
A Proposed Standard for Role-Based Access Control

David F. Ferraiolo
National Institute of Standards and Technology

Ravi Sandhu

George Mason University

Serban Gavrila
VDG Incorporated

D. Richard Kuhn and Ramaswamy Chandramouli
National Institute of Standards and Technology

December 18, 2000

Abstract

This paper describes a proposed standard for role-based access control (RBAC). RBAC is a proven technology for
large-scale authorization. However, lack of a widely accepted model results in uncertainty and confusion about its
utility and meaning. The standard proposed here seeks to resolve this situation by unifying ideas from prior RBAC
models, commercial products, and research prototypes. It is intended to serve as a foundation for product
development, evaluation, and procurement specification. RBAC is a rich and open-ended technology, which is
evolving as users, researchers and vendors gain experience with its application. Features and components in this
standard should be regarded as a core that may be enhanced by developers to meet the needs of customers.

This document does not attempt to extend RBAC features beyond those that have achieved acceptance in the
commercial marketplace and research community, but instead focuses on defining fundamental components of
RBAC. It is organized into two main parts – the RBAC Reference Model and the RBAC Requirements
Specification. The reference model defines the scope of features and provides a consistent vocabulary in support of
the requirements specification. The requirements specification defines requirements for administrative operations
for the creation and maintenance of RBAC sets and relations, for performing administrative queries and review, as
well as for specifying system level functions in support of session attribute assignment and access control decisions.

1 INTRODUCTION

In recent years, vendors have begun implementing role-based access control (RBAC) features in their database
management system, security management, and network operating system products, without general agreement as to
what constitutes an appropriate set of RBAC features. Several RBAC models have been proposed [FK92; NO94;
FCK95; GI96; SCFY96], without any attempt at standardizing salient RBAC features. To identify RBAC features
that exhibit true enterprise value and are practical to implement, the National Institute of Standards and Technology
has conducted and sponsored market analysis [FGL93; SCYG96], developed prototype implementations [FBK99],
and sponsored external research [Fei96]. However NIST is not alone in recognizing the potential benefits of RBAC
technology. Significant research has been performed at the university level in developing new RBAC models and
applications, and researchers, vendors and users have gathered on an annual basis to present papers and discuss
issues related to RBAC in a formal workshop setting. As a result of these efforts much has been learned about
RBAC, and its practical implementation. Although our understanding of RBAC has dramatically advanced, much of
the RBAC work has been independently performed without any attempt at standardizing salient RBAC features.

A first effort at defining a consensus standard for RBAC was proposed at the 2000 ACM Workshop on Role Based
Access Control [SFK00]. Published comments on this earlier document [JT00] assisted in developing the reference
model and requirements specification proposed in this paper. Panel session discussions at the ACM Workshop also
contributed toward refining the initial model into the proposals in this paper.

RBAC is a technology that is both new and old. The concept of roles has been used in software applications for at
least 25 years, but it is only within the past decade that role based access control has emerged as a full-fledged
mechanism as mature as traditional mandatory access control (MAC) and discretionary access control (DAC)
concepts. The roots of RBAC include the use of groups in UNIX and other operating systems, privilege groupings
in database management systems [Bal90; Tho91; TDH92], and separation of duty concepts described in earlier
papers [CW87; San88; BN89]. The modern concept of RBAC embodies all these notions in a single access control
model in terms of roles and role hierarchies, role activation, and constraints on user/role membership and role set
activation [FK92]. These constructs are common to the early formal definitions of RBAC proposed by various
authors [FCK95; SCFY96; NO94]. A comprehensive framework for RBAC models was defined by Sandhu et al.
[SCFY96], and expanded in subsequent publications [San98; SBM99; AS00; OSM00].

Although existing RBAC models and implementations are relatively similar on fundamental RBAC concepts, they
differ in significant areas. Points of similarity and differences are not obvious, because many models use different
terminology to describe the same concepts. Because RBAC is a relatively new technology and because products and
models come from different commercial and academic backgrounds, there is no consensus on what to call the
different parts. RBAC is also a rich and open-ended technology, which ranges from very simple at one extreme to
fairly complex and sophisticated at the other. Recognizing RBAC as a single model is therefore unrealistic. A single
model would either include or exclude too much, and would only represent one point along a spectrum of
technologies and choices.

To address these issues of scope and terminology this proposed standard begins with an RBAC Reference model
defining a collection of model components. The RBAC model components provide a standard vocabulary for
defining a broad range of RBAC features. In arriving at the scope of RBAC features the authors of this document
applied two selection criteria. First, the features must be well understood and well represented within the RBAC
literature and well-accepted RBAC models. Second, RBAC features should be known to be viable in that there exist
at least one example commercial or reference implementation for each feature.

Both the RBAC Reference Model and the RBAC Requirements Specification are organized into the four
components given below:

• Basic RBAC
• Hierarchical RBAC
• Static Separation of Duty Relations
• Dynamic Separation of Duty Relations

Standardization over a stable set of RBAC features is expected to provide a multitude of benefits. These benefits
include a common set of benchmarks for vendors, who are already developing RBAC mechanisms, to use in their
product specifications and in demonstrating compliance in their marketing efforts. It will give IT consumers, who
are the principle beneficiary of RBAC technology, a basis for the creation of uniform acquisition specifications. In
addition, an RBAC standard will provide researchers with a basis for devising new and innovative models and
techniques, and will allow standardization bodies the ability to develop architecture-specific APIs. These APIs will
lead to the development of new and innovative authorization management tools by guaranteeing interoperability and
portability over a broad spectrum of products.

The rest of this paper is organized as follows. Section 2 gives an overview of the four RBAC components that
provide the basis for modeling features and are used in the specification of a family of RBAC requirements. Section
3, the RBAC reference model provides a rigorous definition of a collection of relations on sets of RBAC basic
elements. Section 4, provides an overview of RBAC requirements in three areas—Administrative Operations,
Administrative Review Capabilities, and RBAC System Functions. A complete and detailed requirement
specification for each RBAC component is provided as an Appendix. Section 5 describes the method of packaging
of RBAC requirement components in defining relevant requirement specification. Section 6 concludes the paper.

2 COMPONENT OVERVIEW

This RBAC standard is organized into two main parts—the RBAC Reference Model and the RBAC
Requirements Specifications. The RBAC Reference Model provides a rigorous definition of RBAC sets
and relations. The RBAC Requirements Specification define requirements over administrative operations
for the creation and maintenance of RBAC element sets and relations; administrative review functions for
performing administrative queries; and system functions for creating and managing RBAC attributes on
user sessions and making access control decisions. The RBAC Reference Model has two primary
objectives—to define a common vocabulary of terms for use in consistently specifying requirements and to
set the scope of the RBAC features included in the standard.

The RBAC model and requirements specification are organized into four RBAC components, as described
in the following sections. A rationale for each of these components is also provided. Readers relatively new
to RBAC can skim this section and revisit it after reading the description of the four components of the
model in the following section.

2.1 Core RBAC

Core RBAC embodies the essential aspects of RBAC. The basic concept of RBAC is that users are
assigned to roles, permissions are assigned to roles and users acquire permissions by being members of
roles. Core RBAC includes requirements that user-role and permission-role assignment can be many-to-
many. Thus the same user can be assigned to many roles and a single role can have many users. Similarly,
for permissions, a single permission can be assigned to many roles and a single role can be assigned to
many permissions. Core RBAC includes requirements for user-role review whereby the roles assigned to a
specific user can be determined as well as users assigned to a specific role. A similar requirement for
permission-role review is imposed as an advanced review function. Finally, core RBAC requires that users
can simultaneously exercise permissions of multiple roles. This precludes products that restrict users to
activation of one role at a time.

Rationale. Core RBAC captures the features of traditional group-based access control as implemented in
operating systems through the current generation. As such it is widely deployed and familiar technology.
The features required of core RBAC are essential for any form of RBAC. The main issue in defining core
RBAC is to determine which features to exclude. This proposed standard has deliberately kept a very
minimal set of features in core RBAC. In particular, these features accommodate traditional but robust
group-based access control. Not every group-based mechanism qualifies because of the requirements given
above. One of the features omitted as mandatory for core RBAC is permission role review. Although
highly desirable, we recognize that many well-accepted RBAC systems do not provide this feature.

2.2 Hierarchical RBAC

Hierarchical RBAC adds requirements for supporting role hierarchies. A hierarchy is mathematically a
partial order defining a seniority relation between roles, whereby senior roles acquire the permissions of
their juniors, and junior roles acquire the user membership of their seniors. This standard recognizes two
types of role hierarchies.

• General Hierarchical RBAC

In this case, there is support for an arbitrary partial order to serve as the role hierarchy, to include
the concept of multiple inheritance of permissions and user membership among roles.

• Limited Hierarchical RBAC

Some systems may impose restrictions on the role hierarchy. Most commonly, hierarchies are
limited to simple structures such as trees or inverted trees.

Rationale. Roles can have overlapping capabilities, that is, users belonging to different roles may be
assigned common permissions. Furthermore, within many organizations there are a number of general
permissions that are performed by a large number of users. As such, it would prove inefficient and
administratively cumbersome to specify repeatedly their general permission-role assignments. To improve
efficiency and support organizational structure, RBAC models as well as commercial implementations
include the concept of role hierarchies. Role hierarchies in the form of an arbitrary partial ordering are
arguably the single most desirable feature in addition to core RBAC. This feature has often been mentioned
in the literature and has precedence in existing RBAC implementations. Justification for requiring the
transitive, reflexive and antisymmetric properties of a partial order has been extensively discussed in the
literature [FCK96; NO99; SCFY96]. There is a strong consensus on this issue. Nevertheless there are a
number of products that support only restricted hierarchies, which provide substantially improved
capabilities beyond core RBAC.

2.3 Static Separation of Duty Relations

Separation of duty relations are used to enforce conflict of interest policies. Conflict of interest in a role-
based system may arise as a result of a user gaining authorization for permissions associated with
conflicting roles. One means of preventing this form of conflict of interest is though static separation of
duty, that is, to enforce constraints on the assignment of users to roles. The SSD policy can be centrally
specified and then uniformly imposed on specific roles. Because of the potential for inconsistencies with
respect to static separation of duty relations and inheritance relations of a role hierarchy, we define SSD
requirements both in the presence and absence of role hierarchies.

• Static Separation of Duty

SSD relations place constraints on the assignments of users to roles. Membership in one role may
prevent the user from being a member of one or more other roles, depending on the SSD rules
enforced.

• Static Separation of Duty in the Presence of a Hierarchy

This type of SSD relation works in the same way as basic SSD except that both inherited roles as
well as directly assigned roles are considered when enforcing the constraints.

With respect to the constraints placed on the user-role assignments for defined sets of roles, we define SSD
as a pair (role set, n) where no user is assigned to n or more roles from the role set. As such, we recognize a
variety of SSD policies. For example, a user may not be assignable to every role in a specified role set,
while a strong deployment of the same feature may restrict a user from being assigned to any combination
of two or more roles in the role set.

Rationale. From a policy perspective, SSD relations provide a powerful means of enforcing conflict of
interest and other separation rules over sets of RBAC elements. Static constraints generally place
restrictions on administrative operations that have the potential to undermine higher-level organizational
Separation of Duty policies.

Static constraints can take on a wide variety of forms. A common example is that of Static Separation of
Duty (SSD) that defines mutually disjoint user assignments with respect to sets of roles [Kuh97; GI96].
However, static constraints have been shown to be a powerful means of implementing a number of other
important separation of duty policies. For example, Gligor, et al. [GGF98] and Simon and Zurko [SZ97]
and Sandhu [San99] have identified SSD relations to include constraints on users, operations and objects as

well as combinations thereof. Some authors [AS00; Jaeger00] have studied other forms of constraints
recently, but so far consensus has not been developed. The static constraints defined in this standard are
limited to those relations that place restrictions on sets of roles and in particular on their ability to form
user-role assignment relations. Although formal RBAC models and RBAC policy specifications have
grown well beyond these simple relations, we know of no commercial products that implement these
advanced static separation of duty relations.

2.4 Dynamic Separation of Duty Relations

Dynamic separation of duty (DSD) relations, like SSD relations, limit the permissions that are available to
a user. However DSD relations differ from SSD relations by the context in which these limitations are
imposed. DSD requirements limit the availability of the permissions by placing constraints on the roles that
can be activated within or across a user’s sessions.

Similar to SSD relations DSD relations define constraints as a pair (role set, n) where n is a natural number
µ2, with the property that no user session may activate n or more roles from the role set.

Rationale. DSD properties provide extended support for the principle of least privilege in that each user
has different levels of permission at different times, depending on the task being performed. This ensures
that permissions do not persist beyond the time that they are required for performance of duty. This aspect
of least privilege is often referred to as timely revocation of trust. Dynamic revocation of permissions can
be a complex issue without the facilities of dynamic separation of duty, and as such it has been generally
ignored in the past for reasons of expediency.

SSD provides the capability to address potential conflict-of-interest issues at the time a user is assigned to a
role. DSD allows a user to be authorized for roles that do not cause a conflict of interest when acted in
independently, but which produce policy concerns when activated simultaneously. Although this separation
of duty requirement could be achieved through the establishment of a static separation of duty relationship,
DSD relationships generally provide the enterprise with greater operational flexibility.

