Migrating Your Databases to
Amazon Aurora

First Published June 10, 2016

Updated July 28, 2021

This paper has been archived

For the latest technical content, refer to the HTML version:

https://docs.aws.amazon.com/whitepapers/latest/
migrating-databases-to-amazon-aurora/migrating-

databases-to-amazon-aurora.html

dWs$S

_—/‘7

https://docs.aws.amazon.com/whitepapers/latest/migrating-databases-to-amazon-aurora/migrating-databases-to-amazon-aurora.html

Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This paper has been archived

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

INtroOdUCTION £O0 AMAZON AUIO A ...eeee et e e e e e e e 1

Database migration CONSIAEIALIONS..........uuuiiieiiiiiiee ettt a e 3
MIGIatioN PRASES ...t e et e e e e e e e e e 3
PaYoJ o] [fox=Y o] g et RS L0 [=T = 1A [0] g 1S PP 3
Sharding and read replica CONSIAEratiONSvuuviviiiiiiirr e aae e 4
Reliability CONSIAEIAtIONSccooiiiiiee e e e e e e s e e e ae e 5
Cost and licensing CONSIAEIAtIONSuuviiiiiiieee e e e e e e e e et e nnees 6
Other migration CONSIAEIAtIONS..........cci e e e e e e e s e eeeeeeeaa et enneees 6

Planning your database migration ProCESSueeeeiiiiiiiiiiiiiiiiie e bre e g e 7
HOMOQGENEOUS MIGIaAtIONueiiiiiiiiiiiie ettt e b a e et be e atb e e sbae s 7
HeterogeneouS MIGIatiON.........ooiiiuiriiiiiieieeee e e e e e et e e e e saa s EEant e eeeeeaeeesesssnnteeeeeeens 9
Migrating large dat estg A 0] PRI TOr TP TOTTR 10

grating large datapgsre BABEPHAS Been archived
Partition and shard consolidation 0N AMAZON AUIOT@. i, cueieieveeeeeeiiiiieee e eiieee e e 11
Migratio- QA 318 Fechnicat content; refer to the AWS 12

RDS snapshot migration Whitepa'perS"&'Guides'pa'g'e: 13

Migration using Aﬂ?‘[‘?p'@?f}dariﬁ@'.%i’ma-zon-:c-o-m/-whitep-apers 18

Migrating the database SCREMA it .. i 21
Homogeneous SChema MIgrationc.ueeeioiiiiiieeee e 22
Heterogeneous SChema MIgration...........c..eeeiiiiiiiieeniiie e 23
Schema migration using the AWS Schema Conversion TOOlcccccvvvieieeeeeeeeeen, 24

1Yo =] o o = - SR 32
Introduction and general approach to AWS DMSooooiiiiiiiiiiiiiieeceee e 32
MIGration METNOAS.ueiiii et e e 33
MIQration PrOCEAUIEooiiiiiiiiie ettt e e et e e e et e e e e sanee s 34

TESHNG ANA CULOVET ...ttt e et e e e sbb et e e e e et et e e e nbereeeeeannes 43

Y1 To =i o] g N (=S 1] o PP RPPP 44

(O101 (0)Y/ ST 44

(@0} o o3 1[0 o PO 46
(©0] o1 11101 (o] £ TP 46
U [t (=T A=Y= To [o TSSOSO 46
[ToTod0 [L= o 0151 (0] SO UPUOPPRP 47

This paper has been archived

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

Amazon Aurora is a MySQL and PostgreSQL-compatible, enterprise grade relational
database engine. Amazon Aurora is a cloud-native database that overcomes many of
the limitations of traditional relational database engines. The goal of this whitepaper is
to highlight best practices of migrating your existing databases to Amazon Aurora. It
presents migration considerations and the step-by-step process of migrating open-
source and commercial databases to Amazon Aurora with minimum disruption to the
applications.

This paper has been archived

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

For decades, traditional relational databases have been the primary choice for data
storage and persistence. These database systems continue to rely on monolithic
architectures and were not designed to take advantage of cloud infrastructure. These
monolithic architectures present many challenges, particularly in areas such as cost,
flexibility, and availability. In order to address these challenges, AWS redesigned
relational database for the cloud infrastructure and introduced Amazon Aurora.

Amazon Aurora is a MySQL and PostgreSQL-compatible relational database engine
that combines the speed, availability, and security of high-end commercial databases
with the simplicity and cost-effectiveness of open-source databases. Aurora provides up
to five times better performance than MySQL, three times better performance than
PostgreSQL and comparable performance of high-end commercial databases. Amazon
Aurora is priced at 1/10th the cost of commercial engines.

Amazon Aurora is available through the Amazon Relational Database Service (Amazon
RDS) platform. Like other Amazon RDS databases, Aurora is a fully managed database
service. With the Amazqn.RDS Iatforrhmosb([jéltabase rghnﬁgérgfnt tasks such as

i ,)

hardware provisioning, !&nﬂﬁﬁﬁﬁ ,as%t &'ﬂﬁaﬁ itoring, and backup

are completely automated.

Amazon AR bR IRte stdeshnical konderbntelanto The-AVWS default.

An Aurora database cIukuﬁQe&palp@fg&a@Qi@e@p@g@g Region, providing out-
of-the-box durabiliﬂ/t%nds?ét tolesraan é% Oﬁjr éjata Zc\m%s&hésicale(rjzsita centers. An
Availability Zone is cor@p's go one or more hlg?]R/q vailable aqgcenters operated by
Amazon. Availability Zones are isolated from each other and are connected through
low-latency links. Each segment of your database volume is replicated six times across
these Availability Zones.

Amazon Aurora enables dynamic resizing for database storage space. Aurora cluster
volumes automatically grow as the amount of data in your database increases with no
performance or availability impact—so there is no need for estimating and provisioning
large amount of database storage ahead of time. The storage space allocated to your
Amazon Aurora database cluster will automatically increase up to a maximum size of
128 tebibytes (TiB) and will automatically decrease when data is deleted.

Aurora's automated backup capability supports point-in-time recovery of your data,
enabling you to restore your database to any second during your retention period, up to
the last five minutes. Automated backups are stored in Amazon Simple Storage Service

dWs

Amazon Web Services Migrating Your Databases to Amazon Aurora

(Amazon S3), which is designed for 99.999999999% durability. Amazon Aurora
backups are automatic, incremental, and continuous and have no impact on database
performance.

For applications that need read-only replicas, you can create up to 15 Aurora Replicas
per Aurora database with very low replica lag. These replicas share the same
underlying storage as the source instance, lowering costs and avoiding the need to
perform writes at the replica nodes. Optionally, Aurora Global Database can be used for
high read throughputs across six Regions up to 90 read replicas.

Amazon Aurora is highly secure and allows you to encrypt your databases using keys
that you create and control through AWS Key Management Service (AWS KMS). On a
database instance running with Amazon Aurora encryption, data stored at restin the
underlying storage is encrypted, as are the automated backups, snapshots, and replicas
in the same cluster. Amazon Aurora uses SSL (AES-256) to secure data in transit.

For a complete list of Aurora features, see the Amazon Aurora product page. Given the
rich feature set and cost effectiveness of Amazon Aurora, it is increasingly viewed as
the go-to database for mission-critical applications.

Amazon Aurora Serverl ss v2 (Preview) is the new version of Aurora Serverless, an on-
demand, automatic SCI bssm%r % ﬁemmmﬁ%dtomatlcally starts up,

shuts down, and scales capaC|ty up or down based on your application's needs. It
scales instantl I to hundre s-of-tho nds tra ons éraction of
asecond g{ﬁ% qf Icﬁ? ncf%n%? écr% t i?o p V@ just the
right amount of databasestll’re@aﬁte ﬂSe&pﬁlldehﬁlﬁﬂﬁBGgEThere is no database
capacity for you tf’rﬁ!ﬁ (?' /)éRngaﬁ ﬁ?ﬁ’i@ﬂ%&ﬁﬁ?ﬂ}ﬁ{?éb@ﬁ@?gon consumes,

and.you can save up to 90% of your database cost compared to the cost of provisioning
capacity for peak.

Aurora Serverless v2 is a simple and cost-effective option for any customer who cannot
easily allocate capacity because they have variable and infrequent workloads or have a
large number of databases. If you can predict your application’s requirements and
prefer the cost certainty of fixed-size instances, then you may want to continue using
fixed-size instances.

Amazon Aurora capabilities discussed in this whitepaper apply to both MySQL and
PostgreSQL database engines, unless otherwise specified. However, the migration
practices discussed in this paper are specific to Aurora MySQL database engine. For
more information about Aurora best practices specific to PostgreSQL database engine,
see Working with Amazon Aurora PostgreSOL in the Amazon Aurora user guide.

dWs

https://aws.amazon.com/rds/aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

Database migration considerations

A database represents a critical component in the architecture of most applications.
Migrating the database to a new platform is a significant event in an application’s
lifecycle and may have an impact on application functionality, performance, and
reliability. You should take a few important considerations into account before
embarking on your first migration project to Amazon Aurora.

Migration phases

Because database migrations tend to be complex, we advocate taking a phased,
iterative approach.

Migration Test Final Cutover
Planning Migration Migration

Figure 1 — Migration phases

Application considerations
This paper has been archived

Evaluate Aurora features

Although nfcataipictitestapaelmitelceontent wiefertorédhek\Waabase
engines, you should mak r ppli gl?m% W|th Amazon Aurora.
Amazon Aurora is de&gnW iE‘E)e W|r§%o;ghp%t It %@ 5 6 and 5.7. Therefore,
most of the code, BBSIRELOAB Vv arE) A4 EARAY MENIEEBRE Koith MySQL

databases can be used with Aurora with little or no change.

However, certain MySQL features, like the MyISAM storage engine, are not available
with Amazon Aurora. Also, due to the managed nature of the Aurora service, SSH
access to database nodes is restricted, which may affect your ability to install third-party
tools or plugins on the database host.

