
This
 paper

 has been
 archived

For the latest technical content, refer t o the HTML version:

https://docs.aws.amazon.com/whitepapers/latest/
migrating-databases-to-amazon-aurora/migrating-

databases-to-amazon-aurora.html

Migrating Your Databases to
Amazon Aurora

First Published June 10, 2016

Updated July 28, 2021

https://docs.aws.amazon.com/whitepapers/latest/migrating-databases-to-amazon-aurora/migrating-databases-to-amazon-aurora.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Contents

Introduction to Amazon Aurora ... 1

Database migration considerations... 3

Migration phases .. 3

Application considerations ... 3

Sharding and read replica considerations ... 4

Reliability considerations ... 5

Cost and licensing considerations ... 6

Other migration considerations .. 6

Planning your database migration process .. 7

Homogeneous migration .. 7

Heterogeneous migration ... 9

Migrating large databases to Amazon Aurora ... 10

Partition and shard consolidation on Amazon Aurora ... 11

Migration options at a glance ... 12

RDS snapshot migration ... 13

Migration using Aurora Read Replica ... 18

Migrating the database schema .. 21

Homogeneous schema migration .. 22

Heterogeneous schema migration ... 23

Schema migration using the AWS Schema Conversion Tool 24

Migrating data .. 32

Introduction and general approach to AWS DMS ... 32

Migration methods .. 33

Migration procedure ... 34

Testing and cutover ... 43

Migration testing ... 44

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Cutover ... 44

Conclusion ... 46

Contributors ... 46

Further reading .. 46

Document history ... 47

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Abstract

Amazon Aurora is a MySQL and PostgreSQL-compatible, enterprise grade relational

database engine. Amazon Aurora is a cloud-native database that overcomes many of

the limitations of traditional relational database engines. The goal of this whitepaper is

to highlight best practices of migrating your existing databases to Amazon Aurora. It

presents migration considerations and the step-by-step process of migrating open-

source and commercial databases to Amazon Aurora with minimum disruption to the

applications.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 1

Introduction to Amazon Aurora

For decades, traditional relational databases have been the primary choice for data

storage and persistence. These database systems continue to rely on monolithic

architectures and were not designed to take advantage of cloud infrastructure. These

monolithic architectures present many challenges, particularly in areas such as cost,

flexibility, and availability. In order to address these challenges, AWS redesigned

relational database for the cloud infrastructure and introduced Amazon Aurora.

Amazon Aurora is a MySQL and PostgreSQL-compatible relational database engine

that combines the speed, availability, and security of high-end commercial databases

with the simplicity and cost-effectiveness of open-source databases. Aurora provides up

to five times better performance than MySQL, three times better performance than

PostgreSQL and comparable performance of high-end commercial databases. Amazon

Aurora is priced at 1/10th the cost of commercial engines.

Amazon Aurora is available through the Amazon Relational Database Service (Amazon

RDS) platform. Like other Amazon RDS databases, Aurora is a fully managed database

service. With the Amazon RDS platform, most database management tasks such as

hardware provisioning, software patching, setup, configuration, monitoring, and backup

are completely automated.

Amazon Aurora is built for mission-critical workloads and is highly available by default.

An Aurora database cluster spans multiple Availability Zones in a Region, providing out-

of-the-box durability and fault tolerance to your data across physical data centers. An

Availability Zone is composed of one or more highly available data centers operated by

Amazon. Availability Zones are isolated from each other and are connected through

low-latency links. Each segment of your database volume is replicated six times across

these Availability Zones.

Amazon Aurora enables dynamic resizing for database storage space. Aurora cluster

volumes automatically grow as the amount of data in your database increases with no

performance or availability impact—so there is no need for estimating and provisioning

large amount of database storage ahead of time. The storage space allocated to your

Amazon Aurora database cluster will automatically increase up to a maximum size of

128 tebibytes (TiB) and will automatically decrease when data is deleted.

Aurora's automated backup capability supports point-in-time recovery of your data,

enabling you to restore your database to any second during your retention period, up to

the last five minutes. Automated backups are stored in Amazon Simple Storage Service

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 2

(Amazon S3), which is designed for 99.999999999% durability. Amazon Aurora

backups are automatic, incremental, and continuous and have no impact on database

performance.

For applications that need read-only replicas, you can create up to 15 Aurora Replicas
per Aurora database with very low replica lag. These replicas share the same
underlying storage as the source instance, lowering costs and avoiding the need to
perform writes at the replica nodes. Optionally, Aurora Global Database can be used for
high read throughputs across six Regions up to 90 read replicas.

Amazon Aurora is highly secure and allows you to encrypt your databases using keys

that you create and control through AWS Key Management Service (AWS KMS). On a

database instance running with Amazon Aurora encryption, data stored at rest in the

underlying storage is encrypted, as are the automated backups, snapshots, and replicas

in the same cluster. Amazon Aurora uses SSL (AES-256) to secure data in transit.

For a complete list of Aurora features, see the Amazon Aurora product page. Given the

rich feature set and cost effectiveness of Amazon Aurora, it is increasingly viewed as

the go-to database for mission-critical applications.

Amazon Aurora Serverless v2 (Preview) is the new version of Aurora Serverless, an on-

demand, automatic scaling configuration of Amazon Aurora that automatically starts up,

shuts down, and scales capacity up or down based on your application's needs. It

scales instantly from hundreds to hundreds-of-thousands of transactions in a fraction of

a second. As it scales, it adjusts capacity in fine-grained increments to provide just the

right amount of database resources that the application needs. There is no database

capacity for you to manage, you pay only for the capacity your application consumes,

and you can save up to 90% of your database cost compared to the cost of provisioning

capacity for peak.

Aurora Serverless v2 is a simple and cost-effective option for any customer who cannot

easily allocate capacity because they have variable and infrequent workloads or have a

large number of databases. If you can predict your application’s requirements and

prefer the cost certainty of fixed-size instances, then you may want to continue using

fixed-size instances.

Amazon Aurora capabilities discussed in this whitepaper apply to both MySQL and

PostgreSQL database engines, unless otherwise specified. However, the migration

practices discussed in this paper are specific to Aurora MySQL database engine. For

more information about Aurora best practices specific to PostgreSQL database engine,

see Working with Amazon Aurora PostgreSQL in the Amazon Aurora user guide.

https://aws.amazon.com/rds/aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 3

Database migration considerations

A database represents a critical component in the architecture of most applications.

Migrating the database to a new platform is a significant event in an application’s

lifecycle and may have an impact on application functionality, performance, and

reliability. You should take a few important considerations into account before

embarking on your first migration project to Amazon Aurora.

Migration phases

Because database migrations tend to be complex, we advocate taking a phased,

iterative approach.

Figure 1 — Migration phases

Application considerations

Evaluate Aurora features

Although most applications can be architected to work with many relational database

engines, you should make sure that your application works with Amazon Aurora.

Amazon Aurora is designed to be wire-compatible with MySQL 5.6 and 5.7. Therefore,

most of the code, applications, drivers, and tools that are used today with MySQL

databases can be used with Aurora with little or no change.

However, certain MySQL features, like the MyISAM storage engine, are not available

with Amazon Aurora. Also, due to the managed nature of the Aurora service, SSH

access to database nodes is restricted, which may affect your ability to install third-party

tools or plugins on the database host.