3 THE ROLE-BASED ACCESS CONTROL REFERENCE MODEL

The RBAC model is defined in terms of four model components—Core RBAC, Hierarchical RBAC, Static
Separation of Duty Relations, and Dynamic Separation of Duty Relations. Core RBAC defines a minimum
collection of RBAC elements, element sets, and relations in order to completely achieve a Role-Based
Access Control system. This includes user-role assignment and permission-role assignment relations,
considered fundamental in any RBAC system. In addition Core RBAC introduces the concept of role
activation as part of a user’s session within a computer system. Core RBAC is required in any RBAC
system, but the other components are independent of each other and may be implemented separately.

The Hierarchical RBAC component adds relations for supporting role hierarchies. A hierarchy is
mathematically a partial order defining a seniority relation between roles, whereby senor roles acquire the
permissions of their juniors and junior roles acquire users of their seniors. In addition Hierarchical RBAC
goes beyond simple user and permission role assignment by introducing the concept of a role’s set of
authorized users and authorized permissions. A third model component, Static Separation of Duty
Relations, adds exclusivity relations among roles with respect to user assignments. Because of the potential
for inconsistencies with respect to static separation of duty relations and inheritance relations of a role
hierarchy, the SSD relations model component defines relations in both the presence and absence of role
hierarchies. The fourth model component, Dynamic Separation of Duty Relations, defines exclusivity
relations with respect to roles that are activated as part of a user’s session.

Each model component is defined by the following sub-components:

• a set of basic element sets

• a set of RBAC relations involving those element sets (containing subsets of Cartesian products
denoting valid assignments)

• a set of Mapping Functions which yield instances of members from one element set for a given
instance from another element set.

It is important to note that the RBAC reference model defines a taxonomy of RBAC features that can be
composed into a number of feature packages. Rather then attempting to define a complete set of RBAC
features, this model focuses on providing a standard set of terms for defining the most salient features as
represented in existing models and implemented in commercial products.

3.1 Core RBAC

Core RBAC model element sets and relations are defined in Figure 1. Core RBAC includes sets of five
basic data elements called users (USERS), roles (ROLES), objects (OBS), operations (OPS), and
permissions (PRMS). The RBAC model as a whole is fundamentally defined in terms of individual users
being assigned to roles and permissions being assigned to roles. As such, a role is a means for naming
many-to-many relationships among individual users and permissions. In addition, the core RBAC model
includes a set of sessions (SESSIONS) where each session is a mapping between a user and an activated
subset of roles that are assigned to the user.

A user is defined as a human being. Although the concept of a user can be extended to include machines,
networks, or intelligent autonomous agents, for simplicity reasons we limit a user to person in this paper. A
role is a job function within the context of an organization with some associated semantics regarding the
authority and responsibility conferred on the user assigned to the role. Permission is an approval to perform
an operation on one or more RBAC protected objects. An operation is an executable image of a program,
which upon invocation executes some function for the user. The types of operations and objects that RBAC
controls are dependent on the type of system in which it will be implemented. For example, within a file
system, operations might include read, write, and execute; within a database management system,
operations might include insert, delete, append and update.

The purpose of any access control mechanism is to protect system resources. However, in applying RBAC
to a computer system, we speak of protected objects. Consistent with earlier models of access control an
object is an entity that contains or receives information. For a system that implements RBAC, the objects
can represent information containers (e.g., files, directories, in an operating system, and/or columns, rows,
tables, and views within a database management system) or objects can represent exhaustible system
resources, such as printers, disk space, and CPU cycles. The set of objects covered by RBAC includes all of
the objects listed in the permissions that are assigned to roles.

Central to RBAC is the concept of role relations, around which a role is a semantic construct for
formulating policy. Figure 1 illustrates user assignment (UA) and permission assignment (PA) relations.
The arrows indicate a many-to-many relationship (e.g., a user can be assigned to one or more roles, and a
role can be assigned to one or more users). This arrangement provides great flexibility and granularity of
assignment of permissions to roles and users to roles. Without these conveniences there is an enhanced
danger that a user may be granted more access to resources than is needed because of limited control over
the type of access that can be associated with users and resources. Users may need to list directories and
modify existing files, for example, without creating new files, or they may need to append records to a file
without modifying existing records. Any increase in the flexibility of controlling access to resources also
strengthens the application of the principle of least privilege.

Figure 1: Core RBAC

Each session is a mapping of one user to possibly many roles, i.e., a user establishes a session during which
the user activates some subset of roles that he or she is assigned. Each session is associated with a single
user and each user is associated with one or more sessions. The function session_roles gives us the roles
activated by the session and the function user_sessions gives us the set of sessions that are associated with
a user. The permissions available to the user are the permissions assigned to the roles that are activated
across all the user’s sessions.

We summarize the above in the following definition.

Definition 1 Core RBAC:

• USERS, ROLES, OPS, and OBS (users, roles, operations and objects respectively).

• UA ⊆ USERS × ROLES, a many-to-many mapping user-to-role assignment relation.

• assigned_users: (r:ROLES) → 2USERS, the mapping of role r onto a set of users.
Formally: assigned_users(r) = {u∈USERS | (u, r) ∈ UA}

• PRMS = 2(OPS × OBS), the set of permissions.

• PA ⊆ PERMS × ROLES, a many-to-many mapping permission-to-role assignment relation.

• assigned_permissions(r: ROLES) → 2PRMS, the mapping of role r onto a set of permissions.
Formally:
assigned_permissions(r) = {p∈PRMS | (p, r) ∈ PA}

• Op(p: PRMS) → {op⊆OPS}, the permission to operation mapping, which gives the set of
operations associated with permission p.

• Ob(p: PRMS) → {ob⊆OBS}, the permission to object mapping, which gives the set of
objects associated with permission p.

• SESSIONS = the set of sessions

• user_sessions (u: USERS) → 2SESSIONS, the mapping of user u onto a set of subjects.

user_
sessions session_roles

SESS-
 IONS

USERS ROLES
 OPS

OBS

 PRMS

 (UA)
User Assign-
ment

 (PA)
Permission
Assignment

• session_roles (s: SESSIONS) → 2ROLES, the mapping of session s onto a set of roles.
Formally: session_roles (si) ⊆ {r∈ROLES | (session_users (si), r) ∈ UA}

• avail_session_perms(s:SESSIONS) → 2PRMS, the permissions available to a user
 in a session = 

)(_

)(_
srolessessionr

rspermissionassigned
∈

We now define role hierarchies as inheritance relationships between roles.

3.2 Hierarchal RBAC

This model component introduces role hierarchies (RH) as indicated in Figure 2. Role hierarchies are
commonly included as a key aspect of RBAC models [FCK95; SCFY96; NO99; Moffett98] and are often
included as part of RBAC product offerings [CR98]. Hierarchies are a natural means of structuring roles to
reflect an organization’s lines of authority and responsibility (see Figure 3).

Role hierarchies define an inheritance relation among roles. Inheritance has been described in terms of
permissions [NO99]: r1 “inherits” role r2 if all privileges of r2 are also privileges of r1. Other authors have
proposed a stronger definition of inheritance [NO99] as well as alternate interpretations [Kuh98; San98].
We have adopted the most widely used definition. For some distributed RBAC implementations, role
permissions are not managed centrally, while the role hierarchies are. For these

Figure 2: Hierarchical RBAC

systems, role hierarchies are managed in terms of user containment relations: role r1 “contains” role r2 if
all users authorized for r1 are also authorized for r2. Note, however, that user containment implies that a
user of r1 has (at least) all the privileges of r2, while the permission inheritance for r1 and r2 does not
imply anything about user assignment.

This standard recognizes two types of role hierarchies—general role hierarchies and limited role
hierarchies. General role hierarchies provide support for an arbitrary partial order to serve as the role
hierarchy, to include the concept of multiple inheritances of permissions and user membership among roles.
Limited role hierarchies impose restrictions resulting in a simpler tree structure (i.e., a role may have one or
more immediate ascendants, but is restricted to a single immediate descendent). Examples of possible
hierarchical role structures are shown in Figure 3.

user_
sessions session_roles

SES-
SIONS

USERS ROLES
 OPS

OBS

 PRMS

 (UA)
User Assign-
ment

 (PA)
Permission
Assignment

 (RH)
Role Hierarchy

Production
Engineer 1

Quality
Engineer 1

Production
Engineer 2
Quality

Engineer 2

Engineer 1
Engineer 2

Engineering Dept

Figure 3a. Tree

Director

Project Lead 1 Project Lead 2

Production Engineer 1 Quality Engineeer 1 Production Engineer 2 Quality Engineer 2

Figure 3b. Inverted Tree

Director

Project Lead 1 Project Lead 2

Production
Engineer 1

Quality
Engineer 1

Engineering Dept.

Engineer 2 Engineer 2
QualityProduction

Engineer 1 Engineer 2

Figure 3c. Lattice

Figure 3. Example Role Hierarchies

We first formally define general role hierarchies.

Definition 2a General Role Hierarchies:

• RH ⊆ ROLES × ROLES is a partial order on ROLES called the inheritance relation, written as ο,
where r1 ο r2 only if all permissions of r2 are also permissions of r1, and all users of r1 are also
users of r2, i.e, r1 ο r2 ⇒ authorized_permissions(r2)⊆ authorized_permissions(r1).

• authorized_users(r: ROLES) → 2USERS, the mapping of role r onto a set of users in the presence of

a role hierarchy. Formally:
authorized_users(r) = {u∈USERS | r’ ο r, (u, r’) ∈ UA}

• authorized_permissions(r: ROLES) → 2PRMS, the mapping of role r onto a set of permissions in the

presence of a role hierarchy. Formally:
authorized_permissions(r) = {p∈PRMS | r’] r, (p, r’) ∈ PA}

General role hierarchies support the concept of multiple inheritance, which provides the ability to inherit
permission from two or more role sources and to inherit user membership from two or more role sources.
Multiple inheritances provide two important hierarchy properties. The first is ability to compose a role from
multiple subordinate role (with fewer permissions) in defining roles and relations that are characteristic of
the organization and business structures, which these roles are intended to represent. Second, multiple
inheritances provides uniform treatment of user/role assignment relations and role/role inheritance
relations. Users can be included in the role hierarchy, using the same relation ο to denote the user
assignment to roles, as well as well as permission inheritance from a role to its assigned users.

Roles in a limited role hierarchy are restricted to a single immediate descendent. Although limited role
hierarchies do not support multiple inheritances, they nonetheless provide clear administrative advantages
over Core RBAC.

We represent r1 as an immediate descendent of r2 by r1ννr2, if r1 ο r2, but no role in the role hierarchy lies
between r1 and r2. That is, there exists no role r3 in the role hierarchy such that r1 ο r3 ο r2, where r1≠r2
and r2≠r3.

We now define limited role hierarchies as a restriction on the immediate descendents of the general role
hierarchy.

Definition 2b Limited Role Hierarchies:

• Definition 2a with the following limitation:

∀ r, r1, r2∈ROLES, r νν r1 ∧ r νν r2 ⇒ r1 = r2

Figure 4 illustrates properties of a general role hierarchy as a Hasse Diagram. Nodes in the graph represent
the roles of the hierarchy and there is a directed line segment (arrow) drawn from r1 to r2 whenever r1 is an
immediate descendent of r2. We write r1→r2 if r1 νν r2. In the graph thus created, rx ο ry if and only if there
is a directed path (sequence of arrows) from rx to ry. Also, there are no (directed) cycles in the graph of RH
since the order relation is anti-symmetric and transitive. Usually, we represent the graph with the arcs
corresponding to the inheritance relation ο oriented top-down. Thus we can say the user membership is
inherited top-down, and the role permissions are inherited bottom-up.

Figure 4. Accounting Roles

In the role graph of figure 4, where the users are represented by double ellipses and the roles by single
ellipses, John is assigned to CashierSpv, and is authorized for CashierSpv, Cashier, and Accounting. Also,
John’s permissions are the union of the permission sets assigned to John, CashierSpv, Cashier, Accounting,
and the permissions directly assigned to John. Note that users are permitted to be included in the graph as a
result of multiple inheritances. Although the role assignments of Fred, John, and Mark could be represented
in a limited role hierarchy, Frank’s role assignments could not. Because Core RBAC requires user role
assignment to be a many-to-many relation, in the general case users would be precluded from being
included as nodes in a limited role hierarchy.

3.3 Constrained RBAC

Constrained RBAC adds Separation of Duty relations to the RBAC model. Separation of duty relations are
used to enforce conflict of interest policies that organizations may employ to prevent users from exceeding
a reasonable level of authority for their positions.

As a security principle, separation of duty has long been recognized for its wide application in business,
industry, and government [CW89; CW87]. Its purpose is to ensure that failures of omission or commission
within an organization are caused only as a result of collusion among individuals. To minimize the
likelihood of collusion, individuals of different skills or divergent interests are assigned to separate tasks
required in the performance of a business function. The motivation is to ensure that fraud and major errors
cannot occur without deliberate collusion of multiple users. This RBAC standard allows for both static and
dynamic separation of duty as defined within the next two subsections.

3.3.1 Static Separation of Duty Relations

Conflict of interest in a role-based system may arise as a result of a user gaining authorization for
permissions associated with conflicting roles. One means of preventing this form of conflict of interest is
through static separation of duty, that is, to enforce constraints on the assignment of users to roles. This
means that if a user is assigned to one role, the user is prohibited from being a member of a second role.
For example, a user who is assigned to the role Billing Clerk may not be assigned to the role Accounts
Receivable Clerk. That is, the roles Billing Clerk and Accounts Receivable Clerk are mutually exclusive.
An SSD policy can be centrally specified and then uniformly imposed on specific roles. From a policy
perspective, static constraint relations provides a powerful means of enforcing conflict of interest and other
separation rules over sets of RBAC elements. Static constraints generally place restrictions on

administrative operations that have the potential to undermine higher-level organizational Separation of
Duty policies.