Performance considerations

Database performance is a key consideration when migrating a database to a new
platform. Therefore, many successful database migration projects start with
performance evaluations of the new database platform. Although the Amazon Aurora
Performance Assessment paper gives you a decent idea of overall database
performance, these benchmarks do not emulate the data access patterns of your

aws

- F 3

https://d1.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://d1.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf

Amazon Web Services Migrating Your Databases to Amazon Aurora

applications. For more useful results, test the database performance for time-sensitive
workloads by running your queries (or subset of your queries) on the new platform
directly.

Consider these strategies:

e If your current database is MySQL, migrate to Amazon Aurora with downtime and
performance test your database with a test or staging version of your application
or by replaying the production workload.

e If you are on a non-MySQL-compliant engine, you can selectively copy the
busiest tables to Amazon Aurora and test your queries for those tables. This
gives you a good starting point. Of course, testing after complete data‘migration
will provide a full picture of real-world performance of your application on the new
platform.

Amazon Aurora delivers comparable performance with commercial engines and
significant improvement over MySQL performance. It does this by tightly integrating the
database engine with an SSD-based virtualized storage layer designed for database
workloads. This reduces writes to the storage system, minimizes lock contention, and

eliminates delays creajeq fey ﬁaééﬁé‘iﬁ Ra$BEERarchived

Our tests with SysBench on r5.16xlarge instances show that Amazon Aurora delivers

e B e A R R e

Whitepapers & Guides p a%
One area where rora s nificantly improv raditional MySQL is highly
concurrent worklcfg{ltI c? Z m%&%&%zs\éﬁ@ﬁp&aﬁﬁ on Amazon
Aurora, we recommend architecting your applications to drive a large number of
concurrent queries.

Sharding and read replica considerations

If your current database is sharded across multiple nodes, you may have an opportunity
to combine these shards into a single Aurora database during migration. A single
Amazon Aurora instance can scale up to 128 TB, supports thousands of tables, and
supports a significantly higher number of reads and writes than a standard MySQL
database.

If your application is read/write heavy, consider using Aurora read replicas for offloading
read-only workload from the primary database node. Doing this can improve
concurrency of your primary database for writes and will improve overall read and write

dWs

Amazon Web Services Migrating Your Databases to Amazon Aurora

performance. Using read replicas can also lower your costs in a Multi-AZ configuration
since you may be able to use smaller instances for your primary instance while adding
failover capabilities in your database cluster. Aurora read replicas offer near-zero
replication lag and you can create up to 15 read replicas.

Reliability considerations

An important consideration with databases is high availability and disaster recovery.
Determine the RTO (recovery time objective) and RPO (recovery point objective)
requirements of your application. With Amazon Aurora, you can significantly improve
both these factors.

Amazon Aurora reduces database restart times to less than 60 seconds in most
database crash scenarios. Aurora also moves the buffer cache out of the database
process and makes it available immediately at restart time. In rare scenarios of
hardware and Availability Zone failures, recovery is automatically handled by the
database platform.

Aurora is designed to provide you zero RPO recovery within an AWS Region, which is a
major improvement ouiah/ -premises itaba éﬁlt:!\ Eg rora mtains Six copies of
t

your data across three hﬁaBHP&F §§d !t‘éﬁ S to recover your

database in a healthy AZ with no data less. In the unlikely event that your data is

unavailablq gl em AR W BEHITEAP cOM ERNESIRTEP TG e 3t o

perform a p0|nt in-time restore operatlon to a new mstance

Whitepapers & Guides page:
For cross-Region BE&B Am n Aurgra also offers a global databa efeature designed
[ute FPrar?f 3 FP)O %{%

for globally distrib ctlons apcha?ons allowing a si gPe mazon Aurora
database to span multiple AWS Regions. Aurora uses storage-based replication to
replicate your data to other Regions with typical latency of less than one second and
without impacting database performance. This enables fast local reads with low latency
in each Region, and provides disaster recovery from Region-wide outages. You can
promote the secondary AWS Region for read-write workloads in case of an outage or
disaster in less than one minute.

You also have the option to create an Aurora Read Replica of an Aurora MySQL DB
cluster in a different AWS Region, by using MySQL binary log (binlog) replication.

Each cluster can have up to five Read Replicas created this way, each in a different
Region.

dWs

Amazon Web Services Migrating Your Databases to Amazon Aurora

Cost and licensing considerations

Owning and running databases come with associated costs. Before planning a
database migration, an analysis of the total cost of ownership (TCO) of the new
database platform is imperative. Migration to a new database platform should ideally
lower the total cost of ownership while providing your applications with similar or better
features. If you are running an open-source database engine (MySQL, Postgres), your
costs are largely related to hardware, server management, and database management
activities. However, if you are running a commercial database engine (Oracle, SQL
Server, DB2, and so on), a significant portion of your cost is database licensing.

Since Aurora is available at one-tenth of the cost of commercial engines, many
applications moving to Aurora are able to significantly reduce their TCO. Even'if you are
running on an open-source engine like MySQL or Postgres, with Aurora’s high
performance and dual purpose read replicas, you can realize meaningful savings by
moving to Amazon Aurora. See the Amazon Aurora Pricing page for. more information.

Other migration considerations
Once you have considFRispraper has e enarebrivé@eP: and reliability

factors, you should think about what it would take to migrate to the new platform.

EstimateFesdd eratgsterastnical content, refer to the AWS

It is important to estimateW@&EQﬂﬁtﬂﬁE&d&a@Uﬁidﬁ&]@a@ges that you need to
perform while migﬁﬁgggpﬂ/%m@ﬁwﬂwﬁ i‘f\@ﬁ@ ﬁl@fgting from
MySQL-compatible databases, negligible code changes are required. However, when
migrating from non-MySQL engines, you may be required to make schema and code
changes. The AWS Schema Conversion Tool can help to estimate that effort (see the
Schema migration using the AWS Schema Conversion Tool section in this document).

Application availability during migration

You have options of migrating to Amazon Aurora by taking a predictable downtime
approach with your application or by taking a near-zero downtime approach. The
approach you choose depends on the size of your database and the availability
requirements of your applications. Whatever the case, it's a good idea to consider the
impact of the migration process on your application and business before starting with a
database migration. The next few sections explain both approaches in detail.

dWs

http://aws.amazon.com/rds/aurora/pricing/

Amazon Web Services Migrating Your Databases to Amazon Aurora

Modify connection string during migration

You need a way to point the applications to your new database. One option is to modify
the connection strings for all of the applications. Another common option is to use DNS.
In this case, you don’t use the actual host name of your database instance in your
connection string. Instead, consider creating a canonical name (CNAME) record that
points to the host name of your database instance. Doing this allows you to change the
endpoint to which your application points in a single location rather than tracking and
modifying multiple connection string settings. If you choose to use this pattern, be sure
to pay close attention to the time to live (TTL) setting for your CNAME record. If this
value is set too high, then the host name pointed to by this CNAME might be cached
longer than desired. If this value is set too low, additional overhead might be placed on
your client applications by having to resolve this CNAME repeatedly. Though use cases
differ, a TTL of 5 seconds is usually a good place to start.

The previous section discussed some of the key considerations to take into account
while migrating databases to Amazon Aurara. Once you have determined that Aurora is

the right fit for your ap}[lhziﬁoﬂﬂﬁﬁ&xl‘bﬂaﬁ beenias Glhei\ﬁﬁdninary migration

approach and create a database migration plan.

Hom Odzgﬁgzﬁjlgtﬁ?fgtféhgiﬁm content, refer to the AWS

White agers & Guides page:
If your source datjr?ase isj MySQL 5.6 or 5.7 comp ase (MySQL, MariaDB,

liant data
Percona, and so di9. %m%&m&%m@% &;%FP&}R &>

Homogeneous migration with downtime

If your application can accommodate a predictable length of downtime during off-peak
hours, migration with the downtime is the simplest option and is a highly recommended
approach. Most database migration projects fall into this category as most applications
already have a well-defined maintenance window. You have the following options to
migrate your database with downtime.

e RDS snapshot migration — If your source database is running on Amazon RDS
MySQL 5.6 or 5.7, you can simply migrate a snapshot of that database to
Amazon Aurora. For migrations with downtime, you either have to stop your
application or stop writing to the database while snapshot and migration is in
progress. The time to migrate primarily depends upon the size of the database

dWs

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values-basic.html#rrsets-values-basic-ttl

Amazon Web Services Migrating Your Databases to Amazon Aurora

and can be determined ahead of the production migration by running a test
migration. Snapshot migration option is explained in the RDS Snapshot Migration
section.

e Migration using native MySQL tools — You may use native MySQL tools to
migrate your data and schema to Aurora. This is a great option when you need
more control over the database migration process, you are more comfortable
using native MySQL tools, and other migration methods are not performing as
well for your use case. You can create a dump of your data using
the mysqgldump utility, and then import that data into an existing Amazon Aurora
MySQL DB cluster. For more information, see Migrating from MySOL to Amazon
Aurora by using mysgldump. You can copy the full and incremental backup files
from your database to an Amazon S3 bucket, and then restore an Amazon
Aurora MySQL DB cluster from those files. This option can be considerably faster
than migrating data using mysgldump. For more information, see Migrating data

from MySOL by using an Amazon S3 bucket.

e Migration using AWS Database Migration Service (AWS DMS) — One-time
migration using AWS DMS is another tool for moving your source database to
Amazon Aurorj. efore réou canbuse Aﬁls DMS to nﬁ)dve thg data, you need to

c

copy the datab Q%PB zpf%Fn él§ 1%%‘?5&[]9 “ﬁl MySQL tools. For

the step-by-step process, see the Migrating Data section. Using AWS DMS is a

e piERe SRSt tREHRIEA B ITtERTS PR el fd ME AW

Homogeneous migr%(gﬁtﬁm%a?r&eﬁy&%\ﬁﬁﬁ@:
in some scenariod VoPRidHAVY 3 B RRARL S AL EPRARS ESwith minimal

downtime. Here are two examples:

e When your database is relatively large and the migration time using downtime
options is longer than your application maintenance window

e When you want to run source and target databases in parallel for testing
purposes

In such cases, you can replicate changes from your source MySQL database to Aurora
in real time using replication. You have a couple of options to choose from:

e Near-zero downtime migration using MySQL binlog replication — Amazon
Aurora supports traditional MySQL binlog replication. If you are running MySQL
database, chances are that you are already familiar with classic binlog replication
setup. If that’s the case, and you want more control over the migration process,

dWs

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.S3
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.S3

Amazon Web Services Migrating Your Databases to Amazon Aurora

one-time database load using native tools coupled with binlog replication gives
you a familiar migration path to Aurora.