Performance considerations

Database performance is a key consideration when migrating a database to a new

platform. Therefore, many successful database migration projects start with

performance evaluations of the new database platform. Although the Amazon Aurora

Performance Assessment paper gives you a decent idea of overall database

performance, these benchmarks do not emulate the data access patterns of your

https://d1.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf
https://d1.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 4

applications. For more useful results, test the database performance for time-sensitive

workloads by running your queries (or subset of your queries) on the new platform

directly.

Consider these strategies:

• If your current database is MySQL, migrate to Amazon Aurora with downtime and

performance test your database with a test or staging version of your application

or by replaying the production workload.

• If you are on a non-MySQL-compliant engine, you can selectively copy the

busiest tables to Amazon Aurora and test your queries for those tables. This

gives you a good starting point. Of course, testing after complete data migration

will provide a full picture of real-world performance of your application on the new

platform.

Amazon Aurora delivers comparable performance with commercial engines and

significant improvement over MySQL performance. It does this by tightly integrating the

database engine with an SSD-based virtualized storage layer designed for database

workloads. This reduces writes to the storage system, minimizes lock contention, and

eliminates delays created by database process threads.

Our tests with SysBench on r5.16xlarge instances show that Amazon Aurora delivers

close to 800,000 reads per second and 200,000 writes per second, five times higher

than MySQL running the same benchmark on the same hardware.

One area where Amazon Aurora significantly improves upon traditional MySQL is highly

concurrent workloads. In order to maximize your workload’s throughput on Amazon

Aurora, we recommend architecting your applications to drive a large number of

concurrent queries.

Sharding and read replica considerations

If your current database is sharded across multiple nodes, you may have an opportunity

to combine these shards into a single Aurora database during migration. A single

Amazon Aurora instance can scale up to 128 TB, supports thousands of tables, and

supports a significantly higher number of reads and writes than a standard MySQL

database.

If your application is read/write heavy, consider using Aurora read replicas for offloading

read-only workload from the primary database node. Doing this can improve

concurrency of your primary database for writes and will improve overall read and write

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 5

performance. Using read replicas can also lower your costs in a Multi-AZ configuration

since you may be able to use smaller instances for your primary instance while adding

failover capabilities in your database cluster. Aurora read replicas offer near-zero

replication lag and you can create up to 15 read replicas.

Reliability considerations

An important consideration with databases is high availability and disaster recovery.

Determine the RTO (recovery time objective) and RPO (recovery point objective)

requirements of your application. With Amazon Aurora, you can significantly improve

both these factors.

Amazon Aurora reduces database restart times to less than 60 seconds in most

database crash scenarios. Aurora also moves the buffer cache out of the database

process and makes it available immediately at restart time. In rare scenarios of

hardware and Availability Zone failures, recovery is automatically handled by the

database platform.

Aurora is designed to provide you zero RPO recovery within an AWS Region, which is a

major improvement over on-premises database systems. Aurora maintains six copies of

your data across three Availability Zones and automatically attempts to recover your

database in a healthy AZ with no data loss. In the unlikely event that your data is

unavailable within Amazon Aurora storage, you can restore from a DB snapshot or

perform a point-in-time restore operation to a new instance.

For cross-Region DR, Amazon Aurora also offers a global database feature, designed

for globally distributed transactions applications, allowing a single Amazon Aurora

database to span multiple AWS Regions. Aurora uses storage-based replication to

replicate your data to other Regions with typical latency of less than one second and

without impacting database performance. This enables fast local reads with low latency

in each Region, and provides disaster recovery from Region-wide outages. You can

promote the secondary AWS Region for read-write workloads in case of an outage or

disaster in less than one minute.

You also have the option to create an Aurora Read Replica of an Aurora MySQL DB

cluster in a different AWS Region, by using MySQL binary log (binlog) replication.

Each cluster can have up to five Read Replicas created this way, each in a different

Region.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 6

Cost and licensing considerations

Owning and running databases come with associated costs. Before planning a

database migration, an analysis of the total cost of ownership (TCO) of the new

database platform is imperative. Migration to a new database platform should ideally

lower the total cost of ownership while providing your applications with similar or better

features. If you are running an open-source database engine (MySQL, Postgres), your

costs are largely related to hardware, server management, and database management

activities. However, if you are running a commercial database engine (Oracle, SQL

Server, DB2, and so on), a significant portion of your cost is database licensing.

Since Aurora is available at one-tenth of the cost of commercial engines, many

applications moving to Aurora are able to significantly reduce their TCO. Even if you are

running on an open-source engine like MySQL or Postgres, with Aurora’s high

performance and dual purpose read replicas, you can realize meaningful savings by

moving to Amazon Aurora. See the Amazon Aurora Pricing page for more information.

Other migration considerations

Once you have considered application suitability, performance, TCO, and reliability

factors, you should think about what it would take to migrate to the new platform.

Estimate code change effort

It is important to estimate the amount of code and schema changes that you need to

perform while migrating your database to Amazon Aurora. When migrating from

MySQL-compatible databases, negligible code changes are required. However, when

migrating from non-MySQL engines, you may be required to make schema and code

changes. The AWS Schema Conversion Tool can help to estimate that effort (see the

Schema migration using the AWS Schema Conversion Tool section in this document).

Application availability during migration

You have options of migrating to Amazon Aurora by taking a predictable downtime

approach with your application or by taking a near-zero downtime approach. The

approach you choose depends on the size of your database and the availability

requirements of your applications. Whatever the case, it’s a good idea to consider the

impact of the migration process on your application and business before starting with a

database migration. The next few sections explain both approaches in detail.

http://aws.amazon.com/rds/aurora/pricing/

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 7

Modify connection string during migration

You need a way to point the applications to your new database. One option is to modify

the connection strings for all of the applications. Another common option is to use DNS.

In this case, you don’t use the actual host name of your database instance in your

connection string. Instead, consider creating a canonical name (CNAME) record that

points to the host name of your database instance. Doing this allows you to change the

endpoint to which your application points in a single location rather than tracking and

modifying multiple connection string settings. If you choose to use this pattern, be sure

to pay close attention to the time to live (TTL) setting for your CNAME record. If this

value is set too high, then the host name pointed to by this CNAME might be cached

longer than desired. If this value is set too low, additional overhead might be placed on

your client applications by having to resolve this CNAME repeatedly. Though use cases

differ, a TTL of 5 seconds is usually a good place to start.

Planning your database migration process

The previous section discussed some of the key considerations to take into account

while migrating databases to Amazon Aurora. Once you have determined that Aurora is

the right fit for your application, the next step is to decide on a preliminary migration

approach and create a database migration plan.

Homogeneous migration

If your source database is a MySQL 5.6 or 5.7 compliant database (MySQL, MariaDB,

Percona, and so on.), then migration to Aurora is quite straightforward.

Homogeneous migration with downtime

If your application can accommodate a predictable length of downtime during off-peak

hours, migration with the downtime is the simplest option and is a highly recommended

approach. Most database migration projects fall into this category as most applications

already have a well-defined maintenance window. You have the following options to

migrate your database with downtime.

