTRICT action.

Aurora MySQL handles foreign keys differently than most other engines in the following ways:

l If there are multiple rows in the parent table that have the same values for the referenced for-
eign key, Aurora MySQL foreign key checks behave as if the other parent rows with the same key
value do not exist. For example, if a RESTRICT action is defined and a child row has several par-
ent rows, Aurora MySQL does not permit deleting them.

l If ON UPDATE CASCADE or ON UPDATE SET NULL causes a recursion and updates the same table
that has been updated as part of the same cascade operation, Aurora MySQL treats it as if it was
a RESTRICT action. This effectively disables self-referencing ON UPDATE CASCADE or ON UPDATE
SET NULL operations to prevent potential infinite loops resulting from cascaded updates. A self-
referencing ON DELETE SET NULL or ON DELETE CASCADE are allowed because there is no risk of
an infinite loop.

l Cascading operations are limited to 15 levels deep.

Check Constraints

Standard ANSI CHECK clauses are parsed correctly and do not raise syntax errors. However, they are
ignored and are not stored as part of the Aurora MySQL table definition.

- 63 -

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(
<Column Definition>
[CONSTRAINT [<Symbol>]]
PRIMARY KEY (<Column List>)

| [CONSTRAINT [<Symbol>]]
UNIQUE [INDEX|KEY] [<Index Name>] [<Index Type>] (<Column List>)

| [CONSTRAINT [<Symbol>]]
FOREIGN KEY [<Index Name>] (<Column List>)

REFERENCES <Table Name> (<Column List>)
[ON DELETE RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT]
[ON UPDATE RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT]

);

Migration Considerations

l CHECK constraints are not supported in Aurora MySQL.
The engine parses the syntax for CHECK constraints, but they are ignored.

l Consider using triggers or stored routines to validate data values for complex expressions.

l When using check constraints for limiting to a value list such as CHECK (Col1 IN (1,2,3)), consider
using the ENUM or SET data types.

l In Aurora MySQL, the constraint name (symbol) is optional, even for table constraints defined
with the CONSTRAINT keyword.
In SQL Server it is mandatory.

l Aurora MySQL requires that both the child table and the parent table in foreign key relationship
are indexed.
If the appropriate index does not exist, Aurora MySQL automatically creates one.

Examples

Create a composite primary key.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PRIMARY KEY (Col1, Col2)
);

Create a simple non-null unique constraint.

CREATE TABLE MyTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,

- 64 -

CONSTRAINT PRIMARY KEY (Col1, Col2),
CONSTRAINT UNIQUE (Col2, Col3)
);

Create a named foreign key with multiple cascade actions.

CREATE TABLE MyParentTable
(
Col1 INT NOT NULL,
Col2 INT NOT NULL,
Col3 VARCHAR(20) NULL,
CONSTRAINT PRIMARY KEY (Col1, Col2)
);

CREATE TABLE MyChildTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 INT NOT NULL,
Col3 INT NOT NULL,
FOREIGN KEY (Col2, Col3)
REFERENCES MyParentTable (Col1, Col2)
ON DELETE NO ACTION
ON UPDATE CASCADE

);

Summary

The following table identifies similarities, differences, and key migration considerations.

Feautre SQL Server Aurora MySQL Comments

CHECK constraints CHECK Not supported
Aurora MySQL parses CHECK
syntax, but ignores it.

UNIQUE constraints UNIQUE UNIQUE

PRIMARY KEY con-
straints

PRIMARY KEY PRIMARY KEY

FOREIGN KEY con-
straints

FOREIGN KEY FOREIGN KEY

Cascaded referential
actions

NO ACTION |
CASCADE | SET
NULL | SET
DEFAULT

RESTRICT | CASCADE
| SET NULL |
NO ACTION

NO ACTION and RESTRICT are
synonymous.

Indexing of ref-
erencing columns

Not required Required
If not specified, an index is cre-
ated silently to support the
constraint.

Indexing of ref- PRIMARY KEY or Required Aurora MySQL does not

- 65 -

Feautre SQL Server Aurora MySQL Comments

erenced columns UNIQUE
enforce uniqueness of ref-
erenced columns.

Cascade recursion
not allowed, dis-
covered at CREATE
time

Not allowed, dis-
covered at run time.

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/create-table.html
l https://dev.mysql.com/doc/refman/5.7/en/constraints.html
l https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html

- 66 -

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/constraints.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html

Migrate from SQL Server Creating Tables

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Creating Tables

l IDENTITY vs. AUTO_
INCREMENT

l Primary key always
clustered

l CREATE TEMPORARY TABLE
syntax

l Unsupported @table vari-
ables

Overview

ANSI Syntax Conformity

Tables in SQL Server are created using the CREATE TABLE statement and conform to the ANSI/ISO entry
level standard. The basic features of CREATE TABLE are similar for most relational database man-
agement engines and are well defined in the ANSI/ISO standards.

In it's most basic form, the CREATE TABLE statement in SQL Server is used to define:

l Table names, the containing security schema, and database

l Column names

l Column data types

l Column and table constraints

l Column default values

l Primary, candidate (UNIQUE), and foreign keys

T-SQL Extensions

SQL Server extends the basic syntax and provides many additional options for the CREATE TABLE or
ALTER TABLE statements. The most often used options are:

l Supporting index types for primary keys and unique constraints, clustered or non-clustered, and
index properties such as FILLFACTOR

l Physical table data storage containers using the ON <File Group> clause

l Defining IDENTITY auto-enumerator columns

l Encryption

l Compression

l Indexes

- 67 -

For more information, see Data Types, Column Encryption, and Databases and Schemas.

Table Scope

SQL Server provides five scopes for tables:

l Standard tables are created on disk, globally visible, and persist through connection resets and
server restarts.

l Temporary Tables are designated with the "# " prefix. Temporary tables are persisted in TempDB
and are visible to the execution scope where they were created (and any sub-scope). Temporary
tables are cleaned up by the server when the execution scope terminates and when the server
restarts.

l Global Temporary Tables are designated by the "## " prefix. They are similar in scope to tem-
porary tables, but are also visible to concurrent scopes.

l Table Variables are defined with the DECLARE statement, not with CREATE TABLE. They are visible
only to the execution scope where they were created.

l Memory-Optimized tables are special types of tables used by the In-Memory Online Transaction
Processing (OLTP) engine. They use a non standard CREATE TABLE syntax.

Creating a Table Based on an Existing Table or Query

SQL Server allows creating new tables based on SELECT queries as an alternate to the CREATE TABLE
statement. A SELECT statement that returns a valid set with unique column names can be used to cre-
ate a new table and populate data.

SELECT INTO is a combination of DML and DDL.
The simplified syntax for SELECT INTO is:

SELECT <Expression List>
INTO <Table Name>
[FROM <Table Source>]
[WHERE <Filter>]
[GROUP BY <Grouping Expressions>...];

When creating a new table using SELECT INTO, the only attributes created for the new table are column
names, column order, and the data types of the expressions. Even a straight forward statement such
as SELECT * INTO <New Table> FROM <Source Table> does not copy constraints, keys, indexes, identity
property, default values, or any other related objects.

TIMESTAMP Syntax for ROWVERSION Deprecated Syntax

The TIMESTAMP syntax synonym for ROWVERSION has been deprecated as of SQL Server 2008R2 in
accordance with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729
(v=sql.105).

Previously, you could use either the TIMESTAMP or the ROWVERSION keywords to denote a special
data type that exposes an auto-enumerator. The auto-enumerator generates unique eight-byte binary
numbers typically used to version-stamp table rows. Clients read the row, process it, and check the

- 68 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

ROWVERSION value against the current row in the table before modifying it. If they are different, the
row has been modified since the client read it. The client can then apply different processing logic.

Note that when migrating to Aurora MySQL using the Amazon RDS Schema Conversion Tool (SCT),
neither ROWVERSION nor TIMESTAMP are supported. SCT raises error 706 - "Unsupported data type ...
of variable/column was replaced. Check the conversion result" .
You must add customer logic, potentially in the form of a trigger, to maintain this functionality.

See a full example in Aurora MySQL Creating Tables.

Syntax

Simplified syntax for CREATE TABLE:

CREATE TABLE [<Database Name>.<Schema Name>].<Table Name> (<Column Definitions>)
[ON{<Partition Scheme Name> (<Partition Column Name>)];

<Column Definition>:
<Column Name> <Data Type>
[CONSTRAINT <Column Constraint>
[DEFAULT <Default Value>]]
[IDENTITY [(<Seed Value>, <Increment Value>)]
[NULL | NOT NULL]
[ENCRYPTED WITH (<Encryption Specifications>)
[<Column Constraints>]
[<Column Index Specifications>]

<Column Constraint>:
[CONSTRAINT <Constraint Name>]
{{PRIMARY KEY | UNIQUE} [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = <Fill Factor>]
| [FOREIGN KEY]
REFERENCES <Referenced Table> (<Referenced Columns>)]

<Column Index Specifications>:
INDEX <Index Name> [CLUSTERED | NONCLUSTERED]
[WITH(<Index Options>]

Examples

Create a basic table.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create a table with column constraints and an identity.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY IDENTITY (1,1),

- 69 -

Col2 VARCHAR(20) NOT NULL CHECK (Col2 <> ''),
Col3 VARCHAR(100) NULL
REFERENCES MyOtherTable (Col3)

);

Create a table with an additional index.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
INDEX IDX_Col2 NONCLUSTERED

);

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql

- 70 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql

Migrate to Aurora MySQL Creating Tables

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Creating Tables

l IDENTITY vs. AUTO_
INCREMENT

l Primary key always
clustered

l CREATE TEMPORARY TABLE
syntax

l Unsupported @table vari-
ables

Overview

ANSI Syntax

Like SQL Server, Aurora MySQL provides ANSI/ISO syntax entry level conformity for CREATE TABLE and
custom extensions to support Aurora MySQL specific functionality.

Note: Unlike SQL Server that uses a single set of physical files for each database, Aurora
MySQL tables are created as separate files for each table. Therefore, the SQL Server
concept of File Groups does not apply to Aurora MySQL. For more information see Data-
bases and Schemas.

In it's most basic form, and very similar to SQL Server, the CREATE TABLE statement in Aurora MySQL is
used to define:

l Table name, containing security schema ,and/or database

l Column names

l Column data types

l Column and table constraints

l Column default values

l Primary, candidate (UNIQUE), and foreign keys

Aurora MySQL Extensions

Aurora MySQL Server extends the basic syntax and allows many additional options to be defined as
part of the CREATE TABLE or ALTER TABLE statements. The most often used options are:

l Defining AUTO_INCREMENT properties for auto-enumerator columns

l Encryption

- 71 -

l Compression

l Indexes

Table Scope

Aurora MySQL provides two table scopes:

l Standard tables are created on disk, visible globally, and persist through connection resets and
server restarts.

l Temporary tables are created using the CREATE TEMPORARY TABLE statement.
A TEMPORARY table is visible only to the session that creates it and is dropped automatically
when the session is closed.

Creating a table based on an existing table or query

Aurora MySQL provides two ways to create standard or temporary tables based on existing tables and
queries.

CREATE TABLE <New Table> LIKE <Source Table> creates an empty table based on the definition of
another table including any column attributes and indexes defined in the original table.

CREATE TABLE ... AS <Query Expression> is very similar to SQL Server's SELECT INTO and allows cre-
ating a new table and populating data in a single step. Unlike SQL Server, Aurora MySQL also allows
combining standard column definitions and additional columns derived from the query. This state-
ment does not copy supporting objects or attributes from the source table, similar to SQL Server. For
example:

CREATE TABLE SourceTable
(
Col1 INT
);

INSERT INTO SourceTable
VALUES (1)

CREATE TABLE NewTable
(
Col1 INT
)
AS
SELECT Col1 AS Col2
FROM SourceTable;

INSERT INTO NewTable (Col1, Col2)
VALUES (2,3);

SELECT * FROM NewTable

Col1 Col2
---- ----
NULL 1
2 3

- 72 -

Converting TIMESTAMP and ROWVERSION columns

Note: Aurora MySQL does have a TIMESTAMP data type, which is a temporal type not to be
confused with SQL Server's TIMESTAMP. For more information, see the Data Types topic.

SQL server provides an automatic mechanism for stamping row versions for application concurrency
control.

For example:

CREATE TABLE WorkItems
(
WorkItemID INT IDENTITY(1,1) PRIMARY KEY,
WorkItemDescription XML NOT NULL,
Status VARCHAR(10) NOT NULL DEFAULT ('Pending'),
-- other columns...
VersionNumber ROWVERSION

);

The VersionNumber column automatically updates when a row is modified. The actual value is mean-
ingless, just the fact that it changed is what indicates a row modification. The client can now read a
work item row, process it, and ensure no other clients updated the row before updating the status.

SELECT @WorkItemDescription = WorkItemDescription,
 @Status = Status,
 @VersionNumber = VersionNumber
FROM WorkItems
WHERE WorkItemID = @WorkItemID;

EXECUTE ProcessWorkItem @WorkItemID, @WorkItemDescription, @Stauts OUTPUT;

IF (
 SELECT VersionNumber
 FROM WorkItems
 WHERE WorkItemID = @WorkItemID
) = @VersionNumber;
EXECUTE UpdateWorkItems @WorkItemID, 'Completed'; -- Success

ELSE
EXECUTE ConcurrencyExceptionWorkItem; -- Row updated while processing

In Aurora MySQL, you can add a trigger to maintain the updated stamp per row.

CREATE TABLE WorkItems
(
WorkItemID INT AUTO_INCREMENT PRIMARY KEY,
WorkItemDescription JSON NOT NULL,
Status VARCHAR(10) NOT NULL DEFAULT 'Pending',
-- other columns...
VersionNumber INTEGER NULL

);

CREATE TRIGGER MaintainWorkItemVersionNumber
AFTER UPDATE
ON WorkItems FOR EACH ROW
SET NEW.VersionNumber = OLD.VersionNumber + 1;

- 73 -

For more information on triggers in Aurora MySQL, see the Triggers topic.

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(<Create Definition> ,...)[<Table Options>];

<Create Definition>:
<Column Name> <Column Definition> | [CONSTRAINT [symbol]]
[PRIMARY KEY | UNIQUE | FOREIGN KEY <Foreign Key Definition> | CHECK (<Check Predic-
ate>)]
(INDEX <Index Column Name>,...)

<Column Definition>:
<Data Type> [NOT NULL | NULL]
[DEFAULT <Default Value>]
[AUTO_INCREMENT]
[UNIQUE [KEY]] [[PRIMARY] KEY]
[COMMENT <comment>]

Migration Considerations

Migrating CREATE TABLE statements should be mostly compatible with the SQL Server syntax when
using only ANSI standard syntax.

IDENTITY columns should be rewritten to use the Aurora MySQL syntax of AUTO_INCREMENT. Note
that similar to SQL Server, there can be only one such column in a table, but in Aurora MySQL it also
must be indexed.

Temporary table syntax should be modified to use the CREATE TEMPORARY TABLE statement instead
of the CREATE #Table syntax of SQL Server. Global temporary tables and table variables are not sup-
ported by Aurora MySQL. For sharing data across connections, use standard tables.

SELECT INTO queries should be rewritten to use CREATE TABLE ... AS syntax. When copying tables,
remember that the CREATE TABLE ... LIKE syntax also retains all supporting objects such as constraints
and indexes.

Aurora MySQL does not require specifying constraint names when using the CONSTRAINT keyword.
Unique constraint names are created automatically. If specifying a name, the name must be unique for
the database.

Unlike SQL Server IDENTITY columns, which require EXPLICIT SET IDENTITY_INSERT ON to bypass the
automatic generation, Aurora MySQL allows inserting explicit values into the column. To generate an
automatic value, insert a NULL or a 0 value. To reseed the automatic value, use ALTER TABLE as
opposed to SQL Server's DBCC CHECKIDENT.

Aurora MySQL also allows adding a comment to a column for documentation purposes, similar to SQL
Server extended properties feature.

- 74 -

Note: Contrary to the SQL standard, foreign keys in Aurora MySQL are allowed to point to
non-unique parent column values. In this case, the foreign key prohibits deletion of any of
the parent rows. For more information, see Constraints and https://dev.mysql.-
com/doc/refman/5.7/en/ansi-diff-foreign-keys.html.

Examples

Create a basic table.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create a table with column constraints and an auto increment column.

CREATE TABLE MyTable
(
Col1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
CHECK (Col2 <> ''),

Col3 VARCHAR(100) NULL
REFERENCES MyOtherTable (Col3)

);

Create a table with an additional index.

CREATE TABLE MyTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL,
INDEX IDX_Col2 (Col2)
);

Summary

Feature SQL Server
Aurora
MySQL

Comments

ANSI com-
pliance

Entry level Entry level Basic syntax is compatible.

Auto gen-
erated enu-
merator

IDENTITY
AUTO_
INCREMENT

Only one allowed for each table. In Aurora
MySQL insert NULL or 0 to generate new value.

Reseed auto
generated
value

DBCC CHECKIDENT
ALTER
TABLE

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/alter-table.html

- 75 -

https://dev.mysql.com/doc/refman/5.7/en/ansi-diff-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/ansi-diff-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

Feature SQL Server
Aurora
MySQL

Comments

Index types
CLUSTERED /
NONCLUSTERED

Implicit -
Primary
keys use
clustered
indexes

See the Clustered and Non Clustered Indexes .

Physical stor-
age location

ON <File Group>
Not sup-
ported

Physical storage is managed by AWS.

Temporary
tables

#TempTable
CREATE
TEMPORARY
TABLE

Global Tem-
porary
Tables

##GlobalTempTable
Not sup-
ported

Use standard tables to share data between con-
nections.

Table Vari-
ables

DECLARE @Table
Not sup-
ported

Create table
as query

SELECT... INTO
CREATE
TABLE... AS

Copy table
structure

Not supported
CREATE
TABLE...
LIKE

Memory
optimized
tables

Supported
Not sup-
ported

For workloads that require memory resident
tables, consider using AWS Elsticache for Redis.
See https://aws.amazon.com/elasticache/redis/

For more information, see https://dev.mysql.com/doc/refman/5.7/en/create-table.html

- 76 -

https://aws.amazon.com/elasticache/redis/
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Migrate from SQL Server Common Table Expressions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Common Table
Expressions

l Rewrite non- recursive CTE to use
views and derived tables

l Redesign recursive CTE code

Overview

Common Table Expressions (CTE), which have been a part of the ANSI standard since SQL:1999, sim-
plify queries and make them more readable by defining a temporary view, or derived table, that a sub-
sequent query can reference. SQL Server CTEs can be the target of DML modification statements and
have similar restrictions as updateable views.

SQL Server CTEs provide recursive functionality in accordance with the the ANSI 99 standard. Recursive
CTEs can reference themselves and re-execute queries until the data set is exhausted, or the maximum
number of iterations is exceeded.

CTE Syntax (simplified)

WITH <CTE NAME>
AS
(
SELECT
)
SELECT ...
FROM CTE

Recursive CTE syntax

WITH <CTE NAME>
AS (
 <Anchor SELECT query>
 UNION ALL
 <Recursive SELECT query with reference to <CTE NAME>>
)
SELECT ... FROM <CTE NAME>...

Examples

Create and populate an OrderItemstable.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,

- 77 -

PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a CTE to calculate the total quantity in every order and then join to the OrderItemstable to
obtain the relative quantity for each item.

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
)
SELECT O.OrderID, O.Item,
 O.Quantity,

(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 AggregatedOrders AS AO
 ON O.OrderID = AO.OrderID;

The example above produces the following results:

OrderID Item Quantity PercentOfOrder
------- ---- -------- -------------
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Using a Recursive CTE, create and populate the Employeestable with the DirectManagerfor each
employee.

CREATE TABLE Employees
(
Employee VARCHAR(5) NOT NULL PRIMARY KEY,
DirectManager VARCHAR(5) NULL
);

INSERT INTO Employees(Employee, DirectManager)
VALUES
('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Use a resursive CTE to display the employee-management hierarchy.

- 78 -

WITH EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
 Employee,
 DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
 E.Employee,
 E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The example above displays the following results:

LVL Employee DirectManager
--- -------- -------------
0 Dave NULL
1 John Dave
1 Jose Dave
2 Fred John

For more information, see https://technet.microsoft.com/en-us/library/ms186243.aspx

- 79 -

https://technet.microsoft.com/en-us/library/ms186243.aspx

Migrate to Aurora MySQL Common Table Expressions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Common Table
Expressions

l Rewrite non- recursive CTE to use
views and derived tables

l Redesign recursive CTE code

Overview

Aurora MySQL 5.7 does not support Common Table Expressions (CTE).
However, The next version of MySQL, version 8, will support CTEs, including recursive CTEs.

Migration Considerations

As a workaround, use VIEWs or derived tables in place of non recursive CTEs.

Since non recursive CTEs are more convenient for readability and code simplification, You can convert
the code to use derived tables, which are a subquery in the parent query's FROM clause. For example,
replace the following CTE:

WITH TopCustomerOrders
(
 SELECT Customer,
 COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY Customer
)
SELECT TOP 10 *
FROM TopCustomerOrders
ORDER BY NumOrders DESC;

With the following subquery:

SELECT *
FROM (SELECT Customer,
 COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY Customer
) AS TopCustomerOrders
ORDER BY NumOrders DESC
LIMIT 10 OFFSET 0;

When using derived tables, the derived table definition must be repeated if multiple instances are
required for the query.

Converting the code for recursive CTEs is not straight forward, but you can achieve similar functionality
using loops.

- 80 -

Examples

Replacing Non-Recursive CTEs

Use a derived table to replace non-recursive CTE functionality as follows:

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a derived table for TotalQty of every order and then join to the OrderItemsto obtain the rel-
ative quantity for each item.

SELECT O.OrderID,
 O.Item,
 O.Quantity,

(O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN

(SELECT OrderID,
 SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
) AS AO
 ON O.OrderID = AO.OrderID;

The example code above displays the following results:

OrderID Item Quantity PercentOfOrder
------- ---- -------- -------------
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Replacing Recursive CTEs

Use recursive SQL code in stored procedures and SQL loops to replace a recursive CTEs.

Note: Stored procedure and function recursion in Aurora MySQL is disabled by default.
You can set the server system variable max_sp_recursion_depth to a value of 1 or higher to

- 81 -

enable recursion. However, this approach is not recommended because it may increase
contention for the thread stack space.

Create and populate an Employees table.

CREATE TABLE Employees
(
Employee VARCHAR(5) NOT NULL PRIMARY KEY,
DirectManager VARCHAR(5) NULL
);

INSERT INTO Employees (Employee, DirectManager)
VALUES
('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Create an EmpHierarcytable.

CREATE TABLE EmpHierarchy
(
LVL INT,
Employee VARCHAR(5),
Manager VARCHAR(5)
);

Create a procedure that uses a loop to traverse the employee hierarchy. For more information on
Stored Procedures in Aurora MySQL, see Stored Procedures. For more information on loops in Aurora
MySQL, see Flow Control.

CREATE PROCEDURE P()
BEGIN
DECLARE var_lvl INT;
DECLARE var_Employee VARCHAR(5);
SET var_lvl = 0;
SET var_Employee = (
 SELECT Employee
 FROM Employees |
 WHERE DirectManager IS NULL
);
INSERT INTO EmpHierarchy
VALUES (var_lvl, var_Employee, NULL);
WHILE var_lvl <> -1
DO
INSERT INTO EmpHierarchy (LVL, Employee, Manager)
SELECT var_lvl + 1,
 Employee,
 DirectManager
FROM Employees
WHERE DirectManager IN (
 SELECT Employee
 FROM EmpHierarchy
 WHERE LVL = var_lvl
);

- 82 -

IF NOT EXISTS (
 SELECT *
 FROM EmpHierarchy
 WHERE LVL = var_lvl + 1
)
THEN SET var_lvl = -1;
ELSE SET var_lvl = var_lvl + 1;
END IF;
END WHILE;
END;

Execute the procedure.

CALL P()

Select all records from the EmpHierarchy table.

SELECT * FROM EmpHierarchy;

Level Employee Manager
----- -------- -------
0 Dave
1 John Dave
1 Jose Dave
2 Fred John

Summary

SQL Server Aurora MySQL Comments

Non recursive CTE Derived table
For multiple instances of the same table, the
derived table definition subquery must be
repeated.

Recursive CTE
Loop inside a stored pro-
cedure or stored func-
tion.

For more information, see https://dev.mysql.com/doc/refman/8.0/en/with.html

- 83 -

https://dev.mysql.com/doc/refman/8.0/en/with.html

Migrate from SQL Server Data Types

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - Data
Types

l Minor syntax and handling
differences

l No special UNICODE data
types

Overview

In SQL Server, each table column, variable, expression, and parameter has an associated data type.

SQL Server provides a rich set of built-in data types as summarized in the following table.

Category Data Types

Numeric
BIT, TINYINT, SMALLINT, INT, BIGINT, NUMERIC, DECIMAL, MONEY,
SMALLMONEY, FLOAT, REAL

String and Character CHAR, VARCHAR, NCHAR, NVARCHAR

Temporal
DATE, TIME, SMALLDATETIME, DATETIME, DATETIME2,
DATETIMEOFFSET

Binary BINARY, VARBINARY

Large Object (LOB)
TEXT, NTEXT, IMAGE, VARCHAR(MAX), NVARCHAR(MAX), VARBINARY
(MAX)

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical identifier HIERARCHYID

Spatial GEOMETRY, GEOGRAPHY

Sets (Table type) TABLE

XML XML

Other Specialty Types ROW VERSION, SQL_VARIANT

Note: You can create custom user defined data types using T-SQL, and the .NET Frame-
work. Custom data types are based on the built-in system data types and are used to sim-
plify development.
For more information, see User Defined Types.

- 84 -

TEXT, NTEXT, and IMAGE deprecated data types

The TEXT, NTEXT, and IMAGE data types have been deprecated as of SQL Server 2008R2 in accordance
with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

These data types are legacy types for storing BLOB and CLOB data. The TEXT data type was used to
store ASCII text CLOBS, the NTEXT data type to store UNICODE CLOBS, and IMAGE was used as a gen-
eric data type for storing all BLOB data. In SQL Server 2005, Microsoft introduced the new and
improved VARCHAR(MAX), NVARCHAR(MAX), and VARBINARY(MAX) data types as the new BLOB and
CLOB standard. These new types support a wider range of functions and operations. They also provide
enhanced performance over the legacy types.

If your code uses TEXT, NTEXT or IMAGE data types, SCT automatically converts them to the appro-
priate Aurora MySQL BLOB data type. TEXT and NTEXT are converted to LONGTEXT and image to
LONGBLOB. Make sure you use the proper collations. For more details, see the Collations.

Examples

Define table columns.

CREATE TABLE MyTable
(
Col1 AS INTEGER NOT NULL PRIMARY KEY,
Col2 AS NVARCHAR(100) NOT NULL
);

Define variable types.

DECLARE @MyXMLType AS XML,
 @MyTemporalType AS DATETIME2

DECLARE @MyTableType
AS TABLE
(
Col1 AS BINARY(16) NOT NULL PRIMARY KEY,
Col2 AS XML NULL
);

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

- 85 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

Migrate to Aurora MySQL Data Types

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - Data
Types

l Minor syntax and handling
differences

l No special UNICODE data
types

Overview

Aurora MySQL supports the following data types:

Category Data Type

Numeric
BIT, INTEGER, SMALLINT, TINYINT, MEDIUMINT, BIGINT, DECIMAL,
NUMERIC, FLOAT, DOUBLE

String and Character CHAR, VARCHAR, SET

Temporal DATE, DATETIME, TIMESTAMP, TIME, YEAR

Binary BINARY, VARBINARY

Large Object (LOB) BLOB, TEXT

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical Identifiers HIERARCHYID

Spatial
GEOMETRY, POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION

JSON JSON

Be aware that Aurora MySQL uses different rules than SQL Server for handling out-of-range and over-
flow situations. SQL Server always raises an error for out-of-range values. Aurora MySQL exhibits dif-
ferent behavior depending on run time settings.
For example, a value may be "clipped" to the first or last value in the range of permitted values for the
data type if STRICT SQL mode is not set.
For more information, see https://dev.mysql.com/doc/refman/5.7/en/out-of-range-and-overflow.html

- 86 -

https://dev.mysql.com/doc/refman/5.7/en/out-of-range-and-overflow.html

Converting from TEXT, NTEXT, and IMAGE SQL Server deprecated data types

As mentioned in SQL Server Data Types, the legacy SQL Server types for storing LOB data are deprec-
ated as of SQL Server 2008R2.

When converting from these types to Aurora MySQL using the AWS Schema Conversion Tool (SCT), they
are converted as follows:

SQL Server LOB Type
Converted to Aurora
MySQL data type

Comments

TEXT LONGTEXT
Make sure to choose the right collation, for
more information see the Collations topic

NTEXT LONGTEXT
Make sure to choose the right collation, for
more information see the Collations topic

IMAGE LONGBLOB

The size cap for all of these types is compatible and is capped at 2 GB of data, which may allow less
characters depending on the chosen collation.

Note: Aurora MySQL supports UCS-2 collation, which is compatible with SQL Server's
UNICODE types.

While it is safe to use the default conversion types, remember that, unlike SQL Server, Aurora MySQL
also provides smaller BLOB and CLOB types, which may be more efficient for your data.

Even the basic VARCHAR and VARBINARY data types can store strings up to 32 KB, which is much
longer that SQL Server's 8 KB limit. If the strings or binary data that you need to store do not exceed 32
KB, it may be more efficient to store these as non-LOB types in Aurora MySQL.

For more information, see the Data Types topic.

Summary

The following table summarizes the key differences and migration considerations for migrating from
SQL Server data types to Aurora MySQL data types.

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

BIT BIT

Aurora MySQL also supports BIT(m), which can be used to
store multiple bit values. SQL Server's literal bit notation
uses the numerical digits 0 and 1. Aurora MySQL uses
b'<value> or 0b<value> notations.

For more information see https://dev.mysql.-

- 87 -

https://dev.mysql.com/doc/refman/5.7/en/bit-type.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

com/doc/refman/5.7/en/bit-type.html and https://dev.mysql.-
com/doc/refman/5.7/en/bit-value-literals.html

TINYINT TINYINT

SQL Server only supports unsigned TINYINT, which can store
values between 0 and 255, Aurora MySQL supports both
signed TINYINT and TINYINT UNSIGNED. The latter can be
used to store values between -128 and 127. The default for
integer types in Aurora MySQL is to use signed integers. For
compatibility, explicitly specify TINYINT UNSIGNED.

For more information see https://dev.mysql.-
com/doc/refman/5.7/en/integer-types.html

SMALLINT SMALLINT

Compatible type. SQL Server supports only signed
SMALLINT. Auora MySQL also supports SMALLINT
UNSIGNED, which can store values between 0 and 65535.
The default for integer types in Aurora MySQL is to use
signed integers. Consider using unsigned integers for stor-
age optimization.

For more information see https://dev.mysql.-
com/doc/refman/5.7/en/integer-types.html

INTEGER INTEGER

Compatible type. SQL Server supports only signed INTEGER,
which can store values between -2147483648 and
2147483647. Aurora MySQL also supports INTEGER
UNSIGNED, which can store values between 0 and
4294967295. The default for integer types in Aurora MySQL
is to use signed integers. Consider using unsigned integers
for storage optimization.

Aurora MySQL also supports a MEDIUMINT type, which uses
only three bytes of storage vs. four bytes for INTEGER. For
large tables, consider using MEDIUMINT instead of INT if the
value range is within -8388608 to -8388607 for a SIGNED
type, or 0 to 16777215 for UNSIGNED type.

For more information see https://dev.mysql.-
com/doc/refman/5.7/en/integer-types.html

BIGINT BIGINT

Compatible type. SQL Server supports only signed BIGINT.
Aurora MySQL also supports BIGINT UNSIGNED, which can
store values between 0 and 2^64-1. The default for integer
types in Aurora MySQL is to use signed integers. Consider
using unsigned integers for storage optimization.

- 88 -

https://dev.mysql.com/doc/refman/5.7/en/bit-type.html
https://dev.mysql.com/doc/refman/5.7/en/bit-value-literals.html
https://dev.mysql.com/doc/refman/5.7/en/bit-value-literals.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

For more information see https://dev.mysql.-
com/doc/refman/5.7/en/integer-types.html

NUMERIC /
DECIMAL

NUMERIC /
DECIMAL

Compatible types. DECIMAL and NUMERIC are synonymous.

MONEY /
SMALLMONEY

N/A

Aurora MySQL does not support dedicated monetary types.
Use NUMERIC / DECIMAL instead. If your application uses lit-
erals with monetary signs (for example, $50.23), rewrite to
remove the monetary sign.

FLOAT / REAL
FLOAT / REAL /
DOUBLE

Compatible types. In SQL Server, both REAL and FLOAT(n)
(where n<=24, use 4 bytes of storage) are equivalent to Aur-
ora MySQL's FLOAT and REAL. SQL Server's FLOAT(n), where
n>24, uses 8 bytes.

The Aurora MySQL DOUBLE PRECISION type always uses 8
bytes.

Aurora MySQL also supports the non standard FLOAT(M,D),
REAL(M,D) or DOUBLE PRECISION(M,D) where (M,D) indic-
ates values can be stored with up to M digits in total with D
digits after the decimal point.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/floating-point-types.html

CHAR
CHAR /
VARCHAR

Compatible types up to 255 characters only. SQL Server sup-
ports CHAR data types up to 8,000 characters. The Aurora
MySQL CHAR data type is limited to a maximum of 255 char-
acters.

For strings requiring more than 255 characters, use
VARCHAR. When converting from CHAR to VARCHAR, exer-
cise caution because VARCHAR behaves differently than
CHAR; trailing spaces are trimmed.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/char.html

VARCHAR VARCHAR

Compatible types. SQL Server supports VARCHAR columns
up to 8,000 characters. Aurora MySQL can store up to 65,535
characters with regard to the maximal row size limit.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/char.html

- 89 -

https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

NCHAR CHAR

Aurora MySQL does not require the use of specific data
types for storing UNICODE data. Use the CHAR data type and
define a UNICODE collation using the CHARACTER SET or
COLLATE keywords.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/charset-unicode-sets.html

NVARCHAR VARCHAR

Aurora MySQL does not require the use of specific data
types for storing UNICODE data. Use the VARCHAR data type
and define a UNICODE collation using the CHARACTER SET
or COLLATE keywords.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/charset-unicode-sets.html

DATE DATE

Compatible types. The range for SQL Server's DATE data type
is '0001-01-01' through '9999-12-31'. The range for Aurora
MySQL is '1000-01-01' through '9999-12-31'.

Aurora MySQL does not support dates before 1000 AD. For
more information about handling dates, see Date and Time
Functions.

For more information about the DATE data type, see
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

TIME TIME

Compatible types. SQL Server supports explicit fractional
seconds using the format TIME(n) where n is between 0 to 7.
Aurora MySQL does not allow explicit fractional setting.

Aurora MySQL supports up to 6 digits for microsecond res-
olution of fractional seconds. SQL Server provides one more
digit to support a resolution of up to 100 nanoseconds.

If your application uses the TIME(n) format, rewrite to
remove the (n) setting.

Aurora MySQL also supports TIME values that range from '-
838:59:59' to '838:59:59'. You can use the hours part to rep-
resent the time of day (where hours must be less that 24) or
to represent a time interval (which can be greater than 24
hours and have negative values).

For more information see https://dev.mysql.-
com/doc/refman/5.7/en/time.html

- 90 -

https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/time.html
https://dev.mysql.com/doc/refman/5.7/en/time.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

SMALLDATETIME
DATETIME /
TIMESTAMP

Aurora MySQL does not support SMALLDATETIME. Use
DATETIME instead. Use SMALLDATETIME for storage space
optimization where lower ranges and resolutions are
required.

For more information about handling temporal data, see
Date and Time.

DATETIME DATETIME

SQL Server's DATETIME data type supports a value range
between '1753-01-01' and '9999-12-31' with a resolution of
up to 3.33ms. Aurora MySQL DATETIME supports a wider
value range between '1000-01-01 00:00:00' and '9999-12-31
23:59:59' with a higher resolution of microseconds and
optional six fractional second digits.

For more information about handling temporal data, see
Date and Time Functions.

For more information about DATETIME, see
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

DATETIME2 DATETIME

SQL Server's DATETIME2 data type supports a value range
between '0001-01-01' and '9999-12-31' with a resolution of
up to 100 nanoseconds using seven fractional second digits.
Aurora MySQL DATETIME supports a narrower value range
between '1000-01-01 00:00:00' and '9999-12-31 23:59:59' with
a lower resolution of microseconds and optional six frac-
tional second digits.

For more information about handling temporal data, see
Date and Time Functions.

For more information about DATETIME, see
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

DATETIMEOFFSET TIMESTAMP

Aurora MySQL does not support full time zone awareness
and management functions. Use the time_zone system vari-
able in conjunction with TIMESTAMP columns to achieve par-
tial time zone awareness.

For more information about system variables, see Server
Options.

Aurora MySQL's TIMESTAMP is not the same as SQL Server's
TIMESTAMP data type, the latter being a synonym for ROW_
VERSION. Aurora MySQL TIMESTAMP is equivalent to the

- 91 -

https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

DATETIME type with a smaller range.

Aurora MySQL DATETIME allows for values between '1000-
01-01 00:00:00' and '9999-12-31 23:59:59'. TIMESTAMP is lim-
ited to values between '1970-01-01 00:00:01' and '2038-01-19
03:14:07'.

Aurora MySQL converts TIMESTAMP values from the current
time zone to UTC for storage and back from UTC to the cur-
rent time zone for retrieval.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/time-zone-support.html

BINARY
BINARY /
VARBINARY

In Aurora MySQL, the BINARY data type is considered to be a
string data type and is similar to CHAR. BINARY contains
byte strings rather than character strings and uses the bin-
ary character set and collation. Comparison and sorting are
based on the numeric values of the bytes in the values.

SQL Server supports up to 8,000 bytes for a BINARY data
types. Aurora MySQL BINARY is limited to 255 characters,
similar to CHAR. If larger values are needed, use VARBINARY.

Literal assignment for Aurora MySQL BINARY types use
string literals, unlike SQL Server's explicit binary 0x notation.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/binary-varbinary.html and
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-col-
lations.html

VARBINARY VARBINARY

In Aurora MySQL, the VARBINARY data type is considered a
string data type, similar to VARCHAR. VARBINARY contains
byte strings rather than character strings and has a binary
character set. Collation, comparison, and sorting are based
on the numeric values of the bytes in the values.

Aurora MySQL VARBINARY supports up to 65,535 characters,
significantly larger than SQL Server's 8,000 byte limit.

Literal assignment for Aurora MySQL BINARY types use
string literals, unlike SQL Server's explicit binary 0x notation.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/binary-varbinary.html and

- 92 -

https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

https://dev.mysql.com/doc/refman/5.7/en/charset-binary-col-
lations.html

TEXT / VARCHAR
(MAX)

VARCHAR /
TEXT /
MEDIUMTEXT /
LONGTEXT

In SQL Server, a TEXT data type is a variable-length ASCII
string data type with a maximum string length of 2^31-1 (2
GB).

Use the following table to determine the optimal Aurora
MySQL data type:

Maximal string length Use

2^16-1 bytes VARCHAR or TEXT

2^24-1 bytes MEDIUMTEXT

2^32-1 bytes LONGTEXT

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/blob.html and https://dev.mysql.-
com/doc/refman/5.7/en/storage-requirements.html#data-
types-storage-reqs-strings

NTEXT / NVARCHAR
(MAX)

VARCHAR /
TEXT /
MEDIUMTEXT /
LONGTEXT

Aurora MySQL does not require the use of specific data
types for storing UNICODE data. Use the TEXT compatible
data types listed above and define a UNICODE collation
using the CHARACTER SET or COLLATE keywords.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/charset-unicode-sets.html

IMAGE / VARBINARY
(MAX)

VARBINARY /
BLOB /
MEDIUMBLOB
/ LONGBLOB

In SQL Server, an IMAGE data type is a variable-length binary
data type with a range of 0 through 2^31-1 (2 GB).

Similar to the BINARY and VARBINARY data types, The BLOB
data types are considered string data types. BLOB data types
contain byte strings rather than character strings and use a
binary character set. Collation, comparison, and sorting are
based on the numeric values of the bytes in the values.

Use the following table to determine the optimal Aurora
MySQL data type:

- 93 -

https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

Maximal binary bytes Use

2^16-1 bytes VARBINARY or BLOB

2^24-1 bytes MEDIUMBLOB

2^32-1 bytes LONGBLOB

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/blob.html, https://dev.mysql.-
com/doc/refman/5.7/en/storage-requirements.html#data-
types-storage-reqs-strings, and https://dev.mysql.-
com/doc/refman/5.7/en/charset-binary-collations.html

CURSOR CURSOR

Types are compatible, although in Aurora MySQL a Cursor is
not really considered to be a type.

For more information, see Cursors.

UNIQUEIDENTIFIER N/A

Aurora MySQL does not support a native unique identifier
type. Use BINARY(16), which is the same base type used for
SQL Server's UNIQUEIDENTIFIER type. It generates values
using the UUID() function, which is the equivalent of SQL
Server's NEW_ID function.

UUID returns a Universal Unique Identifier generated accord-
ing to RFC 4122, A Universally Unique IDentifier (UUID) URN
Namespace (http://www.ietf.org/rfc/rfc4122.txt).

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/miscellaneous-func-
tions.html#function_uuid

HIERARCHYID N/A

Aurora MySQL does not support native hierarchy rep-
resentation. Rewrite functionality with custom application
code using one the common SQL hierarchical data rep-
resentation approaches:

l Adjacency list
l Nested set
l Closure table
l Materialized path

For more information about potential implementations, see
https://en.wikipedia.org/wiki/Adjacency_list, and
https://en.wikipedia.org/wiki/Nested_set_model

- 94 -

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
http://www.ietf.org/rfc/rfc4122.txt
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Nested_set_model

SQL Server Data
Type

Convert to
MySQL Data
Type

Comments

GEOMETRY GEOMETRY

SQL Server's GEOMETRY type represents data in a Euclidean
(flat) coordinate system. SQL Server supports a set of meth-
ods for this type, which include methods defined by the
Open Geospatial Consortium (OGC) standard, and a set of
additional extensions.

Aurora MySQL supports GEOMETRY spatial data, although
the syntax and functionality may differ significantly from
SQL Server. A rewrite of the code is required.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/spatial-types.html

TABLE N/A

Aurora MySQL does not support a TABLE data type.

For more information, and a discussion of alternative solu-
tions, see User Defined Types.

XML N/A

Aurora MySQL does not support a native XML data type .
However, it does provide full support for JSON data types,
which SQL Server does not.

Since XML and JSON are text documents, consider migrating
the XML formatted documents to JSON or use string BLOBs
and custom code to parse and query documents.

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/json.html

ROW_VERSION N/A
Aurora MySQL does not support a row version. Use triggers
to update a dedicated column from a master sequence
value table.

SQL_VARIANT N/A
Aurora MySQL does not support a hybrid, all-purpose data
type similar to SQL Server's SQL_VARIANT. Rewrite applic-
ations to use explicit types.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/data-types.html

- 95 -

https://dev.mysql.com/doc/refman/5.7/en/spatial-types.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-types.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/data-types.html

Migrate from SQL Server GROUP BY

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - GROUP
BY

l Basic syntax compatible

l Advanced options like ALL, CUBE,
GROUPING SETS will require rewrites to use
multiple queries with UNION

Overview

GROUP BY is an ANSI SQL query clause used to group individual rows that have passed the WHERE fil-
ter clause into groups to be passed on to the HAVING filter and then to the SELECT list. This grouping
supports the use of aggregate functions such as SUM, MAX, AVG and others.

Syntax

ANSI compliant GROUP BY Syntax:

GROUP BY
[ROLLUP | CUBE]
<Column Expression> ...n
[GROUPING SETS (<Grouping Set>)...n

Backward compatibility syntax:

GROUP BY
[ALL] <Column Expression> ...n
[WITH CUBE | ROLLUP]

The basic ANSI syntax for GROUP BY supports multiple grouping expressions, the CUBE and ROLLUP
keywords, and the GROUPING SETS clause; all used to add super-aggregate rows to the output.

Up to SQL Server 2008 R2, the database engine supported a legacy, proprietary syntax (not ANSI Com-
pliant) using the WITH CUBE and WITH ROLLUP clauses. These clauses added super-aggregates to the
output.

Also, up to SQL Server 2008 R2, SQL Server supported the GROUP BY ALL syntax, which was used to cre-
ate an empty group for rows that failed the WHERE clause.

SQL Server supports the following aggregate functions:

AVG, CHECKSUM_AGG, COUNT, COUNT_BIG, GROUPING, GROUPING_ID, STDEV, STDEVP, STRING_AGG,
SUM, MIN, MAX, VAR, VARP

- 96 -

Examples

Legacy CUBE and ROLLUP Syntax

CREATE TABLE Orders
(

OrderID INT IDENTITY(1,1) NOT NULL
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),

('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6

The highlighted rows were added as a result of the WITH ROLLUP clause and contain super aggregates
for the following:

l All orders for Jim and John regardless of OrderDate (Orange).

l A super aggregated for all customers and all dates (Red).

Using CUBE instead of ROLLUP adds super aggregates in all possible combinations, not only in group
by expression order.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY Customer, OrderDate
WITH CUBE

Customer OrderDate NumOrders
-------------------- ---------- -----------

- 97 -

Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

Note the additional four green highlighted rows, which were added by the CUBE. They provide super
aggregates for every date for all customers that were not part of the ROLLUP results above.

Legacy GROUP BY ALL

Use the Orders table from the previous example.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY ALL Customer, OrderDate

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
John 2018-05-01 1
John 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
Jim 2018-05-04 0
Warning: Null value is eliminated by an aggregate or other SET operation.

The row highlighted in orange for 2018-05-04 failed the WHERE clause and was returned as an empty
group as indicated by the warning for the empty COUNT(*) = 0.

Use GROUPING SETS

The following query uses the ANSI compliant GROUPING SETS syntax to provide all possible aggregate
combinations for the Orders table, similar to the result of the CUBE syntax. This syntax requires spe-
cifying each dimension that needs to be aggregated.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY GROUPING SETS (

(Customer, OrderDate),
(Customer),
(OrderDate),

- 98 -

()
)

Customer OrderDate NumOrders
-------------------- ---------- -----------
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

For more information, see

l https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql

l https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql

- 99 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql

Migrate to Aurora MySQL GROUP BY

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - GROUP
BY

l Basic syntax compatible

l Advanced options like ALL, CUBE,
GROUPING SETS will require rewrites to use
multiple queries with UNION

Overview

Aurora MySQL supports only the basic ANSI syntax for GROUP BY and does not support GROUPING
SETS or the standard GROUP BY CUBE and GROUP BY ROLLUP. It does support the WITH ROLLUP non-
ANSI syntax like SQL Server, but not the CUBE option.

Aurora MySQL Supports a wider range of aggregate functions than SQL Server and include:

AVG, BIT_AND, BIT_OR, BIT_XOR, COUNT, GROUP_CONCAT, JSON_ARRAYAGG, JSON_OBJECTAGG,
MAX, MIN, STD, STDDEV, STDDEV_POP, STDDEV_SAMP, SUM, VAR_POP, VAR_SAMP, VARIANCE

The bitwise aggregates and the JSON aggregates not available in SQL Server may prove to be very use-
ful in many scenarios. For more information, see https://dev.mysql.com/doc/refman/5.7/en/group-by-
functions.html.

Unlike SQL Server, Aurora MySQL does not allow using ROLLUP and ORDER BY clauses in the same
query. As a workaround, encapsulate the ROLLUP query as a derived table and add the ORDER BY
clause to the outer query.

SELECT *
FROM (
 SELECT Customer,

 OrderDate,
 COUNT(*) AS NumOrders

 FROM Orders AS O
 GROUP BY Customer, OrderDate
 WITH ROLLUP
)
ORDER BY OrderDate, Customer;

Additionally, rows produced by ROLLUP cannot be referenced in a WHERE clause or in a FROM clause
as a join condition because the super aggregates are added late in the processing phase.

Even more problematic is the lack of a function equivalent to the GROUPING_ID function in SQL
Server, which can be used to distinguish super aggregate rows from the base groups. Unfortunately, it
is currently not possible to distinguish rows that have NULLs due to being super aggregates from rows
where the NULL is from the base set.

- 100 -

https://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html

Until SQL92, column expressions not appearing in the GROUP BY list were not allowed in the HAVING,
SELECT, and ORDER BY clauses. This limitation still applies in SQL Server today. For example, the fol-
lowing query is not legal in SQL Serve since a customer group may contain multiple order dates.

 SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders

 FROM Orders AS O
 GROUP BY Customer

However, in some cases, when the columns that do not appear in the GROUP BY clause are func-
tionally dependent on the GROUP BY columns, it does make sense to allow it and ANSI SQL optional
feature T301 does allow it. Aurora MySQL can detect such functional dependencies and allows such
queries to execute.

Note: To allow non-aggregate columns in the HAVING, SELECT, and ORDER BY clauses,
ONLY_FULL_GROUP_BY SQL mode must be disabled.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-depend-
ence.html.

Syntax

SELECT <Select List>
FROM <Table Source>
WHERE <Row Filter>
GROUP BY <Column Name> | <Expression> | <Position>

[ASC | DESC], ...
[WITH ROLLUP]]

Migration Considerations

For most aggregate queries that use only grouping expressions without modifiers, the migration
should be straightforward. Even the WITH ROLLUP syntax is supported as-is in Aurora MySQL. For
more complicated aggregates such as CUBE and GROUPING SETS, a rewrite to include all sub-aggreg-
ate queries as UNION ALL sets is required.

Since Aurora MySQL supports a wider range of aggregate functions, the migration should not present
major challenges. Some minor syntax changes, for example replacing STDEVP with STDDEV_POP), can
be performed automatically by the AWS Schema Conversion Tool (SCT). Some may need manual inter-
vention such as rewriting the STRING_AGG syntax to GROUP_CONCAT. Also consider using Aurora
MySQL additional aggregate functions for query optimizations.

If you plan to keep using the WITH ROLLUP groupings, you must consider how to handle NULLS since
Aurora MySQL does not support an equivalent function to SQL Server's GROUPING_ID.

Examples

Rewrite SQL Server WITH CUBE modifier for migration. Also see the example in SQL Server GROUP BY.

- 101 -

https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-dependence.html
https://dev.mysql.com/doc/refman/5.7/en/group-by-functional-dependence.html

CREATE TABLE Orders
(

OrderID INT NOT NULL AUTO_INCREMENT
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),

('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP
UNION ALL -- Add the super aggregate rows per OrderDate
SELECT NULL,

OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
GROUP BY OrderDate

Customer OrderDate NumOrders
-------- --------- ---------
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6
NULL 2018-05-01 2
NULL 2018-05-02 1
NULL 2018-05-03 2
NULL 2018-05-04 1

Rewrite SQL Server GROUP BY ALL for migration. Also see the example in SQL Server GROUP BY.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY Customer, OrderDate
UNION ALL -- Add the empty groups
SELECT DISTINCT Customer,

OrderDate,
NULL

- 102 -

FROM Orders AS O
WHERE OrderDate > '20180503';

Customer OrderDate NumOrders
-------- --------- ---------
Jim 2018-05-01 1
Jim 2018-05-03 1
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
Jim 2018-05-04 NULL

Summary

Table of similarities, differences, and key migration considerations.

SQL Server feature
Aurora MySQL fea-
ture

Comments

MAX, MIN, AVG,
COUNT, COUNT_BIG

MAX, MIN, AVG,
COUNT

In Aurora MySQL, COUNT returns a BIGINT and is
compatible with SQL Server's COUNT and COUNT_
BIG.

CHECKSUM_AGG N/A Use a loop to calculate checksums.

GROUPING,
GROUPING_ID

N/A
Reconsider query logic to avoid having NULL
groups that are ambiguous with the super aggreg-
ates.

STDEV, STDEVP, VAR,
VARP

STDDEV, STDDEV_
POP, VARIANCE, VAR_
POP

Rewrite keywords only.

STRING_AGG GROUP_CONCAT
Rewrite syntax. See https://dev.mysql.-
com/doc/refman/5.7/en/group-by-func-
tions.html#function_group-concat

WITH ROLLUP WITH ROLLUP Compatible

WITH CUBE N/A See the example for rewrite using UNION ALL.

ANSI CUBE / ROLLUP N/A
Rewrite using WITH ROLLUP and using UNION ALL
queries.

GROUPING SETS N/A Rewrite using UNION ALL queries.

N/A

NON AGGREGATE
COLUMNS IN
HAVING, SELECT,
ORDER BY

Requires ONLY_FULL_GROUP_BY SQL Mode to be
disabled, functional dependencies are evaluated by
the engine.

- 103 -

For more information, see https://dev.mysql.com/doc/refman/5.7/en/group-by-functions-and-modifiers.html

- 104 -

https://dev.mysql.com/doc/refman/5.7/en/group-by-functions-and-modifiers.html

Migrate from SQL Server Table JOIN

Feature Com-
patibility

SCT Automation
Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Table
Joins

l Basic syntax compatible

l FULL OUTER, APPLY, and ANSI SQL 89
outer joins will need to be rewritten

Overview

ANSI JOIN

SQL Server supports the standard ANSI join types:

l <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as
a Cartesian product.

l <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the cartesian product to only the rows
where the join predicate evaluates to TRUE.

l <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved left set with NULL for all the columns that come from the right set.

l <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

l <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>: Designates both sets as reserved and
adds non matching rows from both, similar to a LEFT OUTER JOIN and a RIGHT OUTER JOIN.

APPLY

SQL Server also supports the APPLY operator, which is somewhat similar to a join. However, APPLY
operators enable the creation of a correlation between <Set A> and <Set B> such as that <Set B> may
consist of a sub query, a VALUES row value constructor, or a table valued function that is evaluated per
row of <Set A> where the <Set B> query can reference columns from the current row in <Set A>. This
functionality is not possible with any type of standard JOIN operator.

There are two APPLY types:

l <Set A> CROSS APPLY <Set B>: Similar to an CROSS JOIN in the sense that every row from <Set
A> is matched with every row from <Set B>.

l <Set A> OUTER APPLY <Set B>: Similar to a LEFT OUTER JOIN in the sense that rows from <Set
A> are returned even if the sub query for <Set B> produces an empty set. In that case, NULL is
assigned to all columns of <Set B>.