Static constraints can take on a wide variety of forms. A common example is that of Static Separation of
Duty (SSD) that defines mutually disjoint user assignments with respect to sets of roles. Static constraints
have also been shown to be a powerful means of implementing a number of other important separation of
duty policies [FCK96; Kuh97; SZ97; GGF98; GI96]. For example, Gligor, et al. has formally defined four
other types of static separation of duty policies. The static constraints defined in this model are limited to
those relations that that place restrictions on sets of roles and in particular on their ability to form UA
relations. Although formal RBAC models and RBAC policy specifications have grown well beyond these
simple relations, we know of no commercial products that implement these advanced static separation of
duty relations.

RBAC models have defined SSD relations with respect to constraints on user-role assignments over pairs
of roles (i.e., no user can be simultaneously assigned to both roles in SSD). Although real world examples
of this SSD policy exist, this definition is overly restrictive in two important aspects. The first aspect being
the size of the set of roles in the SSD and the second being the combination of roles in the set for which
user assignment is restricted. In this model we define SSD with two arguments—a role set that includes
two or more roles and cardinality greater than one indication a combination of roles that would constitute a
violation of the SSD policy. For example, an organization may require that no one user may be assigned to
three of the four roles that represent the purchasing function.

As illustrated in figure 5, SSD relations may exist within hierarchical RBAC. When applying SSD relations
in the presence of a role hierarchy, special care must be applied to ensure that user inheritance does not
undermine SSD policies. As such, role hierarchies have been defined to include the inheritance of SSD
constraints [GB98, FBK99]. If for example, the role Accounts Receivable Supervisor inherits Accounts
Receivable Clerk, and Accounts Receivable Clerk has an SSD relationship with Billing Clerk, then
Accounts Receivable Supervisor also has an SSD relationship with Billing Clerk. To address this potential
inconsistency we define SSD as a constraint on the authorized users of the roles that have an SSD relation.

Figure 5: SSD within Hierarchical RBAC

The formal definition of Static Separation of Duty is given below.

Definition 3a Static Separation of Duty:

user_
sessions session_roles

SES-
SIONS

USERS ROLES
 OPS

OBS

 PRMS

 (UA)
User Assign-
ment

 (PA)
Permission
Assignment

 (RH)
Role Hierarchy

SSD

• SSD ⊆ (2ROLES % N) is collection of pairs (rs, n) in Static Separation of Duty, where each rs is a role set and n
is a natural number µ2, with the property that no user is assigned to n or more roles from the set rs in each
(rs, n)∈ SSD. Formally:


sr

rsersassigned_unsrssSSDnrs
∈

=⇒≥⊆∀∈∀)(:,),(∅.

Definition 3b Static Separation of Duty in the Presence of a Hierarchy:

• In the presence of a role hierarchy Static Separation of Duty is redefined based on authorized users

rather than assigned users as follows:


sr

r_usersauthorizednsrssSSDnrs
∈

=⇒≥⊆∀∈∀)(:,),(∅.

3.3.2 Dynamic Separation of Duty Relations

Static separation of duty relations reduce the number of potential permissions that can be made available to
a user by placing constraints on the users that can be assigned to a set of roles. Dynamic Separation of
duty (DSD) relations, like SSD relations, are intended to limit the permissions that are available to a user.
However DSD relations differ from SSD relations by the context in which these limitations are imposed.
SSD relations define and place constraints on a user’s total permission space. This model component
defines DSD properties that limit the availability of the permissions over a user’s permission space by
placing constraints on the roles that can be activated within or across a user’s sessions. DSD properties
provide extended support for the principle of least privilege in that each user has different levels of
permission at different times, depending on the role being performed. These properties ensure that
permissions do not persist beyond the time that they are required for performance of duty. This aspect of
least privilege is often referred to as timely revocation of trust. Dynamic revocation of permissions can be a
rather complex issue without the facilities of dynamic separation of duty, and as such it has been generally
ignored in the past for reasons of expediency.

This model component provides the capability to enforce an organization-specific policy of dynamic
separation of duty (DSD). SSD relations provide the capability to address potential conflict-of-interest
issues at the time a user is assigned to a role. DSD allows a user to be authorized for two or more roles that
do not create a conflict of interest when acted in independently, but produce policy concerns when
activated simultaneously. For example, a user may be authorized for both the roles of Cashier and Cashier
Supervisor, where the supervisor is allowed to acknowledge corrections to a Cashier’s open cash drawer. If
the individual acting in the role Cashier attempted to switch to the role Cashier Supervisor, RBAC would
require the user to drop the Cashier role, and thereby force the closure of the cash drawer before assuming
the role Cashier Supervisor. As long as the same user is not allowed to assume both of these roles at the
same time, a conflict of interest situation will not arise. Although this effect could be achieved through the
establishment of a static separation of duty relationship, DSD relationships generally provide the enterprise
with greater operational flexibility.

We define dynamic separation of duty relations as a constraint on the roles that are activated in a user’s
session (see figure 6).

Figure 6: Dynamic Separation of Duty Relations

The formal definition of Dynamic Separation of Duty is given below.

Definition 5 Dynamic Separation of Duty:

• DSD ⊆ (2ROLES % N) is collection of pairs (rs, n) in Dynamic Separation of Duty, where each rs is a role set and

n is a natural number µ2, with the property that no subject may activate n or more roles from the set rs in each
dsd∈DSD. Formally:
∀rs∈2ROLES, n∈N, (rs, n)∈DSD ⇒ n µ 2 . |rs| µ n, and
∀s∈SESSIONS, ∀rs∈2ROLES, ∀role_subset∈2ROLES, ∀n∈N, (rs, n)∈DSD,
role_subset ⊆ rs, role_subset ⊆ session_roles(s) ⇒ ξrole_subsetξ < n.

4 REQUIREMENTS SPECIFICATION OVERVIEW

In this section, we provide an overview of the functionality involved in meeting the requirements for each
of the components defined in the previous section. In Section 3, we defined RBAC as four Model
Components in terms of an abstract set of element sets, relations, and administrative queries. In this
section, we cast the abstract model concepts into functional requirements for administrative operations,
session management, and administrative review. The RBAC Requirements specification outlines the
semantics of the various functions that are required for creation and maintenance of the RBAC Model
components (element sets and relations), as well as supporting system functions.

The three categories of functions in the RBAC requirements specification and their purpose are:

• Administrative Functions - creation and maintenance of elements sets and relations for building
the various component RBAC models;

• Supporting System Functions - functions that are required by the RBAC implementation to support
the RBAC model constructs (e.g., RBAC session attributes and access decision logic) during user
interaction with an IT system;

• Review Functions - review the results of the actions created by administrative functions.

A complete specification of these functions using the Z notation is given in Appendix A. Each subsection
in Section 4 provides an overview of the correspondingly numbered subsection in Appendix A (e.g.,
section 4.1.2 summarizes A.1.2.) Function descriptions in Appendix A are intended to provide a level of
detail sufficient for evaluating RBAC implementations for conformance with the RBAC Reference Model.

user_
sessions

session_roles

SESS-
 IONS

USERS ROLES
 OPS

OBS

 PRMS

 (UA)
User Assign-
ment

 (PA)
Permission
Assignment

DSD

4.1 Requirements Specification for Core RBAC

4.1.1 Administrative Functions

Creation and Maintenance of Element Sets: The basic element sets in Core RBAC are USERS, ROLES,
OPS and OBS. Of these element sets, OPS and OBS are considered predefined by the underlying
information system for which RBAC is deployed. For example, a banking system may have predefined
transactions (OPS) for savings deposit and others, and predefined data sets (OBS) such as savings files,
address files, and other necessary data. Administrators create and delete USERS and ROLES, and establish
relationships between roles and existing operations and objects. Required administrative functions for
USERS are AddUser and DeleteUser, and for ROLES are AddRole and DeleteRole.

Creation and Maintenance of Relations: The two main relations of Core RBAC are (a) user-to-role
assignment relation (UA) and (b) permission-to-role assignment relation (PA). Functions to create and
delete instances of User-to-Role Assignment (UA) relations are AssignUser and DeassignUser. For
Permission-to-Role Assignment (PA) the required functions are GrantPermission and RevokePermission.

4.1.2 Supporting System Functions

Supporting System Functions are required for session management and in making access control decisions.
An Active Role is necessary for regulating access control for a user in a session. The function that creates a
session establishes a default set of active roles for the user at the start of the session. The composition of
this default set can then be altered by the user during the session by adding or deleting roles. Functions
relating to addition and dropping of active roles and other auxiliary functions are given below:

• CreateSession - Creates a User Session and provides the user with a default set of active roles
• AddActiveRole - Adds a role as an active role for the current session
• DropActiveRole - Deletes a role from the active role set for the current session
• CheckAccess – Determines if the session subject has permission to perform the requested

operation on an object.

4.1.3 Review Functions

When User-to-Role Assignment (UA) and Permission-to-Role relation (PA) instances have been created, it
should be possible to view the contents of those relations from both the User and Role perspectives. For
example, from the UA relation, the administrator should have the facility to view all the users assigned to a
given role as well to view all the roles assigned to a given user. In addition, it should be possible to view
the results of the supporting system functions to determine some session attributes – like the active roles in
a given session, the total permission domain for a given session. Since not all RBAC implementations
provide facilities for viewing role, user and session permissions or active roles for a session, these functions
have been designated as optional/advance functions in our requirement specification. Mandatory (M) and
Optional (O) review functions are:

• AssignedUsers (M) - Returns the set of Users assigned to a given role
• AssignedRoles (M) - Returns the set of roles assigned to a given user
• RolePermissions (O) - Returns the set of permissions granted to a given role
• UserPermissions (O) - Returns the set of permissions a given user gets through his/her assigned

roles
• SessionRoles(O) - Returns the set of active roles associated with a session
• SessionPermissions (O) - Returns the set of permissions available in the session (i.e., union of all

permissions assigned to sesssion’s active roles)

4.2 Requirements Specification for Hierarchical RBAC

4.2.1 Hierarchical Administrative Functions

The administrative functions required for hierarchical RBAC include all the administrative functions that
were required for Core RBAC. However, the semantics for DeassignUser must be redefined because the
presence of role hierarchies gives rise to the concept of authorized roles for a user. In other words, a user
may inherit authorization for a role even if he or she is not directly assigned to the role. The hierarchy
allows users to inherit permissions from roles that are junior to their assigned roles. An important issue is
whether a user can only be deassigned from a role that was directly assigned to the user or can be
deassigned from one of the (indirectly) authorized roles. The appropriate course of action is left as an
implementation issue and is not prescribed in this specification.

The additional administrative functions required for the Hierarchical RBAC model pertain to creation and
maintenance of the partial order relation (RH) among roles. The operations for a partial order involve
either: (a) creating (or deleting) an inheritance relationship among two existing roles in a role set or (b)
adding a newly created role at an appropriate position in the hierarchy by making it the ascendant or
descendant role of an another role in the existing hierarchy. The name and purpose of these functions are
summarized below:

• AddInheritance - Establish a new immediate inheritance relationship between two existing roles
• DeleteInheritance - Delete an existing immediate inheritance relationship between two roles
• AddAscendant - Create a new role and add it as an immediate ascendant of an existing role
• AddDescendant - Create a new role and add it as an immediate descendant of an existing role

The model provides for both general and limited hierarchies. A general hierarchy allows multiple
inheritance, while a limited hierarchy is essentially a tree (or inverted tree) structure. For a limited
hierarchy, the AddInheritance function is constrained to a single ascendant (or descendent) role.

The outcome of DeleteInheritance function may result in multiple scenarios. When DeleteInheritance is
invoked with two given roles, say Role A and Role B, the implementation system is required to do one of
two things. 1) The system may preserve the implicit inheritance relationships that roles A and B have with
other roles in the hierarchy. That is, if role A inherits other roles, say C and D, through role B, role A will
maintain permissions for C and D after the relationship with role B is deleted. 2) A second option is to
break those relationships because an inheritance relationship no longer exists between Role A and Role B.
The question of which semantics the DeleteInheritance should carry is left as an implementation issue and
is not prescribed in our specification.

4.2.2 Supporting System Functions

The Supporting System Functions for Hierarchical RBAC are the same as for Core RBAC and provide the
same functionality. However because of the presence of a role hierarchy, the functions CreateSession and
AddActiveRole have to be re-defined. In a role hierarchy, a given role may inherit one or more of other
roles. When that given role is activated by a user, the question of whether the inherited roles are
automatically activated or must be explicitly activated is left as an implementation issue and no one course
of action is prescribed as part of this specification. However, when the latter scenario is implemented (i.e.
explicit activation) the corresponding supporting functionality shall be provided in the supporting system
functions. For example, in the case of CreateSession function, the active role set created as a result of the
new session shall include not only roles directly assigned to a user but also some or all of the roles inherited
by those “directly assigned roles” (that were previously included in the default Active Role Set) as well.
Similarly, in the AddActiveRole function, a user can activate a directly assigned role or one or more of the
roles inherited by the “directly assigned role”.