¢ Near-zero downtime migration using AWS Database Migration Service
(AWS DMS) — In addition to supporting one-time migration, AWS DMS also
supports real-time data replication using change data capture (CDC) from source
to target. AWS DMS takes care of the complexities related to initial data copy,
setting up replication instances, and monitoring replication. After the initial
database migration is complete, the target database remains synchronized with
the source for as long as you choose. If you are not familiar with binlog
replication, AWS DMS is the next best option for homogenous, near-zero
downtime migrations to Amazon Aurora. See the section Introduction and
General Approach to AWS DMS.

e Near-zero downtime migration using Aurora Read Replica — If your source
database is running on Amazon RDS MySQL 5.6 or 5.7, you can migrate from a
MySQL DB instance to an Aurora MySQL DB cluster by creating an Aurora read
replica of your source MySQL DB instance. When the replica lag between the
MySQL DB instance and the Aurora Read Replica is zero, you can direct your
client applicatloljjio the Aurora ead ﬂllca This m at|0 dopt|on Is explained in

the Migrate usi &cpaaﬁ% C&h arc

Heterognge ktd3t a1 content, refer to the AWS
If you are looking to migréfdlaiﬂiepmls-(&r@IwiIdGStqﬂmgeCOracle, SQL Server,
PostgresSQL, andrﬁ:t?@) }O/ém?sz%}ﬁlérggnsem m%ﬁgﬁglpsyou accomplish

this migration quickly and easily.

Schema migration

Schema migration from a non-MySQL-compliant database to Amazon Aurora can be
achieved using the AWS Schema Conversion Tool. This tool is a desktop application
that helps you convert your database schema from an Oracle, Microsoft SQL Server, or
PostgreSQL database to an Amazon RDS MySQL DB instance or an Amazon Aurora
DB cluster. In cases where the schema from your source database cannot be
automatically and completely converted, the AWS Schema Conversion Tool provides
guidance on how you can create the equivalent schema in your target Amazon RDS
database. For details, see the Migrating the Database Schema section.

dWs

Amazon Web Services Migrating Your Databases to Amazon Aurora

Data migration

While supporting homogenous migrations with near-zero downtime, AWS Database
Migration Service (AWS DMS) also supports continuous replication across
heterogeneous databases and is a preferred option to move your source database to
your target database, for both migrations with downtime and migrations with near-zero
downtime. Once the migration has started, AWS DMS manages all the complexities of
the migration process like data type transformation, compression, and parallel transfer
(for faster data transfer) while ensuring that data changes to the source database that
occur during the migration process are automatically replicated to the target.

Besides using AWS DMS, you can use various third-party tools like Attunity Replicate,
Tungsten Replicator, Oracle Golden Gate, etc. to migrate your data to Amazon Aurora.
Whatever tool you choose, take performance and licensing costs into consideration
before finalizing your toolset for migration.

Migrating large databases to Amazon Aurora

Migration of large datasets presents unique challenges in every database migration

project. Many successful large database migration. projects use a combination of the
following strategies: This paper has been archived

e Migration with continuous replication — Large databases typically have

extdnogdtinetate stdeehnicalige ntent, cefestodhe AW SGet. To
reduce the downtiwwﬁté?gélgfgoy @a?mgsd t%%gm source to target and
|

then enable replication (usi ySQL native tools DMS, or third-party
tools) for cHARERS 1 @mt@mazon com/whitepapers

e Copy static tables first — If your database relies on large static tables with
reference data, you may migrate these large tables to the target database before
migrating your active dataset. You can leverage AWS DMS to copy tables
selectively or export and import these tables manually.

¢ Multiphase migration — Migration of large database with thousands of tables
can be broken down into multiple phases. For example, you may move a set of
tables with no cross joins queries every weekend until the source database is
fully migrated to the target database. Note that in order to achieve this, you need
to make changes in your application to connect to two databases simultaneously
while your dataset is on two distinct nodes. Although this is not a common
migration pattern, this is an option nonetheless.

aws
10

Amazon Web Services Migrating Your Databases to Amazon Aurora

Database cleanup — Many large databases contain data and tables that remain
unused. In many cases, developers and DBAs keep backup copies of tables in
the same database, or they just simply forget to drop unused tables. Whatever
the reason, a database migration project provides an opportunity to clean up the
existing database before the migration. If some tables are not being used, you
might either drop them or archive them to another database. You might also
delete old data from large tables or archive that data to flat files.

Partition and shard consolidation on Amazon Aurora

If you are running multiple shards or functional partitions of your database to achieve
high performance, you have an opportunity to consolidate these partitions orshards on
a single Aurora database. A single Amazon Aurora instance can scale up to 128 TB,
supports thousands of tables, and supports a significantly higher number of reads and
writes than a standard MySQL database. Consolidating these partitions on a single
Aurora instance not only reduces the total cost of ownership and simplify database
management, but it also significantly improves performance of cross-partition queries.

Functional partitions — Functional partitioning means dedicating different
nodes to differéphitgkpﬁﬁerahdg, b éeetsarehivagication, you might
have one database node serving product catalog data, and another database
node capturing and processing orders. As a result, these partitions usually have

distharrthevtatkestdedkenical content, refer to the AWS

Consolidation strM@uemigﬁfée&cﬁMﬁd@ﬁ@ﬁg&ion as a distinct schema
to your targﬁ‘t‘éﬁ@ﬁ/ﬁ%?@n‘fdi@ﬁ%’&%f%ﬁ%@ | L. compliant, use
native MySQL tools to migrate the schema and then use AWS DMS to migrate
the data, either one time or continuously using replication. If your source
database is non-MySQL complaint, use AWS Schema Conversion Tool to
migrate the schemas to Aurora and use AWS DMS for one-time load or
continuous replication.

Data shards — If you have the same schema with distinct sets of data across
multiple nodes, you are leveraging database sharding. For example, a high-traffic
blogging service may shard user activity and data across multiple database
shards while keeping the same table schema.

Consolidation strategy — Since all shards share the same database schema,
you only need to create the target schema once. If you are using a MySQL-

compliant database, use native tools to migrate the database schema to Aurora.
If you are using a non-MySQL database, use AWS Schema Conversion Tool to

dWs

11

Amazon Web Services Migrating Your Databases to Amazon Aurora

migrate the database schema to Aurora. Once the database schema has been
migrated, it is best to stop writes to the database shards and use native tools or
an AWS DMS one-time data load to migrate an individual shard to Aurora. If
writes to the application cannot be stopped for an extended period, you might still
use AWS DMS with replication but only after proper planning and testing.

Migration options at a glance

Table 1 — Migration options

Source database Near-zero downtime

type Migration with downtime migration

Amazon RDS Option 1: RDS snapshot Option 1: Migration using native

MySQL migration tools + binlog replication

Option 2: Migrate using Aurora
Option 2: Manual migration Read Replica
using native tools* Option 3: Schema migration
Option 3: Schema migration using native tools + AWS DMS
using native tools and data for data movement
Thispapertas been archived
MySQL Amazon Option'1: Migration using Option 1: Migration using native
EC2 or gn- native tools ; ools +binlQg replicati
emieet OF the l3test fechnical content, refer to the AWS

P Option 2: Schema migration = Option 2: Schema migration

witMhitepapers Lolslidespage rools + AWS DMS
httJ SR amazon comAREERApers

Oracle/SQL server Option 1: AWS Schema Option 1: AWS Schema
Conversion Tool + AWS DMS Conversion Tool + AWS DMS
(recommended) (recommended)
Option 2: Manual or third- Option 2: Manual or third-party
party tool for schema tool for schema conversion +
conversion + manual or third- manual or third-party data load
party data load in target in target + third-party tool for

replication.

Other non-MySQL Option: Manual or third-party ~ Option: Manual or third-party

databases tool for schema conversion + tool for schema conversion +
manual or third-party data manual or third-party data load
load in target in target + third-party tool for

replication (GoldenGate, etc.)

dWs

12

Amazon Web Services Migrating Your Databases to Amazon Aurora

*MySQL Native tools: mysgldump, SELECT INTO OUTFILE, third-party tools like
mydumper/myloader

To use RDS snapshot migration to move to Aurora, your MySQL database must be
running on Amazon RDS MySQL 5.6 or 5.7, and you must make an RDS snapshot of
the database. This migration method does not work with on-premises databases or
databases running on Amazon Elastic Compute Cloud (Amazon EC2). Also, if you are
running your Amazon RDS MySQL database on a version earlier than 5.6, you would
need to upgrade it to 5.6 as a prerequisite.

The biggest advantage to this migration method is that it is the simplest and requires the
fewest number of steps. In particular, it migrates over all schema objects, secondary
indexes, and stored procedures along with all of the database data.

During snapshot migration without binlog replication, your source database must either
be offline or in a read-only mode (so that no changes are being made to the source
database during migration). To estimate downtime, you can simply use the existing
snapshot of your dataﬁjéoﬁ’%ﬁ?it ﬁa?tﬁgé‘ﬁuaﬁm\?&ﬁne fits within your
downtime requirements, then ay be the Destme yOu. Note that in some
cases, migration using AWS DMS or native migration tools can be faster than using

snapshot npgiati{e |atest technical content, refer to the AWS
If you can't tolerate exteni¥hitt@pépe ys &6 uities pagezero downtime by

creating an Auroranlffﬁgf lg\%frg| ea(?ogﬁ:_e\c@?ﬁ /Wﬁﬂ.le rﬁg @}%ration option is

[
explained in Migrating'us urora eplica section In this (Equment.

You can migrate either a manual or an automated DB snapshot. The general steps you
must take are as follows:

1. Determine the amount of space that is required to migrate your Amazon RDS
MySQL instance to an Aurora DB cluster. For more information, see the next
section.