ANSI SQL 89 JOIN Syntax

Up until SQL Server version 2008R2, SQL Server also supported the "old style" JOIN syntax including
LEFT and RIGHT OUTER JOIN.

- 105 -

The ANSI syntax for a CROSS JOIN operator was to list the sets in the FROM clause using commas as
separators. For example:

SELECT *
FROM Table1,
 Table2,
 Table3...

To perform an INNER JOIN, you only needed to add the JOIN predicate as part of the WHERE clause. For
example:

SELECT *
FROM Table1,
 Table2
WHERE Table1.Column1 = Table2.Column1

Although the ANSI standard didn't specify outer joins at the time, most RDBMS supported them in one
way or another. T-SQL supported outer joins by adding an asterisk to the left or the right of equality
sign of the join predicate to designate the reserved table. For example:

SELECT *
FROM Table1,
 Table2
WHERE Table1.Column1 *= Table2.Column1

To perform a FULL OUTER JOIN, asterisks were placed on both sides of the equality sign of the join pre-
dicate.

As of SQL Server 2008R2, outer joins using this syntax have been depracated in accordance with
https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx.

Note: Even though INNER JOINs using the ANSI SQL 89 syntax are still supported, they are
highly discouraged due to being notorious for introducing hard to catch programming
bugs.

Syntax

CROSS JOIN

FROM <Table Source 1>
 CROSS JOIN
 <Table Source 2>

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>

INNER / OUTER JOIN

FROM <Table Source 1>
[{ INNER | { { LEFT | RIGHT | FULL } [OUTER] } }] JOIN

 <Table Source 2>
 ON <JOIN Predicate>

- 106 -

https://technet.microsoft.com/it-it/library/ms143729(v=sql.105).aspx

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>
WHERE <Join Predicate>
<Join Predicate>:: <Table Source 1 Expression> | = | *= | =* | *=* <Table Source 2
Expression>

APPLY

FROM <Table Source 1>
{ CROSS | OUTER } APPLY

 <Table Source 2>
<Table Source 2>:: <SELECT sub-query> | <Table Valued UDF> | <VALUES clause>

Examples

Create the Orders and Items tables.

CREATE TABLE Items
(
Item VARCHAR(20) NOT NULL
 PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),
('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI

- 107 -

 ON I.Item = OI.Item;

-- ANSI SQL 89
SELECT *
FROM Items AS I,
 OrderItems AS OI
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

-- ANSI SQL 89
SELECT Item
FROM
(
SELECT I.Item, O.OrderID
FROM Items AS I,

 OrderItems AS OI
WHERE I.Item *= OI.Item

) AS LeftJoined
WHERE LeftJoined.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));
CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *
FROM T1

FULL OUTER JOIN
T2
ON T1.Col1 = T2.Col1;

Result:
Col1 COl2 Col1 COl2
---- ---- ---- ----
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

- 108 -

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

- 109 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

Migrate to Aurora MySQL Table JOIN

Feature Com-
patibility

SCT Automation
Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Table
Joins

l Basic syntax compatible

l FULL OUTER, APPLY, and ANSI SQL 89
outer joins will need to be rewritten

Overview

Aurora MySQL supports the following types of joins in the same way as SQL Server, except for FULL
OUTER JOIN:

l <Set A> CROSS JOIN <Set B>: Results in a Cartesian product of the two sets. Every JOIN starts as
a Cartesian product.

l <Set A> INNER JOIN <Set B> ON <Join Condition>: Filters the Cartesian product to only the
rows where the join predicate evaluates to TRUE.

l <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved left set with NULL for all the columns that come from the right set.

l <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition>: Adds to the INNER JOIN all the rows
from the reserved right set with NULL for all the columns that come from the left set.

In addition, Aurora MySQL supports the following join types not supported by SQL Server:

l <Set A> NATURAL [INNER | LEFT OUTER | RIGHT OUTER] JOIN <Set B>: Implicitly assumes
that the join predicate consists of all columns with the same name from <Set A> and <Set B>.

l <Set A> STRAIGHT_JOIN <Set B>: Forces <Set A> to be read before <Set B> and is used as an
optimizer hint.

Aurora MySQL also supports the USING clause as an alternative to the ON clause. The USING clause
consists of a list of comma separated columns that must appear in both tables. The Join predicate is
the equivalent of an AND logical operator for equality predicates of each column. For example, the fol-
lowing two JOINs are equivalent:

FROM Table1
 INNER JOIN
 Table2
 ON Table1.Column1 = Table2.column1;

FROM Table1
 INNER JOIN
 Table2
 USING (Column1);

If Column1 is the only column with a common name between Table1 and Table2, the following state-
ment is also equivalent:

- 110 -

FROM Table1
 NATURAL JOIN
 Table2

Note: Aurora MySQL supports the ANSI SQL 89 syntax for joins using commas in the FROM
clause, but only for INNER JOINs.

Note: Aurora MySQL supports neither APPLY nor the equivalent LATERAL JOIN used by
some other RDBMS.

Syntax

FROM
 <Table Source 1> CROSS JOIN <Table Source 2>

| <Table Source 1> INNER JOIN <Table Source 2>
 ON <Join Predicate> | USING (Equality Comparison Column List)

| <Table Source 1> {LEFT|RIGHT} [OUTER] JOIN <Table Source 2>
 ON <Join Predicate> | USING (Equality Comparison Column List)

| <Table Source 1> NATURAL [INNER | {LEFT|RIGHT} [OUTER]] JOIN <Table Source 2>
| <Table Source 1> STRAIGHT_JOIN <Table Source 2>
| <Table Source 1> STRAIGHT_JOIN <Table Source 2>

 ON <Join Predicate>

Migration Considerations

For most JOINs, the syntax should be equivalent and no rewrites should be needed.

l CROSS JOIN using either ANSI SQL 89 or ANSI SQL 92 syntax

l INNER JOIN using either ANSI SQL 89 or ANSI SQL 92 syntax

l OUTER JOIN using the ANSI SQL 92 syntax only

FULL OUTER JOIN and OUTER JOIN using the pre-ANSI SQL 92 syntax are not supported, but they can
be easily worked around (see the examples below).

CROSS APPLY and OUTER APPLY are not supported and need to be rewritten.

Examples

Create the Orders and Items tables.

CREATE TABLE Items
(
Item VARCHAR(20) NOT NULL
 PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),

- 111 -

('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN and OUTER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item;

-- ANSI SQL 89
SELECT *
FROM Items AS I,
 Orders AS O
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

SELECT Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

Rewrite for FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));
CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *
FROM T1

- 112 -

LEFT OUTER JOIN
T2
ON T1.Col1 = T2.Col1

UNION ALL
SELECT NULL, NULL, Col1, Col2
FROM T2
WHERE Col1 NOT IN (SELECT Col1 FROM T1);

Result:
Col1 COl2 Col1 COl2
---- ---- ---- ----
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

Summary

Table of similarities, differences, and key migration considerations.

SQL Server Aurora MySQL Comments

INNER JOIN with ON clause or commas Supported

OUTER JOIN with ON cluase Supported

OUTER JOIN with commas Not supported
Requires T-SQL rewrite
post SQL Server 2008R2.

CROSS JOIN or using commas Supported

CROSS APPLY and OUTER APPLY Not Supported Rewrite required.

Not Supported NATURAL JOIN

Not recommended, may
cause unexpected issues
if table structure
changes.

Not Supported STRAIGHT_JOIN

Not Supported USING clause

For more information, see https://dev.mysql.com/doc/refman/5.7/en/join.html

- 113 -

https://dev.mysql.com/doc/refman/5.7/en/join.html

Migrate from SQL Server Views

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l Minor syntax and handling differences

l Indexes, Triggers, and temporary
views not supported

Overview

Views are schema objects that provide stored definitions for virtual tables. Similar to tables, views are
data sets with uniquely named columns and rows. With the exception of indexed views, view objects
do not store data. They consist only of a query definition and are reevaluated for each invocation.

Views are used as abstraction layers and security filters for the underlying tables. They can JOIN and
UNION data from multiple source tables and use aggregates, window functions, and other SQL fea-
tures as long as the result is a semi-proper set with uniquely identifiable columns and no order to the
rows. You can use Distributed Views to query other databases and data sources using linked servers.

As an abstraction layer, a view can decouple application code from the database schema. The under-
lying tables can be changed without the need to modify the application code, as long as the expected
results of the view do not change. You can use this approach to provide backward compatible views of
data.

As a security mechanism, a view can screen and filter source table data. You can perform permission
management at the view level without explicit permissions to the base objects, provided the ownership
chain is maintained.
For more information on ownership chains in SQL Server, see https://docs.microsoft.com/en-us/-
dotnet/framework/data/adonet/sql/overview-of-sql-server-security.

View definitions are evaluated when they are created and are not affected by subsequent changes to
the underlying tables.
For example, a view that uses SELECT * does not display columns that were added later to the base
table. Similarly, if a column was dropped from the base table, invoking the view results in an error. Use
the SCHEMABINDING option to prevent changes to base objects.

Modifying Data Through Views

Updatable Views can both SELECT and modify data. For a view to be updatable, the following con-
ditions must be met:

l The DML targets only one base table.

l Columns being modified must be directly referenced from the underlying base tables. Computed
columns, set operators, functions, aggregates, or any other expressions are not permitted.

l If a view is created with the CHECK OPTION, rows being updated can not be filtered out of the
view definition as the result of the update.

- 114 -

Special View Types

SQL Server also provides three types of "special" views:

l Indexed Views (also known as materialized views or persisted views) are standard views that
have been evaluated and persisted in a unique clustered index, much like a normal clustered
primary key table. Each time the source data changes, SQL Server re-evaluates the indexed views
automatically and updates the indexed view. Indexed views are typically used as a means to
optimize performance by pre-processing operators such as aggregations, joins, and others. Quer-
ies needing this pre-processing don't have to wait for it to be reevaluated on every query exe-
cution.

l Partitioned Views are views that rejoin horizontally partitioned data sets from multiple under-
lying tables, each containing only a subset of the data. The view uses a UNION ALL query where
the underlying tables can reside locally or in other databases (or even other servers). These types
of views are called Distributed Partitioned Views (DPV).

l System Views are used to access server and object meta data. SQL Server also supports a set of
standard INFORMATION_SCHEMA views for accessing object meta data.

Syntax

CREATE [OR ALTER] VIEW [<Schema Name>.] <View Name> [(<Column Aliases>])]
[WITH [ENCRYPTION][SCHEMABINDING][VIEW_METADATA]]
AS <SELECT Query>
[WITH CHECK OPTION][;]

Examples

Create a view that aggregates items for each customer.

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
OrderDate DATETIME NOT NULL
 DEFAULT GETDATE()
);

CREATE TABLE OrderItems
(
OrderID INT NOT NULL
REFERENCES Orders(OrderID),

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

CREATE VIEW SalesView
AS
SELECT O.Customer,
 OI.Product,
 SUM(CAST(OI.Quantity AS BIGINT)) AS TotalItemsBought

- 115 -

FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

Create an indexed view that pre-aggregates items for each customer.

CREATE VIEW SalesViewIndexed
AS
SELECT O.Customer,
 OI.Product,
 SUM_BIG(OI.Quantity) AS TotalItemsBought
FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

CREATE UNIQUE CLUSTERED INDEX IDX_SalesView
ON SalesViewIndexed (Customer, Product);

Create a Partitioned View.

CREATE VIEW dbo.PartitioneView
WITH SCHEMABINDING
AS
SELECT *
FROM Table1
UNION ALL
SELECT *
FROM Table2
UNION ALL
SELECT *
FROM Table3

For more information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/views/views
l https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql

- 116 -

https://docs.microsoft.com/en-us/sql/relational-databases/views/views
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql

Migrate to Aurora MySQL Views

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l Minor syntax and handling differences

l Indexes, Triggers, and temporary
views not supported

Overview

Similar to SQL Server, Aurora MySQL views consist of a SELECT statement that can references base
tables and other views.

Aurora MySQL views are created using the CREATE VIEW statement. The SELECT statement comprising
the definition of the view is evaluated only when the view is created and is not affected by subsequent
changes to the underlying base tables.

Aurora MySQL Views have the following restrictions:

l A view cannot reference system variables or user-defined variables.

l When used within a stored procedure or function, the SELECT statement cannot reference para-
meters or local variables.

l A view cannot reference prepared statement parameters.

l All objects referenced by a view must exist when the view is created. If an underlying table or
view is later dropped, invoking the view results in an error.

l Views cannot reference TEMPORARY tables.

l TEMPORARY views are not supported.

l Views do not support triggers.

l Aliases are limited to a maximum length of 64 characters (not the typical 256 maximum alias
length).

Aurora MySQL provides additional properties not available in SQL Server:

l The ALGORITHM clause is a fixed hint that affects they way the MySQL query processor handles
the view physical evaluation operator.
The MERGE algorithm uses a dynamic approach where the definition of the view is merged to the
outer query.
The TEMPTABLE algorithm materializes the view data internally.
For more information, see https://dev.mysql.com/doc/refman/5.7/en/view-algorithms.html.

l The DEFINER and SQL SECURITY clauses can be used to specify a specific security context for
checking view permissions at run time.

- 117 -

https://dev.mysql.com/doc/refman/5.7/en/view-algorithms.html

Similar to SQL Server, Aurora MySQL supports updatable views and the ANSI standard CHECK OPTION
to limit inserts and updates to rows referenced by the view.

The LOCAL and CASCADED keywords are used to determine the scope of violation checks. When using
the LOCAL keyword, the CHECK OPTION is evaluated only for the view being created. CASCADED causes
evaluation of referenced views. The default is CASCADED.

In general, only views having a one-to-one relationship between the source rows and the exposed rows
are updatable.
Adding the following constructs prevents modification of data:

l Aggregate functions

l DISTINCT

l GROUP BY

l HAVING

l UNION or UNION ALL

l Subquery in the select list

l Certain joins

l Reference to a non-updatable view

l Subquery in the WHERE clause that refers to a table in the FROM clause

l ALGORITHM = TEMPTABLE

l Multiple references to any column of a base table

A view must have unique column names. Column aliases are derived from the base tables or explicitly
specified in the SELECT statement of column definition list. ORDER BY is permitted in Aurora MySQL,
but ignored if the outer query has an ORDER BY clause.

Aurora MySQL assesses data access privileges as follows:

l The user creating a view must have all required privileges to use the top-level objects referenced
by the view.
For example, for a view referencing table columns, the user must have privilege for each column
in any clause of the view definition.

l If the view definition references a stored function, only the privileges needed to invoke the func-
tion are checked. The privileges required at run time can be checked only at run time because dif-
ferent invocations may use different execution paths within the function code.

l The user referencing a view must have appropriate SELECT, INSERT, UPDATE, or
DELETE privileges , as with a normal table.

l When a view is referenced, privileges for all objects accessed by the view are evaluated using the
privileges for the view DEFINER account, or the invoker, depending on whether SQL SECURITY is
set to DEFINER or INVOKER.

l When a view invocation triggers the execution of a stored function, privileges are checked for
statements executed within the function based on the function's SQL SECURITY setting. For

- 118 -

functions where the security is set to DEFINER, the function executes with the privileges of the
DEFINER account. For functions where it is set to INVOKER, the function executes with the priv-
ileges determined by the view's SQL SECURITY setting as described above.

Syntax

CREATE [OR REPLACE]
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { <User> | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW <View Name> [(<Column List>)]
AS <SELECT Statement>
[WITH [CASCADED | LOCAL] CHECK OPTION];

Migration Considerations

The basic syntax for views is very similar to SQL Server and is ANSI compliant. Code migration should
be straightforward.

Aurora MySQL does not support triggers on views. In SQL Server, INSTEAD OF triggers are supported.
For more information, see Triggers.

In Aurora MySQL, ORDER BY is permitted in a view definition. It is ignored if the outer SELECT has its
own ORDER BY. This behavior is different than SQL Server where ORDER BY is allowed only for TOP fil-
tering. The actual order of the rows is not guaranteed.

Security context is explicit in Aurora MySQL, which is not supported in SQL Server. Use security con-
texts to work around the lack of ownership-chain permission paths.

Unlike SQL Server, a view in Aurora MySQL can invoke functions, which in turn may introduce a change
to the database.
For more information, see User Defined Functions.

The WITH CHECK option in Aurora MySQL can be scoped to LOCAL or CASCADED. The CASCADED
causes the CHECK option to be evaluated for nested views referenced in the parent.

Indexed views are not supported in Aurora MySQL. Consider using application maintained tables
instead. Change application code to reference those tables instead of the base table.

Examples

Create and populate an Invoices table.

CREATE TABLE Invoices(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL);

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES
(1, 'John', 1400.23),

- 119 -

(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create the TotalSales view.

CREATE VIEW TotalSales
AS
SELECT Customer,
 SUM(TotalAmount) AS CustomerTotalAmount
GROUP BY Customer;

Invoke the view.

SELECT * FROM TotalSales
ORDER BY CustomerTotalAmount DESC;

Customer CustomerTotalAmount
-------- ----------------
John 1400.23
James 677.22
Jeff 245.00

Summary

Feature SQL Server Aurora MySQL Comments

Indexed Views Supported N/A

Partitioned Views Supprted N/A

While you can create partitioned
views in the same way as SQL Server,
they won't benefit from the internal
optimizations such as partition elim-
ination.

Updateable Views Supported Supported

Prevent schema
conflicts

SCHEMABINDING
option

Triggers on views INSTEAD OF N/A See Triggers.

Temporary Views
CREATE VIEW
#View...

N/A

Refresh view defin-
ition

sp_refreshview /
ALTER VIEW

ALTER VIEW

- 120 -

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/create-view.html
l https://dev.mysql.com/doc/refman/5.7/en/view-restrictions.html
l https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html

- 121 -

https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/view-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html

Migrate from SQL Server Window Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Window Functions

l Rewrite window functions to use
alternative SQL syntax

Overview

Windowed functions use an OVER clause to define the window and frame for a data set to be pro-
cessed. They are part of the ANSI standard and are typically compatible among various SQL dialects.
However, most RDBMS do not yet support the full ANSI specification.

Windowed functions are a relatively new, advanced, and efficient T-SQL programming tool. They are
highly utilized by developers to solve numerous programming challenges.

SQL Server currently supports the following windowed functions:

l Ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE

l Aggregate functions: AVG, MIN, MAX, SUM, COUNT, COUNT_BIG, VAR, STDEV, STDEVP, STRING_
AGG, GROUPING, GROUPING_ID, VAR, VARP, and CHECKSUM_AGG

l Analytic functions: LAG, LEAD, FIRST_Value, LAST_VALUE, PERCENT_RANK, PERCENTILE_CONT,
PERCENTILE_DISC, and CUME_DIST

l Other functions: NEXT_VALUE_FOR (See the Identity and Sequences section)

Syntax

<Function()>
OVER
(
[<PARTITION BY clause>]
[<ORDER BY clause>]
[<ROW or RANGE clause>]
)

Examples

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

- 122 -

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Use a windowed ranking function to rank items based on the ordered quantity.

SELECT Item,
 Quantity,
 RANK() OVER(ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
---- -------- -------
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

Use a partitioned windowed aggregate function to calculate the total quantity per order (without using
a GROUP BY clause).

SELECT Item,
 Quantity,
 OrderID,
 SUM(Quantity)
 OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

Item Quantity OrderID TotalOrderQty
---- -------- ------- -------------
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SELECT Item,
Quantity,
OrderID,
LEAD(Quantity)

 OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
---- -------- ------- ------------
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

- 123 -

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql

- 124 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql

Migrate to Aurora MySQL Window Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Window Functions

l Rewrite window functions to use
alternative SQL syntax

Overview

Aurora MySQL version 5.7 does not support windowed functions. However, the next version of MySQL,
version 8, will include partial support.

Migration Considerations

As a temporary workaround, rewrite the code to remove the use of windowed functions, and revert to
using more traditional SQL code solutions.

In most cases, you can find an equivalent SQL query, although it may be less optimal in terms of per-
formance, simplicity, and readability.
See the examples below for migrating windowed functions to code that uses correlated subqueries.

Note: You may want to archive the original code and then reuse it in the future when Aur-
ora MySQL is upgraded to version 8. The documentation for version 8 indicates the win-
dowed function syntax is ANSI compliant and will be compatible with SQL Server's T-SQL
syntax.

For more information about the upcoming version 8 support for window functions, see https://dev.mysql.-
com/doc/refman/8.0/en/window-functions.html

Examples

The following examples demonstrate ANSI SQL compliant subquery solutions as replacements for the
two example queries from the previous SQL Server section:

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),

- 125 -

https://dev.mysql.com/doc/refman/8.0/en/window-functions.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html

(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Rank items based on ordered quantity (workaround for the windowed ranking function).

SELECT Item,
 Quantity,

(
 SELECT COUNT(*)
 FROM OrderItems AS OI2
 WHERE OI.Quantity > OI2.Quantity) + 1
 AS QtyRank
FROM OrderItems AS OI;

Item Quantity QtyRank
---- -------- -------
M8 Bolt 100 1
M8 Nut 100 1
M6 Locking Nut 300 4
M8 Washer 200 3

Calculate the grand total (workaround for a partitioned windowed aggregate function) .

SELECT Item,
 Quantity,
 OrderID,

(
 SELECT SUM(Quantity)
 FROM OrderItems AS OI2
 WHERE OI2.OrderID = OI.OrderID)
 AS TotalOrderQty
FROM OrderItems AS OI;

Item Quantity OrderID TotalOrderQty
---- -------- ------- -------------
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Get the next largest quantity for the order (workaround for LEAD analytical func-
tion)SELECT Item,

Quantity,
OrderID,
(
SELECT Quantity
FROM OrderItems AS OI2
WHERE OI.OrderID = OI2.OrderID

AND
OI2.Quantity > OI.Quantity

ORDER BY Quantity
LIMIT 1

)

- 126 -

AS NextQtyOrder
FROM OrderItems AS OI

Item Quantity OrderID NextQtyOrder
---- -------- ------- ------------
M8 Bolt 100 1 [NULL]
M8 Nut 100 2 [NULL]
M6 Locking Nut 300 3 [NULL]
M8 Washer 200 3 300

Summary

SQL Server Aurora MySQL Comments

Window Functions and
OVER clause

Not supported yet
Convert code to use traditional SQL techniques
such as correlated sub queries.

For more information, see https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html

- 127 -

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html

T-SQL

- 128 -

Migrate from SQL Server Collations

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Col-
lations

l UNICODE uses CHARACTER SET property
instead of NCHAR/NVARCHAR data types

Overview

SQL Server collations define the rules for string management and storage in terms of sorting, case
sensitivity, accent sensitivity, and code page mapping. SQL Server supports both ASCII and UCS-2
UNICODE data.

UCS-2 UNICODE data uses a dedicated set of UNICODE data types denoted by the prefix "N": Nchar and
Nvarchar. Their ASCII counterparts are CHAR and VARCHAR.

Choosing a collation and a character set has significant implications on data storage, logical predicate
evaluations, query results, and query performance.

Note: To view all collations supported by SQL Server, use the fn_helpcollations
function: SELECT * FROM sys.fn_helpcollations().

Collations define the actual bitwise binary representation of all string characters and the associated
sorting rules. SQL Server supports multiple collations down to the column level. A table may have mul-
tiple string columns that use different collations. Collations for non-UNICODE character sets determine
the code page number representing the string characters.

Note: UNICODE and non-UNICODE data types in SQL Server are not compatible. A pre-
dicate or data modification that introduces a type conflict is resolved using predefined col-
lation precedence rules.
For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-
precedence-transact-sql

Collations define sorting and matching sensitivity for the following string characteristics:

l Case
l Accent
l Kana
l Width
l Variation selector

SQL Server uses a suffix naming convention that appends the option name to the collation name. For
example, the collation Azeri_Cyrillic_100_CS_AS_KS_WS_SC, is an Azeri-Cyrillic-100 collation that is case-
sensitive, accent-sensitive, kana type-sensitive, width-sensitive, and has supplementary characters.

SQL Server supports three types of collation sets:

- 129 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql

l Windows Collations use the rules defined for collations by the operating system locale where
UNICODE and non-UNICODE data use the same comparison algorithms.

l Binary Collations use the binary bit-wise code for comparison. Therefore, the locale does not
affect sorting.

l SQL Server Collations provide backward compatibility with previous SQL Server versions. They
are not compatible with the windows collation rules for non-UNICODE data.

Collations can be defined at various levels:

l Server Level Collations determine the collations used for all system databases and is the
default for future user databases. While the system databases collation can not be changed, an
alternative collation can be specified as part of the CREATE DATABASE statement

l Database Level Collations inherit the server default unless the CREATE DATABASE statement
explicitly sets a different collation. This collation is used as a default for all CREATE TABLE and
ALTER TABLE statements

l Column Level Collations can be specified as part of the CREATE TABLE or ALTER TABLE state-
ments to override the database's default collation setting.

l Expression Level Collations can be set for individual string expressions using the COLLATE func-
tion. For example, SELECT * FROM MyTable ORDER BY StringColumn COLLATE Latin1_

General_CS_AS.

Note: SQL Server supports UCS-2 UNICODE only.

Syntax

CREATE DATABASE <Database Name>
[ON <File Specifications>]
 COLLATE <Collation>

[WITH <Database Option List>];

CREATE TABLE <Table Name>
(
<Column Name> <String Data Type>
COLLATE <Collation> [<Column Constraints>]...
);

Examples

Create a database with a default Bengali_100_CS_AI collation.

CREATE DATABASE MyBengaliDatabase
ON
(NAME = MyBengaliDatabase_Datafile,

FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDatabase.mdf',

SIZE = 100)
LOG ON
(NAME = MyBengaliDatabase_Logfile,

- 130 -

FILENAME = 'C:\Program Files\Microsoft SQL Server-
\MSSQL13.MSSQLSERVER\MSSQL\DATA\MyBengaliDblog.ldf',

SIZE = 25)
COLLATE Bengali_100_CS_AI;

Create a table with two different collations.

CREATE TABLE MyTable
(
Col1 CHAR(10) COLLATE Hungarian_100_CI_AI_SC NOT NULL PRIMARY KEY,
COL2 VARCHAR(100) COLLATE Sami_Sweden_Finland_100_CS_AS_KS NOT NULL
);

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-
and-unicode-support

- 131 -

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support

Migrate to Aurora MySQL Collations

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Col-
lations

l UNICODE uses CHARACTER SET property
instead of NCHAR/NVARCHAR data types

Overview

Aurora MySQL supports multiple character sets and a variety of collations that can be used for com-
parison. Similar to SQL Server, collations can be defined at the server, database, and column level.
They can also be defined at the table level.

The paradigm of collations in Aurora MySQL is different than in SQL Server and consists of separate
character set and collation objects. Aurora MySQL Supports 41 different character sets and 222 col-
lations. Seven different UNICODE character sets are supported including UCS-2, UTF-8 and UTF-32.

Note: Use UCS-2 which is compatible with SQL Server UNICODE types

Each character set can have one or more associated collations with a single default collation.

Collation names have prefixes consisting of the name of their associated character set followed by suf-
fixes that indicate additional characteristics.

To see all character sets supported by Aurora MySQL, use the INFORMATION_SCHEMA.CHARACTER_
SETS table or the SHOW CHARACTER SET statement.
To see all collations for a character set, use the INFORMATION_SCHEMA.COLLATIONS table or the
SHOW COLLATION statement.

Note: Character set and collation settings also affect client-to -server communications. You
can set explicit collations for sessions using the SET command.
For example, SET NAMES 'utf8'; causes Aurora MySQL to treat incoming object names
as UTF-8 encoded.

The default character set and collations can be set at the server level using custom cluster parameter
groups.
For more information, see the example below and Server Options.

At the database level, a default character set and collation can be set with the CREATE DATABASE and
ALTER DATABASE statements.
For example:

CREATE DATABASE MyDatabase
CHARACTER SET latin1 COLLATE latin1_swedish_ci;

To view the default character set and collation for an Aurora MySQL databases, use the following state-
ment:

- 132 -

SELECT DEFAULT_CHARACTER_SET_NAME,
 DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA
WHERE SCHEMA_NAME = '<Database Name>';

Note: In Aurora MySQL, a "database" is equivalent to an SQL Server schema.
For more information, see Databases and Schemas.

Every string column in Aurora MySQL has a character set and an associated collation. If not explicitly
specified, it will inherit the table default. To specify a non-default character set and collation, use the
CHARACTER SET and COLLATE clauses of the CREATE TABLE statement.

CREATE TABLE MyTable
(
StringColumn VARCHAR(5) NOT NULL
CHARACTER SET latin1
COLLATE latin1_german1_ci
);

At the expression level, similar to SQL Server, the COLLATE function can be used to explicitly declare a
string's collation. In addition, a prefix to the string can be used to denote a specific character set. For
example:

SELECT _latin1'Latin non-UNICODE String',
 _utf8'UNICODE String' COLLATE utf8_danish_ci;

Note: The Aurora MySQL term for this "prefix" or "string header" is "introducer". It doesn't
change the value of the string; only the character set.

At the session level, the server's setting determines the default character set and collation used to eval-
uate non-qualified strings.

Although the server's character set and collation default settings can be modified using the cluster
parameter groups, it is recommended that client applications do not assume a specific setting and
explicitly set the required character set and collation using the SET NAMES and SET CHARACTER SET

statements.
For more details about these SET options, see https://dev.mysql.com/doc/refman/5.7/en/charset-con-
nection.html.

Syntax

Database level collation:

CREATE DATABASE <Database Name>
[DEFAULT] CHARACTER SET <Character Set>
[[DEFAULT] COLLATE <Collation>];

Table level collation:

CREATE TABLE <Table Name>
(Column Specifications)

- 133 -

https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html
https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html

[DEFAULT] CHARACTER SET <Character Set>
[COLLATE <Collation>];

Column collation:

CREATE TABLE <Table Name>
(
<Column Name> {CHAR | VARCHAR | TEXT} (<Length>)
CHARACTER SET CHARACTER SET <Character Set>
[COLLATE <Collation>];

Expression collation:

_<Character Set>'<String>' COLLATE <Collation>

Examples

The following wlkthrough describes how to change the Cluster Character Set and Collation:

Log in to the AWS RDS Console and click Parameter Groups.

Click the Create Parameter Group button on the top right.

Set Parameter Group Family to aurora-mysql5.7 and Type to DB Cluster Parameter Group. Enter a
value for Group name. Click Create.

- 134 -

Select the newly created group from the Parameter groups list and click the link.

In the Parameter Groups window, enter character_set_server in the Parameters search box and
click Edit Parameters.

- 135 -

Select the server default character set from the the drop-down menu.

Delete the search term and enter collation. Use the pull down menu to select the desired default
server collation from the drop-down menu. Click Preview Changes.

Check the values and click Close.

Click Save Changes.

- 136 -

Return to the AWS RDS Console dashboard and click Launch a DB Instance.

Select Amazon Aurora and click Next.

- 137 -

Specify the instance parameters and click Next.

- 138 -

In the advanced setting window, scroll down to the Database options section and select the newly cre-
ated parameter group for the new cluster.

- 139 -

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Unicode support
UTF 16 via NCHAR and
NVARCHAR data types

8 UNICODE character sets,
via the CHARACTER SET
option

Collations levels
Server, Database, Column,
Expression

Server, Database, Table,
Column, Expression

View collation metadata
fn_helpcollation system
view

INFORMATION_
SCHEMA.SCHEMATA, SHOW
COLLATION, SHOW
CHARACTER SET

For more information, see https://dev.mysql.com/doc/refman/5.7/en/charset.html

- 140 -

https://dev.mysql.com/doc/refman/5.7/en/charset.html

Migrate from SQL Server Cursors

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Cursors

l Only static, forward only, read-only curs-
ors are supported in Aurora MySQL

Overview

A set is a fundamental concept of the relation data model, from which SQL is derived. SQL is a declar-
ative language that operates on whole sets, unlike most procedural languages that operate on indi-
vidual data elements. A single invocations of an SQL statements can return a whole set or modify
millions of rows.

Many developers are accustom to using procedural or imperative approaches to develop solutions that
are difficult to implement using set-based querying techniques. Also, operating on row data sequen-
tially may be a more appropriate approach is certain situations.

Cursors provide an alternative mechanism for operating on result sets. Instead of receiving a table
object containing rows of data, applications can use cursors to access the data sequentially, row-by-
row. Cursors provide the following capabilities:

l Positioning the cursor at specific rows of the result set using absolute or relative offsets.

l Retrieving a row, or a block of rows, from the current cursor position.

l Modifying data at the current cursor position.

l Isolating data modifications by concurrent transactions that affect the cursor's result.

l T-SQL statements can use cursors in scripts, stored procedures, and triggers.

Syntax

DECLARE <Cursor Name>
CURSOR [LOCAL | GLOBAL]

[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR <SELECT statement>
[FOR UPDATE [OF <Column List>]][;]

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE <Value> | RELATIVE <Value>]
FROM <Cursor Name> INTO <Variable List>;

Examples

Process data in a cursor.

- 141 -

DECLARE MyCursor CURSOR FOR
SELECT *
FROM Table1 AS T1

 INNER JOIN
 Table2 AS T2
 ON T1.Col1 = T2.Col1;

OPEN MyCursor;
 DECLARE @VarCursor1 VARCHAR(20);

FETCH NEXT
 FROM MyCursor INTO @VarCursor1;

WHILE @@FETCH_STATUS = 0
BEGIN

 EXEC MyPRocessingProcedure
 @InputParameter = @VarCursor1;

FETCH NEXT
 FROM product_cursor INTO @VarCursor1;

END

CLOSE MyCursor;
DEALLOCATE MyCursor ;

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/cursors
l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql

- 142 -

https://docs.microsoft.com/en-us/sql/relational-databases/cursors
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql

Migrate to Aurora MySQL Cursors

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Cursors

l Only static, forward only, read-only curs-
ors are supported in Aurora MySQL

Overview

Aurora MySQL supports cursors only within stored routines, functions and stored procedures.

Unlike SQL Server, which offers an array of cursor types, Aurora MySQL Cursors have the following
characteristics:

l Asensitive: The server can choose to either make a copy of its result table or to access the
source data as the cursor progresses.

l Read only: Cursors are not updatable.

l Nonscrollable: Cursors can only be traversed in one direction and cannot skip rows. The only
supported cursor advance operation is FETCH NEXT.

Cursor declarations must appear before handler declarations and after variable and condition declar-
ations.

Similar to SQL Server, cursors are declared with the DECLARE CURSOR, opened with OPEN, fetched
with FETCH, and closed with CLOSE.

Note: Aurora MySQL does not have a DEALLOCATE statement because it is not needed.

DECLARE cursor

Syntax

DECLARE <Cursor Name> CURSOR
FOR <Cursor SELECT Statement>

The DECLARE CURSOR statement instantiates a cursor object and associates it with a SELECT state-
ment. This SELECT is then used to retrieve the cursor rows.

To fetch the rows, use the FETCH statement. As mentioned above, only FETCH NEXT is supported. The
number of output variables specified in the FETCH statement must match the number of columns
retrieved by the cursor.

Aurora MySQL cursors have additional characteristics:

l SELECT INTO is not allowed in a cursor.

l Stored routing can have multiple cursor declarations, but every cursor declared in a given code

- 143 -

block must have a unique name.

l Cursors can be nested.

OPEN cursor

Syntax

OPEN <Cursor Name>;

The OPEN command populates the cursor with the data, either dynamically or in a temporary table,
and readies the first row for consumption by the FETCH statement.

FETCH cursor

Syntax

FETCH [[NEXT] FROM] <Cursor Name>
INTO <Variable 1> [,<Variable n>]

The FETCH statement retrieves the current pointer row, assigns the column values to the variables lis-
ted in the FETCH statement, and advances the cursor pointer by one row. If the row is not available,
meaning the cursor has been exhausted, a No Data condition is raised with an SQLSTATE value of
'0200000'.

To catch this condition, or the alternative NOT FOUND condition, you must create a condition handler.
For more information, see Error Handling.

Note: Carefully plan your error handling flow. The same condition might be raised by other
SELECT statements or other cursors than the one you intended. Place operations within
BEGIN-END blocks to associate each cursor with its own handler.

CLOSE cursor

Syntax

CLOSE <Cursor Name>;

The CLOSE statement closes an open cursor. If the cursor with the specified name does not exist, an
error is raised. If a cursor is not explicitly closed, Aurora MySQL closes it automatically at the end of
the BEGIN ... END block in which it was declared.

Migration Considerations

The Aurora MySQL Cursors framework is much simpler than SQL Server and provides only the basic
types. If your code relies on advanced cursor features, these will need to be rewritten.

However, most applications use forward only, read only cursors, and those will be easy to migrate.

If your application uses cursors in ad-hoc batches, move the code to a stored procedure or a function.

- 144 -

Examples

The following example uses a cursor to iterate over source rows and merges into an OrderItems

table.

Create an OrderItemstable.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create and populate the SourceTable.

CREATE TABLE SourceTable
(
OrderID INT,
Item VARCHAR(20),
Quantity SMALLINT,
PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through SourceTableand insert rows.

Note: There are syntax differences between T-SQL for the CREATE PROCEDURE and the
CURSOR declaration. For more details, see Stored Procedures and Cursors.

CREATE PROCEDURE LoopItems()
BEGIN
DECLARE done INT DEFAULT FALSE;
DECLARE var_OrderID INT;
DECLARE var_Item VARCHAR(20);
DECLARE var_Quantity SMALLINT;
DECLARE ItemCursor CURSOR

 FOR
 SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
DECLARE CONTINUE HANDLER

 FOR NOT FOUND
 SET done = TRUE;
OPEN ItemCursor;
CursorStart: LOOP
FETCH NEXT

 FROM ItemCursor

- 145 -

 INTO var_OrderID,
 var_Item,
 var_Quantity;
IF Done

 THEN LEAVE CursorStart;
END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)

 VALUES (var_OrderID, var_Item, var_Quantity);
END LOOP;
CLOSE ItemCursor;

END;

Execute the stored procedure.

CALL LoopItems();

Select all rows from the OrderItemstable.

SELECT * FROM OrderItems;

OrderID Item Quantity
------- ---- --------
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

Feature SQL Server Aurora MySQL Comments

Cursor options

[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC |
FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS |

OPTIMISTIC]

Updateable curs-
ors

DECLARE CURSOR... FOR
UPDATE

Not supported

Cursor declar-
ation

DECLARE CURSOR
DECLARE
CURSOR

No options for DECLARE
CURSOR in Aurora MySQL.

Cursor open OPEN OPEN

Cursor fetch
FETCH NEXT | PRIOR | FIRST |
LAST | ABSOLUTE | RELATIVE

FETCH NEXT

Cursor close CLOSE CLOSE

Cursor Deal-
locate

DEALLOCATE N/A
Not required, CLOSE also
deallocates

- 146 -

Feature SQL Server Aurora MySQL Comments

Cursor end con-
dition

@@FETCH_STATUS system vari-
able

Event Handler
Event handlers are not spe-
cific to a cursor, see Error
Handling.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/cursors.html

- 147 -

https://dev.mysql.com/doc/refman/5.7/en/cursors.html

Migrate from SQL Server Date and Time Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index
Key Dif-
ferences

SCT Action Codes - Date and Time
Functions

l Timezone
handling

l Syntax dif-
ferneces

Overview

Date and Time Functions are scalar functions that perform operations on temporal or numeric input
and return temporal or numeric values.

System date and time values are derived from the operating system of the server where SQL Server is
running.

Note: This section does not address timezone considerations and timezone aware func-
tions.
For more information about time zone handling, see Data Types.

Syntax and Examples

The following table lists the most commonly used Date and Time Functions.

Function Purpose Example Result Comments

GETDATE and
GETUTCDATE

Return a datetime
value that contains
the current local or
UTC date and time

SELECT GETDATE()
2018-04-05
15:53:01.380

DATEPART, DAY,
MONTH, and YEAR

Return an integer
value representing
the specified date-
part of a specified
date

SELECT MONTH
(GETDATE()), YEAR
(GETDATE())

4, 2018

DATEDIFF

Returns an integer
value of datepart
boundaries that
are crossed
between two dates

SELECT DATEDIFF
(DAY, GETDATE(),
EOMONTH
(GETDATE()))

25

How many
days left until
end of the
month

DATEADD
Returns a datetime
value that is cal-

SELECT DATEADD
(DAY, 25, GETDATE

2018-04-30
15:55:52.147

- 148 -

Function Purpose Example Result Comments

culated with an off-
set interval to the
specified datepart
of a date.

())

CAST and
CONVERT

Converts datetime
values to and from
string literals and
to and from other
datetime formats

SELECT CAST
(GETDATE() AS
DATE)
SELECT CONVERT
(VARCHAR(20),
GETDATE(), 112)

2018-04-05
20180405

Default date
format
Style 112 (ISO)
with no
seprartors

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-
and-functions-transact-sql#DateandTimeFunctions

- 149 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions
https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql#DateandTimeFunctions

Migrate to Aurora MySQL Date and Time Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index
Key Dif-
ferences

SCT Action Codes - Date and Time
Functions

l Timezone
handling

l Syntax dif-
ferneces

Overview

Aurora MySQL provides a very rich set of scalar date and time functions; more than SQL Server.

Note: While some of the functions such as DATEDIFF seem to be similar to those in SQL
Server, the functionality can be significantly different. Take extra care when migrating tem-
poral logic to Aurora MySQL paradigms.

Syntax and Examples

Function Purpose Example Result Comments

NOW |
LOCALTIME
|CURRENT_
TIMESTAMP, and
SYSDATE

Returns a dat-
etime value that
contains the cur-
rent local date
and time

SELECT NOW()
2018-04-06
18:57:54

SYSDATE returns the time
at which it executes, vs.
NOW which returns a con-
stant time when the state-
ment started executing.
Also, SET TIMESTAMP
does not affect SYSDATE.

UTC_TIMESTAMP

Returns a dat-
etime value that
contains the cur-
rent UTC date
and time

SELECT UTC_
TIMESTAMP()

2018-04-07
04:57:54

SECOND,
MINUTE, HOUR,
DAY, WEEK,
MONTH, and
YEAR

Returns an
integer value
representing
the specified
date part of a
specified date
function

SELECT MONTH
(NOW()), YEAR
(NOW())

4, 2018

DATEDIFF
Returns an
integer value of

SELECT DATEDIFF
(NOW(), '2018-05-

-25
DATEDIFF in Aurora
MySQL is only for cal-

- 150 -

Function Purpose Example Result Comments

the difference
in days between
two dates

01')
culating difference in
Days. Use
TIMESTAMPDIFF instead

TIMESTAMPDIFF

Returns an
integer value of
the difference
in datepart
between two
dates

SELECT
TIMESTAMPDIFF
(DAY, NOW(),
'2018-05-01')

24

DATE_ADD,
DATE_SUB

Returns a dat-
etime value that
is calculated
with an offset
interval to the
specified date-
part of a date

SELECT DATE_
ADD(NOW(),
INTERVAL 1 DAY);

2018-04-07
19:35:32

CAST and
CONVERT

Converts dat-
etime values to
and from string
literals and to
and from other
datetime
formats

SELECT CAST
(GETDATE() AS
DATE)
SELECT CONVERT
(VARCHAR(20),
GETDATE(), 112)

2018-04-05
20180405

Default date format
Style 112 (ISO) with no
seprartors

Migration Considerations

The Date and Time handling paradigm in Aurora MySQL differs from SQL Server.
Be aware of differences in data types, time zone awareness, and locale handling. For more inform-
ation, see Data Types.

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server Function
Aurora MySQL Func-
tion

Comments

GETDATE, CURRENT_
TIMESTAMP

NOW | LOCALTIME |
CURRENT_
TIMESTAMP, and
SYSDATE

CURRENT_TIMESTAMP is the ANSI standard
and it is compatible. SYSDATE returns the time
at which it executes, unlike NOW which
returns a constant time when the statement
started executing. Also, SET TIMESTAMP does

- 151 -

SQL Server Function
Aurora MySQL Func-
tion

Comments

not affect SYSDATE.

GETUTCDATE UTC_TIMESTAMP

DAY, MONTH, and YEAR DAY, MONTH, YEAR Compatible syntax.

DATEPART

EXTRACT, or one
of:
MICROSECOND,
SECOND, MINUTE,
HOUR, DAY,
DAYNAME,
DAYOFWEEK,
DAYOFYEAR, WEEK,
MONTH, MONTHNAME,
QUARTER, YEAR

Aurora MySQL supports EXTRACT as a generic
DATEPART function. For example. EXTRACT

(YEAR FROM NOW()). It also supports indi-
vidual functions for each day part.

DATEDIFF TIMESTAMPDIFF
DATEDIFF in Aurora MySQL only calculates dif-
ferences in Days.

DATEADD
DATE_ADD, DATE_
SUB, TIMESTAMPADD

DATEADD in Aurora MySQL only adds full days
to a datetime value. Aurora MySQL also sup-
ports DATE_SUB for subtracting date parts
from a date time expression. The argument
order and syntax is also different and requires
a rewrite.

CAST and CONVERT
DATE_FORMAT,
TIME_FORMAT

Although Aurora MySQL supports both CAST
and CONVERT, they are not used for style con-
version like in SQL Server. Use DATE_FORMAT
and TIME_FORMAT.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html

- 152 -

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html

Migrate from SQL Server String Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l UNICODE paradigm (See Col-
lations)

l Syntax and option dif-
ferences

Overview

String Functions are typically scalar functions that perform an operation on string input and return a
string or a numeric value.

Syntax and Examples

The following table lists the most commonly used string functions.

Function Purpose Example Result Comments

ASCII and
UNICODE

Convert an ASCII or
UNICODE character
to its ASCII or
UNICODE code

SELECT ASCII
('A') 65

Returns a
numeric
integer value

CHAR and NCHAR

Convert between
ASCII or UNICODE
code to a string char-
acter

SELECT CHAR(65) 'A'
Numeric
integer value
as input

CHARINDEX and
PATINDEX

Find the starting pos-
ition of one string
expression (or string
pattern) within
another string
expression

SELECT
CHARINDEX('ab',
'xabcdy')

2
Returns a
numeric
integer value

CONCAT and
CONCAT_WS

Combine multiple
string input expres-
sions into a single
string with, or
without, a separator
character (WS)

SELECT CONCAT
('a','b'),
CONCAT_WS
(',','a','b')

'ab', 'a,b'

LEFT, RIGHT,
and SUBSTRING

Return a partial SELECT LEFT 'ab', 'bc'

- 153 -

Function Purpose Example Result Comments

string from another
string expression
based on position
and length

('abs',2),
SUBSTRING
('abcd',2,2)

LOWER and
UPPER

Return a string with
all characters in
lower or upper case.
Use for presentation
or to handle case
insensitive expres-
sions

SELECT LOWER
('ABcd') 'abcd'

LTRIM, RTRIM
and TRIM

Remove leading and
trailing spaces

SELECT LTRIM ('
abc d ') 'abc d '

STR
Convert a numeric
value to a string

SELECT STR
(3.1415927,5,3) 3.142

Numeric
expressions
as input

REVERSE
Return a string in
reverse order

SELECT REVERSE
('abcd') 'dcba'

REPLICATE

Return a string that
consists of zero or
more concatenated
copies of another
string expression

SELECT
REPLICATE
('abc', 3)

'abcabcabc'

REPLACE

Replace all occur-
rences of a string
expression with
another

SELECT REPLACE
('abcd', 'bc',
'xy')

'axyd'

STRING_SPLIT

Parse a list of values
with a separator and
return a set of all
individual elements

SELECT *
FROM STRING_
SPLIT('1,2',
',') AS X(C)

1
2

STRING_
SPLIT is a
table valued
function

STRING_AGG

Return a string that
consists of con-
catenated string val-
ues in row groups

SELECT STRING_
AGG(C, ',')
FROM VALUES(1,
'a'), (1, 'b'),
(2,'c') AS X
(ID,C)
GROUP BY I

1 'ab'
2 'c'

STRING_AGG
is an aggreg-
ate function

- 154 -

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql

- 155 -

https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql

Migrate to Aurora MySQL String Functions

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l UNICODE paradigm (See Col-
lations)

l Syntax and option dif-
ferences

Overview

Aurora MySQL supports a large set of string functions; far more than SQL Server. See the link at the
end of this section for the full list. Some of the functions, such as regular expressions (REGEXP), do not
exist in SQL Server and may be useful for your application.

Syntax and Examples

The following table lists the most commonly used string functions.

Function Purpose Example Result Comments

ASCII and
ORD

Convert an ASCII
or multi-byte
code to its string
character

SELECT ASCII
('A') 65

Returns a numeric
integer value

CHAR

Convert between
a character and
its UNICODE
code

SELECT CHAR
(65) 'A'

Numeric integer value as
input

LOCATE

Find the starting
position of one
string expres-
sion (or string
pattern) within
another string
expression

SELECT LOCATE
('ab', 'xab-
cdy')

2
Returns a numeric
integer value

CONCAT and
CONCAT_WS

Combine mul-
tiple string input
expressions into
a single string
with or without a
separator char-

SELECT CONCAT
('a','b'),
CONCAT_WS
(',','a','b')

'ab', 'a,b'

- 156 -

Function Purpose Example Result Comments

acter (WS)

LEFT,
RIGHT, and
SUBSTRING

Return a partial
string from
another string
expression
based on pos-
ition and length

SELECT LEFT
('abs',2),
SUBSTRING
('abcd',2,2)

'ab', 'bc'

LOWER and
UPPER

Return a string
with all char-
acters in lower
or upper case.
Use for present-
ation or to
handle case
insensitive
expressions

SELECT LOWER
('ABcd') 'abcd'

These have no effect
when applied to binary
collation strings. Convert
the string to a non binary
string collation to con-
vert letter case

LTRIM,
RTRIM and
TRIM

Remove leading
and trailing
spaces

SELECT LTRIM
(' abc d ')
SELECT TRIM
(LEADING 'x'
FROM 'xxxab-
cxxx')

'abc d '
'abcxxx'

TRIM in Aurora MySQL is
not limited to spaces.
TRIM ([{BOTH |
LEADING | TRAILING}
[<Remove String>]
FROM] <String>)

FORMAT
Convert a
numeric value to
a string

SELECT FORMAT
(3.1415927,5) 3.14159

Numeric expressions as
input

REVERSE
Return a string
in reverse order

SELECT
REVERSE
('abcd')

'dcba'

REPEAT

Return a string
that consists of
zero or more
concatenated
copies of
another string
expression

SELECT REPEAT
('abc', 3) 'abcabcabc'

REPLACE

Replace all occur-
rence of a string
expression with
another

SELECT
REPLACE
('abcd',
'bc', 'xy')

'axyd'

- 157 -

Migration Considerations

Aurora MySQL does not handle ASCII and UNICODE types separately. Any string can be either UNICODE
or ASCII, depending on its collation property. See Data Types.

Many of the Aurora MySQL string functions that are compatible with SQL Server also support addi-
tional functionality. For example, the TRIM and CHAR functions. Aurora MySQL also supports many
functions that SQL Server does not. For example, functions that deal with a delimited list set of values.
Be sure to explore all options.

Aurora MySQL also supports regular expressions. See the REGEXP and RLIKE functions to get started.

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server function Aurora MySQL function Comments

ASCII and UNICODE ASCII and ORD
Compatible, See Data Types for
more information about UNICODE
handling.

CHAR and NCHAR CHAR

See Data Types for more inform-
ation about UNICODE handling.

Unlike SQL Server, CHAR in Aurora
MySQL accepts a list of values and
constructs a concatenated string.

CHARINDEX and PATINDEX LOCATE | POSITION

LOCATE and POSITION are syn-
onymous but do not support wild
cards like PATINDEX.

Use the FIND_IN_SET function to
extract an element position in a
comma separated value string.

CONCAT and CONCAT_WS CONCAT and CONCAT_WS Compatible syntax.

LEFT, RIGHT, and
SUBSTRING

LEFT, RIGHT, and
SUBSTRING

Compatible syntax. Aurora MySQL
supports MID and SUBSTR, which
are synonymous with SUBSTRING.

Use the SUBSTRING_INDEX function
to extract an element from a delim-
ited list.

LOWER and UPPER LOWER AND UPPER
Compatible syntax. LOWER and
UPPER have no effect when applied
to binary collation strings.

- 158 -

SQL Server function Aurora MySQL function Comments

LTRIM, RTRIM and TRIM LTRIM, RTRIM and TRIM

Compatible syntax. TRIM in Aurora
MySQL is not limited to both ends
and spaces. It can by used to trim
either leading or trailing characters.

The syntax is> TRIM ([{BOTH |
LEADING | TRAILING} [<Remove
String>] FROM] <String>)

STR FORMAT
FORMAT does not support full pre-
cision and scale definition, but does
support locale formatting.

REVERSE REVERSE Compatible syntax.

REPLICATE REPEAT Compatible arguments.

REPLACE REPLACE Compatible syntax.

STRING_SPLIT Not supported
Requires iterative code to extract ele-
ments with scalar string functions.

STRING_AGG Not supported
Requires iterative code to build a list
with scalar string functions.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

- 159 -

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

Migrate from SQL Server Databases and Schemas

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A
l SCHEMA and DATABASE are syn-

onymous

Overview

Databases and Schemas are logical containers for security and access control. Administrators can
grant permissions collectively at both the databases and the schema levels. SQL Server instances
provide security at three levels: Individual Objects, Schemas (collections of objects), Databases (col-
lections of schemas).
For more information, see Data Control Language.

Note: In previous versions of SQL server, the term user was interchangeable with the term
schema. For backward compatibility, each database has several built-in security schemas
including guest, dbo, db_datareaded, sys, INFORMATION_SCHEMA, and others. You most
likely will not need to migrate these schemas.

Each SQL Server instance can host and manage a collection of databases, which consist of SQL Server
processes and the Master, Model, TempDB, and MSDB system databases.

The most common SQL Server administrator tasks at the database level are:

l Managing Physical Files: Add, remove, change file growth settings, and re-size files.

l Managing Filegroups: Partition schemes, object distribution, and read-only protection of tables.

l Managing default options.

l Creating database snapshots.

Unique object identifiers within an instance use three-part identifiers: <Database name>.<Schema
name>.<Object name>.

The recommended way to view database objects' meta data, including schemas, is to use the
ANSI standard Information Schema views. In most cases, these views are compatible with other ANSI
compliant RDBMS.