4.2.3 Review Functions

All the review functions specified for Core RBAC remain valid for Hierarchical RBAC as well. In addition,
since the user membership set for a given role includes not only users directly assigned to that given role
but also those users assigned to roles that inherit the given role. Analogously the role membership set for a
given user includes not only roles directly assigned to the given user but also those roles inherited by the
directly assigned roles. To capture this expanded “User Memberships for Roles” and “Role Memberships
for a User” the following functions are defined:

• AuthorizedUsers - Returns the set of users directly assigned to a given role as well as those who
were members of those “roles that inherited the given role”.

• AuthorizedRoles - Returns the set of roles directly assigned to a given user as well as those “roles
that were inherited by the directly assigned roles”.

Because of the presence of partial order among the roles, the permission set for a given role includes not
only the permissions directly assigned to a given role but also permissions obtained from the roles that the
given role inherited. Consequently the permission set for user who is assigned that given role becomes
expanded as well. These “Permissions Review” functions are listed below. As already alluded to, since not
all RBAC implementations provide this facility, these are treated as advanced/optional functions:

• RolePermissions - Returns the set of all permissions either directly granted to or inherited by a
given role

• UserPermissions - Returns the set of permissions of a given user through his/her authorized roles
(sum of directly assigned roles and roles inherited by those roles)

4.3 Requirements Specification for SSD Relation

4.3.1 Administrative Functions

The administrative functions for an SSD RBAC model without hierarchies shall include all the
administrative functions for Core RBAC. However since the SSD property relates to membership of users
in conflicting roles, the AssignUser function shall incorporate functionality to verify and ensure that a
given user assignment does not violate the constraints associated with any instance of an SSD relation.

As already described under the SSD RBAC reference model, an SSD relation consists of a triplet –
(SSD_Set_Name, role_set,SSD_Card). The SSD_Set_Name indicates the transaction or business process in
which common user membership must be restricted in order to enforce a conflict of interest policy. The
role_set is a set containing the constituent roles for the named SSD relation (and referred to as Named SSD
role set). The SSD_Card designates the cardinality of the subset within the role_set to which common user
memberships must be restricted. Hence, administrative functions relating to creation and maintenance of
an SSD relation are operations that Create and Delete an instance of an SSD relation, add and delete role
members to the role-set parameter of the SSD relation, as well as to change/set the SSD_Card parameter for
the SSD relation. These functions are summarized below:

• CreateSSDSet - Create a named instance of an SSD relation
• DeleteSSDSet - Deletes an existing SSD relation
• AddSSDRoleMember - Adds a role to a named SSD role set
• DeleteSSDRoleMember - Deletes a role from a named SSD role set
• SetSSDCardinality - Sets the cardinality of the subset of roles from named SSD role set for which

common user membership restriction applies

For the case of SSD RBAC models with role hierarchies (both General Role Hierarchies and Limited Role
Hierarchies), the above functions produce the same end-result with one exception: constraints governing
the combination of role hierarchies and SSD relations shall be enforced when these functions are invoked.
For example, roles within a hierarchical chain cannot be made members of a role set in an SSD relation.

4.3.2 Supporting System Functions

The Supporting System Functions for an SSD RBAC Model are the same as those for the Core RBAC
Model.

4.3.3 Review Functions

All the review functions for Core RBAC model are needed for implementation of SSD RABC model. In
addition, functions to view the results of administrative functions listed in section 4.3.1 shall also be
provided. These include: (a) a function to reveal the set of named SSD relations created, (b) a function that
returns the set of roles associated with a named SSD role set, and (c) a function that gives the cardinality of
the subset within the named SSD role set for which common user membership restriction applies.

• SSDRoleSets - Returns the set of named SSD relations created for the SSD RBAC model
• SSDRoleSetRoles - Returns the set of roles associated with a named SSD role set
• SSDRoleSetCardinality - Returns the cardinality of the subset within the named SSD role set for

which common user membership restriction applies

4.4 Requirements Specification for DSD Relation

4.4.1 Administrative Functions

The semantics of creating an instance of DSD relation are identical to that of an SSD relation. While
constraints associated with an SSD relation are enforced during user assignments (as well as while creating
role hierarchies), the constraints associated with DSD are enforced only at the time of role activation within
a user session. The list of administrative functions that shall be provided for DSD RBAC model and their
purpose are listed below:

• CreateDSDSet - Create a named instance of DSD relation
• DeleteDSDSet - Deletes an existing DSD relation
• AddDSDRoleMember - Adds a role to a named DSD role set
• DeleteDSDRoleMember - Deletes a role from a named DSD role set
• SetDSDCardinality - Sets the cardinality of the subset of roles from named DSD role set for which

user activation restriction within the same session applies

4.4.2 Supporting System Functions

Recall from Section 4.1.2 that the supporting system functions for Core RBAC are: (a) CreateSession (b)
AddActiveRole and (c) DeleteActiveRole. These system functions shall be available for a DSD RBAC
model implementation without role hierarchies as well. However, the additional functionality required of
these functions in the DSD RBAC model context is that they should enforce the DSD constraints. For
example during the invocation of the CreateSession function, the default active role set that is made
available to the user should not violate any of the DSD constraints. Similarly, the AddActiveRole function
shall check and prevent the addition of any active role to the session’s active role set that violates any of the
DSD constraints.

The semantics of the Supporting System Functions for a DSD RBAC Model with role hierarchies (both
General Role Hierarchy and Limited Role Hierarchy) are the same as those for corresponding functions for
hierarchical RBAC in section 4.2.2.

• CreateSession - Creates a User Session and provides the user with a default set of active roles
• AddActiveRole - Adds a role as an active role for the current session
• DropActiveRole - Deletes a role from the active role set for the current session

4.4.3 Review Functions

All the review functions for Core RBAC model are needed for implementation of DSD RABC model. In
addition, functions to view the results of administrative functions listed in section 4.4.1 shall also be
provided. These include: (a) a function to reveal the set of named DSD relations created, (b) a function that
returns the set of roles associated with a named DSD role set and (c) a function that gives the cardinality of
the subset within the named DSD role set for which common user membership restriction applies.

• DSDRoleSets - Returns the set of named SSD relations created for the DSD RBAC model
• DSDRoleSetRoles - Returns the set of roles associated with a named DSD role set
• DSDRoleSetCardinality - Returns the cardinality of the subset within the named DSD role set for

which user activation restriction within the same session applies

5 REQUIREMENT PACKAGES

As eluded in section 1, RBAC is a technology that provides a diverse set of access control management
features. In a categorization of these features, Section 4 defined a family of four requirement components to
include Core RBAC, Hierarchical RBAC, Static Separation of Duty Relations, and Dynamic Separation of
Duty Relations. Each requirements component includes three sections—administrative operations for the
creation and maintenance of RBAC sets and relations, administrative review functions, and system level
functions for the binding of roles to a user’s session and making access control decisions.

In this section we describe a logical approach for defining packages of requirement components, where
each package may pertain to a different threat environment and/or market segment. The basic concept is
that each component can optionally be selected for inclusion into a package with one exception—Core
RBAC must be included as a part of all packages. In selecting components, the reader is referred to section
2 for a rationale of each component. Also, see Figure 7 for an overview of the methodology for composing
requirement packages.

In defining requirement packages Core RBAC is unique in that it is fundamental and must be included in
all packages. As such any package must begin with the selection of Core RBAC. Core RBAC includes an
advanced review feature that may be optionally selected. For some environments the selection of the single
Core RBAC component may be sufficient.

Hierarchical RBAC includes two subcomponents—General Role Hierarchies and Limited Role
Hierarchies. If Hierarchical RBAC is selected to be included in a package then a choice must be made as to
which of these subcomponents is to be included. Like Core RBAC, Hierarchical RBAC includes an
advanced review feature that may be optionally selected.

The Static Separation of Duty Relations component also includes two subcomponents—Static Separation
of Duty Relations and Static Separation of Duty Relations in the Presence of a Hierarchy. If this component
is selected for inclusion in a package then a dependency relation must be recognized. That is, if the package
includes a Hierarchical RBAC component then Static Separation of Duty Relations in the Presence of a

Hierarchy must be included in the package; otherwise the Static Separation of Duty Relations
subcomponent must be selected.

The final component is Dynamic Separation of Duty Relations. This component does not include any
options or dependency relations other than with Core RBAC.

Figure 7: Methodology for Creating Requirements Packages

Core RBAC

Hierarchical RBAC
a. General

Hierarchy
b. Limited

Hierarchy

SSD Relations
a. SSD without

Hierarchies
b. SSD with

Hierarchies

DSD Relations

Select Core RBAC

Option: Advanced
Review Feature

Choose a. or b.

Option: Advanced
Review Feature

Adhere to
dependency

Requirements Package

6 CONCLUSIONS

The driving motivation for RBAC is to simplify security policy administration while facilitating the
definition of flexible, customized policies. Over the past nine years significant advancements have been
made in both the theoretical modeling and practical implementation of RBAC features. Today RBAC is
becoming expected among large organizations and the number of vendors that offer RBAC features is
growing rapidly. This development continues without general agreement on RBAC features. This paper is a
first attempt to develop an authoritative definition of well-accepted RBAC features for use in authorization
management systems. Although RBAC continues to be an evolving technology, the RBAC features that
were chosen to be included within this proposed standard represent a stable and well-accepted set of
features, and are known to be included within a wide breadth of commercial products and reference
implementations.

Standardization over a stable set of RBAC features is expected to provide a multitude of benefits. These
benefits include a common set of benchmarks for vendors, who are already developing RBAC mechanisms,
to use in their product specifications. It will give IT consumers, who are the principle beneficiary of RBAC
technology, a basis for the creation of uniform acquisition specifications. In addition, an RBAC standard
will allow for the subsequent development of a standard RBAC API that would in turn promote the
development of innovative authorization management tools by guaranteeing interoperability and
portability.

Although RBAC is often considered a single access control and authorization model, it is in fact composed
of a number of models each fit for a specific security management application. RBAC is also an open-
ended technology, which ranges from the very simple to fairly sophisticated, as defined in numerous RBAC
models and system specifications. Although these models and product specifications seem to agree on a
fundamental set of RBAC concepts, they differ significantly in their terminology.

To address these issues, this proposed standard specifies a Reference Model, defined as a collection of four
model components. The Model components are intended to provide a standard vocabulary of relevant terms
for defining a broad range of RBAC features. This proposed standard also includes an RBAC Requirements
Specification that casts the reference model into a congruent set of requirement components, where each
component defines specific requirements for administrative operations to create and maintain RBAC sets
and relations, review functions, and system features pertaining to the corresponding model component.
RBAC requirement model components can be combined into a variety of packages to arrive at a relevant
collection of requirements for product development, system evaluation or system acquisition specification.
To facilitate this packaging of requirements a rationale for the selection of components has been provided.

References

[AS00] Gail Ahn and Ravi Sandhu. "Role-Based Authorization Constraints Specification." ACM
Transactions on Information and System Security, Volume 3, Number 4, November 2000.
[BL76] D. Bell and La Padula. Secure computer systems: unified exposition and MULTICS. Report ESD-
TR-75-306, The MITRE Corporation, Bedford, Massachusetts, March 1976.
[BBF00] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: a temporal role-based access control model. In
Proc. of fifth ACM Workshop on Role based access control, pp. 21-30, 2000.
[Bal90] R. W. Baldwin. Naming and grouping privileges to simplify security management in large
databases. In proc. of the Symp. on Security and Privacy, pp. 116-132. IEEE Press, 1990.
[BN89] D. Brewer and M. Nash. The Chinese wall security policy. In proc. of the Symp. on Security and
Privacy, pp. 215-228. IEEE Press, 1989.
[CR98] R. Chandramouli and R. Sandhu. Role-based access control features in commercial database
management systems. In Proc. of the NIST-NSA Nat. (USA) Comp. Security Conf., pp 503-511, 1998.
[CW87] D. Clark and D. Wilson. A comparison of commercial and military computer security policies. In
proc. of the Symp. on Security and Privacy, pp. 184-194. IEEE Press, 1987.
[Fei96] H. Feinstein. Final report: NIST small business innovative research (SBIR) grant: role based
access control: phase 2. SETA Corp., October 1996.
[Faden99] G. Faden. Rbac in Unix administration. In Proc. of fourth ACM Workshop on Role based access
control, pp. 95-101, 1999.
[FK92] D. Ferraiolo and R. Kuhn. Role-Based Access Control. In Proc. of the NIST-NSA Nat. (USA)
Comp. Security Conf., pp 554-563, 1992
[FCK95] D. Ferraiolo, J. Cugini, and R. Kuhn. Role-based access control: Features and motivations. In
Proc. of the Annual Computer Security Applications Conf., IEEE Press, 1995.
[FBK99] D. Ferraiolo, J. Barkley, and R. Kuhn. A role-based access control model and reference
implementation within a corporate internet. ACM Transactions on Information and System Security, 2(1),
1999.
[FG93] D. Ferraiolo, D. Gilbert, and N. Lynch. An examination of federal and commercial access control
policy needs. In Proc. of the NIST-NSA Nat. (USA) Comp. Security Conf., pp 107-116, 1993
[FBK99] D. Ferraiolo, J. Barkley, and R. Kuhn. A role based access control model and reference
implementation within a corporate intranet. ACM Transactions on Information and System Security, 2(1),
1999.
[GB98] S. Gaverila and J Barkley. Formal specification for rbac user/role and role relationship
management. In Proc. of third ACM Workshop on Role based access control, pp. 81-90, 1998.
[GI96] L. Giuri and P. Iglio. A formal model for role based access control with constraints. In proc. of the
Computer Security Foundations Workshop, pp. 136-145. IEEE Press, 1996.
[GGF98] V.D. Gligor, S.I. Gavrila, D.F. Ferraiolo. On the Formal Definition of Separation-of-Duty
Policies and their Composition. Proc. Symp. on Security and Privacy, IEEE Press,1998.
[HA99] W. Huang and V. Atluri. A secure web-based workflow management system. In Proc. of fourth
ACM Workshop on Role based access control, pp. 83-84, 1999.
[JT00] T. Jaeger and J. Tidswell. Rebuttal to the NIST rbac model proposal. In proceedings of 5th ACM
Workshop on Role-Based Access Control, pages 65-66. (Berlin, Germany, July 2000). ACM.
[Kuh97] R. Kuhn. Mutual exclusion as a means of implementing separation of duty requirements in role
based access control systems. In Proc. of Second ACM Workshop on Role based access control, 1997,
pages 23 – 30.
[Kuh98] D.R. Kuhn. Role Based Access Control on MLS Systems Without Kernel Changes. In Proc.
ACM Workshop on Role Based Access Control, October 22-23,1998 pages 25 - 32.
[Lam74] B. Lampson. Protection. ACM Operating Sys. Reviews, 8(1):18-24, 1974.
[MMN90] C. McCollum, J. Messing, L. Notargiacomo. Beyond the pale of MAC and DAC – defining new
forms of access control. In proc. of the Symp. on Security and Privacy, pp. 190-900. IEEE Press, 1990.
[Moffett98] Jonathan D. Moffett, "Control principles and role hierarchies." Proc. Third ACM Workshop on
Role-Based Access Control, Fairfax, Virginia, October 22-23, 1998, pages 63 - 69.