2. Use the Amazon RDS console to create the snapshot in the Region where the
Amazon RDS MySQL instance is located.

3. Use the Migrate Database feature on the console to create an Amazon Aurora
DB cluster that will be populated using the DB snapshot from the original DB
instance of MySQL.

aws
13

Amazon Web Services Migrating Your Databases to Amazon Aurora

Note: Some MyISAM tables might not convert without errors and may
require manual changes. For instance, the InnoDB engine does not permit
an autoincrement field to be part of a composite key. Also, spatial indexes
are not currently supported.

Estimating space requirements for snapshot migration

When you migrate a snapshot of a MySQL DB instance to an Aurora DB cluster, Aurora
uses an Amazon Elastic Block Store (Amazon EBS) volume to format the data from the
snapshot before migrating it. There are some cases where additional space is needed
to format the data for migration. The two features that can potentially cause space
issues during migration are MyISAM tables and using the ROW FORMAT=COMPRESSED
option. If you are not using either of these features in your source database, then you
can skip this section because you should not have space issues. During migration,
MyISAM tables are converted to InnoDB and any compressed tables are
uncompressed. Consequently, there must be adequate room for the additional copies of
any such tables.

The size of the migrats % %1 ﬁ é@r §1e source MySQL
database that the sna:)fhlgvl\ﬁ?rﬁ Fsﬁ (g‘ § Eahh{% MyISAM or
compressed tables that make up a small percentage of the overall database size and

there Is aVFBP'?H@aP&féM@Wﬁ'l eaPeIAtOAT TEPEP LY R SAAPST Without
encountering any space i s. However, if r|g|nal database would not have
enough room to store a c %@Q@Eﬁ\/gsﬁ ggl%@z%gﬁell as another
(uncompressed) chyiy pEcAymwsserhtedias ntheo thy wibridgp apemns will not be big
enough. In this situation, you would need to modify the source Amazon RDS MySQL
database to increase the database size allocation to make room for the additional

copies of these tables, take a new snapshot of the database, and then migrate the new
shapshot:

When migrating data into your DB cluster, observe the following guidelines and
limitations:

e Although Amazon Aurora supports up to 128 TB of storage, the process of
migrating a snapshot into an Aurora DB cluster is limited by the size of the
Amazon EBS volume of the snapshot, and therefore is limited to a maximum size
of 16 TB.

dWs

14

Amazon Web Services Migrating Your Databases to Amazon Aurora

e Non-MyISAM tables in the source database can be up to 16 TB in size. However,
due to additional space requirements during conversion, make sure that none of
the MylISAM and compressed tables being migrated from your MySQL DB
instance exceed 8 TB in size.

You might want to modify your database schema (convert MylISAM tables to InnoDB
and remove ROW FORMAT=COMPRESSED) prior to migrating it into Amazon Aurora. This

can be helpful in the following cases:

e You want to speed up the migration process.
e You are unsure of how much space you need to provision.

e You have attempted to migrate your data and the migration has failed due to a
lack of provisioned space.

Make sure that you are not making these changes in your production Amazon RDS
MySQL database but rather on a database instance that was restored from your
production snapshot. For more details on doing this, see Reducing the Amount of
Space Required to Migrate Data into Amazon Aurora in the Amazon Relational
Database Service User Guide.

This paper has been archived
Migrating a DB snapsheot using the console

You can miiie A @t SfeRthEtelmicaPesHtRh tRieP R TReCAFSate an
Aurora DB cluster. The n E%}cluster isB%O&JI teddvith the dat:a from the original
Amazon RDS MySQL DBW A %p%ﬂg QHH %Eﬁﬁ% been made from an
RDS DB instance hirtirsg Ay8@5 .2 6rud 50NFooinff e ersating a DB

snapshot, see Creating a DB snapshot in the Amazon RDS User Guide.

If the DB snapshaot is not in the Region where you want to locate your Aurora DB
cluster, use the Amazon RDS console to copy the DB snhapshot to that Region. For
information about copying a DB snapshot, see Copying a snapshot in Amazon RDS
User Guide.

To migrate a MySQL DB snapshot by using the console, do the following:

1. Sign into the AWS Management Console and open the Amazon RDS console
(sign in required).

2. Choose Snapshots.

3. Onthe Snapshots page, choose the Amazon RDS MySQL snapshot that you
want to migrate into an Aurora DB cluster.

dWs

15

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://console.aws.amazon.com/rds/

Amazon

4.
5.

dWs

Web Services Migrating Your Databases to Amazon Aurora

Choose Migrate Database.

On the Migrate Database page, specify the values that match your environment
and processing requirements as shown in the following illustration. For
descriptions of these options, see Migrating an RDS for MySQL snapshot to
Aurora in the Amazon RDS User Guide.

Migrate Database

Migrate this database to a new DB Engine by selecting your desired options for the migrated instance.

Instance specifications

Migrate to DB Engine
Name of the Database Engine

aurora-mysgl v

DB Engine Version
Version Number of the Database Engine to be used for this instance

Aurora (MySQL 5.7) 2.07.2 (default) v

DB Instance Class
Contains the compute and memory capacity of the DB Instance.

Settings

DB Snapshot ID
The identifier for the DB Snapshot.

DB Instance |dentifier Info

Fo ot NS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

16

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

dws

]

Fo

Network & Security

Virtual Private Cloud (VPC) Info
VPC defines the virtual ing i 1t for this DB i

|Default VPC (vpc-e6d3669h) v | | c |

Only VPCs with a corresponding DB subnet group are listad.

Subnet group Info
DB subnet group that defines which subnets and IP ranges the DB instance can use in the VPC you selected.

| default-vpc-e6d3669h v |

Public accessibility Info

Yes
EC2 instances and devices outside of the VPC hosting the DB instance will connect to the DB instances. You must also select one or
maore WPL security groups that specify which EC2 instances and dewvices can connect to the DB instance.

O Mo

DB instance will not have a public IP address assigned. Mo EC2 instance or devices outside of the WPC will be able to connect.

Availability zone Info

No preference v

VPC security groups Info
Security groups have rules authorizing connections from all the EC2 instances and devices that need to access the DB instance.

© Create new VPC security group
Choose existing VPC security groups

Database options

Database Port
Port number on which the database accepts connections.

| 3306

(E

DB parameter group Info

| default.aurera-mysqls.7 v |

DB cluster parameter group Info NS
| default.aurera-mysql5.7 v |

Backup

17

Amazon Web Services Migrating Your Databases to Amazon Aurora

Encryption

Encrypticn

Enable encryption Learn more [
Select to encrypt the given instance. Master key ids and aliases appear in the list after they have been created using the Key
Management Service(KM5) console.

© Disable encryption

Log exports

Select the log types to publish to Amazon CloudWatch Logs

Audit log
Error log
General log

Slow guery log

IAM role
The following service-linked role is used for publishing logs to CloudWatch Logs.

RDS Service Linked Role

(@ Ensure that General, Slow Query, and Audit Logs are turned on. Error logs are enabled by default. Learn
more [4

Maintenance

Aute Minor Version Upgrade
Specifies if the DB Instance should receive automatic engine version upgrades when they are available.

0O Yes
Mo

Fo o mNS

vwnitepapers & Guiges page:
https://awWeamaz SR B RYNtepapers

6.. Choose Migrate to migrate your DB snapshot.

In the list of instances, choose the appropriate arrow icon to show the DB cluster details
and monitor the progress of the migration. This details panel displays the cluster
endpoint used to connect to the primary instance of the DB cluster. For more
information on connecting to an Amazon Aurora DB cluster, see Connecting to an
Amazon Aurora DB Cluster in the Amazon Relational Database Service User Guide.

Aurora uses MySQL DB engines binary log replication functionality to create a special
type of DB cluster called an Aurora read replica for a source MySQL DB instance.
Updates made to the source instance are asynchronously replicated to Aurora Read
Replica.

aws
18

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf

Amazon Web Services Migrating Your Databases to Amazon Aurora

We recommend creating an Aurora read replica of your source MySQL DB instance to
migrate to an Aurora MySQL DB cluster with near-zero downtime. The migration
process begins by creating a DB snapshot of the existing DB Instance as the basis for a
fresh Aurora Read Replica. After the replica is set up, replication is used to bring it up
to date with respect to the source. Once the replication lag drops to zero, the replication
is complete. At this point, you can promote the Aurora Read Replica into a standalone
Aurora DB cluster and point your client applications to it.

Migration will take a while, roughly several hours per tebibyte (TiB) of data. Replication
runs somewhat faster for InnoDB tables than it does for MyISAM tables, and also
benefits from the presence of uncompressed tables. If migration speed is a factor, you
can improve it by moving your MyISAM tables to InnoDB tables and uncompressing any
compressed tables. For further details, refer to Migrating from a MySQL DB instance to
Aurora MySOL using Read Replica in the Amazon RDS User Guide.

To use Aurora Read Replica to migrate from RDS MySQL, your MySQL database must
be running on Amazon RDS MySQL 5.6 or 5.7. This migration method does not work
with on-premises databases or databases running on Amazon Elastic Compute Cloud
(Amazon EC2). Also, if you are running your Amazon RDS MySQL database on a

version earlier than 5.€|-,P,ﬁ§ \%Iﬁéqeﬁtagpﬁ@%t Qw%Herequisite.

Create a read replica using the Console

1. To hQLENE latest technisal eentent.crefento theAWence in

the AWS ManagedMhite papersc&siGuidespagehoose Instance
Actions, aih ¢aase CIRRISNEE Fead I hitepapers

RDS Databases myrdsinstance
myrdsinstance | Modify || Actions a
Stop
Summary Reboot
Delete $
DB identifier CcPU Status (Create read replica
myrdsinstance 1.57% @ Available e e ‘
Role Current activity Engine F
Instance 110 Sessions MySQL Community L Take snapshot l
Migrate snapshot
Connectivity & security Monitoring Logs & events Configuration Maintenancte & packups | Tags

i s 2 im e RS e M s ma s Gmaiw s e S—

aws
19

https://docs.amazonaws.cn/en_us/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://docs.amazonaws.cn/en_us/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://console.aws.amazon.com/

Amazon Web Services Migrating Your Databases to Amazon Aurora

2. Specify the Values for the Aurora cluster. See Replication with Amazon Aurora.
Monitor the progress of the migration in the console.