• RDS snapshot migration − If your source database is running on Amazon RDS

MySQL 5.6 or 5.7, you can simply migrate a snapshot of that database to

Amazon Aurora. For migrations with downtime, you either have to stop your

application or stop writing to the database while snapshot and migration is in

progress. The time to migrate primarily depends upon the size of the database

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values-basic.html#rrsets-values-basic-ttl

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 8

and can be determined ahead of the production migration by running a test

migration. Snapshot migration option is explained in the RDS Snapshot Migration

section.

• Migration using native MySQL tools — You may use native MySQL tools to

migrate your data and schema to Aurora. This is a great option when you need

more control over the database migration process, you are more comfortable

using native MySQL tools, and other migration methods are not performing as

well for your use case. You can create a dump of your data using

the mysqldump utility, and then import that data into an existing Amazon Aurora

MySQL DB cluster. For more information, see Migrating from MySQL to Amazon

Aurora by using mysqldump. You can copy the full and incremental backup files

from your database to an Amazon S3 bucket, and then restore an Amazon

Aurora MySQL DB cluster from those files. This option can be considerably faster

than migrating data using mysqldump. For more information, see Migrating data

from MySQL by using an Amazon S3 bucket.

• Migration using AWS Database Migration Service (AWS DMS) — One-time

migration using AWS DMS is another tool for moving your source database to

Amazon Aurora. Before you can use AWS DMS to move the data, you need to

copy the database schema from source to target using native MySQL tools. For

the step-by-step process, see the Migrating Data section. Using AWS DMS is a

great option when you don’t have experience using native MySQL tools.

Homogeneous migration with near-zero downtime

In some scenarios you might want to migrate your database to Aurora with minimal

downtime. Here are two examples:

• When your database is relatively large and the migration time using downtime

options is longer than your application maintenance window

• When you want to run source and target databases in parallel for testing

purposes

In such cases, you can replicate changes from your source MySQL database to Aurora

in real time using replication. You have a couple of options to choose from:

• Near-zero downtime migration using MySQL binlog replication — Amazon

Aurora supports traditional MySQL binlog replication. If you are running MySQL

database, chances are that you are already familiar with classic binlog replication

setup. If that’s the case, and you want more control over the migration process,

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.S3
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.S3

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 9

one-time database load using native tools coupled with binlog replication gives

you a familiar migration path to Aurora.

• Near-zero downtime migration using AWS Database Migration Service

(AWS DMS) — In addition to supporting one-time migration, AWS DMS also

supports real-time data replication using change data capture (CDC) from source

to target. AWS DMS takes care of the complexities related to initial data copy,

setting up replication instances, and monitoring replication. After the initial

database migration is complete, the target database remains synchronized with

the source for as long as you choose. If you are not familiar with binlog

replication, AWS DMS is the next best option for homogenous, near-zero

downtime migrations to Amazon Aurora. See the section Introduction and

General Approach to AWS DMS.

• Near-zero downtime migration using Aurora Read Replica — If your source

database is running on Amazon RDS MySQL 5.6 or 5.7, you can migrate from a

MySQL DB instance to an Aurora MySQL DB cluster by creating an Aurora read

replica of your source MySQL DB instance. When the replica lag between the

MySQL DB instance and the Aurora Read Replica is zero, you can direct your

client applications to the Aurora read replica. This migration option is explained in

the Migrate using Aurora Read Replica section.

Heterogeneous migration

If you are looking to migrate a non-MySQL-compliant database (Oracle, SQL Server,

PostgresSQL, and so on) to Amazon Aurora, several options can help you accomplish

this migration quickly and easily.

Schema migration

Schema migration from a non-MySQL-compliant database to Amazon Aurora can be

achieved using the AWS Schema Conversion Tool. This tool is a desktop application

that helps you convert your database schema from an Oracle, Microsoft SQL Server, or

PostgreSQL database to an Amazon RDS MySQL DB instance or an Amazon Aurora

DB cluster. In cases where the schema from your source database cannot be

automatically and completely converted, the AWS Schema Conversion Tool provides

guidance on how you can create the equivalent schema in your target Amazon RDS

database. For details, see the Migrating the Database Schema section.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 10

Data migration

While supporting homogenous migrations with near-zero downtime, AWS Database

Migration Service (AWS DMS) also supports continuous replication across

heterogeneous databases and is a preferred option to move your source database to

your target database, for both migrations with downtime and migrations with near-zero

downtime. Once the migration has started, AWS DMS manages all the complexities of

the migration process like data type transformation, compression, and parallel transfer

(for faster data transfer) while ensuring that data changes to the source database that

occur during the migration process are automatically replicated to the target.

Besides using AWS DMS, you can use various third-party tools like Attunity Replicate,

Tungsten Replicator, Oracle Golden Gate, etc. to migrate your data to Amazon Aurora.

Whatever tool you choose, take performance and licensing costs into consideration

before finalizing your toolset for migration.

Migrating large databases to Amazon Aurora

Migration of large datasets presents unique challenges in every database migration

project. Many successful large database migration projects use a combination of the

following strategies:

• Migration with continuous replication — Large databases typically have

extended downtime requirements while moving data from source to target. To

reduce the downtime, you can first load baseline data from source to target and

then enable replication (using MySQL native tools, AWS DMS, or third-party

tools) for changes to catch up.

• Copy static tables first — If your database relies on large static tables with

reference data, you may migrate these large tables to the target database before

migrating your active dataset. You can leverage AWS DMS to copy tables

selectively or export and import these tables manually.

• Multiphase migration — Migration of large database with thousands of tables

can be broken down into multiple phases. For example, you may move a set of

tables with no cross joins queries every weekend until the source database is

fully migrated to the target database. Note that in order to achieve this, you need

to make changes in your application to connect to two databases simultaneously

while your dataset is on two distinct nodes. Although this is not a common

migration pattern, this is an option nonetheless.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 11

• Database cleanup — Many large databases contain data and tables that remain

unused. In many cases, developers and DBAs keep backup copies of tables in

the same database, or they just simply forget to drop unused tables. Whatever

the reason, a database migration project provides an opportunity to clean up the

existing database before the migration. If some tables are not being used, you

might either drop them or archive them to another database. You might also

delete old data from large tables or archive that data to flat files.

Partition and shard consolidation on Amazon Aurora

If you are running multiple shards or functional partitions of your database to achieve

high performance, you have an opportunity to consolidate these partitions or shards on

a single Aurora database. A single Amazon Aurora instance can scale up to 128 TB,

supports thousands of tables, and supports a significantly higher number of reads and

writes than a standard MySQL database. Consolidating these partitions on a single

Aurora instance not only reduces the total cost of ownership and simplify database

management, but it also significantly improves performance of cross-partition queries.

• Functional partitions — Functional partitioning means dedicating different

nodes to different tasks. For example, in an ecommerce application, you might

have one database node serving product catalog data, and another database

node capturing and processing orders. As a result, these partitions usually have

distinct, nonoverlapping schemas.

• Consolidation strategy — Migrate each functional partition as a distinct schema

to your target Aurora instance. If your source database is MySQL compliant, use

native MySQL tools to migrate the schema and then use AWS DMS to migrate

the data, either one time or continuously using replication. If your source

database is non-MySQL complaint, use AWS Schema Conversion Tool to

migrate the schemas to Aurora and use AWS DMS for one-time load or

continuous replication.

• Data shards — If you have the same schema with distinct sets of data across

multiple nodes, you are leveraging database sharding. For example, a high-traffic

blogging service may shard user activity and data across multiple database

shards while keeping the same table schema.