[NO94 M. Nyanchama and S. Osborn. Access rights administration in role-based security systems. In J.
Biskup, M. Morgenstern, and C. E. Landwehr, editors, Database Security, VIII: Status and Prospects,
pages 37-56. North-Holland, 1994.
[NO99] M. Nyanchama and S. Osborn. The graph model and conflicts of interest. ACM Transactions on
Information and System Security, 2(1), 1999.
[OSM00] S. Osborn, R. Sandhu and Q. Munawer. Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information and System
Security, 3(2), 2000.
[San88] Ravi Sandhu, "Transaction Control Expressions for Separation of Duties." Proc. Fourth
Aerospace Computer Security Applications Conference, Orlando, Florida, IEEE Computer Society Press,
December 1988, pages 282-286
[SM97] R. Sandhu and V. Bhamidipoti. Role-Based Administration of User-Role Assignment: The
URA97 Model and its Oracle Implementation. Journal of Computer Security, Volume 7. 1997.
[SCFY96] R Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control models. IEEE
Computer, 29(2), February 1996.
[San98] Ravi Sandhu, "Role Activation Hierarchies." Proc. Third ACM Workshop on Role-Based Access
Control, Fairfax, Virginia, October 22-23, 1998, pages 33-40.
[San98b] Ravi Sandhu, "Role-Based Access Control." Advances in Computers, Volume 46,
(M. Zelkowitz editor), Academic Press, pages 237-286, 1998.
[SBM97] Ravi Sandhu, Venkata Bhamidipati and Qamar Munawer. "The ARBAC97 Model for Role-
Based Administration of Roles." ACM Transactions on Information and System Security, Volume 2,
Number 1, February 1999, pages 105-135.
[SFK00] R. Sandhu, D. Ferraiolo, R. Kuhn. The nist model for role-based access control: Towards a
unified standard. In proceedings of 5th ACM Workshop on Role-Based Access Control, pages 47-63.
(Berlin, Germany, July 2000). ACM.
[SZ97] R. Simon and M. Zurko. Separation of duty in role based access control environments. In Proc. of,
New Security Paradigms Workshop, September 1997.
[SCYG96] C. Smith, E. Coyne, C. Youman and S. Ganta. Market analysis report: NIST small business
innovative research (SBIR) grant: role based access control: phase 2. A marketing survey of civil federal
government organizations to determine the need for role-based access control security product, SETA
Corp., July 1996.
[TDH92] T. C. Ting, S. A. Demurjian, and M. Y. Hu. Requirements capabilities and Functionalities of
User-Role Based Security for an Object-Oriented Design Model. In S. Jajodia and C. E. Landwehr, editors,
Database Security, IV: Status and Prospects, pages 275-296. North-Holland, 1992.
[Thomsen91] D. J. Thomsen. Role-based application design and enforcement. In S. Jajodia and C. E.
Landwehr, editors, Database Security, IV: Status and Prospects, pages 151-168. North-Holland, 1991.

Appendix A: RBAC REQUIREMENTS SPECIFICATION

The RBAC Requirements Specification specifies administrative operations for the creation and
maintenance of RBAC element sets and relations; administrative review functions for performing
administrative queries; and system functions for creating and managing RBAC attributes on user sessions
and making access control decisions. Functions are defined with sufficient precision to meet the needs of
conformance testing and assurance, while providing developers with design flexibility and the ability to
incorporate additional features to meet the needs of users.

The notation used in the formal specification of the RBAC requirements is basically a subset of the Z
notation. The only major change is the representation of a schema as follows:

Schema-Name (Declaration) ♥ Predicate; …; Predicate ♦.

Most abstract data types and functions used in the formal specification are defined in Section 3, RBAC
Reference Model. New abstract data types and functions are introduced as needed. NAME is an abstract
data type whose elements represent identifiers of entities that may or may not be included in the RBAC
system (roles, users, sessions, etc.).

A.1 Requirements for Core RBAC

A.1-1 Administrative Commands for Core RBAC

AddUser
This command creates a new RBAC user. The command is valid only if the new user is not already a
member of the USERS data set. The USER data set is updated. The new user does not own any session at
the time of its creation. The following schema formally describes the command AddUser:

AddUser user NAME
user USERS
USERS USERS user
user sessions user sessions user

(:)

{ }
_ _ { }



 

∉
′ = ∪

′ = ∪ ∅

DeleteUser
This command deletes an existing user from the RBAC database. The command is valid if and only if the
user to be deleted is a member of the USERS data set. The USERS and UA data sets and the assigned_users
function are updated. It is an implementation decision how to proceed with the sessions owned by the user
to be deleted. The RBAC system could wait for such a session to terminate normally, or it could force its
termination. Our presentation illustrates the case when those sessions are forcefully terminated. The
following schema formally describes the command DeleteUser:

DeleteUser user NAME
user USERS

s SESSIONS s user sessions user DeleteSession s
UA UA r ROLES user r
assigned users r ROLES r assigned users r user
USERS USERS user

(:)

[_ () ()]
\ { : }

_ { : (_ () \ { })}
\ { }









∈
∀ ∈ • ∈ ⇒
′ = •

′ = •
′ =

AddRole
This command creates a new role. The command is valid if and only if the new role is not already a
member of the ROLES data set. The ROLES data set and the functions assigned_users and

assigned_permissions are updated. Initially, no user or permission is assigned to the new role. The
following schema formally describes the command AddRole:

AddRole role NAME
role ROLES
ROLES ROLES role
assigned users assigned users role
assigned permissions assigned permissions role

(:)

{ }
_ _ { }
_ _ { }





 

∉
′ = ∪

′ = ∪ ∅
′ = ∪ ∅

DeleteRole
This command deletes an existing role from the RBAC database. The command is valid if and only if the
role to be deleted is a member of the ROLES data set. It is an implementation decision how to proceed with
the sessions in which the role to be deleted is active. The RBAC system could wait for such a session to
terminate normally, it could force the termination of that session, or it could delete the role from that
session while allowing the session to continue. Our presentation illustrates the case when those sessions are
forcefully terminated.

DeleteRole role NAME
role ROLES

s SESSIONS role session roles s DeleteSession s
UA UA u USERS u role
assigned users assigned users role asigned users role
PA PA op OPS obj OBJS op obj role
assigned permissions assigned permissions role assigned permissions role
ROLES ROLES role

(:)

[_ () ()]
\ { : }

_ _ \ { _ ()}
\ { : , : (,) }

_ _ \ { _ ()}
\ { }













∈
∀ ∈ • ∈ ⇒
′ = •

′ =
′ = •

′ =
′ =

AssignUser
This command assigns a user to a role. The command is valid if and only if the user is a member of the
USERS data dset, the role is a member of the ROLES data set, and the user is not already assigned to the
role. The data set UA and the function assigned_users are updated to reflect the assignment. The following
schema formally describes the command:

AssignUser user role NAME
user USERS role ROLES user role UA
UA UA user role
assigned users assigned users role assigned users role

role assigned users role user

(, :)
; ; ()

{ }
_ _ \ { _ ()}

{ (_ () { })}









 

∈ ∈ ∉
′ = ∪

′ = ∪
∪

DeassignUser
This command deletes the assignment of the user user to the role role. The command is valid if and only if
the user is a member of the USERS data set, the role is a member of the ROLES data set, and the user is
assigned to the role.
It is an implementation decision how to proceed with the sessions in which the session user is user and one
of his/her active roles is role. The RBAC system could wait for such a session to terminate normally, or
could force its termination, or could inactivate the role. Our presentation illustrates the case when those
sessions are forcefully terminated. The following schema formally describes the command DeassignUser:

DeassignUser user role NAME
user USERS role ROLES user role UA

s SESSIONS s user sessions user role session roles s DeleteSession s
UA UA user role
assigned users assigned users role asigned users role

role asigned users role user

(, :)
; ; ()

[: _ () _ () ()]
\ { }

_ _ \ { _ ()}
{ (_ () \ { })}









 

∈ ∈ ∈
∀ • ∈ ∧ ∈ ⇒
′ =

′ = ∪

GrantPermission
This command grants a role the permission to perform an operation on an object to a role. The command
may be implemented as granting permissions to a group corresponding to that role, i.e., setting the access
control list of the object involved.
 The command is valid if and only if the pair (operation, object) represents a permission, and the role is a
member of the ROLES data set. The following schema formally defines the command:

GrantPermission object operation role NAME
operation object PERMS role ROLES

PA PA operation object role
assigned permissions assigned permissions role assigned permissions roles

role assigned permissions role operation object

(, , :)
(,) ;

{(,) }
_ _ \ { _ ()}

{ (_ () {(,)})}







 

∈ ∈
′ = ∪

′ = ∪
∪

RevokePermission
This command revokes the permission to perform an operation on an object from the set of permissions
assigned to a role. The command may be implemented as revoking permissions from a group
corresponding to that role, i.e., setting the access control list of the object involved.
 The command is valid if and only if the pair (operation, object) represents a permission, the role is a
member of the ROLES data set, and the permission is assigned to that role. The following schema formally
describes the command:

RevokePermission operation object role NAME
operation object PERMS role ROLES operation object role PA

PA PA operation object role
assigned permissions assigned permissions role assigned permissions role

role assigned permissions role operation object

(, , :)
(,) ; ; ((,))

\ {(,) }
_ _ \ { _ ()}

{ (_ () \ {(,)})}









 

∈ ∈ ∈
′ =

′ = ∪

A.1-2 System Functions for Core RBAC

CreateSession(user, session)
This function creates a new session with a given user as owner and an active role set. The function is valid
if and only if:
- the user is a member of the USERS data set, and
- the active role set is a subset of the roles assigned to that user. In a RBAC implementation, the

session’s active roles might actually be the groups that represent those roles.
The following schema formally describes the function. The session parameter, which represents the session
identifier, is actually generated by the underlying system.

