
SANS Institute

AppSec/DevSecOps
Best Practices in AWS
Compiled from works completed by
Nathan Getty | Shaun McCullough | Dave Shackleford
with an introduction by John Pescatore

December 2019

©2019 SANS™ Institute

Sponsored by:

https://www.sans.org
https://aws.amazon.com/marketplace

Table of
Contents

2

3	 Introduction

4	 How to Protect a Modern Web Application in AWS
5		 Introduction
5		 A Threat Modeling Primer
6			 Threat Modeling Process and Frameworks
6			 Risk Assessment and Prioritization
8		� DevOps with Security
9		� Threat Modeling a Web Application
9			 Risk of Web Application Attacks
9			 Use Case: Spoofing an Identity
12			 Use Case: SQL Injection Attack
12		� Threat Modeling the DevSecOps Platform
13			 Use Case: Credential Disclosure
14			 Use Case: Software Vulnerability to Denial of Service
15		 Summary

18	� JumpStart Guide for Application Security in AWS
19		 Introduction
19		 Understanding Your Needs
21		 Implementation Options in AWS
21			 Cloud-Native Services
21			 Open Source and Custom Solutions
22			 Consulting Partner Private Offers
22		� Needs and Capabilities: The Business Case for Application Security

in the Cloud
23			 General AWS Web Application Security Considerations
25		 AWS Implementation Considerations
26		 Making the Choice
26			 Evaluate Your Organization’s Current Deployment Process
26			 Define a Plan and Implement
27		 Conclusion

29	 How to Secure App Pipelines in AWS
30		 How the SDLC Is Changing
31			 The Modern CI/CD Pipeline
33		 Security in the CI/CD World
34		 Security for the CI/CD Pipeline
35			 Code/Develop
35			 Build
36			 Package
36			 Test
37			 Deploy/Upgrade
38			 Operate
38			 Best Practices
39		 Additional Development Security Concepts for Cloud
39			 Secrets Management
39			 API Security
40			 Privilege Management and IAM
40			 Containers and Container Management/Orchestration
40			 Serverless Applications and Security
41		 Use Case
41		 Summary

43		 Next Steps

“�Avoiding—versus

constantly patching—

vulnerabilities in

applications is the

most effective and

efficient way to lower

risk and avoid security

incidents.”

Today, the first impression a customer has of a company and its products and
services usually starts with software: either the company’s website or its mobile
applications. Because businesses have learned that to be successful they need to
continually refresh their products and be first to market with new offerings, the
pace of change for websites and applications has continued to increase. As a result,
a number of software development methodologies have evolved to meet the need
for speed: Lean, Agile, DevOps, etc. A common factor across these approaches is the
idea of building in quality: Focus on the user needs early, involve development and
operations continually, break projects into smaller pieces and iterate through more
frequent build-a-little/test-a-little cycles versus the traditional long cycle waterfall
model. The availability of infrastructure-as-a-service (IaaS) offerings has greatly
accelerated this movement.

It turns out that today’s focus on digital business also means software is vulnerable
to hackers and cybercriminals. Efforts at moving to secure development lifecycle
(SDL) approaches have often focused on the long phases of the traditional waterfall
model. As DevOps principles have been increasingly adopted, traditional security
testing approaches have often been too slow and are frequently bypassed.

However, many security organizations have been able to work cooperatively with IT
and app development to make sure “building quality in” includes “building security
in.” Avoiding—versus constantly patching—vulnerabilities in applications is the
most effective and efficient way to lower risk and avoid security incidents. Doing
so successfully requires security teams to understand how DevOps works across
hybrid IT architectures and to evolve security processes, architectures and controls
by embedding them in DevOps methodologies.

The papers that follow describe best practices and techniques for securing web
applications and app pipelines in Amazon Web Services (AWS):

• �How to Protect a Modern Web Application in AWS, written by Shaun McCullough,
provides a use case of modeling the threats against a web application server
and how to address those risks in a cloud environment. This paper covers the
complete web application stack, including the web server, application code
and DevOps pipelines to manage it, and provides a tutorial on threat modeling
concepts and frameworks.

• �Nathan Getty’s JumpStart Guide for Application Security in AWS provides details on
the application deployment and security options in AWS. It defines a methodology
that details the business, technical and operational considerations needed to
develop the optimal application security approach to avoiding and mitigating
vulnerabilities in applications that run on AWS.

• �In How to Secure App Pipelines in AWS, Dave Shackleford provides detail on
how Continuous Integration/Continuous Delivery (CI/CD) pipelines are typically
implemented for cloud-based application development. This paper highlights
the key areas security needs to integrate into the CI/CD pipeline, including
code security, code repositories, automation tools, orchestration platforms and
gateways, and network connectivity.

Adapting a strong threat modeling process; understanding the business, technical
and operational considerations associated with application security; and
automating security controls throughout the entire development and deployment
life cycle is critical to securing cloud-based apps.

3

A SANS Whitepaper

How to Protect a Modern Web
Application in AWS

Webcast You can access the associated webcast at:
https://pages.awscloud.com/How-to-Secure-a-Web-App-in-AWS.html

4How to Protect a Modern Web Application in AWS

Sponsored by:

AWS Marketplace

Written by Shaun McCullough

April 2019

https://pages.awscloud.com/How-to-Secure-a-Web-App-in-AWS.html

Introduction

As businesses move more assets to the cloud, having a security plan is essential,
but nobody has the time or resources to do everything that is needed from the start.
Instead, organizations need to prioritize their security plans based on the risks to which
they are exposed. Too often, organizations start with securing the service they know best
or have read about in a blog, or they try to buy their way out of the risks with multiple,
expensive security appliances.

While the team is knee-deep in transitioning core services, security takes a back seat.
It’s confusing to understand where the cloud service provider’s responsibility ends and
the customer’s responsibility begins, or how best to secure the services and leverage
new tools properly.

Prioritizing the risks, and hence determining what should be secured first, can be
simplified through threat modeling—the process of identifying and prioritizing the risks
to infrastructure, applications and the services they provide. A proper threat model
allows organizations to identify applicable risks, prioritize those risks and evaluate how
to manage changes in risks over time.

Implementing threat modeling in the cloud is similar to implementing for a traditional
infrastructure, but the cloud services, risk priority levels and potential solutions can be
vastly different. A threat against a web application stack will be the same in the cloud
as it is when deployed on premises. However, cloud providers offer new tools to address
the risks. Security teams can bring together cloud-native services, centralized logging,
new identity access management processes and easy-to-implement third-party services
to make applications and infrastructures safer.

This paper is a use case of modeling the threats against a web application server and
how to address those risks in a cloud environment. We will cover the web app stack,
including the web server, the application code, and the DevOps pipelines to manage
it. Database threats will be covered in future papers in this series. We’ll examine the
tools and services that cloud providers offer to operate web applications at scale and
integrate security services. The paper also breaks down the DevOps process, explains
how it can be threat-modeled, and describes common security risks and improvements
over traditional workflows.

A Threat Modeling Primer

As defined in a special publication by the National Institute of Standards and
Technology (NIST), threat modeling is “a form of risk assessment that models aspects
of the attack and defense sides of a particular logical entity.”1 By implementing a threat
modeling process, organizations can improve their security posture, identify unrealized
risks and provide their leadership with the proper tools to prioritize which risks to focus
on first.

5How to Protect a Modern Web Application in AWS

Threat Modeling Process and Frameworks
Most threat models start in one of two ways:

• �Identifying a set of attacker techniques the organization is at risk from

• Identifying a set of deployed assets that are at risk

Organizations need to pick the approach that works best for
them, but asset-focused threat modeling is usually the most
straightforward.

Threat modeling is a process, not a one-time whiteboard session on
a Monday afternoon. As the threats evolve, so do an organization’s
risk appetite and security implementations, along with the
experience of the team. Organizations must create a culture of
threat modeling, where the model is evaluated, implemented, tested,
reviewed and re-evaluated regularly.

The first threat model an organization builds could take time and
even be painful. As the team gains experience, the process becomes
more natural and standardized. Security teams should hold quarterly
reviews to make updates, question assumptions and adjust risks.
Teams should also perform a yearly re-evaluation of the whole threat model, with all the
experts available. Regular reviews of the threat model help organizations understand
whether the risk-reduction plans are working.

Among the various threat modeling frameworks, the DREAD risk assessment model
works well. Used at OpenStack, DREAD helps teams evaluate the potential results of an
attack. DREAD helps the team walk through how a system is at
risk, what the attack vector looks like, how likely the attack is to
occur and how to prioritize which risks to focus on.

The IANS Pragmatic Threat Modeling Toolkit is a spreadsheet
that helps organizations walk through the DREAD framework. Users can identify assets at
risk, work through DREAD rankings and graph results for easier understanding.2

Risk Assessment and Prioritization
Every risk in an environment is addressed in one of four ways, as
illustrated in Figure 1.

Mitigate—Putting a firewall in front of your web server will
mitigate some attacks, but not all of them. Most security
controls focus on mitigating risks.

Eliminate—Eliminating a risk will likely require changing
the nature of the asset at risk in such a way that the risk fundamentally goes
away. A firewall cannot eliminate all scripting attacks against a web application,

6How to Protect a Modern Web Application in AWS

Drivers of Threat Prioritization
Prioritizing threats is often tricky and likely
influenced by the expertise or culture of the
organization. If the network team is seasoned, runs
a stable environment and has the time to research
new threats, it can create the most detailed plan for
reducing security risks in the team’s responsibility
area. In contrast, a host team caught in the middle of
a complicated operating system upgrade has no time
to think of next week’s risks, much less next year’s.
The organizational culture, workloads, expertise and
maturity drive how organizations respond to threats.
A threat model process helps level the playing field
by giving the appropriate team members the space,
tools and support to think about risks and threats
across the organization.