• Consolidation strategy — Since all shards share the same database schema,

you only need to create the target schema once. If you are using a MySQL-

compliant database, use native tools to migrate the database schema to Aurora.

If you are using a non-MySQL database, use AWS Schema Conversion Tool to

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 12

migrate the database schema to Aurora. Once the database schema has been

migrated, it is best to stop writes to the database shards and use native tools or

an AWS DMS one-time data load to migrate an individual shard to Aurora. If

writes to the application cannot be stopped for an extended period, you might still

use AWS DMS with replication but only after proper planning and testing.

Migration options at a glance

Table 1 — Migration options

Source database

type Migration with downtime

Near-zero downtime

migration

Amazon RDS

MySQL

Option 1: RDS snapshot

migration

Option 2: Manual migration

using native tools*

Option 3: Schema migration

using native tools and data

load using AWS DMS

Option 1: Migration using native

tools + binlog replication

Option 2: Migrate using Aurora

Read Replica

Option 3: Schema migration

using native tools + AWS DMS

for data movement

MySQL Amazon

EC2 or on-

premises

Option 1: Migration using

native tools

Option 2: Schema migration

with native tools + AWS DMS

for data load

Option 1: Migration using native

tools + binlog replication

Option 2: Schema migration

using native tools + AWS DMS

to move data

Oracle/SQL server Option 1: AWS Schema

Conversion Tool + AWS DMS

(recommended)

Option 2: Manual or third-

party tool for schema

conversion + manual or third-

party data load in target

Option 1: AWS Schema

Conversion Tool + AWS DMS

(recommended)

Option 2: Manual or third-party

tool for schema conversion +

manual or third-party data load

in target + third-party tool for

replication.

Other non-MySQL

databases

Option: Manual or third-party

tool for schema conversion +

manual or third-party data

load in target

Option: Manual or third-party

tool for schema conversion +

manual or third-party data load

in target + third-party tool for

replication (GoldenGate, etc.)

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 13

*MySQL Native tools: mysqldump, SELECT INTO OUTFILE, third-party tools like

mydumper/myloader

RDS snapshot migration

To use RDS snapshot migration to move to Aurora, your MySQL database must be

running on Amazon RDS MySQL 5.6 or 5.7, and you must make an RDS snapshot of

the database. This migration method does not work with on-premises databases or

databases running on Amazon Elastic Compute Cloud (Amazon EC2). Also, if you are

running your Amazon RDS MySQL database on a version earlier than 5.6, you would

need to upgrade it to 5.6 as a prerequisite.

The biggest advantage to this migration method is that it is the simplest and requires the

fewest number of steps. In particular, it migrates over all schema objects, secondary

indexes, and stored procedures along with all of the database data.

During snapshot migration without binlog replication, your source database must either

be offline or in a read-only mode (so that no changes are being made to the source

database during migration). To estimate downtime, you can simply use the existing

snapshot of your database to do a test migration. If the migration time fits within your

downtime requirements, then this may be the best method for you. Note that in some

cases, migration using AWS DMS or native migration tools can be faster than using

snapshot migration.

If you can’t tolerate extended downtime, you can achieve near-zero downtime by

creating an Aurora Read Replica from a source RDS MySQL. This migration option is

explained in Migrating using Aurora Read Replica section in this document.

You can migrate either a manual or an automated DB snapshot. The general steps you

must take are as follows:

1. Determine the amount of space that is required to migrate your Amazon RDS
MySQL instance to an Aurora DB cluster. For more information, see the next
section.

2. Use the Amazon RDS console to create the snapshot in the Region where the
Amazon RDS MySQL instance is located.

3. Use the Migrate Database feature on the console to create an Amazon Aurora
DB cluster that will be populated using the DB snapshot from the original DB
instance of MySQL.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 14

Note: Some MyISAM tables might not convert without errors and may
require manual changes. For instance, the InnoDB engine does not permit
an autoincrement field to be part of a composite key. Also, spatial indexes
are not currently supported.

Estimating space requirements for snapshot migration

When you migrate a snapshot of a MySQL DB instance to an Aurora DB cluster, Aurora

uses an Amazon Elastic Block Store (Amazon EBS) volume to format the data from the

snapshot before migrating it. There are some cases where additional space is needed

to format the data for migration. The two features that can potentially cause space

issues during migration are MyISAM tables and using the ROW_FORMAT=COMPRESSED

option. If you are not using either of these features in your source database, then you

can skip this section because you should not have space issues. During migration,

MyISAM tables are converted to InnoDB and any compressed tables are

uncompressed. Consequently, there must be adequate room for the additional copies of

any such tables.

The size of the migration volume is based on the allocated size of the source MySQL

database that the snapshot was made from. Therefore, if you have MyISAM or

compressed tables that make up a small percentage of the overall database size and

there is available space in the original database, then migration should succeed without

encountering any space issues. However, if the original database would not have

enough room to store a copy of converted MyISAM tables as well as another

(uncompressed) copy of compressed tables, then the migration volume will not be big

enough. In this situation, you would need to modify the source Amazon RDS MySQL

database to increase the database size allocation to make room for the additional

copies of these tables, take a new snapshot of the database, and then migrate the new

snapshot.

When migrating data into your DB cluster, observe the following guidelines and

limitations:

• Although Amazon Aurora supports up to 128 TB of storage, the process of

migrating a snapshot into an Aurora DB cluster is limited by the size of the

Amazon EBS volume of the snapshot, and therefore is limited to a maximum size

of 16 TB.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 15

• Non-MyISAM tables in the source database can be up to 16 TB in size. However,

due to additional space requirements during conversion, make sure that none of

the MyISAM and compressed tables being migrated from your MySQL DB

instance exceed 8 TB in size.

You might want to modify your database schema (convert MyISAM tables to InnoDB

and remove ROW_FORMAT=COMPRESSED) prior to migrating it into Amazon Aurora. This

can be helpful in the following cases:

• You want to speed up the migration process.

• You are unsure of how much space you need to provision.

• You have attempted to migrate your data and the migration has failed due to a

lack of provisioned space.

Make sure that you are not making these changes in your production Amazon RDS

MySQL database but rather on a database instance that was restored from your

production snapshot. For more details on doing this, see Reducing the Amount of

Space Required to Migrate Data into Amazon Aurora in the Amazon Relational

Database Service User Guide.

Migrating a DB snapshot using the console

You can migrate a DB snapshot of an Amazon RDS MySQL DB instance to create an

Aurora DB cluster. The new DB cluster is populated with the data from the original

Amazon RDS MySQL DB instance. The DB snapshot must have been made from an

RDS DB instance running MySQL 5.6 or 5.7. For information about creating a DB

snapshot, see Creating a DB snapshot in the Amazon RDS User Guide.

If the DB snapshot is not in the Region where you want to locate your Aurora DB

cluster, use the Amazon RDS console to copy the DB snapshot to that Region. For

information about copying a DB snapshot, see Copying a snapshot in Amazon RDS

User Guide.