To view a list of all databases on the server, use the sys.databases table.

Syntax

Simplified syntax for CREATE DATABASE:

CREATE DATABASE <database name>
[ON [PRIMARY] <file specifications>[,<filegroup>]
[LOG ON <file specifications>
[WITH <options specification>] ;

- 160 -

Simplified syntax for CREATE SCHEMA:

CREATE SCHEMA <schema name> | AUTHORIZATION <owner name>;

Examples

Add a file to a database and create a table using the new file.

USE master;

ALTER DATABASE NewDB
ADD FILEGROUP NewGroup;

ALTER DATABASE NewDB
ADD FILE (
 NAME = 'NewFile',
 FILENAME = 'D:\NewFile.ndf',
 SIZE = 2 MB
)
TO FILEGROUP NewGroup;

USE NewDB;

CREATE TABLE NewTable
(
Col1 INT PRIMARY KEY
)
ON NewGroup;

SELECT Name
FROM sys.databases
WHERE database_id > 4;

Create a table within a new schema and database.

USE master

CREATE DATABASE NewDB;

USE NewDB;

CREATE SCHEMA NewSchema;

CREATE TABLE NewSchema.NewTable
(
NewColumn VARCHAR(20) NOT NULL PRIMARY KEY
);

Note: This example uses default settings for the new database and schema.

- 161 -

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-trans-
act-sql

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql

- 162 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-sql-server-transact-sql

Migrate to Aurora MySQL Databases and Schemas

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A
l SCHEMA and DATABASE are syn-

onymous

Overview

Aurora MySQL supports both the CREATE SCHEMA and CREATE DATABASE statements. However, in Aur-
ora MySQL, these statements are synonymous.

Unlike SQL Server, Aurora MySQL does not have the concept of an instance hosting multiple data-
bases, which in turn contain multiple schemas. Objects in Aurora MySQL are referenced as a two part
name: <schema>.<object>. You can use the term database in place of schema, but it is conceptually the
same thing.

Note: This terminology conflict can lead to confusion for SQL Server database admin-
istrators unfamiliar with the Aurora MySQL concept of a database.

Note: Each database/schema in Aurora MySQL is managed as a separate set of physical
files similar to an SQL Server database.

Aurora MySQL does not have the concept of a schema owner. Permissions must be granted explicitly.
However, Aurora MySQL supports a custom default collation at the schema level, whereas SQL Server
supports it at the database level only. For more details, see Collations.

Syntax

Syntax for CREATE DATABASE:

CREATE {DATABASE | SCHEMA} <database name>
[DEFAULT] CHARACTER SET [=] <character set>|
[DEFAULT] COLLATE [=] <collation>

Migration Considerations

Similar to SQL Server, Aurora MySQL supports the USE command to specify the default database
(schema) for missing object qualifiers.

The syntax is identical to SQL Server:

USE <database name>;

After the USE command is executed, the default database for the calling scope is changed to the spe-
cified database.

- 163 -

There is a relatively straightforward migration path for a class of common application architectures
that use multiple databases but have all objects in a single schema (typically the default dbo schema)
and require cross database queries. For these types of applications, create an Aurora MySQL Instance
and then create multiple databases as you would in SQL Server (using the CREATE DATABASE com-
mand).

Reference all objects using a two-part name instead of a three-part name by omitting the default
schema identifier. For application code using the USE command instead of a three-part identifier, no
rewrite is needed other than replacing the double dot with a single dot.

SELECT * FROM MyDB..MyTable -> SELECT * FROM MyDB.MyTable

For applications using a single database and multiple schemas, the migration path is the same and
requires fewer rewrites because two-part names are already being used.

Applications that use multiple schemas and multiple databases will need to use multiple instances.

Use the SHOW DATABASES command to View databases (schemas) in Aurora MySQL.

SHOW DATABASES;

database

information_schema
Demo
mysql
performance_schema
sys

Aurora MySQL also supports a CREATE DATABASE syntax reminder command.

SHOW CREATE DATABASE Demo;

Database Create Database
-------- ---------------
Demo CREATE DATABASE `Demo` /*!40100 DEFAULT CHARACTER SET latin1 */

Examples

Create a new table in a new database.

CREATE DATABASE NewDatabase;

USE NewDatabase;

CREATE TABLE NewTable
(
NewColumn VARCHAR(20) NOT NULL PRIMARY KEY
);

INSERT INTO NewTable VALUES('NewValue');

- 164 -

SELECT * FROM NewTable;

Summary

The following table summarizes the migration path for each architecture.

Current Object Archi-
tecture

Migrate to Aurora
MySQL

Rewrites

Single database, all
objects in dbo schema

Single instance, single
database/schema

If the code already uses two-part object nota-
tion such as dbo.<object>, consider creating a
dbo schema in Aurora MySQL to minimize
code changes.

Single database,
objects in multiple
schemas

Single instance, multiple
databases/schemas

No identifier hierarchy rewrites needed. Code
should be compatible with respect to the
object hierarchy.

Multiple databases, all
objects in dbo schema

Single instance, multiple
databases/schemas

Identifier rewrite is required to remove the
SQL Server schema name or the default dot.
Change SELECT * FROM MyDB..MyTable to
SELECT * FROM MyDB.MyTable.

Multiple databases,
objects in multiple
schemas

Multiple instances
Connectivity between the instances will need
to be implemented at the application level

For more information, see https://dev.mysql.com/doc/refman/5.7/en/create-database.html

- 165 -

https://dev.mysql.com/doc/refman/5.7/en/create-database.html

Migrate from SQL Server Transactions

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Trans-
actions

l Default isolation level REPEATABLE READ

l Default mechanism CONSISTENT
SNAPSHOT is similar to SQL Server's READ
COMMITTED SNAPSHOT isolation

l Syntax and option differences

Overview

A Transaction is a unit of work performed against a database and typically represents a change in the
database. Transactions serve the following purposes:

l Provide units of work that enable recovery from logical or physical system failures while keeping
the database in a consistent state.

l Provide units of work that enable recovery from failures while keeping a database in a consistent
state when a logical or physical system failure occurs.

l Provide isolation between users and programs accessing a database concurrently.

Transactions are an "all-or-nothing" unit of work. Each transactional unit of work must either com-
plete, or it must rollback all data changes. Also, transacions must be isolated from other transactions.
The results of the "view of data" for each transaction must conform to the defined database isolation
level.

Database transactions must comply with ACID properties:

l Atomic: Transactions are "all or nothing". If any part of the transaction fails, the entire trans-
action fails and the database remains unchanged.

Note: There are exceptions to this rule. For example, some constraint violations, per
ANSI definitions, should not cause a transaction rollback.

l Consistent: All transactions must bring the database from one valid state to another valid state.
Data must be valid according to all defined rules, constraints, triggers, etc.

l Isolation: Concurrent execution of transactions must result in a system state that would occur if
transactions were executed sequentially.

Note: There are several exceptions to this rule based on the lenience of the
required isolation level.

l Durable: After a transaction commits successfully and is acknowledged to the client, the engine
must guarantee that its changes are persisted even in the event of power loss, system crashes, or
any other errors.

- 166 -

Note: By default, SQL Server uses the "auto commit" (also known as "implicit trans-
actions") mode set to ON. Every statement is treated as a transaction on its own
unless a transaction was explicitly defined. This behavior different than other engines
like Oracle where, by default, every DML requires an explicit COMMIT statement to be
persisted.

Syntax

Simplified syntax for the commands defining transaction boundaries:

Define the beginning of a transaction.

BEGIN TRAN | TRANSACTION [<transaction name>]

Committing work and the end of a transaction.

COMMIT WORK | [TRAN | TRANSACTION [<transaction name>]]

Rollback work at the end of a transaction.

ROLLBACK WORK | [TRAN | TRANSACTION [<transaction name>]]

SQL Server supports the standard ANSI isolation levels defined by the ANSI/ISO SQL standard (SQL92):

Note: Each level provides a different approach for managing the concurrent execution of
transactions. The main purpose of a transaction isolation levels is to manage the visibility
of changed data as seen by other running transactions. Additionally, when concurrent trans-
actions access the same data, the level of transaction isolation affects the way they interact
with each other.

l Read Uncommitted: A current transaction can see uncommitted data from other transactions. If
a transaction performs rollback, all data is restored to its previous state.

l Read committed: A transaction only sees data changes that were committed. Therefore, dirty
reads are not possible. However, after issuing a commit, it would be visible to the current trans-
action (while it’s still in a running state).

l Repeatable read: A transaction sees data changes made by the other transactions only after
both transactions issue a commit or are rolled back.

l Serializable: This isolation level is the strictest because it does not permit transaction overwrites
of another transactions' actions. Concurrent execution of a set of serializable transactions is guar-
anteed to produce the same effect as running them sequentially in the same order.

The main difference between isolation levels is the phenomena they prevent from appearing. The
three preventable phenomena are:

l Dirty Reads: A transaction can read data written by another transaction but not yet committed.

l Non-Repeatable (fuzzy) Reads: When reading the same data several times, a transaction can
find the data has been modified by another transaction that has just committed. The same query
executed twice can return different values for the same rows.

- 167 -

l Phantom (ghost) Reads: Similar to a non-repeatable read, but it is related to new data created
by another transaction. The same query executed twice can return different numbers of records.

The following table summarizes the four ANSI/ISO SQL standard (SQL92) isolation levels and indicates
which phenomena are allowed (√) or disallowed (X).

Transaction Isolation
Level

Dirty
Reads

Non Repeatable
Reads

Phantom
Reads

Read Uncommitted √ √ √

Read Committed X √ √

Repeatable Read X X √

Serializable X X X

There are two common implementations for transaction isolation:

l Pessimistic Isolation (Locking): Resources accessed by a transaction are locked for the duration
of the transaction. Depending on the operation, resource, and transaction isolation level, other
transactions can "see" changes made by the locking transaction, or they must wait for it to com-
plete. With this mechanism, there is only one copy of the data for all transactions, which min-
imizes memory and disk resource consumption at the expense of transaction lock waits.

l Optimistic Isolation (MVCC): Every transaction owns a set of the versions of the resources (typ-
ically rows) that it accessed. In this mode, transactions don't have to wait for one another at the
expense of increased memory and disk utilization. In this isolation mechanism, there is a chance
that conflicts will arise when transactions attempt to commit. In case of a conflict, the application
needs to be able to handle the rollback, and attempt a retry.

SQL Server implements both mechanisms and they can be used concurrently.

For Optimistic Isolation, SQL Server introduced two additional isolation levels: Read Committed Snap-
shot and Snapshot. For more details see the links at end of this section.

Set the transaction isolation level using SET command. It affects the current execution scope only.

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ
| SNAPSHOT | SERIALIZABLE }

Examples

Execute two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
INSERT INTO Table1
VALUES (1, 'A');
UPDATE Table2
 SET Column1 = 'Done'

- 168 -

WHERE KeyColumn = 1;
COMMIT TRANSACTION;

For more information, see https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isol-
ation-levels and https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-trans-
act-sql

- 169 -

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql

Migrate to Aurora MySQL Transactions

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Trans-
actions

l Default isolation level REPEATABLE READ

l Default mechanism CONSISTENT
SNAPSHOT is similar to SQL Server's READ
COMMITTED SNAPSHOT isolation

l Syntax and option differences

Overview

Aurora MySQL supports the four transaction isolation levels specified in the SQL:92 standard: READ
UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.

The default isolation level for Aurora MySQL is REPEATABLE READ.

Syntax

Simplified syntax for setting transaction boundaries:

SET [SESSION] TRANSACTION ISOLATION LEVEL [READ WRITE | READ ONLY] | REPEATABLE READ |
READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE]

Note: Setting a GLOBAL isolation level is not supported in Aurora MySQL. Only session
scope can be changed; similar to SQL Server SET scope. The default behavior of trans-
actions is to use REPEATABLE READ and consistent reads. Applications designed to run with
READ COMMITTED may need to be modified. Alternatively, they can explicitly change the
default to READ COMMITTED.

In Aurora MySQL, a Transaction Intent can be optionally specified. Setting a transaction to READ ONLY
disables the transaction's ability to modify or lock both transactional and non-transactional tables vis-
ible to other transactions, but the transaction can still modify or lock temporary tables. It also enables
internal optimization to improve performance and concurrency. The default is READ WRITE.

Simplified syntax for the commands defining transaction boundaries:

START TRANSACTION WITH CONSISTENT SNAPSHOT | READ WRITE | READ ONLY

Or

BEGIN [WORK]

The WITH CONSISTENT SNAPSHOT option starts a consistent read transaction. The effect is the same as
issuing a START TRANSACTION followed by a SELECT from any table. WITH CONSISTENT SNAPSHOT
does not change the transaction isolation level.

- 170 -

A consistent read uses snapshot information to make query results available based on a point in time
regardless of modifications performed by concurrent transactions. If queried data has been changed
by another transaction, the original data is reconstructed using the undo log. Consistent reads avoid
locking issues that may reduce concurrency. With the REPEATABLE READ isolation level, the snapshot
is based on the time the first read operation is performed. With the READ COMMITTED isolation level,
the snapshot is reset to the time of each consistent read operation.

End a transaction and commit the work.

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

End a transaction and rollback the work.

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends using the
same isolation level and access mode as the just-terminated transaction. The RELEASE clause causes
the server to disconnect the current session after terminating the current transaction. Including the NO
keyword suppresses both CHAIN and RELEASE completion. AND CHAIN can be useful if the com-
pletion_type system variable is set to cause chaining or release completion.

Aurora MySQL supports both auto commit and explicit commit modes. You can change mode using
the "autocommit" system variable.

SET autocommit = {0 | 1}

Examples

Execute two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
START TRANSACTION;
INSERT INTO Table1
VALUES (1, 'A');
UPDATE Table2
SET Column1 = 'Done'

WHERE KeyColumn = 1;
COMMIT;

Summary

The following table summarizes the key differences in transaction support and syntax when migrating
from SQL Server to Aurora MySQL.

Transaction Prop-
erty

SQL Server Aurora MySQL Comments

Default isolation level READ COMMITTED REPEATABLE READ
The Aurora MySQL
default isolation level
is stricter than SQL

- 171 -

Transaction Prop-
erty

SQL Server Aurora MySQL Comments

Server. Evaluate applic-
ation needs and set
appropriately.

initialize transaction
syntax

BEGIN TRAN|TRANSACTION
START
TRANSACTION

Code rewrite is
required from BEGIN
to START. If using the
shorthand TRAN,
rewrite to
TRANSACTION.

Default isolation
mechanism

Pessimistic lock based
Lock based for
writes, consistent
read for SELECTs

The Aurora MySQL
default mode is sim-
ilar to SQL Server's
READ COMMITTED
SNAPSHOT isolation.

Commit transaction
COMMIT
[WORK|TRAN|TRANSACTION]

COMMIT [WORK]

If using only COMMIT
or COMMIT WORK, no
change is needed.
Otherwise, rewrite
TRAN and
TRANSACTION to
WORK.

Rollback transaction
ROLLBACK [WORK |[TRAN |
TRANSACTION]

ROLLBACK [WORK]

If using only
ROLLBACK or
ROLLBACK WORK, no
change is needed.
Otherwise, rewrite
TRAN and
TRANSACTION to
WORK.

Set autocommit
off/on

SET IMPLICIT_TRANSACTIONS
OFF | ON

SET autocommit =
0 | 1

See Session Options.

ANSI Isolation

REPEATABLE READ | READ
COMMITTED | READ
UNCOMMITTED |
SERIALIZABLE

REPEATABLE READ
| READ
COMMITTED |
READ
UNCOMMITTED |
SERIALIZABLE

Compatible syntax.

- 172 -

Transaction Prop-
erty

SQL Server Aurora MySQL Comments

MVCC
SNAPSHOT and READ
COMMITTED SNAPSHOT

WITH CONSISTENT
SNAPSHOT

Aurora MySQL con-
sistent read in READ
COMMITTED isolation
is similar to SQL
Server READ
COMMITTED
SNAPSHOT.

Nested transactions
Supported, view level with
@@trancount

Not Supported

Starting a new trans-
action in Aurora
MySQL while another
transaction is active
causes a COMMIT of
the previous trans-
action.

Transaction Chaining Not Supported

Causes a new trans-
action to open
immediately upon
transaction com-
pletion

Transaction Release Not supported

Causes the client
session to dis-
connect upon trans-
action completion

For more information, see https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

- 173 -

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

Migrate from SQL Server DELETE and UPDATE FROM

Feature Com-
patibility

SCT Automation Level
SCT Action Code
Index

Key Differences

N/A
l Rewrite to use sub-

queries

Overview

SQL Server supports an extension to the ANSI standard that allows using an additional FROM clause in
UPDATE and DELETE statements.

This additional FROM clause can be used to limit the number of modified rows by joining the table
being updated, or deleted from, to one or more other tables. This functionality is similar to using a
WHERE clause with a derived table subquery. For UPDATE, you can use this syntax to set multiple
column values simultaneously without repeating the subquery for every column.

However, these statements can introduce logical inconsistencies if a row in an updated table is
matched to more than one row in a joined table. The current implementation chooses an arbitrary
value from the set of potential values and is non deterministic.

Syntax

UPDATE <Table Name>
SET <Column Name> = <Expression> ,...
FROM <Table Source>
WHERE <Filter Predicate>;

DELETE FROM <Table Name>
FROM <Table Source>
WHERE <Filter Predicate>;

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

- 174 -

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
FROM Customers AS C

LEFT OUTER JOIN
Orders AS O
ON O.Customer = C.Customer

WHERE O.OrderID IS NULL;

SELECT *
FROM Customers;

Customer

Jim
Jack

Update multiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE O
SET Customer = OC.Customer,

OrderDate = OC.OrderDate
FROM Orders AS O

INNER JOIN
OrderCorrections AS OC
ON O.OrderID = OD.OrderID;

SELECT *
FROM Orders;

Customer OrderDate
--------- ---------
Jack 2018-03-24
Jack 2018-04-02

- 175 -

For more information, see:

l https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql
l https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql
l https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

- 176 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql

Migrate to Aurora MySQL DELETE and UPDATE FROM

Feature Com-
patibility

SCT Automation Level
SCT Action Code
Index

Key Differences

N/A
l Rewrite to use sub-

queries

Overview

Aurora MySQL does not support DELETE and UPDATE FROM syntax.

Migration Considerations

You can easily rewrite the DELETE and UPDATE FROM statements as subqueries.

For DELETE, place the subqueries in the WHERE clause.
For UPDATE, place the subqueries either in the WHERE or SET clause.

Note: When rewriting UPDATE FROM queries, include a WHERE clause to limit which rows
are updated even if the SQL Server version (where the rows were limited by the join con-
dition) did not have one .

For DELETE statements, the workaround is simple and, in most cases, easier to read and understand.

For UPDATE statements, the workaround involves repeating the correlated subquery for each column
being set.
Although this approach makes the code longer and harder to read, it does solve the logical challenges
associated with updates having multiple matched rows in the joined tables.

In the current implementation, the SQL Server engine silently chooses an arbitrary value if more than
one value exists for the same row.
When you rewrite the statement to use a correlated sub query, like the example below, if more than
one value is returned from the sub query, a SQL error will be raised:

SQL Error [1242] [21000]: Subquery returns more than 1 row

Consult the documentation for the Aurora MySQL UPDATE statement as there are significant pro-
cessing differences from SQL Server.
For example:

l In Aurora MySQL, you can update multiple tables in a single UPDATE statement.
l UPDATE expressions are evaluated in order from left to right. This behavior differs from SQL

Server and the ANSI standard, which require an "all at once" evaluation.

For example, in the statement UPDATE Table SET Col1 = Col1 + 1, Col2 = Col1, Col2 is set
to the new value of Col1. The end result is Col1 = Col2.

- 177 -

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
WHERE Customer NOT IN (
 SELECT Customer
 FROM Orders
);

SELECT *
FROM Customers;

Customer

Jim
Jack

Update multiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections
(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL
);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE Orders
SET Customer = (

- 178 -

 SELECT Customer
 FROM OrderCorrections AS OC
 WHERE Orders.OrderID = OC.OrderID
),
 OrderDate = (
 SELECT OrderDate
 FROM OrderCorrections AS OC
 WHERE Orders.OrderID = OC.OrderID
)
WHERE OrderID IN (
 SELECT OrderID
 FROM OrderCorrections
);

SELECT *
FROM Orders;

Customer OrderDate
--------- ---------
Jack 2018-03-24
Jack 2018-04-02

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server
Aurora
MySQL

Comments

Join as part of
DELETE

DELETE FROM
... FROM

N/A Rewrite to use WHERE clause with a subquery.

Join as part of
UPDATE

UPDATE ...
FROM

N/A
Rewrite to use correlated subquery in the SET
clause and add WHERE clause to limit updates
set.

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/update.html
l https://dev.mysql.com/doc/refman/5.7/en/delete.html

- 179 -

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Migrate from SQL Server Stored Procedures

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - Stored
Procedures

l No support for Table Val-
ued Parameters

l Syntax and option dif-
ferences

Stored Procedures are encapsulated, persisted code modules you can execute using the EXECUTE T-
SQL statement. They may have multiple input (IN) and output (OUT) parameters. Table valued user
defined types can be used as input parameters. IN is the default direction for parameters, but OUT
must be explicitly specified. You can specify parameters as both IN and OUT.

SQL Server allows you to run stored procedures in any security context using the EXECUTE AS option.
They can be explicitly recompiled for every execution using the RECOMPILE option and can be encryp-
ted in the database using the ENCRYPTION option to prevent unauthorized access to the source code.

SQL Server provides a unique feature that allows you to use a stored procedure as an input to an
INSERT statement. When using this feature, only the first row in the data set returned by the stored pro-
cedure is evaluated.

As part of the stored procedure syntax, SQL Server supports a default output integer parameter that
can be specified along with the RETURN command, i.e RETURN -1.
It is typically used to signal status or error to the calling scope, which can use the syntax EXEC @Para-
meter = <Stored Procedure Name> to retrieve the RETURN value, without explicitly stating it as part of
the parameter list.

Syntax

CREATE [OR ALTER] { PROC | PROCEDURE } <Procedure Name>
[<Parameter List>
[WITH [ENCRYPTION]|[RECOMPILE]|[EXECUTE AS ...]]
AS {
[BEGIN]
<SQL Code Body>
[RETURN [<Integer Value>]]

[END] }[;]

Examples

Creating and Executing a Stored Procedure

Create a simple parameterized Stored Procedure to validate the basic format of an Email.

CREATE PROCEDURE ValidateEmail
@Email VARCHAR(128), @IsValid BIT = 0 OUT
AS

- 180 -

BEGIN
IF @Email LIKE N'%@%'
 SET @IsValid = 1
ELSE
SET @IsValid = 0

RETURN
END;

Execute the procedure.

DECLARE @IsValid BIT
EXECUTE [ValidateEmail]
@Email = 'X@y.com', @IsValid = @IsValid OUT;

SELECT @IsValid;

-- Returns 1

EXECUTE [ValidateEmail]
@Email = 'Xy.com', @IsValid = @IsValid OUT;

SELECT @IsValid;

-- Returns 0

Create a stored procedure that uses RETURN to pass the application an error value.

CREATE PROCEDURE ProcessImportBatch
@BatchID INT
AS
BEGIN
 BEGIN TRY
 EXECUTE Step1 @BatchID
 EXECUTE Step2 @BatchID
 EXECUTE Step3 @BatchID
 END TRY
 BEGIN CATCH
 IF ERROR_NUMBER() = 235
 RETURN -1 -- indicate special condition
 ELSE
 THROW -- handle error normally
 END CATCH
END

Using a Table-Valued Input Parameter

Create and populate an OrderItems table.

CREATE TABLE OrderItems(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

- 181 -

(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Create a tabled valued type for the OrderItem table valued parameter.

CREATE TYPE OrderItems
AS TABLE
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create a procedure to process order items.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY
AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,

 Item,
 Quantity
 FROM @OrderItems

END;

Instantiate and populate the table valued variable and pass the data set to the stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),
(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems]
 @OrderItems = @OrderItems;

(3 rows affected)
 Item Quantity
 ------------ ------------
 1 M8 Bolt 100
 2 M8 Nut 100
 3 M8 Washer 200

INSERT... EXEC Syntax

INSERT INTO <MyTable>
EXECUTE <MyStoredProcedure>;

- 182 -

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-
sql

- 183 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql

Migrate to Aurora MySQL Stored Procedures

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - Stored
Procedures

l No support for Table Val-
ued Parameters

l Syntax and option dif-
ferences

Overview

Aurora MySQL Stored Procedures provide similar functionality to SQL Server stored procedures.

As with SQL Server, Aurora MySQL supports security execution context. It also supports input, output,
and bi-directional parameters.

Stored procedures are typically used for:

l Code reuse: Stored procedures offer a convenient code encapsulation and reuse mechanism for
multiple applications, potentially written in various languages, requiring the same database oper-
ations.

l Security management: By allowing access to base tables only through stored procedures,
administrators can manage auditing and access permissions. This approach minimizes depend-
encies between application code and database code. Administrators can use stored procedures
to process business rules and to perform auditing and logging.

l Performance improvements: Full SQL query text does not need to be transferred from the cli-
ent to the database.

Stored procedures, triggers, and user defined functions in Aurora MySQL are collectively referred to as
Stored Routines. When binary logging is enabled, MySQL SUPER privilege is required to run stored
routines. However, you can run stored routines with binary logging enabled without SUPER privilege by
setting thelog_bin_trust_function_creators parameter to true for the DB parameter group for your
MySQL instance.

Aurora MySQL permits stored routines to contain control flow, DML, DDL, and transaction man-
agement statements including START TRANSACTION, COMMIT and ROLLBACK.

Syntax

CREATE [DEFINER = { user | CURRENT_USER }] PROCEDURE sp_name
([IN | OUT | INOUT] <Parameter> <Parameter Data Type> ...)
COMMENT 'string' |
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA } |
SQL SECURITY { DEFINER | INVOKER }

- 184 -

<Stored Procedure Code Body>

Examples

Replace RETURN value parameter with standard OUTPUT parameters.

CREATE PROCEDURE ProcessImportBatch()
IN @BatchID INT, OUT @ErrorNumber INT
BEGIN
 CALL Step1 (@BatchID)
 CALL Step2 (@BatchID)
 CALL Step3 (@BatchID)
IF error_count > 1
 SET @ErrorNumber = -1 -- indicate special condition
END

Use a LOOP Cursor with a source table to replace table valued parameters:

Create an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create and populate SourceTable as a temporary data store for incoming rows.

CREATE TABLE SourceTable
(
OrderID INT,
Item VARCHAR(20),
Quantity SMALLINT,
PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through all rows in SourceTable and insert them into the OrderItems

table.

CREATE PROCEDURE LoopItems()
BEGIN
DECLARE done INT DEFAULT FALSE;
DECLARE var_OrderID INT;
DECLARE var_Item VARCHAR(20);
DECLARE var_Quantity SMALLINT;
DECLARE ItemCursor CURSOR

- 185 -

 FOR SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
DECLARE CONTINUE HANDLER

 FOR NOT FOUND SET done = TRUE;
OPEN ItemCursor;
CursorStart: LOOP
FETCH NEXT FROM ItemCursor

 INTO var_OrderID, var_Item, var_Quantity;
IF Done THEN LEAVE CursorStart;
END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)

 VALUES (var_OrderID, var_Item, var_Quantity);
END LOOP;
CLOSE ItemCursor;

END;

Call the stored procedure.

CALL LoopItems();

Select all rows from the OrderItems table.

SELECT * FROM OrderItems;

OrderID Item Quantity
------- ---- --------
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

The following table summarizes the differences between MySQL Stored Procedures and SQL Server
Stored Procedures.

SQL Server Aurora MySQL Workaround

General
CREATE Syn-
tax dif-
ferences

CREATE
PROC|PROCEDURE
<Procedure Name>

@Parameter1 <Type>,
...n

AS

<Body>

CREATE PROCEDURE
<Procedure Name>

(Parameter1
<Type>,...n)

<Body>

Rewrite stored procedure cre-
ation scripts to use PROCEDURE
instead of PROC.

Rewrite stored procedure cre-
ation scripts to omit the AS
keyword.

Rewrite stored procedure para-
meters to not use the @ symbol
in parameter names. Add par-
entheses around the parameter
declaration.

- 186 -

SQL Server Aurora MySQL Workaround

Rewrite stored procedure para-
meter direction OUTPUT to OUT
or INOUT for bidirectional para-
meters. IN is the for both MySQL
and SQL Server.

Security
Context

{ EXEC | EXECUTE } AS

{ CALLER | SELF |
OWNER | 'user_name' }

DEFINER = 'user'|
CURRENT_USER

in conjunction with

SQL SECURITY {
DEFINER | INVOKER }

For Stored procedures that use
an explicit user name, rewrite
the code from EXECUTE AS 'user'
to DEFINER = 'user' and SQL
SECURITY DEFINER.

For Stored Procedures that use
the CALLER option, rewrite the
code to include SQL SECURITY
INVOKER.

For Stored procedures that use
the SELF option, rewrite the code
to DEFINER = CURRENT_USER
and SQL SECURITY DEFINER.

Unlike SQL Server, OWNERs can
not be specified and must be
explicitly named.

Encryption
Use WITH ENCRYPTION
option

Not supported in Aur-
ora MySQL

Parameter
direction

IN and OUT|OUTPUT,

by default OUT can be
used as IN as well.

IN, OUT, and INOUT

Although the functionality of
these parameters is the same for
SQL Server and MySQL, you must
rewrite the code for syntax com-
pliance:

Use OUT instead of OUTPUT

USE INOUT instead of OUT for
bidirectional parameters

Recompile
Use WITH RECOMPILE
option

Not supported in Aur-
ora MySQL

Table Val-
ued Para-
meters

Use declared table type
user defined parameters

Not supported in Aur-
ora MySQL

See the example above for a
workaround.

INSERT... Use the output of the Not supported in Aur- Use tables to hold the data or

- 187 -

SQL Server Aurora MySQL Workaround

EXEC

stored procedure

as input to an INSERT
statement

ora MySQL

pass string parameters format-
ted as CSV, XML, JSON (or any
other convenient format) and
then parse the parameters
before the INSERT statement.

Additional
restrictions

Use BULK INSERT to
load data from text file

The LOAD DATA state-
ment is not allowed in
stored procedures

RETURN
Value

RETURN <Integer Value> Not supported
Use a standard OUTPUT para-
meter instead.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/faqs-stored-procs.html and
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

- 188 -

https://dev.mysql.com/doc/refman/5.7/en/faqs-stored-procs.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

Migrate from SQL Server Error Handling

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action
Codes - Error
Handling

l Different paradigm and syntax requires
rewrite of error handling code

Overview

SQL Server error handling capabilities have significantly improved throughout the years. However, pre-
vious features are retained for backward compatibility.
Before SQL Server 2008, only very basic error handling features were available. RAISERROR was the
primary statement used for error handling.

Since SQL 2008, SQL Server has added extensive ".Net like" error handling capabilities including
TRY/CATCH blocks, THROW statements, the FORMATMESSAGE function, and a set of system functions
that return metadata for the current error condition.

TRY/CATCH Blocks

TRY/CATCH blocks implement error handling similar to Microsoft Visual C# and Microsoft Visual C++.
TRY ... END TRY statement blocks can contain T-SQL statements .

If an error is raised by any of the statements within the TRY ... END TRY block, execution stops and is
moved to the nearest set of statements that are bounded by a CATCH ... END CATCH block.

Syntax

BEGIN TRY
<Set of SQL Statements>
END TRY
BEGIN CATCH
<Set of SQL Error Handling Statements>
END CATCH

Examples

(See the examples in Error Handling.)

THROW

The THROW statement raises an exception and transfers execution of the TRY ... END TRY block of
statements to the associated CATCH ... END CATCH block of statements.

Throw accepts either constant literals or variables for all parameters.

- 189 -

Syntax

THROW [Error Number>, <Error Message>, < Error State>] [;]

Examples

Use TRY/CATCH error blocks to handle key violations.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY
BEGIN TRANSACTION
 INSERT INTO ErrorTest(Col1) VALUES(1);
 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;

END TRY
BEGIN CATCH
 THROW; -- Throw with no parameters = RETHROW
END CATCH;

(1 row affected)
(1 row affected)
(0 rows affected)
Msg 2627, Level 14, State 1, Line 7
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE54D8676973'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

Note: Contrary to what many SQL developers believe, the values 1 and 2 are indeed inser-
ted into ErrorTestTable in the above example. This behavior is in accordance with ANSI spe-
cifications stating that a constraint violation should not roll back an entire transaction.

Use THROW with variables

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO ErrorTest(Col1) VALUES(1);
INSERT INTO ErrorTest(Col1) VALUES(2);
INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
DECLARE @CustomMessage VARCHAR(1000),

@CustomError INT,
@CustomState INT;

SET @CustomMessage = 'My Custom Text ' + ERROR_MESSAGE();
SET @CustomError = 54321;
SET @CustomState = 1;
THROW @CustomError, @CustomMessage, @CustomState;
END CATCH;

(0 rows affected)
Msg 54321, Level 16, State 1, Line 19

- 190 -

My Custom Text Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE545CBDBB9A'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

RAISERROR

The RAISERROR statement is used to explicitly raise an error message, similar to THROW. It causes an
error state for the executing session and forwards execution to either the calling scope or, if the error
occurred within a TRY ... END TRY block, to the associated CATCH ... END CATCH block. RAISERROR can
reference a user-defined message stored in the sys.messages system table or can be used with
dynamic message text.

The key differences between THROW and RAISERROR are:

l Message IDs passed to RAISERROR must exist in the sys.messages system table. The error num-
ber parameter passed to THROW does not.

l RAISERROR message text may contain printf formatting styles. The message text of THROW may
not.

l RAISERROR uses the severity parameter for the error returned. For THROW, severity is always 16.

Syntax

RAISERROR (<Message ID>|<Message Text> ,<Message Severity> ,<Message State>
[WITH option [<Option List>]])

Examples

Raise a custom error.

RAISERROR (N'This is a custom error message with severity 10 and state 1.', 10, 1)

FORMATMESSAGE

FORMATMESSAGE returns a sting message consisting of an existing error message in the sys.messages
system table, or from a text string, using the optional parameter list replacements. The
FORMATMESSAGE statement is similar to the RAISERROR statement.

Syntax

FORMATMESSAGE (<Message Number> | <Message String>, <Parameter List>)

Error State Functions

SQL Server provides the following error state functions:

l ERROR_LINE

l ERROR_MESSAGE

l ERROR_NUMBER

l ERROR_PROCEDURE

- 191 -

l ERROR_SEVERITY

l ERROR_STATE

l @@ERROR

Examples

Use Error State Functions within a CATCH block.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY;
BEGIN TRANSACTION;

 INSERT INTO ErrorTest(Col1) VALUES(1);
 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;

END TRY
BEGIN CATCH
 SELECT ERROR_LINE(),
 ERROR_MESSAGE(),
 ERROR_NUMBER(),
 ERROR_PROCEDURE(),
 ERROR_SEVERITY(),
 ERROR_STATE(),
 @@Error;
THROW;
END CATCH;

6
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).
2627
NULL
14
1
2627

(1 row affected)
(1 row affected)
(0 rows affected)
(1 row affected)
Msg 2627, Level 14, State 1, Line 25
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Cannot insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

For more information, see

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql

l https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql

- 192 -

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql

Migrate to Aurora MySQL Error Handling

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action
Codes - Error
Handling

l Different paradigm and syntax requires
rewrite of error handling code

Overview

Aurora MySQL offers a rich error handling framework with a different paradigm than SQL Server. The
Aurora MySQL terminology is:

l CONDITION: The equivalent of an ERROR in SQL Server.

l HANDLER: An object that can handle conditions and perform actions.

l DIAGNOSTICS: The meta data about the CONDITION.

l SIGNAL and RESIGNAL: Statements similar to THROW and RAISERROR in SQL Server.

Errors in Aurora MySQL are identified by the follow items:

l A numeric error code specific to MySQL and, therefore, is not compatible with other database sys-
tems.

l A five character SQLSTATE value that uses the ANSI SQL and ODBC standard error conditions.

Note: Not every MySQL error number has a corresponding SQLSTATE value. For errors that
don't have a corresponding SQLSTATE, the general 'HY000' error is used.

l A textual message string that describes the nature of the error.

DECLARE ... CONDITION

The DECLARE ... CONDITION statement declares a named error condition and associates the name with
a condition that requires handling. This declared name can then be referenced in subsequent DECLARE
... HANDLER statements.

Syntax

DECLARE <Condition Name> CONDITION
FOR <Condition Value>

<Condition Value> = <MySQL Error Code> | <SQLSTATE [VALUE] <SQLState Value>

Examples

Declare a condition for MySQL error 1051 (Unknown table error).

DECLARE TableDoesNotExist CONDITION FOR 1051;

- 193 -

Declare a condition for SQL State 42S02 (Base table or view not found) .

Note: This SQLState error corresponds to the MySQL Error 1051.

DECLARE TableDoesNotExist CONDITION FOR SQLSTATE VALUE '42S02';

DECLARE ... HANDLER

A HANDLER object defines the actions or statements to be executed when a CONDITION arises. The
handler object may be used to CONTINUE or EXIT execution.

The condition may be a previously defined condition using the DECLARE ... CONDITION statement or
an explicit condition for one of the following items:

l An Explicit Aurora MySQL error code. For example 1051, which represents "Unknown Table
Error".

l An Explicit SQLSTATE value. For example '42S02'.

l Any SQLWARNING event representing any SQLSTATE with a '01' prefix.

l Any NOTFOUND event representing any SQLSTATE with a '02' prefix. This condition is relevant for
cursors. For more information, see Cursors.

l Any SQLEXCEPTION event, representing any SQLSTATE without a '00', '01', or '02' prefix. These con-
ditions are considered exception errors.

Note: SQLSTATE events with a '00' prefix are not errors; they are used to represent suc-
cessful execution of statements.

Syntax

DECLARE {CONTINUE | EXIT | UNDO}
HANDLER FOR
<MySQL Error Code> |
<SQLSTATE [VALUE] <SQLState Value> |
<Condition Name> |
SQLWARNING |
NOT FOUND |
SQLEXCEPTION

<Statement Block>

Examples

Declare a handler to ignore warning messages and continue execution by assigning an empty state-
ment block.

DECLARE CONTINUE HANDLER
FOR SQLWARNING BEGIN END

Declare a handler to EXIT upon duplicate key violation and log a message to a table.

DECLARE EXIT HANDLER
FOR SQLSTATE '23000'
BEGIN
 INSERT INTO MyErrorLogTable

- 194 -

 VALUES(NOW(), CURRENT_USER(), 'Error 23000')
END

GET DIAGNOSTICS

Each execution of an SQL statement produces diagnostic information that is stored in the diagnostics
area. The GET DIAGNOSTICS statement enables users to retrieve and inspect this information.

Note: Aurora MySQL also supports the SHOW WARNINGS and SHOW ERRORS statements
to retrieve conditions and errors.

The GET DIAGNOSTICS statement is typically used in the handler code within a stored routine. GET
CURRENT DIAGNOSTICS is permitted outside the context of a handler to check the execution result of
an SQL statement.

The keyword CURRENT causes retrieval of the current diagnostics area. The keyword STACKED causes
retrieval of the information from the second diagnostics area. The second diagnostic area is only avail-
able if the current context is within a code block of a condition handler. The default is CURRENT.

Syntax

GET [CURRENT | STACKED] DIAGNOSTICS
<@Parameter = NUMBER | ROW_COUNT>
|
CONDITION <Condition Number> <@Parameter = CLASS_ORIGIN | SUBCLASS_ORIGIN | RETURNED_
SQLSTATE | MESSAGE_TEXT | MYSQL_ERRNO | CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA |
CONSTRAINT_NAME | CATALOG_NAME | SCHEMA_NAME | TABLE_NAME | COLUMN_NAME | CURSOR_NAME>

Examples

Retrieve SQLSTATE and MESSAGE_TEXT from the diagnostic area for the last statement executed.

GET DIAGNOSTICS CONDITION 1 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT

SIGNAL/RESIGNAL

The SIGNAL statement is used to raise an explicit condition or error. It can be used to provide full error
information to a handle, to an outer scope of execution, or to the SQL client. The SIGNAL statement
enables explicitly defining the error's properties such as error number, SQLSTATE value, message, etc.

The difference between SIGNAL and RESIGNAL is that RESIGNAL is used to pass on the error condition
information available during execution of a condition handler within a compound statement inside a
stored routine or an event. RESIGNAL can be used to change none, some, or all the related condition
information before passing it for processing in the next calling scope of the stack.

Note: It is not possible to issue SIGNAL statements using variables.

Syntax

SIGNAL | RESIGNAL <SQLSTATE [VALUE] sqlstate_value | <Condition Name>
[SET <Condition Information Item Name> = <Value> [,...n]]

- 195 -

<Condition Information Item Name> = CLASS_ORIGIN | SUBCLASS_ORIGIN | RETURNED_SQLSTATE
| MESSAGE_TEXT | MYSQL_ERRNO | CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA | CONSTRAINT_
NAME | CATALOG_NAME | SCHEMA_NAME | TABLE_NAME | COLUMN_NAME | CURSOR_NAME

Examples

Raise an explicit error with SQLSTATE '55555'.

SIGNAL SQLSTATE '55555'

Re-raise an error with an explicit MySQL error number.

RESIGNAL SET MYSQL_ERRNO = 5

Migration Considerations

Note: Error handling is a critical aspect of any software solution. Code migrated from one
paradigm to another should be carefully evaluated and tested.

The basic operations of raising, processing, responding, and obtaining metadata is similar in nature
for most relational database management systems. The technical aspects of rewriting the code to use
different types of objects is not difficult.

In SQL Server, there can only be one "handler", or CATCH code block, that handles exceptions for a
given statement. In Aurora MySQL, multiple handler objects can be declared. A condition may trigger
more than one handler. Be sure the correct handlers are executed as expected, especially when there
are multiple handlers. The following sections provides rules to help establish your requirements.

Handler Scope

A handler can be specific or general. Specific handlers are handlers defined for a specific MySQL error
code, SQLSTATE, or a condition name. Therefore, only one type of event will trigger a specific handler.
General handlers are handlers defined for conditions in the SQLWARNING, SQLEXCEPTION, or NOT
FOUND classes. More than one event may trigger the handler.

A handler is in scope for the block in which it is declared. It cannot be triggered by conditions occur-
ring outside the block boundaries.

A handler declared in a BEGIN ... END block is in scope for the SQL statements that follow the handler
declaration.

One or more handlers may be declared in different or the same scopes using different specifications.
For example, a specific MySQL error code handler may be defined in an outer code block while a more
general SQLWARNING handler is defined within an inner code block. Specific MySQL error code hand-
lers and a general SQLWARNING class handler may exist within the same code block.

Handler Choice

Only one handler is triggered for a single event. Aurora MySQL decides which handler should be
triggered. The decision regarding which handler should be triggered as a response to a condition

- 196 -

depends on the handler's scope and value. It also depends on whether or not other handlers are
present that may be more appropriate to handle the event.

When a condition occurs in a stored routine, the server searches for valid handlers in the current
BEGIN ... END block scope. If none are found, the engine searches for handlers in each successive con-
taining BEGIN ... END code block scope. When the server finds one or more applicable handlers at any
given scope, the choice of which one to trigger is based on the following condition precedence:

l A MySQL error code handler takes precedence over a SQLSTATE value handler.

l An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or
NOT FOUND handlers.

l An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

Multiple applicable handlers with the same precedence may exist for a condition. For example, a state-
ment could generate several warnings having different error codes. There may exist a specific MySQL
Error handler for each. In such cases, the choice is non-deterministic. Different handlers may be
triggered at different times depending on the circumstances.

Summary

The following identifies similarities, differences, and key migration considerations.

SQL Server Error Handling
Feature

Migrate to Aurora MySQL Comments

TRY ... END TRY and CATCH ...
END CATCH blocks

Nested BEGIN ... END code
blocks with per-scope handlers

DECLARE specific event handlers
for each BEGIN-END code block.
Note that unlike CATCH blocks,
the handlers must be defined
first, not later. Review the handler
scope and handler choice sec-
tions above.

THROW and RAISERROR SIGNAL and RESIGNAL
Review the handler scope and
handler choice sections above.

THROW with varibles Not supported

FORMATMESSAGE N/A

Error state functions GET DIAGNOSTIC

Proprietary error messages in
sys.messages system table

Proprietary MySQL error codes
and SQLSTATE ANSI and ODBC
standard

When rewriting error handling
code, consider switching to the
more standard SQLSTATE error
codes.

Deterministic rules regarding May be non-deterministic if Review the handler choice section
above.

- 197 -

SQL Server Error Handling
Feature

Migrate to Aurora MySQL Comments

condition handler execution -
always the next code block in
statement order

multiple handlers have the
same precedence and scope

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html

l https://dev.mysql.com/doc/refman/5.7/en/diagnostics-area.html

l https://dev.mysql.com/doc/refman/5.7/en/condition-handling.html

l https://dev.mysql.com/doc/refman/5.7/en/handler-scope.html

- 198 -

https://dev.mysql.com/doc/refman/5.7/en/error-messages-server.html
https://dev.mysql.com/doc/refman/5.7/en/diagnostics-area.html
https://dev.mysql.com/doc/refman/5.7/en/condition-handling.html
https://dev.mysql.com/doc/refman/5.7/en/handler-scope.html

Migrate from SQL Server Flow Control

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Flow Control

l Syntax and option differences, sim-
ilar functionality

Overview

Although SQL is a mostly declarative language, it does support flow control commands, which provide
run time dynamic changes in script execution paths.

Note: Before SQL/PSM was introduced in SQL:1999, the ANSI standard did not include flow
control constructs. Therefore, there are significant syntax differences among RDBMS
engines.

SQL Server provides the following flow control keywords.

l BEGIN... END: Define boundaries for a block of commands that are executed together.

l RETURN: Exit a server code module (stored procedure, function, etc.) and return control to the
calling scope. RETURN <value> can be used to return an INT value to the calling scope.

l BREAK: Exit WHILE loop execution.

l THROW: Raise errors and potentially return control to the calling stack.

l CONTINUE: Restart a WHILE loop.

l TRY... CATCH: Error handling (see Error Handling).

l GOTO Label: Moves the execution point to the location of the specified label.

l WAITFOR: Delay.

l IF... ELSE: Conditional flow control.

l WHILE <condition>: Continue looping while <condition> returns TRUE.

Note: WHILE loops are commonly used with cursors and use the system variable
@@FETCH_STATUS to determine when to exit (see the Cursors section for more details).

For more information about TRY-CATCH and THROW, see Error Handling.

Examples

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,

- 199 -

PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

WAITFOR

Use WAITFOR to introduce a one minute delay between background batches purging old data.

SET ROWCOUNT 1000;
WHILE @@ROWCOUNT > 0;
BEGIN;
 DELETE FROM OrderItems
 WHERE OrderDate < '19900101';
 WAITFOR DELAY '00:01:00';
END;

GOTO

Use GOTO to skip a code section based on an input parameter in a stored procedure.

CREATE PROCEDURE ProcessOrderItems
@OrderID INT, @Item VARCHAR(20), @Quantity INT, @UpdateInventory BIT
AS
BEGIN
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 SELECT @OrderID, @item, @Quantity
IF @UpdateInventory = 0

 GOTO Finish
 UPDATE Inventory
 SET Stock = Stock - @Quantity
 WHERE Item = @Item
 /* Additional Inventory Processing */
finish:
/* Generate Results Log*/
END

Dynamic Procedure Execution Path

The following example demonstrates a solution for executing different processes based on the num-
ber of items in an order.

Declare a cursor for looping through all OrderItems and calculating the total quantity per order.

DECLARE OrderItemCursor CURSOR FAST_FORWARD
FOR
SELECT OrderID,
 SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

- 200 -

DECLARE @OrderID INT, @NumItems INT;

-- Instantiate the cursor and loop through all orders.
OPEN OrderItemCursor;

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems

WHILE @@Fetch_Status = 0
BEGIN;

IF @NumItems > 100
 PRINT 'EXECUTING LogLargeOrder - '
 + CAST(@OrderID AS VARCHAR(5))

 + ' ' + CAST(@NumItems AS VARCHAR(5));
 ELSE
 PRINT 'EXECUTING LogSmallOrder - '
 + CAST(@OrderID AS VARCHAR(5))

 + ' ' + CAST(@NumItems AS VARCHAR(5));

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems;
END;

-- Close and deallocate the cursor.
CLOSE OrderItemCursor;
DEALLOCATE OrderItemCursor;

The above code displays the following results:

EXECUTING LogSmallOrder - 1 100
EXECUTING LogSmallOrder - 2 100
EXECUTING LogLargeOrder - 3 200

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow

- 201 -

Migrate to Aurora MySQL Flow Control

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Flow Control

l Syntax and option differences, sim-
ilar functionality

Overview

Aurora MySQL provides the following flow control constructs:

l BEGIN... END: Define boundaries for a block of commands that are executed together.

l CASE: Execute a set of commands based on a predicate (not to be confused with CASE expres-
sions).

l IF... ELSE: Conditional flow control.

l ITERATE: Restart a LOOP, REPEAT, and WHILE statement.

l LEAVE: Exit a server code module (stored procedure, function etc.) and return control to the call-
ing scope.

l LOOP: Loop indefinitely.

l REPEAT... UNTIL: Loop until the predicate is true.

l RETURN: Terminate execution of the current scope and return to the calling scope.

l WHILE: Continue looping while the condition returns TRUE.

l SLEEP: Pause execution for a specified number of seconds.

Examples

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

- 202 -

Rewrite of SQL Server WAITFOR Delay Using SLEEP

CREATE PROCEDURE P()
BEGIN

DECLARE RR INT;
SET RR = (

SELECT COUNT(*)
FROM OrderItems
WHERE OrderDate < '19900101'
);

WHILE RR > 0 DO
DELETE FROM OrderItems
WHERE OrderDate < '19900101';
DO SLEEP (60);

SET RR = (
SELECT COUNT(*)
FROM OrderItems
WHERE OrderDate < '19900101'
);

END WHILE;
END;

Rewrite of SQL Server GOTO Using Nested Blocks

CREATE PROCEDURE ProcessOrderItems
(Var_OrderID INT, Var_Item VARCHAR(20), Var_Quantity INT, UpdateInventory BIT)
BEGIN
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 VALUES(Var_OrderID, Var_Item, Var_Quantity)
IF @UpdateInventory = 1

 BEGIN
 UPDATE Inventory
 SET Stock = Stock - @Quantity
 WHERE Item = @Item
 /* Additional Inventory Processing...*/
 END
/* Generate Results Log */
END

Dynamic Procedure Execution Path

The following example demonstrates a solution for executing different logic based on the number of
items in an order.

This example provides the same functionality as the example for SQL Server flow control. However,
unlike the SQL Server example executed as a batch script, Aurora MySQL variables can only be used in
stored routines (procedures and functions).

Create a procedure to declare a cursor and loop through the order items.

CREATE PROCEDURE P()
BEGIN
DECLARE done INT DEFAULT FALSE;
DECLARE var_OrderID INT;
DECLARE var_NumItems INT;

- 203 -

DECLARE OrderItemCursor CURSOR FOR
SELECT OrderID,

 SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

DECLARE CONTINUE HANDLER
 FOR NOT FOUND SET done = TRUE;

OPEN OrderItemCursor;

CursorStart: LOOP
FETCH NEXT FROM OrderItemCursor

 INTO var_OrderID, var_NumItems;
IF done
 THEN LEAVE CursorStart;
END IF;
IF var_NumItems > 100
 THEN SELECT CONCAT('EXECUTING LogLargeOrder - ', CAST(var_OrderID AS VARCHAR(5)),

' Num Items: ', CAST(var_ NumItems AS VARCHAR(5)))
 ELSE SELECT CONCAT('EXECUTING LogSmallOrder - ', CAST(var_OrderID AS VARCHAR(5)),

' Num Items: ', CAST(var_NumItems AS VARCHAR(5)))
END IF;

END LOOP;

CLOSE OrderItemCursor;

END;

Summary

While there are some syntax differences between SQL Server and Aurora MySQL flow control state-
ments, most rewrites should be straightforward. The following table summarizes the differences and
identifies how to modify T-SQL code to support similar functionality in Aurora MySQL.

SQL Server Aurora MySQL Workaround

BEGIN... END
Define com-
mand block
boundaries

Define command
block boundaries

Compatible

RETURN

Exit the current
scope and
return to caller

Supported for
both scripts
and stored
code (pro-

Exit a stored func-
tion and return to
caller

For Aurora MySQL, RETURN is valid
only in stored (user defined) func-
tions. It is not used in stored pro-
cedures, triggers, or events.

Rewrite the T-SQL code using the
LEAVE keyword.

- 204 -

SQL Server Aurora MySQL Workaround

cedures and
functions).

The RETURN statement can return a
value in both products. However,
LEAVE does not support return para-
meters. Rewrite the code to use out-
put parameters.

You cannot use RETURN in Aurora
MySQL for scripts that are not part of
a stored routine.

BREAK
Exit WHILE loop
execution

Not supported

Rewrite the logic to explicitly set a
value that will render the WHILE con-
dition FALSE. For example, WHILE
a<100 AND control = 1. Explicitly SET
control = 0, and use ITERATE to
return to the begining of the loop.

THROW

Raise errors
and potentially
return control
to the calling
stack

Errors are handled
by HANDLER
objects.

See Error Handling for more details.

TRY - CATCH Error handling
Errors are handled
by HANDLER
objects.

See Error Handling for more details.

GOTO
Move execution
to specified
label

Not supported

Consider rewriting the flow logic
using either CASE statements or nes-
ted stored procedures. You can use
nested stored procedures to cir-
cumvent this limitation by separating
code sections and encapsulating
them in sub-procedures. Use IF <con-
dition> CALL <stored procedure> in
place of GOTO.

WAITFOR Delay Not supported

Replace WAITFOR with Aurora MySQL
SLEEP. SLEEP is less flexible than
WAITFOR and only supports delays
specified in seconds. Rewrite the
code using SLEEP to replace
WAITFOR DELAY and convert the
units to seconds.

WAITFOR TIME is not supported in

- 205 -

SQL Server Aurora MySQL Workaround

Aurora MySQL. You can calculate the
difference in seconds between the
desired time and current time using
Date and Time functions and use the
result to dynamically generate the
SLEEP statement. Alternatively, con-
sider using CREATE EVENT with a pre-
defined schedule.