1 �Draft NIST SP 800-154, Guide to Data-Centric System Threat Modeling, https://csrc.nist.gov/publications/detail/sp/800-154/draft
2 �IANS Pragmatic Threat Modeling Toolkit, https://portal.iansresearch.com/media/739278/ians_pragmatic_threat_modeling_toolkit.xlsm

Threat modeling is a process, not a one-time
whiteboard session on a Monday afternoon.

Figure 1. Risk Management
Strategies

Mitigate

Eliminate

Transfer

Accept

Risk Assessment

https://csrc.nist.gov/publications/detail/sp/800-154/draft

but removing all data entry fields and making the website completely static will
certainly eliminate whole categories of attacks. Eliminating risks is ideal, but
difficult—and usually means re-architecting.

Transfer—When an organization decides to move on-premises infrastructure to
a cloud provider, it is effectively transferring asset risks to the service provider.
The organization is making a business decision to pay for the provider to manage,
secure, provision or operate the service. Cloud providers operate on a shared
responsibility model. From a security perspective, that means that parts of
the infrastructure stack have been transferred to the cloud provider. It is now
responsible for operating, security and managing the assets.

Serverless technology is a good example of transferring risk and taking advantage
of this shared responsibility model. A customer could spin up virtual machines
in the cloud, managing the full stack from operating system to application. The
customer is responsible for the patching, configuration and security monitoring of
that virtual machine operating system, while the cloud provider is responsible for
the virtualization infrastructure, storage and network. Serverless offerings allow
the customer to execute a bundle of code, yet have no direct interaction with
the executing operating system. The service provider manages the servers in a
serverless offering. The risk of operating system vulnerabilities is now transferred
to the cloud provider.

Accept—If an organization is unable to mitigate, eliminate or transfer the risk,
then it is accepting that risk. It might be a temporary acceptance to be re-
evaluated later. In the threat model process, it is healthy for the organization to
understand that accepting risk is a valid option that frees it to plan, prioritize, and
dive into the other risks.

As an organization gets more comfortable with its threat model process, it should start
incorporating the model into the beginning of the development cycle, helping to identify
risks that need to be mitigated or eliminated before the organization has invested the
time in creating and deploying it. Security teams
that work separately from those who create the
systems are fighting an uphill battle that will impair
effectiveness while raising costs. Include the whole
team when modeling a set of services. The developers likely can suggest and implement
ways to significantly reduce the risk scores.

Building threat models for IT-operated application services will help with prioritizing
and accepting risks. Cloud services offer new opportunities for customers to mitigate,
eliminate or transfer those risks for traditional IT service applications and to establish
new workflows for developing and deploying those systems through DevOps.

7How to Protect a Modern Web Application in AWS

Building threat models for IT-operated application
services will help with prioritizing and accepting risks.

DevOps with Security

DevOps is a process that enables close coordination between development and
operation teams.3 That integration enables organizations to develop and quickly deploy
new services with zero downtime and improved reliability. The process is especially
beneficial for organizations that deploy new versions of software multiple times a day.

To incorporate DevOps, organizations rework testing and deployment processes to be
safe, automated and executable at any time. Continuous Integration is the process by
which software changes from multiple developers are integrated into a single stack,
likely multiple times a day. With Continuous Integration, security teams can avoid
the big end-of-a-sprint integration sessions that cause delays and waste resources.
Continuous Deployment is the process of building software to be releasable into
production at any time, with an easy push of the button.

Continuous Integration and
Continuous Deployment (CI/CD)
require organizations to rethink
their planning, development
and deployment pipelines to be
highly automated. See Figure 2.

With CI/CD, every evaluation,
decision, configuration or
security test that can be automated is automated. If these processes cannot be
automated, then the development team must rework the architecture.

DevSecOps takes the DevOps process and builds in automated security evaluation gates.
The “Sec” of DevSecOps requires the organization to establish security policies for the
product before development starts, implementing them in the testing and deployment
pipelines. Automated tests are security policies that become reality, not just words in
a binder. The best CI/CD processes incorporating DevSecOps give developers the tools
to test the security of their code at their workstations—at the beginning of the process
rather than waiting until the end of development and being surprised.4

CI/CD is usually focused on deploying applications automatically and continuously.
However, the cloud opens a whole new area, allowing the automatic provisioning and
deployment of core infrastructure itself. The cloud provides APIs, development kits and
specialized services that let customers control every aspect of the infrastructure with
DevOps-like processes and tooling.

Imagine creating an infrastructure pipeline where a configuration file is used to build a
web application stack. And say that a new version of the web server is released with a
software patch, and you want to deploy it. After testing it locally, the team updates the
configuration file and checks it into version control, and a CI/CD pipeline kicks in and
replaces all deployed web servers with the updated versions—automatically.

8How to Protect a Modern Web Application in AWS

Companies using on-premises
environments have been
leveraging DevOps processes
to create close coordination
between the developers, who
create new applications, and
operations, which provides the
virtual machines they run on.
The cloud brings a whole host
of services to automate all
aspects of the infrastructure
deployment and management
that on-premises services are
unable to match.

Figure 2. Continuous
Integration and Continuous

Deployment (CI/CD)

PLAN CODE BUILD TEST

MEASURE OPERATE DEPLOY RELEASE

3 �NIST SP800-190, https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-190.pdf

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-190.pdf

CI/CD comes with risks, however. Automating processes traditionally done by humans
can reduce errors, but it also hides unforeseen problems. The platforms that implement
DevSecOps and CI/CD pipelines are new attack vectors. The CI/CD platform must
become part of the threat modeling process for an organization to ensure that the
entire infrastructure is evaluated.

Threat Modeling a Web Application

As previously discussed, the threat model process starts with identifying deployed
assets that are at risk—assets that are well understood and vital to the business. As part
of our use case, let’s model the threat to the web application itself and investigate a
threat model for the web application.

Risk of Web Application Attacks
Web applications are usually at risk—they live on the internet, with the sole purpose
of capturing and providing information to all their users living on untrusted networks.
Complex web applications with user access controls, database-backed pages and free-
form input fields are notorious for their vulnerabilities.

The Open Web Application Security Project (OWASP) Top 105 is the best starting place
when analyzing threats against web applications. Top attack techniques are prioritized,
researched and documented, with details of how the attack works and suggested best
practices for stopping the attacks.

Cross-site scripting (XSS) is a common attack on web applications that the OWASP Top
10 – 2017 report describes:

XSS flaws occur whenever an application includes untrusted data in a new web
page without proper validation or escaping, or updates an existing web page
with user-supplied data using a browser API that can create HTML or JavaScript.
XSS allows attackers to execute scripts in the victim’s browser which can hijack
user sessions, deface web sites, or redirect the user to malicious sites.6

Use Case: Spoofing an Identity
Web applications require data inputs and dynamically display information back to users.
XSS could result in many different threat categories. For this use case, an XSS attack that
exposes other users’ browser session credentials can be used to spoof an identity.

9How to Protect a Modern Web Application in AWS

4 �Accelerate: Building and Scaling High Performing Technology Organizations, by Nicole Forsgren, Jez Humble and Gene Kim (IT Revolution, 2018)
5 �OWASP Top Ten Project, www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
6 �The 10 Most Critical Web Application Security Risks, www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf

10How to Protect a Modern Web Application in AWS

After categorizing the threat, a team can evaluate the risk using the DREAD model. Each
DREAD risk-rating category is given a value from 1 to 10. Figure 2 describes the ratings.

The rating of a single threat does not provide a full picture of the organization’s
vulnerable landscape. DREAD ratings of multiple risks should be viewed in tandem to get
a complete picture of the risks that need to be prioritized. While informed by the DREAD
rating guidance, organizations will arrive at their final rating number/prioritization
through a combination of the ratings and their own experiences, knowledge and biases.
Table 1 on the next page shows the DREAD rating for our use case.

Damage Potential—How much damage will occur if this vulnerability is compromised?
• 0 =	None
• 3 =	 Individual user data is compromised or affected, or availability is denied
• 5 =	 All individual tenant data is compromised or affected, or availability is denied
• 7 =	 All tenant data is compromised or affected, or availability is denied
• 7 =	 Denied availability of a component/service
• 8 =	Denied availability of all components/services
• 9 =	Compromised underlying management and infrastructure data
• 10 =	Complete system or data destruction, failure or compromise

Reproducibility—How reliably can the vulnerability be exploited?
• 0 =	Very hard or impossible, even for administrators; the vulnerability is unstable and statistically unlikely to be reliably exploited
• 5 =	 One or two steps required; tooling/scripting readily available
• 10 =	Unauthenticated users can trivially and reliably exploit using only a web browser

Exploitability—How difficult is the vulnerability to exploit?
• 0 =	N/A We assert that every vulnerability is exploitable, given time and effort; all scores should be 1-10
• 1 =	 Even with direct knowledge of the vulnerability, we do not see a viable path for exploitation
• 2 =	 Advanced techniques required, custom tooling; only exploitable by authenticated users
• 5 =	 Exploit is available/understood, usable with only moderate skill by authenticated users
• 7 =	 Exploit is available/understood, usable by non-authenticated users
• 10 =	Trivial—just a web browser

Affected Users—How many users will be affected?
• 0 =	None
• 5 =	 Specific to a given project
• 10 =	All users

Discoverability—How easy is it to discover the threat, to learn of the vulnerability? (By convention this is set to 10
even for privately reported vulnerabilities.)

• 0 =	Very hard to impossible to detect even given access to source code and privileged access to running systems
• 5 =	 Can figure it out by guessing or by monitoring network traces
• 9 =	Details of faults like this are already in the public domain and can be easily discovered using a search engine
• 10 =	The information is visible in the web browser address bar or in a form

Figure 2. DREAD Risk Ratings7

7 �Adapted from DREAD Rating, https://wiki.openstack.org/wiki/Security/OSSA-Metrics#DREAD

https://wiki.openstack.org/wiki/Security/OSSA-Metrics#DREAD

11How to Protect a Modern Web Application in AWS

Because XSS is a well-known and well-researched attack method, security teams have
multiple ways to mitigate the risk of an XSS attack on a web server. A popular security
control is incorporating a web application firewall (WAF) to monitor and block any
suspicious traffic before it reaches the web server.8 Large cloud service providers make
it easy to implement a WAF right from the console. AWS’s WAF service allows you to
customize rules and access control lists to fit your business and risk models.