To migrate a MySQL DB snapshot by using the console, do the following:

1. Sign in to the AWS Management Console and open the Amazon RDS console
(sign in required).

2. Choose Snapshots.

3. On the Snapshots page, choose the Amazon RDS MySQL snapshot that you
want to migrate into an Aurora DB cluster.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://console.aws.amazon.com/rds/

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 16

4. Choose Migrate Database.

5. On the Migrate Database page, specify the values that match your environment
and processing requirements as shown in the following illustration. For
descriptions of these options, see Migrating an RDS for MySQL snapshot to
Aurora in the Amazon RDS User Guide.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 17

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 18

Figure 2 — Snapshot migration

6. Choose Migrate to migrate your DB snapshot.

In the list of instances, choose the appropriate arrow icon to show the DB cluster details

and monitor the progress of the migration. This details panel displays the cluster

endpoint used to connect to the primary instance of the DB cluster. For more

information on connecting to an Amazon Aurora DB cluster, see Connecting to an

Amazon Aurora DB Cluster in the Amazon Relational Database Service User Guide.

Migration using Aurora Read Replica

Aurora uses MySQL DB engines binary log replication functionality to create a special

type of DB cluster called an Aurora read replica for a source MySQL DB instance.

Updates made to the source instance are asynchronously replicated to Aurora Read

Replica.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-ug.pdf

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 19

We recommend creating an Aurora read replica of your source MySQL DB instance to

migrate to an Aurora MySQL DB cluster with near-zero downtime. The migration

process begins by creating a DB snapshot of the existing DB Instance as the basis for a

fresh Aurora Read Replica. After the replica is set up, replication is used to bring it up

to date with respect to the source. Once the replication lag drops to zero, the replication

is complete. At this point, you can promote the Aurora Read Replica into a standalone

Aurora DB cluster and point your client applications to it.

Migration will take a while, roughly several hours per tebibyte (TiB) of data. Replication

runs somewhat faster for InnoDB tables than it does for MyISAM tables, and also

benefits from the presence of uncompressed tables. If migration speed is a factor, you

can improve it by moving your MyISAM tables to InnoDB tables and uncompressing any

compressed tables. For further details, refer to Migrating from a MySQL DB instance to

Aurora MySQL using Read Replica in the Amazon RDS User Guide.

To use Aurora Read Replica to migrate from RDS MySQL, your MySQL database must

be running on Amazon RDS MySQL 5.6 or 5.7. This migration method does not work

with on-premises databases or databases running on Amazon Elastic Compute Cloud

(Amazon EC2). Also, if you are running your Amazon RDS MySQL database on a

version earlier than 5.6, you would need to upgrade it to 5.6 as a prerequisite.

Create a read replica using the Console

1. To migrate an existing RDS MySQL DB Instance, simply select the instance in

the AWS Management RDS Console (sign-in required), choose Instance

Actions, and choose Create Aurora read replica:

https://docs.amazonaws.cn/en_us/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://docs.amazonaws.cn/en_us/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://console.aws.amazon.com/

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 20

2. Specify the Values for the Aurora cluster. See Replication with Amazon Aurora.

Monitor the progress of the migration in the console.

You can also look at the sequence of events in RDS events console.

3. After the migration is complete, wait for the Replica lag to reach zero on the new

Aurora read replica to indicate that the replica is in sync with the source.

4. Stop the flow of new transactions to the source MySQL DB instance.

5. Promote the Aurora read replica to a standalone DB cluster.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Replication.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 21

6. To see if the process is complete, you can check Recent events for the new

Aurora cluster:

Now you can point your application to use the Aurora cluster’s reader and writer

endpoints.

Migrating the database schema

RDS DB snapshot migration migrates both the full schema and data to the new Aurora

instance. However, if your source database location or application uptime requirements

do not allow the use of RDS snapshot migration, then you first need to migrate the

database schema from the source database to the target database before you can

move the actual data. A database schema is a skeleton structure that represents the

logical view of the entire database, and typically includes the following:

• Database storage objects — tables, columns, constraints, indexes, sequences,

user-defined types, and data types

• Database code objects — functions, procedures, packages, triggers, views,

materialized views, events, SQL scalar functions, SQL inline functions, SQL table

functions, attributes, variables, constants, table types, public types, private types,

cursors, exceptions, parameters, and other objects

In most situations, the database schema remains relatively static, and therefore you

don’t need downtime during the database schema migration step. The schema from

your source database can be extracted while your source database is up and running

without affecting the performance. If your application or developers do make frequent

changes to the database schema, make sure that these changes are either paused

while the migration is in process, or are accounted for during the schema migration

process.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 22

Depending on the type of your source database, you can use the techniques discussed

in the next sections to migrate the database schema. As a prerequisite to schema

migration, you must have a target Aurora database created and available.

Homogeneous schema migration

If your source database is MySQL 5.6-compliant and is running on Amazon RDS,

Amazon EC2, or outside AWS, you can use native MySQL tools to export and import

the schema.

• Exporting database schema — You can use the mysqldump client utility to

export the database schema. To run this utility, you need to connect to your

source database and redirect the output of mysqldump command to a flat file.

The –no-data option ensures that only database schema is exported without any

actual table data. For the complete mysqldump command reference, see

mysqldump — A Database Backup Program.

mysqldump –u source_db_username –p --no-data --routines --triggers

–databases source_db_name > DBSchema.sql

• Importing database schema into Aurora — To import the schema to your

Aurora instance, connect to your Aurora database from a MySQL command line

client (or a corresponding Windows client) and direct the contents of the export

file into MySQL.

mysql –h aurora-cluster-endpoint -u username -p < DBSchema.sql

Note the following:

• If your source database contains stored procedures, triggers, and views, you

need to remove DEFINER syntax from your dump file. A simple Perl command to

do that is given below. Doing this creates all triggers, views, and stored

procedures with the current connected user as DEFINER. Be sure to evaluate any

security implications this might have.

$perl -pe 's/\sDEFINER=`[^`]+`@`[^`]+`//' < DBSchema.sql >

DBSchemaWithoutDEFINER.sql

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 23

• Amazon Aurora supports InnoDB tables only. If you have MyISAM tables in your

source database, Aurora automatically changes the engine to InnoDB when the

CREATE TABLE command is run.

• Amazon Aurora does not support compressed tables (that is, tables created with

ROW_FORMAT=COMPRESSED). If you have compressed tables in your source

database, Aurora automatically changes ROW_FORMAT to COMPACT when the

CREATE TABLE command is run.

Once you have successfully imported the schema into Amazon Aurora from your

MySQL 5.6-compliant source database, the next step is to copy the actual data from the

source to the target. For more information, see the Introduction and General Approach

to AWS DMS later in this paper.

Heterogeneous schema migration

If your source database isn’t MySQL compatible, you must convert your schema to a

format compatible with Amazon Aurora. Schema conversion from one database engine

to another database engine is a nontrivial task and may involve rewriting certain parts of

your database and application code. You have two main options for converting and

migrating your schema to Amazon Aurora:

• AWS Schema Conversion Tool — The AWS Schema Conversion Tool

makes heterogeneous database migrations easy by automatically converting the

source database schema and a majority of the custom code, including views,

stored procedures, and functions, to a format compatible with the target

database. Any code that cannot be automatically converted is clearly marked so

that it can be manually converted. You can use this tool to convert your source

databases running on either Oracle or Microsoft SQL Server to an Amazon

Aurora, MySQL, or PostgreSQL target database in either Amazon RDS or

Amazon EC2. Using the AWS Schema Conversion Tool to convert your Oracle,

SQL Server, or PostgreSQL schema to an Aurora-compatible format is the

preferred method.