IF... ELSE
Conditional
flow control

Conditional flow
control

The functionality is compatible, but
the syntax differs. SQL Server uses IF
<condition> <statement> ELSE <state-
ment>. Aurora MySQL uses IF <con-
dition> THEN <statement> ELSE
<statement> ENDIF.

Rewrite T-SQL code to add the man-
datory THEN and ENDIF keywords.

WHILE

Continue exe-
cution while
condition is
TRUE

Continue exe-
cution while con-
dition is TRUE

The Functionality is compatible, but
the syntax differs. SQL Server uses
WHILE <condition> BEGIN...END, Aur-
ora MySQL uses WHILE <condition>
DO... END WHILE. Autora
MySQL does not require A
BEGIN...END block.

Rewrite T-SQL code to use the Aurora
MySQL keywords.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/flow-control-statements.html

- 206 -

Migrate from SQL Server Full-Text Search

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes
- Full Text

l Syntax and option differences, less
comprehensive but simpler

l Most common basic functionality is
similar

l Requires rewrite of administration
logic and queries

Overview

SQL Server supports an optional framework for executing Full-Text search queries against character-
based data in SQL Server tables using an integrated, in-process Full-Text engine, and a filter daemon
host process (fdhost.exe).

To run Full-Text queries, a Full-Text catalog must first be created, which in turn may contain one or
more Full-Text indexes. A Full-Text index is comprised of one or more textual columns of a table.

Full-text queries perform smart linguistic searches against Full-Text indexes by identifying words and
phrases based on specific language rules. The searches can be for simple words, complex phrases, or
multiple forms of a word or a phrase. They can return ranking scores for matches (also known as
"hits").

Full-Text Indexes

A Full-Text index can be created on one of more columns of a table or view for any of the following
data types:

l CHAR: Fixed size ASCII string column data type

l VARCHAR: Variable size ASCII string column data type

l NCHAR: Fixed size UNICODE string column data type

l NVARCHAR: Variable size UNICODE string column data type

l TEXT: ASCII BLOB string column data type (deprecated)

l NTEXT: UNICODE BLOB string column data type (deprecated)

l IMAGE: Binary BLOB data type (deprecated)

l XML: XML structured BLOB data type

l VARBINARY(MAX): Binary BLOB data type

l FILESTREAM: File based storage data type

Note: For more information about data types, see Data Types.

- 207 -

Full-text indexes are created using the CREATE FULLTEXT INDEX statement. A Full-Text index may con-
tain up to 1024 columns from a single table or view.

When creating Full-Text indexes on BINARY type columns, documents such as Microsoft Word can be
stored as a binary stream and parsed correctly by the Full-Text engine.

Full-Text catalogs

Full-text indexes are contained within Full-Text catalog objects. A Full-Text catalog is a logical container
for one or more Full-Text indexes and can be used to collectively administer them as a group for tasks
such as back-up, restore, refresh content, etc.

Full-text catalogs are creates using the CREATE FULLTEXT CATALOG statement. A Full-Text catalog
may contain zero or more Full-Text indexes and is limited in scope to a single database.

Full-text queries

After a Full-Text catalog and index have been create and populated, users can perform Full-Text quer-
ies against these indexes to query for:

l Simple term match for one or more words or phrases

l Prefix term match for words that begin with a set of characters

l Generational term match for inflectional forms of a word

l Proximity term match for words or phrases which are close to another word or phrase

l Thesaurus search for synonymous forms of a word

l Weighted term match for finding words or phrases with weighted proximity values

Full-text queries are integrated into T-SQL, and use the following predicates and functions:

l CONTAINS predicate
l FREETEXT predicate
l CONTAINSTABLE table valued function
l FREETEXTTABLE table valued function

Note: Do not confuse Full-Text functionality with the LIKE predicate, which is used for pat-
tern matching only.

Updating Full-Text Indexes

By default, Full-Text indexes are automatically updated when the underlying data is modified, similar
to a normal B-Tree or Columnstore index. However, large changes to the underlying data may inflict a
performance impact for the Full-Text indexes update because it is a resource intensive operation. In
these cases, you can disable the automatic update of the catalog and update it manually, or on a sched-
ule, to keep the catalog up to date with the underlying tables.

Note: You can monitor the status of Full-Text catalog by using the
FULLTEXTCATALOGPROPERTY(<Full-text Catalog Name>, 'Populatestatus') function.

- 208 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-index-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-catalog-transact-sql

Examples

Create a ProductReviews table.

CREATE TABLE ProductReviews
(
ReviewID INT NOT NULL
 IDENTITY(1,1),
CONSTRAINT PK_ProductReviews PRIMARY KEY(ReviewID),
ProductID INT NOT NULL
 /*REFERENCES Products(ProductID)*/,
ReviewText VARCHAR(4000) NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
/*REFERENCES Users(UserID)*/
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it is not that great and failed after two days',
'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Create a Full-Text catalog for product reviews.

CREATE FULLTEXT CATALOG ProductFTCatalog;

Create a Full-Text index for ProductReviews.

CREATE FULLTEXT INDEX
ON ProductReviews (ReviewText)
KEY INDEX PK_ProductReviews
ON ProductFTCatalog;

Query the Full-Text index for reviews containing the word 'excellent'.

SELECT *
FROM ProductReviews
WHERE CONTAINS(ReviewText, 'excellent');

ReviewID ProductID ReviewText
 ReviewDate UserID
-------- --------- ----------
 ---------- ------
1 1 This is a review for product 1, it is excellent and works as expected
2018-07-01 2

- 209 -

For more information, see https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/Full-Text-
search

- 210 -

https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search
https://docs.microsoft.com/en-us/sql/2014/relational-databases/search/full-text-search

Migrate to Aurora MySQL Full-Text Search

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes
- Full Text

l Syntax and option differences, less
comprehensive but simpler

l Most common basic functionality is
similar

l Requires rewrite of administration
logic and queries

Overview

Aurora MySQL supports all the native full-text capabilities of MySQL InnoDB Full-Text Indexes. Full-text
indexes are used to speed up textual searches performed against textual data by using the Full-Text
MATCH ... AGAINST predicate.

Full-text indexes can be created on any textual column of the following types:

l CHAR: Fixed length string data type

l VARCHAR: Variable length string data type

l TEXT: String BLOB data type

Full-text indexes can be created as part of the CREATE TABLE, ALTER TABLE, and CREATE INDEX state-
ments.

Full-text indexes in Aurora MySQL use an inverted index design where a list of individual words is
stored alongside a list of documents where the words were found. Proximity search is also supported
by storing a byte offset position for each word.

Creating a full-text index in Aurora MySQL creates a set of index system tables that can be viewed
using the INFORMATION_SCHEMA.INNODB_SYS_TABLES view. These tables include the auxiliary index
tables representing the inverted index and a set of management tables that help facilitate man-
agement of the indexes such as deletes and sync with the underlying data, caching, configuration, and
syncing processes.

Full-Text Index Cache

The index cache temporarily caches index entries for recent rows to minimize the contention asso-
ciated with inserting documents. These inserts, even small ones, typically result in many singleton
insertions to the auxiliary tables, which may prove to be challenging in terms of concurrency. Caching
and batch flushing help minimize these frequent updates. In addition, batching also helps alleviate the
overhead involved with multiple auxiliary table insertions for words and minimizes duplicate entries as
insertions are merged and written to disk as a single entry.

- 211 -

https://dev.mysql.com/doc/refman/5.7/en/innodb-sys-tables-table.html

Full-Text Index Document ID and FTS_DOC_ID Column

Aurora MySQL assigns a document identifier that maps words in the index to the document rows
where those words are found. This warrants a schema change to the source table, namely adding an
indicator column to point to the associated document. This column, known as FTS_DOC_ID must exist
in the table where the Full-Text index is created. If the column is not present, Aurora MySQL adds it
when the Full-Text index is created.

Note: Adding a column to a table in Aurora MySQL triggers a full rebuild of the table that
may be resource intensive for larger tables (a warning is issued).

Executing a SHOW WARNINGS statement after creating a Full-Text index on a table that does not have
this column generates a warning. For example:

CREATE TABLE TestFT
(
KeyColumn INT AUTO_INCREMENT NOT NULL
 PRIMARY KEY,
TextColumn TEXT(200)
);

CREATE FULLTEXT INDEX FTIndex1
ON TestFT(TextColumn);

SHOW WARNINGS;

Level Code Message
----- ---- -------
Warning 124 InnoDB rebuilding table to add column FTS_DOC_ID

If the Full-Text index is created as part of the CREATE TABLE statement, the FTS_DOC_ID column is
added silently and no warning is issued. It is recommended to create the FTS_DOC_ID column for
tables where full-text indexes will be created as part of the CREATE TABLE statement to avoid an
expensive rebuild of a table that is already loaded with large amounts of data. Creating the FTS_DOC_
ID column as an AUTO_INCREMENT column may improve performance of data loading.

Note: Dropping a Full-Text index from a table does not drop the FTS_DOC_ID column.

Full-Text Index Deletes

Similar to the insert issue described earlier, deleting rows from a table with a Full-Text index may also
result in concurrency challenges due to multiple singleton deletions from the auxiliary tables.

To minimize the impact of this issue, Aurora MySQL logs the deletion of a document ID (DOC_ID) in a
dedicated internal system table named FTS_*_DELETED instead of actually deleting it from the auxiliary
tables. The existence of a DOC_ID in the DELETED table is a type of soft-delete. The engine consults it
to determine if a row that had a match in the auxiliary tables should be discarded, or if it should be
returned to the client. This approach makes deletes much faster at the expense of somewhat larger
index size.

- 212 -

Note: Soft deleted documents are not automatically managed. You must issue an
OPTIMIZE TABLE statement and the innodb_optimize_fulltext_only=ON option to rebuild
the Full-Text index.

Transaction Control

Due to the caching and batch processing properties of the Full-Text indexes, UPDATE and INSERT to a
Full-Text index are committed when a transaction commits. Full-text search can only access com-
mitted data.

Full-Text Search Functions

To query Full-Text indexes, use the MATCH... AGAINST predicate. The MATCH clause accepts a list of
column names, separated by commas, that define the column names of the columns that have a Full-
Text index defined and need to be searched. In the AGAINST clause, define the string you want
searched. It also accepts an optional modifier that indicates the type of search to perform.

MATCH... AGAINST Syntax

MATCH (<Column List>)
AGAINST (
<String Expression>
[IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
| IN BOOLEAN MODE
| WITH QUERY EXPANSION]

)

Note: The search expression must be constant for all rows searched. Therefore a table
column is not permitted.

The three types of full-text searches are Natural Language, Boolean, and Query Expansion.

Natural Language Search

If no modifier is provided, or the IN NATURAL LANGUAGE MODE modifier is explicitly provided, the
search string is interpreted as natural human language phrase. For this type of search, the stop-word
list is considered and stop words are excluded. For each row, the search returns a "relevance" value,
which denotes the similarity of the search string to the text, for the row, in all the columns listed in the
MATCH column list. For more information regarding stop-words, see https://dev.mysql.-
com/doc/refman/5.7/en/fulltext-stopwords.html.

Boolean Search

The IN BOOLEAN MODE modifier specifies a Boolean search. When using Boolean search, some char-
acters imply special meaning either at the beginning or the end of the words that make up the search
string. The + and - operators are used to indicate that a word must be present (+) or absent (-) for the
match to resolve to TRUE.

For example, the following statement returns rows for which the ReviewText column contains the word
'Excellent', but not the work 'England'.

- 213 -

https://dev.mysql.com/doc/refman/5.7/en/fulltext-stopwords.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-stopwords.html

SELECT *
FROM ProductReviews
WHERE MATCH (ReviewText) AGAINST ('+Excellent -England' IN BOOLEAN MODE);

Additional Boolean operators include:

l The @distance operator tests if two or more words start within a specified distance, or the num-
ber of words between them.

l The < and > operators change a word's contribution to the relevance value assigned for a specific
row match.

l Parentheses () are used to group words into sub-expressions and may be nested.

l The Tilde ~ is used as negative operator, resulting in the word's contribution to be deducted from
the total relevance value. Use this operator to mark "noise" words that are rated lower, but not
excluded, as with the - operator

l The asterisk * operator is used as a wildcard operator and is appended to the word.

l Double quotes " are used for exact, literal phrase matching.

For more information on Boolean searches, see https://dev.mysql.com/doc/refman/5.7/en/fulltext-
boolean.html

Query Expansion

The WITH QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION is useful
when a search phrase is too short, which may indicate that the user is looking for "implied knowledge"
that the Full-Text engine doesn't have.
For example, a user that searches for 'Car' may need to match specific car brands such as 'Ford',
'Toyota', 'Mercedes-Benz', and others.

Blind query expansions, also known as "Automatic Relevance Feedback", performs the searches twice.
On the first pass, the engine looks for the most relevant documents. It then performs a second pass
using the original search phrase concatenated with the results of the first pass. For example, if the
search was looking for 'Cars' and the most relevant documents included the word 'Ford', the seconds
search would find the documents that also mention 'Ford'.

For more information on query expansion, see https://dev.mysql.com/doc/refman/5.7/en/fulltext-query-expan-
sion.html

Migration Considerations

Migrating Full-Text indexes from SQL Server to Aurora MySQL requires a full rewrite of the code that
deals with both creating, management, and querying of Full-Text searches.

Although the Aurora MySQL full-text engine is significantly less comprehensive than SQL Server, it is
also much simpler to create and manage and is sufficiently powerful for most common, basic full-text
requirements.

- 214 -

https://dev.mysql.com/doc/refman/5.7/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-query-expansion.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-query-expansion.html

For more complex full-text workloads, Amazon RDS offers CloudSearch, a managed service in the AWS
Cloud that makes it simple and cost-effective to set up, manage, and scale an enterprise grade search
solution. Amazon CloudSearch supports 34 languages and advanced search features such as high-
lighting, autocomplete, and geospatial search.

Currently, there is no direct tooling integration with Aurora MySQL and, therefore, you must create a
custom application to synchronize the data between RDS instances and the CloudSearch Service.

For more information on CloudSearch, see https://aws.amazon.com/cloudsearch/

Examples

CREATE TABLE ProductReviews
(
ReviewID INT
 AUTO_INCREMENT NOT NULL
 PRIMARY KEY,
ProductID INT NOT NULL
 /*REFERENCES Products(ProductID)*/,
ReviewText TEXT(4000) NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
/*REFERENCES Users(UserID)*/
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it is not that great and failed after two days',
'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Query the full-text index for reviews containing the word 'excellent'.

SELECT *
FROM ProductReviews
WHERE MATCH (ReviewText) AGAINST ('Excellent' IN NATURAL LANGUAGE MODE);

For more information, see https://dev.mysql.com/doc/refman/5.7/en/innodb-fulltext-index.html

- 215 -

https://aws.amazon.com/cloudsearch/
https://dev.mysql.com/doc/refman/5.7/en/innodb-fulltext-index.html

Migrate from SQL Server JSON and XML

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - JSON
and XML

l Minimal XML support, extensive
JSON support

l No XQUERY support, optionally
convert to JSON

Overview

Java Script Object Notation (JSON) and eXtensible Markup Language (XML) are the two most common
types of semi-structured data documents used by a variety of data interfaces and NoSQL databases.
Most REST web service APIs support JSON as their native data transfer format. XML is an older, more
mature framework still widely used. It also provides many extensions such as XQuery, name spaces,
schemas, and more.

The following example is a JSON document:

[{
"name": "Robert",

 "age": "28"
}, {

"name": "James",
 "age": "71"

"lastname": "Drapers"
}]

It's XML counterpart is:

<?xml version="1.0" encoding="UTF-16" ?>
<root>

<Person>
<name>Robert</name>
<age>28</age>

</Person>
<Person>

<name>James</name>
<age>71</age>
<lastname>Drapers</lastname>

</Person>
</root>

SQL Server provides native support for both XML and JSON in the database using the familiar and con-
venient T-SQL interface.

- 216 -

XML Data

SQL Server provides extensive native support for working with XML data including XML Data Types,
XML Columns, XML Indexes, and XQuery.

XML Data Types and Columns

XML data can be stored using the following data types:

l The Native XML Data Type uses a BLOB structure but preserves the XML Infoset, which consists
of the containment hierarchy, document order, and element/attribute values. An XML typed doc-
ument may differ from the original text; white space is removed and the order of objects may
change. XML Data stored as a native XML data type has the additional benefit of schema val-
idation.

l An Annotated Schema (AXSD) can be used to distribute XML documents to one or more tables.
Hierarchical structure is maintained, but element order is not.

l CLOB or BLOB such as VARCHAR(MAX) and VARBINARY(MAX) can be used to store the original
XML document.

XML Indexes

SQL Server allows creation of PRIMARY and SECONDARY XML indexes on columns with a native XML
data type. Secondary indexes can be created for PATH, VALUE, or PROPERTY, which are helpful for vari-
ous types of workload queries.

XQuery

SQL Server supports a sub set of the W3C XQUERY language specification. It allows executing queries
directly against XML data and using them as expressions or sets in standard T-SQL statements.

For example:

DECLARE @XMLVar XML = '<Root><Data>My XML Data</Data></Root>';
SELECT @XMLVar.query('/Root/Data');

Result: <Data>My XML Data</Data>

JSON Data

SQL Server does not support a dedicated JSON data type. However, you can store JSON documents in
an NVARCHAR column. For more information about BLOBS, see Data Types.

SQL Server provides a set of JSON functions that can be used for the following tasks:

l Retrieve and modify values in JSON documents.

l Convert JSON objects to a set (table) format.

l Use standard T-SQL queries with converted JSON objects.

l Convert tabular results of T-SQL queries to JSON format.

The functions are:

- 217 -

l ISJSONtests whether a string contains a valid JSON string. Use in WHERE clause to avoid errors.

l JSON_VALUE retrieves a scalar value from a JSON document.

l JSON_QUERY retrieves a whole object or array from a JSON document.

l JSON_MODIFY modifies values in a JSON document.

l OPENJSON converts a JSON document to a SET that can be used in the FROM clause of a T-SQL
query.

The FOR JSON clause of SELECT queries can be used to convert a tabular set to a JSON document.

Examples

Create a table with a native typed XML column.

CREATE TABLE MyTable
(
XMLIdentifier INT NOT NULL PRIMARY KEY,
XMLDocument XML NULL
);

Query a JSON document.

DECLARE @JSONVar NVARCHAR(MAX);
SET @JSONVar = '{"Data":{"Person":[{"Name":"John"},{"Name":"Jane"},
{"Name":"Maria"}]}}';
SELECT JSON_QUERY(@JSONVar, '$.Data');

For more information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server
l https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server

- 218 -

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server

Migrate to Aurora MySQL JSON and XML

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - JSON
and XML

l Minimal XML support, extensive
JSON support

l No XQUERY support, optionally
convert to JSON

Overview

Aurora MySQL support for unstructured data is the opposite of SQL server.

There is minimal support for XML, but a native JSON data type and more than 25 dedicated JSON func-
tions.

XML Support

Aurora MySQL supports two XML functions: ExtractValue and UpdateXML.

ExtractValue accepts an XML document, or fragment, and an XPATH expression. The function returns
the character data of the child (or element) matched by the XPATH expression. If there is more than
one match, the function returns the content of child nodes as a space delimited character string.
ExtractValue returns only CDATA (it does not return tags) and does not return sub-tags contained
within a matching tag or its content.

For example:

SELECT ExtractValue('<Root><Person>John</Person><Person>Jim</Person></Root>',
'/Root/Person');

Results: John Jim

UpdateXML is used to replace an XML fragment with another fragment using XPATH expressions sim-
ilar to ExtractValue. If a match is found, it returns the new, updated XML. If there are no matches, or
multiple matches, the original XML is returned.

For example:

SELECT UpdateXML('<Root><Person>John</Person><Person>Jim</Person></Root>', '/Root',
'<Person>Jack</Person>')

Results: <Person>Jack</Person>

Note: Aurora MySQL does not support MySQL LOAD XML syntax .
For more information about loading data into Aurora MySQL directly from Amazon S3, see
https://-

- 219 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html

doc-
s.aws.amazon.-
com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html

JSON Data Type

Aurura MySQL 5.7 supports a native JSON data type for storing JSON documents, which provides sev-
eral benefits over storing the same document as a generic string. The first major benefit is that all
JSON documents stored as a JSON data type are validated for correctness. If the document is not valid
JSON, it is rejected and an error condition is raised.

In addition, more efficient storage algorithms enable optimized read access to elements within the doc-
ument. The optimized internal binary representation of the document enables much faster operation
on the data without requiring expensive re-parsing.

For example:

CREATE TABLE JSONTable (DocumentIdentifier INT NOT NULL PRIMARY KEY, JSONDocument
JSON);

JSON Functions

Aurora MySQL supports a rich set of more than 25 targeted functions for working with JSON data.
These functions enable adding, modifying, and searching JSON data. Additionally, spatial JSON func-
tions can be used for GeoJSON documents.
For more information, see https://dev.mysql.com/doc/refman/5.7/en/spatial-geojson-functions.html.

The JSON_ARRAY, JSON_OBJECT, and JSON_QUOTE functions all return a JSON document from a list of
values, a list of key-value pairs, or a JSON value respectively.
For example:

SELECT JSON_OBJECT('Person', 'John', 'Country', 'USA');

{"Person": "John", "Country": "USA"}

The JSON_CONTAINS, JSON_CONTAINS_PATH, JSON_EXTRACT, JSON_KEYS, and JSON_SEARCH functions
are used to query and search the content of a JSON document.
The CONTAINS functions are Boolean functions that return 1 or 0 (TRUE or FALSE). JSON_EXTRACT
returns a subset of the document based on the XPATH expression.
JSON_KEYS returns a JSON array consisting of the top-level key (or path top level) values of a JSON doc-
ument. The JSON_SEARCH function returns the path to one or all of the instances of the search string.

For example:

SELECT JSON_EXTRACT('["Mary", "Paul", ["Jim", "Ryan"]]', '$[1]');

"Paul"

SELECT JSON_SEARCH('["Mary", "Paul", ["Jim", "Ryan"]]', 'one', 'Paul');

"$[1]"

- 220 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-geojson-functions.html

Aurora MySQL supports the following functions for adding, deleting, and modifying JSON data, :

JSON_INSERT, JSON_REMOVE, JSON_REPLACE, and their ARRAY counterparts, which are used to create,
delete, and replace existing data elements. For example:

SELECT JSON_ARRAY_INSERT('["Mary", "Paul", "Jim"]', '$[1]', 'Jack');

["Mary", "Jack", "Paul", "Jim"]

JSON_SEARCH is used to find the location of an element value within a JSON document. For example:

SELECT JSON_SEARCH('["Mary", "Paul", ["Jim", "Ryan"]]', 'one', 'Paul');

"$[1]"

JSON Indexes

JSON columns are effectively a BINARY family type, which can not be indexed.

To index JSON data, use CREATE TABLE or ALTER TABLE to add generated columns that represent some
value from the JSON document and create an index on this generated column.
For more information, see Clustered and Non Clustered Indexes.

Note: If indexes on generated columns exist for JSON documents, the query optimizer can
use them to match JSON expressions and optimize data access.

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

XML and JSON nat-
ive data types

XML with
schema col-
lections

JSON

JSON functions

IS_JSON, JSON_
VALUE, JSON_
QUERY, JSON_
MODFIY, OPEN_
JSON, FOR JSON

A set of more than 25 dedicated JSON func-
tions.
See https://dev.mysql.-
com/doc/refman/5.7/en/json-function-ref-
erence.html

XML functions
XQUERY and
XPATH, OPEN_
XML, FOR XML

ExtractValue and UpdateXML.

XML and JSON
Indexes

Primary and
Secondary
PATH, VALUE
and PROPERTY

Requires adding always generated (computed
and persisted) columns with JSON expressions
and indexing them explicitly. The optimizer
can make use of JSON expressions only.

- 221 -

https://dev.mysql.com/doc/refman/5.7/en/json-function-reference.html
https://dev.mysql.com/doc/refman/5.7/en/json-function-reference.html
https://dev.mysql.com/doc/refman/5.7/en/json-function-reference.html

Feature SQL Server Aurora MySQL Comments

indexes

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
l https://dev.mysql.com/doc/refman/5.7/en/json.html
l https://dev.mysql.com/doc/refman/5.7/en/json-functions.html

- 222 -

https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json-functions.html

Migrate from SQL Server MERGE

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - MERGE

l Rewrite to use REPLACE and ON
DUPLICATE KEY, or individual constituent
DML statements

Overview

MERGE is a complex , hybrid DML/DQL statement for performing INSERT, UPDATE, or DELETE oper-
ations on a target table based on the results of a logical join of the target table and a source data set.

MERGE can also return row sets similar to SELECT using the OUTPUT clause, which gives the calling
scope access to the actual data modifications of the MERGE statement.

The MERGE statement is most efficient for non-trivial conditional DML.
For example, inserting data if a row key value does not exist and updating the existing row if the key
value already exists.

You can easily manage additional logic such as deleting rows from the target that don't appear in the
source. For simple, straightforward updates of data in one table based on data in another, it is typically
more efficient to use simple INSERT, DELETE, and UPDATE statements. All MERGE functionality can be
replicated using INSERT, DELETE, and UPDATE statements, but not necessarily less efficiently.

The SQL Server MERGE statement offers a wide range of functionality and flexibility and is compatible
with ANSI standard SQL:2008. SQL Server has many extensions to MERGE that provide efficient T-
SQL solutions for synchronizing data.

Syntax

MERGE [INTO] <Target Table> [AS] <Table Alias>]
USING <Source Table>
ON <Merge Predicate>
[WHEN MATCHED [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
[WHEN NOT MATCHED [BY TARGET] [AND <Predicate>]
THEN INSERT [(<Column List>)]
VALUES (<Values List>) | DEFAULT VALUES]
[WHEN NOT MATCHED BY SOURCE [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
OUTPUT [<Output Clause>]

Examples

Perform a simple one-way synchronization of two tables.

CREATE TABLE SourceTable
(

- 223 -

Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

CREATE TABLE TargetTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

INSERT INTO SourceTable (Col1, Col2)
VALUES
(2, 'Source2'),
(3, 'Source3'),
(4, 'Source4');

INSERT INTO TargetTable (Col1, Col2)
VALUES
(1, 'Target1'),
(2, 'Target2'),
(3, 'Target3');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2);

SELECT * FROM TargetTable;

Col1 Col2
----- -----
1 Target1
2 Source2
3 Source3
4 Source4

Perform a conditional two-way synchronization using NULL for "no change" and DELETE from the tar-
get when the data is not found in the source.

TRUNCATE TABLE SourceTable;
INSERT INTO SourceTable (Col1, Col2) VALUES (3, NULL), (4, 'NewSource4'), (5,
'Source5');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED AND SRC.Col2 IS NOT NULL
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2)

- 224 -

WHEN NOT MATCHED BY SOURCE
 THEN DELETE;

SELECT *
FROM TargetTable;

Col1 Col2
----- -----
3 Source3
4 NewSource4
5 Source5

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql

- 225 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql

Migrate to Aurora MySQL MERGE

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - MERGE

l Rewrite to use REPLACE and ON
DUPLICATE KEY, or individual constituent
DML statements

Overview

Aurora MySQL does not support the MERGE statement. However, it provides two other statements for
merging data: REPLACE, and INSERT... ON DUPLICATE KEY UPDATE.

REPLACE deletes a row and inserts a new row if a duplicate key conflict occurs. INSERT... ON
DUPLICATE KEY UPDATE performs an in-place update. Both REPLACE and ON DUPLICATE KEY UPDATE
rely on an existing primary key and unique constraints. It is not possible to define custom MATCH con-
ditions as with SQL Server's MERGE statement.

REPLACE

REPLACE provides a function similar to INSERT. The difference is that REPLACE first deletes an existing
row if a duplicate key violation for a PRIMARY KEY or UNIQUE constraint occurs.

REPLACE is a MySQL extension that is not ANSI compliant. It either performs only an INSERT when no
duplicate key violations occur, or it performs a DELETE and then an INSERT if violations occur.

Syntax

REPLACE [INTO] <Table Name> (<Column List>)
VALUES (<Values List>)

REPLACE [INTO] <Table Name>
SET <Assignment List: ColumnName = VALUE...>

REPLACE [INTO] <Table Name> (<Column List>)
SELECT ...

INSERT ... ON DUPLICATE KEY UPDATE

The ON DUPLICATE KEY UPDATE clause of the INSERT statement acts as a dual DML hybrid. Similar to
REPLACE, it executes the assignments in the SET clause instead of raising a duplicate key error. ON
DUPLICATE KEY UPDATE is a MySQL extension that in not ANSI compliant.

Syntax

INSERT [INTO] <Table Name> [<Column List>]
VALUES (<Value List>
ON DUPLICATE KEY <Assignment List: ColumnName = Value...>

- 226 -

INSERT [INTO] <Table Name>
SET <Assignment List: ColumnName = Value...>
ON DUPLICATE KEY
UPDATE <Assignment List: ColumnName = Value...>

INSERT [INTO] <Table Name> [<Column List>]
SELECT ...
ON DUPLICATE KEY
UPDATE <Assignment List: ColumnName = Value...>

Migration Considerations

Neither REPLACE nor INSERT ... ON DUPLICATE KEY UPDATE provide a full functional replacement for
SQL Server's MERGE. The key differences are:

l Key violation conditions are mandated by the primary key or unique constraints that exist on the
target table. They can not be defined using an explicit predicate.

l There is no alternative for the WHEN NOT MATCHED BY SOURCE clause.

l There is no alternative for the OUTPUT clause.

The key difference between REPLACE and INSERT ON DUPLICATE KEY UPDATE is that with REPLACE, the
violating row is deleted or attempted to be deleted. If foreign keys are in place, the DELETE operation
may fail, which may fail the entire transaction.

For INSERT ... ON DUPLICATE KEY UPDATE, the update is performed on the existing row in place
without attempting to delete it.

It should be straightforward to replace most MERGE statements with either REPLACE or INSERT... ON
DUPLICATE KEY UPDATE.
Alternatively, break down the operations into their constituent INSERT, UPDATE, and DELETE state-
ments.

Examples

Use REPLACE to create a simple one-way, two-table sync.

CREATE TABLE SourceTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

CREATE TABLE TargetTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

INSERT INTO SourceTable (Col1, Col2)
VALUES
(2, 'Source2'),

- 227 -

(3, 'Source3'),
(4, 'Source4');

INSERT INTO TargetTable (Col1, Col2)
VALUES
(1, 'Target1'),
(2, 'Target2'),
(3, 'Target3');

REPLACE INTO TargetTable(Col1, Col2)
SELECT Col1,
 Col2
FROM SourceTable;

SELECT *
FROM TargetTable;

Col1 Col2
----- -----
1 Target1
2 Source2
3 Source3
4 Source4

Create a conditional two-way sync using NULL for "no change" and DELETE from target when not
found in source.

TRUNCATE TABLE SourceTable;

INSERT INTO SourceTable(Col1, Col2)
VALUES
(3, NULL),
(4, 'NewSource4'),
(5, 'Source5');

DELETE FROM TargetTable
WHERE Col1 NOT IN (SELECT Col1 FROM SourceTable);

INSERT INTO TargetTable (Col1, Col2)
SELECT Col1,
 Col2
FROM SourceTable AS SRC
WHERE SRC.Col1 NOT IN (
 SELECT Col1
 FROM TargetTable
);

UPDATE TargetTable AS TGT
SET Col2 = (
 SELECT COALESCE(SRC.Col2, TGT.Col2)
 FROM SourceTable AS SRC
 WHERE SRC.Col1 = TGT.Col1
)
WHERE TGT.Col1 IN (

- 228 -

 SELECT Col1
 FROM SourceTable
);

SELECT *
FROM TargetTable;

Col1 Col2
----- -----
3 Source3
4 NewSource4
5 Source5

Summary

The following table describes similarities, differences, and key migration considerations.

SQL Server MERGE fea-
ture

Migrate to Aurora
MySQL

Comments

Define source set in USING
clause

Define source set in a
SELECT query or in a
table.

Define logical duplicate
key condition with an ON
predicate

Duplicate key condition
mandated by primary key
and unique constraints on
target table.

WHEN MATCHED
THEN UPDATE

REPLACE or INSERT... ON
DUPLICATE KEY UPDATE

When using REPLACE, the violating row
will be deleted, or attempted to be
deleted.
If there are foreign keys in place, the
DELETE operation may fail, which may fail
the entire transaction.
With INSERT ... ON DUPLICATE KEY
UPDATE, the updated is performed on the
existing row in place, without attempting
to delete it.

WHEN MATCHED THEN
DELETE

DELETE FROM Target
WHERE Key IN (SELECT
Key FROM Source)

WHEN NOT MATCHED
THEN INSERT

REPLACE or INSERT... ON
DUPLICATE KEY UPDATE

See above comment.

WHEN NOT MATCHED BY
SOURCE UPDATE

UPDATE Target SET
<assignments> WHERE

- 229 -

SQL Server MERGE fea-
ture

Migrate to Aurora
MySQL

Comments

Key NOT IN (SELECT Key
FROM Source)

WHEN NOT MATCHED BY
SOURCE DELETE

DELETE FROM Target
WHERE KEY NOT IN
(SELECT Key FROM Source)

OUTPUT clause N/A

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/replace.html
l https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html

- 230 -

https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html

Migrate from SQL Server PIVOT and UNPIVOT

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
PIVOT and
UNPIVOT

l Straight forward rewrite to use tra-
ditional SQL syntax

Overview

PIVOT and UNPIVOT are relational operations used to transform a set by rotating rows into columns
and columns into rows.

PIVOT

The PIVOT operator consists of several clauses and implied expressions.

The "Anchor" column is the column that is not be pivoted and results in a single row per unique value,
similar to GROUP BY.

The pivoted columns are derived from the PIVOT clause and are the row values transformed into
columns. The values for these columns are derived from the source column defined in the PIVOT
clause.

Syntax

SELECT <Anchor column>,
[Pivoted Column 1] AS <Alias>,
[Pivoted column 2] AS <Alias>

 ...n
FROM

(<SELECT Statement of Set to be Pivoted>)
AS <Set Alias>

PIVOT
(

<Aggregate Function>(<Aggregated Column>)
FOR
[<Column With the Values for the Pivoted Columns Names>]

IN ([Pivoted Column 1], [Pivoted column 2] ...)
) AS <Pivot Table Alias>;

PIVOT Examples

Create and populate the Orders Table.

CREATE TABLE Orders
(

OrderID INT NOT NULL
IDENTITY(1,1) PRIMARY KEY,
OrderDate DATE NOT NULL,

- 231 -

Customer VARCHAR(20) NOT NULL
);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),
('20180104', 'Kevin'),
('20180104', 'Kevin');

Create a simple PIVOT for the number of orders per day (days of month 5-31 omitted for example sim-
plicity).

SELECT 'Number of Orders Per Day' AS DayOfMonth,
[1], [2], [3], [4] /*...[31]*/

FROM (
SELECT OrderID,
 DAY(OrderDate) AS OrderDay
FROM Orders

) AS SourceSet
PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)

) AS PivotSet;

DayOfMonth 1 2 3 4 /*...[31]*/
------ - - - -
Number of Orders Per Day 2 1 0 4

Note: The result set is now oriented in rows vs. columns. The first column is the descrip-
tion of the columns to follow.

PIVOT for number of order per day per customer.

SELECT Customer,
[1], [2], [3], [4] /*...[31]*/

FROM (
SELECT OrderID,

Customer,
DAY(OrderDate) AS OrderDay

FROM Orders
) AS SourceSet

PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)

) AS PivotSet;

Customer 1 2 3 4
-------- - - - -

- 232 -

John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT

UNPIVOT is similar to PIVOT in reverse, but spreads existing column values into rows.

The source set is similar to the result of the PIVOT with values pertaining to particular entities listed in
columns. Since the result set has more rows than the source, aggregations aren't required.

It is less commonly used than PIVOT because most data in relational databases have attributes in
columns; not the other way around.

UNPIVOT Examples

Create an populate the "pivot like" EmployeeSales table (in a actual scenario, this is most likely a view
or a set from an external source).

CREATE TABLE EmployeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmployeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales per date into individual rows per employee.

SELECT SaleDate,
 Employee,
 SaleAmount
FROM

(
 SELECT SaleDate, John, Kevin, Mary

 FROM EmployeeSales
) AS SourceSet
UNPIVOT (
 SaleAmount
 FOR Employee IN (John, Kevin, Mary)
)AS UnpivotSet;

SaleDate Employee SaleAmount
-------- -------- ----------
2018-01-01 John 150
2018-01-01 Kevin 0

- 233 -

2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/queries/from-using-pivot-and-unpivot

- 234 -

Migrate to Aurora MySQL PIVOT and UNPIVOT

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action Code Index Key Differences

SCT Action Codes - PIVOT
and UNPIVOT

l Straight forward rewrite to use
traditional SQL syntax

Overview

Aurora MySQL does not support the PIVOT and UNPIVOT relational operators.

Functionality of both operators can be rewritten to use standard SQL syntax, as shown in the examples
below.

Examples

PIVOT

Create and populate the Orders Table

CREATE TABLE Orders
(

OrderID INT
AUTO_INCREMENT NOT NULL PRIMARY KEY,
OrderDate DATE NOT NULL,
Customer VARCHAR(20) NOT NULL

);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),
('20180104', 'Kevin'),
('20180104', 'Kevin');

Simple PIVOT for number of orders per day (days of month 5-31 omitted for example simplicity)

SELECT 'Number of Orders Per Day' AS DayOfMonth,
COUNT(CASE WHEN DAY(OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS '1',
COUNT(CASE WHEN DAY(OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS '2',
COUNT(CASE WHEN DAY(OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS '3',
COUNT(CASE WHEN DAY(OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS '4' /*...[31]*/

FROM Orders AS O;

- 235 -

DayOfMonth 1 2 3 4 /*...[31]*/
------ - - - -
Number of Orders Per Day 2 1 0 4

PIVOT for number of order per day, per customer

SELECT Customer,
COUNT(CASE WHEN DAY(OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS '1',
COUNT(CASE WHEN DAY(OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS '2',
COUNT(CASE WHEN DAY(OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS '3',
COUNT(CASE WHEN DAY(OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS '4' /*...[31]*/

FROM Orders AS O
GROUP BY Customer;

Customer 1 2 3 4
-------- - - - -
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT

Create an populate the 'pivot like' EmployeeSales table.

Note: in real life this will most likely be a view, or a set from an external source.

CREATE TABLE EmplyeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmplyeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales per date into individual rows per employee

SELECT SaleDate,
Employee,
SaleAmount

FROM
(

SELECT SaleDate,
Employee,
CASE

WHEN Employee = 'John' THEN John
WHEN Employee = 'Kevin' THEN Kevin
WHEN Employee = 'Mary' THEN Mary

- 236 -

END AS SaleAmount
FROM EmployeeSales
CROSS JOIN
(

SELECT 'John' AS Employee
UNION ALL
SELECT 'Kevin'
UNION ALL
SELECT 'Mary'

) AS Employees
) AS UnpivotedSet;

SaleDate Employee SaleAmount
-------- -------- ----------
2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

For more information, see https://en.wikibooks.org/wiki/MySQL/Pivot_table

- 237 -

https://en.wikibooks.org/wiki/MySQL/Pivot_table

Migrate from SQL Server Synonyms

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action
Codes - Syn-
onyms

l Use stored procedures and functions to
abstract instance-wide objects

Overview

Synonyms are database objects that server as alternative identifiers for other database objects.The ref-
erenced database object is called the 'base object' and may reside in the same database, another data-
base on the same instance, or a remote server.

Synonyms provide an abstraction layer to isolate client application code from changes to the name or
location of the base object.

In SQL Server, Synonyms are often used to simplify the use of four-part identifiers when accessing
remote instances.

For Example, table A resides on Server A, and the client application accesses it directly. For scale out
reasons, Table A needs to be moved to server B to offload resource consumption on Server A. Without
synonyms, the client application code must be rewritten to access Server B. Instead, you can create a
synonym called Table A and it will transparently redirect the calling application to Server B without any
code changes.

Synonyms can be created for the following objects:

l Assembly (CLR) stored procedures, table-valued functions, scalar functions, and aggregate func-
tions

l Replication-filter-procedures

l Extended stored procedures

l SQL scalar functions, table-valued functions, inline-tabled-valued functions, views, and stored
procedures

l User defined tables including local and global temporary tables

Syntax

CREATE SYNONYM [<Synonym Schema>] . <Synonym Name>
FOR [<Server Name>] . [<Database Name>] . [Schema Name>] . <Object Name>

Examples

Create a synonym for a local object in a separate database.

- 238 -

CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR(20) NOT NULL
);

USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR DB1.Schema1.MyTable

Create a synonym for a remote object.

-- On ServerA
CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn INT IDENTITY PRIMARY KEY,

DataColumn VARCHAR(20) NOT NULL
);

-- On Server B
USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR ServerA.DB1.Schema1.MyTable;

Note: This example assumes a linked server named ServerA exists on Server B that points
to Server A.

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql

- 239 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql

Migrate to Aurora MySQL Synonyms

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action
Codes - Syn-
onyms

l Use stored procedures and functions to
abstract instance-wide objects

Overview

Synonyms are not supported in Aurora MySQL and there is no known generic workaround.

For accessing tables (or views), a partial workaround is to use encapsulating views as an abstraction
layer. Similarly, you can use functions or stored procedures that call other functions or stored pro-
cedures.

Note: Synonyms are often used in conjunction with Linked Servers, which are not sup-
ported by Aurora MySQL.

For more information, see Linked Servers, Views , Functions , and Stored Procedures.

- 240 -

Migrate from SQL Server TOP and FETCH

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - TOP
and FETCH

l Syntax rewrite, very similar
functionality

l Convert PERCENT and TIES to
sub-queries

Overview

SQL Server supports two options for limiting and paging result sets returned to the client. TOP is a leg-
acy, proprietary T-SQL keyword that is still supported due to its wide usage. The ANSI compliant syntax
of FETCH and OFFSET were introduced in SQL Server 2012 and are recommended for paginating res-
ults sets.

TOP

The TOP (n) operator is used in the SELECT list and limits the number of rows returned to the client
based on the ORDER BY clause.

Note: When TOP is used with no ORDER BY clause, the query is non-deterministic and may
return any rows up to the number specified by the TOP operator.

TOP (n) can be used with two modifier options:

l TOP (n) PERCENT is used to designate a percentage of the rows to be returned instead of a fixed
maximal row number limit (n). When using PERCENT, n can be any value from 1-100.

l TOP (n) WITH TIES is used to allow overriding the n maximal number (or percentage) of rows spe-
cified in case there are additional rows with the same ordering values as the last row.

Note: If TOP (n) is used without WITH TIES and there are additional rows that have the
same ordering value as the last row in the group of n rows, the query is also non-determ-
inistic because the last row may be any of the rows that share the same ordering value.

Syntax

SELECT TOP (<Limit Expression>) [PERCENT] [WITH TIES] <Select Expressions List>
FROM...

OFFSET... FETCH

OFFSET... FETCH as part of the ORDER BY clause is the ANSI compatible syntax for limiting and pagin-
ating result sets. It allows specification of the starting position and limits the number of rows returned,
which enables easy pagination of result sets.

- 241 -

Similar to TOP, OFFSET... FETCH relies on the presentation order defined by the ORDER BY clause.
Unlike TOP, it is part of the ORDER BY clause and can't be used without it.

Note: Queries using FETCH... OFFSET can still be non-deterministic if there is more than
one row that has the same ordering value as the last row.

Syntax

ORDER BY <Ordering Expression> [ASC | DESC] [,...n]
OFFSET <Offset Expression> { ROW | ROWS }
[FETCH { FIRST | NEXT } <Page Size Expression> { ROW | ROWS } ONLY]

Examples

Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the 3 most ordered items by quantity.

-- Using TOP
SELECT TOP (3) *
FROM OrderItems
ORDER BY Quantity DESC;

-- USING FETCH
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
OFFSET 0 ROWS FETCH NEXT 3 ROWS ONLY;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rows with ties.

- 242 -

SELECT TOP (3) WITH TIES *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half the rows based on quantity.

SELECT TOP (50) PERCENT *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200

For more information, see

l https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql

l https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql

- 243 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql

Migrate to Aurora MySQL LIMIT (TOP and FETCH Equivalent)

Feature Com-
patibility

SCT Automation
Level

SCT Action Code Index Key Differences

SCT Action Codes - TOP
and FETCH

l Syntax rewrite, very similar
functionality

l Convert PERCENT and TIES to
sub-queries

Overview

Aurora MySQL supports the non-ANSI compliant (but popular with other engines) LIMIT... OFFSET oper-
ator for paging results sets.

The LIMIT clause limits the number of rows returned and does not require an ORDER BY clause,
although that would make the query non-deterministic.

The OFFSET clause is zero-based, similar to SQL Server and used for pagination.

Syntax

syntax specification

Migration Considerations

LIMIT... OFFSET syntax can be used to replace the functionality of both TOP(n) and FETCH... OFFSET in
SQL Server. It is automatically converted by the Schema Conversion Tool (SCT) except for the WITH TIES
and PERCENT modifiers.

To replace the PERCENT option, you must first calculate how many rows the query returns and then cal-
culate the fixed number of rows to be returned based on that number (see the example below).

Note: Since this technique involves added complexity and accessing the table twice, con-
sider changing the logic to use a fixed number instead of percentage.

To replace the WITH TIES option, you must rewrite the logic to add another query that checks for the
existence of additional rows that have the same ordering value as the last row returned from the LIMIT
clause.

Note: Since this technique introduces significant added complexity and three accesses to
the source table, consider changing the logic to introduce a tie-breaker into the ORDER BY
clause (see the example below).

Examples

Create the OrderItems table.

- 244 -

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the three most ordered items by quantity.

SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT 3 OFFSET 0;

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rows with ties.

SELECT *
FROM
(
 SELECT *
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 3 OFFSET 0
) AS X
UNION
SELECT *
FROM OrderItems
WHERE Quantity = (
 SELECT Quantity
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 1 OFFSET 2
)
ORDER BY Quantity DESC

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

- 245 -

Retrieve half the rows based on quantity.

CREATE PROCEDURE P(Percent INT)
BEGIN
DECLARE N INT;
SELECT COUNT(*) * Percent / 100 FROM OrderItems INTO N;
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT N OFFSET 0;
END

CALL P(50);

OrderID Item Quantity
------- ---- --------
3 M6 Locking Nut 300
3 M8 Washer 200

Summary

SQL Server Aurora MySQL Comments

TOP (n) LIMIT n

TOP (n) WITH TIES Not supported
See examples for work-
around

TOP (n) PERCENT Not supported
See examples for work-
around

OFFSET... FETCH LIMIT... OFFSET

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/select.html

l https://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html

- 246 -

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html

Migrate from SQL Server Triggers

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Triggers

l Only FOR EACH ROW processing

l No DDL or EVENT triggers

l BEFORE triggers replace
INSTEAD OF triggers

Overview

Triggers are special type of stored procedure that execute automatically in response to events and are
most commonly used for Data Manipulation Language (DML).

SQL Server supports AFTER/FOR and INSTEAD OF triggers, which can be created on tables and views
(AFTER and FOR are synonymous). SQL Server also provides an event trigger framework at the server
and database levels that includes Data Definition Language (DDL), Data Control Language (DCL), and
general system events such as login.

Note: SQL Sever does not support FOR EACH ROW triggers in which the trigger code is
executed once for each row of modified data.

Trigger Execution

l AFTER triggers execute after DML statements complete execution.

l INSTEAD OF triggers execute code in place of the original DML statement.

AFTER triggers can be created on table only. INSTEAD OF Triggers can be created on tables and Views.

Only a single INSTEAD OF trigger can be created for any given object and event. When multiple AFTER
triggers exist for the same event and object, you can partially set the trigger order by using the sp_
settriggerorder system stored procedure. It allows setting the first and last triggers to be executed, but
not the order of others.

Trigger Scope

SQL Server supports only statement level triggers. The trigger code is executed only once per state-
ment. The data modified by the DML statement is available to the trigger scope and is saved in two vir-
tual tables: INSERTED and DELETED. These tables contain the entire set of changes performed by the
DML statement that caused trigger execution.

SQL triggers are always execute within the transaction of the statement that triggered the execution. If
the trigger code issues an explicit ROLLBACK, or causes an exception that mandates a rollback, the
DML statement is also rolled back (for INSTEAD OF triggers, the DML statement is not executed and,
therefore, does not require a rollback).

- 247 -

Examples

Use a DML Trigger to Audit Invoice Deletions

The following example demonstrates how to use a trigger to log rows deleted from a table.

Create and populate an Invoices table.

CREATE TABLE Invoices
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL
);

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create an InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL,
DeleteDate DATETIME NOT NULL DEFAULT (GETDATE()),
DeletedBy VARCHAR(128) NOT NULL DEFAULT (CURRENT_USER)
);

Create an AFTER DELETE trigger to log deletions from the Invoices table to the audit log.

CREATE TRIGGER LogInvoiceDeletes
ON Invoices
AFTER DELETE
AS
BEGIN
INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount)
SELECT InvoiceID,
 Customer,
 TotalAmount
FROM Deleted
END;

Delete an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Query the content of both tables.

SELECT *
FROM Invoices AS I

- 248 -

 FULL OUTER JOIN
 InvoiceAuditLog AS IAG
 ON I.InvoiceID = IAG.InvoiceID;

The code above displays the following results.

InvoiceID Customer TotalAmount InvoiceID Customer
TotalAmount DeleteDate DeletedBy
--------- -------- ----------- --------- -------- ----------- -------
--- ----------
1 John 1400.23 NULL NULL NULL NULL

 NULL
2 Jeff 245.00 NULL NULL NULL NULL

 NULL
NULL NULL NULL 3 James
677.22 20180224 13:02 Domain/JohnCortney

Create a DDL Trigger

Create a trigger to protect all tables in the database from accidental deletion.

CREATE TRIGGER PreventTableDrop
ON DATABASE FOR DROP_TABLE
AS
BEGIN
 RAISERROR ('Tables Can''t be dropped in this database', 16, 1)
 ROLLBACK TRANSACTION

END;

Test the trigger by attempting to drop a table.

DROP TABLE [Invoices];
 GO

The system displays the follow message indicating the Invoices table cannot be dropped.

Msg 50000, Level 16, State 1, Procedure PreventTableDrop, Line 5 [Batch Start Line 56]
Tables Can't be dropped in this database
Msg 3609, Level 16, State 2, Line 57
The transaction ended in the trigger. The batch has been aborted.

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers
l https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers

- 249 -

https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers

Migrate to Aurora MySQL Triggers

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Triggers

l Only FOR EACH ROW processing

l No DDL or EVENT triggers

l BEFORE triggers replace
INSTEAD OF triggers

Overview

Aurora MySQL provides Data manipulation Language (DML) triggers only.

It supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE with full control over trigger
execution order.

MySQL triggers differ substantially from SQL Server. However, you can migrate most common use
cases with minimal code changes. The following list identifies the major differences between the SQL
Server and Aurora MySQL triggers:

l Aurora MySQL triggers are executed once per row, not once per statement as with SQL Server.

l Aurora MySQL does not support DDL or system event triggers.

l Aurora MySQL supports BEFORE triggers; SQL does not.

l Aurora MySQL supports full execution order control for multiple triggers.

Note: Stored procedures, triggers, and user defined functions in Aurora MySQL are col-
lectively referred to as Stored Routines. When binary logging is enabled, MySQL SUPER priv-
ilege is required to run stored routines. However, you can run stored routines with binary
logging enabled without SUPER privilege by setting thelog_bin_trust_function_creators para-
meter to true for the DB parameter group for your MySQL instance.

Syntax

CREATE [DEFINER = { user | CURRENT_USER }] TRIGGER <Trigger Name>
{ BEFORE | AFTER } { INSERT | UPDATE | DELETE }
ON <Table Name>
FOR EACH ROW
[{ FOLLOWS | PRECEDES } <Other Trigger Name>]
<Trigger Code Body>

Examples

Use a DML Trigger to Audit Invoice Deletions

The following example demonstrates how to use a trigger to log rows deleted from a table.

Create and populate an Invoices table.

- 250 -

CREATE TABLE Invoices
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL
);

INSERT INTO Invoices (InvoiceID, Customer, TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create an InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(
InvoiceID INT NOT NULL
 PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL,
DeleteDate DATETIME NOT NULL
 DEFAULT (GETDATE()),
DeletedBy VARCHAR(128) NOT NULL
 DEFAULT (CURRENT_USER)
);

Create a trigger to log deleted rows.

CREATE OR REPLACE TRIGGER LogInvoiceDeletes
ON Invoices
FOR EACH ROW
AFTER DELETE
AS
 BEGIN
 INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount, DeleteDate, DeletedBy)
 SELECT InvoiceID,
 Customer,
 TotalAmount,
 NOW(),
 CURRENT_USER()
 FROM OLD
END;

Test the trigger by deleting an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Select all rows from the InvoiceAuditLog table.

SELECT * FROM InvoiceAuditLog;

The above statement displays the following results.

- 251 -

InvoiceID Customer TotalAmount DeleteDate DeletedBy
--------- -------- ----------- ---------- ---------
 3 James 677.22 20180224 13:02 GeorgeZ

Note: Additional code changes were required for this example because the GETDATE() func-
tion is not supported by MySQL.
See Date and Time Functions for workarounds.

Summary

SQL Server Aurora MySQL Workaround

DML Triggers
Scope

Statement level only
FOR EACH ROW
only

Most trigger code, such as the
SQL Server example in the previous
section, will work without significant
code changes.

Even though SQL Server triggers pro-
cess a set of rows at once, typically
no changes are needed to process
one row at a time. A set of one row,
is a valid set and should be pro-
cessed correctly either way.

The main drawback of FOR EACH
ROW triggers, is that you can't access
other rows that were modified in
the same operation.
The NEW and OLD virtual tables can
only reference the current row.
Therefore, for example, tasks such as
logging aggregate data for the entire
DML statement set, may require
more significant code changes.

If your SQL Server trigger code uses
loops and cursors to process one
row at a time, the loop and cursor
sections can be safely removed.

Access to
change set

INSERTED and
DELETED Virtual
multi-row tables

OLD and NEW vir-
tual one-row tables

You must modify the trigger code to
use NEW instead of INSERTED, and
OLD instead of DELETED.