Larger cloud service providers may offer WAF assets that can be integrated into their
service offerings. They are easy to set up, are relatively inexpensive, and should be
able to block OWASP Top 10 and other common attacks. If the DREAD risk is higher and
more protection is needed, the cloud service provider often has a variety of top-tier
third-party products with WAF offerings available for installation (for example, Impreva
SecureSphere and Fortinet FortiGate).9 One way to eliminate the risk of XSS is to remove
data entry fields altogether. It requires rethinking the web application architecture and
possibly removing functionality for the sake of security. If eliminating the data entry
fields is not viable, you can transfer that ownership to a third party. For instance, if
the data input fields are for user authentication, leverage a third-party single sign-on
service. Eliminating and transferring risks tends to be more costly, but will help decrease
DREAD risk scores. The bottom line is that the threat modeling process should drive
prioritization of assets and financial commitments.

8 �Web Application Firewall, www.owasp.org/index.php/Web_Application_Firewall
9 �This paper mentions product names to provide real-life examples of how varying classes of tools can be used. The use of these examples is not an

endorsement of any product.

Table 1. DREAD Rating for Web Application

Category

Damage Potential

Reproducibility

Exploitability

Affected Users

Discoverability

DREAD Average

Rating

2

7

4

4

7

4.8

Spoofing Identity

The business unit is a significant driver of the risk rating for an application. What data does the application
hold? How far-reaching would the attack be? How important is the asset itself? In this example, an XSS attack
to gain credentials does not do any damage itself.

Once identified, an XSS attack is easy to reproduce through scripts. Only common application access is
necessary, rather than special access privileges.

Depending on the vulnerability of the application, an XSS could be easy or hard to exploit. Discoverability
rates how easy it is to determine if there is potential for an XSS; however, making the exploit perform the
desired identity spoofing can be tricky, so we will rate this lower.

An XSS attack affects the users logged into the application at the time of the attack, and potentially any users
who view the corrupted data. Some users will be affected, but not all.

Entering JavaScript into a webpage and reviewing the results gives an attacker a good idea if there is an XSS
vulnerability, even if they cannot complete the exploit.

https://www.owasp.org/index.php/Web_Application_Firewall

10 �SQL Injection: Modes of Attack, Defence, and Why It Matters,
www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23

11 �SQL Injection Bypassing WAF, www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
12 �Getting Started—About Version Control, https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

12How to Protect a Modern Web Application in AWS

Use Case: SQL Injection Attack
Modern web applications are driven by databases that can contain a wealth of
knowledge that attackers want. A SQL injection tricks the database into returning
unintended data.10 One outcome of a SQL injection attack is information disclosure. The
DREAD rating determines the severity of this attack in the environment. See Table 2.

The processes for mitigating a SQL injection and XSS attacks are similar. The SQL
injection attack comes through the web application itself; thus the WAF is in a position
to identify and block potential SQL injection attacks. Not all SQL injection attacks will be
detected, and significant research has gone into countering a WAF.11 When deciding on a
WAF product, look at the entire threat model process and ensure that the WAF covers all
the threats at the same time.

Another option is to leverage secure coding practices to develop safer code that
neutralizes invalid text field inputs before being run in the SQL query on the database.
Depending on the programming languages, a number of libraries, design patterns and
tools can do this. The security team will need to ensure that all code is following these
standards or incorporating the right tools. Today, CI/CD platforms provide opportunities
to continuously scan, evaluate or test code as it is being developed.

Now that we’ve looked at modeling the threat to the web application, let us look at the
threat to the development and deployment platform that is used in cloud operations.

Threat Modeling the DevSecOps Platform

We have looked at threat models for a well-known architecture like the web application.
Now let’s walk through a practical threat model of a CI/CD platform. Again, DREAD helps
to prioritize the risks.

A CI/CD process is all about safely automating workflows. The Continuous Integration
process kicks off when a developer checks code into the designated source code
repository. Distributed version control systems (DVCSs) will mirror an entire copy of
the codebase, including all history, on every developer’s computer.12 Git is the most

Table 2. DREAD Rating for Database

Category

Damage Potential

Reproducibility

Exploitability

Affected Users

Discoverability

DREAD Average

Rating

7

7

5

2

6

5.4

Information Disclosure

A SQL injection, if successful, will likely affect all the data in the database, not just specific users. The actual
damage done in information disclosure is another measure that requires the business units to weigh in.

Once a SQL injection attack is identified, it is repeatable.

SQL injection (or NoSQL) tends to be easier to accomplish than XSS.

Other users may not even notice if a SQL injection attack is happening unless it is damaging the data. For an
information disclosure categorized attack, the user effect is nominal.

Like XSS, the SQL injection vulnerability is easier to identify than actually to exploit.

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23

13How to Protect a Modern Web Application in AWS

popular DVCS in use today,
used with a central Git
repository management system
like GitHub, GitLab or AWS
CodeCommit. When developers
request to check their code
into the designated central
repository, the Continuous
Integration system kicks off to
test the integration to ensure
that it does not break the
application. See Figure 3.

Use Case: Credential
Disclosure
Web applications can make
database connections directly
to query for data. Many
times, the web application
connects to the database
through credentials stored in
a configuration file on the application’s server. The developers have an instance of the
database in their environment for testing, which may include a small copy of production
data to test code changes properly.

If that credential file is accidentally checked into the source control system, that
configuration file could become visible to unauthorized users—especially with open
source software where the DVCS is accessible to the public. Disclosure of credentials
can lead to an unauthorized login to the database, called “ identity spoofing.” Using the
spoofed identity can then lead to additional information disclosure, tampering of data
or even denial of service. Identifying each step and categorizing the actions along the
way is building up the attack tree.13 See Table 3.

Continuous
Integration Server

5 3

4

Fail or Succeed Build

Test

Source Control Server

Developer 2Developer 1Manager

2
Fetch Changes

6Notify Success
or Failure

3Check In Changes

Figure 3. Continuous
Integration Process

Table 3. DREAD Rating of Credential Disclosure

Category

Damage Potential

Reproducibility

Exploitability

Affected Users

Discoverability

DREAD Average

Rating

5

8

8

5

9

7

Credential Disclosure

The damage from information disclosure varies depending on the value of the credentials themselves. In this
use case, the credentials at risk are for the development environment and reside on the developer’s machine.
Because this test database contains a snapshot of production data for testing, customer data is at risk.

The threat exploited is highly reproducible because the attacker can log into the at-risk asset.

Logging in with unauthorized credentials is easy when you have the credentials.

The database at risk in this particular threat model is a developer’s test environment with limited production data.

The software is continuously scanning source code repositories looking for credential-like data, thus
discovering the data could take mere minutes.

13 �Attack Trees, www.schneier.com/academic/archives/1999/12/attack_trees.html

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

14How to Protect a Modern Web Application in AWS

As the developer is checking in new code in a Continuous Integration process, it is
possible that the developer will accidentally check in that credential file and risk
disclosure. If undetected, exposure is guaranteed.14

In CI/CD, the automated test platform could be used to evaluate the code to look for
strings that resemble credentials and reject the merge. These tools are inexpensive
and are easy to configure and execute; they fit perfectly with the CI/CD process and will
mitigate the credential disclosure risks.

To eliminate the risk of credentials being checked in, eliminate the credential file.
Secrets management systems, which are available from cloud service providers or
through the marketplace, can be used to programmatically store credentials and only
provide them to applications that are authorized. Although this risk-reduction will be
harder to implement and can cause changes to the asset, eliminating a risk versus
mitigating that risk might be worth the cost.

Use Case: Software Vulnerability to Denial of Service
Humans write software, and humans are experts at making mistakes. Security
professionals are continually patching, monitoring and managing software updates.
To make matters worse, developers are increasingly reliant on software packages
distributed by other developers. Code actually written by the development team may
be a small percentage of the entire code base for the application. For this threat model,
teams must evaluate the risk of a vulnerable third-party NodeJS module making its way
into the software stack.

Node Package Manager (NPM) is the most widely used NodeJS package delivery tool,
and is likely what organizations are using for JavaScript-based frameworks. A vulnerable
NodeJS module can cause information disclosure, escalation of privileges or denial of
service.15 Let’s look at denial of service and rate the DREAD risks, as shown in Table 4.

14 �I accidently pushed sensitive info, https://github.community/t5/How-to-use-Git-and-GitHub/I-accidentally-pushed-sensitive-info/td-p/225
15 �NPM security advisories, www.npmjs.com/advisories

Table 4. DREAD Rating of Software Vulnerability

Category

Damage Potential

Reproducibility

Exploitability

Affected Users

Discoverability

DREAD Average

Rating

7

5

5

8

3

5.6

Denial of Service

The amount of damage caused by a denial of service is a business-unit-led decision. Is this a core part of
the organization’s business? Could it go down for a day and see no real effects? Business drivers are just as
important as security risks in the threat model process. Knowing how vital each service is to the business
helps define these values. For this use case, the product is a core part of the business and could not go down
for any length of time.

Reproducibility can be difficult because the exploit in the NodeJS module could be easy or hard to implement
depending on what it is. Predicting future vulnerabilities is impractical. The threat modeling team will have to
decide how to handle these ambiguous ratings and be consistent.

Similarly, exploitability is hard to assess.

The number of affected users can be significant. Denial of service attacks against production systems may
slow down or even stop customers from using the application.