CreateSession user NAME ars session NAME
user USERS ars r ROLES user r UA session SESSIONS
SESSIONS SESSIONS session
user sessions user sessions user user sessions user

user user sessions user session
session roles session roles session ars

NAMES(: ; : ; :)
; { : |() };

{ }
_ _ \ { _ ()}

{ (_ () { })}
_ _ { }

2 







 

∈ ⊆ ∈ ∉
′ = ∪

′ = ∪
∪

′ = ∪

DeleteSession(user, session)
This function deletes a given session with a given owner user. The function is valid if and only if the
session identifier is a member of the SESSIONS data set, the user is a member of the USERS data set, and
the session is owned by the given user. The following schema formally describes the function:

DeleteSession user session NAME
user USERS session SESSIONS session user sessions user
user sessions user sessions user user sessions user

user user sessions user session
session roles session roles session session roles session
SESSIONS SESSIONS session

(, :)
; ; _ ()

_ _ \ { _ ()}
{ (_ () \ { })}

_ _ \ { _ ()}
\ { }











∈ ∈ ∈
′ = ∪

′ =
′ =

AddActiveRole
This function adds a role as an active role of a session whose owner is a given user. The function is valid if
and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the session identifier is a member of the SESSIONS data set, and
- the role is assigned to the user, and
- the session is owned by that user.
In an implementation, the new active role might be a group that corresponds to that role. The following
schema formally describes the function:

AddActiveRole user session role NAME
user USERS session SESSIONS role ROLES session user sessions user
user role UA role session roles session

session roles session roles session session roles session
session session roles session role

(, , :)
; ; ; _ ()

() ; _ ()
_ _ \ { _ ()}

{ (_ () { })}







 

∈ ∈ ∈ ∈
∈ ∉
′ = ∪

∪

DropActiveRole
This function deletes a role from the active role set of a session owned by a given user. The function is
valid if and only if the user is a member of the USERS data set, the session identifier is a member of the
SESSIONS data set, the session is owned by the user, and the role is an active role of that session. The
following schema formally describes this function:

DropActiveRole user session role NAME
user USERS role ROLES session SESSIONS
session user sessions user role session roles session
session roles session roles session session roles session

session session roles session role

(, , :)
; ;
_ (); _ ()

_ _ \ { _ ()}
{ (_ () \ { })





 

∈ ∈ ∈
∈ ∈

′ = ∪

CheckAccess
This function returns a Boolean value meaning whether the subject of a given session is allowed or not to
perform a given operation on a given object. The function is valid if and only if the session identifier is a
member of the SESSIONS data set, the object is a member of the OBJS data set, and the operation is a
member of the OPS data set. The session’s subject has the permission to perform the operation on that
object if and only if that permission is assigned to (at least) one of the session’s active roles. An
implementation might use the groups that correspond to the subject’s active roles and their permissions as
registered in the object’s access control list. The following schema formally describes the function:

CheckAccess session operation object NAME out result BOOLEAN

session SESSIONS operation OPS object OBJS
result r ROLES r session roles session operation object r PA

(, , : ; :)
; ;

(: _ () ((,)))



 

∈ ∈ ∈
= ∃ • ∈ ∧ ∈

A.1-3 Review Functions for Core RBAC

AssignedUsers
This function returns the set of users assigned to a given role. The function is valid if and only if the role is
a member of the ROLES data set. The following schema formally describes the function:

AssignedUsers role NAME out result USERS

role ROLES
result u USERS u role UA

(: ; :)

{ : |() }

2 

 

∈
= ∈

AssignedRoles
This function returns the set of roles assigned to a given user. The function is valid if and only if the user is
a member of the USERS data set. The following schema formally describes the function:

AssignedRoles user NAME result ROLES

user USERS
result r ROLES user r UA

(: ; :)

{ : |() }

2 

 

∈
= ∈

A.1-4 Advanced Review Functions for Core RBAC

RolePermissions
This function returns the set of permissions (op, obj) granted to a given role. The function is valid if and
only if the role is a member of the ROLES data set. The following schema formally describes the function:

RolePermissions role NAME result PERMS

role ROLES
result op OPS obj OBJS op obj role PA

(: ; :)

{ : ; : | ((,)) }

2 

 

∈
= ∈

UserPermissions
This function returns the permissions a given user gets through his/her assigned roles. The function is valid
if and only if the user is a member of the USERS data set. The following schema formally describes this
function:

UserPermissions user NAME result PERMS

user USERS
result r ROLES op OPS obj OBJS user r UA op obj r PA op obj

(: ; :)

{ : ; : ; : | () ((,)) (,)}

2 

  

∈
= ∈ ∧ ∈ •

SessionRoles
This function returns the active roles associated with a session. The function is valid if and only if the
session identifier is a member of the SESSIONS data set. The following schema formally describes this
function:

SessionRoles session NAME out result ROLES

session SESSIONS
result session roles session

(: ; :)

_ ()

2 



∈
=

SessionPermissions
This function returns the permissions of the session session, i.e., the permissions assigned to its active roles.
The function is valid if and only if the session identifier is a member of the SESSIONS data set. The
following schema formally describes this function:

SessionPermissions session NAME out result PERMS

session SESSIONS
result r ROLES op OPS obj OBJS r session roles session op obj r PA

op obj

(: ; :)

{ : ; ; | _ () ((,))
(,)}

2 





∈
= ∈ ∈ ∈ ∧ ∈ •

A.2 Requirements for Hierarchical RBAC

A.2a General Role Hierarchies

A.2a-1 Administrative Commands for General Role Hierarchies

All functions of section A.1-1 remain valid. In addition, this section defines the following new, specific
functions:

AddInheritance

This commands establishes a new immediate inheritance relationship r_asc νν r_desc between existing
roles r_asc, r_desc. The command is valid if and only if r_asc and r_desc are members of the ROLES data
set, r_asc is not an immediate ascendant of r_desc, and r_desc does not properly inherit r_asc (in order to
avoid cycle creation). The following schema uses the notations:

 µ == ⁄

>> == νν

to formally describes the command:

AddInheritance r asc r desc NAME

r asc ROLES r desc ROLES r asc r desc r desc r asc
r q ROLES r r asc r desc q r q

(_ , _ :)
_ ; _ ; (_ _); (_ _)

{ , : | _ _ }



 

∈ ∈ ¬ >> ¬ ≥
′≥ = ≥ ∪ ≥ ∧ ≥ •

DeleteInheritance

This command deletes an existing immediate inheritance relationship r_asc νν r_desc. The command is
valid if and only if the roles r_asc and r_desc are members of the ROLES data set, and r_asc is an
immediate ascendant of r_desc. The new inheritance relation is computed as the reflexive-transitive
closure of the immediate inheritance relation resulted after deleting the relationship r_asc νν r_desc. The
following schema formally describes this command:

DeleteInheritance r asc r desc NAME

r asc ROLES r desc ROLES r asc r desc

r asc r desc

(_ , _ :)
_ ; _ ; _ _

(\ { _ _ })*



 

∈ ∈ >>

′≥ = >>

AddAscendant

This commands creates a new role r_asc, and inserts it in the role hierarchy as an immediate ascendant of
the existing role r_desc. The command is valid if and only if r_asc is not a member of the ROLES data set,
and r_desc is a member of the ROLES data set. Note that the validity conditions are verified in the schemas
AddRole and AddInheritance, referred to by AddAscendant.

AddAscendant r asc r desc NAME

AddRole r asc
AddInheritance r asc r desc

(_ , _ :)
(_)

(_ , _)





AddDescendant

This commands creates a new role r_desc, and inserts it in the role hierarchy as an immediate descendant of
the existing role r_asc. The command is valid if and only if r_desc is not a member of the ROLES data set,

and r_asc is a member of the ROLES data set. Note that the validity conditions are verified in the schemas
AddRole and AddInheritance, referred to by AddDescendant.

AddDescendant r asc r desc NAME

AddRole r desc
AddInheritance r asc r desc

(_ , _ :)
(_)

(_ , _)





A.2a-2 System Functions for General Role Hierarchies

This section redefines the functions CreateSession and AddActiveRole of section A.1-2. The other
functions of section A.1-2 remain valid.

CreateSession(user, session)
This function creates a new session with a given user as owner, and a given set of active roles. The function
is valid if and only if:
- the user is a member of the USERS data set, and
- the active role set is a subset of the roles authorized for that user. Note that if a role is active for a

session, its descendants or ascendants are not necessarily active for that session. In a RBAC
implementation, the session’s active roles might actually be the groups that represent those roles.

The following schema formally describes the function. The parameter session, which identifies the session,
is actually generated by the underlying system.
CreateSession user NAME ars session NAME

user USERS ars r q ROLES user q UA q r r session SESSIONS
SESSIONS SESSIONS session
user sessions user sessions user user sessions user

user user sessions user session
session roles session roles session ars

NAME(: ; : ; :)
; { , : | () };

{ }
_ _ \ { _ ()}

{ (_ () { })}
_ _ { }

2 







 

∈ ⊆ ∈ ∧ ≥ • ∉
′ = ∪

′ = ∪
∪

′ = ∪

AddActiveRole
This function adds a role as an active role of a session whose owner is a given user. The function is valid if
and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the session identifier is a member of the SESSIONS data set, and
- the user is authorized to that role, and
- the session is owned by that user.
The following schema formally describes the function:

AddActiveRole user session role NAME
user USERS session SESSIONS role ROLES session user sessions user
user authorized users role role session roles session
session roles session roles session session roles session

session session roles session role

(, , :)
; ; ; _ ()

_ (); _ ()
_ _ \ { _ ()}

{ (_ () { })}





 

∈ ∈ ∈ ∈
∈ ∉

′ = ∪
∪

A.2a-3 Review Functions for General Role Hierarchies

All functions of section A.1-3 remain valid. In addition, this section defines the following review functions:

AuthorizedUsers
This function returns the set of users authorized to a given role, i.e., the users that are assigned to a role that
inherits the given role. The function is valid if and only if the given role is a member of the ROLES data
set. The following schema formally describes the function:

AuthorizedUsers role NAME out result USERS

role ROLES
result authorized users role

(: ; :)

_ ()

2 



∈
=

AuthorizedRoles
This function returns the set of roles authorized for a given user. The function is valid if and only if the user
is a member of the USERS data set. The following schema formally describes the function:

AuthorizedRoles user NAME result ROLES

user USERS
result r q ROLES user q UA q r

(: ; :)

{ , : | () }

2 

 

∈
= ∈ ∧ ≥

A.2a-4 Advanced Review Functions for General Role Hierarchies

This section redefines the functions RolePermissions and UserPermissions of section A.1-4. All other
functions of section A.1-4 remain valid.

RolePermissions
This function returns the set of all permissions (op, obj), granted to or inherited by a given role. The
function is valid if and only if the role is a member of the ROLES data set. The following schema formally
describes the function:

AllPermissions role NAME result PERMS

role ROLES
result q ROLES op OPS obj OBJS role q op obj role PA op obj

(: ; :)

{ : ; : ; : | () ((,)) (,)}

2 

 

∈
= ≥ ∧ ∈ •

UserPermissions
This function returns the set of permissions a given user gets through his/her authorized roles. The function
is valid if and only if the user is a member of the USERS data set. The following schema formally describes
this function:

UserPermissions user NAME result PERMS

user USERS
result r q ROLES op OPS obj OBJS user q UA q r op obj r PA

op obj

(: ; :)

{ , : ; : ; : | () () ((,))
(,)}

2 

 



∈
= ∈ ∧ ≥ ∧ ∈ •

A.2b Limited Role Hierarchies

A.2b-1 Administrative Commands for Limited Role Hierarchies

This section redefines the function AddInheritance of section A.2a-1. All other functions of section A.2a-1
remain valid.

AddInheritance

This commands establishes a new immediate inheritance relationship r_asc νν r_desc between existing

roles r_asc, r_desc. The command is valid if and only if r_asc and r_desc are members of the ROLES data
set, r_asc has no descendants, and r_desc does not properly inherit r_asc (in order to avoid cycle creation).
The following schema uses the notations:

 µ == ⁄

>> == νν

to formally describes the command:

AddInheritance r asc r desc NAME

r asc ROLES r desc ROLES r ROLES r asc r r desc r asc
r q ROLES r r asc r desc q r q

(_ , _ :)
_ ; _ ; (_); (_ _)

{ , : | _ _ }



 

∈ ∈ ∀ ∈ •¬ >> ¬ ≥
′≥ = ≥ ∪ ≥ ∧ ≥ •

A.2b-2 System Functions for Limited Role Hierarchies

All functions of section A.2a-2 remain valid.

A.2b-3 Review Functions for Limited Role Hierarchies

All functions of section A.2a-3 remain valid.

A.2b-4 Advanced Review Functions for Limited Role Hierarchies

All functions of section A.2a-4 remain valid.

A.3 Requirements for Static Separation of Duty (SSD) Relations

The static separation of duty property, as defined in the model, uses a collection SSD of pairs of a role set
and an associated cardinality. We define the new data type SSD, which in an implementation could be the
set of names used to identify the pairs in the collection.

The functions ssd_set and respectively ssd_card are used to obtain the role set and the associated
cardinality from each SSD pair:

ssd set SSD
ssd card SSD

ssd SSD ssd card ssd ssd card ssd ssd set ssd

ROLES_ :
_ :

_ () _ () | _ ()|

→
→

∀ ∈ • ≥ ∧ ≤

2

2
N

A.3a SSD Relations

A.3a-1 Administrative commands for SSD Relations

This section redefines the function AssignUser of section A.1-1 and defines a set of new, specific functions.
The other functions of section A.1-1 remain valid.