RDS Databases
Databases @D Group resources c ‘ Actions ¥ Restore from §3 | Create database
Q 1 ®
DB identifier v Role ¥ Engine v Region & AZ ¥ Size v Status v Cl
o myrdsinstance Primary MySQL Community us-east-1d db.m5.large @ Available I
destmyauroradb-cluster Regional Aurora MySQL us-east-1 1 instance @ Preparing-data-migration
destmyauroradb Reader Aurora MySQL - db.t2.small @ Creating

You can also look at the sequence of events in RDS events console.

destmyauroradb-cluster Clusters _h_d_@_g 27,2021,EZ4DOFMUTC DB cluster created

myrdsinstance Instances May 27, 2021, 8:26:56 PM UTC Backing up DB instance

myrdsinstance Instances M;y 27,2021, E:Z{! Finished DB Instance backup

destmyauroradb Instances May 27, 2021, 8:52:26 PM UTC Binlog position from crash recovery is mysgl-bin-changelog.000007 456
destmyauroradb Instances May 27, 2021, 8:53:29 PM UTC DB instance created

destmyauroradb Instances May 27, 2021, ¢ Replication for the Read Replica resumed

3. After the migra\':llt-)}r‘l| !ss cerﬁ;ﬁe?er,‘ vbaﬂ?orqh%%pﬂgg IQdYoergach zero on the new
Aurora read replica to indicate that the replica is in sync with the source.

4. stof @& Thedatest technical grntent weier &6 thaAWS

5. Promote the Aurorwgae&ﬁ&QS% & GUIdeRAgE
https://aws.amazon.com/whitepapers

RDS Databases destmyaurroadb-cluster

destmyaurroadb-cluster | Modity | [Actions a

Related Add AWS Region

Add reader
Q
DB identifier v Create clone
{ Promote

o destmyaurroadb-cluster .

Restore to point in time
destmyaurroadb

Add replica auto scaling

aws
20

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Replication.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

6. To see if the process is complete, you can check Recent events for the new
Aurora cluster:

Recent events (2)

Q
Time a System notes
May 27, 2021, 9:22:14 PMUTC DB cluster created
May 27, 2021, 10:03:26 PM UTC Promoted Read Replica cluster to a stand-alone database cluster.

Now you can point your application to use the Aurora cluster’s reader and writer
endpoints.

RDS DB snapshot migration migrates both the full schema and data to the new Aurora
instance. However, if your source database location or application uptime requirements
do not allow the use of RDS snapshot migration, then you first need to migrate the
database schema fronl’ héscpapmtabas bheenrarchivedbefore you can
move the actual data. A database schema is a skeleton structure that represents the

logical view of the entire database, and typically includes the following:
For the latest technical content, refer to the AWS
Database stora ects — tables mng, constraints, indexes, sequences,
. IYH &G e .

|ects
user-defined types, andf}%%'—%%%gs S page:

://aws. zon.com/whi r
e Database (Q)tc]:é:) gbj/!CatS i %mt?on%, pr%%edu/res, pggl%?ygse,tr?ggers, views,

materialized views, events, SQL scalar functions, SQL inline functions, SQL table
functions, attributes, variables, constants, table types, public types, private types,
cursors, exceptions, parameters, and other objects

In most situations, the database schema remains relatively static, and therefore you
don’t need downtime during the database schema migration step. The schema from
your source database can be extracted while your source database is up and running
without affecting the performance. If your application or developers do make frequent
changes to the database schema, make sure that these changes are either paused
while the migration is in process, or are accounted for during the schema migration
process.

dWs

21

Amazon Web Services Migrating Your Databases to Amazon Aurora

Depending on the type of your source database, you can use the techniques discussed
in the next sections to migrate the database schema. As a prerequisite to schema
migration, you must have a target Aurora database created and available.

Homogeneous schema migration

If your source database is MySQL 5.6-compliant and is running on Amazon RDS,
Amazon EC2, or outside AWS, you can use native MySQL tools to export and import
the schema.

Exporting database schema — You can use the mysgldump client utility to

export the database schema. To run this utility, you need to connect to your
source database and redirect the output of mysgldump command to a flat file.

The —no-data option ensures that only database schema is exported without any
actual table data. For the complete mysgldump command reference, see

mysgldump — A Database Backup Program.

mysgldump —u source db username —-p --no-data —--routines --triggers

—databases source db name > DBSchema.sqgl

1115 PAPET 11dS peEeEr drrnivea
Importing database schema into Aurora — To import the schema to your
Aurara insfance, connect to your Aurora database from a MySQL command line

cIierlu:t(?(fr r‘%ﬁ%ﬁ"mm&ﬁ QQHFQFHdiF Qﬁ.et&rt ﬁs’%m export
file into MySQL. \Whitepapers & Guides page:

mysgl —h aurora-cluster-endpoint -u username -p < DBSchema.sqgl

Note the following:

If your source database contains stored procedures, triggers, and views, you
need to remove DEFINER syntax from your dump file. A simple Perl command to

do that is given below. Doing this creates all triggers, views, and stored
procedures with the current connected user as DEFINER. Be sure to evaluate any

security implications this might have.

Sperl -pe 's/\sSDEFINER="[~"]+ @ [~]+ //' < DBSchema.sqgl >
DBSchemaWithoutDEFINER. sql

dWs

22

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

e Amazon Aurora supports InnoDB tables only. If you have MyISAM tables in your

source database, Aurora automatically changes the engine to InnoDB when the
CREATE TABLE command is run.

e Amazon Aurora does not support compressed tables (that is, tables created with
ROW FORMAT=COMPRESSED). If you have compressed tables in your source
database, Aurora automatically changes ROW FORMAT to COMPACT when the
CREATE TABLE command is run.

Once you have successfully imported the schema into Amazon Aurora from your
MySQL 5.6-compliant source database, the next step is to copy the actual data from the
source to the target. For more information, see the Introduction and General Approach
to AWS DMS later in this paper.

Heterogeneous schema migration

If your source database isn’t MySQL compatible, you must convert your schema to a
format compatible with Amazon Aurora. Schema conversion from one database engine
to another database engine is a nontrivial task and may involve rewriting certain parts of
your database and api_lica.ttion code. You have two main options for converting and

migrating your schem bl&rﬁﬂpﬁlﬁms been archived

e AWS Schema Conversion Tool — The AWS Schema Conversion Tool

maleo hdhedatest techmicalcante ptsyrefendoathe AW Grting the
source database : jopty, de, including views,
“iteRap R GUIRES aRe

stored procedures, and functions, to a format compe with the target
database. AWLRS (RS AGRBE ARERRERAN EURGRPR Searly marked so
that it can be manually converted. You can use this tool to convert your source
databases running on either Oracle or Microsoft SQL Server to an Amazon
Aurora, MySQL, or PostgreSQL target database in either Amazon RDS or
Amazon EC2. Using the AWS Schema Conversion Tool to convert your Oracle,
SQL Server, or PostgreSQL schema to an Aurora-compatible format is the
preferred method.

aws
23

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

e Manual schema migration and third-party tools — If your source database is
not Oracle, SQL Server, or PostgreSQL, you can either manually migrate your
source database schema to Aurora or use third-party tools to migrate schema to
a format that is compatible with MySQL 5.6. Manual schema migration can be a
fairly involved process depending on the size and complexity of your source
schema. In most cases, however, manual schema conversion is worth the effort
given the cost savings, performance benefits, and other improvements that come
with Amazon Aurora.

Schema migration using the AWS Schema Conversion
Tool

The AWS Schema Conversion Tool provides a project-based user interface to
automatically convert the database schema of your source database into a format that
is compatible with Amazon Aurora. It is highly recommended that you use AWS
Schema Conversion Tool to evaluate the database migration effort and for pilot
migration before the actual production migration.

The following descriptigp walks you thr%l;gh tiae high-level iteps of using AWS the
Schema Conversion ThHAISP@RE NS, @ﬁ@e@‘ WEQ@chema Conversion

Tool User Guide.
1. Firsk oethedatestieohbicakeaigmsiafanote $headWS the

Microsoft Windowwﬁﬁ%éd@@&@mﬁég B%jg@ Linux.

Detailed doyyitiaad ghshipstaligian ptreesians\anibe fesprbipsthe installation
and update section of the user guide. Where you install AWS Schema
Conversion Tool is important. The tool needs to connect to both source and
target databases directly in order to convert and apply schema. Make sure that
the desktop where you install AWS Schema Conversion Tool has network

connectivity with the source and target databases.

2. Install JDBC drivers. The AWS Schema Conversion Tool uses JDBC drivers to
connect to the source and target databases. In order to use this tool, you must
download these JDBC drivers to your local desktop. Instructions for driver
download can be found at Installing the required database drivers in the AWS
Schema Conversion Tool User Guide. Also, check the AWS forum for AWS
Schema Conversion Tool for instructions on setting up JDBC drivers for different
database engines.

dWs

24

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://forums.aws.amazon.com/forum.jspa?forumID=208
https://forums.aws.amazon.com/forum.jspa?forumID=208

Amazon Web Services Migrating Your Databases to Amazon Aurora

3. Create a target database. Create an Amazon Aurora target database. For
instructions on creating an Amazon Aurora database, see Creating an Amazon
Aurora DB Cluster in the Amazon RDS User Guide.

4. Open the AWS Schema Conversion Tool and start the New Project Wizard.

o Actions B View g, Settings (@) Help

=" New Project...
e Open Project...

Mew Project Wizard

@ Recent Projects

I Exit

P SR e Paler Ras BEEn Archivéd s
5. Configure the source database and test connectivity between AWS Schema
ConversioE}Tool and the source dtabase. Your SOltrce dat%?aase must be

readr@FIENE-13LESELRENRICALEONIRNS, refette HigAWRe e
appropriate netwoNAEhit@papersi®@Guites page:

https://aws.amazon.com/whitepapers

dws

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services

Migrating Your Databases to Amazon Aurora

1) Create New Database Migration Project

i)

Step 1: Select Source

Step 2 Select Schema
Step 3 Run Databaze Migration
Assessment

Step & Sefect Tacget

The Amazon Schema Conversion Tool can help migrate your database to the database platform of your choice.