Because this use case is not an open source application, it will be difficult for an attacker to discover that an
application has a particularly vulnerable NodeJS package.

https://www.npmjs.com/advisories
https://github.community/t5/How-to-use-Git-and-GitHub/I-accidentally-pushed-sensitive-info/td-p/225

15How to Protect a Modern Web Application in AWS

It can be difficult to know if a vulnerability exists in any included NodeJS packages.
Although the vulnerability may not exist in the packages themselves, each of those
packages could rely on other packages, which could be vulnerable. The CI/CD
platform must continually analyze deployed modules for vulnerabilities discovered
post-deployment.

Some code scanner products are available, usually as scriptable software applications
that can be run by any CI/CD platform. Commercial versions provide a wealth of
threat intelligence and software analysis and are able to not only identify reported
vulnerabilities but also scan deep into the code itself and identify risky functions or
statements. The code scanners should be easy to run with the CI/CD platform. When
developers integrate their code, third-party vulnerability scanners could scan before
acceptance. After deployment, the entire code base should be tested daily for newly
discovered vulnerabilities that can flag to the security team.

Expanding on this idea, the entire deployment system can be scanned before
deployment. In a cloud service environment, the configuration of the infrastructure
itself can be managed by code, using tools such as AWS CloudFormation or HashiCorp’s
Terraform. When a configuration is changed, a sample virtual machine can be
automatically built, then scanned by vulnerability scanning tools to ensure that no
known vulnerabilities exist in the packages. Third-party scanners have cloud-ready
services that can be initiated by CI/CD in the cloud. The results can be used by the CI/
CD to determine if a deployment should continue—all automatically.

The risk model can help inform decision makers on whether to use free or commercial
solutions. Investigate what additional services and intelligence the commercial products
provide, whether they will be easier to implement and operate, and how they might
work in the build process. Remember, the risk scores from the threat modeling process
and the priorities they uncover can help direct where to focus time and money.

Summary

Start building a threat model process as part of the security culture of your organization
and reap the benefits throughout the life of your infrastructure. Focus on identifying
the threats, the risks they pose, and the relative business importance to help the
organization prioritize where to focus attention and resources. The automation of the
integration and deployment processes of applications means security policies need to
be identified and implemented at the beginning of the development cycle, not the end.

Threat modeling is a great process for identifying risks. We recommend that any threat
modeling process do the following:

• �Prioritize risks so organizations know where to focus investment.

• �Produce concrete plans to mitigate, eliminate or transfer any risks that will not be
accepted.

16How to Protect a Modern Web Application in AWS

• �Bring security into the beginning of system development rather than at
deployment time.

• �Create a repeatable, improvable process that is used to make decisions, not just a
checkbox.

• �Document not just the plan but also the risk-reduction results. A threat model
process can help organizations understand how effective they are in planning,
monitoring, addressing and measuring risks.

As your threat model process matures, teams can start to evaluate risks in systems
before they are even developed. Architectural decisions to eliminate a risk rather than
only mitigate it will improve security and likely reduce overall operating costs. And as
automated DevSecOps platforms are brought into the organization’s workflow, a whole
host of risks can be managed automatically.

Adapt a good threat model process that works for your organization. Constantly
re-evaluate, improve and expand the process until the organization can see measured
results from planned risk reductions.

17

About the Author

Shaun McCullough is a community instructor for the SEC545 Cloud Security Architecture
class and gives back to his profession by mentoring and supporting the next generation
of cyber professionals. With 25 years of experience as a software engineer, he has been
focusing on information security for the past 15 years. Shaun is a consultant with H&A
Security Solutions, focusing on secure cloud operations, building DevSecOps pipelines
and automating security controls in the cloud. He also served as technical director
of red and blue team operations, researched advanced host analytics, and ran threat
intelligence on open source platforms in his work with the U.S. Department of Defense.

Sponsor

SANS would like to thank this paper’s sponsor:

How to Protect a Modern Web Application in AWS

RETURN TO THE
TABLE OF CONTENTS

https://www.sans.org/instructors/shaun-mccullough
https://aws.amazon.com/marketplace

A SANS Whitepaper

18JumpStart Guide for Application Security in AWS

Sponsored by:

AWS Marketplace
in conjunction with
Fortinet

Written by Nathan Getty

September 2019

JumpStart Guide for
Application Security in AWS

Webcast You can access the associated webcast at:
https://pages.awscloud.com/JumpStart-AppSec

https://pages.awscloud.com/JumpStart-AppSec

Introduction

As organizations begin to transition their applications into cloud environments, security
teams must provide application security support and insight during the process.

Today’s applications are updated more frequently, and regular release cycles are giving
way to more rapid incremental releases. Application development continues to evolve to
support a more dynamic release schedule. In response, information security teams must
be included in the development process if they are to provide support to development
teams. Because organizations plan to deploy applications as soon as they are approved
for production, your organization’s security team should not be the roadblock.

Because development teams release applications faster than they can be reviewed,
it is critical to integrate the skills and guidance of the security team into the
development model. Whether the application code is deployed on premises or in a
cloud environment, automated security tools provide the information security team with
visibility into code as it moves through the developer pipeline. This visibility provides
more assurance that security will not be compromised.

This process allows the development teams to remain informed of security concerns
for their application as it moves through the pipeline. By embedding security within the
build process, your organization can build a strong relationship between the security
and development teams. By fostering and developing this relationship, developers and
security professionals can work in tandem to deliver secure, timely applications.

According to Forbes, nearly three-quarters of companies are planning to move to a fully
software-defined data center within two years. Almost half of businesses are delaying
cloud deployment due to a cybersecurity skills gap.1 This paper seeks to give you a
better idea of what your organization needs to successfully plan and execute a secure
application transition to, or deployment in, an AWS environment.2 We discuss how
security teams can best support application development teams, what options you have
as a security professional for this support, and how best to guide your development
teams as they transition workflows to AWS.

Understanding Your Needs

Historically, application development and security teams did not always work closely
together. But given the adoption of rapid release cycles and the transition to cloud
services, these teams must build a working relationship that effectively supports rapid
deployment of secure applications. How can they do that while best using existing tools
and processes in the cloud environment?

19JumpStart Guide for Application Security in AWS

1. Understand the applications deployed in your organization.

Security analysts need to be knowledgeable about the applications being deployed, at
least to the extent of being aware of their primary purpose and target audience. When
they understand the application, the underlying code, and for whom the application is
designed, they can run threat modeling assessments and plan accordingly. They can make
remediation decisions with confidence, bring attention to specific security vulnerabilities,
identify which vulnerabilities and risks are acceptable, and provide feedback to the
development team. Encouraging security teams to work closely with development teams
and speak their language will build a strong, mutually beneficial relationship.

2. Understand application deployment methods within AWS.

Applications can be deployed through any one of several channels or tools. Knowledge
of the tools available to development teams can help information security teams define
best security practices within those tools and ease incident response or critical changes
to the applications. Through awareness of the underlying development process, an
organization can be assured that quality information regarding security concerns is
being communicated to the development teams.

3. �Understand what options and responsibilities you have in AWS as you
prepare for securing the application delivery.

The AWS cloud environment gives organizations access to a large developmental
toolset in the form of services that include a number of capabilities. Not every service
will be a good fit for your organization, so development and security teams should plan
ahead and identify which services they will need to use for their application delivery
and the security.

AWS offers various platforms for setting up such services. For example, AWS offers
serverless services, which means your organization is not responsible for operating
or maintaining the underlying infrastructure. Although AWS takes full responsibility
for operating the hardware, networking and patch management of the underlying
infrastructure, responsibility for the security of any application built on the platform lies
completely with the organization.

20JumpStart Guide for Application Security in AWS

1 �“2017 State of Cloud Adoption and Security,” www.forbes.com/sites/louiscolumbus/2017/04/23/2017-state-of-cloud-adoption-and-security
2 �This paper mentions product names to provide real-life examples of how firewall tools can be used. The use of these examples is not an endorsement

of any product.

https://www.forbes.com/sites/louiscolumbus/2017/04/23/2017-state-of-cloud-adoption-and-security

3 �AWS Shared Responsibility Model, https://aws.amazon.com/compliance/shared-responsibility-model/

Implementation Options in AWS

AWS offers a number of services and options as well as access to third-party services for
secure application development and rapid release cycles.

Cloud-Native Services
When applications and security tools work harmoniously, future problems (and the need
to fix them) can be avoided more easily. Fortunately, AWS-native services are built to
work well with each other. Leveraging native services can ease the speed of deployment
and integration of application security tools. AWS Marketplace contains a collection of
ready-to-deploy infrastructure components your organization can deploy directly into
their Amazon VPC (Virtual Private Cloud). AWS Marketplace offers a variety of software
including, but not limited to, operating systems, network and business intelligence tools,
machine learning software, security software and development suites.

The ability to find, test, deploy and validate software through AWS Marketplace helps
organizations identify which applications work for them, which allows them to procure
and deploy solutions much faster than when having to spend time engaging with a
variety of vendors. (Although deploying AWS Marketplace products can be quick and
fast, you should still engage with your organization’s software onboarding team before
deploying new solutions within your environment; your organization may have certain
software onboarding procedures even when it comes to native AWS services.) Leveraging
native services also has the added benefit of pricing consolidation. Because AWS
services are billed to your account with detailed information, organizations can use
native services to view all of their AWS costs within a single, detailed page.

Open Source and Custom Solutions
Native services offer direct benefit to your organization, but there may be situations
where you prefer custom or open source software (OSS) applications. OSS and
custom tools can be leveraged within AWS as long as they are compatible with AWS
infrastructure (Microsoft Windows- or Linux-based platforms). For example, it is
possible to run custom or OSS solutions on Amazon EC2 (Elastic Cloud Compute). The
key difference with EC2 (versus native service) is that your organization inherits the full
responsibility for any underlying infrastructure. Your organization is responsible for
patch management and any security solutions required for the infrastructure (firewall,
intrusion detection and other security tools). Refer to the AWS Shared Responsibility
Model3 for more information.