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 24

• Manual schema migration and third-party tools — If your source database is

not Oracle, SQL Server, or PostgreSQL, you can either manually migrate your

source database schema to Aurora or use third-party tools to migrate schema to

a format that is compatible with MySQL 5.6. Manual schema migration can be a

fairly involved process depending on the size and complexity of your source

schema. In most cases, however, manual schema conversion is worth the effort

given the cost savings, performance benefits, and other improvements that come

with Amazon Aurora.

Schema migration using the AWS Schema Conversion

Tool

The AWS Schema Conversion Tool provides a project-based user interface to

automatically convert the database schema of your source database into a format that

is compatible with Amazon Aurora. It is highly recommended that you use AWS

Schema Conversion Tool to evaluate the database migration effort and for pilot

migration before the actual production migration.

The following description walks you through the high-level steps of using AWS the

Schema Conversion Tool. For detailed instructions, see the AWS Schema Conversion

Tool User Guide.

1. First, install the tool. The AWS Schema Conversion Tool is available for the

Microsoft Windows, macOS X, Ubuntu Linux, and Fedora Linux.

Detailed download and installation instructions can be found in the installation

and update section of the user guide. Where you install AWS Schema

Conversion Tool is important. The tool needs to connect to both source and

target databases directly in order to convert and apply schema. Make sure that

the desktop where you install AWS Schema Conversion Tool has network

connectivity with the source and target databases.

2. Install JDBC drivers. The AWS Schema Conversion Tool uses JDBC drivers to

connect to the source and target databases. In order to use this tool, you must

download these JDBC drivers to your local desktop. Instructions for driver

download can be found at Installing the required database drivers in the AWS

Schema Conversion Tool User Guide. Also, check the AWS forum for AWS

Schema Conversion Tool for instructions on setting up JDBC drivers for different

database engines.

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://forums.aws.amazon.com/forum.jspa?forumID=208
https://forums.aws.amazon.com/forum.jspa?forumID=208

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 25

3. Create a target database. Create an Amazon Aurora target database. For

instructions on creating an Amazon Aurora database, see Creating an Amazon

Aurora DB Cluster in the Amazon RDS User Guide.

4. Open the AWS Schema Conversion Tool and start the New Project Wizard.

Figure 3 — Create a new AWS Schema Conversion Tool project

5. Configure the source database and test connectivity between AWS Schema

Conversion Tool and the source database. Your source database must be

reachable from your desktop for this to work, so make sure that you have the

appropriate network and firewall settings in place.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 26

Figure 4 — Create New Database Migration Project wizard

6. In the next screen, select the schema of your source database that you want to

convert to Amazon Aurora.

Figure 5 — Select Schema step of the migration wizard

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 27

7. Run the database migration assessment report. This report provides important

information regarding the conversion of the schema from your source database

to your target Amazon Aurora instance. It summarizes all of the schema

conversion tasks and details the action items for parts of the schema that cannot

be automatically converted to Aurora. The report also includes estimates of the

amount of effort that it will take to write the equivalent code in your target

database that could not be automatically converted.

8. Choose Next to configure the target database. You can view this migration report

again later.

Figure 6 — Migration report

9. Configure the target Amazon Aurora database and test connectivity between the

AWS Schema Conversion Tool and the source database. Your target database

must be reachable from your desktop for this to work, so make sure that you

have appropriate network and firewall settings in place.

10. Choose Finish to go to the project window.

11. Once you are at the project window, you have already established a connection

to the source and target database and are now ready to evaluate the detailed

assessment report and migrate the schema.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 28

12. In the left panel that displays the schema from your source database, choose a

schema object to create an assessment report for. Right-click the object and

choose Create Report.

Figure 7 — Create migration report

The Summary tab displays the summary information from the database

migration assessment report. It shows items that were automatically converted

and items that could not be automatically converted.

For schema items that could not be automatically converted to the target

database engine, the summary includes an estimate of the effort that it would

take to create a schema that is equivalent to your source database in your target

DB instance. The report categorizes the estimated time to convert these schema

items as follows:

• Simple – Actions that can be completed in less than one hour.

• Medium – Actions that are more complex and can be completed in one to

four hours.

• Significant – Actions that are very complex and will take more than four

hours to complete.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 29

Figure 8 — Migration report

Important: If you are evaluating the effort required for your database
migration project, this assessment report is an important artifact to
consider. Study the assessment report in details to determine what code
changes are required in the database schema and what impact the
changes might have on your application functionality and design.

13. The next step is to convert the schema. The converted schema is not

immediately applied to the target database. Instead, it is stored locally until you

explicitly apply the converted schema to the target database. To convert the

schema from your source database, choose a schema object to convert from the

left panel of your project. Right-click the object and choose Convert schema, as

shown in the following illustration.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 30

Figure 9 — Convert schema

This action adds converted schema to the right panel of the project window and

shows objects that were automatically converted by the AWS Schema

Conversion Tool.

You can respond to the action items in the assessment report in different ways:

• Add equivalent schema manually — You can write the portion of the schema

that can be automatically converted to your target DB instance by choosing

Apply to database in the right panel of your project. The schema that is written

to your target DB instance won't contain the items that couldn't be automatically

converted. Those items are listed in your database migration assessment report.

After applying the schema to your target DB instance, you can then manually

create the schema in your target DB instance for the items that could not be

automatically converted. In some cases, you may not be able to create an

equivalent schema in your target DB instance. You might need to redesign a

portion of your application and database to use the functionality that is available

from the DB engine for your target DB instance. In other cases, you can simply

ignore the schema that can't be automatically converted.

Caution: If you manually create the schema in your target DB instance,
do not choose Apply to database until after you have saved a copy of
any manual work that you have done. Applying the schema from your
project to your target DB instance overwrites schema of the same name in
the target DB instance, and you lose any updates that you added
manually.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 31

• Modify your source database schema and refresh the schema in your

project — For some items, you might be best served to modify the database

schema in your source database to the schema that is compatible with your

application architecture and that can also be automatically converted to the DB

engine of your target DB instance. After updating the schema in your source

database and verifying that the updates are compatible with your application,

choose Refresh from Database in the left panel of your project to update the

schema from your source database. You can then convert your updated schema

and generate the database migration assessment report again. The action item

for your updated schema no longer appears.

14. When you are ready to apply your converted schema to your target Aurora

instance, choose the schema element from the right panel of your project. Right-

click the schema element and choose Apply to database, as shown in the

following figure.

Figure 10 — Apply schema to database

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 32

Note: The first time that you apply your converted schema to your target
DB instance, the AWS Schema Conversion Tool adds an additional
schema (AWS_ORACLE_EXT or AWS_SQLSERVER_EXT) to your target DB

instance. This schema implements system functions of the source
database that are required when writing your converted schema to your
target DB instance. Do not modify this schema, or you might encounter
unexpected results in the converted schema that is written to your target
DB instance. When your schema is fully migrated to your target DB
instance, and you no longer need the AWS Schema Conversion Tool, you
can delete the AWS_ORACLE_EXT or AWS_SQLSERVER_EXT schema.

The AWS Schema Conversion Tool is an easy-to-use addition to your migration toolkit.

For additional best practices related to AWS Schema Conversion Tool, see the Best

practices for the AWS SCT topic in the AWS Schema Conversion Tool User Guide.