Please specify the database you would like to migrate to AWS.

r
Project Name AWS Schema Conversion Tool Project Sample
r
Location: CAUsers\myuseAWS Schema Conversson Tool\Projects
Source DB Engine: SQU Server >
Source Datsbase
r
Server name: ouM;\t'ux'un‘r. £TvBmntzhgvlus-west-2rds.amazonaws.com
r
Server port 1433

Instance name:
r
Uset name: yawsuser

Password: seeeesesenne

Figure 4 — Create New Database Migration Project wizard

6. In the next scr I e that you want to
Thi¥ ﬁfé‘b‘ie’i"ﬁé‘é b areHRed

convert to Amazon Aufora.

{1 Create Mew Database Migration Project —]
Sep l: Sebect Source Select the schema you would ke io analyze
Step 2 Select Schema
v o gl U ste 2 rcls BMBTONIWE. LN
Step®: RunDatsbase Migration . .
PR * & Dotaboses [3]
Step & Selact Target » & rdsecmin
¥ & SampleDatabase
v & Seherna: 5
& dbo
& Employees
& Broduction
&k Purchasing
& Soles
Previcus Cancel

Figure 5 — Select Schema step of the migration wizard

dWs

26

Amazon Web Services Migrating Your Databases to Amazon Aurora

7. Run the database migration assessment report. This report provides important
information regarding the conversion of the schema from your source database
to your target Amazon Aurora instance. It summarizes all of the schema
conversion tasks and details the action items for parts of the schema that cannot
be automatically converted to Aurora. The report also includes estimates of the
amount of effort that it will take to write the equivalent code in your target
database that could not be automatically converted.

8. Choose Next to configure the target database. You can view this migration report

again later.
Create New Database Migraticn Project l__%
Step 1 Select Source Summary
Step 2 Select Schema A Seve to CSV " Save to POF
Step 3: i:m Database Migration
Sk kg Database Migration Assessment
Report
Source Database Customers Wzhgv us-west-2 rds amazonaws. com 8196

Microsoft SQL Server 2012 - 11.0.5058.0 (X64)
May 14 2014 18:3429
Copynight (¢c) Microsoft
Standard Editon (64-bit) on \'Lndows NT 6.1 <X64> (Build 7601: Service Pack 1) (Hypervisor)

Executive Summary

We completed the analysss of your SQU Server source database and estimate that 100.00% of the database
schema can be converted automatically if you select MySQL or Am.azon Aurora as your mlgmbon target. If you
choose 1o migrate 1o MySQL or Amazon Aurora, we rec action(s) dat 14 days 15.0
hours.

Database Objects with Conversion Actions for ‘
MySQL or Amazon Aurora migration |

We were able 1o kientify 83 database objects that can be automatically converted to MySQL or Amazon
Aurora. 26 database object(s) require user actions estimated at 14 days 15.0 hours

Previous Next Cancel

Figure 6 — Migration report

9. Configure the target Amazon Aurora database and test connectivity between the
AWS Schema Conversion Tool and the source database. Your target database
must be reachable from your desktop for this to work, so make sure that you
have appropriate network and firewall settings in place.

10.Choose Finish to go to the project window.

11.0nce you are at the project window, you have already established a connection
to the source and target database and are now ready to evaluate the detailed
assessment report and migrate the schema.

dWs

27

Amazon Web Services

12.

dWs

Migrating Your Databases to Amazon Aurora

In the left panel that displays the schema from your source database, choose a
schema object to create an assessment report for. Right-click the object and
choose Create Report.

File Actions View Settings Help

¥ Microsoft SQL Server L4

I
v Bmntzhgvl. Properties

v 3 Databases [2]

> & rdsadmi
B rasacmun ¥ Created c

¥ & SampleDatabase

v 3 Schemas [6]

Create

Last me

» A Tabl 10" Refresh from Datzbase | T Cbjectn:

é_ Viey 1’ Convert schema
R L CresteRepori
é; SQL scalar functions
é; SQL table-valued functions
%__ Synonyms
» & dbo

MName

Figure 7 — Create migration report

The Summary tab displays the summary information from the database
migration asse&hbﬁtﬂaﬂ@ﬁf has beena ﬁﬁthﬁﬂwatically converted
and items that could net be automatically converted.

For Fgertriaddatastt tadhnicht eoritelivt)yefaeter th AMLS!
database engine, Wﬁuqmari)includgsgn ¢i=z timate of the effort that it would
take to create a sc é\ %Et e u?v H) (%% &ﬂ%@ ‘database in your target
DB instanc@ titi@steyawationiadone cemAldiEeaa prsrt these schema

items as follows:
e Simple — Actions that can be completed in less than one hour.

e Medium = Actions that are more complex and can be completed in one to
four hours.

e Significant — Actions that are very complex and will take more than four
hours to complete.

28

Amazon Web Services

Database Objects with Conversion Actions for MySQL

Of the total 179 database storage object(s) in the source database, we were abla to identify 169 (94%) database storage

object(z) thatcan be converted automatically or with minimal changes to MySQL.

10 (6%:) database storage object(s) required 58 medium and 10 significant wser action(s) to complete the conversion.

Figure: Conversion statistics for database storage objects

bjects Automatically Comverte: Okjects with simgle actions Chjects with medium-complesity actions

Detailed Recommendations for MySQL Migrations

W Otyects with sgriicent actions

If you choose to migrate your SQL Server database to MyS(QL, we recommend the followmg actions.

Storage Object Actions

Constraint Changes

Some changes are required to CONSTRATNT: that cannot be converted automatically. You'll need to address these issues

mamually.

Migrating Your Databases to Amazon Aurora

This pgigugerBIla,vcﬁgggen archived

on report

Important: If you are evaluating the effort required for your database
migration project, this assessment report is an important artifact to
consider. Study the assessment report in details to determine what code
changes are required in the database schema and what impact the
changes might have on your application functionality and design.

13.The next step is to convert the schema. The converted schema is not
immediately applied to the target database. Instead, it is stored locally until you
explicitly apply the converted schema to the target database. To convert the
schema from your source database, choose a schema object to convert from the
left panel of your project. Right-click the object and choose Convert schema, as

shown in the following illustration.

dWs

29

Amazon Web Services Migrating Your Databases to Amazon Aurora

File Actions View Settings Help

¥ Microsoft SQL Server

v —! igvllus-west-2.rds.amazonaws.com:B.
v 3 Databases [2]
» & rdsadmin
¥ & SampleDatabase
v '3 Schemas [8]

» 2 Tabi 15* Refresh from Database

. 1 C e
L View Convert schema

&
é Proc| =4 Create Report
&

& SQL scalar functions

é: SQL table-valued functions

%__ Synenyms
b2 dbn

Figure 9 — Convert schema
This action adds converted schema to the right panel of the project window and

shows objects that were automatically converted by the AWS Schema
Conversion Tool.

You can respond to the agtion items in ﬁe assessment reppri in different ways:

dWs

IS paper een arcnive
Add equivalent schema manually — You can write the portion of the schema

that can be automatically converted to your target DB instance by choosing

Apdrotothelatest technicalecomtentorefandoctb@ANISs written
to your target DB |Wpﬂf@wgpépgtgp6@ii&g§ B]ég(é)uldn't be automatically
ste

converted. Those items are listed in your dat migration assessment report.
htt pS aws amazon.com/whnitepapers

After applying the schema to your target DB instance, you can then manually
create the schema in your target DB instance for the items that could not be
automatically converted. In some cases, you may not be able to create an
equivalent schema in your target DB instance. You might need to redesign a
portion of your application and database to use the functionality that is available
from the DB engine for your target DB instance. In other cases, you can simply
ignore the schema that can't be automatically converted.

Caution: If you manually create the schema in your target DB instance,
do not choose Apply to database until after you have saved a copy of
any manual work that you have done. Applying the schema from your
project to your target DB instance overwrites schema of the same name in
the target DB instance, and you lose any updates that you added
manually.

30

Amazon Web Services Migrating Your Databases to Amazon Aurora

e Modify your source database schema and refresh the schema in your
project — For some items, you might be best served to modify the database
schema in your source database to the schema that is compatible with your
application architecture and that can also be automatically converted to the DB
engine of your target DB instance. After updating the schema in your source
database and verifying that the updates are compatible with your application,
choose Refresh from Database in the left panel of your project to update the
schema from your source database. You can then convert your updated schema
and generate the database migration assessment report again. The action item
for your updated schema no longer appears.

14.When you are ready to apply your converted schema to your target Aurora
instance, choose the schema element from the right panel of your project. Right-
click the schema element and choose Apply to database, as shown in the
following figure.

¥ Amazon RDS for MySQL

¥ = awsrothausd@sct-mysqgl.czoy3lkhon34.us-west-1rds.amazonaws.cod

¥ L Schemas [6]
P &l information_schema
P ol innodb
> mysql
» wal performance_schema
Forth(» wsmpe e AWS
> Samplygg

D Refresh from Database

If' & Apply to database rs

B Save as SQL

Figure 10 — Apply schema to database

aws
31

Amazon Web Services Migrating Your Databases to Amazon Aurora

Note: The first time that you apply your converted schema to your target
DB instance, the AWS Schema Conversion Tool adds an additional
schema (AWS ORACLE EXT or AWS SQLSERVER EXT) to your target DB
instance. This schema implements system functions of the source
database that are required when writing your converted schema to your
target DB instance. Do not modify this schema, or you might encounter
unexpected results in the converted schema that is written to your target
DB instance. When your schema is fully migrated to your target DB
instance, and you no longer need the AWS Schema Conversion Tool, you
can delete the AWS ORACLE EXT or AWS SQLSERVER EXT schema.

The AWS Schema Conversion Tool is an easy-to-use addition to your migration toolkit.
For additional best practices related to AWS Schema Conversion Tool, see the Best
practices for the AWS SCT topic in the AWS Schema Conversion Tool User Guide.