21JumpStart Guide for Application Security in AWS

https://aws.amazon.com/compliance/shared-responsibility-model/

Consulting Partner Private Offers
Customers can also engage through Consulting Partner Private Offers (CPPO) to work
directly with trusted advisors to select and configure Application Security solutions from
AWS Marketplace. As organizations build out their cloud and cloud security strategy
and plan, they may want to consider working with partners to accelerate their efforts
or fill any gaps in knowledge or resources that are identified. All consulting partners
may extend AWS Marketplace third-party solutions directly to customers through CPPO.4
Not every organization will be able to find resources with deep cloud experience. Even
experienced cloud technologists may have experience only with specific industries
or cloud vendors. A requirements document could be helpful when approaching
prospective consultants.

Needs and Capabilities: The Business Case for
Application Security in the Cloud

The benefits of putting applications in the cloud must be balanced by the organization’s
ability to secure them.

 Application Security

The need: Conducting application security assessments and reducing vulnerabilities
within the AWS environment

Capabilities

• �Increased visibility within the development process and application stack

• �Reduced risk and vulnerabilities in the applications before they are deployed

• �Automated security assessments with actionable remediation

• �A relationship with the development teams

22JumpStart Guide for Application Security in AWS

4 �AWS Marketplace Channel Programs, https://aws.amazon.com/marketplace/partners/channel-programs

https://aws.amazon.com/marketplace/partners/channel-programs

General AWS Web Application Security Considerations
Regardless of the technology or cloud vendor selected, some general business, technical
and operational considerations are associated with implementing application security
in the cloud. The following sections highlight many of these considerations.

Business Considerations

23JumpStart Guide for Application Security in AWS

Details

Organizations must understand their current software development life cycle (SDLC) policy and how
it may be affected by a move to a cloud environment. An SDLC policy describes the various stages of
application deployment and delivery. These underlying methodologies do not change when moving
to a cloud environment but the processes and procedures for application code review, application
building, delivery and analysis probably will. Anticipating what changes to the SDLC will be triggered
by transitioning to AWS will allow organizations to adopt an SDLC that not only fits the cloud model,
but also has tangible benefits for an organization’s application delivery within the cloud. Planning
and making these changes first will save your organization time should a policy need to be redefined
in the future.

Organizations should determine the acceptable level of risk for their application(s). Although it would
be nice if we could deliver applications without errors or exploitable weaknesses, such a scenario is
unfortunately unrealistic. Developers have to release applications within the timelines demanded
by their sprints, and they often lack sufficient resources to explore and address all security aspects
of their application in the available time. If an organization deploys an application with little
or no security validation, it is exposed to a greater risk that the application could be exploited.
Organizations must plan ahead and define an acceptable threshold for vulnerabilities within a
production-class application. For example: Organization X ships releases for its Acme web app every
two weeks. It runs security tests each time the application is built. Its policy states that if those tests
find that the application build contains more than three high-risk vulnerabilities or greater than zero
critical risk vulnerabilities, Organization X will block application delivery until the issues have been
addressed and corrected.

While AWS operates under the “pay what you use” model, many third-party vendors allow customers
to deploy products directly on AWS’s infrastructure. Leveraging third-party applications and tools
can quickly increase licensing costs for your organization. Take precautions when deploying third-
party applications and tools on AWS infrastructure, because your organization will incur both
AWS infrastructure usage and software licensing costs. Licensing costs can be charged in a few
different ways. They may be billed to the organization on an annual basis or perhaps by the hour.
Understanding and planning for expected licensing costs will ensure you are not caught off guard by
large invoices from AWS.

Consideration

Policies and standards

Licensing options

Technical Considerations

Consideration

Technology
deployment

Details

Organizations should plan ways to implement their application security in a repeatable, consumable
manner. Security teams can provide guidance in this matter in a variety of ways. Within AWS,
applications can be deployed through a fully automated “pipeline”; alternatively, they can be
deployed in an ad hoc fashion. An organization would be wise to create small, repeatable security
tests as part of the deployment process, and to continuously refine those tests as the application
matures. Understanding how your organization deploys its applications will allow the security teams
to create and deploy effective security tests that align with the developers’ deployment plan.

Organizations need to decide if they will allow OSS or unsupported technologies. While it’s true that
an open source application allows insightful visibility into the application’s security, it’s also true
that open source projects do not come with the luxury of customer support or SLA. If you plan to use
open source technology for critical tasks or security assurance, you will need to ensure you have a
proper plan in case the tool stops working at some point. On the other hand, OSS tools offer some
unique opportunities. Organizations can take advantage of free open source tools and, as their needs
outgrow the capabilities, modularity or support level provided by the OSS tooling, they can transition
to more professional offerings.

24JumpStart Guide for Application Security in AWS

Consideration

Application stack

Pre-deployment
security (inline)

Post-deployment
security (out of band)

Details

AWS Marketplace offers many tools for securing your organization’s applications. Leverage any
available open source testing software to get used to integrating security tools into your application
development process (and save costs). Static analysis tools (linters) allow you to check your code for
programming errors, bugs, stylistic problems and suspicious constructs. Each programming language
has its own set of linters, most of which can be installed directly within your developers’ preferred
integrated development environment (IDE). Having developers use a linter within their IDE saves time
in the development process by catching the errors before the application code is pushed. Catching
these issues before the application is deployed makes it easier to mitigate them after deployment.

Organizations should also consider their application stack and what corresponding Static Analysis
Security Testing (SAST) tools might best fit their deployment pipeline. While linters check for bugs,
syntactical errors, programmatic errors and code nuances, the purpose of SAST tools is to identify
security issues in the application source code (versus during compilation or runtime). As with
linters, each language has its own set of SAST tools, so your organization needs to understand the
application code being implemented and what the information security teams will need to deploy to
validate the codebase.

The largest challenge of inline scanning is the time it takes scans to complete. If your organization
needs to deploy an application change, your security test should not require a long time to run.
Imagine making a small configuration change to your organization’s application. You push your code
to the development pipeline, and now you have to wait 30 minutes for the security tools to scan your
changes. Developers can push these changes many times a day, so waiting for these scans can be
frustrating. We recommend that inline scans should not take longer than five minutes (depending on
the size of the codebase). Your organization might also want to consider scanning only the changes
to the code from the last push (delta scan). This method saves time but may be better suited to more
mature organizations. It also makes sense to occasionally scan the entire codebase outside of the
pipeline (out-of-band scans).

We advise that organizations take small, repeatable, incremental steps in deploying inline scans for
application pipelines. It’s a good idea for your security team to have its own source code repository
where it stores its tests. After a test has been created and validated, it can be stored in the repository.
Once the code is in this repository, it may be shared with the developers, and they can include them
within their development pipeline. You can work with the developers to ensure that the latest copy
of the security test is always referred to when inline scanning. This procedure allows the security
team to update the test as it sees fit. Because the development team has the latest copy of the test
always being pulled into the pipeline, there should be no additional work when the security tests are
updated. Leveraging this approach allows you to continuously test applications, update the tests and
keep track of what exactly was changed via revision control.

Organizations will need to decide when to implement post-deployment security scanning. We
mentioned out-of-band scanning earlier: If scans take too long to complete, they can be scheduled
after the application has been deployed. Full scans by Dynamic Application Security Testing (DAST)
tools can take hours to run, depending on the application size and scope of the scan. The following
are examples of tools that should be run outside of the deployment pipeline:
• �Infrastructure scans—These can take a long time depending on the scope of the resources and

security checks the scan performs.
• �Dynamic application security scans—These require the environment to already be up and

running. Like infrastructure scans, these scans can take some time to complete, depending on the
organization’s scanning scope.

• �Full web application security scans—Depending on the parameters of the test (credentialed/no-
credential/spider/full active scan) and the size of the application, this scan can take a long time to
run and should not be used inline.

Organizations will need to decide what is necessary to test and ensure application security for
applications that have already been deployed. Solutions such as infrastructure security scanning, WAF
implementation and DDoS protection should be evaluated.

25JumpStart Guide for Application Security in AWS

Consideration

Processes and
procedures

Resources and
deployment synergy

Details

Organizations may need to create or modify processes and procedures for security web applications
in AWS. While some existing processes and procedures may work without modification, hosting
applications in AWS means different methods of application delivery.

Organizations may want to start to include developers and key individuals involved with application
delivery in meetings and discussions about application security testing. Security teams might also want
to sit in on development meetings and inform discussions when application security concerns arise.

Security in AWS and the applications deployed within the cloud will take dedicated resources to
ensure that the proper policies and procedures are followed. Organizations must be cognizant that
resources will need to be dedicated in such an effort, and they should plan accordingly.

Organizations should consider which approach they would like to take with their cloud application
security and the level of responsibility for each team involved within the process. Development and
security teams within your organization need to take responsibility for the security and integrity of
the application.

Operational Considerations

AWS Implementation Considerations

Application Security

Consideration

Cloud context support

Deployment

Integration

Details

Application deployment leverages many ephemeral resources that support application delivery.
Catalog all possible resources used within the deployment process for identifying any issues.

Evaluate:
• �The additional cloud context (tags or image IDs, other possible ephemeral resources) captured

within the development processes (phoenix servers, artifacts and the like)
• �Logging and cataloging of the cloud resources for traceability and troubleshooting

Deployment methods for security tools within AWS can vary depending on the development pipeline.
Organizations should deploy these tools within the context of the development pipeline.

Evaluate:
• �Installation and initial configuration for tools
• �Possible use of professional services to aid or accelerate tool deployment
• �Programming tools and languages used in the applications and their corresponding DAST/SAST

tools
• �The availability of managed or SaaS components or preconfigured appliances from AWS

Marketplace
• �Leveraging AWS-native services for security implementation

Integration of application security tools into current processes/procedures ensures security
teams can respond to risks. Integrating application security tools into the development pipeline
allows for visibility, deployment and management. It also provides ease of use for security and
development teams.