Migrating data

After the database schema has been copied from the source database to the target

Aurora database, the next step is to migrate actual data from source to target. While

data migration can be accomplished using different tools, we recommend moving data

using the AWS Database Migration Service (AWS DMS) as it provides both the

simplicity and the features needed for the task at hand.

Introduction and general approach to AWS DMS

The AWS Database Migration Service (AWS DMS) makes it easy for customers to

migrate production databases to AWS with minimal downtime. You can keep your

applications running while you are migrating your database. In addition, the AWS

Database Migration Service ensures that data changes to the source database that

occur during and after the migration are continuously replicated to the target. Migration

tasks can be set up in minutes in the AWS Management Console. The AWS Database

Migration Service can migrate your data to and from widely used database platforms,

such as Oracle, SQL Server, MySQL, PostgreSQL, Amazon Aurora, MariaDB, and

Amazon Redshift.

The service supports homogenous migrations such as Oracle to Oracle, as well as

heterogeneous migrations between different database platforms, such as Oracle to

Amazon Aurora or SQL Server to MySQL. You can perform one-time migrations, or you

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 33

can maintain continuous replication between databases without a customer having to

install or configure any complex software.

AWS DMS works with databases that are on premises, running on Amazon EC2, or

running on Amazon RDS. However, AWS DMS does not work in situations where both

the source database and the target database are on premises; one endpoint must be in

AWS.

AWS DMS supports specific versions of Oracle, SQL Server, Amazon Aurora, MySQL,

and PostgreSQL. For currently supported versions, see the Sources for data migration.

However, this whitepaper is just focusing on Amazon Aurora as a migration target.

Migration methods

AWS DMS provides three methods for migrating data:

• Migrate existing data — This method creates the tables in the target database,

automatically defines the metadata that is required at the target, and populates

the tables with data from the source database (also referred to as a “full load”).

The data from the tables is loaded in parallel for improved efficiency. Tables are

only created in case of homogenous migrations, and secondary indexes aren’t

created automatically by AWS DMS. Read further for details.

• Migrate existing data and replicate ongoing changes — This method does a

full load, as described above, and in addition captures any ongoing changes

being made to the source database during the full load and stores them on the

replication instance. Once the full load is complete, the stored changes are

applied to the destination database until it has been brought up to date with the

source database. Additionally, any ongoing changes being made to the source

database continue to be replicated to the destination database to keep them in

sync. This migration method is very useful when you want to perform a database

migration with very little downtime.

• Replicate data changes only — This method just reads changes from the

recovery log file of the source database and applies these changes to the target

database on an ongoing basis. If the target database is unavailable, these

changes are buffered on the replication instance until the target becomes

available.

http://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 34

• When AWS DMS is performing a full load migration, the processing puts a load

on the tables in the source database, which could affect the performance of

applications that are hitting this database at the same time. If this is an issue, and

you cannot shut down your applications during the migration, you can consider

the following approaches:

o Running the migration at a time when the application load on the database

is at its lowest point.

o Creating a read replica of your source database and then performing the

AWS DMS migration from the read replica.

Migration procedure

The general outline for using AWS DMS is as follows:

1. Create a target database.

2. Copy the schema.

3. Create an AWS DMS replication instance.

4. Define the database source and target endpoints.

5. Create and run a migration task.

Create target database

Create your target Amazon Aurora database cluster using the procedure outlined in

Creating an Amazon Aurora DB Cluster. You should create the target database in the

Region and with an instance type that matches your business requirements. Also, to

improve the performance of the migration, verify that your target database does not

have Multi-AZ deployment enabled; you can enable that once the load has finished.

Copy schema

Additionally, you should create the schema in this target database. AWS DMS supports

basic schema migration, including the creation of tables and primary keys. However,

AWS DMS doesn't automatically create secondary indexes, foreign keys, stored

procedures, user accounts, and so on, in the target database. For full schema migration

details, see the Migrating the Database Schema section.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 35

Create an AWS DMS replication instance

In order to use the AWS DMS service, you must create an AWS DMS replication

instance, which runs in your VPC. This instance reads the data from the source

database, performs the specified table mappings, and writes the data to the target

database. In general, using a larger replication instance size speeds up the database

migration (although the migration can also be gated by other factors such as the

capacity of the source and target databases, connection latency, and so on.). Also, your

replication instance can be stopped once your database migration is complete.

Figure 11 — AWS Database Migration Service

AWS DMS currently supports burstable, compute and memory-optimized instance

classes for replication instances. The burstable instance classes are low-cost standard

instances designed to provide a baseline level of CPU performance with the ability to

burst above the baseline. They are suitable for developing, configuring, and testing your

database migration process as well as for periodic data migration tasks that can benefit

from the CPU burst capability.

The compute-optimized instance classes are designed to deliver the highest level of

processor performance and achieve significantly higher packet per second (PPS)

performance, lower network jitter, and lower network latency. You should use this

instance class if you are performing large heterogeneous migrations and want to

minimize the migration time.

The memory-optimized instance classes are designed for migrations or replications of

high-throughput transaction systems which can consume large amounts of CPU and

memory.

AWS DMS Storage is primarily consumed by log files and cached transactions.

Normally, doing a full load does not require a significant amount of instance storage on

your AWS DMS replication instance. However, if you are doing replication along with

your full load, then the changes to the source database are stored on the AWS DMS

replication instance while the full load is taking place. If you are migrating a very large

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 36

source database that is also receiving a lot of updates while the migration is in progress,

then a significant amount of instance storage could be consumed.

The instances come with 50 GB of instance storage but can be scaled up as

appropriate. Normally, this amount of storage should be more than adequate for most

migration scenarios. However, it's always a good idea to pay attention to storage-related

metrics. Make sure to scale up your storage if you find you are consuming more than

the default allocation.

Also, in some extreme cases where very large databases with very high transaction

rates are being migrated with replication enabled, it is possible that the AWS DMS

replication may not be able to catch up in time. If you encounter this situation, it may be

necessary to stop the changes to the source database for some number of minutes in

order for the replication to catch up before you repoint your application to the target

Aurora DB.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 37

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 38

Figure 12 — Create replication instance page in the AWS DMS console

Define database source and target endpoints

A database endpoint is used by the replication instance to connect to a database. To

perform a database migration, you must create both a source database endpoint and a

target database endpoint. The specified database endpoints can be on premises,

running on Amazon EC2, or running on Amazon RDS, but the source and target cannot

both be on premises.

We highly recommended that you test your database endpoint connection after you

define it. The same page used to create a database endpoint can also be used to test it,

as explained later in this paper.

Note: If you have foreign key constraints in your source schema, when
creating your target endpoint you need to enter the following for Extra
connection attributes in the Advanced section:

initstmt=SET FOREIGN_KEY_CHECKS=0

This disables the foreign key checks while the target tables are being
loaded. This in turn prevents the load from being interrupted by failed
foreign key checks on partially loaded tables.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 39

Figure 13 — Create database endpoint page in the AWS DMS console

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 40

Create and run a migration task

Now that you have created and tested your source database endpoint and your target

database endpoint, you can create a task to do the data migration. When you create a

task, you specify the replication instance that you have created, the database migration

method type (discussed earlier), the source database endpoint, and your target

database endpoint for your Amazon Aurora database cluster.