System event
triggers

DDL, DCL and other
event types

Not supported

Trigger exe- AFTER and INSTEAD AFTER and BEFORE For INSTEAD OF triggers, you must

- 252 -

SQL Server Aurora MySQL Workaround

cution phase OF

modify the trigger code to remove
the explicit execution of the calling
DML, which is not needed in a
BEFORE trigger.

In Aurora MySQL, the OLD and NEW
tables are updateable. If your trigger
code needs to modify the change set,
update the OLD and NEW tables with
the changes. The updated data is
applied to the table data when the
trigger execution completes.

Multi-trigger
execution
order

Can only set first
and last using sp_
settriggerorder

Can set any exe-
cution order using
PRECEDS and
FOLLOWS

Update the trigger code to reflect the
desired execution order

Drop a trigger
DROP TRIGGER <trig-
ger name>;

DROP TRIGGER <trig-
ger name>;

Compatible syntax

Modify trigger
code

Use the ALTER
TRIGGER statement

Not supported

Enable/Disable
a trigger

Use the ALTER
TRIGGER <trigger
name> ENABLE;
and
ALTER TRIGGER
<trigger name>
DISABLE;

Not supported

A common workaround is to use a
database table with flags indicating
which trigger to execute.

Modify the trigger code using con-
ditional flow control (IF) to query the
table and determine whether or not
the trigger should execute additional
code or exit without performing any
modifications to the database.

Triggers on
views

INSTEAD OF
TRIGGERS only

Not supported

For more information, see https://dev.mysql.com/doc/refman/5.7/en/trigger-syntax.html and
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html

- 253 -

https://dev.mysql.com/doc/refman/5.7/en/trigger-syntax.html
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html

Migrate from SQL Server User Defined Functions

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - User
Defined Func-
tions

l Scalar functions only, rewrite inline TVF as
views or derived tables, and multi-state-
memt TVF as stored procedures

Overview

User Defined Functions (UDF) are code objects that accept input parameters and return either a scalar
value or a set consisting of rows and columns.
SQL Server UDFs can be implemented using T-SQL or Common Language Runtime (CLR) code.

Note: This section does not cover CLR code objects.

Function invocations can not have any lasting impact on the database. They must be contained and
can only modify objects and data local to their scope (for example, data in local variables). Functions
are not allowed to modify data or the structure of a database.

Functions may be deterministic or non-deterministic. Deterministic functions always return the same
result when executed with the same data. Non-deterministic functions may return different results
each time they execute. For example, a function that returns the current date or time.

SQL Server supports three types of T-SQL UDFs: Scalar Functions, Inline Table-Valued Functions, and
Multi-Statement Table-Valued Functions.

Scalar User Defined Functions

Scalar UDFs accept zero or more parameters and return a scalar value. They can be used in T-SQL
expressions.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS <Return Data Type>
[AS]
BEGIN
<Function Body Code>
RETURN <Scalar Expression>
END[;]

Examples

Create a scalar function to change the first character of a string to upper case.

CREATE FUNCTION dbo.UpperCaseFirstChar (@String VARCHAR(20))
RETURNS VARCHAR(20)

- 254 -

AS
BEGIN
RETURN UPPER(LEFT(@String, 1)) + LOWER(SUBSTRING(@String, 2, 19))
END;

SELECT dbo.UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

Inline User Defined Table-Valued Functions

Inline table-valued UDFs are similar to views or a Common Table Expressions (CTE) with the added
benefit of parameters. They can be used in FROM clauses as subqueries and can be joined to other
source table rows using the APPLY and OUTER APPLY operators. In-line table valued UDFs have many
associated internal optimizer optimizations due to their simple, view-like characteristics.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS TABLE
[AS]
RETURN (<SELECT Query>)[;]

Examples

Create a table valued function to aggregate employee orders

CREATE TABLE Orders
(
OrderID INT NOT NULL PRIMARY KEY,
EmployeeID INT NOT NULL,
OrderDate DATETIME NOT NULL
);

INSERT INTO Orders (OrderID, EmployeeID, OrderDate)
VALUES
(1, 1, '20180101 13:00:05'),
(2, 1, '20180201 11:33:12'),
(3, 2, '20180112 10:22:35');

CREATE FUNCTION dbo.EmployeeMonthlyOrders
(@EmployeeID INT)
RETURNS TABLE AS
RETURN
(
SELECT EmployeeID,
 YEAR(OrderDate) AS OrderYear,
 MONTH(OrderDate) AS OrderMonth,
 COUNT(*) AS NumOrders
FROM Orders AS O
WHERE EmployeeID = @EmployeeID
GROUP BY EmployeeID,

- 255 -

 YEAR(OrderDate),
 MONTH(OrderDate)
);

SELECT *
FROM dbo.EmployeeMonthlyOrders (1)

EmployeeID OrderYear OrderMonth NumOrders
---------- --------- ---------- ---------
1 2018 1 1
1 2018 2 1

Multi-Statment User Defined Table-Valued Functions

Multi-statement table valued UDFs , like In-line UDFs, are also similar to views or CTEs, with the added
benefit of allowing parameters. They can be used in FROM clauses as sub queries and can be joined to
other source table rows using the APPLY and OUTER APPLY operators.

The difference between multi-statement UDFs and the inline UDFs is that multi-statement UDFs are
not restricted to a single SELECT statement. They can consist of multiple statements including logic
implemented with flow control, complex data processing, security checks, etc.

The downside of using multi-statement UDFs is that there are far less optimizations possible and per-
formance may suffer.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS <@Return Variable> TABLE <Table Definition>
[AS]
BEGIN
<Function Body Code>
RETURN
END[;]

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql

- 256 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql

Migrate to Aurora MySQL User Defined Functions

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - User
Defined Func-
tions

l Scalar functions only, rewrite inline TVF as
views or derived tables, and multi-state-
memt TVF as stored procedures

Overview

Aurora MySQL supports the creation of User Defined scalar functions only. There is no support for
table-valued functions.

Unlike SQL Server, Aurora MySQL allows routines to read and write data using INSERT, UPDATE and
DELETE. It also allows DDL statements such as CREATE and DROP. Aurora MySQL does not permit
stored functions to contain explicit SQL transaction statements such as COMMIT and ROLLBACK.

In Aurora MySQL, you can explicity specify several options with the CREATE FUNCTION statement.
These characteristics are saved with the function definition and are viewable with the SHOW CREATE
FUNCTION statement.

l The DETERMINISTIC option must be explicitly stated. Otherwise, the engine assumes it is not
deterministic.

Note: The MySQL engine does not check the validity of the deterministic property declar-
ation. If you wrongly specify a function as DETERMINISTIC when in fact it is not, unexpected
results and errors may occur.

l CONTAINS SQL indicates the function code does not contain statements that read or modify
data.

l READS SQL DATA indicates the function code contains statements that read data (for example,
SELECT) but not statements that modify data (for example, INSERT, DELETE, or UPDATE).

l MODIFIES SQL DATA indicates the function code contains statements that may modify data.

Note: The above options are advisory only. The server does not constrain the function
code based on the declaration. This feature is useful in assisting code management.

Syntax

CREATE FUNCTION <Function Name> ([<Function Parameter>[,...]])
RETURNS <Returned Data Type> [characteristic ...]
<Function Code Body>

characteristic:
COMMENT '<Comment>' | LANGUAGE SQL | [NOT] DETERMINISTIC

- 257 -

| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }

Migration Considerations

For scalar functions, migration should be straight forward as far as the function syntax is concerned.
Note that rules in Aurora MySQL regarding functions are much more lenient than SQL Server.

A function in Aurora MySQL may modify data and schema. Function determinism must be explicitly
stated, unlike SQL Server that infers it from the code. Additional properties can be stated for a func-
tion, but most are advisory only and have no functional impact.

Also note that the AS keyword, which is mandatory in SQL Server before the function's code body, is
not valid Aurora MySQL syntax and must be removed.

Table valued functions will be harder to migrate. For most in-line table valued functions, a simple path
may consist of migrating to using views, and letting the calling code handle parameters.
Complex multi-statement table valued functions will require rewrite as a stored procedure, which may
in turn write the data to a temporary or standard table for further processing.

Examples

Create a scalar function to change the first character of string to upper case.

CREATE FUNCTION UpperCaseFirstChar (String VARCHAR(20))
RETURNS VARCHAR(20)
BEGIN
RETURN CONCAT(UPPER(LEFT(String, 1)) , LOWER(SUBSTRING(String, 2, 19)));
END

SELECT UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server User Defined
Function Feature

Migrate to Aurora MySQL Comment

Scalar UDF Scalar UDF
Use CREATE FUNCTION with similar syn-
tax, remove the AS keyword.

Inline table valued UDF N/A
Use views and replace parameters with
WHERE filter predicates.

Multistatement table val-
ued UDF

N/A
Use stored procedures to populate
tables and read from the table directly.

- 258 -

SQL Server User Defined
Function Feature

Migrate to Aurora MySQL Comment

UDF determinism implicit Explicit declaration

Use the DETERMINISTIC characteristic
explicitly to denote a deterministic func-
tion, which enables engine optim-
izations.

UDF boundaries local
only

Can change data and
schema

UDF rules are more lenient, avoid unex-
pected changes from function invoc-
ation.

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
l https://dev.mysql.com/doc/refman/5.7/en/create-function-udf.html

- 259 -

https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-function-udf.html

Migrate from SQL Server User Defined Types

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - User
Defined Types

l Replace scalar UDT with base types

l Rewrite Stored Procedures that use table-
type input parameters to use strings with
CSV, XML, or JSON, or to process row-by-
row

Overview

SQL Server User defined Types provide a mechanism for encapsulating custom data types and for
adding NULL constraints.

SQL Server also supports table-valued user defined types, which you can use to pass a set of values to
a stored procedure.

User defined types can also be associated to CLR code assemblies. Beginning with SQL Server 2014,
memory optimized types support memory optimized tables and code.

Note: If your code uses custom rules bound to data types, Microsoft recommends dis-
continuing use of this deprecated feature.

All user defined types are based on an existing system data types. They allow developers to reuse the
definition, making the code and schema more readable.

Syntax

The simplified syntax for the CREATE TYPE statement is specified below.

CREATE TYPE <type name> {
FROM <base type> [NULL | NOT NULL] | AS TABLE (<Table Definition>)}

Examples

User Defined Types

Create a ZipCodeScalar User Defined Type.

CREATE TYPE ZipCode
FROM CHAR(5)
NOT NULL

Use the ZipCodetype in a table.

CREATE TABLE UserLocations
(UserID INT NOT NULL PRIMARY KEY, ZipCode ZipCode);

- 260 -

INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (1, '94324');
INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (2, NULL);

The above code displays the following error message indicating NULL values for ZipCodeare not
allowed.

Msg 515, Level 16, State 2, Line 78
Cannot insert the value NULL into column 'ZipCode', table 'tempdb.dbo.UserLocations';
column does not allow nulls. INSERT fails.
The statement has been terminated.

Table-Valued types

The following example demonstrates how to create and use a table valued types to pass a set of values
to a stored procedure:

Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create a table valued type for the OrderItemstable.

CREATE TYPE OrderItems
AS TABLE
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create the InsertOrderItemsprocedure. Note that the entire set of rows from the table valued para-
meter is handled with one statement.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY
AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,

 Item,
 Quantity
 FROM @OrderItems;

END

Instantiate the OrderItemstype, insert the values, and pass it to a stored procedure.

DECLARE @OrderItems AS OrderItems;

- 261 -

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),
(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems] @OrderItems = @OrderItems;

(3 rows affected)

Select all rows from the OrderItemstable.

SELECT * FROM OrderItems;

OrderID Item Quantity
------- ---- --------
1 M8 Bolt 100
1 M8 Nut 100
1 M8 Washer 200

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql

- 262 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql

Migrate to Aurora MySQL User Defined Types

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - User
Defined Types

l Replace scalar UDT with base types

l Rewrite Stored Procedures that use table-
type input parameters to use strings with
CSV, XML, or JSON, or to process row-by-
row

Overview

Aurora MySQL 5.7 does not support user defined types and user defined table valued parameters.

The current documentation does not indicate these features will be supported in Aurora MySQL ver-
sion 8.

Migration Considerations

For scalar User Defined Types, replace the type name with base type and optional NULL constraints.

For table valued user defined types used as stored procedure parameters, the workaround is more
complicated.

Common solutions include using either temporary tables to hold the data or passing large string para-
meters containing the data in CSV, XML, JSON (or any other convenient format) and then writing code
to parse these values in a stored procedure. Alternatively, if the logic does not require access to the
entire set of changes, and for small data sets, it is easier to call the stored procedure in a loop and
pass the columns as standard parameters, row by row.

Memory Optimized Engines are not yet supported in Aurura MySQL. You must convert memory optim-
ized tables to disk based tables (see the In-Memory OLTP section).

Examples

Replacing a User Defined Type

Replace a ZipCodeuser defined type with a base type.

CREATE TABLE UserLocations
(
UserID INT NOT NULL
 PRIMARY KEY,
/*ZipCode*/ CHAR(5) NOT NULL
);

- 263 -

Replacing a Tabled Valued Stored Procedure Parameter

The following steps describe how to replace a table valued parameter with a source table and a LOOP
Cursor.

Create an OrderItemstable.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create and populate the SourceTable.

CREATE TABLE SourceTable
(
OrderID INT,
Item VARCHAR(20),
Quantity SMALLINT,
PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through the SourceTableand insert rows.

Note: There are syntax differences from T-SQL for both the CREATE PROCEDURE and the
CURSOR declaration and use.
For more details, see the Stored Procedures and Cursors topics.

CREATE PROCEDURE LoopItems()
BEGIN
DECLARE done INT DEFAULT FALSE;
DECLARE var_OrderID INT;
DECLARE var_Item VARCHAR(20);
DECLARE var_Quantity SMALLINT;
DECLARE ItemCursor CURSOR

 FOR SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
DECLARE CONTINUE HANDLER

 FOR NOT FOUND
 SET done = TRUE;
OPEN ItemCursor;
CursorStart: LOOP
FETCH NEXT FROM ItemCursor

 INTO var_OrderID, var_Item, var_Quantity;

- 264 -

IF Done
 THEN LEAVE CursorStart;
END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)

 VALUES (var_OrderID, var_Item, var_Quantity);
END LOOP;
CLOSE ItemCursor;

END;

Execute the stored procedure.

CALL LoopItems();

Select all rows from the OrderItemstable.

SELECT * FROM OrderItems;

OrderID Item Quantity
------- ---- --------
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

SQL Server Aurora MySQL Comments

Table Valued Para-
meters

Not supported

Use either temporary tables, or CSV, XML, JSON
string parameters and parse the data. Altern-
atively, rewrite the stored procedure to accept
the data one row at a time and process the
data in a loop.

Memory Optimized
Table valued User
Defined Types

Not supported Not supported

For more information, see https://dev.mysql.com/doc/refman/5.7/en/cursors.html

- 265 -

https://dev.mysql.com/doc/refman/5.7/en/cursors.html

Migrate from SQL Server Sequences and Identity

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes
- Sequences and
Identity

l SEQUENCE objects not supported

l Rewrite IDENTITY to AUTO_
INCREMENT

l Last value evaluated as MAX(Existing
Value) + 1 on every restart!

Overview

Automatic enumeration functions and columns are common with relational database management sys-
tems and are often used for generating surrogate keys.

SQL Server provides several features that support automatic generation of monotonously increasing
value generators:

l The IDENTITY property of a table column.
l The SEQUENCE objects framework.
l The numeric functions such as IDENTITY and NEWSEQUENTIALID.

Identity

The IDENTITY property is probably the most widely used means of generating surrogate primary keys
in SQL Server applications. Each table may have a single numeric column assigned as an IDENTITY
using the CREATE TABLE or ALTER TABLE DDL statements. You can explicitly specify a starting value
and increment.

Note: The identity property does not enforce uniqueness of column values, indexing, or
any other property. Additional constraints such as Primary or Unique keys, explicit index
specifications, or other properties must be specified in addition to the IDENTITY property.

The IDENTITY value is generated as part of the transaction that inserts table rows. Applications can
obtain IDENTITY values using the @@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT functions.

IDENTITY columns may be used as primary keys by themselves, as part of a compound key, or as non-
key columns.

You can manage IDENTITY columns using the DBCC CHECKIDENT command, which provides func-
tionality for reseeding and altering properties.

Syntax

IDENTITY [(<Seed Value>, <Increment Value>)]

View the original seed value of an IDENTITY column with the IDENT_SEED system function.

- 266 -

SELECT IDENT_SEED (<Table>)

Reseed an IDENTITY column.

DBCC CHECKIDENT (<Table>, RESEED, <Seed Value>)

Examples

Create a table with an IDENTITY primary key column.

CREATE TABLE MyTABLE
(
Col1 INT NOT NULL
PRIMARY KEY NONCLUSTERED IDENTITY(1,1),

Col2 VARCHAR(20) NOT NULL
);

Insert a row and retrieve the generated IDENTITY value .

DECLARE @LastIdent INT;
INSERT INTO MyTable(Col2)
VALUES('SomeString');
SET @LastIdent = SCOPE_IDENTITY()

Create a table with a non-key IDENTITY column and an increment of 10.

CREATE TABLE MyTABLE
(
Col1 VARCHAR(20) NOT NULL
 PRIMARY KEY,
Col2 INT NOT NULL
IDENTITY(1,10),

);

Create a table with a compound PK including an IDENTITY column.

CREATE TABLE MyTABLE
(
Col1 VARCHAR(20) NOT NULL,
Col2 INT NOT NULL
IDENTITY(1,10),

PRIMARY KEY (Col1, Col2)
);

SEQUENCE

Sequences are objects that are independent of a particular table or column and are defined using the
CREATE SEQUENCE DDL statement. You can manage sequences using the ALTER SEQUENCE statement.
Multiple tables and multiple columns from the same table may use the values from one or more
SEQUENCE objects.

You can retrieve a value from a SEQUENCE object using the NEXT VALUE FOR function. For example, a
SEQUENCE value can be used as a default value for a surrogate key column.

- 267 -

SEQUENCE objects provide several advantages over IDENTITY columns:

l Can be used to obtain a value before the actual INSERT takes place.

l Value series can be shared among columns and tables.

l Easier management, restart, and modification of sequence properties.

l Allow assignment of value ranges using sp_sequence_get_range and not just per-row values.

Syntax

CREATE SEQUENCE <Sequence Name> [AS <Integer Data Type>]
START WITH <Seed Value>
INCREMENT BY <Increment Value>;

ALTER SEQUENCE <Sequence Name>
RESTART [WITH <Reseed Value>]
INCREMENT BY <New Increment Value>;

Examples

Create a sequence for use as a primary key default.

CREATE SEQUENCE MySequence AS INT START WITH 1 INCREMENT BY 1;
CREATE TABLE MyTable
(
Col1 INT NOT NULL
PRIMARY KEY NONCLUSTERED DEFAULT (NEXT VALUE FOR MySequence),

Col2 VARCHAR(20) NULL
);

INSERT MyTable (Col1, Col2) VALUES (DEFAULT, 'cde'), (DEFAULT, 'xyz');

SELECT * FROM MyTable;

Col1 Col2
---- ----
1 cde
2 xyz

Sequential Enumeration Functions

SQL Server provides two sequential generation functions: IDENTITY and NEWSEQUENTIALID.

Note: The IDENTITY function should not be confused with the IDENTITY property of a
column.

The IDENTITY function can be used only in a SELECT ... INTO statement to insert IDENTITY column val-
ues into a new table.

The NEWSEQUNTIALID function generates a hexadecimal GUID, which is an integer. While the NEWID
function generates a random GUID, the NEWSEQUENTIALID function guarantees that every GUID cre-

- 268 -

ated is greater (in numeric value) than any other GUID previously generated by the same function on
the same server since the operating system restart.

Note: NEWSEQUENTIALID can be used only with DEFAULT constraints associated with
columns having a UNIQUEIDENTIFIER data type.

Syntax

IDENTITY (<Data Type> [, <Seed Value>, <Increment Value>]) [AS <Alias>]

NEWSEQUENTIALID()

Examples

Use the IDENTITY function as surrogate key for a new table based on an existing table.

CREATE TABLE MySourceTable
(
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(10) NOT NULL,
Col3 VARCHAR(10) NOT NULL
);

INSERT INTO MySourceTable
VALUES
(12, 'String12', 'String12'),
(25, 'String25', 'String25'),
(95, 'String95', 'String95');

SELECT IDENTITY(INT, 100, 1) AS SurrogateKey,
 Col1,
 Col2,
 Col3
INTO MyNewTable
FROM MySourceTable
ORDER BY Col1 DESC;

SELECT *
FROM MyNewTable;

SurrogateKey Col1 Col2 Col3
------------ ---- ---- ----
100 95 String95 String95
101 25 String25 String25
102 12 String12 String12

Use NEWSEQUENTIALID as a surrogate key for a new table.

CREATE TABLE MyTable
(
Col1 UNIQUEIDENTIFIER NOT NULL
PRIMARY KEY NONCLUSTERED DEFAULT NEWSEQUENTIALID()

);

- 269 -

INSERT INTO MyTable
DEFAULT VALUES;

SELECT *
FROM MyTable;

Col1

9CC01320-C5AA-E811-8440-305B3A017068

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property

- 270 -

https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property

Migrate to Aurora MySQL Sequences and Identity

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes
- Sequences and
Identity

l SEQUENCE objects not supported

l Rewrite IDENTITY to AUTO_
INCREMENT

l Last value evaluated as MAX(Existing
Value) + 1 on every restart!

Overview

Aurora MySQL supports automatic sequence generation using the AUTO_INCREMENT column property,
similar to SQL Server's IDENTITY column property.

Aurora MySQL does not support table-independent sequence objects.

Any numeric column may be assigned the AUTO_INCREMENT property. To make the system generate
the next sequence value, the application must insert a value of NULL 0 into an indexed AUTO_
INCREMENT column. In most cases, the seed value is 1 and the increment is 1.

Client applications use the LAST_INSERT_ID function to obtain the last generated value.

Each table can have only one AUTO_INCREMENT column. The column must be explicitly indexed or be
a primary key (which is indexed by default).

The AUTO_INCREMENT mechanism is designed to be used with positive numbers only. Do not use neg-
ative values because they will be misinterpreted as a complementary positive value. This limitation is
due to precision issues with sequences crossing a zero boundary.

There are two server parameters used to alter the default values for new AUTO_INCREMENT columns:

l auto_increment_increment: Controls the sequence interval.
l auto_increment_offset: Determines the starting point for the sequence.

To reseed the AUTO_INCREMENT value, use ALTER TABLE <Table Name> AUTO_INCREMENT = <New
Seed Value>.

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(<Column Name> <Data Type> [NOT NULL | NULL]
AUTO_INCREMENT [UNIQUE [KEY]] [[PRIMARY] KEY]...

- 271 -

Migration Considerations

Since Aurora MySQL does not support table-independent SEQUENCE objects, applications that rely on
its properties must use a custom solution to meet their requirements.

Aurora MySQL AUTO_INCREMENT can be used instead of SQL Server's IDENTITY for most cases. For
AUTO_INCREMENT columns, the application must explicitly INSERT a NULL or a 0.

Note: Omitting the AUTO_INCREMENT column from the INSERT column list has the same
effect as inserting a NULL value.

AUTO_INCREMENT columns must be indexed (the following section explains why) and can not have
default constraints assigned to the same column. There is a critical difference between IDENTITY and
AUTO_INCREMENT in the way the sequence values are maintained upon service restart. Application
developers must be aware of this difference.

Sequence Value Initialization

SQL Server stores the IDENTITY metadata in system tables on disk. Although some values may be
cached and lost when the service is restarted, the next time the server restarts, the sequence value con-
tinues after the last block of values that was assigned to cache. If you run out of values, you can expli-
citly set the sequence value to start the cycle over. As long as there are no key conflicts, it can be
reused after the range has been exhausted.

In Aurora MySQL, an AUTO_INCREMENT column for a table uses a special counter called the auto-incre-
ment counter to assign new values for the column. This counter is stored in cache memory only and is
not persisted to disk. After a service restart, and when Aurora MySQL encounters an INSERT to a table
containing an AUTO_INCREMENT column, it issues an equivalent of the following statement:

SELECT MAX(<Auto Increment Column>) FROM <Table Name> FOR UPDATE;

Note: The FOR UPDATE CLAUSE is required to maintain locks on the column until the read
completes.

Aurora MySQL then increments the value retrieved by the statement above and assigns it to the in-
memory auto-increment counter for the table. By default, the value is incremented by one. You can
change the default using the auto_increment_increment configuration setting. If the table has no val-
ues, Aurora MySQL uses the value 1. You can change the default using the auto_increment_offset con-
figuration setting.

Every server restart effectively cancels any AUTO_INCREMENT = <Value> table option in CREATE TABLE
and ALTER TABLE statements.

Unlike SQL Server's IDENTITY columns, which by default do not allow inserting explicit values, Aurora
MySQL allows explicit values to be set. If a row has an explicitly specified AUTO_INCREMENT column
value and the value is greater than the current counter value, the counter is set to the specified column
value.

Examples

Create a table with an AUTO_INCREMENT column.

- 272 -

CREATE TABLE MyTable
(
Col1 INT NOT NULL
AUTO_INCREMENT PRIMARY KEY,

Col2 VARCHAR(20) NOT NULL
);

Insert AUTO_INCREMENT Values.

INSERT INTO MyTable (Col2)
VALUES ('AI column omitted');

INSERT INTO MyTable (Col1, Col2)
VALUES (NULL, 'Explicit NULL');

INSERT INTO MyTable (Col1, Col2)
VALUES (10, 'Explicit value');

INSERT INTO MyTable (Col2)
VALUES ('Post explicit value');

SELECT *
FROM MyTable;

Col1 Col2
---- ------------
1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value

Reseed AUTO_INCREMENT.

ALTER TABLE MyTable AUTO_INCREMENT = 30;

INSERT INTO MyTable (Col2)
VALUES ('Post ALTER TABLE');

SELECT *
FROM MyTable;

Col1 Col2
---- ------------
1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value
30 Post ALTER TABLE

Change the increment value to 10.

Note: Changing the @@auto_increment_increment value to 10 impacts all AUTO_
INCREMENT enumerators in the database.

- 273 -

SET @@auto_increment_increment=10;

Verify variable change.

SHOW VARIABLES LIKE 'auto_inc%';

Variable_name Value
-------------- -----
auto_increment_increment 10
auto_increment_offset 1

Insert several rows and then read.

INSERT INTO MyTable (Col1, Col2)
VALUES (NULL, 'Row1'), (NULL, 'Row2'), (NULL, 'Row3'), (NULL, 'Row4');

SELECT Col1, Col2
FROM MyTable;

Col1 Col2
----- -----
1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value
30 Post ALTER TABLE
40 Row1
50 Row2
60 Row3
70 Row4

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

independent
SEQUENCE object

CREATE SEQUENCE Not supported

Automatic enumerator
column property

IDENTITY AUTO_INCREMENT

Reseed sequence value DBCC CHECKIDENT

ALTER TABLE <Table
Name> AUTO_
INCREMENT = <New
Seed Value>

Column restrictions Numeric
Numeric, indexed, and
no DEFAULT

Controlling seed and CREATE/ALTER TABLE auto_increment_incre- Aurora MySQL settings

- 274 -

Feature SQL Server Aurora MySQL Comments

interval values
ment
auto_increment_offset

are global and cannot
be customized for each
column as in SQL
Server.

Sequence setting ini-
tialization

Maintained through
service restarts

Re-initialized every ser-
vice restart

See the Sequence
Value Initialization
section above.

Explicit values to
column

not allowed by default,
SET IDENTITY_INSERT
ON required

Supported

Aurora MySQL requires
explicit NULL or 0 to
trigger sequence value
assignment. Inserting
an explicit value larger
than all others will rein-
itialize the sequence.

Non PK auto enu-
merator column

Supported Not Supported
Implement an applic-
ation enumerator

Compound PK with
auto enumerator
column

Supported Not Supported
Implement an applic-
ation enumerator

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html

l https://dev.mysql.com/doc/refman/5.7/en/create-table.html

l https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-incre-
ment-initialization

- 275 -

https://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization
https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization

Migrate from SQL Server Managing Statistics

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A
l Statistics contain only density inform-

ation, and only for index key columns

Overview

Statistics objects in SQL Server are designed to support SQL Server's cost-based query optimizer. It
uses statistics to evaluate the various plan options and choose an optimal plan for optimal query per-
formance.

Statistics are stored as BLOBs in system tables and contain histograms and other statistical inform-
ation about the distribution of values in one or more columns. A histogram is created for the first
column only and samples the occurrence frequency of distinct values. Statistics and histograms are col-
lected by either scanning the entire table or by sampling only a percentage of the rows.

You can view Statistics manually using the DBCC SHOW_STATISTICS statement or the more recent
sys.dm_db_stats_properties and sys.dm_db_stats_histogram system views.

SQL Server provides the capability to create filtered statistics containing a WHERE predicate. Filtered
statistics are useful for optimizing histogram granularity by eliminating rows whose values are of less
interest, for example NULLs.

SQL Server can manage the collection and refresh of statistics automatically, which is the default. Use
the AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to change the defaults.

When a query is submitted with AUTO_CREATE_STATISTICS on, and the query optimizer may benefit
from a statistics that does not yet exist, SQL Server creates the statistics automatically. You can use the
AUTO_UPDATE_STATISTICS_ASYNC database property to set new statistics creation to occur imme-
diately (causing queries to wait) or to run asynchronously. When run asynchronously, the triggering
execution cannot benefit from optimizations the optimizer may derive from it.

After creation of a new statistics object, either automatically or explicitly using the CREATE STATISTICS
statement, the refresh of the statistics is controlled by the AUTO_UPDATE_STATISTICS database option.
When set to ON, statistics are recalculated when they are stale, which happens when significant data
modifications have occurred since the last refresh.

Syntax

CREATE STATISTICS <Statistics Name>
ON <Table Name> (<Column> [,...])
[WHERE <Filter Predicate>]
[WITH <Statistics Options>;

- 276 -

Examples

Create new statistics on multiple columns. Set to use a full scan and to not refresh.

CREATE STATISTICS MyStatistics
ON MyTable (Col1, Col2)
WITH FULLSCAN, NORECOMPUTE;

Update statistics with a 50% sampling rate.

UPDATE STATISTICS MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

View the statistics histogram and data.

DBCC SHOW_STATISTICS ('MyTable','MyStatistics');

Turn off automatic statistics creation for a database.

ALTER DATABASE MyDB SET AUTO_CREATE_STATS OFF;

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql
l https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-
sql

- 277 -

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql

Migrate to Aurora MySQL Managing Statistics

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A
l Statistics contain only density inform-

ation, and only for index key columns

Overview

Aurora MySQL supports two modes of statistics management: Persistent Optimizer Statistics and Non-
Persistent Optimizer Statistics. As the name suggests, persistent statistics are written to disk and sur-
vive service restart. Non-persistent statistics are kept in memory only and need to be recreated after
service restart. It is recommended to use persistent optimizer statistics (the default for Aurora MySQL)
for improved plan stability.

Statistics in Aurora MySQL are created for indexes only. Aurora MySQL does not support independent
statistics objects on columns that are not part of an index.

Typically, administrators change the statistics management mode by setting the global parameter
innodb_stats_persistent = ON. This option is not supported for Aurora MySQL because it requires
server SUPER privileges. Therefore, control the statistics management mode by changing the behavior
for individual tables using the table option STATS_PERSISTENT = 1. There are no column-level or stat-
istics-level options for setting parameter values.

To view statistics metadata, use the INFORMATION_SCHEMA.STATISTICS standard view. To view detailed
persistent optimizer statistics, use the innodb_table_stats and innodb_index_stats views.

Automatic refresh of statistics is controlled by the global parameter innodb_stats_auto_recalc, which is
set to ON in Aurora MySQL. You can set it individually for each table using the STATS_AUTO_RECALC=1
option.

To explicitly force refresh of table statistics, use the ANALYZE TABLE statement. It is not possible to
refresh individual statistics or columns.

Use the NO_WRITE_TO_BINLOG or its clearer alias LOCAL to avoid replication to replication slaves.

Use ALTER TABLE ... ANALYZE PARTITION to analyze one or more individual partitions.
For more information, see Partitioning.

Note: Execute ANALYZE TABLE after every CREATE INDEX when the persistent statistics
mode is enabled to ensure statistics are collected.

Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE <Table Name> [,...];

CREATE TABLE (<Table Definition>) | ALTER TABLE <Table Name>
STATS_PERSISTENT = <1|0>,

- 278 -

STATS_AUTO_RECALC = <1|0>,
STATS_SAMPLE_PAGES = <Statistics Sampling Size>;

Migration Considerations

Unlike SQL Server, Aurora MySQL collects only density information. It does not collect detailed key dis-
tribution histograms. This difference is critical for understanding execution plans and troubleshooting
performance issues, which are not affected by individual values used by query parameters.

Statistics collection is managed at the table level. You cannot manage individual statistics objects or
individual columns. In most cases, that should not pose a challenge for successful migration.

Examples

Create a table with explicitly set statistics options.

CREATE TABLE MyTable
(
Col1 INT NOT NULL AUTO_INCREMENT,
Col2 VARCHAR(255),
DateCol DATETIME,
PRIMARY KEY (Col1),
INDEX IDX_DATE (DateCol)
) ENGINE=InnoDB,
STATS_PERSISTENT=1,
STATS_AUTO_RECALC=1,
STATS_SAMPLE_PAGES=25;

Refresh all statistics for MyTable1 and MyTable2.

ANALYZE TABLE MyTable1, MyTable2;

Change MyTable to use non persistent statistics.

ALTER TABLE MyTable STATS_PERSISTENT=0;

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Column statistics CREATE STATISTICS N/A

Index statistics
Implicit with every
index

Implicit with every
index

Statistics are maintained auto-
matically for every table index.

Refresh / update stat-
istics

UPDATE
STATISTICS
EXECUTE sp_
updatestats

ANALYZE TABLE
Minimal scope in Aurora MySQL
is the entire table. No control
over individual statistics.

- 279 -

Feature SQL Server Aurora MySQL Comments

Auto create statistics
AUTO_CREATE_
STATISTICS data-
base option

N/A

Auto update statistics
AUTO_UPDATE_
STATISTICS data-
base option

STATS_AUTO_
RECALC table option

Statistics sampling

Use the SAMPLE
option of CREATE
and UPDATE
STATISTICS

STATS_SAMPLE_
PAGES table option

Can only use page number, not
percentage for STATS_SAMPLE_
PAGES.

Full scan refresh

Use the FULLSCAN
option of CREATE
and UPDATE
STATISTICS

N/A
Using a very large STATS_
SAMPLE_PAGES may server the
same purpose.

Non-persistent stat-
istics

N/A
Use STATS_
PERSISTENT=0 table
option

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/statistics-table.html
l https://dev.mysql.com/doc/refman/5.7/en/innodb-persistent-stats.html
l https://dev.mysql.com/doc/refman/5.7/en/innodb-statistics-estimation.html
l https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-optimizer-statistics.html

- 280 -

https://dev.mysql.com/doc/refman/5.7/en/statistics-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-persistent-stats.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-statistics-estimation.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-optimizer-statistics.html

Configuration

- 281 -

Migrate from SQL Server Session Options

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l SET options are significantly different,

except for transaction isolation control

Overview

Session Options in SQL Server is a collection of run-time settings that control certain aspects of how
the server handles data for individual sessions. A session is the period between a login event and a dis-
connect event (or an exec sp_reset_connection command for connection pooling).

Each session may have multiple execution scopes, which are all the statements before the GO keyword
used in SQL Server management Studio scripts, or any set of commands sent as a single execution
batch by a client application. Each execution scope may contain additional sub-scopes. For example,
scripts calling stored procedures or functions.

You can set the global session options, which all execution scopes use by default, using the SET T-SQL
command. Server code modules such as stored procedures and functions may have their own exe-
cution context settings, which are saved along with the code to guarantee the validity of results.

Developers can explicitly use SET commands to change the default settings for any session or for an
execution scope within the session. Typically, client applications send explicit SET commands upon con-
nection initiation.

You can view the metadata for current sessions using the sp_who_system stored procedure and the
sysprocesses system table.

Note: To change the default setting for SQL Server Management Studio, click Tools >Op-
tions > Query Execution > SQL Server > Advanced.

Syntax

Syntax for the SET command:

SET
Category Setting
------------- ----------
Date and time DATEFIRST | DATEFORMAT
Locking DEADLOCK_PRIORITY | SET LOCK_TIMEOUT
Miscellaneous CONCAT_NULL_YIELDS_NULL | CURSOR_CLOSE_ON_COMMIT | FIPS_FLAGGER | SET
IDENTITY_INSERT
 LANGUAGE | OFFSETS | QUOTED_IDENTIFIER

Query Execution ARITHABORT | ARITHIGNORE | FMTONLY | NOCOUNT | NOEXEC | NUMERIC_
ROUNDABORT | PARSEONLY
 QUERY_GOVERNOR_COST_LIMIT | ROWCOUNT | TEXTSIZE
ANSI ANSI_DEFAULTS | ANSI_NULL_DFLT_OFF | ANSI_NULL_DFLT_ON | ANSI_NULLS |

- 282 -

ANSI_PADDING
 ANSI_WARNINGS
Execution Stats FORCEPLAN | SHOWPLAN_ALL | SHOWPLAN_TEXT | SHOWPLAN_XML | STATISTICS
IO | STATISTICS XML
 STATISTICS PROFILE | STATISTICS TIME
Transactions IMPLICIT_TRANSACTIONS | REMOTE_PROC_TRANSACTIONS | TRANSACTION ISOLATION
LEVEL | XACT_ABORT

Note: For more details about individual settings, see the link at the end of this section.

SET ROWCOUNT for DML Deprecated Setting

The SET ROWCOUNT for DML statements has been deprecated as of SQL Server 2008 in accordance
with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105).

Up to and including SQL Server 2008 R2, you could limit the amount of rows affected by INSERT,
UPDATE, and DELETE operations using SET ROWCOUNT. For example, it is a common practice in SQL
Server to batch large DELETE or UPDATE operations to avoid transaction logging issues. The following
example loops and deletes rows having 'ForDelete' set to 1, but only 5000 rows at a time in separate
transactions (assuming the loop is not within an explicit transaction).

SET ROWCOUNT 5000;
WHILE @@ROWCOUNT > 0
BEGIN
DELETE FROM MyTable
WHERE ForDelete = 1;

END

Begining with SQL Server 2012, SET ROWCOUNT is ignored for INSERT, UPDATE and DELETE state-
ments. The same functionality can be achieved by using TOP, which can be converted to Aurora
MySQL's LIMIT.

For example, the previous code could be rewritten as:

WHILE @@ROWCOUNT > 0
BEGIN
DELETE TOP (5000)
FROM MyTable
WHERE ForDelete = 1;

END

The latter syntax can be converted automatically by SCT to Aurora MySQL. See the code example in Aur-
ora MySQL Session Options.

Examples

Use SET within a stored procedure.

CREATE PROCEDURE <ProcedureName>
AS
BEGIN
 <Some non critical transaction code>
 SET TRANSACTION_ISOLATION_LEVEL SERIALIZABLE;
 SET XACT_ABORT ON;

- 283 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

 <Some critical transaction code>
END

Note: Explicit SET commands affect their execution scope and sub scopes.
After the scope terminates and the procedure code exits, the calling scope resumes its ori-
ginal settings used before the calling the stored procedure.

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql

- 284 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql

Migrate to Aurora MySQL Session Options

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l SET options are significantly different,

except for transaction isolation control

Overview

Aurora MySQL supports hundreds of Server System Variables to control server behavior and the global
and session levels.

Use the SHOW VARIABLES command to view a list of all variables.

SHOW SESSION VARIABLES;
-- 532 rows returned

Note: Aurora MySQL 5.7 provides additional variables that do not exist in MySQL 5.7 stan-
dalone installations. These variables are prefixed with aurora or aws .

You can view Aurora MySQL variables using the MySQL command line utility, Aurora database cluster
parameters, Aurora database instance parameters, or SQL interface system variables.

To view all sessions, use the SHOW PROCESSLIST command or the information_schema PROCESSLIST
view, which displays information such as session current status, default database, host name, and
application name.

Note: Unlike standalone installations of MySQL, Amazon Aurora does not provide access
to the configuration file containing system variable defaults. Cluster-level parameters are
managed in database cluster parameter groups and instance-level parameters are man-
aged in database parameter groups. In Aurora MySQL, some parameters from the full base
set of standalone MySQL installations can not be modified and others were removed. See
Server Options for a walkthrough of creating a custom parameter group.

Converting from SQL Server 2008 SET ROWCOUNT for DML operations

As mentioned in SQL Server Sessions Options, the use of SET ROWCOUNT for DML operations is
deprecated as of SQL Server 2008 R2. Code that uses the SET ROWCOUNT syntax can not be converted
automatically. Either rewrite to use TOP before running SCT, or manually change it afterward.

The example used to batch DELETE operations in SQL Server using TOP:

WHILE @@ROWCOUNT > 0
BEGIN
DELETE TOP (5000)
FROM MyTable
WHERE ForDelete = 1;

END

- 285 -

can be easily rewritten to use Aurora MySQL LIMIT clause :

WHILE row_count() > 0
DO
DELETE
FROM MyTable
WHERE ForDelete = 1
LIMIT 5000;

END WHILE;

Examples

View the metadata for all processes.

SELECT *
FROM information_schema.PROCESSLIST;

SHOW PROCESSLIST;

Use the SET command to change session isolation level and SQL mode.

SET sql_mode = 'ANSI_QUOTES';
SET SESSION TRANSACTION ISOLATION LEVEL 'READ-COMMITTED';

Set isolation level using a system variable.

SET SESSION tx_isolation = 'READ-COMMITTED'

The SET SESSION command is the equivalent to the SET command in T-SQL.
However, there are far more configurable parameters in Aurora MySQL than in SQL Server.

Summary

The following table summarizes commonly used SQL Server session options and their corresponding
Aurora MySQL system variables.

Category SQL Server Aurora MySQL Comments

Date and time
DATEFIRST

DATEFORMAT

default_week_format

date_format (deprec-
ated)

default_week_format opertates
different than DATEFIRST; it
allows only Sunday and Monday
as start weeks. It also controls
what is considered week one of
the year and whether returned
WEEK value is zero- based, or
one-based. There is no altern-
ative to the deprecated date_
format variable (see Date and
Time Functions.

- 286 -

Category SQL Server Aurora MySQL Comments

Locking LOCK_TIMEOUT lock_wait_timeout
Set in database parameter
groups.

ANSI
ANSI_NULLS

ANSI_PADDING

N/A

PAD_CHAR_TO_FULL_
LENGTH

Set with the sql_mode system
variable.

Transactions

IMPLICIT_
TRANSACTIONS

TRANSACTION
ISOLATION LEVEL

autocommit

SET
SESSION TRANSACTION
ISOLATION LEVEL

The default for Aurora MySQL,
as in SQL server, is to commit
automatically.

Syntax is compatible except the
addition of the SESSION
keyword.

Query execution

IDENTITY_INSERT

LANGUAGE

QUOTED_
IDENTIFIER

NOCOUNT

See Identity and
sequences

lc_time_names

ANSI_QUOTES

N/A and not needed

lc_time_names are set in a data-
base parameter group. lc_mes-
sages is not supported in
Aurora MySQL.

ANSI_QUOTES is a value for the
sql_mode parameter.

Aurora MySQL does not add row
count information to the errors
collection.

Execution stats

SHOWPLAN_ALL,
TEXT, and XML

STATISTICS IO,
XML, PROFILE,
and TIME

See Execution Plans

Miscellaneous

CONCAT_NULL_
YIELDS_NULL

ROWCOUNT

N/A

sql_select_limit

Aurora MySQL always returns
NULL for any NULL concat oper-
ation.

sql_select_limit only affects
SELECT statements unlike
ROWCOUNT, which also affects
all DML.

- 287 -

For more information, see https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

- 288 -

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

Migrate from SQL Server Database Options

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l SQL Server's database options are inap-

plicable to Aurora MySQL

Overview

SQL Server provides database level options that can be set using the ALTER DATABASE ...
SET command. These settings enable you to:

l Set default session options. For more information, see Session Options.

l Enable or disable database features such as SNAPSHOT_ISOLATION, CHANGE_TRANCKING, and
ENABLE_BROKER.

l Configure High availability and disaster recovery options such as always on availability groups

l Configure security access control such as restricting access to a single user, setting the database
offline, or setting the database to read-only.

Syntax

Syntax for setting database options:

ALTER DATABASE { <database name> } SET { <option> [,...n] };

Examples

Set a database to read-only and use ARITHABORT by default.

ALTER DATABASE Demo SET READ_ONLY, ARITHABORT ON;

Set a database to use automatic statistic creation.

ALTER DATABASE Demo SET AUTO_CREATE_STATISTICS ON;

Set a database offline immediately.

ALTER DATABASE DEMO SET OFFLINE WITH ROLLBACK IMMEDIATE;

For more information, see https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-
set-options

- 289 -

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options

Migrate to Aurora MySQL Database Options

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l SQL Server's database options are inap-

plicable to Aurora MySQL

Overview

The concept of a database in Aurora MySQL is different than SQL Server. In Aurora MySQL, a database
is synonymous with a schema. Therefore, the notion of database options is not applicable to Aurora
MySQL.

Note: Aurora MySQL has two settings that are saved with the database/schema: the default
character set, and the default collation for creating new objects.

Migration Considerations

For migration considerations, see Server Options.

- 290 -

Migrate from SQL Server Server Options

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Cluster and Database Para-

meter Groups

Overview

SQL Server provides server-level settings that affect all databases and all sessions. You can modify
these settings using the sp_configure system stored procedure.

You can use Server Options to perform the following configuration tasks:

l Define hardware utilization such as memory management, affinity mask, priority boost, network
packet size, and soft Non-Uniform Memory Access (NUMA) .

l Alter run time global values such as recovery interval, remote login timeout, optimization for ad-
hoc workloads, and cost threshold for parallelism.

l Enable and disable global features such as C2 Audit, OLE, procedures, CLR procedures, and allow
trigger recursion.

l Configure global security settings such as server authentication mode, remote access, shell
access with xp_cmdshell, CLR access level, and database chaining.

l Set default values for sessions such as user options, default language, backup compression, and
fill factor.

Some settings require an explicit RECONFIGURE command to apply the changes to the server. High
risk settings require RECONFIGURE WITH OVERRIDE for the changes to be applied. Some advanced
options are hidden by default. To view and modify these settings, set show advanced options to 1 and
re-execute sp_configure.

Note: Server audits are managed via the T-SQL commands CREATE and ALTER SERVER
AUDIT.

Syntax

EXECUTE sp_configure <option>, <value>;

Examples

Limit server memory usage to 4GB.

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE;

- 291 -

sp_configure 'max server memory', 4096;

RECONFIGURE;

Allow command shell access from T-SQL.

EXEC sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

Viewing current values.

EXECUTE sp_configure

For more information, see https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-
configuration-options-sql-server

- 292 -

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server

Migrate to Aurora MySQL Server Options

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Cluster and Database Para-

meter Groups

Overview

The concept of an database in Aurora MyQL is different than SQL Server. For Aurora MySQL, the terms
database and schema are synonymous. Therefore, the concept of database options does is not applic-
able to Aurora MySQL.

The Aurora MySQL equivalent of SQL Server's database and server options are Server System Variables,
which are run time settings you can modify using one of the following approaches:

l MySQL command line utility
l Aurora DB Cluster and DB Instance Parameters
l System variables used by the SQL SET command

Compared to SQL Server, Aurora MySQL provides a much wider range of server settings and con-
figurations.
For a full list of the options available in Aurora MySQL, see the links at the end of this section. The Aur-
ora MySQL default parameter group lists more than 250 different parameters.

Note: Unlike stand alone installations of MySQL, Amazon Aurora does not provide file sys-
tem access to the configuration file. Cluster-level parameters are managed in database
cluster parameter groups. Instance-level parameters are managed in database parameter
groups. Also, in Aurora MySQL some parameters from the full base set of standalone
MySQL installations can not be modified and others were removed. Many parameters are
viewable but not modifiable.

SQL Server and Aurora MySQL are completely different engines. Except for a few obvious settings such
as max server memory which has an equivalent of innodb_buffer_pool_size, most of the Aurora
MySQL parameter settings are not compatible with SQL Server.

In most cases, you should use the default parameter groups because they are optimized for common
use cases.

Amazon Aurora is a cluster of DB instances and, as a direct result, some of the MySQL parameters
apply to the entire cluster while other parameters apply only to particular database instances in the
cluster. The following table describes how Aurora MySQL parameters are controlled:

Aurora MySQL Parameter Class Controlled Via

Cluster-level parameters Managed via cluster parameter groups For
example:

- 293 -

Aurora MySQL Parameter Class Controlled Via

Single cluster parameter group per Amazon Aur-
ora Cluster

aurora_load_from_s3_role, default_password_life-
time, default_storage_engine

Database Instance-Level parameters

Every instance in your Amazon Aurora cluster
can be associated with a unique database para-
meter group

Managed via database parameter groups For
example:

autocommit, connect_timeout, innodb_change_
buffer_max_size

Syntax

Server-level options are set with the SET GLOBAL command.

SET GLOBAL <option> = <Value>;

Examples

Modify Compression Level

Decrease compression level to reduce CPU usage.

SET GLOBAL innodb_compression_level = 5;

Create Parameter Groups

The following walkthrough demonstrates how to create and configure the Amazon Aurora database
and cluster parameter groups:

Navigate to Parameter Group in the RDS Service of the AWS Console.

Click Create Parameter Group.

Note: You cannot edit the default parameter group. Create a custom parameter group to
apply changes to your Amazon Aurora cluster and its database instances.

On the new page:

- 294 -

https://console.aws.amazon.com/rds/home?#parameter-groups:

l Select aurora-mysql5.7 from the Parameter group family dropdown list.

l Select DB Parameter Group from the Type dropdown list. Another option is to select Cluster
Parameter Group to modify cluster parameters.

l Click Create.

Modify a Parameter Group

The following walkthrough demonstrates how to modify an existing parameter group:

Navigate to the Parameter group section in the RDS Service of the AWS Console.

Click the name of the parameter group to edit.

On the new page, click the Edit parameters button.

Change parameter values and click Save changes.

For more information, see:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

l https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

- 295 -

https://console.aws.amazon.com/rds/home?#parameter-groups:
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

High Availability and Disaster Recovery (HADR)

- 296 -

Migrate from SQL Server Backup and Restore

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Backup

l Storage level backup managed by
Amazon RDS

Overview

The term Backup refers to both the process of copying data and to the resulting set of data created by
the processes that copy data for safekeeping and disaster recovery. Backup processes copy SQL Server
data and transaction logs to media such as tapes, network shares, cloud storage, or local files. These
"backups" can then be copied back to the database using a restore process.

SQL Server uses files, or filegroups, to create backups for an individual database or subset of a data-
base. Table backups are not supported.

When a database uses the FULL recovery model, transaction logs also need to be backed up. Trans-
action logs allow backing up only database changes since the last full backup and provide a mech-
anism for point-in-time restore operations.

Recovery Model is a database-level setting that controls transaction log management. The three avail-
able recovery models are SIMPLE, FULL, and BULK LOGGED. For more information, see https://-
docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server.

The SQL Server RESTORE process copies data and log pages from a previously created backup back to
the database. It then triggers a recovery process that rolls forward all committed transactions not yet
flushed to the data pages when the backup took place. It also rolls back all uncommitted transactions
written to the data files.

SQL Server supports the following types of backups:

l Copy-Only Backups are independent of the standard chain of SQL Server backups. They are typ-
ically used as "one-off" backups for special use cases and do not interrupt normal backup oper-
ations.

l Data Backups copy data files and the transaction log section of the activity during the backup. A
Data Backup may contain the whole database (Database Backup) or part of the database. The
parts can be a Partial Backup or a file/filegroup.

l A Database Backup is a Data Backup representing the entire database at the point in time when
the backup process finished.

l A Differential Backup is a data backup containing only the data structures (extents) modified
since the last full backup. A differential backup is dependent on the previous full backup and can
not be used alone.

- 297 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server

l A Full Backup is a data backup containing a Database Backup and the transaction log records of
the activity during the backup process.

l Transaction Log Backups do not contain data pages. They contain the log pages for all trans-
action activity since the last Full Backup or the previous Transaction Log Backup.

l File Backups consist of one or more files or filegroups.

SQL Server also supports Media Families and Media Sets that can be used to mirror and stripe backup
devices. For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/backup-
restore/media-sets-media-families-and-backup-sets-sql-server

SQL Server 2008 Enterprise edition and later versions support Backup Compression. Backup Com-
pression provides the benefit of a smaller backup file footprint, less I/O consumption, and less net-
work traffic at the expense of increased CPU utilization for executing the compression algorithm. For
more information, see https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/-
backup-compression-sql-server

A database backed up in the SIMPLE recovery mode can only be restored from a full or differential
backup. For FULL and BULK LOGGED recovery models, transaction log backups can be restored also
to minimize potential data loss.

Restoring a database involves maintaining a correct sequence of individual backup restores. For
example, a typical restore operation may include the following steps:

1. Restore the most recent Full Backup.

2. Restore the most recent Differential Backup.

3. Restore a set of uninterrupted Transaction Log Backups, in order.

4. Recover the database.

For large databases, a full restore, or a complete database restore, from a full database backup is not
always a practical solution. SQL Server supports Data File Restore that restores and recovers a set of
files and a single Data Page Restore, except for databases using the SIMPLE recovery model.