Evaluate:
• �The development pipeline process and how to embed security tools and scans inline within a

reasonable time
• �Tools that integrate with current security solutions (SIEM, SOAR, IT service management)
• �API support (REST APIs available, SOAP APIs available, other available programmatic APIs)
• �Use of custom plugins or integrations
• �Integrations with native AWS services

26JumpStart Guide for Application Security in AWS

Making the Choice

To summarize, the key considerations for implementing application security in AWS are:

• Cloud context

• Deployment

• Integration

• Configuration and iteration

• Reporting

Evaluate Your Organization’s Current Deployment Process
There are many ways to deploy applications with AWS, and many methods with which
to build out your deployment pipeline. When defining your proof of concept, include
significant members of the application deployment team and ensure you understand
their method of deployment infrastructure (Amazon EC2, Amazon ECS, serverless) and
deployment pipelines (AWS CodePipeline, Jenkins, other deployment tools). Once your
organization has a strong understanding of the deployment process, it can begin to
evaluate its needs and considerations for security tools. Define a proof of concept
that meets both your organization’s considerations and the developers’ current
deployment process.

Define a Plan and Implement
By defining and understanding its cloud architecture, risk profile, business requirements
and available resources as well as all the possible deployment methods within AWS,
an organization should have a clear idea of its road map for application security
protection. Understand that defining application security that meets all the discussed
considerations is nearly impossible, so define and use what works best for your
organization.

The best course of action is to define a proof-of-concept plan based on the
considerations and implementation options. Ensure that your organization’s
development team is included in this process, because they will have a very strong
understanding of the application and which security concerns to note. Once you have
planned, developed and validated your POC, development and security teams can
start defining a repeatable process for integrating app security within the development
process. In this stage, your organization should work with the development team
to identify the team’s current security issues and how the developed POC will help
secure the application and reduce the application’s risk to meet the organization’s risk
threshold.

27JumpStart Guide for Application Security in AWS

Conclusion

Application security is a crucial step for organizations’ cloud security strategy. Having a
defined plan and integrating security within the development process allows for greater
visibility within the application delivery process, visibility into the security stance of the
application and a defined remediation process for application security vulnerabilities.

Work with the development team through each stage of the DevOps life cycle (see
Figure 1). Plan with the developers, join meetings when they develop and discuss
their applications, ask the developer team for help when writing security tests in the
verification stage, add out-of-band security (WAF protections, EDR solutions, DDoS
protections and the like) in the
release stage, and constantly
monitor the security state of
the application through your
infrastructure monitoring and log
analysis. Security tools and checks
can be applied to many stages of
the development process.

Keep in mind that this process
should always be repeatable
and easy to use. Start small and
build from there. To get started
today, consider an evaluation
of some of the solutions readily available via the AWS Marketplace. You may also
consider leveraging a SaaS solution to jump-start your organization’s journey into AWS
application security.

Figure 1. The DevOps Life Cycle

28

About the Author

Nathan Getty holds the GWAPT and GCIA certifications, and he recently won the
SANS Cyber Defense NetWars competition, a defense-focused challenge that tests the
ability to solve problems and secure systems from compromise. Nathan currently works
in the Canadian insurance industry. In his organization, he focuses on cloud security,
including AWS onboarding, and developing best security practices and general security/
cloud insights. Nathan also focuses on driving DevOps methodologies in the company’s
security program, implementing continuous delivery platforms to allow smoother
development and improvement of internal security applications.

Sponsor

SANS would like to thank this paper’s sponsor:

in conjunction with

About Fortinet
Fortinet breaks down the barriers that inhibit security visibility and management across
private, public, and hybrid cloud platforms. The Fortinet Security Fabric for AWS helps
organizations maintain consistent security protection in a shared responsibility model,
from on-premises to the cloud. It delivers comprehensive and fully programmable
multilayered security and threat prevention capabilities for AWS users. At the same
time, it streamlines operations, policy management, and visibility for improved security
lifecycle management with full automation capabilities. Visit www.fortinet.com/aws for
information on Fortinet’s application security solutions.

JumpStart Guide for Application Security in AWS

RETURN TO THE
TABLE OF CONTENTS

https://aws.amazon.com/marketplace
https://www.fortinet.com
https://www.fortinet.com/products/public-cloud-security/aws.html

A SANS Whitepaper

29How to Secure App Pipelines in AWS

Sponsored by:

AWS Marketplace

Written by Dave Shackleford

September 2019

Webcast You can access the associated webcast at:
https://pages.awscloud.com/HowTo-AppSec

How to Secure App Pipelines in AWS

https://pages.awscloud.com/HowTo-AppSec

The SDLC has moved to a methodology that
prioritizes collaboration and more frequent
(yet smaller) updates to application stacks.

30How to Secure App Pipelines in AWS

We are seeing nothing less than an evolutionary shift as security infrastructure moves
to software-defined models that improve speed and scale, and afford enterprise IT more
agility and capabilities than ever before. Application development and deployment are
driving this shift, and as the pace of development increases, organizations have a real
need to ensure application security is embedded in all phases of the development and
deployment life cycle, as well as in the cloud during operations.

Much like other areas of security, the responsibility for application security varies in
the cloud widely, depending on the model in place. In a software-as-a-service (SaaS)
model, the provider is entirely responsible for application security in almost every
case. With a platform-as-a-service (PaaS) model, the provider supplies the underlying
systems and templates, so it has a significant degree of control and responsibility—
although any applications developed by the consumer are necessarily the consumer’s
own responsibility, and that extends to the security. With an infrastructure-as-a-service
(IaaS) model, entire workloads and their contents (including application components)
are the responsibility of the consumer.

In this paper, we delve into the changing nature of application development and
security as organizations are building and deploying applications for the cloud. We’ll
cover the various phases of a modern application pipeline and discuss some of the
security controls that organizations should consider implementing in each. We’ll also
touch on a number of other critical areas such as privilege management, containers and
orchestration, and automation.

How the SDLC Is Changing

The software development life cycle (SDLC) has moved to a methodology that prioritizes
collaboration and more frequent (yet smaller) updates to application stacks. Standards
for code quality and security, as well as application workload configuration, should be
defined and published so that all teams have something to measure throughout the
entire application life cycle. Ideally, organizations will lock down cloud workloads as
much as possible, running a minimum of necessary services. They should also revisit
configuration requirements to ensure that any cloud-based infrastructure is resilient.

To shift toward a more collaborative culture, security teams need
to integrate with the developers responsible for promoting code
to cloud-based applications. Security teams can impress upon
development and operations that they bring a series of tests
and “quality conditions” to bear on any production code push
without slowing the process. Security teams should work with quality assurance (QA)
and development to define certain parameters and key qualifiers (such as bug count
and severity) that need to be met before any code is promoted.

31How to Secure App Pipelines in AWS

In addition, security teams need to determine which tools they can use to integrate
into the application pipeline. They also need to identify areas and controls that
may need to be updated or adapted to work in a Continuous Integration and/or
Continuous Delivery model (covered in the next section). It is likely that new standards
for many security prevention, detection and response capabilities should be revisited,
as well. Examples of these areas include encryption, privileged user management,
network security access controls, event management, logging policies and incident
response strategy.

Once initial processes, policies and standards have been defined and agreed upon, the
security team should focus on automation and seamless integration of controls and
processes at all stages of the deployment pipeline.

The Modern CI/CD Pipeline
Many organizations are adopting Continuous Integration (CI) and Continuous Delivery
(CD) for their cloud application pipelines. CI is often the most feasible part of the
application development life cycle to be targeted by a team looking to speed up and
implement more collaborative development practices. With CI, all developers have their
code regularly integrated into a common mainline code base. This practice helps to
prevent isolation of code with individual developers and can also lead to more effective
control over code in a central repository.

CD is usually exhibited through small, incremental and frequent code pushes (often to
stage or test environments), as opposed to the more traditional way of pushing code as
large releases to production every few weeks or months. Modern development practices
(e.g., Scrum, Kanban, Crystal, etc.) often release code more frequently than older models
(e.g., waterfall) in an SLDC. CD means you deliver code to production in an automated
pipeline, which is less common in traditional enterprises.

Modern cloud application pipelines strive for a number of goals and focal areas:

• �Automated provisioning—The more automated the provisioning of resources and
assets is, the more rapidly the SDLC and operations model can operate.

• �No-downtime deployments—Because cloud services are based on service-
oriented costing models, downtime is less acceptable.

• �Monitoring—Constant monitoring and vigilance of code and operations help to
streamline and improve quality immensely.

• �Rapid testing and updates—The sooner code flaws can be detected, the less
impact they’ll have in a production environment. Rapid and almost constant
testing needs to occur for this to happen.

• �Automated builds and testing—More automation in the testing and QA processes
will help to speed up all activities and improve delivery times.

32How to Secure App Pipelines in AWS

Protection for application workloads requires a dedicated commitment to security at
many levels of any organization. A sound governance model that includes collaborative
discussions about code quality, system builds, architecture and network controls,
identity and access management, and data security is critically important to developing
the standards for controls and security posture (mentioned earlier).

Ideally, the following types of roles will be a part of any cloud application security and
development model:

• �Application development teams

• �Cloud architecture and engineering teams

• �Security architecture and operations teams

• �IT in infrastructure teams (server engineering, database
management and more)

• �Compliance and legal teams (where appropriate)

• �Business unit management (where appropriate)

Make sure that your security teams discuss:

• �Standard and planned coding and release cycles—If the development teams
plan on doing CI, how will the code be centrally stored and managed? Security
teams should focus on code scrutiny and auditing the code storage/management
platform and tools.

• �Tools in use for development, testing and deployment—Automated testing suites
are ideal, but security teams need to understand the tools the development teams
plan to use so that they can become familiar with platform security, logging and
privilege/credential management.

• �How security can best integrate with the teams—Ideally, security teams will have
some understanding of development practices, and will know how to write test
scripts and infrastructure-as-code templates where applicable.