AssignUser
The AssignUser command replaces the command with the same name of Core RBAC. This command
assigns a user to a role. The command is valid if and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the user is not already assigned to the role, and

- the SSD constraints are satisfied after assignment.
The data set UA and the function assigned_users are updated to reflect the assignment. The following
schema formally describes the command:

AssignUser user role NAME
user USERS role ROLES user role UA

ssd SSD assigned users r us

UA UA user role
assigned users assigned users role assigned users role

role assigned users role user

r subset
subset ssd set ssd

subset ssd card ssd
us r role user

(, :)
; ; ()

(_ ())

{ }
_ _ \ { _ ()}

{ (_ () { })}

_ ()
| | _ ()
if then { } else









 


∈ ∈ ∉

∀ ∈ • ∪ = ∅

′ = ∪
′ = ∪

∪

∈
⊆
=

= = ∅

CreateSsdSet
This command creates a named SSD set of roles and sets the cardinality n of its subsets that cannot have
common users. The command is valid if and only if:
- the name of the SSD set is not already in use
- all the roles in the SSD set are members of the ROLES data set
- n is a natural number greater than or equal to 2 and less than or equal to the cardinality of the SSD role

set, and
- the SSD constraint for the new role set is satisfied.
The following schema formally describes this command:

CreateSsdSet set name NAME role set n
set name SSD n n role set role set ROLES

assigned users r

SSD SSD set name
ssd set ssd set set name role set
ssd card ssd card set name n

NAMES

r subset
subset role set

subset n

(_ : ; _ : ; :)
_ ; () (| _ |); _

_ ()

{ _ }
_ _ { _ _ }
_ _ { _ }

_
| |

2
2

N 



 


∉ ≥ ∧ ≤ ⊆

= ∅

′ = ∪
′ = ∪
′ = ∪

∈
⊆

=

AddSsdRoleMember
This command adds a role to a named SSD set of roles. The cardinality associated with the role set remains
unchanged. The command is valid if and only if:
- the SSD role set exists, and
- the role to be added is a member of the ROLES data set but not of a member of the SSD role set, and
- the SSD constraint is satisfied after the addition of the role to the SSD role set.
The following schema formally describes the command:

AddSsdRoleMember set name NAME role NAME
set name SSD role ROLES role ssd set set name

assigned users r

ssd set ssd set set name ssd set set name
set name ssd set set name role

r subset
subset ssd set set name role

subset n

(_ : ; :)
_ ; ; _ (_)

_ ()

_ _ \ { _ _ (_)}
{ _ (_ (_) { })}

_ (_) { }
| |





 


∈ ∈ ∉

= ∅

′ = ∪
∪

∈
⊆ ∪

=

DeleteSsdRoleMember
This command removes a role from a named SSD set of roles. The cardinality associated with the role set
remains unchanged. The command is valid if and only if:
- the SSD role set exists, and

- the role to be removed is a member of the SSD role set, and
- the cardinality associated with the SSD role set is less than the number of elements of the SSD role set.
Note that the SSD constraint should be satisfied after the removal of the role from the SSD role set. The
following schema formally describes the command:

DeleteSsdRoleMember set name NAME role NAME
set name SSD role ssd set set name ssd card set name ssd set set name
ssd set ssd set set name ssd set set name

set name ssd set set name role

(_ : ; :)
_ ; _ (_); _ (_) | _ (_)|
_ _ \ { _ _ (_)}

{ _ (_ (_) \ { })}





 

∈ ∈ <
′ = ∪

DeleteSsdSet
This command deletes a SSD role set completely. The command is valid if and only if the SSD role set
exists. The following schema formally describes the command:

DeleteSsdSet set name NAME
set name SSD ssd card ssd card set name ssd card set name
ssd set ssd set set name ssd set set name
SSD SSD set name

(_ :)
_ ; _ _ \ { _ _ (_)}
_ _ \ { _ _ (_)}

\ { _ }









∈ ′ =
′ =

′ =

SetSsdSetCardinality
This command sets the cardinality associated with a given SSD role set. The command is valid if and only
if:
- the SSD role set exists, and
- the new cardinality is a natural number greater than or equal to 2 and less than or equal to the number

of elements of the SSD role set, and
- the SSD constraint is satisfied after setting the new cardinality.
The following schema formally describes the command:

SetSsdSetCardinality set name NAME n
set name SSD n n ssd set set name

assigned users r

ssd card ssd card set name ssd card set name set name n

r subset
subset ssd set set name

subset n

(_ : ; :)
_ ; () (| _ (_)|)

_ ()

_ _ \ { _ _ (_)} { _ }

_ (_)
| |

N 

  


∈ ≥ ∧ ≤

= ∅

′ = ∪

∈
⊆

=

2

A.3a-2 System Functions for SSD

All functions in section A.1-2 remain valid.

A.3a-3 Review Functions for SSD

All functions in section A.1-3 remain valid. In addition, this section defines the following functions:

SsdRoleSets
This function returns the list of all SSD role sets. The following schema formally describes the function:

 SsdRoleSets out result NAME result SSD(:)2  =

SsdRoleSetRoles
This function returns the set of roles of a SSD role set. The function is valid if and only if the role set exists.
The following schema formally describes the function:

SsdRoleSetRoles set name NAME out result ROLES

set name SSD
result ssd set set name

(_ : ; :)
_

_ (_)

2 



∈
=

SsdRoleSetCardinality
This function returns the cardinality associated with a SSD role set. The function is valid if and only if the
role set exists. The following schema formally describes the function:

SsdRoleSetCardinality set name NAME out result

set name SSD
result ssd card set name

(_ : ; :)
_

_ (_)

N 



∈
=

A.3a-4 Advanced Review Functions for SSD

All functions in section A.1-4 remain valid.

A.3b SSD Relations with General Role Hierarchies

A.3b-1 Administrative Commands for SSD with General Role Hierarchies

This section redefines the functions AssignUser and AddInheritance of section A.2a-1, and the functions
CreateSsdSet, AddSsdRoleMember, SetSsdSetCardinality of section A.3a-1. The other functions of
sections A.2a-1 and A.3a-1 remain valid.

AssignUser
The command AssignUser replaces the command with the same name from Core RBAC with Static
Separation of Duties. This command assigns a user to a role. The command is valid if and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the user is not already assigned to the role, and
- the SSD constraints are satisfied after assignment.
The data set UA and the function assigned_users are updated to reflect the assignment. The following
schema formally describes the command:

AssignUser user role NAME
user USERS role ROLES user role UA

ssd SSD authorized users r au

UA UA user role
assigned users assigned users role assigned users role

role assigned users role user

r subset
subset ssd set ssd

subset ssd card ssd
au r role user

(, :)
; ; ()

(_ ())

{ }
_ _ \ { _ ()}

{ (_ () { })}

_ ()
| | _ ()
if then { } else









 


∈ ∈ ∉

∀ ∈ • ∪ = ∅

′ = ∪
′ = ∪

∪

∈
⊆
=

= = ∅

AddInheritance

This commands establishes a new immediate inheritance relationship r_asc νν r_desc between existing
roles r_asc, r_desc. The command is valid if and only if:

- r_asc and r_desc are members of the ROLES data set, and

- r_asc is not an immediate ascendant of r_desc, and

- r_desc does not properly inherit r_asc, and

- the SSD constraints are satisfied after establishing the new inheritance.

The following schema uses the notations:

 µ == ⁄

>> == νν

to formally describes the command:

AddInheritance r asc r desc NAME
r asc ROLES r desc ROLES r asc r desc r desc r asc

ssd SSD authorized users r au

r q ROLES r r asc r desc q r q

r subset
subset ssd set ssd

subset ssd card ssd
au r r desc authorized users r asc

(_ , _ :)
_ ; _ ; (_ _); (_ _)

(_ ())

{ , : | _ _ }

_ ()
| | _ ()

if _ then _ (_) else



 


∈ ∈ ¬ >> ¬ ≥

∀ ∈ • ∪ = ∅

′≥ = ≥ ∪ ≥ ∧ ≥ •

∈
⊆
=

= = ∅

CreateSsdSet
This command creates a named SSD set of roles and sets the associated cardinality n of its subsets that
cannot have common users. The command is valid if and only if:
- the name of the SSD set is not already in use
- all the roles in the SSD set are members of the ROLES data set
- n is a natural number greater than or equal to 2 and less than or equal to the cardinality of the SSD role

set, and
- the SSD constraint for the new role set is satisfied.
The following schema formally describes this command:

CreateSsdSet set name NAME role set n
set name SSD n n role set role set ROLES

authorized users r

SSD SSD set name
ssd set ssd set set name role set
ssd card ssd card set name n

NAMES

r subset
subset role set

subset n

(_ : ; _ : ; :)
_ ; () (| _ |); _

_ ()

{ _ }
_ _ { _ _ }
_ _ { _ }

_
| |

2
2

N 



 


∉ ≥ ∧ ≤ ⊆

= ∅

′ = ∪
′ = ∪
′ = ∪

∈
⊆

=

AddSsdRoleMember
This command adds a role to a named SSD set of roles. The cardinality associated with the role set remains
unchanged. The command is valid if and only if:
- the SSD role set exists, and
- the role to be added is a member of the ROLES data set but not of a member of the SSD role set, and
- the SSD constraint is satisfied after the addition of the role to the SSD role set.
The following schema formally describes the command:

AddSsdRoleMember set name NAME role NAME
set name SSD role ROLES role ssd set set name

authorized users r

ssd set ssd set set name ssd set set name
set name ssd set set name role

r subset
subset ssd set set name role

subset n

(_ : ; :)
_ ; ; _ (_)

_ ()

_ _ \ { _ _ (_)}
{ _ (_ (_) { })}

_ (_) { }
| |





 


∈ ∈ ∉

= ∅

′ = ∪
∪

∈
⊆ ∪

=

SetSsdSetCardinality
This command sets the cardinality associated with a given SSD role set. The command is valid if and only
if:
- the SSD role set exists, and

- the new cardinality is a natural number greater than or equal to 2 and less than or equal to the number
of elements of the SSD role set, and

- the SSD constraint is satisfied after setting the new cardinality.
The following schema formally describes the command:

SetSsdSetCardinality set name NAME n
set name SSD n n ssd set set name

authorized users r

ssd card ssd card set name ssd card set name set name n

r subset
subset ssd set set name

subset n

(_ : ; :)
_ ; () (| _ (_)|)

_ ()

_ _ \ { _ _ (_)} { _ }

_ (_)
| |

N 

  


∈ ≥ ∧ ≤

= ∅

′ = ∪

∈
⊆

=

2

A.3b-2 System Functions for SSD with General Role Hierarchies

All functions of section A.2a-2 remain valid.

A.3b-3 Review Functions for SSD with General Role Hierarchies

All functions of sections A.2a-3 and A.3a-3 remain valid.

A.3b-4 Advanced Review Functions for SSD with General Role Hierarchies

All functions of section A.2a-4 remain valid.

A.3c SSD Relations with Limited Role Hierarchies

A.3c-1 Administrative Commands for SSD with Limited Role Hierarchies

This section redefines the function AddInheritance of section A.3b-1. All other functions of section A.3b-1
remain valid.

AddInheritance
This commands establishes a new immediate inheritance relationship r_asc νν r_desc between existing
roles r_asc, r_desc. The command is valid if and only if r_asc and r_desc are members of the ROLES data
set, r_asc has no descendants, and r_desc does not properly inherit r_asc (in order to avoid cycle creation).
The following schema uses the notations:

 µ == ⁄

>> == νν

to formally describes the command:

AddInheritance r asc r desc NAME
r asc ROLES r desc ROLES r ROLES r asc r r desc r asc

ssd SSD authorized users r au

r q ROLES r r asc r desc q r q

r subset
subset ssd set ssd

subset ssd card ssd
au r r desc authorized users r asc

(_ , _ :)
_ ; _ ; (_); (_ _)

(_ ())

{ , : | _ _ }

_ ()
| | _ ()

if _ then _ (_) else



 


∈ ∈ ∀ ∈ •¬ >> ¬ ≥

∀ ∈ • ∪ = ∅

′≥ = ≥ ∪ ≥ ∧ ≥ •

∈
⊆
=

= = ∅

A.3c-2 System Functions for SSD with Limited Role Hierarchies

All functions of section A.2a-2 remain valid.

A.3c-3 Review Functions for SSD with Limited Role Hierarchies

All functions of sections A.2a-3 and A.3a-3 remain valid.

A.3c-4 Advanced Review Functions for SSD with Limited Role Hierarchies

All functions of sections A.2a-4 remain valid.

A.4 Requirements for Dynamic Separation of Duties (DSD) Relations

The dynamic separation of duty property, as defined in the model, uses a collection DSD of pairs of a role
set and an associated cardinality. We define the new data type DSD, which in an implementation could be
the set of names used to identify the pairs in the collection.

The functions dsd_set and respectively dsd_card are used to obtain the role set and the associated
cardinality from each DSD pair:

dsd set DSD
dsd card DSD

dsd SSD dsd card dsd dsd card dsd dsd set dsd

ROLES_ :
_ :

_ () _ () | _ ()|

→
→

∀ ∈ • ≥ ∧ ≤

2

2
N

4.4a DSD Relations

A.4a-1 Administrative Commands for DSD Relations

All functions of section A.1-1 remain valid. In addition, this section defines the following functions:

CreateDsdSet
This command creates a named DSD set of roles and sets an associated cardinality n. The DSD constraint
stipulates that the DSD role set cannot contain n or more roles simultaneously active in the same session.
The command is valid if and only if:
- the name of the DSD set is not already in use
- all the roles in the DSD set are members of the ROLES data set
- n is a natural number greater than or equal to 2 and less than or equal to the cardinality of the DSD role

set, and
- the DSD constraint for the new role set is satisfied.
The following schema formally describes this command:

CreateDsdSet set name NAME role set n
set name DSD n n role set role set ROLES

s SESSIONS role subset role subset session roles s role subset n
DSD DSD set name
dsd set dsd set set name role set
dsd card dsd card set name n

NAMES

role set

(_ : ; _ : ; :)
_ ; () (| _ |); _

: ; _ : _ _ () | _ |
{ _ }

_ _ { _ _ }
_ _ { _ }

_

2
2

2

N 



 

∉ ≥ ∧ ≤ ⊆

∀ • ⊆ ⇒ <
′ = ∪

′ = ∪
′ = ∪

AddDsdRoleMember
This command adds a role to a named DSD set of roles. The cardinality associated with the role set remains
unchanged. The command is valid if and only if:
- the DSD role set exists, and
- the role to be added is a member of the ROLES data set but not of a member of the DSD role set, and

- the DSD constraint is satisfied after the addition of the role to the DSD role set.
The following schema formally describes the command:

AddDsdRoleMember set name NAME role NAME
set name DSD role ROLES role dsd set set name

s SESSIONS role subset
role subset session roles s role subset dsd card set name

dsd set dsd set set name dsd set set name
set name dsd set set name role

dsd set set name role

(_ : ; :)
_ ; ; _ (_)

: ; _ :
_ _ () | _ | _ (_)

_ _ \ { _ _ (_)}
{ _ (_ (_) { })}

_ (_) { }





 