Syntax

Backup syntax:

Backing Up a Whole Database
BACKUP DATABASE <Database Name> [<Files / Filegroups>] [READ_WRITE_FILEGROUPS]

TO <Backup Devices>
[<MIRROR TO Clause>]
[WITH [DIFFERENTIAL]
[<Option List>][;]

BACKUP LOG <Database Name>
TO <Backup Devices>
[<MIRROR TO clause>]
[WITH <Option List>][;]

<Option List> =
COPY_ONLY | {COMPRESSION | NO_COMPRESSION } | DESCRIPTION = <Description>

- 298 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server

| NAME = <Backup Set Name> | CREDENTIAL | ENCRYPTION | FILE_SNAPSHOT | { EXPIREDATE =
<Expiration Date> | RETAINDAYS = <Retention> }
{ NOINIT | INIT } | { NOSKIP | SKIP } | { NOFORMAT | FORMAT } |
{ NO_CHECKSUM | CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
{ NORECOVERY | STANDBY = <Undo File for Log Shipping> } | NO_TRUNCATE
ENCRYPTION (ALGORITHM = <Algorithm> | SERVER CERTIFICATE = <Certificate> | SERVER
ASYMMETRIC KEY = <Key>);

Restore Syntax:

RESTORE DATABASE <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

RESTORE LOG <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
[FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

<Option List> =
MOVE <File to Location>
| REPLACE | RESTART | RESTRICTED_USER | CREDENTIAL
| FILE = <File Number> | PASSWORD = <Passord>
| { CHECKSUM | NO_CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
| KEEP_REPLICATION | KEEP_CDC
| { STOPAT = <Stop Time>
| STOPATMARK = <Log Sequence Number>
| STOPBEFOREMARK = <Log Sequence Number>

Examples

Perform a full compressed database backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH COMPRESSION;

Perform a log backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH COMPRESSION;

Perform a partial differential backup.

BACKUP DATABASE MyDatabase
FILEGROUP = 'FileGroup1',
FILEGROUP = 'FileGroup2'
TO DISK='C:\Backups\MyDatabase\DB1.bak'
WITH DIFFERENTIAL;

Restore a database to a point in time.

- 299 -

RESTORE DATABASE MyDatabase
FROM DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH NORECOVERY;

RESTORE LOG AdventureWorks2012
FROM DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH NORECOVERY, STOPAT = '20180401 10:35:00';

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server

l https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-over-
view-sql-server

- 300 -

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server

Migrate to Aurora MySQL Backup and Restore

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Backup

l Storage level backup managed by
Amazon RDS

Overview

Aurora MySQL continuously backs up all cluster volumes and retains restore data for the duration of
the backup retention period. The backups are incremental and can be used to restore the cluster to
any point in time within the backup retention period. You can specify a backup retention period from
one to 35 days when creating or modifying a database cluster. Backups incur no performance impact
and do not cause service interruptions.

Additionally, you can manually trigger data snapshots in a cluster volume that can be saved beyond the
retention period. You can use Snapshots to create new database clusters.

Note: Manual snapshots incur storage charges for Amazon RDS.

Restoring Data

You can recover databases from Aurora's automatically retained data or from a manually saved snap-
shot. Using the automatically retained data significantly reduces the need to take frequent snapshots
and maintain Recovery Point Objective (RPO) policies.

The RDS console displays the available time frame for restoring database instances in the Latest Restor-
able Time and Earliest Restorable Time fields. The Latest Restorable Time is typically within the last five
minutes. The Earliest Restorable Time is the end of the backup retention period.

Note: The Latest Restorable Time and Earliest Restorable Time fields display when a data-
base cluster restore has been completed. Both display NULL until the restore process com-
pletes.

Database Cloning

Database cloning is a fast and cost-effective way to create copies of a database. You can create mul-
tiple clones from a single DB cluster and additional clones can be created from existing clones. When
first created, a cloned database requires only minimal additional storage space.

Database cloning uses a copy-on-write protocol. Data is copied only when it changes either on the
source or cloned database.

Data cloning is useful for avoiding impacts on production databases. For example:

l Testing schema or parameter group modifications.

l Isolating intensive workloads. For example, exporting large amounts of data and running high

- 301 -

resource-consuming queries.

l Development and testing with a copy of a production database.

Copying and Sharing Snapshots

Database snapshots can be copied and shared within the same AWS Region, across AWS Regions, and
across AWS accounts. Snapshot sharing allows an authorized AWS account to access and copy snap-
shots. Authorized users can restore a snapshot from its current location without first copying it.

Copying an automated snapshot to another AWS account requires two steps:

1. Create a manual snapshot from the automated snapshot.

2. Copy the manual snapshot to another account.

Backup Storage

In all RDS regions, Backup Storage is the collection of both automated and manual snapshots for all
database instances and clusters. The size of this storage is the sum of all individual instance snap-
shots.

When an Aurora MySQL database instance is deleted, all automated backups of that database instance
are also deleted. However, Amazon RDS provides the option to create a final snapshot before deleting
a database instance. This final snapshot is retained as a manual snapshot. Manual snapshots are not
automatically deleted.

The Backup Retention Period

Retention periods for Aurora MySQL DB cluster backups are configured when creating a cluster. If not
explicitly set, the default retention is one day when using the Amazon RDS API or the AWS CLI. The
retention period is seven days if using the AWS Console. You can modify the backup retention period
at any time with a value between one and 35 days.

Disabling Automated Backups

You cannot disable automated backups on Aurora MySQL. The backup retention period for Aurora
MySQL is managed by the database cluster.

Saving Data from an Amazon Aurora MySQL Database to Amazon S3

Aurora MySQL supports a proprietary syntax for dumping and loading data directly from and to an
Amazon S3 bucket.

The SELECT ... INTO OUTFILE S3 statement is used to export data out of Aurora MySQL, and its coun-
terpart LOAD DATA FROM S3 statement is used for loading data directly from Amazon S3 text files.

Note: This integration enables very efficient dumps since there is no need for an inter-
mediate client application to handle the data export, import, and save.

The syntax for the SELECT ... INTO OUTFILE S3 statement is:

SELECT
[ALL | DISTINCT | DISTINCTROW]

- 302 -

[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

select_expr [, select_expr ...]
[FROM table_references

[PARTITION partition_list]
[WHERE where_condition]
[GROUP BY {col_name | expr | position}

[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}

[ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]

INTO OUTFILE S3 'S3-URI'
[CHARACTER SET charset_name]

[export_options]
[MANIFEST {ON | OFF}]
[OVERWRITE {ON | OFF}]

export_options:
[{FIELDS | COLUMNS}

[TERMINATED BY 'string']
[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']

]
[LINES

[STARTING BY 'string']
[TERMINATED BY 'string']

]

The syntax for the LOAD DATA FROM S3 statement is:

LOAD DATA FROM S3 [FILE | PREFIX | MANIFEST] 'S3-URI'
[REPLACE | IGNORE]
INTO TABLE tbl_name
[PARTITION (partition_name,...)]
[CHARACTER SET charset_name]
[{FIELDS | COLUMNS}

[TERMINATED BY 'string']
[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']

]
[LINES

[STARTING BY 'string']
[TERMINATED BY 'string']

]
[IGNORE number {LINES | ROWS}]
[(col_name_or_user_var,...)]
[SET col_name = expr,...]

For more information on loading data from S3, see https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html.

- 303 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.LoadFromS3.html

As can be seen from the syntax, Aurora MySQL offers various options for easy control of saving and
loading data directly from an SQL statement without needing to configure options or external services.

The MANIFEST option of the export allows you to create an accompanying JSON file that lists the text
files created by the SELECT ... INTO OUTFILE S3 statement. Later, the LOAD DATA FROM S3 statement
can use this manifest to load the data files back into the database tables.

Migration Considerations

Migrating from a self managed backup policy to a Platform as a Service (PaaS) environment such as
Aurora MySQL is a complete paradigm shift. You no longer need to worry about transaction logs, file
groups, disks running out of space, and purging old backups.

Amazon RDS provides guaranteed continuous backup with point-in-time restore up to 35 days.

Managing an SQL Server backup policy with similar RTO and RPO is a challenging task. With Aurora
MySQL, all you need to do set is the retention period and take manual snapshots for special use cases.

Considerations for Exporting Data to S3

By default, each file created in an S3 bucket as a result of the export has a maximal size of 6GB. The
system rolls over to a new file once this limit is exceeded. However, Aurora MySQL guarantees that
rows will not span multiple files, and therefore slight variations from this max size are possible.

The SELECT ... INTO OUTFILE S3 statement is an atomic transaction. Large or complicated SELECT state-
ments may take a significant amount of time to complete. In the event of an error, the statement rolls
back and must be executed again. However, if some of the data has already been uploaded to the S3
bucket, it is not deleted as part of the rollback and you can use a differential approach to upload only
the remaining data.

Note: For exports larger than 25GB, it is recommended to split the SELECT ... INTO
OUTFILE S3 statement into multiple, smaller batches.

Metadata, such as table schema or file metadata, is not uploaded by Aurora MySQL to Amazon S3.

Examples

Change the Retention Policy to Seven Days

The following walkthrough describes how to change Aurora MySQL DB cluster retention settings from
one day to seven days using the RDS console.

Login to the RDS Console and click Clusters.

- 304 -

Click the DB cluster identifier.

Verify the current automatic backup settings.

Scroll down to the DB Cluster Members section and click the database instance with the writer role.

- 305 -

On the top left, click Instance Actions > Modify.

Scroll down to the Backup section. Select 7 Days from the drop-down list.

Click Continue, review the summary, select a Schedule of Modifications, and click Modify DB
Instance.

- 306 -

For more information and an example of creating a manual snapshot, see Maintenance Plans.

Exporting Data to Amazon S3

For a detailed example with all the necessary preliminary steps required to export data from Aurora
MySQL to an Amazon S3 bucket, see https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html.

Summary

Feature SQL Server Aurora MySQL Comments

Recovery Model
SIMPLE, BULK
LOGGED, FULL N/A

The functionality of Aurora MySQL
backups is equivalent to the FULL
recovery model.

Backup Database
BACKUP
DATABASE

Automatic and
continuous

Partial Backup

BACKUP
DATABASE ...
FILE= ... |
FILEGROUP =
...

N/A

Log Backup BACKUP LOG N/A Backup is at the storage level.

- 307 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

Feature SQL Server Aurora MySQL Comments

Differential Backups

BACKUP
DATABASE ...
WITH
DIFFERENTIAL

N/A

Database Snapshots

BACKUP
DATABASE ...
WITH COPY_
ONLY

RDS console or
API

The terminology is inconsistent
between SQL Server and Aurora
MySQL. A database snapshot in SQL
Server is similar to database cloning
in Aurora MySQL. Aurora MySQL data-
base snapshots are similar to a
COPY_ONLY backup in SQL Server.

Database Clones

CREATE
DATABASE...
AS SNAPSHOT
OF...

The terminology is inconsistent
between SQL Server and Aurora
MySQL. A database snapshot in SQL
Server is similar to database cloning
in Aurora MySQL. Aurora MySQL data-
base snapshots are similar to a
COPY_ONLY backup in SQL Server.

Point in time restore

RESTORE
DATABASE
| LOG ...
WITH
STOPAT...

Any point within
the retention
period using RDS
console or API

Partial Restore

RESTORE
DATABASE...
FILE= ... |
FILEGROUP =
...

N/A

Export and import
table data

DTS, SSIS, BCP,
Linked Servers to
files

SELECT INTO
... OUTFILE
S3
LOAD DATA
FROM S3

For more information, see

l https://-
doc-
s.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.Backups

l https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

- 308 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

Migrate from SQL Server High Availability Essentials

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l Multi replica, scale out solution using

Amazon Aurora clusters and Availability
Zones

Overview

SQL Server provides several solutions to support high availability and disaster recovery requirements
including Always On Failover Cluster Instances (FCI), Always On Availability Groups, Database Mirroring,
and Log Shipping. The following sections describe each solution.

Note: This section does not cover backup and restore. See Backup and Restore.

Always On Failover Cluster Instances (FCI)

Always On Failover Cluster Instances use the Windows Server Failover Clustering (WSFC) operating sys-
tem framework to deliver redundancy at the server instance level.

An FCI is an instance of SQL Server installed across two or more WSFC nodes. For client applications,
the FCI is transparent and appears to be a normal instance of SQL Server running on a single server.
The FCI provides failover protection by moving the services from one WSFC node Windows server to
another WSFC node windows server in the event the current "active" node becomes unavailable or
degraded.

FCIs target scenarios where a server fails due to a hardware malfunction or a software hangup.
Without FCI, a significant hardware or software failure would render the service unavailable until the
malfunction is corrected. With FCI, another server can be configured as a "stand by" to replace the ori-
ginal serverif it stops servicing requests.

For each service or cluster resource, there is only one node that actively services client requests
(known as "owning a resource group"). A monitoring agent constantly monitors the resource owners
and can transfer ownership to another node in the event of a failure or planned maintenance such as
installing service packs or security patches. This process is completely transparent to the client applic-
ation, which may continue to submit requests as normal when the failover or ownership transfer pro-
cess completes.

FCI can significantly minimize downtime due to hardware or software general failures. The main bene-
fits of FCI are:

l Full instance level protection.

l Automatic failover of resources from one node to another.

l Supports a wide range of storage solutions. WSFC cluster disks can be iSCSI, Fiber Channel, SMB
file shares, and others.

- 309 -

l Supports multi-subnet.

l No need client application configuration after a failover.

l Configurable failover policies.

l Automatic health detection and monitoring.

For more information, see https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-
on-failover-cluster-instances-sql-server

Always On Availability Groups

Always On Availability Groups is the most recent high availability and disaster recovery solution for SQL
Server. It was introduced in SQL Server 2012 and supports high availability for one or more user data-
bases. Because it can be configured and managed at the database level rather than the entire server, it
provides much more control and functionality. As with FCI, Always On Availability Groups relies on the
framework services of WSFC nodes.

Always On Availability Groups utilize real-time log record delivery and apply mechanism to maintain
near real-time, readable copies of one or more databases.
These copies can also be used as redundant copies for resource usage distribution between servers (a
scale-out read solution).

The main characteristics of Always On Availability Groups are:

l Supports up to nine availability replicas: One primary replica and up to eight secondary readable
replicas.

l Supports both asynchronous-commit and synchronous-commit availability modes.

l Supports automatic failover, manual failover, and a forced failover. Only the latter can result in
data loss.

l Secondary replicas allow both read-only access and offloading of backups.

l Availability Group Listener may be configured for each availability group. It acts as a virtual
server address where applications can submit queries. The listener may route requests to a read-
only replica or to the primary replica for read-write operations. This configuration also facilitates
fast failover as client applications do not need to be reconfigured post failover.

l Flexible failover policies.

l The automatic page repair feature protects against page corruption.

l Log transport framework uses encrypted and compressed channels.

l Rich tooling and APIs including Transact-SQL DDL statements, management studio wizards,
Always On Dashboard Monitor, and Powershell scripting.

For more information, see https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/win-
dows/always-on-availability-groups-sql-server

- 310 -

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server

Database Mirroring.

Note: Microsoft recommends avoiding Database Mirroring for new development. This fea-
ture is deprecated and will be removed in a future release. It is recommended to use
Always On Availability Groups instead.

Database mirroring is a legacy solution to increase database availability by supporting near instant-
aneous failover. It is similar in concept to Always On Availability Groups, but can only be configured for
one database at a time and with only one "standby" replica.

For more information, see https://docs.microsoft.com/en-us/sql/database-engine/database-mir-
roring/database-mirroring-sql-server

Log Shipping

Log shipping is one of the oldest and well tested high availability solutions. It is configured at the data-
base level similar to Always On Availability Groups and Database Mirroring. Log shipping can be used
to maintain one or more standby (secondary) databases for a single master (primary) database.

The Log shipping process involves three steps:

1. Backing up the transaction log of the primary database instance.

2. Copying the transaction log backup file to a secondary server.

3. Restoring the transaction log backup to apply changes to the secondary database.

Log shipping can be configured to create multiple secondary database replicas by repeating steps 2
and 3 above for each secondary server. Unlike FCI and Always On Availability Groups, log shipping solu-
tions do not provide automatic failover.

In the event the primary database becomes unavailable or unusable for any reason, an administrator
must configure the secondary database to serve as the primary and potentially reconfigure all client
applications to connect to the new database.

Note: Secondary databases can be used for read-only access, but require special handling.
For more information, see https://docs.microsoft.com/en-us/sql/database-engine/log-ship-
ping/configure-log-shipping-sql-server

The main characteristics of Log Shipping solutions are:

l Provides sredundancy for a single primary database and one or more secondary databases. Log
Shipping is considered less of a high availability solution due to the lack of automatic failover.

l Supports limited read-only access to secondary databases.

l Administrators have control over the timing and delays of the primary server log backup and sec-
ondary server restoration.

l Longer delays can be useful if data is accidentally modified or deleted in the primary database.

- 311 -

https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server

For more information about log shipping, see https://docs.microsoft.com/en-us/sql/database-engine/log-ship-
ping/about-log-shipping-sql-server

Examples

Configure an Always On Availability Group.

CREATE DATABASE DB1;

ALTER DATABASE DB1 SET RECOVERY FULL;

BACKUP DATABASE DB1 TO DISK = N'\\MyBackupShare\DB1\DB1.bak' WITH FORMAT;

CREATE ENDPOINT DBHA STATE=STARTED
AS TCP (LISTENER_PORT=7022) FOR DATABASE_MIRRORING (ROLE=ALL);

CREATE AVAILABILITY GROUP AG_DB1
FOR

DATABASE DB1
REPLICA ON

'SecondarySQL' WITH
(
ENDPOINT_URL = 'TCP://SecondarySQL.MyDomain.com:7022',
AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
FAILOVER_MODE = MANUAL
);

-- On SecondarySQL
ALTER AVAILABILITY GROUP AG_DB1 JOIN;

RESTORE DATABASE DB1 FROM DISK = N'\\MyBackupShare\DB1\DB1.bak'
WITH NORECOVERY;

-- On Primary
BACKUP LOG DB1
TO DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'

WITH NOFORMAT

-- On SecondarySQL
RESTORE LOG DB1

FROM DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'
WITH NORECOVERY

ALTER DATABASE MyDb1 SET HADR AVAILABILITY GROUP = MyAG;

For more information, see https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-
solutions-sql-server

- 312 -

https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/high-availability-solutions-sql-server

Migrate to Aurora MySQL High Availability Essentials

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l Multi replica, scale out solution using

Amazon Aurora clusters and Availability
Zones

Overview

Aurora MySQL is a fully managed Platform as a Service (PaaS) providing high availability capabilities.
Amazon RDS provides database and instance administration functionality for provisioning, patching,
backup, recovery, failure detection, and repair.

New Aurora MySQL database instances are always created as part of a cluster. If you don't specify rep-
licas at creation time, a single-node cluster is created. You can add database instances to clusters later.

Regions and Availability Zones

Amazon RDS is hosted in multiple global locations. Each location is composed of Regions and Avail-
ability Zones. Each Region is a separate geographic area having multiple, isolated Availability Zones.
Amazon RDS supports placement of resources such as database instances and data storage in multiple
locations. By default, resources are not replicated across regions.

Each Region is completely independent and each Availability Zone is isolated from all others. However,
the main benefit of Availability Zones within a Region is that they are connected through low-latency,
high bandwidth local network links.

Resources may have different scopes. A resource may be global, associated with a specific region
(region level) , or associated with a specific Availability Zone within a region. For more information, see
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html

- 313 -

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/resources.html

When creating a database instance, you can specify an availability zone or use the default "No Prefer-
ence", in which case Amazon chooses the availability zone for you.

Aurora MySQL instances can be distributed across multiple availability zones. Applications can be
designed to take advantage of failover such that in the event of an instance in one availability zone fail-
ing, another instance in different availability zone will take over and handle requests.

Elastic IP addresses can be used to abstract the failure of an instance by remapping the virtual IP
address to one of the available database instances in another Availability Zone. For more information,
see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

An Availability Zone is represented by a region code followed by a letter identifier. For example, us-
east-1a.

Note: To guarantee even resource distribution across Availability Zones for a region,
Amazon RDS independently maps Availability Zones to identifiers for each account. For
example, the Availability Zone us-east-1a for one account might not be in the same loc-
ation as us-east-1a for another account. Users cannot coordinate Availability Zones
between accounts.

Aurora MySQL DB Cluster

A DB cluster consists of one or more DB instances and a cluster volume that manages the data for
those instances. A cluster volume is a virtual database storage volume that may span multiple Avail-
ability Zones with each holding a copy of the database cluster data.

An Aurora database cluster is made up of one of more of the following types of instances:

l A Primary instance that supports both read and write workloads. This instance is used for all
DML transactions. Every Aurora DB cluster has one, and only, one primary instance.

l An Aurora Replica that supports read-only workloads. Every Aurora MySQL database cluster
may contain from zero to 15 Aurora Replicas in addition to the primary instance for a total max-
imum of 16 instances. Aurora Replicas enable scale-out of read operations by offloading report-
ing or other read-only processes to multiple replicas. Place aurora replicas in multiple availability
Zones to increase availability of the databases.

- 314 -

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

Endpoints

Endpoints are used to connect to Aurora MySQL databases. An endpoint is a Universal Resource Loc-
ator (URL) comprised of a host address and port number.

l A Cluster Endpoint is an endpoint for an Aurora database cluster that connects to the current
primary instance for that database cluster regardless of the availability zone in which the primary
resides. Every Aurora MySQL DB cluster has one cluster endpoint and one primary instance. The
cluster endpoint should be used for transparent failover for either read or write workloads.

Note: Use the cluster endpoint for all write operations including all DML and DDL
statements.

If the primary instance of a DB cluster fails for any reason, Aurora automatically fails over server
requests to a new primary instance. A example of a typical Aurora MySQL DB Cluster endpoint is:
mydbcluster.cluster-123456789012.us-east-1.rds.amazonaws.com:3306

l A Reader Endpoint is an endpoint that is used to connect to one of the Aurora read-only rep-
licas in the database cluster. Each Aurora MySQL database cluster has one reader endpoint. If
there are more than one Aurora Replicas in the cluster, the reader endpoint redirects the con-
nection to one of the available replicas. Use the Reader Endpoint to support load balancing for
read-only connections. If the DB cluster contains no replicas, the reader endpoint redirects the
connection to the primary instance. If an Aurora Replica is created later, the Reader Endpoint
starts directing connections to the new Aurora Replica with minimal interruption in service. An
example of a typical Aurora MySQL DB Reader Endpoint is: mydbcluster.cluster-ro-
123456789012.us-east-1.rds.amazonaws.com:3306

l An Instance Endpoint is a specific endpoint for every database instance in an Aurora DB cluster.
Every Aurora MySQL DB instance regardless of its role has its own unique instance endpoint. Use
the Instance Endpoints only when the application handles failover and read workload scale-out
on its own. For example, you can have certain clients connect to one replica and others to
another. An example of a typical Aurora MySQL DB Reader Endpoint is: mydbin-
stance.123456789012.us-east-1.rds.amazonaws.com:3306

Some general considerations for using endpoints:

l Consider using the cluster endpoint instead of individual instance endpoints because it supports
high-availability scenarios. In the event that the primary instance fails, Aurora MySQL auto-
matically fails over to a new primary instance. This configuration can be accomplished by either
promoting an existing Aurora Replica to be the new primary or by creating a new primary
instance.

l If you use the cluster endpoint instead of the instance endpoint, the connection is automatically
redirected to the new primary.

l If you choose to use the instance endpoint, you must use the RDS cosole or the API to discover
which database instances in the database cluster are available and their current roles. Then, con-
nect using that instance endpoint.

- 315 -

l Be aware that the reader endpoint load balances connections to Aurora Replicas in an Aurora
database cluster, but it does not load balance specific queries or workloads. If your application
requires custom rules for distributing read workloads, use instance endpoints.

l The reader endpoint may redirect connection to a primary instance during the promotion of an
Aurora Replica to a new primary instance.

Amazon Aurora Storage

Aurora MySQL data is stored in a cluster volume. The Cluster volume is a single, virtual volume that
uses fast solid state disk (SSD) drives.The cluster volume is comprised of multiple copies of the data
distributed between availability zones in a region. This configuration minimizes the chances of data
loss and allows for the failover scenarios mentioned above.

Aurora cluster volumes automatically grow to accommodate the growth in size of your databases. An
Aurora cluster volume has a maximum size of 64 tebibytes (TiB). Since table size is theoretically limited
to the size of the cluster volume, the maximum table size in an Aurora DB cluster is 64 TiB.

Storage Auto-Repair

The chance of data loss due to disk failure is greatly minimize due to the fact that Aurora MySQL main-
tains multiple copies of the data in three Availability Zones. Aurora MySQL detects failures in the disks
that make up the cluster volume. If a disk segment fails, Aurora repairs the segment automatically.
Repairs to the disk segments are made using data from the other cluster volumes to ensure cor-
rectness. This process allows Aurora to significantly minimize the potential for data loss and the sub-
sequent need to restore a database.

Survivable Cache Warming

When a database instance starts, Aurora MySQL performs a "warming" process for the buffer pool. Aur-
ora MySQL pre-loads the buffer pool with pages that have been frequently used in the past. This
approach improves performance and shortens the natural cache filling process for the initial period
when the database instance starts servicing requests. Aurora MySQL maintains a separate process to
manage the cache, which can stay alive even when the database process restarts. The buffer pool
entries remain in memory regardless of the database restart providing the database instance with a
fully "warm" buffer pool.

Crash Recovery

Aurora MySQL can instantaneously recover from a crash and continue to serve requests. Crash recov-
ery is performed asynchronously using parallel threads enabling the database to remain open and
available immediately after a crash.

For more information about crash recovery, see https://-
doc-
s.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html#Aurora.Managing.FaultTolerance.

Examples

The following walkthrough describes how to configure a read-only replica using the AWS RDS console:

- 316 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Managing.html

Login to the RDS Console and click Clusters.

Click the cluster name.

Scroll down to the DB Cluster Members section and click the current primary instance (writer role).

Click Instance actions and select Create Aurora Replica.

- 317 -

On the Create Aurora Replica page, select the Availability zone, or leave it blank to let AWS to select
the availability zone. For Publicly accessible, select No if you don't want to assign a public IP address
to this instance. For Encryption, select Enable Encryption if you want the instance to be encrypted. For
Instance specifications, select the Instance size.

Scroll down to continue specifying the Aurora Replica settings. Leave the Aurora replica
sourcedefault setting. For Failover, select the failover priority setting for this instance (1 to 15). If the

- 318 -

primary instance fails and multiple Aurora Replicas are available, the next-in-line primary is the Aurora
Replicas that will have the highest priority. You can also select a specific parameter group for this rep-
lica.

Note: The Aurora Replica can be a different size than the Primary Instance and can use a
different parameter group.

Scroll down and select values for Monitoring and Maintenance.

- 319 -

Click Create Aurora Replica and return to the dashboard to view the creation progress.

Summary

Feature SQL Server Aurora MySQL Comments

Server level failure
protection

Failover Cluster
Instances

N/A
Not applicable. Clustering is
handled by Aurora MySQL.

Database level fail-
ure protection

Always On Avail-
ability Groups

Aurora Replicas

Log replication Log Shipping N/A
Not applicable. Aurora MySQL
handles data replication at the stor-
age level.

Disk error pro-
tection

RESTORE... PAGE= Automatically

- 320 -

Feature SQL Server Aurora MySQL Comments

Maximum Read
Only replicas

8 + Primary 15 + Primary

Failover address
Availability Group
Listener

Cluster Endpoint

Read Only work-
loads

READ INTENT con-
nection

Read Endpoint

For more information, see:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
l https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

- 321 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Indexes

- 322 -

Migrate from SQL Server Clustered and Non Clustered Indexes

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Indexes

l Clustered primary keys only

l Filtered indexes and included
columns not supported

Overview

Indexes are physical disk structures used to optimize data access. They are associated with tables or
materialized views and allow the query optimizer to access rows and individual column values without
scanning an entire table.

An index consists of index keys, which are columns from a table or view. They are sorted in ascending
or descending order providing quick access to individual values for queries that use equality or range
predicates. Database indexes are similar to book indexes that list page numbers for common terms.
Indexes created on multiple columns are called Composite Indexes.

SQL Server implements indexes using the Balanced Tree algorithm (B-tree).

Note: SQL Server supports additional index types such as hash indexes (for memory-optim-
ized tables), spatial indexes, full text indexes, and XML indexes.

Indexes are created automatically to support table primary keys and unique constraints. They are
required to efficiently enforce uniqueness. Up to 250 indexes can be created on a table to support com-
mon queries.

SQL Server provides two types of B-Tree indexes: Custered Indexes and Non-Clustered Indexes.

Clustered Indexes

Clustered indexes include all the table's column data in their leaf level. The entire table data is sorted
and logically stored in order on disk. A Clustered Index is similar to a phone directory index where the
entire data is contained for every index entry. Clustered indexes are created by default for Primary Key
constraints. However, a primary key doesn't necessarily need to use a clustered index if it is explicitly
specified as non-clustered.

Clustered indexes are created using the CREATE CLUSTERED INDEX statement. Only one clustered
index can be created for each table because the index itself is the table's data. A table having a
clustered index is called a "clustered table" (also known as an "index organized table" in other rela-
tional database management systems). A table with no clustered index is called a "heap".

Examples

Create a Clustered Index as part of table definition.

- 323 -

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
);

Create an explicit clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY NONCLUSTERED,
Col2 VARCHAR(20) NOT NULL
);

CREATE CLUSTERED INDEX IDX1
ON MyTable(Col2);

Non-Clustered Indexes

Non clustered indexes also use the B-Tree algorithm but consist of a data structure separate from the
table itself. They are also sorted by the index keys, but the leaf level of a non-clustered index contains
pointers to the table rows; not the entire row as with a clustered index.

Up to 999 non-clustered indexes can be created on a SQL Server table. The type of pointer used at the
lead level of a non-clustered index (also known as a row locator) depends on whether the table has a
clustered index (clustered table) or not (heap). For heaps, the row locators use a physical pointer (RID).
For clustered tables, row locators use the clustering key plus a potential uniquifier. This approach min-
imizes non-clustered index updates when rows move around, or the clustered index key value
changes.

Both clustered and non clustered indexes may be defined as UNIQUE using the CREATE UNIQUE INDEX
statement. SQL Server maintains indexes automatically for a table or view and updates the relevant
keys when table data is modified.

Examples

Create a unique non-clustered index as part of table definition.

CREATE TABLE MyTable
(
Col1 INT NOT NULL
 PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
 UNIQUE
);

Create a unique non-clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Col1 INT NOT NULL

- 324 -

 PRIMARY KEY CLUSTERED,
Col2 VARCHAR(20) NOT NULL
);

CREATE UNIQUE NONCLUSTERED INDEX IDX1 ON MyTable(Col2);

Filtered Indexes and Covering Indexes

SQL Server also supports two special options for non clustered indexes. Filtered indexes can be cre-
ated to index only a subset of the table's data. They are useful when it is known that the application
will not need to search for specific values such as NULLs.

For queries that typically require searching on particular columns but also need additional column
data from the table, non-clustered indexes can be configured to include additional column data in the
index leaf level in addition to the row locator. This may prevent expensive lookup operations, which fol-
low the pointers to either the physical row location (in a heap) or traverse the clustered index key in
order to fetch the rest of the data not part of the index. If a query can get all the data it needs from the
non-clustered index leaf level, that index is considered a "covering" index.

Examples

Create a filtered index to exclude NULL values.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable(Col2)
WHERE Col2 IS NOT NULL;

Create a covering index for queries that search on col2 but also need data from col3.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable (Col2)
INCLUDE (Col3);

Indexes On Computed Columns

SQL Server allows creating indexes on persisted computed columns. Computed columns are table or
view columns that derive their value from an expression based on other columns in the table. They are
not explicitly specified when data is inserted or updated. This feature is useful when a querie's filter
predicates are not based on the column table data as-is but on a function or expression.

Examples

For example, consider the following table that stores phone numbers for customers, but the format is
not consistent for all rows; some include country code and some do not:

CREATE TABLE PhoneNumbers
(
PhoneNumber VARCHAR(15) NOT NULL
 PRIMARY KEY,
Customer VARCHAR(20) NOT NULL
);

- 325 -

INSERT INTO PhoneNumbers
VALUES
('+1-510-444-3422','Dan'),
('644-2442-3119','John'),
('1-402-343-1991','Jane');

The following query to look up the owner of a specific phone number must scan the entire table
because the index cannot be used due to the preceding % wild card:

SELECT Customer
FROM PhoneNumbers
WHERE PhoneNumber LIKE '%510-444-3422';

A potential solution would be to add a computed column that holds the phone number in reverse
order:

ALTER TABLE PhoneNumbers
ADD ReversePhone AS REVERSE(PhoneNumber)
PERSISTED;

CREATE NONCLUSTERED INDEX IDX1
ON PhoneNumbers (ReversePhone)
INCLUDE (Customer);

Now, the following query can be used to search for the customer based on the reverse string, which
places the wild card at the end of the LIKE predicate. This approach provides an efficient index seek to
retrieve the customer based on the phone number value:

DECLARE @ReversePhone VARCHAR(15) = REVERSE('510-444-3422');
SELECT Customer
FROM PhoneNumbers
WHERE ReversePhone LIKE @ReversePhone + '%';

For more information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-
described

l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql

- 326 -

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql

Migrate to Aurora MySQL Clustered and Non Clustered
Indexes

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Indexes

l Clustered primary keys only

l Filtered indexes and included
columns not supported

Overview

Aurora MySQL supports Balanced Tree (b-tree) indexes similar to SQL Server. However, the ter-
minology, use, and options for these indexes are different.

Primary Key Indexes

Primary key indexes are created automatically by Aurora MySQL to support Primary Key constraints.
They are the equivalent of SQL Server clustered indexes and contain the entire row in the leaf level of
the index. Unlike SQL Server, primary key indexes are not configurable; you cannot use a non-
clustered index to support a primary key. In Aurora MySQL, a primary key index consisting of multiple
columns is called "Multiple Column index". It is the equivalent of an SQL Server composite index.

The MySQL query optimizer can use b-tree indexes to efficiently filter equality and range predicates.
The Aurora MySQL optimizer considers using b-tree indexes to access data especially when queries use
one or more of the following operators: >, >=, <, <=, =, or IN, BETWEEN, IS NULL, or IS NOT NULL pre-
dicates.

Primary key indexes in Aurora MySQL cannot be created with the CREATE INDEX statement. Since they
are part of the primary key, they can only be created as part of the CREATE TABLE statement or with
the ALTER TABLE... ADD CONSTRAINT... PRIMARY KEY statement. To drop a primary key index, use the
ALTER TABLE... DROP PRIMARY KEY statement.

The relational model specifies that every table must have a primary key, but Aurora MySQL and most
other relational database systems do not enforce it. If a table does not have a primary key specified,
Aurora MySQL locates the first unique index where all key columns are specified as NOT NULL and
uses that as the clustered index.

Note: If no primary key or suitable unique index can be found, Aurora MySQL creates a
"hidden" GEN_CLUST_INDEX clustered index with internally generated row ID values. These
auto-generated row IDs are based on a six-byte field that increases monotonically (similar
to IDENTITY or SEQUENCE).

Examples

Create a Primary Key index as part of the table definition.

CREATE TABLE MyTable (Col1 INT NOT NULL PRIMARY KEY, Col2 VARCHAR(20) NOT NULL);

- 327 -

Create a Primary key index for an existing table with no primary key.

ALTER TABLE MyTable ADD CONSTRAINT PRIMARY KEY (Col1);

Note: Constraints in Aurora MySQL do not need to be explicitly named like in SQL Server.

Column and Multiple Column Secondary Indexes

Aurora MySQL Single column indexes are called "Column Indexes" and are the equivalent of
SQL Server single column non-clustered indexes. Multiple column indexes are the equivalent of com-
posite non-clustered indexes in SQL Server. They can be created as part of the table definition when
creating unique constraints or explicitly using the INDEX or KEY keywords. For more information, see
Creating Tables.

Multiple column indexes are useful when queries filter on all or leading index key columns. Specifying
the optimal order of columns in a multiple column index can improve the performance of multiple
queries accessing the table with similar predicates.

Examples

Create a unique b-tree index as part of the table definition.

CREATE TABLE MyTable (Col1 INT NOT NULL PRIMARY KEY, Col2 VARCHAR(20) UNIQUE);

Create a non-unique multiple column index on an existing table.

CREATE INDEX IDX1 ON MyTable (Col1, Col2) USING BTREE;

Note: The USING clause is not mandatory. The default index type for Aurora MySQL is
BTREE.

Secondary Indexes on Generated Columns

Aurora MySQL supports creating indexes on generated columns. They are the equivalent of SQL Server
computed columns. Generated columns derive their values from the result of an expression. Creating
an index on a generated column enables generated columns to be used as part of a filter predicate
and may use the index for data access.

Generated columns can be created as STORED or VIRTUAL, but indexes can only be created on STORED
generated columns.

Generated expressions cannot exceed 64 KB for the entire table. For example, you can create a single
generated column with an expression length of 64K or create 12 fields with a length of 5K each. For
more information, see Creating Tables.

Prefix Indexes

Aurora MySQL also supports indexes on partial string columns. Indexes can be created that use only
the leading part of column values using the following syntax:

CREATE INDEX <Index Name> ON <Table Name> (<col name>(<prefix length>));

- 328 -

Prefixes are optional for CHAR, VARCHAR, BINARY, and VARBINARY column indexes, but must be spe-
cified for BLOB and TEXT column indexes.

Index prefix length is measured in bytes. The prefix length for CREATE TABLE, ALTER TABLE, and
CREATE INDEX statements is interpreted as the number of characters for non-binary string types
(CHAR, VARCHAR, TEXT) or the number of bytes for binary string types (BINARY, VARBINARY, BLOB).

Examples

Create a prefix index for the first ten characters of a customer name.

CREATE INDEX PrefixIndex1 ON Customers (CustomerName(10));

Summary

The following table summarizes the key differences to consider when migrating b-tree indexes from
SQL Server to Aurora MySQL

Index Feature SQL Server Aurora MySQL Comments

Clustered indexes sup-
ported for

Table keys, composite
or single column,
unique and non-
unique, null or not
null

Primary keys only

Non clustered index
supported for

Table keys, composite
or single column,
unique and non
unique, null or not
null

Unique constraints,
single column and
multi-column

Max number of non
clustered indexes

999 64

Max total index key
size

900 bytes

3072 bytes for a 16 KB
page size,
1536 bytes for a 8 KB
page size
768 bytes for a 4 KB
page size

Max columns per
index

32 16

Index Prefix N/A

Optional for CHAR,
VARCHAR, BINARY,
and VARBINARY
Mandatory for BLOB

- 329 -

Index Feature SQL Server Aurora MySQL Comments

and TEXT

Filtered Indexes Supported N/A

Included columns Supported N/A

Add the required
columns as index key
columns instead of
included

Indexes on BLOBS N/A
Supported,
limited by maximal
index key size

For more information see:

l https://dev.mysql.com/doc/refman/5.7/en/create-index.htm
l https://dev.mysql.com/doc/refman/5.7/en/column-indexes.htm
l https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html

- 330 -

https://dev.mysql.com/doc/refman/5.7/en/create-index.html
https://dev.mysql.com/doc/refman/5.7/en/column-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html

Management

- 331 -

Migrate from SQL Server SQL Server Agent

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Agent

l See Alerting and Main-
tenance Plans

Overview

SQL Server Agent provides two main functions: Scheduling automated maintenance and backup jobs,
and for alerting.

Note: Other SQL built-in frameworks such as replication, also use SQL Agent jobs under
the covers.

Maintenance Plans, backups and Alerting are covered in separate sections:

l Maintenance Plans

l Backups

l Alerting

For more information about SQL Server Agent, see https://docs.microsoft.com/en-us/sql/ssms/agent/sql-
server-agent

- 332 -

https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent
https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent

Migrate to Aurora MySQL Agent

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

SCT Action Codes -
Agent

l See Alerting and Main-
tenance Plans

Overview

SQL Server Agent provides two main functions: Scheduling automated maintenance jobs and alerting.

Note: Other SQL built-in frameworks such as replication also use SQL Agent jobs.

Maintenance Plans and Alerting are covered in separate sections:

l Maintenance Plans

l Alerting

Aurora MySQL does provide a native, in-database scheduler. It is limited to the cluster scope and can't
be used to manage multiple clusters. There are no native alerting capabilities in Aurora MySQL similar
to SQL Server Agent's Alerts.

Although AWS RDS does not currently provide an external scheduling agent like SQL Server's Agent,
CloudWatch Events provides the ability to specify a “cron-like” schedule to execute Lambda functions.
This approach requires writing custom code in C#, NodeJS, Java, or Python. Additionally, any task that
runs longer than 5 minutes will not work due to the Lambda time out limit. For example, this limit may
pose a challenge for index rebuild operations. Other options include:

1. Running an SQL Server for the sole purpose of using the Agent.

2. Using a t2 or container to schedule your code (C#, NodeJS, Java, Python) with Cron. A t2.nano is
simple to deploy and can run tasks indefinitely at a very modest cost. For most scheduling applic-
ations, the low resources should not be an issue.

Aurora MySQL Database Events

Aurora MySQL also provides a native, in-database scheduling framework that can be used to trigger
scheduled operations including maintenance tasks.

Events are executed by a dedicated thread, which can be seen in the process list. The global event_
scheduler must be turned on explicitly from it's default state of OFF for the event thread to run. Event
errors are written to the error log. Event metadata can be viewed using the INFORMATION_
SCHEMA.EVENTS view.

- 333 -

Syntax

CREATE EVENT <Event Name>
ON SCHEDULE <Schedule>
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE]
[COMMENT 'string']
DO <Event Body>;

<Schedule>:
AT <Time Stamp> [+ INTERVAL <Interval>] ...

| EVERY <Interval>
[STARTS <Time Stamp> [+ INTERVAL <Interval>] ...]
[ENDS <Time Stamp> [+ INTERVAL <Interval>] ...]

<Interval>:
quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |

WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

Examples

Create an event to collect login data statistics that runs once five hours after creation.

CREATE EVENT Update_T1_In_5_Hours
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 5 HOUR
DO

INSERT INTO LoginStatistics
 SELECT UserID,
 COUNT(*) AS LoginAttempts
 FROM Logins AS L
 GROUP BY UserID
 WHERE LoginData = '20180502';

Create an event to run every hour and delete session information older than four hours.

CREATE EVENT Clear_Old_Sessions
ON SCHEDULE

EVERY 4 HOUR
DO

DELETE FROM Sessions
 WHERE LastCommandTime < CURRENT_TIMESTAMP - INTERVAL 4 HOUR;

Schedule weekly index rebuilds and pass parameters.

CREATE EVENT Rebuild_Indexes
ON SCHEDULE

EVERY 1 WEEK
DO

CALL IndexRebuildProcedure(1, 80)

For more information, see

- 334 -

l https://dev.mysql.com/doc/refman/5.7/en/create-event.html

l https://dev.mysql.com/doc/refman/5.7/en/events-configuration.html

l https://aws.amazon.com/cloudwatch

l https://aws.amazon.com/lambda/

- 335 -

https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/events-configuration.html

Migrate from SQL Server Alerting

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l Use Event Notifications Subscription with

Amazon Simple Notification Service (SNS)

Overview

SQL Server provides SQL Server Agent to generate alerts. When running, SQL Server Agent constantly
monitors SQL Server windows application log messages, performance counters, and Windows Man-
agement Instrumentation (WMI) objects. When a new error event is detected, the agent checks the
MSDB database for configured alerts and executes the specified action.

You can define SQL Server Agent alerts for the following categories:

l SQL Server events
l SQL Server performance conditions
l WMI events

For SQL Server events, the alert options include the following settings:

l Error Number: Alert when a specific error is logged.
l Severity Level: Alert when any error in the specified severity level is logged.
l Database: Filter the database list for which the event will generate an alert.
l Event Text: Filter specific text in the event message.

Note: SQL Server agent is pre-configured with several high severity alerts. It is highly
recommended to enable these alerts.

To generate an alert in response to a specific performance condition, specify the performance counter
to be monitored, the threshold values for the alert, and the predicate for the alert to occur. The fol-
lowing list identifies the performance alert settings:

l Object: The Performance counter category or the monitoring area of performance.

l Counter: A counter is a specific attribute value of the object.

l Instance: Filter by SQL Server instance (multiple instances can share logs).

l Alert if counter and Value: The threshold for the alert and the predicate. The threshold is a
number. Predicates are Falls below, becomes equal to, or rises above the threshold.

WMI events require the WMI namespace and the WMI Query Language (WQL) query for specific events.

Alerts can be assigned to specific operators with schedule limitations and multiple response types
including:

l Execute an SQL Server Agent Job.
l Send Email, Net Send command, or a pager notification.

- 336 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/

You can configure Alerts and responses with SQL Server Management Studio or with a set of system
stored procedures.

Examples

Configure an alert for all errors with severity 20.

EXEC msdb.dbo.sp_add_alert
 @name = N'Severity 20 Error Alert',
 @severity = 20,
 @notification_message = N'A severity 20 Error has occurred. Initiating emergency pro-
cedure',
 @job_name = N'Error 20 emergency response';

For more information, see https://docs.microsoft.com/en-us/sql/ssms/agent/alerts

- 337 -

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts

Migrate to Aurora MySQL Alerting

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l Use Event Notifications Subscription with

Amazon Simple Notification Service (SNS)

Overview

Aurora MySQL does not support direct configuration of engine alerts.
Use the Event Notifications Infrastructure to collect history logs or receive event notifications in near
real-time.

Amazon Relational Database Service (RDS) uses Amazon Simple Notification Service (SNS) to provide
notifications for events. SNS can send notifications in any form supported by the region including
email, text messages, or calls to HTTP endpoints for response automation.

Events are grouped into categories. You can only subscribe to event categories, not individual events.
SNS sends notifications when any event in a category occurs.

You can subscribe to alerts for database instances, database clusters, database snapshots, database
cluster snapshots, database security groups and database parameter groups. For example, a sub-
scription to the Backup category for a specific database instance sends notifications when backup
related events occur on that instance. A subscription to a Configuration Change category for a database
security group sends notifications when the security group changes.

Note: For Amazon Aurora, some events occur at the cluster rather than instance level. You
will not receive those events if you subscribe to an Aurora DB instance.

SNS sends event notifications to the address specified when the subscription was created. Typically,
administrators create several subscriptions. For example, one subscription to receive logging events
and another to receive only critical events for a production environment requiring immediate
responses.

You can disable notifications without deleting a subscription by setting the Enabled radio button to No
in the Amazon RDS console. Alternatively, use the Command Line Interface (CLI) or RDS API to change
the Enabled setting.

Subscriptions are identified by the Amazon Resource Name (ARN) of an Amazon SNS topic. The
Amazon RDS console creates ARNs when subscriptions are created. When using the CLI or API, you
must create the ARN using the Amazon SNS console or the Amazon SNS API.

Examples

The follow walkthrough demonstrates how to create an Event Notification Subscription:

Sign into an Amazon AWS account, open the AWS Console, and navigate to the Amazon RDS page.

- 338 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://aws.amazon.com/sns/

Click Events on the left navigation pane.

If you have not previously subscribed to events, the screen will show zero events.

Click Event Subscriptions and then click CREATE EVENT SUBSCRIPTION on the top right side.

Enter Name of the subscription and select a Target of ARN or Email. For email subscriptions, enter
values for Topic name and With these recipients.

- 339 -

Select the event source and choose specific event categories. Click the drop-down menu to view the list
of available categories.

Choose the event categories to be monitored and click Create.

- 340 -

From the AWS RDS Dashboard, click the View Recent Events button.

For more information, see https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

- 341 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

Migrate from SQL Server Database Mail

Feature Compatibility SCT Automation Level SCT Action Code Index Key Differences

SCT Action Codes - Mail
l Use Lambda Integ-

ration

Overview

The Database Mail framework is an email client solution for sending messages directly from SQL
Server. Email capabilities and APIs within the database server provide easy management of the fol-
lowing messages:

l Server administration messages such as alerts, logs, status reports, and process confirmations.

l Application messages such as user registration confirmation and action verifications.

Note: Database Mail is turned off by default.

The main features of the Database Mail framework are:

l Database Mail sends messages using the standard and secure Simple Mail Transfer Protocol
(SMTP) .

l The email client engine runs asynchronously and sends messages in a separate process to min-
imize dependencies.

l Database Mail supports multiple SMTP Servers for redundancy.

l Full support and awareness of Windows Server Failover Cluster for high availability envir-
onments.

l Multi-profile support with multiple failover accounts in each profile.

l Enhanced security management with separate roles in MSDB.

l Security is enforced for mail profiles.

l Attachment sizes are monitored and can be capped by the administrator.

l Attachment file types can be blacklisted.

l Email activity can be logged to SQL Server, the Windows application event log, and to a set of sys-
tem tables in MSDB.

l Supports full auditing capabilities with configurable retention policies.

l Supports both plain text and HTML messages.

Architecture

Database Mail is built on top of the Microsoft SQL Server Service Broker queue management frame-
work.

- 342 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html

The system stored procedure sp_send_dbmail sends email messages. When this stored procedure is
executed, it inserts an row to the mail queue and records the Email message.

The queue insert operation triggers execution of the Database Mail process (DatabaseMail.exe). The
Database Mail process then reads the Email information and sends the message to the SMTP servers.

When the SMTP servers acknowledge or reject the message, the Database Mail process inserts a status
row into the status queue, including the result of the send attempt. This insert operation triggers the
execution of a system stored procedure that updates the status of the Email message send attempt.

Database Mail records all Email attachments in the system tables. SQL Server provides a set of system
views and stored procedures for troubleshooting and administration of the Database Mail queue.

Deprecated SQL Mail framework

The old SQL Mail framework using xp_sendmail has been deprecated as of SQL Server 2008R2 in
accordance with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729
(v=sql.105).

The legacy mail system has been completely replaced by the greatly enhanced DB mail framework
described here. The old system has been out-of-use for many years because it was prone to syn-
chronous execution issues and windows mail profile quirks.

Syntax

EXECUTE sp_send_dbmail
[[,@profile_name =] '<Profile Name>']
[,[,@recipients =] '<Recipients>']
[,[,@copy_recipients =] '<CC Recipients>']
[,[,@blind_copy_recipients =] '<BCC Recipients>']
[,[,@from_address =] '<From Address>']
[,[,@reply_to =] '<Reply-to Address>']
[,[,@subject =] '<Subject>']
[,[,@body =] '<Message Body>']
[,[,@body_format =] '<Message Body Format>']
[,[,@importance =] '<Importance>']
[,[,@sensitivity =] '<Sensitivity>']
[,[,@file_attachments =] '<Attachments>']
[,[,@query =] '<SQL Query>']
[,[,@execute_query_database =] '<Execute Query Database>']
[,[,@attach_query_result_as_file =] <Attach Query Result as File>]
[,[,@query_attachment_filename =] <Query Attachment Filename>]
[,[,@query_result_header =] <Query Result Header>]
[,[,@query_result_width =] <Query Result Width>]
[,[,@query_result_separator =] '<Query Result Separator>']
[,[,@exclude_query_output =] <Exclude Query Output>]
[,[,@append_query_error =] <Append Query Error>]
[,[,@query_no_truncate =] <Query No Truncate>]
[,[,@query_result_no_padding =] @<Parameter for Query Result No Padding>]
[,[,@mailitem_id =] <Mail item id>] [,OUTPUT]

- 343 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

Examples

Create a Database Mail account.

EXECUTE msdb.dbo.sysmail_add_account_sp
@account_name = 'MailAccount1',
@description = 'Mail account for testing DB Mail',
@email_address = 'Address@MyDomain.com',
@replyto_address = 'ReplyAddress@MyDomain.com',
@display_name = 'Mailer for registration messages',
@mailserver_name = 'smtp.MyDomain.com' ;

Create a Database Mail profile.

EXECUTE msdb.dbo.sysmail_add_profile_sp
@profile_name = 'MailAccount1 Profile',
@description = 'Mail Profile for testing DB Mail' ;

Associate the account with the profile.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_name = 'MailAccount1 Profile',
@account_name = 'MailAccount1',
@sequence_number =1 ;

Grant the profile access to DBMailUsers role.

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
@profile_name = 'MailAccount1 Profile',
@principal_name = 'ApplicationUser',
@is_default = 1 ;

Send a message with sp_db_sendmail.

EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'MailAccount1 Profile',
@recipients = 'Recipient@Mydomain.com',
@query = 'SELECT * FROM fn_WeeklySalesReport(GETDATE())',
@subject = 'Weekly Sales Report',
@attach_query_result_as_file = 1 ;

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/data-
base-mail

- 344 -

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail
https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail

Migrate to Aurora MySQL Database Mail

Feature Compatibility SCT Automation Level SCT Action Code Index Key Differences

SCT Action Codes - Mail
l Use Lambda Integ-

ration

Overview

Aurora MySQL does not provide native support sending mail from the database.

For alerting purposes, use the Event Notification Subscription feature to send email notifications to
operators.
For more information, see Alerting.

For application email requirements, consider using a dedicated email framework. If the code gen-
erating email messages must be in the database, consider using a queue table. Replace all occurrences
of sp_send_dbmail with an INSERT into the queue table. Design external applications to connect, read
the queue, send email an message, and then update the status periodically. With this approach, mes-
sages can be populated with a query result similar to sp_send_dbmail with the query option.

The only way to sent Email from the database, is to use the LAMBDA integration.

For more information about Lambda, see https://aws.amazon.com/lambda.

Examples

Sending an Email from Aurora MySQL via Lambda Integration

See the walkthrough on https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html

- 345 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Integrating.Lambda.html

Migrate from SQL Server ETL

Feature Com-
patibility

SCT Automation Level
SCT Action Code
Index

Key Differences

N/A N/A
l Use Amazon Glue for

ETL

Overview

SQL Server offers a native Extract, Transform, and Load (ETL) framework of tools and services to sup-
port enterprise ETL requirements. The legacy Data Transformation Services (DTS) has been deprecated
as of SQL Server 2008 (see https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/c-
c707786(v=sql.105)) and replaced with SQL Server Integration Services (SSIS), which was introduced with
SQL Server 2005.

DTS

DTS was introduced in SQL Server version 7 in 1998. It was significantly expanded in SQL Server 2000
with features such as FTP, database level operations, and Microsoft Message Queuing (MSMQ) integ-
ration. It included a set of objects, utilities, and services that enabled easy, visual construction of com-
plex ETL operations across heterogeneous data sources and targets.

DTS supported OLE DB, ODBC, and text file drivers. It allowed transformations to be scheduled using
SQL Server Agent. DTS also provided version control and backup capabilities with version control sys-
tems such as Microsoft Visual SourceSafe.

The fundamental entity in DTS was the DTS Package. Packages were the logical containers for DTS
objects such as connections, data transfers, transformations, and notifications. The DTS framework
also included the following tools:

l DTS Wizards

l DTS Package Designers

l DTS Query Designer

l DTS Run Utility

SSIS

The SSIS framework was introduced in SQL Server 2005, but was limited to the top-tier editions only,
unlike DTS which was available with all editions.