• �Expected standards and behaviors—If there are no standards to adhere to,
what will the team seek to enforce? Think about standards for secure coding,
configuration benchmarks (like CIS and others) and vulnerability scan results
(what is acceptable to be released).

In addition, security teams should define policies for components, networks and
architecture where they can. In other words, they should ask: Where can security create
policies that are embedded and applied automatically? Examples might include:

• �Configurations for instances and images used in development and production

• �App deployment and automation security

• �Expected and accepted standards (What does a successful and secure
component or deployment look like? Start with the end in mind to ensure you
have a target goal.)

A sound governance model that includes
collaborative discussions about code
quality, system builds, architecture and
network controls, identity and access
management, and data security is critically
important to developing the standards for
controls and security posture.

33How to Secure App Pipelines in AWS

One additional area of IT that will likely need to adapt is change management. In
traditional IT environments, change requests are often created for weekly or biweekly
change windows, where IT staff make changes during the scheduled times (usually off-
hours). In a fast-moving cloud application environment, much more rapid changes will
need to be allowed. Teams will usually need to adapt by deciding ahead of time which
severity of changes will be allowed to occur without prior approval or review versus
those that will need more attention. Collaboration platforms can also be useful for
enabling more rapid discussions about proposed changes as needed.

Security in the CI/CD World

When integrating into a cloud-focused application development model, security teams
need to focus on the following:

• �Code security—How is code being scanned for vulnerabilities?

• �Code repositories—How is code being checked in and checked out, and by whom?

• �Automation tools—What tools are in use to automate builds, deployments, etc.?
How can security integrate with these?

• �Orchestration platforms—How are orchestration tools being used to coordinate
and automate infrastructure and cloud components?

• �Gateways and network connectivity—How can the teams ensure secure
connectivity to the cloud for deployments?

Authentication/authorization and privileged user monitoring and management are
critical, too. While this sounds obvious, cloud application development pipelines tend to
include high-privilege users doing lots of activities, and overallocation of privileges can
quickly become an issue without oversight and planning.

When planning for cloud application development, security
teams first need to work with application development
groups to perform threat modeling and risk assessment for
the deployment types that they envision. By performing a
threat modeling exercise, security and development teams
can better understand the types and sensitivity levels of the
assets they protect, how to manage and monitor them in the
cloud, and the most likely threat vectors for those assets. The type of data that is stored,
transmitted and processed makes a difference when assessing the risk of systems and
applications in the cloud. Some data types dictate specific security controls, as well as
provisioning into compliant cloud provider environments.

When planning for cloud application
development, security teams first need to
work with application development groups to
perform threat modeling and risk assessment
for the deployment types that they envision.

34How to Secure App Pipelines in AWS

Risk assessment and analysis practices should be updated to continually review the
following:

• �Cloud provider security controls, capabilities and compliance status

• �Internal development and orchestration tools and platforms

• �Operations management and monitoring tools

• �Security tools and controls, both on premises and in the cloud

After risk reviews, and keeping the shared responsibility model in mind (meaning
cloud providers and consumers share responsibility for security at different layers of
the stack), security teams should have a better understanding of what controls they
currently have, what controls they need to modify to successfully operate in the cloud,
and what the most pressing concerns are (as they change). It’s almost a guarantee that
some security controls—tools, processes, policies, etc.—won’t operate the way they did
on premises, or won’t be available in cloud service provider environments in the same
format or with the same capabilities.

Security for the CI/CD Pipeline

In the modern CI/CD pipeline for cloud application development and deployment,
one of the most pressing needs for all teams is automation, far beyond what we’ve
traditionally seen in enterprise data centers. With cloud deployment moving faster
than ever, security and development teams need to
automate static code security scans, dynamic platform
build and QA application and vulnerability tests. They
also need to automate most (if not all) configuration
and operations tasks, including web application firewall
(WAF) deployments and network access controls (NACs).

For cloud deployments, all application development
teams, as well as security teams, also need to embrace
API integration/use. Providers like Amazon Web
Services (AWS)1 operate a completely software-based
infrastructure that may offer sophisticated APIs for
creating workloads, adding security controls around
those workloads, updating and integrating new code and
images for containers, and much more. In keeping with
the theme of automation, scripted and programmatic
methods of automating deployments need to make
heavy use of provider APIs.

Security teams have a number of security controls and
areas of emphasis to consider for all phases of the
application development and deployment pipelines, as
shown in Figure 1 and discussed in the following sections.

1 �This paper mentions the names of products and services to provide real-life examples of how security tools can be used. The use of these examples is
not an endorsement of any product or service.

BuildOperate

Package

Test

Code/
Develop

Deploy/
Upgrade

Figure 1. Phases of
Application Development

and Deployment Pipelines

35How to Secure App Pipelines in AWS

 Code/Develop
Ideally, your organization already follows secure coding practices. Security and
development teams need to discuss standards for languages and frameworks to make
sure risk is acceptable before deployment. This objective can be a tall order, and secure
coding and development practices are still not all that commonplace today. Look into
static code analysis tools, and ensure the code is secured within repositories:

• �Are check-in and check-out procedures defined?

• �Do solid role-based access controls exist?

Cloud providers often have options available for code storage and management that
include authentication with strong identity management and robust logging/tracking of
activity. AWS CodeCommit is a fully managed source control service that hosts secure
Git-based repositories that encrypts all files both in transit and at rest, integrates with
AWS Identity and Access Management (IAM) for controlling privileges and access to
code stores, and logs all activity in AWS CloudTrail. Additionally, AWS CodeCommit has
a wide range of APIs available that can enable automation and integration with third-
party static code analysis tools for code analysis and review by security teams. Code
can be automatically scanned upon check-in, and bug/vulnerability reports can be sent
automatically to the appropriate teams.

 Build
Building code and workload stacks for cloud applications
should incorporate automated and intelligent security controls
as well. This stage should include:

• �Validated code

• �An approved build architecture and controls

• �Automated build testing for compiled code

Above and beyond the aforementioned automation and security controls and processes,
we need automated reporting that goes to the proper parties for review. This is what
will ultimately contribute to a more effective vulnerability management program across
the environment. Much like the previous phase of development (code/develop), the
build phase can often be securely implemented within cloud provider environments.
AWS CodeBuild is a fully managed CI service that compiles source code, runs tests and
produces software packages that are ready to deploy. Managing encryption of build
artifacts is critical, and AWS CodeBuild integrates with AWS Key Management Service
(KMS). AWS CodeBuild also integrates with AWS IAM for control over privileges to builds
and compiled code, and all activity is also logged to AWS CloudTrail.

Security and development teams need
to discuss standards for languages and
frameworks to make sure risk is acceptable
before deployment.

36How to Secure App Pipelines in AWS

 Package
Packaging is the phase of application development when the build is updated with
additional software packages, some of which may be open source or from in-house
repositories. It is important for development and security teams to audit open source
modules for flaws, then discuss methods to protect code repositories automatically.
A regular schedule for threat and vulnerability updates with the development and
operations teams should be decided upon and incorporated into defined processes.

Some traditional vulnerability scanning vendors have adapted their products to work
within cloud provider environments, often relying on APIs to avoid manual requests
to perform more intrusive scans on a scheduled or ad hoc basis. Another option is to
rely on host-based agents that can scan their respective virtual machines continually
or as needed. Ideally, systems will be scanned on a continuous basis, with reporting
of any vulnerabilities noted in real or near real time. AWS Systems Manager can be
used to manage package repositories and secure build images with up-to-date patches
and libraries. Tools like Trend Micro Deep Security can help to automate application
protection and package validation for workloads, too.

 Test
The testing phase is one that can be highly automated. Consider both static and
dynamic tools, depending on builds. Keys for security teams during the testing phase are:

• �Run security testing that’s as seamless as possible (avoid interfering with QA if you
can help it).

• �Define test cases and tools.

• �Define acceptable outcomes that meet policy.

• �Automate tools and teach developers/QA engineers to run them.

The last point is a crucial one—security teams need to hand off tools to the application
developers wherever possible and not insert themselves into every process. Involvement
is key, but running test tools is something the application teams can do. Security should
only perform pen tests and continuous monitoring activities regularly once policies and
standards are defined.

Using open source build testing tools like Test Kitchen and Vagrant can simplify internal
policy validation before you push them, and also in an ongoing fashion.

To coordinate penetration tests and routine checks to validate policies’
effectiveness, ask:

• �Are only required ports open?

• �Are credentials secured?

• �Are encryption keys secured?

• �Are privileges assigned properly?

37How to Secure App Pipelines in AWS

Really, any specific elements of your configuration standard or expected posture
should be continually validated and assessed using automated orchestration tools
and platforms. Many third-party dynamic application scanning and pen testing service
providers have fully integrated into the cloud. These tests can be run upon build check-
in, image update or manually as needed, with fully automated reporting sent to the
right teams.

 Deploy/Upgrade
In this phase, security teams are focused on:

• �Documentation—Note any bugs that are outstanding; document plans to fix and
when.

• �Communication—Coordinate with development and operations teams to
instantiate any controls needed for remediation or stopgaps.

• �Life cycle—Ensure an approved policy for bug remediation is in place and
monitored for future release cycles.

Even though you’ll still have bugs, make sure to fix any of a certain severity before you
push applications and systems out the door.

Deployment involves more on the operations side. Ideally, controlled and automated
deployments will be coordinated and controlled by operations with input from the
application development teams involved. Where does security fit?

• �Nothing new is added/changed once approved builds are ready.

• �Deployment is done to the appropriate location/endpoints.

• �Deployment is performed over a secure channel for cloud (TLS/SSH).

• �Checks exist to ensure a failed deployment rolls back.

It is critical for security teams to be invested and involved in the development stage.
Secure network channels should be established for any deployment activities, which
likely involves the use of dedicated circuits like AWS Direct Connect, VPN tunnels
using IPSec and/or secure certificate-based HTTPS with strong cryptographic TLS
implementations. Image validation—which will heavily rely on automation and a
combination of vulnerability scanning and host-based agents that can validate all
libraries, binaries and configuration elements used in the application workloads—
should also take place at this phase. Orchestration engines are useful for some of these
tasks, as are cloud-native tools like AWS OpsWorks that can reliably and securely handle
the configuration and assessment of application images.

