

Hello, Serbia!

Managing CSS Projects with ITCSS
DaFED – Novi Sad, November 2014

#itcss

Harry Roberts

Consultant Front-end Architect.

Products, long-running projects, large teams, big codebases.

@csswizardry

What is ITCSS?

Inverted Triangle architecture for CSS.

A sane, scalable, managed architecture.

A school-of-thought, not a library.

A meta framework; a framework for frameworks.

Incredibly simple.

Problems with CSS at scale

CSS’ fault vs. our fault

CSS’ fault

The cascade and inheritance.

Very loose.

Highly dependent on source order.

Not very expressive.

Lots of gotchas.

Specificity.

Our fault

Lack of documentation.

Lack of structure, quality assurance.

Mixture of abilities.

Lack of knowledge (about CSS or the project itself).

Different styles, preferences, ways of working.

Not looking to see/being aware of what exists already.

Adding new styles to the end of stylesheets.

Inheritance, the cascade, and
source order

Each piece of CSS needs a knowledge of
what came before it and what might come
after it – a.k.a. dependencies.

CSS is one giant dependency tree.

We need a way to manage this dependency
at a very low level.

Ways of ordering stylesheets

Mirror the web page – old school!

Thematic chunks – typography, forms, buttons, etc.

Just stick it on the end of the stylesheet.

project.css

project.css

Undoing CSS: Writing more CSS in order to
undo other CSS.

Poor source order coupled with 
inherited/inheriting styles can lead to a 
lot of waste and/or redundancy.

Specificity

The Specificity Wars

It doesn’t matter how well-considered your
source order is; how well you’re utilising
the cascade; what naming conventions you
use; specificity can undo everything.

The Specificity Graph

Location in Stylesheet

Location in Stylesheet

Specificity

Location in Stylesheet

Specificity

Location in Stylesheet

Specificity

A nested selector?

An ID? An !important?

Location in Stylesheet

Specificity

How do we solve this?

Location in Stylesheet

Specificity

tl;dr: Write CSS in specificity order.

Location in Stylesheet

Specificity

Location in Stylesheet

Specificity

Generic Base Objects Components Trumps

These sections form the basis of ITCSS.

In short…

We need…

A sane environment that is accessible to lots of people.

To tame and manage source order and the cascade.

To create a place for everything to live (new and old).

To reduce waste and redundancy.

To end the Specificity Wars.

ITCSS: Inverted Triangle CSS

A lot of methodologies try and avoid or
ignore CSS’ ‘features’…

…ITCSS makes them work to 
our advantage.

ITCSS is a sane, scalable, managed
architecture for CSS.

Generic

Explicit

Far-reaching

Localised

Low specificity

High specificity

Settings

Tools

Generic

Base

Objects

Components

Trumps

Default layers

Settings: Global variables, config switches.

Tools: Default mixins and functions.

Generic: Ground-zero styles (Normalize.css, resets, box-sizing).

Base: Unclassed HTML elements (type selectors).

Objects: Cosmetic-free design patterns.

Components: Designed components, chunks of UI.

Trumps: Helpers and overrides.

Settings

Globally-available settings.

Config switches.

Brand colours, etc.

$color-ui: #BADA55; 
$spacing-unit: 10px;

Tools

Globally-available tools.

Public mixins.

Helper functions.

@mixin font-brand() { 
 font-family: "UI Font", sans-serif; 
 font-weight: 400; 
}

Generic Ground zero styles.

Low-specificity, far-reaching.

Resets, Normalize.css, etc.

* { 
 -webkit-box-sizing: border-box; 
 -moz-box-sizing: border-box; 
 box-sizing: border-box; 
}

Base

Unclassed HTML elements.

H1–H6, basic links, lists, etc.

Last layer we see type
selectors (e.g. a {},
blockquote {}).

ul { 
 list-style: square outside; 
}

Objects

OOCSS.

Design patterns.

No cosmetics.

Begin using classes
exclusively.

Agnostically named (e.g. .ui-
list {}).

.ui-list { 
 margin: 0; 
 padding: 0; 
 list-style: none; 
}

 .ui-list__item { 
 padding: $spacing-unit; 
 }

Components

Designed pieces of UI.

Still only using classes.

More explicitly named
(e.g. .products-list {}).

.products-list { 
 @include font-brand(); 
 border-top: 1px solid $color-ui; 
}

 .products-list__item { 
 border-bottom: 1px solid $color-ui; 
 }

Trumps

Overrides, helpers, utilities.

Only affect one piece of the
DOM at a time.

Usually carry !important.

.one-half { 
 width: 50% !important; 
}

You should notice…

Specificity slowly increases layer-by-layer.

We affect smaller and smaller bits of the DOM at a time.

Progressively adding styles; never undoing.

ITCSS…

Manages source order.

Filters explicitness.

Tames the cascade.

Sanitises inheritance.

Each layer is a pass over the DOM.

How sculptors work

Blast some rock out of a quarry.

Cut it down into a large block.

Rough it into a general shape.

Begin adding features.

Add fine details.

Each stage is more detailed and explicit
than the last one.

Outcomes

Outcomes

Everything has a place to live.

People know where to look to find types of rule.

A sane source oder.

Reduced waste/redundancy.

Increased scalability.

The Specificity Wars are over!

Scaling ITCSS

Scaling ITCSS

We can scale our CSS much more easily.

But we can also scale the architecture itself!

Scaling our CSS

No longer the end of a stylesheet to worry about.

Add things into the relevant layers (usually the last ones).

Things never get more complicated, only bigger.

Everything grows in a well-rounded manner.

The Specificity Graph keeps trending upward.

Scaling the architecture

Add or remove layers if, as, and when you need to.

Not using a preprocessor? Remove the Settings and Tools layers.

Don’t use OOCSS? Remove the Objects layer.

Need theming? Add a Theme layer.

Settings

Tools

Generic

Base

Components

Theme

Trumps

Booking.com run a lot of A/B tests.

How do we isolate temporary styles?

Create a Test layer (before the Trumps layer).

Adding layers

Add layers in the correct place.

Specificity and explicitness of selectors should dictate this.

Honour the Specificity Graph (always trending upward).

On the filesystem?

Recap

Recap

Write CSS in specificity order.

Maintain the Specificity Graph.

All rulesets should only ever add to and inherit from previous ones.

Order stylesheets from far-reaching to very localised.

Add layers as needed, but only in the right place.

Thank you – csswz.it/itcss-dafed
Harry Roberts – @csswizardry