SSIS has evolved over DTS to offer a true modern, enterprise class, heterogeneous platform for a
broad range of data migration and processing tasks. It provides a rich workflow oriented design with
features for all types of enterprise data warehousing. It also supports scheduling capabilities for multi-
dimensional cubes management.

SSIS Provides the following tools:

- 346 -

https://aws.amazon.com/glue/
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)

l SSIS Import/Export Wizard is an SQL Server Management Studio extension that enables quick
creation of packages for moving data between a wide array of sources and destinations.
However, it has limited transformation capabilities.

l SQL Server Business Intelligence Development Studio (BIDS) is a developer tool for creating
complex packages and transformations. It provides the ability to integrate procedural code into
package transformations and provides a scripting environment. Recently, BIDS has been
replaced by SQL Server Data Tools - Business intelligence (SSDT-BI).

SSIS objects include:

l Connections

l Event handlers

l Workflows

l Error handlers

l Parameters (Beginning with SQL Server 2012)

l Precedence constraints

l Tasks

l Variables

SSIS packages are constructed as XML documents and can be saved to the file system or stored within
a SQL Server instance using a hierarchical name space.

For more information, see

l https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services

l https://en.wikipedia.org/wiki/Data_Transformation_Services

- 347 -

Migrate to Aurora MySQL ETL

Feature Com-
patibility

SCT Automation Level
SCT Action Code
Index

Key Differences

N/A N/A
l Use Amazon Glue for

ETL

Overview

Aurora MySQL provides Amazon Glue for enterprise class Extract, Transform, and Load (ETL). It is a
fully managed service that performs data cataloging, cleansing, enriching, and movement between het-
erogeneous data sources and destinations. Being a fully managed service, the user does not need to
be concerned with infrastructure management.

Amazon Glue Key Features

Integrated Data Catalog

The Amazon Glue Data Catalog is a persistent metadata store,that can be used to store all data assets,
whether in the cloud or on-premises. It stores table schemas, job steps, and additional meta data
information for managing these processes. Amazon Glue can automatically calculate statistics and
register partitions in order to make queries more efficient. It maintains a comprehensive schema ver-
sion history for tracking changes over time.

Automatic Schema Dfiscovery

Amazon Glue provides automatic crawlers that can connect to source or target data providers. The
crawler uses a prioritized list of classifiers to determine the schema for your data and then generates
and stores the metadata in the Amazon Glue Data Catalog. Crawlers can be scheduled or executed on-
demand. You can also trigger a crawler when an event occurs to keep metadata current.

Code Generation

Amazon Glue automatically generates the code to extract, transform, and load data. All you need to do
is point Glue to your data source and target. The ETL scripts to transform, flatten, and enrich data are
created automatically. Amazon Glue scripts can be generated in Scala or Python and are written for
Apache Spark.

Developer Endpoints

When interactively developing Glue ETL code, Amazon Glue provides development endpoints for edit-
ing, debugging, and testing. You can use any IDE or text editor for ETL development. Custom readers,
writers, and transformations can be imported into Glue ETL jobs as libraries. You can also use and
share code with other developers in the Amazon Glue GitHub repository (see https://-
github.com/awslabs/aws-glue-libs).

- 348 -

https://aws.amazon.com/glue/
https://aws.amazon.com/glue
https://github.com/awslabs/aws-glue-libs
https://github.com/awslabs/aws-glue-libs

Flexible Job Scheduler

Amazon Glue jobs can be triggered for execution either on a pre-defined schedule, on-demand, or as a
response to an event.

Multiple jobs can be started in parallel and dependencies can be explicitly defined across jobs to build
complex ETL pipelines. Glue handles all inter-job dependencies, filters bad data, and retries failed
jobs. All logs and notifications are pushed to Amazon CloudWatch; you can monitor and get alerts
from a central service.

Migration Considerations

Currently, there are no automatic tools for migrating ETL packages from DTS or SSIS into Amazon
Glue. Migration from SQL Server to Aurora MySQL requires rewriting ETL processes to use Amazon
Glue.

Alternatively, consider using an EC2 SQL Server instance to run the SSIS service as an interim solution.
The connectors and tasks must be revised to support Aurora MySQL instead of SQL Server, but this
approach allows gradual migration to Amazon Glue.

Examples

The following walkthrough describes how to create an Amazon Glue job to upload a CSV file from S3 to
Aurora MySQL.

The source file for this walkthrough is a simple Visits table in CSV format. The objective is to upload
this file to an S3 bucket and create a Glue job to discover and copy it into an Aurora MySQL database.

- 349 -

Step 1 - Create a Bucket in Amazon S3 and Upload the CSV File

Navigate to the S3 management console page https://s3.console.aws.amazon.com/s3/home and click
Create Bucket.

Note: This walkthrough demonstrates how to create the buckets and upload the files
manually, which is automated using the S3 API for production ETLs. Using the console to
manually execute all the settings will help you get familiar with the terminology, concepts,
and work flow.

- 350 -

https://s3.console.aws.amazon.com/s3/home

In the create bucket wizard, enter a unique name for the bucket, select a region and click Next.

Configure the options. For this walkthrough, skip this phase and click Next.

- 351 -

On the Set Permissions page, configure access permissions to allow public access to the visits file and
click Next.

- 352 -

Review your settings and click Create Bucket.

- 353 -

On the S3 Management Console, click the newly created bucket.

On the bucket page, click Upload.

- 354 -

On the upload page, either "drag and drop" or use the Add Files button to select the upload files. Click
Next.

Set the required permissions and click Next. For this walk-through, allow public access to the visits
file. Click Next.

- 355 -

On the Set Properties page, select the required options. For this walk-through, skip this step. Click
Next.

- 356 -

Review the settings and click Upload.

- 357 -

Ensure the file uploads successfully and appears in the file list for the bucket.

Step 2 - Add an Amazon Glue Crawler to Discover and Catalog the Visits File

Navigate to the Amazon Glue management console page at https://-
console.aws.amazon.com/glue/home.

- 358 -

https://console.aws.amazon.com/glue/home
https://console.aws.amazon.com/glue/home

Click Add tables using a crawler. Alternatively, click the Crawlers navigation link on the left and then
click Add Crawler.

Provide a descriptive name for the crawler and click Next.

Leave the default S3 data store and choose whether the file is in a path in your account or another
account. For this example, the path is in my account and specified in the Include path text box. Click
Next.

Note: Click the small folder icon to the right of the Include path text box to open a visual
folder hierarchy navigation window.

- 359 -

Select whether the crawler accesses another data store or not. For this example only uses the visits file.
Click Next.

The IAM role window allows selection of the security context the crawler uses to execute. You can
choose an existing role, update an existing policy, or create a new role. For this example, create a new
role. Click Next.

- 360 -

Choose the crawler schedule and frequency. For this example, use Run on demand. Click Next.

Click Add database and provide a name for the new catalog database. Enter an optional table prefix
for easy reference. Click Next.

- 361 -

Review your entries and click Finish to create the crawler.

- 362 -

Step 3 - Run the Crawler

Navigate to the Crawlers page on the glue management console https://-
console.aws.amazon.com/glue/home?catalog:tab=crawlers.

Since you just created a new crawler, a message box asks if you want to run it now. You can click the
link or check the check-box near the crawler's name and click the Run crawler button.

- 363 -

https://console.aws.amazon.com/glue/home?catalog:tab=crawlers
https://console.aws.amazon.com/glue/home?catalog:tab=crawlers

After the crawler completes, the Visits table should be discovered and recorded in the catalog in the
table specified.

The following message box appears on the page:

Click the link to get to the table that was just discovered and then click the table name.

Verify the crawler identified the table's properties and schema correctly.

- 364 -

Note: You can manually adjust the properties and schema JSON files using the buttons on
the top right.

Optional - Add Tables Manually

If you don't want to add a crawler, you can add tables manually.

Navigate to https://console.aws.amazon.com/glue/home, the default page is the Tables page. Click Add
tables and select Add table manually.

- 365 -

https://console.aws.amazon.com/glue/home

The process is similar the one used for the crawler.

Step 4 - Create an ETL Job to Copy the Visits Table to an Aurora MySQL Database.

Navigate to the Amazon Glue ETL Jobs page at https://-
console.aws.amazon.com/glue/home?etl:tab=jobs. Since this is the first job, the list is empty. Click Add
Job.

Enter a name for the ETL job and pick a role for the security context. For this example, use the same
role created for the crawler. The job may consist of a pre-existing ETL script, a manually-authored
script , or an automatic script generated by Amazon Glue. For this example, use Amazon Glue. Enter a
name for the script file or accept the default, which is also the job's name. Configure advanced prop-
erties and parameters if needed and click Next.

- 366 -

https://console.aws.amazon.com/glue/home?etl:tab=jobs
https://console.aws.amazon.com/glue/home?etl:tab=jobs

Select the data source for the job (in this example, there is only one). Click Next.

On the Data Target page, select Create tables in your data target, use the JDBC Data store, and the
gluerds connection type. Click Add Connection.

- 367 -

On the Add connection page, enter the access details for the Aurora Instance and lick Add.

- 368 -

Click Next to display the column mapping between the source and target. For this example, leave the
default mapping and data types. Click Next.

Review the job properties and click Save job and edit script.

- 369 -

Review the generated script and make manual changes as needed. You can use the built-in templates
for source, target, target location, transform, and spigot using the buttons at the top right section of
the screen.

For this example, run the script as-is. Click Run Job.

- 370 -

The optional parameters window displays. Click Run Job.

Navigate back to the glue management console jobs page at https://-
console.aws.amazon.com/glue/home?etl:tab=jobs.

On the history tab, verify the job status as Succeeded and view the logs if needed.

- 371 -

https://console.aws.amazon.com/glue/home?etl:tab=jobs
https://console.aws.amazon.com/glue/home?etl:tab=jobs

Now open your query IDE, connect to the Aurora MySQL cluster, and query the visits database to make
sure the data has been transferred successfully.

For more information, see

- 372 -

l https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

l https://aws.amazon.com/glue/developer-resources/

- 373 -

https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://aws.amazon.com/glue/developer-resources/

Migrate from SQL Server Viewing Server Logs

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l View logs from the Amazon RDS console,

the Amazon RDS API, the AWS CLI, or the
AWS SDKs

Overview

SQL Server logs system and user generated events to the SQL Server Error Log and to the Windows Applic-
ation Log. It logs recovery messages, kernel messages, security events, maintenance events, and other
general server level error and informational messages. The Windows Application Log contains events
from all windows applications including SQL Server and SQL Server agent.

SQL Server Management Studio Log Viewer unifies all logs into a single consolidated view. You can also
view the logs with any text editor.

Administrators typically use the SQL Server Error Log to confirm successful completion of processes,
such as backup or batches, and to investigate the cause of run time errors. These logs can help detect
current risks or potential future problem areas.

To view the log for SQL Server, SQL Server Agent, Database Mail, and Windows applications, open the
SQL Server Management Studio Object Explorer pane, navigate to Management > SQL Server Logs
, and double click the current log.

The following table identifies some common error codes database administrators typically look for in
the error logs:

Error Code Error Message

1105 Could not allocate space

3041 Backup Failed

9002 Transaction Log Full

14151 Replication agent failed

17053 Operating System Error

18452 Login Failed

9003 Possible database corruption

Examples

The following screenshot shows typical Log File Viewer content:

- 374 -

For more information, see https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-
error-logs

- 375 -

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs
https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs

Migrate to Aurora MySQL Viewing Server Logs

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A
l View logs from the Amazon RDS console,

the Amazon RDS API, the AWS CLI, or the
AWS SDKs

Overview

Aurora MySQL provides administrators with access to the MySQL error log, slow query log, and the gen-
eral log.

The MySQL Error Log is generated by default. To generate the slow query and general logs, set the cor-
responding parameters in the database parameter group.
For more details about parameter groups, see Server Options.

You can view Aurora MySQL logs directly from the Amazon RDS console, the Amazon RDS API, the AWS
CLI, or the AWS SDKs. You can also direct the logs to a database table in the main database and use
SQL queries to view the data. To download a binary log, use the mysqlbinlog utility.

The system writes error events to the the mysql-error.log file, which you can view using the Amazon
RDS console. Alternatively, you can use the Amazon RDS API, the Amazon RDS CLI, or the AWS SDKs-
retrieve to retrieve the log.

mysql-error.log buffers are flushed every five minutes and are appended to the filemysql-error-run-
ning.log. The mysql-error-running.log file is rotated every hour and retained for 24 hours.

Aurora MySQL writes to the error log only on server startup, server shutdown, or when an error occurs.
A database instance may run for long periods without generating log entries.

You can enable and configure the Aurora MySQL Slow Query and general logs to write log entries to a
file or a database table by setting the corresponding parameters in the database parameter group. The
following list identifies he parameters that control the log options:

l slow_query_log: Set to 1 to create the Slow Query Log. The default is 0.

l general_log: Set to 1 to create the General Log. The default is 0.

l long_query_time: Specify a value in seconds for the shortest query execution time to be logged.
The default is 10 seconds; the minimum is 0.

l log_queries_not_using_indexes: Set to 1 to log all queries not using indexes to the slow query
log. The default is 0. Queries using indexes are logged even if their execution time is less than
the value of the long_query_time parameter.

l log_output option: Specify one of the following options:

l TABLE (default):Write general queries to the mysql.general_log table and slow queries to
the mysql.slow_log table

- 376 -

l FILE: Write both general and slow query logs to the file system. Log files are rotated hourly.

l NONE: Disable logging.

Examples

The following walkthrough demonstrates how to view the Aurora MySQL error logs in the RDS console.

Using a web browser, navigate to https://console.aws.amazon.com/rds/home and click Instances.

Click the instance for which you want to view the error log.

Scroll down to the logs section and click the log name.

- 377 -

https://console.aws.amazon.com/rds/home

The log viewer displays the log content.

For more information, see https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAc-
cess.Concepts.MySQL.html

- 378 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html

Migrate from SQL Server Maintenance Plans

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A

l Backups via the RDS ser-
vices

l Table maintenance via
SQL

Overview

A Maintenance plan is a set of automated tasks used to optimize a database, performs regular
backups, and ensure it is free of inconsistencies. Maintenance plans are implemented as SQL Server
Integration Services (SSIS) packages and are executed by SQL Server Agent jobs. They can be run manu-
ally or automatically at scheduled time intervals.

SQL Server provides a variety of pre-configured maintenance tasks. You can create custom tasks using
T-SQL scripts or operating system batch files.

Maintenance plans are typically used for the following tasks:

l Backing up database and transaction log files.

l Performing cleanup of database backup files in accordance with retention policies.

l Performing database consistency checks.

l Rebuilding or reorganizing indexes.

l Decreasing data file size by removing empty pages (shrink a database).

l Updating statistics to help the query optimizer obtain updated data distributions.

l Running SQL Server Agent jobs for custom actions.

l Executing a T-SQL task.

Maintenance plans can include tasks for operator notifications and history/maintenance cleanup. They
can also generate reports and output the contents to a text file or the maintenance plan tables in
msdb.

Maintenance plans can be created and managed using the maintenance plan wizard in SQL Server Man-
agement Studio, Maintenance Plan Design Surface (provides enhanced functionality over the wizard),
Management Studio Object Explorer, and T-SQL system stored procedures.

For more information about SQL Server Agent migration, see SQL Server Agent.

Deprecated DBCC Index and Table Maintenance Commands

The DBCC DBREINDEX, INDEXDEFRAG, and SHOWCONTIG commands have been deprecated as of SQL
Server 2008R2 in accordance with https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-

- 379 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

2008-r2/ms143729(v=sql.105).

In place of the deprecated DBCC, SQL Server provides newer syntax alternatives as detailed in the fol-
lowing table.

Deprecated DBCC Command Use Instead

DBCC DBREINDEX ALTER INDEX ... REBUILD

DBCC INDEXDEFRAG ALTER INDEX ... REORGANIZE

DBCC SHOWCONTIG sys.dm_db_index_physical_stats

For the Aurora MySQL alternatives to these maintenance commands, see Aurora MySQL Maintenance
Plans.

Examples

Enable Agent XPs, which are disabled by default.

EXEC [sys].[sp_configure] @configname = 'show advanced options', @configvalue = 1
RECONFIGURE ;

EXEC [sys].[sp_configure] @configname = 'agent xps', @configvalue = 1
RECONFIGURE;

Create a T-SQL maintenance plan for a single index rebuild .

USE msdb;

Add the Index Maintenance IDX1 job to SQL Server Agent.

EXEC dbo.sp_add_job @job_name = N'Index Maintenance IDX1', @enabled = 1, @description
= N'Optimize IDX1 for INSERT' ;

Add the T-SQL job step Rebuild IDX1 to 50 percent fill.

EXEC dbo.sp_add_jobstep @job_name = N'Index Maintenance IDX1', @step_name = N'Rebuild
IDX1 to 50 percent fill', @subsystem = N'TSQL',
@command = N'Use MyDatabase; ALTER INDEX IDX1 ON Shcema.Table REBUILD WITH (FILL_
FACTOR = 50), @retry_attempts = 5, @retry_interval = 5;

Add a schedule to run every day at 01:00 AM.

EXEC dbo.sp_add_schedule @schedule_name = N'Daily0100', @freq_type = 4, @freq_interval
= 1, @active_start_time = 010000;

Associate the schedule Daily0100 with the job Index Maintenance IDX1.

EXEC sp_attach_schedule @job_name = N'Index Maintenance IDX1' @schedule_name =
N'Daily0100' ;

- 380 -

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/-
maintenance-plans

- 381 -

https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans
https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans

Migrate to Aurora MySQL Maintenance Plans

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A

l Backups via the RDS ser-
vices

l Table maintenance via
SQL

Overview

Amazon RDS performs automated database backups by creating storage volume snapshots that back
up entire instances, not individual databases.

RDS creates snapshots during the backup window for individual database instances and retains snap-
shots in accordance with the backup retention period. You can use the snapshots to restore a database
to any point in time within the backup retention period.

Note: The state of a database instance must be ACTIVE for automated backups to occur.

You can backup database instances manually by creating an explicit database snapshot. Use the AWS
console, the AWS CLI, or the AWS API to take manual snapshots.

Examples

Create a Manual Database Snapshot Using the RDS Console

Login to the RDS console and click DB Instances.

Click the Instance to create a snapshot of.

- 382 -

Click Instance Actions and select Take Snapshot.

Enter Snapshot name and click the Take Snapshot button.

Viewing and Restoring Snapshots on RDS console

Login to the RDS console and click Snapshots.

- 383 -

Click the snapshot to restore.

Click Actions and then click Restore Snapshot. A snapshot restore operation does not overwrite the
database instance; it creates a new snapshot.

Enter the Instance specifications and click the Restore DB instance button at the bottom of the
page.

- 384 -

You can also restore a database instance to a point-in-time. For more details see Backup and Restore.

For all other tasks, use a third-party or a custom application scheduler.

Rebuild and Reorganize an Index

Aurora MySQL supports the OPTIMIZE TABLE command, which is similar to the REORGANIZE option of
SQL Server indexes.

OPTIMIZE TABLE MyTable;

To perform a full table rebuild with all secondary indexes, perform a null altering action using either
ALTER TABLE <table> FORCE or ALTER TABLE <table> ENGINE = <current engine>.

ALTER TABLE MyTable FORCE;

ALTER TABLE MyTable ENGINE = InnoDB

Perform Database Consistency Checks

Use the CHECK TABLE command to perform a database consistency check.

CHECK TABLE <table name> [FOR UPGRADE | QUICK]

The FOR UPGRADE option checks if the table is compatible with the current version of MySQL fto
determine whether there have been any incompatible changes in any of the table's data types or
indexes since the table was created. The QUICK options does not scan the rows to check for incorrect
links.

For routine checks of a table, use the QUICK option.

Note: In most cases, Aurora MySQL will find all errors in the data file. When an error is
found, the table is marked as “corrupted” and cannot be used until it is repaired.

- 385 -

Converting Deprecated DBCC Index and Table Maintenance Commands

Deprecated DBCC Command Aurora MySQL Equivalent

DBCC DBREINDEX ALTER TABLE ... FORCE

DBCC INDEXDEFRAG OPTIMIZE TABLE

DBCC SHOWCONTIG CHECK TABLE

Decrease Data File Size by Removing Empty Pages (shrink database)

Unlike SQL Server that uses a single set of files for an entire database, Aurora MySQL uses one file for
each database table. Therefore you do not need to shrink an entire database.

Update Statistics to Help the Query Optimizer Get Updated Data Distribution

Aurora MySQL uses both persistent and non-persistent table statistics. Non-persistent statistics are
deleted on server restart and after some operations. The statistics are then recomputed on the next
table access. Therefore, different estimates could be produced when recomputing statistics leading to
different choices in execution plans and variations in query performance.

Persistent optimizer statistics survive server restarts and provide better plan stability resulting in more
consistent query performance. Persistent optimizer statistics provide the following control and flex-
ibility options:

l Set the innodb_stats_auto_recalc configuration option to control whether statistics are updated
automatically when changes to a table cross a threshold.

l Set the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses with
CREATE TABLE and ALTER TABLE statements to configure custom statistics settings for individual
tables.

l View optimizer statistics in the mysql.innodb_table_stats and mysql.innodb_index_stats tables.

l View the last_update column of the mysql.innodb_table_stats and mysql.innodb_index_stats
tables to see when statistics were last updated.

l Modify the mysql.innodb_table_stats and mysql.innodb_index_stats tables to force a specific
query optimization plan or to test alternative plans without modifying the database.

For more information, see Managing Statistics.

Summary

The following table summarizes the key tasks that use SQL Server maintenance Plans and a com-
parable Aurora MySQL solutions.

Task SQL Server Aurora MySQL Comments

Rebuild or reorganize indexes
ALTER INDEX /
ALTER TABLE

OPTIMIZE TABLE / ALTER TABLE

- 386 -

Task SQL Server Aurora MySQL Comments

Decrease data file size by
removing empty pages

DBCC
SHRINKDATABASE
/ DBCC
SHRINKFILE

Files are per table; not per data-
base. Rebuilding a table optim-
izes file size.

Not
needed

Update statistics to help the
query optimizer get updated
data distribution

UPDATE
STATISTICS / sp_
updatestats

Set innodb_stats_auto_recalc to
ON in the instance global para-
meter group.

Perform database consistency
checks

DBCC CHECKDB /
DBCC
CHECKTABLE

CHECK TABLE

Back up the database and trans-
action log files

BACKUP
DATABASE /
BACKUP LOG

Automated backups + snap-
shots

See
Backup
and
Restore

Run SQL Server Agent jobs for
custom actions

sp_start_job,
scheduled

Not supported

For more information, see:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Work-
ingWithAutomatedBackups.html

l https://dev.mysql.com/doc/refman/5.6/en/check-table.html

- 387 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://dev.mysql.com/doc/refman/5.6/en/check-table.html

Migrate from SQL Server Monitoring

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Amazon Cloud Watch

service

Overview

Monitoring server performance and behavior is a critical aspect of maintaining service quality and
includes ad hoc and ongoing collection of data; root cause analysis; and preventative or reactive
actions. SQL Server provides an array of interfaces to monitor and collect server data.

Windows Operating System Level Tools

The Windows Scheduler can be used to trigger execution of script files to collect, store, and process
performance data.

System Monitor is a graphical tool for measuring and recording performance of SQL Server and other
windows related metrics using the Windows Management Interface (WMI) performance objects.

Note: Performance objects can also be accessed directly from T-SQL using the system func-
tion sys.dm_os_performance_counters.

Performance counters exist for both real time measurements such as CPU Utilization and for aggreg-
ated history such as average active transactions.
For a full list of the object hierarchy, see https://docs.microsoft.com/en-us/sql/relational-data-
bases/performance-monitor/use-sql-server-objects

SQL Server Extended Events

SQL Server's latest tracing framework provides very lightweight and robust event collection and stor-
age. SQL Server management Studio features the New Session Wizard and New Session graphic user
interfaces for managing and analyzing captured data. SQL Server Extended Events consists of the fol-
lowing items:

l SQL Server Extended Events Package is a logical container for Extended Events objects.

l SQL Server Extended Events Targets are consumers of events. Targets include Event File, which
writes data to the file Ring Buffer for retention in memory, or for processing aggregates such as
Event Counters and Histograms.

l SQL Server Extended Events Engine is a collection of services and tools that comprise the
framework.

l SQL Server Extended Events Sessions are logical containers mapped many-to-many with pack-
ages events, and filters.

The following example creates a session that logs lock escalations and lock timeouts to a file:

- 388 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects

CREATE EVENT SESSION Locking_Demo
ON SERVER

ADD EVENT sqlserver.lock_escalation,
ADD EVENT sqlserver.lock_timeout,
ADD TARGET package0.etw_classic_sync_target

(SET default_etw_session_logfile_path = N'C:\ExtendedEvents\Locking\Demo_
20180502.etl')

WITH (MAX_MEMORY=8MB, MAX_EVENT_SIZE=2MB);
GO

SQL Server Tracing Framework and the SQL Server Profiler Tool

The SQL Server trace framework is the predecessor to the Extended Events framework and remains
popular among database administrators. The lighter and more flexible Extended Events Framework is
recommended for development of new monitoring functionality.

SQL Server Management Studio

SQL Server management studio provides several monitoring extensions:

l SQL Server Activity Monitor is an in-process, real-time, basic high level information graphical
tool.

l Query Graphical Show Plan provides easy exploration of estimated and actual query execution
plans.

l Query Live Statistics displays query execution progress in real time.

l Replication Monitor and Log Shipping Monitor

l Standard Performance Reports

T-SQL

From the T-SQL interface, SQL Server provides many system stored procedures, system views, and
functions for monitoring data.

System stored procedures such as sp_who and sp_lock provide real-time information. sp_monitor
provides aggregated data.

Built in functions such as @@CONNECTIONS, @@IO_BUSY, @@TOTAL_ERRORS, and others provide
high level server information.

A rich set of System Dynamic Management functions and views are provided for monitoring almost
every aspect of the server. These functions reside in the sys schema and are prefixed with dm_string.
For more information about Dynamic Management Views, see https://docs.microsoft.com/en-us/sql/re-
lational-databases/system-dynamic-management-views/system-dynamic-management-views

Trace Flags

Trace flags can be set to log events. For example, set trace flag 1204 to log deadlock information.

- 389 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views

SQL Server Query Store

Query Store is a database level framework supporting automatic collection of queries, execution plans,
and run time statistics. This data is stored in system tables and can be used to diagnose performance
issues, understand patterns, and understand trends. It can also be set to automatically revert plans
when a performance regression is detected.

In addition, it is common for SQL Server administrators to use third-party tools — most of which build
on the existing native monitoring framework — and add historical, analytical, exploratory features,
and automatic advisers.

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitor-
and-tune-for-performance

- 390 -

https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitor-and-tune-for-performance
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitor-and-tune-for-performance

Migrate to Aurora MySQL Monitoring

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Amazon Cloud Watch

service

Overview

The native features for monitoring MySQL databases such as innodb logging and the performance
schema are disabled for Aurora MySQL. Most third-party tools that rely on these features cannot be
used. Some vendors provide monitoring services specifically for Aurora MySQL.

However, Amazon RDS provide a very rich monitoring infrastructure for Aurora MySQL clusters and
instances with the native Cloud Watch service.

These services are improved frequently.

See the following up-to-date articles, which include examples and walkthroughs for monitoring Aurora
MySQL clusters and instances:

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

l https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

- 391 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

Migrate from SQL Server Resource Governor

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Per User Resource

limit

Overview

SQL Server Resource Governor provides the capability to control and manage resource consumption.
Administrators can specify and enforce workload limits on CPU, physical I/O, and Memory. Resource
configurations are dynamic and can be changed in real time.

Use Cases

The following list identifies typical Resource Governor use cases:

l Minimize performance bottlenecks and inconsistencies to better support Service Level Agree-
ments (SLA) for multiple workloads and users.

l Protect against runaway queries that consume a large amount of resources or explicitly
throttle I/O intensive operations. For example, consistency checks with DBCC that may bot-
tleneck the I/O subsystem and negatively impact concurrent workloads.

l Allow tracking and control for resource-based pricing scenarios to improve predictability of
user charges.

Concepts

The three basic concepts in Resource Governor are Resource Pools, Workload Groups, and Classification.

l Resource Pools represent physical resources. Two built-in resource pools, internal and default,
are created when SQL Server is installed. You can create custom user-defined resource pools for
specific workload types.

l Workload Groups are logical containers for session requests with similar characteristics. Work-
load Groups allow aggregate resource monitoring of multiple sessions. Resource limit policies
are defined for a Workload Group. Each Workload Group belongs to a Resource Pool.

l Classification is a process that inspects incoming connections and assigns them to a specific
Workload Group based on the common attributes. User-defined functions are used to imple-
ment Classification. For more information, see User Defined Functions.

Examples

Enable the Resource Governor.

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Resource Pool.

- 392 -

https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits

CREATE RESOURCE POOL ReportingWorkloadPool
WITH (MAX_CPU_PERCENT = 20);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Workload Group.

CREATE WORKLOAD GROUP ReportingWorkloadGroup USING poolAdhoc;

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a classifier function.

CREATE FUNCTION dbo.WorkloadClassifier()
RETURNS sysname WITH SCHEMABINDING
AS
BEGIN
RETURN (CASE

 WHEN HOST_NAME()= 'ReportServer'
 THEN 'ReportingWorkloadGroup'
 ELSE 'Default'
 END)
END;

Register the classifier function.

ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.WorkloadClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/resource-gov-
ernor/resource-governor

- 393 -

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

Migrate to Aurora MySQL Resource Governor

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Use Per User Resource

limit

Overview

Aurora MySQL does not support a server-wide, granular, resource-based, workload resource isolation
and management capability similar to SQL Server's Resource Governor. However, Aurora MySQL does
support the feature User Resource Limit Options that you can use to achieve similar high-level func-
tionality for limiting resource consumption of user connections.

You can specify User Resource Limit Options as part of the CREATE USER statement to place the fol-
lowing limits on users:

l The number of total queries/hour an account is allowed to issue.

l The number of updates/hour an account is allowed to issue .

l The number of times/hour an account can establish a server connection.

l The total number of concurrent server connections allowed for the account.

For more information about Aurora MySQL users and roles, see Users and Roles.

Syntax

CREATE USER <User Name> ...
WITH
MAX_QUERIES_PER_HOUR count |
MAX_UPDATES_PER_HOUR count |
MAX_CONNECTIONS_PER_HOUR count |
MAX_USER_CONNECTIONS count

Migration Considerations

Although both SQL Server Resource Manager and Aurora MySQL User Resource Limit Options provide
the same basic function — limiting the amount of resources for distinct types of workloads — they dif-
fer significantly in scope and flexibility.

SQL Server's Resource Manager is a dynamically configured independent framework based on actual
run-time resource consumption. User Resource Limit Options are defined as part of the security
objects and requires application connection changes to map to limited users. To modify these limits,
you must alter the user object.

- 394 -

https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits

User Resource Limit Options do not allow limiting workload activity based on actual resource con-
sumption, but rather provides a quantitative limit for the number of queries or number of con-
nections. A runaway query that consumes a large amount of resources may slow down the server.

Another important difference is how exceeded resource limits are handled. SQL Server Resource
Governor throttles execution; Aurora MySQL raises errors.

Examples

Create a resource-limited user.

CREATE USER 'ReportUsers'@'localhost'
IDENTIFIED BY 'ReportPassword'
WITH
MAX_QUERIES_PER_HOUR 60
MAX_UPDATES_PER_HOUR 0
MAX_CONNECTIONS_PER_HOUR 5
MAX_USER_CONNECTIONS 2;

Summary

Feature
SQL Server Resource
Governor

Aurora MySQL User
Resource Limit
Options

Comments

Scope

Dynamic workload
pools and workload
groups, mapped to
aclassifier function

Per user
Application connection
strings need to use spe-
cific limited users.

Limited resources IO, CPU, and Memory
Number of queries,
number of con-
nections

Modifying limits
ALTER RESOURCE
POOL

ALTER USER
Application may use a
dynamic connection
string.

When resource
threshold limit is
reached

Throttles and queues
execution

Raises an error
Application retry logic
may need to be added.

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
l https://dev.mysql.com/doc/refman/5.7/en/user-resources.html

- 395 -

https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html

Migrate from SQL Server Linked Servers

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Linked
Servers

l Data transfer across schemas only, use a
custom application solution to access
remote instances

Overview

Linked servers in SQL Server are used to enable the database engine to connect to external Object Link-
ing and Embedding for Data Bases (OLE-DB) sources.These are typically used to execute T-SQL com-
mands and include tables in other instances of SQL Server, or other RDBMS engines such as Oracle.
SQL Server supports multiple types of OLE-DB sources as linked servers, including Microsoft Access,
Microsoft Excel, text files and others.

The main benefits of using linked servers are

l Read external data for import or processing
l Execute distributed queries, data modifications, and transactions for enterprise-wide data

sources
l Heterogeneous data source querying using the same familiar T-SQL API

Linked servers can be configured using either SQL Server Management Studio, or the system stored
procedure sp_addlinkedserver.
The available functionality and the specific requirements vary significantly between the various OLE-DB
sources. Some sources may allow read only access, others may require specific security context set-
tings, etc.

The Linked Server Definition contains the linked server alias, the OLE DB provider, and all the para-
meters needed to connect to a specific OLE-DB data source.

The OLE-DB provider is a .Net Dynamic Link Library (DLL) that handles the interaction of SQL Server
with all data sources of its type. For example, OLE-DB Provider for Oracle.
The OLE-DB data source is the specific data source to be accessed, using the specified OLE-DB pro-
vider.

Note: SQL Server distributed queries can be used with any custom OLE DB provider, as
long as the required interfaces are implemented correctly.

SQL Server parses the T-SQL commands that access the linked server, and sends the appropriate
requests to the OLE-DB provider.
There are several access methods for remote data, including opening the base table for read, or issu-
ing SQL queries against the remote data source.

Managing linked servers can be done using SQL Server Management Studio graphical user interface, or
using T-SQL system stored procedres.

- 396 -

l EXECUTE sp_addlinkedserver to add new server definitions
l EXECUTE sp_addlinkedserverlogin to define security context
l EXECUTE sp_linkedservers or SELECT * FROM sys.servers system catalog view to

retrieve meta data
l EXECUTE sp_dropserver to delete a linked server

Linked server data sources are accessed from T-SQL using a fully qualified, four part naming scheme.

<Server Name>.<Database Name>.<Schema Name>.<Object Name>

Additionally, the OPENQUERY row set function can be used to explicitly invoke pass-through queries
on the remote linked server, and the OPENROWSET and OPENDATASOURCE row set functions can be
used for ad-hoc remote data access without defining the linked server in advance.

Syntax

EXECUTE sp_addlinkedserver
[@server=] <Linked Server Name>

[, [@srvproduct=] <Product Name>]
[, [@provider=] <OLE DB Provider>]
[, [@datasrc=] <Data Source>]
[, [@location=] <Data Source Address>]
[, [@provstr=] <Provider Connection String>]
[, [@catalog=] <Database>];

Examples

Create a linked server to a local text file

EXECUTE sp_addlinkedserver MyTextLinkedServer, N'Jet 4.0',
N'Microsoft.Jet.OLEDB.4.0',
N'D:\TextFiles\MyFolder',
NULL,
N'Text';

Define security context

EXECUTE sp_addlinkedsrvlogin MyTextLinkedServer, FALSE, Admin, NULL;

Use sp_tables_ex to list tables in folder

EXEC sp_tables_ex MyTextLinkedServer;

Issue a SELECT query using 4 part name

SELECT *
FROM MyTextLinkedServer...[FileName#text];

For more information, see

- 397 -

l https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-
addlinkedserver-transact-sql

l https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-pro-
cedures/distributed-queries-stored-procedures-transact-sql

- 398 -

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql

Migrate to Aurora MySQL Linked Servers

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Linked
Servers

l Data transfer across schemas only, use a
custom application solution to access
remote instances

Overview

Aurora MySQL does not support remote data access.

Connectivity between schemas is trivial, connectivity to other instances will require an application cus-
tom solution.

- 399 -

Migrate from SQL Server Scripting

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A

l Non compatible tool sets and scripting lan-
guages

l Use MySQL Workbench, Amazon RDS API,
AWS Management Console, and Amazon
CLI

Overview

SQL Server supports T-SQL and XQuery scripting within multiple execution frameworks such as
SQL Server Agent, and stored procedures.

The SQLCMD command line utility can also be used to execute T-SQL scripts. However, the most
extensive and feature-rich scripting environment is PowerShell.

SQL Server provides two PowerShell snap-ins that implement a provider that exposes the entire SQL
Server Management Object Model (SMO) as PowerShell paths. Additionally, a set of SQL Server cmdlets
can be used to execute specific SQL Server commands.

Note: Invoke-Sqlcmd can be used to execute scripts using the SQLCMD utility.

The sqlps utility launches the PowerShell scripting environment and automatically loads the SQL Server
modules. sqlps can be launched from a command prompt or from the Object Explorer pane of SQL
Server Management Studio. You can execute ad-hoc PowerShell commands and script files (for
example, .\SomeFolder\SomeScript.ps1).

Note: SQL Server Agent supports executing PowerShell scripts in job steps.
For more information, see SQL Server Agent.

SQL Server also supports three types of direct database engine queries: T-SQL, XQuery, and the
SQLCMD utility.T-SQL and XQuery can be called from stored procedures, SQL Server Management Stu-
dio (or other IDE), and SQL Server agent Jobs. The SQLCMD utility also supports commands and vari-
ables.

Examples

Backup a database with PowerShell using the default backup options.

PS C:\> Backup-SqlDatabase -ServerInstance "MyServer\MySQLServerInstance" -Database
"MyDB"

Get all rows from the MyTable table in they MyDB database

PS C:\> Read-SqlTableData -ServerInstance MyServer\MySQLServerInstance" -DatabaseName
"MyDB" -TableName "MyTable"

- 400 -

https://dev.mysql.com/downloads/workbench/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

For more information, see:

l https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell
l https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting
l https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility

- 401 -

https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell
https://docs.microsoft.com/en-us/sql/relational-databases/scripting/database-engine-scripting
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility

Migrate to Aurora MySQL Scripting

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A

l Non compatible tool sets and scripting lan-
guages

l Use MySQL Workbench, Amazon RDS API,
AWS Management Console, and Amazon
CLI

Overview

As a Platform as a Service (PaaS), Aurora MySQL accepts connections from any compatible client, but
you cannot access the MySQL command line utility typically used for database administration.
However, you can use MySQL tools installed on a network host and the Amazon RDS API. The most
common tools for Aurora MySQL scripting and automation include MySQL Workbench, MySQL Util-
ities, and the Amazon RDS API. The following sections describe each tool.

MySQL Workbench

MySQL Workbench is the most commonly used tool for development and administration of MySQL
servers. It is available as a free Community Edition and a paid Commercial Edition that adds enterprise
features such as database documentation features. MySQL Workbench is an integrated IDE with the fol-
lowing features:

l SQL Development: Manage and configure connections to aurora MySQL clusters and execute
SQL queries using the SQL editor.

l Data Modeling: Reverse and forward engineer graphical database schema models and manage
schemas with the Table Editor.

l Server Administration: Not applicable to Aurora MySQL. Use the Amazon RDS console to admin-
ister servers.

The MySQL Workbench also supports a Python scripting shell that you can use interactively and pro-
grammatically.

- 402 -

https://dev.mysql.com/downloads/workbench/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

Image from the MySQL documentation at https://dev.mysql.com/doc/workbench/en/wb-exploring-scripting-shell.html

MySQL Utilities

MySQL Utilities are a set of Python command line tools used for common maintenance and admin-
istration of MySQL servers tasks. They can reduce the need to write custom code for common tasks
and can be easily customized. The following tools are included in the MySQL Utilities set. Note that
some tools will not work with Aurora MySQL because you don't have root access to the underlying
server.

l Admin Utilities:Clone, Copy, Compare, Diff, Export, Import, and User Management

l Replication Utilities: Setup, Configuration, and Verification

l General Utilities: Disk Usage, Redundant Indexes, Manage Metadata, and Manage Audit Data

Amazon RDS API

The Amazon RDS API is a web service for managing and maintaining Aurora MySQL (and other) rela-
tional databases. It can be used to setup, operate, scale, backup, and perform many common admin-
istration tasks. The RDS API supports multiple database platforms and can integrate administration
seamlessly for heterogeneous environments.

Note: The Amazon RDS API is asynchronous. Some interfaces may require polling or call-
back functions to receive command status and results.

You can access Amazon RDS using the AWS Management Console, the AWS Command Line Interface
(CLI), and the Amazon RDS Progammatic API as described in the following sections.

- 403 -

https://dev.mysql.com/doc/workbench/en/wb-exploring-scripting-shell.html

AWS Management Console

The AWS Management Console is a simple web-based set of tools for interactive management of Aur-
ora MySQL and other RDS services. It can be accessed at https://console.aws.amazon.com/rds/

AWS Command Line Interface (CLI)

The Amazon AWS Command Line Interface is an open source tool that runs on Linux, Windows, or
MacOS having Python 2 version 2.6.5 and higher or Python 3 version 3.3 and higher.

The AWS CLI is built on top of the AWS SDK for Python (Boto), which provides commands for inter-
acting with AWS services. With minimal configuration, you can start using all AWS Management Con-
sole functionality from your favorite terminal application.

l Linux shells: Use common shell programs such as Bash, Zsh, or tsch.

l Windows command line: Run commands in PowerShell or the Windows Command Processor

l Remotely: Run commands on Amazon EC2 instances through a remote terminal such as PuTTY
or SSH.

The AWS Tools for Windows PowerShell and AWS Tools for PowerShell Core are PowerShell modules
built on the functionality exposed by the AWS SDK for .NET. These Tools enable scripting operations
for AWS resources using the PowerShell command line.

Note: You cannot use SQL Server cmdlets in power shell.

Amazon RDS Programmatic API

The Amazon RDS API can be used to automate management of DB instances and other Amazon RDS
objects.

For more information on using Amazon RDS API, see:

l API actions: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html

l Data Types: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html

l Common query parameters: http://-
docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html

l Error codes: http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html

Examples

The following walkthrough describes how to connect to an Aurora MySQL DB instance using the
MySQL Utility:

Log on to the Amazon RDS Console and click Clusters.

- 404 -

https://console.aws.amazon.com/rds/
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_Types.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonParameters.html
http://docs.aws.amazon.com/AmazonRDS/latest/APIReference/CommonErrors.html

Click the name of the cluster to which you wish to connect.

Copy the cluster endpoint address.

Note: You can also connect to individual DB instances. For more information, see High
Availability Essentials.]

- 405 -

From a command shell, type the following:

mysql -h mysql–instance1.123456789012.us-east-2.rds.amazonaws.com -P 3306 -u Master-
User

l The -h parameter is the endpoint DNS name of the Aurora MySQL DB cluster.
l The -P parameter is the port number .

Provide the password when prompted. The system displays the following (or similar) message.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 350
Server version: 5.6.27-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

For more information, see

l https://dev.mysql.com/downloads/utilities/
l https://dev.mysql.com/downloads/workbench/
l https://docs.aws.amazon.com/cli/latest/reference/
l https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

- 406 -

https://dev.mysql.com/downloads/utilities/
https://dev.mysql.com/downloads/workbench/
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/Welcome.html

Performance Tuning

- 407 -

Migrate from SQL Server Execution Plans

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A

l Syntax differences

l Completely different optimizer with dif-
ferent operators and rules

Overview

Execution plans provide users detailed information about the data access and processing methods
chosen by the SQL Server Query Optimizer. They also provide estimated or actual costs of each oper-
ator and sub tree. Execution plans provide critical data for troubleshooting query performance chal-
lenges.

SQL Server creates execution plans for most queries and returns them to client applications as plain
text or XML documents. SQL Server produces an execution plan when a query executes, but it can also
generate estimated plans without executing a query.

SQL Server Management Studio provides a graphical view of the underlying XML plan document using
icons and arrows instead of textual information. This graphical view is extremely helpful when invest-
igating the performance aspects of a query.

To request an estimated execution plan, use the SET SHOWPLAN_XML, SHOWPLAN_ALL, or
SHOWPLAN_TEXT statements.

Examples

Show the estimated execution plan for a query.

SET SHOWPLAN_XML ON;
SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET SHOWPLAN_XML OFF;

Actual execution plans return after execution of the query, or batch of queries, completes and include
run-time statistics about resource usage and warnings. To request the actual execution plan, use the
SET STATISTICS XML statement to return the XML document object. Alternatively, use the STATISTICS
PROFILE statement, which returns an additional result set containing the query execution plan.

Show the actual execution plan for a query.

SET STATISTICS XML ON;
SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET STATISTICS XML OFF;

- 408 -

An example of a (partial) graphical execution plan from SQL Server Management Studio

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-
and-save-execution-plans

- 409 -

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans
https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans

Migrate to Aurora MySQL Execution Plans

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

N/A N/A

l Syntax differences

l Completely different optimizer with dif-
ferent operators and rules

Overview

Aurora MySQL provides the EXPLAIN/DESCRIBE statement to display execution plan and used with the
SELECT, DELETE, INSERT, REPLACE, and UPDATE statements.

Note: You can use the EXPLAIN/DESCRIBE statement to retrieve table and column
metadata. See the link at the end of this section for more details.

When EXPLAIN is used with a statement, MySQL returns the execution plan generated by the query
optimizer. MySQL explains how the statement will be processed including information about table
joins and order.
When EXPLAIN is used with the FOR CONNECTION option, it returns the execution plan for the state-
ment executing in the named connection. You can use the FORMAT option to select either a
TRADITIONAL tabular format or a JSON format.

The EXPLAIN statement requires SELECT permissions for all tables and views accessed by the query dir-
ectly or indirectly. For views, EXPLAIN requires the SHOW VIEW permission. EXPLAIN can be extremely
valuable for improving query performance when used to find missing indexes. You can also use
EXPLAIN to determine if the optimizer joins tables in an optimal order. MySQL Workbench includes an
easy to read visual explain feature similar to SQL Server Management Studio graphical execution
plans.

Syntax

Simplified syntax for the EXPLAIN statement:

{EXPLAIN | DESCRIBE | DESC} [EXTENDED | FORMAT = TRADITIONAL | JSON]
[SELECT statement | DELETE statement | INSERT statement | REPLACE statement | UPDATE
statement | FOR CONNECTION <connection id>]

Examples

View the execution plan for a statement.

CREATE TABLE Employees
(
EmployeeID INT NOT NULL PRIMARY KEY,
Name VARCHAR(100) NOT NULL,
INDEX USING BTREE(Name)
);

- 410 -

EXPLAIN SELECT *
 FROM Employees
 WHERE Name = 'Jason';

id select_type table partitions type possible_keys key key_len ref rows filtered
Extra
-- ----------- ----- ---------- ---- ------------- --- ------- ---
 ---- --------- -----
1 SIMPLE Employees ref Name Name 102 const 1 100 Using index

View the MySQL Workbench graphical execution plan.

Note: To instruct the optimizer to use a join order corresponding to the order in which the
tables are specified in a SELECT statement, use SELECT STRAIGHT_JOIN. For more details,
see Query Hints and Plan Guides.

For more information, see https://dev.mysql.com/doc/refman/5.7/en/explain.html

- 411 -

https://dev.mysql.com/doc/refman/5.7/en/explain.html

Migrate from SQL Server Query Hints and Plan Guides

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Hints

l Very limited set of hints - Index hints
and optimizer hints as comments

l Syntax differences

Overview

SQL Server hints are instructions that override automatic choices made by the query processor for DML
and DQL statements. The term hint is misleading because, in reality, it forces an override to any other
choice of execution plan.

JOIN Hints

LOOP, HASH, MERGE, and REMOTE hints can be explicitly added to a JOIN. For example, ... Table1

INNER LOOP JOIN Table2 ON These hints force the optimizer to use Nested Loops, Hash
Match, or Merge physical join algorithms. REMOTE enables processing a join with a remote table on
the local server.

Table Hints

Table hints override the default behavior of the query optimizer. Table hints are used to explicitly force
a particular locking strategy or access method for a table operation clause. These hints do not modify
the defaults and apply only for the duration of the DML or DQL statement.

Some common table hints are INDEX = <Index value>, FORCESEEK, NOLOCK, and TABLOCKX.

Query Hints

Query hints affect the entire set of query operators, not just the individual clause in which they appear.
Query hints may be JOIN Hints, Table Hints, or from a set of hints that are only relevant for Query
Hints.

Some common table hints include OPTIMIZE FOR, RECOMPILE, FORCE ORDER, FAST <rows>.

Query hints are specified after the query itself following the WITH options clause.

Plan Guides

Plan guides provide similar functionality to query hints in the sense they allow explicit user inter-
vention and control over query optimizer plan choices. Plan guides can use either query hints or a full
fixed, pre-generated plan attached to a query. The difference between query hints and plan guides is
the way they are associated with a query.

While query or table hints need to be explicitly stated in the query text, they are not an option if you
have no control over the source code generating these queries. If an application uses ad-hoc queries

- 412 -

instead of stored procedures, views, and functions, the only way to affect query plans is to use plan
guides. They are often used to mitigate performance challenges with third-party software

A plan guide consists of the statement whose execution plan needs to be adjusted and either an
OPTION clause that lists the desired query hints or a full XML query plan that is enforced as long it is
valid.

At run time, SQL Server matches the text of the query specified by the guide and attaches the OPTION
hints. Or, it assigns the provided plan for execution.

SQL Server supports three types of Plan Guides.

l Object Plan Guides target statements that run within the scope of a code object such as a
stored procedure, function, or trigger. If the same statement is found in another context, the
plan guide is not be applied.

l SQL Plan Guides are used for matching general ad-hoc statements not within the scope of code
objects. In this case, any instance of the statement regardless of the originating client is assigned
the plan guide.

l Template Plan Guides can be used to abstract statement templates that differ only in parameter
values. It can be used to override the PARAMETERIZATION database option setting for a family of
queries.

Syntax

Query Hints:

Note: The following syntax is for SELECT. Query hints can be used in all DQL and DML state-
ments.

SELECT <statement>
OPTION
(
{{HASH|ORDER} GROUP
|{CONCAT |HASH|MERGE} UNION
|{LOOP|MERGE|HASH} JOIN
|EXPAND VIEWS
|FAST <Rows>
|FORCE ORDER
|{FORCE|DISABLE} EXTERNALPUSHDOWN
|IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
|KEEP PLAN
|KEEPFIXED PLAN
|MAX_GRANT_PERCENT = <Percent>
|MIN_GRANT_PERCENT = <Percent>
|MAXDOP <Number of Processors>
|MAXRECURSION <Number>
|NO_PERFORMANCE_SPOOL
|OPTIMIZE FOR (@<Variable> {UNKNOWN|= <Value>}[,...])
|OPTIMIZE FOR UNKNOWN
|PARAMETERIZATION {SIMPLE|FORCED}
|RECOMPILE

- 413 -

|ROBUST PLAN
|USE HINT ('<Hint>' [,...])
|USE PLAN N'<XML Plan>'
|TABLE HINT (<Object Name> [,<Table Hint>[[,...]])
});

Create a Plan Guide:

EXECUTE sp_create_plan_guide @name = '<Plan Guide Name>'
,@stmt = '<Statement>'
,@type = '<OBJECT|SQL|TEMPLATE>'
,@module_or_batch = 'Object Name>'|'<Batch Text>'| NULL
,@params = '<Parameter List>'|NULL }
,@hints = 'OPTION(<Query Hints>'|'<XML Plan>'|NULL;

Examples

Limit parallelism for a sales report query.

EXEC sp_create_plan_guide
@name = N'SalesReportPlanGuideMAXDOP',
@stmt = N'SELECT *

 FROM dbo.fn_SalesReport(GETDATE())
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (MAXDOP 1)';

Use table and query hints.

SELECT *
FROM MyTable1 AS T1

WITH (FORCESCAN)
INNER LOOP JOIN

 MyTable2 AS T2
 WITH (TABLOCK, HOLDLOCK)

ON T1.Col1 = T2.Col1
WHERE T1.Date BETWEEN DATEADD(DAY, -7, GETDATE()) AND GETDATE()

For more information, see:

l https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql
l https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides

- 414 -

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides

Migrate to Aurora MySQL Query Hints and Plan Guides

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Hints

l Very limited set of hints - Index hints
and optimizer hints as comments

l Syntax differences

Overview

Aurora MySQL supports two types of hints: Optimizer Hints and Index Hints. Unlike SQL Server, it does
note provide a feature similar to Plan Guides.

Index Hints

The index hints should appear familiar to SQL Server users although the syntax is somewhat different.
Index hints are placed directly after the table name as with SQL Server, but the keywords are different.

Syntax

SELECT ...
FROM <Table Name>

USE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)

| IGNORE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)

| FORCE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)

...n

The USE INDEX hint limits the optimizer's choice to one of the indexes listed in the <Index List> white
list. Alternatively, indexes can be black listed using the IGNORE keyword.

The FORCE INDEX hint is similar to USE INDEX (index_list), but with strong favor towards seek vs. scan.
This hint is more like SQL Server's FORCESEEK hint although the Aurora MySQL optimizer can choose a
scan if other options are not valid.

The hints use the actual index names; not column names. You can refer to Primary keys using the
keyword PRIMARY.

Note: In Aurora MySQL, the primary key is the clustered index.
For more information see Clustered and Non Clustered Indexes .

The syntax for index Aurora MySQL hints has the following characteristics:

l Omitting the <Index List> is allowed for USE INDEX only. It translates to "don't use any indexes",
which is equivalent to a clustered index scan.

- 415 -

l Index hints can be further scoped down using the FOR clause. Use FOR JOIN, FOR ORDER BY or
FOR GROUP BY to limit the hint applicability to that specific query processing phase.

l Multiple index hints can be specified for the same or different scope.

Optimizer Hints

Optimizer hints give developers or administrators control over some of the optimizer decision tree.
They are specified within the statement text as a comment with the prefix "+".

Optimizer hints may pertain to different scopes and are valid in only one or two scopes. The available
scopes for optimizer hints in descending scope width order are:

l Global hints affect the entire statement. Only MAX_EXECUTION TIME is a Global Optimizer Hint.

l Query level hints affect a query block within a composed statement such as UNION or a sub-
query.

l Table level hints affect a table within a query block.

l Index level hints affect an index of a table.