After the database schema has been copied from the source database to the target
Aurora database, the qq;ﬁgt ' mﬁg aﬁté@ﬁagf@ﬁlwae to target. While
data migration can be accomplishied using different tools, we recommend moving data
using the AWS Database Migration Service (AWS DMS) as it provides both the

simplicity drd fhtHealarte se¢dchoritelictnrtent]. refer to the AWS

Introduction angv hgﬁ%?gfggf?%éder? F5%ws pms
ttps:/gws.amaz .com whltepapers

The AWS Database Migration Service (AWS DMS) makes it easy for customers to
migrate production databases to AWS with minimal downtime. You can keep your
applications running while you are migrating your database. In addition, the AWS
Database Migration Service ensures that data changes to the source database that
occur during and after the migration are continuously replicated to the target. Migration
tasks can be set up in minutes in the AWS Management Console. The AWS Database
Migration Service can migrate your data to and from widely used database platforms,
such as Oracle, SQL Server, MySQL, PostgreSQL, Amazon Aurora, MariaDB, and
Amazon Redshift.

The service supports homogenous migrations such as Oracle to Oracle, as well as
heterogeneous migrations between different database platforms, such as Oracle to
Amazon Aurora or SQL Server to MySQL. You can perform one-time migrations, or you

aws
32

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

can maintain continuous replication between databases without a customer having to
install or configure any complex software.

AWS DMS works with databases that are on premises, running on Amazon EC2, or
running on Amazon RDS. However, AWS DMS does not work in situations where both
the source database and the target database are on premises; one endpoint must be in
AWS.

AWS DMS supports specific versions of Oracle, SQL Server, Amazon Aurora, MySQL,
and PostgreSQL. For currently supported versions, see the Sources for data migration.
However, this whitepaper is just focusing on Amazon Aurora as a migration target.

Migration methods
AWS DMS provides three methods for migrating data:

e Migrate existing data — This method creates the tables in the target database,
automatically defines the metadata that is required at the target, and populates
the tables with data from the source database (also referred to as a “full load”).
The data from the tables is loaded in parallel for improved efficiency. Tables are

only created inThi&paIMErhmmsam&dary indexes aren’t

created automatically by AWS DMS. Read further for details.

* Migpge eHeligtee eaghtriteAiearent chafersto fhie Mg does a
full load, as descri above, and in gagddition ¢aptures any ongoing changes
being made to the%&%%%ég%%é% B98&nd stores them on the
replication indtnse/ Cavestermon vanicamyied ibe paeihanges are
applied to the destination database until it has been brought up to date with the
source database. Additionally, any ongoing changes being made to the source
database continue to be replicated to the destination database to keep them in

sync. This migration method is very useful when you want to perform a database
migration with very little downtime.

¢ Replicate data changes only — This method just reads changes from the
recovery log file of the source database and applies these changes to the target
database on an ongoing basis. If the target database is unavailable, these
changes are buffered on the replication instance until the target becomes
available.

aws
33

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

e When AWS DMS is performing a full load migration, the processing puts a load
on the tables in the source database, which could affect the performance of
applications that are hitting this database at the same time. If this is an issue, and
you cannot shut down your applications during the migration, you can consider
the following approaches:

o Running the migration at a time when the application load on the database
is at its lowest point.

o Creating a read replica of your source database and then performing the
AWS DMS migration from the read replica.

Migration procedure
The general outline for using AWS DMS is as follows:

1. Create a target database.
2. Copy the schema.
3. Create an AWS DMS replication instance.

4. Define the databRtisspapetshashesn-archived

5. Create and run a migration task:
For the latest technical content, refer to the AWS

r r . q
Create target databa\?\?mtepapers & Guides page'
Create your targethAtrPazo?furora d?nagase cluster smﬁ é)rocedure outlined in

Creating an Amazon Auro \évéluster ou sﬁouna create %Pgee[‘ %atabase in the
Region and with an instance type that matches your business requirements. Also, to
improve the performance of the migration, verify that your target database does not
have Multi-AZ deployment enabled; you can enable that once the load has finished.

Copy schema

Additionally, you should create the schema in this target database. AWS DMS supports
basic schema migration, including the creation of tables and primary keys. However,
AWS DMS doesn't automatically create secondary indexes, foreign keys, stored
procedures, user accounts, and so on, in the target database. For full schema migration
details, see the Migrating the Database Schema section.

dWs

34

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Amazon Web Services Migrating Your Databases to Amazon Aurora

Create an AWS DMS replication instance

In order to use the AWS DMS service, you must create an AWS DMS replication
instance, which runs in your VPC. This instance reads the data from the source
database, performs the specified table mappings, and writes the data to the target
database. In general, using a larger replication instance size speeds up the database
migration (although the migration can also be gated by other factors such as the
capacity of the source and target databases, connection latency, and so on.). Also, your
replication instance can be stopped once your database migration is complete.

junn}
junn}

~
Transaction log Amazon DMS Target database
processing | replication instance

Source database

h-.
AN

Figure 11 — AWS Database Migration Service

AWS DMS currently SWPS‘%@@W%@@W@@W meehwwnized instance
he

classes for replication instances. burstable instance classes are low-cost standard
instances designed to provide a baseline level of CPU performance with the ability to
burst abovE e theelat eBtetechnicaledontanitpingfemtiouthe AMSsting your
database migration proceegﬁ%%la@\ﬁ épfé)glcél& pd@grb%%t@n tasks that can benefit

from the CPU burst capability. i
https://\éws.amazon.com/whltepapers
The .compute-optimized instance classes are designed to deliver the highest level of

processor performance and achieve significantly higher packet per second (PPS)
performance, lower network jitter, and lower network latency. You should use this
instance class if you are performing large heterogeneous migrations and want to

minimize the migration time.

The memory-optimized instance classes are designed for migrations or replications of
high-throughput transaction systems which can consume large amounts of CPU and
memory.

AWS DMS Storage is primarily consumed by log files and cached transactions.
Normally, doing a full load does not require a significant amount of instance storage on
your AWS DMS replication instance. However, if you are doing replication along with
your full load, then the changes to the source database are stored on the AWS DMS
replication instance while the full load is taking place. If you are migrating a very large

aws
35

Amazon Web Services Migrating Your Databases to Amazon Aurora

source database that is also receiving a lot of updates while the migration is in progress,
then a significant amount of instance storage could be consumed.

The instances come with 50 GB of instance storage but can be scaled up as
appropriate. Normally, this amount of storage should be more than adequate for most
migration scenarios. However, it's always a good idea to pay attention to storage-related
metrics. Make sure to scale up your storage if you find you are consuming more than
the default allocation.

Also, in some extreme cases where very large databases with very high transaction
rates are being migrated with replication enabled, it is possible that the AWS DMS
replication may not be able to catch up in time. If you encounter this situation, it may be
necessary to stop the changes to the source database for some number of minutes in
order for the replication to catch up before you repoint your application to the target
Aurora DB.

This paper has been archived

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

aws
36

Amazon

Web Services Migrating Your Databases to Amazon Aurora

Create replication instance

Replication instance configuration

Name
The name must be unigue among all of your replication instances in the current AWS region.

Tvpe a unigue name for y n instance ‘

IF rep

Replication instance name must not start with a numeric value

Descriptive Amazon Resource Mame (ARN) - optional
A friendly mame to gverride the default M5 ARM. You cannot modify it after creation.

Friendly-ARN-name ‘

Description

Tvpe a short description for your replication instance ‘

In

The description must only have unicode letters, digits, whitespace, or one of these symbeols: _:f=+-g@. 1000
maximum character.

stance class Info

Choose an appropriate instance class for your replication needs. Each instance class provides differing levels of
compute, network and memory capacity. DMS pricing [

dms.t3.medium
2vwPUs 4 GiB Memaory

D Include previous-generation instance classes

Engine version
Choose an AWS DMS version to run on your replication instance. DMS versions [

34.4 v

(P Include Beta DMS versions

Allocated storage (GiB) Info

Choose the amount of storage space you want for your replication instance. AWS DM5 uses this storage for
log files and cached transactions while replication tasks are in progress.

| 50 ¢ |
VPC
Choase an Amazon Virtual Private Clowd (VPC) where your replication instance should run.
Choose a VPC v ‘
Multi AZ

If you choose this option, AWS DMS will perform a multi-AZ deployment,
with a primary instance in one availability zone (AZ) and a standby instance
im another AZ. This configuration provides a highly available, fault-tolerant
replication environment. Billing is based on DMS pricing [

Publicly accessible

If you choose this option, AWS DMS will assign a public IP address to your
replication instance, and you'll be able to connect to databases outside of
your Amazon VPC

dws

fp —

37

Amazon Web Services Migrating Your Databases to Amazon Aurora

» Advanced security and network configuration

» Maintenance

» Tags

Cancel

Figure 12 — Create replication instance page in the AWS DMS console

Define database source and target endpoints

A database endpoint is used by the replication instance to connect to a database. To
perform a database migration, you must create both a source database endpoint and a
target database endpoint. The specified database endpoints can be on premises,
running on Amazon EC2, or running on Amazon RDS, but the source and target cannot

both be on premises. .)
P This paper has been archived
We highly recommended that you test your database endpoint connection after you
define it. The same page used to create g database endpojnt can alf]o b'%‘use to test it,
e

as explainé:(ﬂgtghﬁt Sé[;et.ec nical content, reterto t

\AMhitAanannarve Q. CiiidAc nAa~xA.

Note: If you have foreign key constraints in your source schema, when
creating your target endpoint you need to enter the following for Extra
connection attributes in the Advanced section:

initstmt=SET FOREIGN KEY CHECKS=0

This disables the foreign key checks while the target tables are being
loaded. This in turn prevents the load from being interrupted by failed
foreign key checks on partially loaded tables.

aws
38

Amazon Web Services

Migrating Your Databases to Amazon Aurora

Create endpoint

Endpoint type Info

O Source endpoint
A source endpoint allows AWS DMS to read data from a
database [on-premises or in the cloud), or from other data
source such as Amazon 53.

Target endpaoint
A target endpoint allows AWS DMS to write data to a
database, or to other data source.

Select RDS DB instance

Endpoint configuration

Endpoint identifier Info
A label for the endpoint to help you identify it

Descriptive Amazon Resource Mame (ARN) - optional

Source engine
The type of database engine this endpoint is connected to.

» Endpoint settings

A friendly name to owverride the default M5 ARN. You cannot modify it after creation.