38How to Secure App Pipelines in AWS

	 Operate
This final stage primarily focuses on protection of applications with tools like NACs
and WAFs, as well as monitoring, logging and alerting. Define security use cases for
production operations by answering the following questions:

• �What events should trigger alerts?

• �What events should trigger automated remediation?

• �What event severities should be in place?

• �What controls are needed to properly secure the environment?

For starters, teams should define deployment attributes that can be monitored
continuously. Examples of quick wins for monitoring include the following:

• �Types of instances allowed to be deployed (size and build)

• �Image expected for deployment

• �Location/source of deployment (such as IP address or account/subscription)

• �IAM or other user invoked in operations

These attributes should all be known and relatively inflexible, and can easily be used
as simple trigger points for alerting or even automated rollback or preventative actions.
For example, if an instance type of m1.small is deployed, and the only approved type
is t2.micro, this trigger could cause the workload to shut down entirely. Cloud-native
or third-party web application firewalls like AWS WAF can easily be set up to block
malicious application attacks like SQL injection, cross-site scripting (XSS) and others.
In addition, they can perform manual or automated blocking of IP addresses based on
threat intelligence that incorporates reputation analysis. WAFs can generate detailed
logs, too, which security teams can then stream back to a central analysis engine like a
SIEM platform.

Best Practices
To summarize, Table 1 describes the key security areas of focus in the modern cloud
application development pipeline.

Code/Develop

Build

Package

Test

Deploy/Upgrade

Operate

Look for static code analysis tools that are in place and performing (ideally) automated code
scans for checked-in code. Reports from these scans should be sent to stakeholders that include
security teams and/or application developers.
Tools like Jenkins can be used to create builds, and they often have many plug-ins and local
controls that should be tuned. What types of builds are allowed, and where are the images stored?
A secure location where image security and integrity are controlled is paramount for this phase.
Code will need to be packaged for installation on builds, and this should be done through
automated tools that also have the appropriate permissions and access controls (keys to check
out code, for example).
The test phase should include Dynamic Application Security Testing (DAST) tools, as well as
(possibly) traditional network vulnerability scans and various flavors of pen tests.
Only approved builds with packages/software that passes testing should be deployed over a
secure channel.
Now we’re in operations, where we should have “guardrails” set up like the appropriate account/
subscription separation, IAM policies, network controls and logging/monitoring.

Table 1. Considerations for Key Security Phases

FocusPhase

BuildOperate

Package

Code/
Develop

Deploy/
Upgrade

Test

Secrets Management

API ManagementPrivilege Management and IAMContainers and Container ManagementManagement of Serverless Applications and Securty

Figure 2. Additional Security
Considerations Throughout the

Life Cycle

Application development teams need to
ensure no sensitive material like encryption
keys or credentials are stored in definition
files, on systems that are exposed or in code
that could be exposed.

39How to Secure App Pipelines in AWS

Additional Development Security Concepts for Cloud

Along with core security controls and practices in each major phase of a modern
development pipeline, some additional topics and concepts should be in place. Think
of these as overarching concepts that apply throughout the entire life cycle. Figure 2
illustrates these concepts, which we cover in the following sections.

Secrets Management
A critical aspect of managing security in a cloud
environment is to carefully limit and control the
accounts and privileges assigned to resources.
All users, groups, roles and privileges should be
carefully discussed and designated to resources
on a need-to-know basis. The best practice of
assigning the least privilege model of access
should also be applied whenever possible. Any
privileged accounts (such as root and the local
administrator accounts) should be monitored
closely—if not disabled completely or used only
in break-glass procedures.

In addition to privilege management in
configuration definitions, application
development teams need to ensure no sensitive
material like encryption keys or credentials is
stored in definition files, on systems that are
exposed or in code that could be exposed. As
encryption and data protection strategies are
increasingly automated along with other development activities, it’s critical to make sure
the proverbial keys to the kingdom are protected at all times. In the cloud, this can be
easily accomplished with a variety of tools like AWS Key Management Service (KMS) and
AWS Secrets Manager.

API Security
As mentioned earlier, APIs are integral to building a robust and
automated development pipeline. The security posture of APIs
should be documented by providers, and all APIs should be
strongly controlled through IAM policies. Use of APIs should be
carefully monitored, too, with full logging to AWS CloudTrail and
other logging engines.

40How to Secure App Pipelines in AWS

Privilege Management and IAM
Strong privilege management is a necessity in fast-moving application pipelines.
Integration with secrets management tools and a granular IAM policy engine like
AWS IAM is crucial, along with federation capabilities and integration with directory
services. Security teams should help to define the appropriate least privilege access
models needed for all stages of application development and deployment, and then
implement this in a centralized tool/service whenever possible. A fragmented privilege
management and IAM implementation strategy often leads to poor operational
oversight of users, groups and permissions, so a single policy engine should be used if
at all possible.

In addition to these overarching technology concepts, some newer technologies are
also being heavily used in application development and deployments today, including
containers and serverless applications, discussed next.

Containers and Container Management/Orchestration
Containers are rapidly becoming a common means of quickly deploying application
workloads in both internal and cloud environments. Containers are created on a shared
OS workload, and both the runtime container image and the underlying OS platform
need to be secured and maintained much like other images described earlier. Having
a secure repository for container images like Amazon Elastic Container Registry (ECR),
as well as orchestration tools that can be used for starting, stopping and managing
container deployments securely like Amazon Elastic Container Service (ECS) and Amazon
Elastic Kubernetes Service (EKS), is important for enterprises using containers in the
cloud. Encryption and IAM controls for images, as well as strong logging for all activities
should be priorities.

Serverless Applications and Security
A final type of technology that many application development teams are employing
is serverless, which offloads the entire workload (container and OS instance) to the
provider’s backplane, allowing developers to create microservices applications that
only require application code to be uploaded and operated within the cloud provider
environment. Serverless security should involve static code review (numerous third-
party providers can integrate into serverless environments like AWS Lambda to scan the
code), privilege and permission control over all serverless applications with IAM, and
complete logging of all serverless application updates and execution using tools like
AWS CloudTrail.

41How to Secure App Pipelines in AWS

Use Case

For modern hybrid application development pipelines, security needs to be integrated
in a number of places. Imagine a fictional organization, ACME Corporation, that needs
to integrate security into its hybrid cloud application pipelines with both on-premises
resources and those running in AWS. Internal code repositories are synchronized from
on-premises code repository tools with AWS CodeCommit across an AWS Direct Connect
channel, where all code is encrypted and protected with strong IAM policies that restrict
code access and updates to a limited team of developers. All code updates, check-ins
and check-outs are logged and recorded in AWS CloudTrail. A third-party static code
analysis tool is integrated into AWS and automatically scans all code that is updated
and checked in. Reports are automatically sent to security and development team
members to review the criticality of bugs discovered for remediation.

AWS CloudFormation templates are used to create builds with approved Amazon
Machine Images (AMIs) and container images stored in the Amazon ECR, which is also
carefully controlled through IAM policies. In the build and update phases, a dynamic
vulnerability scanning platform with agents and network scanning capabilities is
integrated to scan all application builds for libraries, binaries and OS configurations
to ensure no vulnerabilities are present before deployment. Reports are again
automatically generated and sent to team members for review. If the reports show that
all images meet pre-approved standards, the images are then pushed into deployment
with defined orchestration using Amazon EKS and Amazon EC2 instances with AWS
Systems Manager installed for monitoring and administration. Once deployed, AWS WAF
is enabled to protect applications from malicious application attacks.

Summary

For modern application pipelines, there are a plethora of tools available from cloud
providers and third-party companies to help automate strong security controls through
the entire development and deployment process. A strong governance structure is
critical to ensure all stakeholders are involved and on board with the new tools and
processes needed, and security operations teams will need to help define standards
for code and images, as well as build strong protective and detective controls in the
cloud environment.

 

42How to Secure App Pipelines in AWS

About the Author

Dave Shackleford, a SANS analyst, senior instructor, course author, GIAC technical
director and member of the board of directors for the SANS Technology Institute, is
the founder and principal consultant with Voodoo Security. He has consulted with
hundreds of organizations in the areas of security, regulatory compliance, and network
architecture and engineering. A VMware vExpert, Dave has extensive experience
designing and configuring secure virtualized infrastructures. He previously worked as
chief security officer for Configuresoft and CTO for the Center for Internet Security. Dave
currently helps lead the Atlanta chapter of the Cloud Security Alliance.

Sponsor

SANS would like to thank this paper’s sponsor:

RETURN TO THE
TABLE OF CONTENTS

https://aws.amazon.com/marketplace
https://www.sans.org/instructors/dave-shackleford

43

Next Steps

By applying the guidelines in the preceding whitepapers, you have been able to:

• �Develop a threat modeling process for your organization’s cloud-based
applications

• �Understand how DevSecOps and CI/CD processes work and where the key
areas for security integration and influence are

• �Document an application security plan and architecture, as well as document
key changes to existing security processes and controls to ensure security in
cloud-based applications

Using these guidelines, the key next steps are to first make sure the security team
has the knowledge and skills to understand how the DevOps approach is in use by
the IT organization and how best to integrate security controls and processes. Then
the CISO or security manager needs to communicate with the app development
team and establish working relationships to assure security is included in all
sprints or other rapid development cycles. Key to this is communication: Avoiding
vulnerabilities needs to be sold as part of building quality in—that really is an easy
sell these days.

Improperly implemented DevOps programs at their worst can be an exercise
in doing the wrong things faster. However, when application development and
security work together and truly implement an integrated DevSecOps approach,
organizations can meet the business demand for faster application time to market
while ensuring security.

RETURN TO THE
TABLE OF CONTENTS