Syntax

SELECT /*+ <Optimizer Hints> */ <Select List>...

INSERT /*+ <Optimizer Hints> */ INTO <Table>...

REPLACE /*+ <Optimizer Hints> */ INTO <Table>...

UPDATE /*+ <Optimizer Hints> */ <Table> SET...

DELETE /*+ <Optimizer Hints> */ FROM <Table>...

The following optimizer hints are available in Aurora MySQL:

Hint Name Description Applicable Scopes

BKA, NO_BKA
Enables or disables Batched Key Access
join processing

Query block, table

BNL ,NO_BNL
Enables or disables Block Nested-Loop
join processing

Query block, table

MAX_EXECUTION_TIME Limits statement execution time Global

MRR, NO_MRR
Enables or disables Multi-Range Read
optimization

Table, index

NO_ICP
Disables Index Condition Push-down
optimization

Table, index

NO_RANGE_OPTIMIZATION Disables range optimization Table, index

- 416 -

Hint Name Description Applicable Scopes

QB_NAME Assigns a logical name to a query block Query block

SEMIJOIN, NO_SEMIJOIN Enables or disables semi-join strategies Query block

SUBQUERY
Determines MATERIALIZATION, and
INTOEXISTS processing

Query block

Query block names (using QB_NAME) are used to distinguish a block for limiting the scope of the table
hint. Add "@ " to indicate a hint scope for one or more named subqueries. For example:

SELECT /*+ SEMIJOIN(@SubQuery1 FIRSTMATCH, LOOSESCAN) */ *
FROM Table1
WHERE Col1 IN (SELECT /*+ QB_NAME(SubQuery1) */ Col1
 FROM t3);

Values for MAX_EXECUTION_TIME values are measured in seconds and are always global for the entire
query.

Note: This option does not exist in SQL Server where the execution time limit is for the ses-
sion scope.

For more information the functionality of individual hints, see the links at the end of this section.

Migration Considerations

In general, the Aurora MySQL hint framework is relatively limited compared to the granular control
provided by SQL Server. The specific optimizations used for SQL Server may be completely inapplicable
to a new query optimizer. It is recommended to start migration testing with all hints removed. Then,
selectively apply hints as a last resort if other means such as schema, index, and query optimizations
have failed.

Aurora MySQL uses a list of indexes and hints, both white list (USE) and black list (IGNORE), as opposed
to SQL Server's explicit index approach.

Index hints are not mandatory instructions. Aurora MySQL has some room to choose alternatives if it
cannot use the hinted index. In SQL Server, forcing an invalid index or access method raises an error.

Examples

Force an index access.

SELECT * FROM Table1 USE INDEX (Index1) ORDER BY Col1;

Specify multiple index hints.

SELECT * FROM Table1 USE INDEX (Index1) INNER JOIN Table2 IGNORE INDEX(Index2) ON
Table1.Col1 = Table2.Col1 ORDER BY Col1;

Specify optimizer hints.

- 417 -

SELECT /*+ NO_RANGE_OPTIMIZATION(Table1 PRIMARY, Index2) */ Col1 FROM Table1 WHERE
Col2 = 300;

SELECT /*+ BKA(t1) NO_BKA(t2) */ * FROM Table1 INNER JOIN Table2 ON ...;

SELECT /*+ NO_ICP(t1, t2) */ * FROM Table1 INNER JOIN Table2 ON ...;

Summary

Feature SQL Server Aurora MySQL Comments

Force a specific plan Plan Guides N/A

Apply hints to a query at
run time

Plan Guides N/A

Join hints LOOP | MERGE | HASH
BNL | NO_BNL (Block Nes-
ted Loops)

Locking Hints Supported N/A

Force seek or scan FORCESEEK, FORCESCAN
USE with no index list forces
a clustered index scan

Force an index INDEX= USE

White list and black list
indexes

N/A
Supported with USE and
IGNORE

Parameter value hints OPTIMIZE FOR N/A

Compilation hints RECOMPILE N/A

For more information, see:

l https://dev.mysql.com/doc/refman/5.7/en/controlling-optimizer.html
l https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html
l https://dev.mysql.com/doc/refman/5.7/en/index-hints.html
l https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html

- 418 -

https://dev.mysql.com/doc/refman/5.7/en/controlling-optimizer.html
https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html
https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html

Physical Storage

- 419 -

Migrate from SQL Server Partitioning

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Par-
titioning

l More partition types in Aurora MySQL
with more restrictions on partitioned
tables

Overview

SQL Server provides a logical and physical framework for partitioning table and index data. Each table
and index are partitioned, but may have only one partition. SQL Server 2017 supports up to 15,000 par-
titions.

Partitioning separates data into logical units that can be stored in more than one file group. SQL Server
partitioning is horizontal, where data sets of rows are mapped to individual partitions. A partitioned
table or index is a single object and must reside in a single schema within a single database. Com-
posing objects of disjointed partitions is not allowed.

All DQL and DML operations are partition agnostic except for the special predicate $partition, which
can be used for explicit partition elimination.

Partitioning is typically needed for very large tables to ease the following management and per-
formance challenges:

l Deleting or inserting large amounts of data in a single operation, with partition switching instead
of individual row processing, while maintaining logical consistency.

l Maintenance operations can be split and customized per partition. For example, older data par-
titions can be compressed and more active partitions can be rebuilt or reorganized more fre-
quently.

l Partitioned tables may use internal query optimization techniques such as collocated and par-
allel partitioned joins.

l Physical storage performance optimization by distributing IO across partitions and physical stor-
age channels

l Concurrency improvements due to the engine's ability to escalate locks to the partition level and
not the whole table.

Partitioning in SQL Server uses the following three objects:

l Partitioning Column: A Partitioning column is the column (or columns) being used by the par-
tition function to partition the table or index. The value of this column determines the logical par-
tition to which it belongs. You can use computed columns in a partition function as long as they
are explicitly PERSISTED. Partitioning columns may be any data type that is a valid index column
with less than 900 bytes per key, except timestamp and LOB data types.

- 420 -

l Partition Function: A Partition function is a database object that defines how the values of the
partitioning columns for individual tables or index rows are mapped to a logical partition. The
partition function describes the partitions for the table or index and their boundaries.

l Partition Scheme: A partition scheme is a database object that maps individual logical partitions
of a table or an index to a set of file groups, which in turn consist of physical operating system
files. Placing individual partitions on individual file groups enables backup operations for indi-
vidual partitions (by backing their associated file groups).

Syntax

CREATE PARTITION FUNCTION <Partition Function>(<Data Type>)
AS RANGE [LEFT | RIGHT]
FOR VALUES (<Boundary Value 1>,...)[;]

CREATE PARTITION SCHEME <Partition Scheme>
AS PARTITION <Partition Function>
[ALL] TO (<File Group> | [PRIMARY] [,...])[;]

CREATE TABLE <Table Name> (<Table Definition>)
ON <Partition Schema> (<Partitioning Column>);

Examples

Create a partitioned table.

CREATE PARTITION FUNCTION PartitionFunction1 (INT)
AS RANGE LEFT FOR VALUES (1, 1000, 100000);

CREATE PARTITION SCHEME PartitionScheme1
AS PARTITION PartitionFunction1
ALL TO (PRIMARY);

CREATE TABLE PartitionTable (
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20)
)
ON PartitionScheme1 (Col1);

For more information, see

l https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql
l https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql

- 421 -

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql

Migrate to Aurora MySQL Partitioning

Feature Com-
patibility

SCT Auto-
mation Level

SCT Action
Code Index

Key Differences

SCT Action
Codes - Par-
titioning

l More partition types in Aurora MySQL
with more restrictions on partitioned
tables

Overview

Aurora MySQL supports a much richer framework for table partitioning than SQL Server with many
additional options such as hash partitioning, sub partitioning and other features. However, it also intro-
duces many restrictions on the tables that participate in partitioning.

Note: The maximum number of partitions for a table is 8,192, including subpartitions.
Although smaller than SQL Server's 15,000 theoretical partition count, practical partitioning
rarely contains more than a few hundred partitions.

The following sections describe the types of partitions supported by Aurora MySQL.

RANGE Partitioning

RANGE Partitions are the equivalent of SQL Server's RANGE partition functions, which are the only type
currently supported. A RANGE partitioned table has explicit boundaries defined. Each partition con-
tains only rows for which the partitioning expression value lies within the boundaries. Value ranges
must be contiguous and can not overlap. Partition boundaries are defined using the VALUES LESS
THAN operator.

LIST Partitioning

List partitioning somewhat resembles range partitioning. Similar to RANGE, each partition must be
defined explicitly. The main difference between LIST and RANGE partitioning is that LIST partitions are
defined using a set of value lists instead of a contiguous range.

Use the PARTITION BY LIST(<Column Expression>) to define the type and the partitioning column.
<Column Expression> must return an integer value.
Afterward, every partition is defined using the VALUES IN (<Value List>) where <Value List> consists of a
comma-separated list of integer values.

RANGE | LIST COLUMNS Partitioning

COLUMNS partitioning is a variant of both RANGE and LIST partitioning. However, COLUMNS par-
titioning allows multiple columns in partitioning keys. All column values are considered for matching
to a particular partition.

Both RANGE COLUMNS partitioning and LIST COLUMNS partitioning allow the use of non-integer val-
ues for defining both value ranges and value lists. The following data types are supported for
COLUMNS partitioning:

- 422 -

l All integer types
l DATE and DATETIME
l CHAR, VARCHAR, BINARY, and VARBINARY

HASH Partitioning

HASH partitioning is typically used to guarantee even distribution of rows for a desired number of par-
titions. When using either RANGE or LIST partitioning (and their variants), the boundaries are explicitly
defined and associate a row to a partition based on the column value or set of values.

With HASH partitioning, Aurora MySQL manages the values and individual partitions. You only need to
specify the column or column expression to be hashed and the total number of partitions.

Subpartitioning

With Subpartitioning, or composite partitioning, each primary partition is further partitioned to create
a two-layer partitioning hierarchy. Subpartitions must use either HASH or KEY partitioning and only
RANGE or LIST partitions may be subpartitioned. SQL Server does not support subpartitions.

Partition Management

Aurora MySQL provides several mechanisms for managing partitioned tables including adding, drop-
ping, redefining, merging, and splitting existing partitioned tables. These management operations can
use the Aurora MySQL partitioning extensions to the ALTER TABLE statement.

Dropping Partitions

For tables using either RANGE or LIST partitioning, drop a partition using the ALTER TABLE ... DROP
PARTITION statement option.

When a partition is dropped from a RANGE partitioned table, all the data in the current partition is
deleted and new rows with values that would have fit the partition go to the immediate neighbor par-
tition.

When a partition is dropped from a LIST partitioned table, data is also deleted but new rows with val-
ues that would have fit the partition cannot be INSERTED or UPDATED because they no longer have a
logical container.

For HASH and KEY partitions, use the ALTER TABLE ... COALESCE PARTITION <Number of Partitions>.
This approach reduces the current total number of partitions by the <Number of Partitions> value.

Adding and Splitting Partitions

To add a new range boundary, or partition for a new list of values, use the ALTER TABLE ... ADD
PARTITION statement option.

For RANGE partitioned tables, your can only add a new range to the end of the list of existing par-
titions.

If you need to split an existing RANGE partition into two partitions, use the ALTER TABLE ...
REORGANIZE PARTITION statement.

- 423 -

Switching and Exchanging Partitions

Aurora MySQL supports the exchange of a table partition, or a subpartition, with another table. Use
the ALTER TABLE <Partitioned Table> EXCHANGE PARTITION <Partition> WITH TABLE

<Non Partitioned Table> statement option.

The non-partitioned table can not be a temporary table and the schema of both tables must be
identical. The non partitioned table can not have a foreign key being referenced, or referencing it. It is
critical that all rows in the non-partitioned table are within the partition boundaries, unless the
WITHOUT VALIDATION option is used.

Note: ALTER TABLE ... EXCHANGE PARTITION requires the ALTER, INSERT, CREATE, and
DROP privileges.

Executing the ALTER TABLE ... EXCHANGE PARTITION statement does not trigger the execution of trig-
gers on the partitioned table or the exchanged non-partitioned table.

Note: AUTO_INCREMENT columns in the exchanged table are reset when ALTER TABLE ...
EXCHANGE PARTITION is executed.
For more information, see Sequences and Identity.

Syntax

Create a partitioned table.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(<Table Definition>) [<Table Options>]
PARTITION BY

{ [LINEAR] HASH(<Expression>)
| [LINEAR] KEY [ALGORITHM={1|2}] (<Column List>)
| RANGE{(expr) | COLUMNS(<Column List>)}
| LIST{(expr) | COLUMNS(<Column List>)} }

[PARTITIONS <Number>]
[SUBPARTITION BY

{ [LINEAR] HASH(<Expression>)
| [LINEAR] KEY [ALGORITHM={1|2}] (<Column List>) }

[SUBPARTITIONS <Number>]

Reorganize/Split a partition.

ALTER TABLE <Table Name>
REORGANIZE PARTITION <Partition> INTO (
PARTITION <New Partition 1> VALUES LESS THAN (<New Range Boundary>),
PARTITION <New Partition 2> VALUES LESS THAN (<Range Boundary>)
);

Exchange a partition.

ALTER TABLE <Partitioned Table> EXCHANGE PARTITION <Partition> WITH TABLE <Non Par-
titioned Table>;

DROP a partition.

- 424 -

ALTER TABLE <Table Name> DROP PARTITION <Partition>;

Migration Considerations

Because Aurora MySQL stores each table in its own file and since file management is performed by
AWS and cannot be modified, some of the physical aspects of partitioning in SQL Server do not apply
to Aurora MySQL. For example, the concept of file groups and assigning partitions to file groups.

Aurora MySQL does not support foreign keys partitioned tables. Neither the referencing table nor ref-
erenced table can use partitioning. Partitioned tables can not have foreign keys referencing other
tables or be referenced from other tables. Partitioning keys or expressions in Aurora MySQL must be
INT data types. They cannot be ENUM types. The expression may result in a NULL state. The exceptions
to this rule are:

l Partitioning by RANGE COLUMNS or LIST COLUMNS. It is possible to use strings, DATE, and
DATETIME columns.

l Partitioning by [LINEAR] KEY. Allows use of any valid MySQL data type (except TEXT and BLOB) for
partitioning keys. Aurora MySQL's key-hashing functions result in the correct data type.

Partitioned tables support neither FULLTEXT indexes nor spatial data types such as POINT and
GEOMETRY.

Unlike SQL Server, exchanging partitions in Aurora MySQL is only supported between a partitioned and
a non-partitioned table. In SQL server, SWITCH PARTITION can be used to switch any partition between
partitions tables because technically all tables are partitioned (to one or more partitions).

Examples

Create a RANGE partitioned table.

CREATE TABLE MyTable (
Col1 INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL

)
PARTITION BY RANGE (Col1)
(

PARTITION p0 VALUES LESS THAN (100000),
PARTITION p1 VALUES LESS THAN (200000),
PARTITION p2 VALUES LESS THAN (300000),
PARTITION p3 VALUES LESS THAN (400000)

);

Create subpartitions.

CREATE TABLE MyTable (Col1 INT NOT NULL, DateCol DATE NOT NULL,)
PARTITION BY RANGE(YEAR(DateCol))
SUBPARTITION BY HASH(TO_DAYS(<DateCol>))
SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

- 425 -

Drop a RANGE partition.

ALTER TABLE MyTable DROP PARTITION p2

Reduce the number of HASH partitions by four.

ALTER TABLE <Table Name> COALESCE PARTITION 4;

Add RANGE partitions.

ALTER TABLE MyTable ADD PARTITION (PARTITION p4 VALUES LESS THAN (50000));

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server
Aurora
MySQL

Comments

Partition
types

RANGE only
RANGE,
LIST, HASH,
KEY

Partitioned
tables scope

All tables are
partitioned,
some have
more than one
partition

All tables
are not par-
titioned,
unless
explicitly
partitioned

Partition
boundary
direction

LEFT or RIGHT RIGHT only
Only determines to which partition the boundary value
itself will go.

Dynamic
Range Par-
tition

N/A — literal
values must be
explicitly set in
partition func-
tion

Exchange
partition

Any partition
to any par-
tition

Partition to
table (non-
partitioned
table)

Only partition to table, no partition to partition switch.

Partition
function

Abstract func-
tion object,
Independent
of individual

Defined
per par-
titioned
table

- 426 -

Feature SQL Server
Aurora
MySQL

Comments

column

Partition
scheme

Abstract par-
tition storage
mapping
object

N/A
In Aurora MySQL, physical storage is managed by AWS
RDS.

Limitations
on par-
titioned
tables

None — all
tables are par-
titioned

Extensive
— No FK,
no Full text

For more information, see https://dev.mysql.-
com/doc/refman/5.7/en/partitioning-limitations.html

For more information, see

l https://dev.mysql.com/doc/refman/5.7/en/partitioning-overview.html
l https://dev.mysql.com/doc/refman/5.7/en/partitioning-management.html
l https://dev.mysql.com/doc/refman/5.7/en/partitioning-types.html

- 427 -

https://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-overview.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-management.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-types.html

Security

- 428 -

Migrate from SQL Server Column Encryption

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l Syntax

l Encryption hierarchy much
simpler

Overview

SQL Server provides encryption and decryption functions to secure the content of individual columns.
The following list identifies common encryption functions:

l EncryptByKey and DecryptByKey

l EncryptByCert and DecruptByCert

l EncryptByPassPhrase and DecruptByPassPhrase

l EncryptByAsymKey and DecryptByAsymKey

You can use these functions anywhere in your code; they are not limited to encrypting table columns. A
common use case is to increase run time security by encrypting of application user security tokens
passed as parameters.

These functions follow the general SQL Server encryption hierarchy, which in turn use the Windows
Server Data Protection API.

Symmetric encryption and decryption consume minimal resources and can be used for large data sets.

Note: This section does not cover Transparent Data Encryption (TDE) or AlwaysEncrypted
end-to-end encryption.

Syntax

General syntax for EncryptByKey and DecryptByKey:

EncryptByKey (<key GUID> , { 'text to be encrypted' }, { <use authenticator flag>}, {
<authenticator> });

DecryptByKey ('Encrypted Text' , <use authenticator flag>, { <authenticator>)

Examples

The following example demonstrates how to encrypt an employee Social Security Number:

Create a database master key.

- 429 -

USE MyDatabase;
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '<MyPassword>';

Create a certificate and a key.

CREATE CERTIFICATE Cert01
WITH SUBJECT = 'SSN';

CREATE SYMMETRIC KEY SSN_Key
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert01;

Create an employees table.

CREATE TABLE Employees
(
EmployeeID INT PRIMARY KEY,
SSN_encrypted VARBINARY(128) NOT NULL
);

Open the symmetric key for encryption.

OPEN SYMMETRIC KEY SSN_Key
DECRYPTION BY CERTIFICATE Cert01;

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_encrypted)
VALUES
(1, EncryptByKey(Key_GUID('SSN_Key') , '1112223333', 1, HashBytes('SHA1', CONVERT
(VARBINARY, 1)));

SELECT EmployeeID,
 CONVERT(CHAR(10), DecryptByKey(SSN, 1 , HashBytes('SHA1', CONVERT(VARBINARY,
EmployeeID)))) AS SSN
FROM Employees;

EmployeeID SSN_Encrypted SSN
---------- --------------------- ----------
1 0x00F983FF436E32418132... 1112223333

For more information, see:

l https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-
of-data

l https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hier-
archy

- 430 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy

Migrate to Aurora MySQL Column Encryption

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A

l Syntax

l Encryption hierarchy much
simpler

Overview

Aurora MySQL provides encryption and decryption functions similar to SQL Server with a much less
elaborate security hierarchy that is easier to manage.

The encryption functions require the actual key as a string, so you must take extra measures to protect
the data. For example, hashing the key values on the client.

Aurora MySQL supports the AES and DES encryption algorithms. You can use the following functions
data encryption and decryption:

l AES_DECRYPT
l AES_ENCRYPT
l DES_DECRYPT
l DEC_ENCRYPT

Note: The ENCRYPT, DECRYPT, ENCODE and DECODE functions are deprecated beginning
with MySQL version 5.7.2 and 5.7.6. Asymmetric encryption is not supported in Aurora
MySQL

Syntax

General syntax for the encryption functions:

[A|D]ES_ENCRYPT(<string to be encrypted>, <key string> [,<initialization vector>])
[A|D]ES_DECRYPT(<encrypted string>, <key string> [,<initialization vector>])

It is highly recommended to use the optional initialization vector to circumvent whole value replace-
ment attacks. When encrypting column data, it is common to use an immutable key as the ini-
tialization vector. With this approach, decryption fails if a whole value moves to another row.

Consider using SHA2 instead of SHA1 or MD5 because there are known exploits available for the SHA1
and MD5. Passwords, keys, or any sensitive data passed to these functions from the client are not
encrypted unless you are using an SSL connection. One benefit of using Amazon AWS IAM is that data-
base connections are encrypted with SSL by default.
For more information, see Users and Roles.

Examples

The following example demonstrates how to encrypt an employee Social Security Number:

- 431 -

Create an employees table.

CREATE TABLE Employees
(
EmployeeID INT NOT NULL PRIMARY KEY,
SSN_Encrypted BINARY(32) NOT NULL
);

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_Encrypted)
VALUES (1, AES_ENCRYPT('1112223333', UNHEX(SHA2('MyPassword',512)), 1));

Note: Use the UNHEX function for more efficient storage and comparisons.

Verify decryption.

SELECT EmployeeID,
 SSN_Encrypted,
 AES_DECRYPT(SSN_Encrypted, UNHEX(SHA2('MyPassword',512)), EmployeeID) AS SSN
FROM Employees

EmployeeID SSN_Encrypted SSN
---------- ------------------ ----------
1 ` ©> +yp°øýNZ~Gø 1112223333

For more information, see https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html

- 432 -

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html

Migrate from SQL Server Data Control Language

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A
l Simpler permission hier-

archy

The ANSI standard specifies, and most Relational Database Management Systems (RDBMS) use, GRANT
and REVOKE commands to control permissions.

However, SQL Server also provides a DENY command to explicitly restrict access to a resource. DENY
takes precedence over GRANT and is needed to avoid potentially conflicting permissions for users hav-
ing multiple logins. For example, if a user has DENY for a resource through group membership but
GRANT access for a personal login, the user is denied access to that resource.

SQL Server allows granting permissions at multiple levels from lower-level objects such as columns to
higher level objects such as servers. Permissions are categorized for specific services and features such
as the service broker.

Permissions are used in conjunction with database users and roles.
See Users and Roles for more details.

Syntax

Simplified syntax for SQL Server DCL commands:

GRANT { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

DENY { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

REVOKE [GRANT OPTION FOR] {[ALL [PRIVILEGES]]|<permission>} [ON <securable>] {
TO | FROM } <principal>

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-
hierarchy-database-engine

- 433 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine

Migrate to Aurora MySQL Data Control Language

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A
l Simpler permission hier-

archy

Overview

Aurora MySQL supports the ANSI Data Control Language (DCL) commands GRANT and REVOKE.

Administrators can grant or revoke permissions for individual objects such as a column, a stored func-
tion, or a table. Permissions can be granted to multiple objects using wild cards.

Only explicitly GRANTED permissions can be revoked. For example, if a user was granted SELECT per-
missions for the entire database using the following command:

GRANT SELECT
ON database.*
TO UserX;

it is not possible to REVOKE the permission for a single table. You must revoke the SELECT permission
for all tables using the following command:

REVOKE SELECT
ON database.*
FROM UserX;

Aurora MySQL provides a GRANT permission option, which is very similar to SQL Server's WITH GRANT
OPTION clause. This permission gives a user permission to further grant the same permission to other
users.

GRANT EXECUTE
ON PROCEDURE demo.Procedure1
TO UserY
WITH GRANT OPTION;

Note: Aurora MySQL users can have resource restrictions associated with their accounts
similar to the SQL Server resource governor. See Resource Governor.

The following table identifies Aurora MySQL privileges:

Permissions Use to

ALL [PRIVILEGES]
Grant all privileges at the specified access level except GRANT OPTION and
PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global, database, table.

- 434 -

Permissions Use to

ALTER ROUTINE
Enable stored routines to be altered or dropped. Levels: Global, database, pro-
cedure.

CREATE Enable database and table creation. Levels: Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global, database.

CREATE
TEMPORARY
TABLES

Enable the use of CREATE TEMPORARY TABLE. Levels: Global, database.

CREATE USER
Enable the use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL
PRIVILEGES. Level: Global.

CREATE VIEW Enable views to be created or altered. Levels: Global, database, table.

DELETE Enable the use of DELETE. Level: Global, database, table.

DROP
Enable databases, tables, and views to be dropped. Levels: Global, database,
table.

EVENT Enable the use of events for the Event Scheduler. Levels: Global, database.

EXECUTE Enable the user to execute stored routines. Levels: Global, database, table.

GRANT OPTION
Enable privileges to be granted to or removed from other accounts. Levels:
Global, database, table, procedure, proxy.

INDEX Enable indexes to be created or dropped. Levels: Global, database, table.

INSERT Enable the use of INSERT. Levels: Global, database, table, column.

LOCK TABLES
Enable the use of LOCK TABLE Son tables for which you have the SELECT priv-
ilege. Levels: Global, database.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global, database, table, column.

REPLICATION
CLIENT

Enable the user to determine the location of master and slave servers. Level:
Global.

REPLICATION
SLAVE

Enable replication slaves to read binary log events from the master. Level:
Global.

SELECT Enable the use of SELECT. Levels: Global, database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases. Level: Global.

SHOW VIEW Enable the use of SHOW CREATE VIEW. Levels: Global, database, table.

- 435 -

Permissions Use to

TRIGGER Enable trigger operations. Levels: Global, database, table.

UPDATE Enable the use of UPDATE. Levels: Global, database, table, column.

Syntax

GRANT <privilege type>...
ON [object type] <privilege level>
TO <user> ...

REVOKE <privilege type>...
ON [object type] <privilege level>
FROM <user> ...

Note: Table, Function, and Procedure object types can be explicitly stated but are not man-
datory.

Examples

Attempt to REVOKE a partial permission that was granted as a wild card permission.

CREATE USER TestUser;
GRANT SELECT
 ON Demo.*
 TO TestUser;
REVOKE SELECT ON Demo.Invoices
 FROM TestUser

The command above displays the following error:

SQL ERROR [1147][42000]: There is no such grant defined for user TestUser on host '%'
on table 'Invoices'

Grant SELECT Permission to a user on all tables in the demo database.

GRANT SELECT
ON Demo.*
TO 'user'@'localhost';

Revoke EXECUTE permissions from a user on the EmployeeReport stored procedure.

REVOKE EXECUTE
ON Demo.EmployeeReport
FROM 'user'@'localhost';

For more information, seehttps://dev.mysql.com/doc/refman/5.7/en/grant.html

- 436 -

https://dev.mysql.com/doc/refman/5.7/en/grant.html

Migrate from SQL Server Transparent Data Encryption

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Enable encryption when creating the

database instance

Overview

Transparent Data Encryption (TDE) is an SQL Server feature designed to protect data at-rest in the
event an attacker obtains the physical media containing database files.

TDE does not require application changes and is completely transparent to users. The storage engine
encrypts and decrypts data on-the-fly. Data is not encrypted while in memory or on the network. TDE
can be turned on or off individually for each database.

TDE encryption uses a Database Encryption Key (DEK) stored in the database boot record, making it
available during database recovery. The DEK is a symmetric key signed with a server certificate from
the master system database.

In many instances, security compliance laws require TDE for data at rest.

Examples

The following example demonstrates how to enable TDE for a database:

Create a master key and certificate.

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyPassword';
CREATE CERTIFICATE TDECert WITH SUBJECT = 'TDE Certificate';

Create a database encryption key.

USE MyDatabase;
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TDECert;

Enable TDE.

ALTER DATABASE MyDatabase SET ENCRYPTION ON;

For more information, see https://docs.microsoft.com/en-us/sql/relational-data-
bases/security/encryption/transparent-data-encryption

- 437 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption

Migrate to Aurora MySQL Transparent Data Encryption

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A
l Enable encryption when creating the

database instance

Overview

Amazon Aurora MySQL provides the ability to encrypt data at rest (data stored in persistent storage) for
new database instances. When data encryption is enabled, Amazon Relational Database Service (RDS)
automatically encrypts the database server storage, automated backups, read replicas, and snapshots
using the AES-256 encryption algorithm.

You can manage the keys used for RDS encrypted instances from the Identity and Access Management
(IAM) console using the AWS Key Management Service (AWS KMS). If you require full control of a key,
you must manage it yourself. You cannot delete, revoke, or rotate default keys provisioned by AWS
KMS.

The following limitations exist for Amazon RDS encrypted instances:

l You can only enable encryption for an Amazon RDS database instance when you create it, not
afterward. It is possible to encrypt an existing database by creating a snapshot of the database
instance and then creating an encrypted copy of the snapshot. You can restore the database
from the encrypted snapshot (see https://-
docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html)

l Encrypted database instances cannot be modified to disable encryption.

l Encrypted Read Replicas must be encrypted with the same key as the source databse instance.

l An unencrypted backup or snapshot can not be restored to an encrypted database instance.

l KMS encryption keys are specific to the region where they are created. Copying an encrypted
snapshot from one region to another requires the KMS key identifier of the destination region.

Note: Disabling the key for an encrypted database instance prevents reading from, or writ-
ing to, that instance. When Amazon RDS encounters a database instance encrypted by a
key to which Amazon RDS does not have access, it puts the database instance into a ter-
minal state. In this state, the database instance is no longer available and the current state
of the database can't be recovered. To restore the database instance, you must re-enable
access to the encryption key for Amazon RDS and then restore the database instance from
a backup.

Examples

The following walk-through demonstrates how to enable TDE.

- 438 -

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

Enable Encryption

In the database settings, enable encryption and choose a master key. You can choose the default key
provided for the account or define a specific key based on an IAM KMS ARN from your account or a dif-
ferent account.

Create an Encryption Key

Navigate to the IAM and click Encryption keys and then CREATE KEY.

Enter the Alias and Description. Under Advanced Options, Select KMS. Click Next.

Add a tag specifying the key’s name. Click Next.

- 439 -

Click Next (skip Step-3: Define Key Administrative Permissions).

Assign the key to the users who will access Aurora MySQL. For more information about users, see
Users and Roles.

The system displays the ARN of the key and its account.

- 440 -

Click Finish. Click the new key to display the ARN.

Set the master encryption key using the newly created ARN.

Launch the instance.

- 441 -

For more information, see http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html and
http://docs.aws.amazon.com/cli/latest/reference/s3/cp.htm

- 442 -

http://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingRESTAPI.html
http://docs.aws.amazon.com/cli/latest/reference/s3/cp.htm

Migrate from SQL Server Users and Roles

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A

l No native role support in the database

l Use AWS IAM accounts with the AWS
Authentication Plugin

Overview

SQL Server provides two layers of security principals: Logins at the server level and Users at the data-
base level. Logins are mapped to users in one or more databases. Administrators can grant logins
server-level permissions that are not mapped to particular databases such as Database Creator, Sys-
tem Administrator and Security Administrator .

SQL Server also supports Roles for both the server and the database levels. At the database level,
administrators can create custom roles in addition to the general purpose built-in roles.

For each database, administrators can create users and associate them with logins. At the database
level, the built-in roles include db_owner, db_datareader, db_securityadmin and others. A database user
can belong to one or more roles (users are assigned to the public role by default and can't be
removed). Administrators can grant permissions to roles and then assign individual users to the roles
to simplify security management.

Logins are authenticated using either Windows Authentication, which uses the Windows Server Active
Directory framework for integrated single sign-on, or SQL authentication, which is managed by the SQL
Server service and requires a password, certificate, or asymmetric key for identification. Logins using
windows authentication can be created for individual users and domain groups.

In previous versions of SQL server, the concepts of user and schema were interchangeable. For back-
ward compatibility, each database has several existing schemas, including a default schema named
dbo which is owned by the db_owner role. Logins with system administrator privileges are automatically
mapped to the dbo user in each database. Typically, you do not need to migrate these schemas.

Examples

Create a login.

CREATE LOGIN MyLogin WITH PASSWORD = 'MyPassword'

Create a database user for MyLogin.

USE MyDatabase; CREATE USER MyUser FOR LOGIN MyLogin;

Assign MyLogin to a server role.

ALTER SERVER ROLE dbcreator ADD MEMBER 'MyLogin'

- 443 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html

Assign MyUser to the db_datareader role.

ALTER ROLE db_datareader ADD MEMBER 'MyUser';

For more information, see https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-
access/database-level-roles

- 444 -

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles

Migrate to Aurora MySQL Users and Roles

Feature Com-
patibility

SCT Automation
Level

SCT Action Code
Index

Key Differences

N/A N/A

l No native role support in the database

l Use AWS IAM accounts with the AWS
Authentication Plugin

Overview

Aurora MySQL supports only Users; Roles are not supported. Database administrators must specify priv-
ileges for individual users. Aurora MySQL uses database user accounts to authenticate sessions and
authorize access to specific database objects.

Note: When granting privileges, you have the option to use wild-card characters for spe-
cifying multiple privileges for multiple objects.
See the Data Control Language for more details.

When using Identity and Access Management (IAM) database authentication, roles are available as part
of the IAM framework and can be used for authentication. This authentication method uses tokens in
place of passwords. AWS Signature Version 4 generates authentication tokens with a lifetime of 15
minutes. You do not need to store user credentials in the database because authentication is managed
externally. You can use IAM in conjunction with standard database authentication.

Note: In Aurora MySQL, a database is equivalent to an SQL Server schema.

The AWS Authentication Plugin works seamlessly with Aurora MySQL instances. Users logged in with
AWS IAM accounts use access tokens to authenticate. This mechanism is similar to the SQL Server win-
dows authentication option.

IAM database authentication provides the following benefits:

l Supports roles for simplifying user and access management.

l Provides a single sign on experience that is safer than using MySQL managed passwords.

l Encrypts network traffic to and from the database using Secure Sockets Layer (SSL) protocol.

l Provides centrally managed access to your database resources, alleviating the need to manage
access individually for each database instance or database cluster.

Note: IAM database authentication limits the number of new connections to 20 con-
nections/second.

Syntax

Simplified syntax for CREATE USER in Aurora MySQL:

CREATE USER <user> [<authentication options>] [REQUIRE {NONE | <TLS options>] }]
[WITH <resource options>] [<Password options> | <Lock options>]

- 445 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html

<Authentication option>:
{IDENTIFIED BY 'auth string'|PASSWORD 'hash string'|WITH auth plugin|auth plugin BY
'auth_string'|auth plugin AS 'hash string'}
<TLS options>: {SSL| X509| CIPHER 'cipher'| ISSUER 'issuer'| SUBJECT 'subject'}
<Resource options>: { MAX_QUERIES_PER_HOUR | MAX_UPDATES_PER_HOUR | MAX_CONNECTIONS_
PER_HOUR | MAX_USER_CONNECTIONS count}
<Password options>: {PASSWORD EXPIRE | DEFAULT | NEVER | INTERVAL N DAY}
<Lock options>: {ACCOUNT LOCK | ACCOUNT UNLOCK}

Note: Aurora MySQL allows you to assign resource limitations to specific users, similar to
SQL Server Resource Governor. See Resource Governor for more details.

Examples

Create a user, force a password change, and impose resource limits.

CREATE USER 'Dan'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'Dan''sPassword'
WITH MAX_QUERIES_PER_HOUR 500
PASSWORD EXPIRE;

Create a user with IAM authentication.

CREATE USER LocalUser
IDENTIFIED WITH AWSAuthenticationPlugin AS 'IAMUser';

Summary

The following table summarizes common security tasks and the differences between SQL Server and
Aurora MySQL.

Task SQL Server Aurora MySQL

View database
users

SELECT Name FROM sys.sysusers SELECT User FROM mysql.user

Create a user
and password

CREATE USER <User Name> WITH
PASSWORD = <PassWord>;

CREATE USER <User Name>
IDENTIFIED BY <Password>

Create a role CREATE ROLE <Role Name> Use AWS IAM Roles

Change a user's
password

ALTER LOGIN <SQL Login> WITH
PASSWORD = <PassWord>;

ALTER USER <User Name>
IDENTIFIED BY <Password>

External authen-
tication

Windows Authentication
AWS IAM (Identity and Access
Managemet)

Add a user to a
role

ALTER ROLE <Role Name> ADD
MEMBER <User Name>

Use AWS IAM Roles

Lock a user
ALTER LOGIN <Login Name>
DISABLE

ALTER User <User Name>
ACCOUNT LOCK

- 446 -

Task SQL Server Aurora MySQL

Grant SELECT on
a schema

GRANT SELECT ON SCHEMA::<Schema
Name> to <User Name>

GRANT SELECT ON <Schema
Name>.* TO <User Name>

For more information, see

l https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
l https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

- 447 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

Appendix A: SQL Server 2018 Deprecated
Feature List

SQL Server 2018 Deprecated
Feature

Section

TEXT, NTEXT, and IMAGE data
types

SQL Server Data Types topic and Aurora MySQL Data Types topic

SET ROWCOUNT for DML
SQL Server Session Options topic and Aurora MySQL Session
Options topic

TIMESTAMP syntax for CREATE
TABLE

SQL Server Creating Tables topic and Aurora MySQL Creating
Tables topic

DBCC DBREINDEX,
INDEXDEFRAG, and
SHOWCONTIG

SQL Server Maintenance Plans topic

Old SQL Mail SQL Server Database Mail

IDENTITY Seed, Increment, non
PK, and compound

SQL Server Sequences and Identity and Aurora MySQL Sequences
and Identity

Stored Procedures RETURN Val-
ues

SQL Server Stored Procedures and Aurora MySQL Stored Pro-
cedures

GROUP BY ALL, Cube, and Com-
pute By

SQL Server GROUP BY and Aurora MySQL GROUP BY

DTS SQL Server ETL and Aurora MySQL ETL

Old outer join syntax *= and =* SQL Server Table JOIN and Aurora MySQL Table JOIN

'String Alias' = Expression Migration Tips

DEFAULT keyword for INSERT
statements

Migration Tips

- 448 -

Appendix B: Migration Quick Tips
This section provides migration tips that can help save time as you transition from SQL Server to Aur-
ora MySQL. They address many of the challenges faced by administrators new to Aurora MySQL. Some
of these tips describe functional differences in similar features between SQL Server and Aurora MySQL.

Management
l The concept of a DATABASE in MySQL is not the same as SQL Server. A DATABASE in MySQL is

synonymous with SCHEMA. See Databases and Schemas.

l You cannot create explicit statistics objects in Aurora MySQL. Statistics are collected and main-
tained for indexes only.

l The equivalent of SQL Server's CREATE DATABASE... AS SNAPSHOT OF... resembles Aurora MySQL
Database cloning. However, unlike SQL Server snapshots, which are read only, Aurora MySQL
cloned databases are updatable, .

l In Aurora MySQL, the term "Database Snapshot" is equivalent to SQL Server's BACKUP
DATABASE... WITH COPY_ONLY.

l Partitioning in Aurora MySQL supports more partition types than SQL Server.
However, be aware that partitioning in Aurora MySQL restricts the use of many other fun-
damental features such as foreign keys.

l Partition SWITCH in SQL Server can be performed between any two partitions of any two tables.
In Aurora MySQL, you can only EXCHANGE a table partition with a full table.

l Unlike SQL Server's statistics, Aurora MySQL does not collect detailed key value distribution; it
relies on selectivity only. When troubleshooting execution, be aware that parameter values are
insignificant to plan choices.

SQL
l Triggers work differently in Aurora MySQL. Triggers are executed for each row (not just once).

The syntax for inserted and deleted is new and old. They always contain 0, or 1 row.

l Triggers in Aurora MySQL can not be modified using the ALTER command. Drop and replace
instead.

l Aurora MySQL does not support the @@FETCH_STATUS system parameter for cursors. When
declaring cursors in Aurora MySQL, you must create an explicit HANDLER object, which can set a
variable based on the "row not found in cursor" event. See the example in Stored Procedures.

l To execute a stored procedure, use CALL instead of EXECUTE.

l To execute a string as a query, use Aurora MySQL Prepared Statements instead of either sp_
executesql, or EXECUTE(<String>) syntax.

l Aurora MySQL supports AFTER and BEFORE triggers. There is no equivalent to INSTEAD OF trig-
gers. The only difference between BEFORE and INSTEAD OF triggers is that DML statements are
applied (row by row) to the base table when using BEFORE and does not require an explicit

- 449 -

action in the trigger. If you need to make changes to data affected by a trigger, you can UPDATE
the new and old tables; the changes are persisted.

l Aurora MySQL does not support user defined types. Use base types instead and add column con-
straints as needed.

l The CASE keyword in Aurora MySQL is not only a conditional expression as in SQL Server.
Depending on the context where it appears, CASE can also be used for flow control similar to IF
<condition> BEGIN <Statement block> END ELSE BEGIN <statement block> END.

l In Aurora MySQL, IF blocks must be terminated with END IF. WHILE loops must be terminated
with END WHILE. The same rule applies to REPEAT - END REPEAT and LOOP - END LOOP.

l Cursors cannot be deallocated in Aurora MySQL. Closing them provides the same behavior.

l Aurora MySQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

l The default isolation level in Aurora MySQL is REPEATABLE READ as opposed to SQL Server's
READ COMMITTED. By default, it also uses consistent reads similar to SQL Server's READ
COMMITTED SNAPSHOT.

l Aurora MySQL supports Boolean expressions in SELECT lists using the "=" operator. In SQL
Server, "=" operators in select lists are used to assign aliases. SELECT Col1 = 1 FROM T in Aurora
MySQL returns a column with the alias Col1 = 1, and the value 1 for the rows where Col1 = 1, and
0 for the rows where Col1 <> 1 OR Col1 IS NULL.

l Aurora MySQL does not use special data types for UNICODE data. All string types may use any
character set and any relevant collation including multiple types of character sets not supported
by SQL Server such as UTF-8, UTF-32, and others. A VARCHAR column can be of a UTF-8 character
set, and have a latin1_CI collation for example. Similarly, there is no "N" prefix for string literals.

l Collations can be defined at the server, database, and column level similar to SQL Server. They
can also be defined at the table level.

l SQL Server's DELETE <Table Name> syntax, which allows omitting the FROM keyword, is invalid in
Aurora MySQL. Add the FROM keyword to all delete statements.

l UPDATE expressions in Aurora MySQL are evaluated in order from left to right. This behavior is
different from SQL Server and the ANSI standard which require an"'all at once" evaluation. For
example, in the statement UPDATE Table SET Col1 = Col1 + 1, Col2 = Col1, Col2 is set to the new
value of Col1. The end result is Col1 = Col2.

l Aurora MySQL allows multiple rows with NULL for a UNIQUE constraint; SQL Server allows only
one. Aurora MySQL follows the behavior specified in the ANSI standard.

l Although Aurora MySQL supports the syntax for CHECK constraints, they are parsed, but ignored.

l Aurora MySQL AUTO_INCREMENT column property is similar to IDENTITY in SQL Server.
However, there is major difference in the way sequences are maintained. While SQL Server
caches a set of values in memory, the last allocation is recorded on disk. When the service
restarts, some values may be lost, but the sequence continues from where it left off. In Aurora
MySQL, each time the service is restarted, the seed value to the AUTO_INCREMET is reset to one

- 450 -

increment interval larger than the largest existing value. Sequence position is not maintained
across service restarts.

l Parameter names in Aurora MySQL do not require a preceding "@". You can declare local vari-
ables such as DECLARE MyParam1 INTEGER.

l Parameters that use the @sign do not have to be declared first. You can assign a value directly,
which implicitly declares the parameter. For example SET @MyParam = 'A'.

l Local parameter scope is not limited to an execution scope. You can define or set a parameter in
one statement, execute it, and then query it in the following batch.

l Error handling in Aurora MySQL is called "condition handling". It uses explicitly created objects,
named conditions, and handlers. Instead of THROW and RAISERROR, it uses the SIGNAL and
RESIGNAL statements.

l Aurora MySQL does not support the MERGE statement. Use the REPLACE statement and the
INSERT... ON DUPLICATE KEY UPDATE statement as alternatives.

l You cannot concatenate strings in Aurora MySQL using the "+" operator. 'A' + 'B' is not a valid
expression. Use the CONCAT function instead. For example, CONCAT('A', 'B').

l Aurora MySQL does not support aliasing in the select list using the 'String Alias' = Expression. Aur-
ora MySQL treats it as a logical predicate, returns 0 or FALSE, and will alias the column with the
full expression. USE the AS syntax instead. Also note that this syntax has been deprecated as of
SQL Server 2008 R2.

l Aurora MySQL does not support using the DEFAULT keyword for INSERT statements. Use explicit
NULL instead.
Also note that this syntax has been deprecated as of SQL Server 2008 R2.

l Aurora MySQL has a large set of string functions that is much more diverse than SQL Server.
Some of the more useful string functions are:

l TRIM is not limited to full trim or spaces. The syntax is TRIM([{BOTH | LEADING |
TRAILING} [<remove string>] FROM] <source string>)).

l LENGTH in MySQL is equivalent to DATALENGTH in T-SQL. CHAR_LENGTH is the equivalent
of T-SQL LENGTH.

l SUBSTRING_INDEX returns a substring from a string before the specified number of occur-
rences of the delimiter.

l FIELD returns the index (position) of the first argument in the subsequent arguments.

l FIND_IN_SET returns the index position of the first argument within the second argument.

l REGEXP and RLIKE provide support for regular expressions.

l STRCMP provides string comparison.

l For more string functions, see https://dev.mysql.com/doc/refman/5.7/en/string-func-
tions.html.

l Aurora MySQL Date and Time functions differ from SQL Server's and can cause confusion during
migration. For example:

- 451 -

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

l DATEADD is supported, but is only used to add dates. Use TIMESTAMPADD, DATE_ADD, or
DATE_SUB. There is similar behavior for DATEDIFF.

l Do not use CAST and CONVERT for date formatting styles. In Aurora MySQL, use DATE_
FORMAT and TIME_FORMAT.

l If your application uses the ANSI CURRENT_TIMESTAMP syntax, conversion is not required.
Use NOW in place of GETDATE.

l Object identifiers are case sensitive by default in Aurora MySQL. If you get an 'Object not found
error', verify object name case.

l In Aurora MySQL variables cannot be declared interactively in a script but only within stored
routines such as stored procedures, functions, and triggers

l Aurora MySQL is much stricter than SQL Server in terms of statement terminators. Be sure to
always use a semicolons at the end of statements.

l The syntax for CREATE PROCEDURE requires parenthesis after the procedure name, similar to
SQL Server User Defined Functions. It does not allow the AS keyword before the procedure body.

l Beware of control characters when copying and pasting a script to Aurora MySQL clients. Aurora
MySQL is much more sensitive to these than SQL Server, and they result in frustrating syntax
errors that are hard to spot.

- 452 -

Glossary

ACID
Atomicity, Consistency, Isolation, Durability

AES
Advanced Encryption Standard

ANSI
American National Standards Institute

API
Application Programming Interface

ARN
Amazon Resource Name

AWS
Amazon Web Services

BLOB
Binary Large Object

CDATA
Character Data

CLI
Command Line Interface

CLOB
Character Large Object

CLR
Common Language Runtime

CPU
Central Processing Unit

CRI
Cascading Referential Integrity

- 453 -

CSV
Comma Separated Values

CTE
Common Table Expression

DB
Database

DBCC
Database Console Commands

DDL
Data Definition Language

DEK
Database Encryption Key

DES
Data Encryption Standard

DML
Data Manipulation Language

DQL
Data Query Language

FCI
Failover Cluster Instances

HADR
High Availability and Disaster Recovery

IAM
Identity and Access Management

IP
Internet Protocol

ISO
International Organization for Standardization

- 454 -

JSON
JavaScript Object Notation

KMS
Key Management Service

NUMA
Non-Uniform Memory Access

OLE
Object Linking and Embedding

OLTP
Online Transaction Processing

PaaS
Platform as a Service

PDF
Portable Document Format

QA
Quality Assurance

RDMS
Relational Database Management System

RDS
Amazon Relational Database Service

REGEXP
Regular Expression

SCT
Schema Conversion Tool

SHA
Secure Hash Algorithm

SLA
Service Level Agreement

- 455 -

SMB
Server Message Block

SQL
Structured Query Language

SQL/PSM
SQL/Persistent Stored Modules

SSD
Solid State Disk

SSH
Secure Shell

T-SQL
Transact-SQL

TDE
Transparent Data Encryption

UDF
User Defined Function

UDT
User Defined Type

UTC
Universal Time Coordinated

WMI
Windows Management Instumentation

WQL
Windows Management Instrumentation Query Language

WSFC
Windows Server Failover Clustering

XML
Extensible Markup Language

- 456 -

	Introduction
	Tables of Feature Compatibility
	AWS Schema and Data Migration Tools
	AWS Schema Conversion Tool (SCT)
	SCT Action Code Index
	AWS Database Migration Service (DMS)

	ANSI SQL
	Migrate from SQL Server Constraints
	Migrate to Aurora MySQL Constraints
	Migrate from SQL Server Creating Tables
	Migrate to Aurora MySQL Creating Tables
	Migrate from SQL Server Common Table Expressions
	Migrate to Aurora MySQL Common Table Expressions
	Migrate from SQL Server Data Types
	Migrate to Aurora MySQL Data Types
	Migrate from SQL Server GROUP BY
	Migrate to Aurora MySQL GROUP BY
	Migrate from SQL Server Table JOIN
	Migrate to Aurora MySQL Table JOIN
	Migrate from SQL Server Views
	Migrate to Aurora MySQL Views
	Migrate from SQL Server Window Functions
	Migrate to Aurora MySQL Window Functions

	T-SQL
	Migrate from SQL Server Collations
	Migrate to Aurora MySQL Collations
	Migrate from SQL Server Cursors
	Migrate to Aurora MySQL Cursors
	Migrate from SQL Server Date and Time Functions
	Migrate to Aurora MySQL Date and Time Functions
	Migrate from SQL Server String Functions
	Migrate to Aurora MySQL String Functions
	Migrate from SQL Server Databases and Schemas
	Migrate to Aurora MySQL Databases and Schemas
	Migrate from SQL Server Transactions
	Migrate to Aurora MySQL Transactions
	Migrate from SQL Server DELETE and UPDATE FROM
	Migrate to Aurora MySQL DELETE and UPDATE FROM
	Migrate from SQL Server Stored Procedures
	Migrate to Aurora MySQL Stored Procedures
	Migrate from SQL Server Error Handling
	Migrate to Aurora MySQL Error Handling
	Migrate from SQL Server Flow Control
	Migrate to Aurora MySQL Flow Control
	Migrate from SQL Server Full-Text Search
	Migrate to Aurora MySQL Full-Text Search
	Migrate from SQL Server JSON and XML
	Migrate to Aurora MySQL JSON and XML
	Migrate from SQL Server MERGE
	Migrate to Aurora MySQL MERGE
	Migrate from SQL Server PIVOT and UNPIVOT
	Migrate to Aurora MySQL PIVOT and UNPIVOT
	Migrate from SQL Server Synonyms
	Migrate to Aurora MySQL Synonyms
	Migrate from SQL Server TOP and FETCH
	Migrate to Aurora MySQL LIMIT (TOP and FETCH Equivalent)
	Migrate from SQL Server Triggers
	Migrate to Aurora MySQL Triggers
	Migrate from SQL Server User Defined Functions
	Migrate to Aurora MySQL User Defined Functions
	Migrate from SQL Server User Defined Types
	Migrate to Aurora MySQL User Defined Types
	Migrate from SQL Server Sequences and Identity
	Migrate to Aurora MySQL Sequences and Identity
	Migrate from SQL Server Managing Statistics
	Migrate to Aurora MySQL Managing Statistics

	Configuration
	Migrate from SQL Server Session Options
	Migrate to Aurora MySQL Session Options
	Migrate from SQL Server Database Options
	Migrate to Aurora MySQL Database Options
	Migrate from SQL Server Server Options
	Migrate to Aurora MySQL Server Options

	High Availability and Disaster Recovery (HADR)
	Migrate from SQL Server Backup and Restore
	Migrate to Aurora MySQL Backup and Restore
	Migrate from SQL Server High Availability Essentials
	Migrate to Aurora MySQL High Availability Essentials

	Indexes
	Migrate from SQL Server Clustered and Non Clustered Indexes
	Migrate to Aurora MySQL Clustered and Non Clustered Indexes

	Management
	Migrate from SQL Server SQL Server Agent
	Migrate to Aurora MySQL Agent
	Migrate from SQL Server Alerting
	Migrate to Aurora MySQL Alerting
	Migrate from SQL Server Database Mail
	Migrate to Aurora MySQL Database Mail
	Migrate from SQL Server ETL
	Migrate to Aurora MySQL ETL
	Migrate from SQL Server Viewing Server Logs
	Migrate to Aurora MySQL Viewing Server Logs
	Migrate from SQL Server Maintenance Plans
	Migrate to Aurora MySQL Maintenance Plans
	Migrate from SQL Server Monitoring
	Migrate to Aurora MySQL Monitoring
	Migrate from SQL Server Resource Governor
	Migrate to Aurora MySQL Resource Governor
	Migrate from SQL Server Linked Servers
	Migrate to Aurora MySQL Linked Servers
	Migrate from SQL Server Scripting
	Migrate to Aurora MySQL Scripting

	Performance Tuning
	Migrate from SQL Server Execution Plans
	Migrate to Aurora MySQL Execution Plans
	Migrate from SQL Server Query Hints and Plan Guides
	Migrate to Aurora MySQL Query Hints and Plan Guides

	Physical Storage
	Migrate from SQL Server Partitioning
	Migrate to Aurora MySQL Partitioning

	Security
	Migrate from SQL Server Column Encryption
	Migrate to Aurora MySQL Column Encryption
	Migrate from SQL Server Data Control Language
	Migrate to Aurora MySQL Data Control Language
	Migrate from SQL Server Transparent Data Encryption
	Migrate to Aurora MySQL Transparent Data Encryption
	Migrate from SQL Server Users and Roles
	Migrate to Aurora MySQL Users and Roles

	Appendix A: SQL Server 2018 Deprecated Feature List
	Appendix B: Migration Quick Tips
	Management
	SQL

	Glossary