*» KMS master key

» Tags

v

Test endpoint connection (optional)

Cancel

Figure 13 — Create database endpoint page in the AWS DMS console

aws

39

Amazon Web Services Migrating Your Databases to Amazon Aurora

Create and run a migration task

Now that you have created and tested your source database endpoint and your target
database endpoint, you can create a task to do the data migration. When you create a
task, you specify the replication instance that you have created, the database migration
method type (discussed earlier), the source database endpoint, and your target
database endpoint for your Amazon Aurora database cluster.

Also, under Task Settings, if you have already created the full schema in the target
database, then you should change the Target table preparation mode to Do nothing
rather than using the default value of Drop tables on target. The latter can cause you
to lose aspects of your schema definition like foreign key constraints when it drops and
recreates tables.

When creating a task, you can create table mappings that specify the source schema
along with the corresponding tables to be migrated to the target endpoint. The default
mapping method migrates all source tables to target tables of the same name if they
exist. Otherwise, it creates the source table(s) on the target (depending on your task
settings). Additionally, you can create custom mappings (using a JSON file) if you want
to migrate only certain tables or if you want to have more control over the field and table
mapping process. Yonﬂi&lﬂﬂP@ﬁd\G&ibﬁéﬂlaUmeda or all schemas

from your source endpoint.

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

aws
40

Amazon Web Services Migrating Your Databases to Amazon Aurora

Create database migration task

Task configuration

Task identifier

Descriptive Amazon Resource Name (ARN) - optional
A friendly name to override the default DMS ARN. You cannot modify it after creation.

Replication instance

v
Source database endpoint
v
Target database endpoint
v
Migration type Info
Migrate existing data v

For the latest technical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

dWs

41

Amazon Web Services Migrating Your Databases to Amazon Aurora

Task settings

Editing mode Info

O wizard JSON editor
You can enter only a subset of the available task settings. You can enter all available task settings directly in JSON format.

Target table preparation mode Info
Do nothing

© Drop tables on target
Truncate

Include LOB columns in replication Info
Don't include LOB columns
Full LOB mode

O Limited LOB mode

Maximum LOB size (KB) Info
32

Enable validation

Choose this setting if you want AWS DMS to compare the data at the source and the target, immediately
after it performs a full data load. Validation ensures that your data was migrated accurately, but it
requires additional time to complete.

Enable CloudWatch logs Info
DMS task logging uses Amazon CloudWatch to log information during the migration process. You can
change the component activities logged and the amount of information logged for each one.

» Advanced task settings

Premigration assessment info

A premigration assessment warns you of potential migration issues before starting your migration task. Premigration assessments generally have
minimal impact on your databases and take minimal time to run.

Enable premigration assessment run

Migration task startup configuration

Start migration task

O Automatically on create
Available only if the premigration assessment is not enabled.

Manually later

» Tags

Cancel

Figure 14 — Create task page in the AWS DMS console

aws

Amazon Web Services Migrating Your Databases to Amazon Aurora

You can use the AWS Management Console to monitor the progress of your AWS
Database Migration Service (AWS DMS) tasks. You can also monitor the resources and
network connectivity used. The AWS DMS console shows basic statistics for each task,
including the task status, percent complete, elapsed time, and table statistics, as the
following image shows.

Additionally, you can select a task and display performance metrics for that task,
including throughput, records per second migrated, disk and memory use, and latency.

D Status Source Target Type Complete % Elapsed time Tables loaded Tables loading Tables queued

migrate-rdsmysql-to-rdsauro Load complete rds-mysqk-test- aur-trg-02 Full Load . 00 Oom 10 0 0

Figure 15 — Task status in AWS DMS console

Once the schema and data have been successfully migrated from the source database
to Amazon Aurora, yoil'hsnpapely h&&fbﬁ@lﬂiﬂfﬂhlﬁﬁﬁb of your migration
process. The testing approach should be refined after each test migration, and the final

migration plan should include a test plan that ensures adequate testwg of the migrated
database. FOTr the latest technical content, refer to the AWS

Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

dWs

43

Amazon Web Services Migrating Your Databases to Amazon Aurora

Migration testing

Table 2 — Migration testing

Test Category Purpose
Basic acceptance These pre-cutover tests should be automatically run upon
tests completion of the data migration process. Their primary

purpose is to verify whether the data migration was
successful. Following are some common outputs from these
tests:

* Total number of items processed
* Total number of items imported

* Total number of items skipped

* Total number of warnings

* Total number of errors

If any of these totals reported by the tests deviate from the
expected values, then it means the migration was not
successful, and the issues need to be resolved before moving

This papertrasbeermardhivedund of testing.
Functional tests These post -cutover tests exercise the functionality of the
Ilcat ing Aurora fpr dat storage, [hey ea
For the latesE skl RORERE Fefel ThrATS,
Whitkepd pe fo'&oGiide s [pageetify problems in the

3Pipllcatlon caused by the mlgrailon the data to Aurora.

Nonfunctional tests These post-cutover tests assess the nonfunctional
characteristics of the application, such as performance under
varying levels of load.

User acceptance tests These post-cutover tests should be run by the end users of
the application once the final data migration and cutover is
complete. The purpose of these tests is for the end users to
decide if the application is sufficiently usable to meet its
primary function in the organization.

Cutover

Once you have completed the final migration and testing, it is time to point your
application to the Amazon Aurora database. This phase of migration is known as

dWs

44

Amazon Web Services Migrating Your Databases to Amazon Aurora

cutover. If the planning and testing phase has been run properly, cutover should not
lead to unexpected issues.

Pre-cutover actions

Choose a cutover window — Identify a block of time when you can accomplish
cutover to the new database with minimum disruption to the business. Normally
you would select a low activity period for the database (typically nights and/or
weekends).

Make sure changes are caught up — If a near-zero downtime migration
approach was used to replicate database changes from the source to the target
database, make sure that all database changes are caught up and your target
database is not significantly lagging behind the source database.

Prepare scripts to make the application configuration changes'— In order to
accomplish the cutover, you need to modify database connection details in your
application configuration files. Large and complex applications may require
updates to connection details in multiple places. Make sure you have the
necessary scripts ready to update the connection configuration quickly and

reliably. This paper has been archived

Stop the application — Stop the application processes on the source database

andipy R B AT TR i O HTBRE SRTEE Y IS AYNPS can be

made to the source dEH tabase. If the source database changes aren’t fully caught

up with the target MEHASDARELS ShaYIdes Ragese changes are fully
propagatedii¢tthss tdbeidetaimrezon.com/whitepapers

Run pre-cutover tests — Run automated pre-cutover tests to make sure that
the data migration was successful.

Cutover

dWs

Run cutover — If pre-cutover checks were completed successfully, you can now
point your application to Amazon Aurora. Run scripts created in the pre-cutover
phase to change the application configuration to point to the new Aurora
database.

Start your application — At this point, you may start your application. If you
have an ability to stop users from accessing the application while the application
IS running, exercise that option until you have run your post-cutover checks.

45

Amazon Web Services Migrating Your Databases to Amazon Aurora

Post-cutover checks

e Run post-cutover tests — Run predefined automated or manual test cases to
make sure your application works as expected with the new database. It's a good
strategy to start testing read-only functionality of the database first before running
tests that write to the database.

e Enable user access and closely monitor — If your test cases were run
successfully, you may give user access to the application to complete the
migration process. Both application and database should be closely monitored at
this time.

Amazon Aurora is a high performance, highly available, and enterprise-grade database
built for the cloud. Leveraging Amazon Aurora can result in better performance and
greater availability than other open-source databases and lower costs than most
commercial grade databases. This paper proposes strategies for identifying the best
method to migrate databases to Amazon Aurora and details the procedures for planning

and completing thosem gtl WH%%D&?&WEI%O” Service (AWS
a

DMS) as well as the AWS Sc enla Conversion Tool are the recommended tools for
heterogeneous migration scenarios. These powerful tools can greatly reduce the cost

and compl@xiy thetkpbestrtaetmical content, refer to the AWS
Whitepapers & Guides page:
https://aws.amazon.com/whitepapers
Contributors to this document.include:
e Puneet Agarwal, Solutions Architect, Amazon Web Services

e Chetan Nandikanti, Database Specialist Solutions Architect, Amazon Web
Services

e Scott Williams, Solutions Architect, Amazon Web Services Jonathan Doe,
Solutions Architect, Amazon Web Services

For additional information, see:

¢ Amazon Aurora Product Details

dWs

46

https://aws.amazon.com/rds/aurora/

Amazon Web Services Migrating Your Databases to Amazon Aurora

e Amazon Aurora FAOs

¢ AWS Database Migration Service

e AWS Database Migration Service FAQs

Date Description

July 28,2021 Reviewed for technical accuracy

June 10, 2016 First publication

This paper has been archived
For the latest technical content, refer to the AWS

Whitepapers & Guides page:
https://aws.amazon.com/whitepapers

dWs

47

http://aws.amazon.com/rds/aurora/faqs/
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/faqs/

	Introduction to Amazon Aurora
	Database migration considerations
	Migration phases
	Application considerations
	Evaluate Aurora features
	Performance considerations

	Sharding and read replica considerations
	Reliability considerations
	Cost and licensing considerations
	Other migration considerations
	Estimate code change effort
	Application availability during migration
	Modify connection string during migration

	Planning your database migration process
	Homogeneous migration
	Homogeneous migration with downtime
	Homogeneous migration with near-zero downtime

	Heterogeneous migration
	Schema migration
	Data migration

	Migrating large databases to Amazon Aurora
	Partition and shard consolidation on Amazon Aurora
	Migration options at a glance

	RDS snapshot migration
	Estimating space requirements for snapshot migration
	Migrating a DB snapshot using the console

	Migration using Aurora Read Replica
	Create a read replica using the Console

	Migrating the database schema
	Homogeneous schema migration
	Heterogeneous schema migration
	Schema migration using the AWS Schema Conversion Tool

	Migrating data
	Introduction and general approach to AWS DMS
	Migration methods
	Migration procedure
	Create target database
	Copy schema
	Create an AWS DMS replication instance
	Define database source and target endpoints
	Create and run a migration task

	Testing and cutover
	Migration testing
	Cutover
	Pre-cutover actions
	Cutover
	Post-cutover checks

	Conclusion
	Contributors
	Further reading
	Document history