∈ ∈ ∉

∀ •
⊆ ⇒ <

′ = ∪
∪

∪2

DeleteDsdRoleMember
This command removes a role from a named DSD set of roles. The cardinality associated with the role set
remains unchanged. The command is valid if and only if:
- the DSD role set exists, and
- the role to be removed is a member of the DSD role set, and
- the cardinality associated with the DSD role set is less than the number of elements of the DSD role

set.
Note that the DSD constraint should be satisfied after the removal of the role from the DSD role set. The
following schema formally describes the command:

DeleteDsdRoleMember set name NAME role NAME
set name DSD role dsd set set name dsd card set name dsd set set name
dsd set dsd set set name dsd set set name

set name dsd set set name role

(_ : ; :)
_ ; _ (_); _ (_) | _ (_)|
_ _ \ { _ _ (_)}

{ _ (_ (_) \ { })}





 

∈ ∈ <
′ = ∪

DeleteDsdSet
This command deletes a DSD role set completely. The command is valid if and only if the DSD role set
exists. The following schema formally describes the command:

DeleteDsdSet set name NAME

set name DSD
dsd card dsd card set name dsd card set name
dsd set dsd set set name dsd set set name
DSD DSD set name

(_ :)
{

_
_ _ \ { _ _ (_)}
_ _ \ { _ _ (_)}

\ { _ }
}

∈
′ =

′ =
′ =





SetDsdSetCardinality
This command sets the cardinality associated with a given DSD role set. The command is valid if and only
if:
- the DSD role set exists, and
- the new cardinality is a natural number greater than or equal to 2 and less than or equal to the number

of elements of the DSD role set, and
- the DSD constraint is satisfied after setting the new cardinality.
The following schema formally describes the command:

SetDsdSetCardinality set name NAME n
set name DSD n n dsd set set name

s SESSIONS role subset
role subset session roles s role subset n

dsd card dsd card set name dsd card set name set name n

dsd set set name

(_ : ; :)
_ ; () (| _ (_)|)

: ; _ :
_ _ () | _ |

_ _ \ { _ _ (_)} { _ }

_ (_)

N 

  

∈ ≥ ∧ ≤

∀ •
⊆ ⇒ <

′ = ∪

2

2

A.4a-2 System Functions for DSD Relations

This section redefines the functions CreateSession and AddActiveRole of section A.1-2. The other
functions of section A.1-2 remain valid.

CreateSession
This function creates a new session whose owner is the user user and a given active role set. The function is
valid if and only if:
- the user is a member of the USERS data set, and
- the session’s active role set is a subset of the roles assigned to the session’s owner, and
- the session’s active role set satisfies the DSD constraints.
The following schema formally describes the function. The session parameter, which identifies the new
session, is actually generated by the underlying system.

CreateSession user NAME ars session NAME
user USERS ars r ROLES user r UA session SESSIONS

dset DSD rset
rset dsd set dset rset ars rset dsd card dset

SESSIONS SESSIONS session
user sessions user sessions user user sessions user

user user sessions user session
session roles session roles session ars

NAME

NAME

(: ; : ; :)
; { : |() };

: ; :
_ () | | _ ()

{ }
_ _ \ { _ ()}

{ (_ () { })}
_ _ { }

2

2









 

∈ ⊆ ∈ ∉

∀ •
⊆ ∧ ⊆ ⇒ <

′ = ∪
′ = ∪

∪
′ = ∪

AddActiveRole
This function adds a role as an active role of a session whose owner is a given user. The function is valid if
and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the session identifier is a member of the SESSIONS data set, and
- the role is assigned to the user, and
- the old active role set completed with the role to be activated satisfies the DSD constraints, and
- the session is owned by that user.
The following schema formally describes the function:

AddActiveRole user session role NAME
user USERS session SESSIONS role ROLES session user sessions user
user assigned users role role session roles session

dset DSD rset NAME

rset dsd set dset rset session roles session role rset dsd card dset
session roles session roles session session roles session

session session roles session role

(, , :)
; ; ; _ ()

_ (); _ ()

: ; :
_ () _ () { } | | _ ()

_ _ \ { _ ()}
{ (_ () { })}





 

∈ ∈ ∈ ∈
∈ ∉

∀ •
⊆ ∧ ⊆ ∪ ⇒ <

′ = ∪
∪

2

A.4a-3 Review Functions for DSD Relations

All functions of sections A.1-3 remain valid. In addition, this section defines new, specific functions.

DsdRoleSets
This function returns the list of all DSD role sets. The following schema formally describes the function:

 DsdRoleSets out result NAME result DSD(:)2  =

DsdRoleSetRoles
This function returns the set of roles of a DSD role set. The function is valid if and only if the role set
exists. The following schema formally describes the function:

DsdRoleSetRoles set name NAME out result ROLES

set name DSD
result dsd set set name

(_ : ; :)
_

_ (_)

2 



∈
=

DsdRoleSetCardinality
This function returns the cardinality associated with a DSD role set. The function is valid if and only if the
role set exists. The following schema formally describes the function:

DsdRoleSetCardinality set name NAME out result

set name DSD
result dsd card set name

(_ : ; :)
_

_ (_)

N 



∈
=

A.4a-4 Advanced Review Functions for DSD Relations

All functions of sections A.1-4 remain valid.

A.4b DSD Relations with Role Hierarchies

A.4b-1 Administrative commands for DSD Relations with General Role Hierarchies

All functions of sections A.4a-1 and A.2a-1 remain valid.

A.4b-2 System Functions for DSD Relations with General Role Hierarchies

This section redefines the functions CreateSession and AddActiveRole of section A.1-2 (or A.2a-2). All
other functions of section A.1-2 remain valid.

CreateSession
This function creates a new session whose owner is the user user and a given active role set. The function is
valid if and only if:
- the user is a member of the USERS data set, and
- the session’s active role set is a subset of the roles authorized for the session’s owner, and
- the session’s active role set satisfies the DSD constraints.
The underlying system generates a new session identifier, which is included in the SESSIONS data set.
The following schema formally describes the function:

CreateSession user NAME ars session NAME
user USERS ars r q ROLES user q UA q r r session SESSIONS

dset DSD rset
rset dsd set dset rset ars rset dsd card dset

SESSIONS SESSIONS session
user sessions user sessions user user sessions user

user user sessions user session
session roles session roles session ars

NAME

NAME

(: ; : ; :)
; { , : | () };

: ; :
_ () | | _ ()

{ }
_ _ \ { _ ()}

{ (_ () { })}
_ _ { }

2

2











∈ ⊆ ∈ ∧ ≥ • ∉

∀ •
⊆ ∧ ⊆ ⇒ <

′ = ∪
′ = ∪

∪
′ = ∪ 

AddActiveRole

This function adds a role as an active role of a session whose owner is a given user. The function is valid if
and only if:
- the user is a member of the USERS data set, and
- the role is a member of the ROLES data set, and
- the session identifier is a member of the SESSIONS data set, and
- the role is authorized for that user, and
- the old active role set completed with the role to be activated satisfies the DSD constraints, and
- the session is owned by that user.
The following schema formally describes the function:

AddActiveRole user session role NAME
user USERS session SESSIONS role ROLES session user sessions user
user authorized users role role session roles session

dset DSD rset NAME

rset dsd set dset rset session roles session role rset dsd card dset
session roles session roles session session roles session

session session roles session role

(, , :)
; ; ; _ ()

_ (); _ ()

: ; :
_ () _ () { } | | _ ()

_ _ \ { _ ()}
{ (_ () { })}





 

∈ ∈ ∈ ∈
∈ ∉

∀ •
⊆ ∧ ⊆ ∪ ⇒ <

′ = ∪
∪

2

A.4b-3 Review Functions for DSD Relations with General Role Hierarchies

All functions of sections A.4a-3 and A.2a-3 remain valid.

A.4b-3 Advanced Review Functions for DSD Relations with General Role
Hierarchies

All functions of section A.2a-4 remain valid.

A.4c DSD Relations with Limited Role Hierarchies

A.4c-1 Administrative Commands for DSD Relations with Limited Role Hierarchies

All functions of sections A.2b-1and A.4a-1 remain valid.

A.4c-2 System Functions for DSD Relations with Limited Role Hierarchies

All functions of section A.4b-2 remain valid.

A.4c-3 Review Functions for DSD Relations with Limited Role Hierarchies

All functions of section A.4b-3 remain valid.

A.4c-4 Advanced Review Functions for DSD Relations with Limited Role
Hierarchies

All functions of section A.2a-4 remain valid.

	A Proposed Standard for Role-Based Access Control
	Abstract
	1 INTRODUCTION
	2 COMPONENT OVERVIEW
	2.1 Core RBAC
	2.2 Hierarchical RBAC
	2.3 Static Separation of Duty Relations
	2.4 Dynamic Separation of Duty Relations

	3 THE ROLE-BASED ACCESS CONTROL REFERENCE MODEL
	3.1 Core RBAC
	 assigned_users: (r:ROLES) (2USERS, the mapping of role r onto a set of users. Formally: assigned_users(r) = {u(USERS | (u, r) (UA}
	3.2 Hierarchal RBAC
	 authorized_users(r: ROLES) (2USERS, the mapping of role r onto a set of users in the presence of a role hierarchy. Formally:
	3.3 Constrained RBAC
	3.3.1 Static Separation of Duty Relations
	3.3.2 Dynamic Separation of Duty Relations

	4 REQUIREMENTS SPECIFICATION OVERVIEW
	5 REQUIREMENT PACKAGES
	6 CONCLUSIONS

	References
	Appendix A: RBAC REQUIREMENTS SPECIFICATION
	A.1 Requirements for Core RBAC
	A.1-1 Administrative Commands for Core RBAC
	A.1-2 System Functions for Core RBAC
	A.1-3 Review Functions for Core RBAC

	AssignedUsers
	A.1-4 Advanced Review Functions for Core RBAC
	A.2 Requirements for Hierarchical RBAC
	A.2a General Role Hierarchies
	A.2a-1 Administrative Commands for General Role Hierarchies
	A.2a-2 System Functions for General Role Hierarchies
	A.2a-3 Review Functions for General Role Hierarchies

	AuthorizedUsers
	A.2a-4 Advanced Review Functions for General Role Hierarchies
	A.2b Limited Role Hierarchies
	A.2b-1 Administrative Commands for Limited Role Hierarchies
	A.2b-2 System Functions for Limited Role Hierarchies
	A.2b-3 Review Functions for Limited Role Hierarchies
	A.2b-4 Advanced Review Functions for Limited Role Hierarchies
	A.3 Requirements for Static Separation of Duty (SSD) Relations
	A.3a SSD Relations
	A.3a-1 Administrative commands for SSD Relations
	A.3a-2 System Functions for SSD
	A.3a-3 Review Functions for SSD

	SsdRoleSets
	A.3a-4 Advanced Review Functions for SSD
	A.3b SSD Relations with General Role Hierarchies
	A.3b-1 Administrative Commands for SSD with General Role Hierarchies
	A.3b-2 System Functions for SSD with General Role Hierarchies
	A.3b-3 Review Functions for SSD with General Role Hierarchies
	A.3b-4 Advanced Review Functions for SSD with General Role Hierarchies
	A.3c SSD Relations with Limited Role Hierarchies
	A.3c-1 Administrative Commands for SSD with Limited Role Hierarchies
	A.3c-2 System Functions for SSD with Limited Role Hierarchies
	A.3c-3 Review Functions for SSD with Limited Role Hierarchies

	All functions of sections A.2a-3 and A.3a-3 remain valid.
	A.3c-4 Advanced Review Functions for SSD with Limited Role Hierarchies

	All functions of sections A.2a-4 remain valid.
	A.4 Requirements for Dynamic Separation of Duties (DSD) Relations
	4.4a DSD Relations
	A.4a-1 Administrative Commands for DSD Relations
	A.4a-2 System Functions for DSD Relations
	A.4a-3 Review Functions for DSD Relations

	All functions of sections A.1-3 remain valid. In addition, this section defines new, specific functions.
	DsdRoleSets
	A.4a-4 Advanced Review Functions for DSD Relations

	All functions of sections A.1-4 remain valid.
	A.4b DSD Relations with Role Hierarchies
	A.4b-1 Administrative commands for DSD Relations with General Role Hierarchies

	All functions of sections A.4a-1 and A.2a-1 remain valid.
	A.4b-2 System Functions for DSD Relations with General Role Hierarchies

	This section redefines the functions CreateSession and AddActiveRole of section A.1-2 (or A.2a-2). All other functions of section A.1-2 remain valid.
	A.4b-3 Review Functions for DSD Relations with General Role Hierarchies

	All functions of sections A.4a-3 and A.2a-3 remain valid.
	A.4b-3 Advanced Review Functions for DSD Relations with General Role Hierarchies

	All functions of section A.2a-4 remain valid.
	A.4c DSD Relations with Limited Role Hierarchies
	A.4c-1 Administrative Commands for DSD Relations with Limited Role Hierarchies

	All functions of sections A.2b-1and A.4a-1 remain valid.
	A.4c-2 System Functions for DSD Relations with Limited Role Hierarchies

	All functions of section A.4b-2 remain valid.
	A.4c-3 Review Functions for DSD Relations with Limited Role Hierarchies

	All functions of section A.4b-3 remain valid.
	A.4c-4 Advanced Review Functions for DSD Relations with Limited Role Hierarchies

	All functions of section A.2a-4 remain valid.