Also, under Task Settings, if you have already created the full schema in the target

database, then you should change the Target table preparation mode to Do nothing

rather than using the default value of Drop tables on target. The latter can cause you

to lose aspects of your schema definition like foreign key constraints when it drops and

recreates tables.

When creating a task, you can create table mappings that specify the source schema

along with the corresponding tables to be migrated to the target endpoint. The default

mapping method migrates all source tables to target tables of the same name if they

exist. Otherwise, it creates the source table(s) on the target (depending on your task

settings). Additionally, you can create custom mappings (using a JSON file) if you want

to migrate only certain tables or if you want to have more control over the field and table

mapping process. You can also choose to migrate only one schema or all schemas

from your source endpoint.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 41

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 42

Figure 14 — Create task page in the AWS DMS console

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 43

You can use the AWS Management Console to monitor the progress of your AWS

Database Migration Service (AWS DMS) tasks. You can also monitor the resources and

network connectivity used. The AWS DMS console shows basic statistics for each task,

including the task status, percent complete, elapsed time, and table statistics, as the

following image shows.

Additionally, you can select a task and display performance metrics for that task,

including throughput, records per second migrated, disk and memory use, and latency.

Figure 15 — Task status in AWS DMS console

Testing and cutover

Once the schema and data have been successfully migrated from the source database

to Amazon Aurora, you are now ready to perform end-to-end testing of your migration

process. The testing approach should be refined after each test migration, and the final

migration plan should include a test plan that ensures adequate testing of the migrated

database.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 44

Migration testing

Table 2 — Migration testing

Test Category Purpose

Basic acceptance

tests

These pre-cutover tests should be automatically run upon

completion of the data migration process. Their primary

purpose is to verify whether the data migration was

successful. Following are some common outputs from these

tests:

• Total number of items processed

• Total number of items imported

• Total number of items skipped

• Total number of warnings

• Total number of errors

If any of these totals reported by the tests deviate from the

expected values, then it means the migration was not

successful, and the issues need to be resolved before moving

to the next step in the process or the next round of testing.

Functional tests These post-cutover tests exercise the functionality of the

application(s) using Aurora for data storage. They include a

combination of automated and manual tests. The primary

purpose of the functional tests is to identify problems in the

application caused by the migration of the data to Aurora.

Nonfunctional tests These post-cutover tests assess the nonfunctional

characteristics of the application, such as performance under

varying levels of load.

User acceptance tests

These post-cutover tests should be run by the end users of

the application once the final data migration and cutover is

complete. The purpose of these tests is for the end users to

decide if the application is sufficiently usable to meet its

primary function in the organization.

Cutover

Once you have completed the final migration and testing, it is time to point your

application to the Amazon Aurora database. This phase of migration is known as

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 45

cutover. If the planning and testing phase has been run properly, cutover should not

lead to unexpected issues.

Pre-cutover actions

• Choose a cutover window — Identify a block of time when you can accomplish

cutover to the new database with minimum disruption to the business. Normally

you would select a low activity period for the database (typically nights and/or

weekends).

• Make sure changes are caught up — If a near-zero downtime migration

approach was used to replicate database changes from the source to the target

database, make sure that all database changes are caught up and your target

database is not significantly lagging behind the source database.

• Prepare scripts to make the application configuration changes — In order to

accomplish the cutover, you need to modify database connection details in your

application configuration files. Large and complex applications may require

updates to connection details in multiple places. Make sure you have the

necessary scripts ready to update the connection configuration quickly and

reliably.

• Stop the application — Stop the application processes on the source database

and put the source database in read-only mode so that no further writes can be

made to the source database. If the source database changes aren’t fully caught

up with the target database, wait for some time while these changes are fully

propagated to the target database.

• Run pre-cutover tests — Run automated pre-cutover tests to make sure that

the data migration was successful.

Cutover

• Run cutover — If pre-cutover checks were completed successfully, you can now

point your application to Amazon Aurora. Run scripts created in the pre-cutover

phase to change the application configuration to point to the new Aurora

database.

• Start your application — At this point, you may start your application. If you

have an ability to stop users from accessing the application while the application

is running, exercise that option until you have run your post-cutover checks.

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 46

Post-cutover checks

• Run post-cutover tests — Run predefined automated or manual test cases to

make sure your application works as expected with the new database. It’s a good

strategy to start testing read-only functionality of the database first before running

tests that write to the database.

• Enable user access and closely monitor — If your test cases were run

successfully, you may give user access to the application to complete the

migration process. Both application and database should be closely monitored at

this time.

Conclusion

Amazon Aurora is a high performance, highly available, and enterprise-grade database

built for the cloud. Leveraging Amazon Aurora can result in better performance and

greater availability than other open-source databases and lower costs than most

commercial grade databases. This paper proposes strategies for identifying the best

method to migrate databases to Amazon Aurora and details the procedures for planning

and completing those migrations. In particular, AWS Database Migration Service (AWS

DMS) as well as the AWS Schema Conversion Tool are the recommended tools for

heterogeneous migration scenarios. These powerful tools can greatly reduce the cost

and complexity of database migrations.

Contributors

Contributors to this document include:

• Puneet Agarwal, Solutions Architect, Amazon Web Services

• Chetan Nandikanti, Database Specialist Solutions Architect, Amazon Web

Services

• Scott Williams, Solutions Architect, Amazon Web Services Jonathan Doe,

Solutions Architect, Amazon Web Services

Further reading

For additional information, see:

• Amazon Aurora Product Details

https://aws.amazon.com/rds/aurora/

This
 paper

 has been
 archived

For the latest technical content,
 refer t o

 the AWS

Wh i t epapers &
 Guides

 page:

https://aws.amazon.com/whitepapers

Amazon Web Services Migrating Your Databases to Amazon Aurora

 47

• Amazon Aurora FAQs

• AWS Database Migration Service

• AWS Database Migration Service FAQs

Document history

Date Description

July 28, 2021 Reviewed for technical accuracy

June 10, 2016 First publication

http://aws.amazon.com/rds/aurora/faqs/
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/faqs/

	Introduction to Amazon Aurora
	Database migration considerations
	Migration phases
	Application considerations
	Evaluate Aurora features
	Performance considerations

	Sharding and read replica considerations
	Reliability considerations
	Cost and licensing considerations
	Other migration considerations
	Estimate code change effort
	Application availability during migration
	Modify connection string during migration

	Planning your database migration process
	Homogeneous migration
	Homogeneous migration with downtime
	Homogeneous migration with near-zero downtime

	Heterogeneous migration
	Schema migration
	Data migration

	Migrating large databases to Amazon Aurora
	Partition and shard consolidation on Amazon Aurora
	Migration options at a glance

	RDS snapshot migration
	Estimating space requirements for snapshot migration
	Migrating a DB snapshot using the console

	Migration using Aurora Read Replica
	Create a read replica using the Console

	Migrating the database schema
	Homogeneous schema migration
	Heterogeneous schema migration
	Schema migration using the AWS Schema Conversion Tool

	Migrating data
	Introduction and general approach to AWS DMS
	Migration methods
	Migration procedure
	Create target database
	Copy schema
	Create an AWS DMS replication instance
	Define database source and target endpoints
	Create and run a migration task

	Testing and cutover
	Migration testing
	Cutover
	Pre-cutover actions
	Cutover
	Post-cutover checks

	Conclusion
	Contributors
	Further reading
	Document history

