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ABSTRACT
We argue that five recent software and hardware develop-
ments — the AES-NI instructions, multicore processors with
per-core caches, complex modern software, sophisticated pre-
fetchers, and physically tagged caches — combine to make it
substantially more difficult to mount data-cache side-channel
attacks on AES than previously realized. We propose ways
in which some of the challenges posed by these developments
might be overcome. We also consider scenarios where side-
channel attacks are attractive, and whether our proposed
workarounds might be applicable to these scenarios.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Cryptographic
Controls; E.3 [Data]: Data Encryption

Keywords
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1. INTRODUCTION
Side-channel attacks are a classic topic in computer secu-

rity. But are they still feasible on modern x86 machines?
In a side-channel attack, an attacker recovers secret in-

formation from his victim by observing or manipulating a
shared resource. The most attractive channels for such at-
tacks are shared hardware resources such as the data cache,
and the most devastating attacks recover cryptographic keys.
Even as the traditional scenario for side channel attacks —
multiuser timesharing on workstation systems — has fallen
into decline, other attractive attack scenarios have arisen.

This paper arises from our unsuccessful attempt at ex-
ploiting one such scenario: compromising Chrome browser
SSL keys from a Native Client control, using AES cache
timing as a channel. In our attempt, we ran up against
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several recent changes to the x86. Some of these changes
have already been mentioned in work on side-channel at-
tacks; others are well known by architects but less so in the
security community. Taken together, these changes make it
much more difficult to mount side-channel attacks on AES.

Our contribution in this paper is to describe the new chal-
lenges to AES cache attacks and to propose ways in which
they might be overcome. We also consider scenarios where
side-channel attacks are attractive, and whether our pro-
posed workarounds might be applicable to these scenarios.

The new challenges to AES side-channel attacks are:

• The AES-NI instruction set, which moves AES data
structures out of the cache;

• multicore processors with per-core L1 and L2 caches;

• the complexity of modern software and the pressure
that it places on caches;

• the increasingly sophisticated and poorly documented
prefetcher units on modern processors; and

• the switch from virtually tagged to physically tagged
caches.

The first two of these can make AES cache attacks impossi-
ble; the last three increase the difficulty of AES cache attacks
and make them inapplicable in some settings.

Architectural side-channel attacks are enabled when shared
hardware between two mutually distrusting principals is in-
completely virtualized by the supervisor. Traditionally, the
principals were users on a timesharing system and the super-
visor was the OS kernel. We believe that today there are (at
least) three scenarios where architectural side-channel at-
tacks are a threat: (1) infrastructure-as-a-service cloud com-
puting [22], with virtual machines as principals; (2) client-
side in the Web browser and its plugins, with Web origins
as principals; and (3) smartphones and tablets, with apps as
principals. (Mobile devices mostly use ARM chips, not x86.)

Cache side-channel attacks on AES were first demonstrated
by Bernstein [6], Tromer, Osvik, and Shamir [23], and Bon-
neau and Mironov [8]. These attacks were compared and
analyzed by Canteaut [11], and were recently improved by
Gullasch, Bangerter, and Krenn [15]. Proposed mitigations
include cache-oblivious AES algorithms [9], the AES-NI in-
struction set [16], deterministic computing environments [4],
and fuzzy timing channels [24].

In this paper, we argue that mounting AES (data) cache
attacks on modern systems is more difficult than previously
realized. This does not, of course, mean that they are im-
possible. In addition, our results do not rule out attacks on
other cryptographic primitives, such as RSA [21], nor at-
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tacks that rely on other architectural channels, such as the
instruction cache [1, 2] or the branch prediction unit [3],
nor timing attacks that do not depend on an architectural
channel [10, 7]. In addition, while we have considered the
x86, other architectures may still be vulnerable. Viewed
another way, our results suggest that other cryptosystems
than AES, other microarchitectural features than the data
cache, and other architectures than the x86 should be con-
sidered in future side-channel research. The recent paper of
Zhang et al. [26] partly corroborates this positive view of our
claims. Zhang et al. mount a cross-VM side-channel attack
on cryptographic keys; but they target public-key crypto
rather than AES, and use the instruction cache rather than
the data cache.

2. COMPLETE MITIGATION
First, we identify two trends in processor development

which have the potential to completely prevent AES cache
timing attacks: AES-NI and multicore processors. These
recent phenomenon represent material change in the hard-
ware capabilities underlying our computer systems, and will
almost certainly grow for the forseeable future.

2.1 AES-NI
Cache timing side channel attacks depend solely on mea-

suring the processor’s use of memory during encryption.
Without these cache-changing accesses, the entire class of
attacks is mitigated.

Intel processors that support AES-NI [14] provide hard-
ware implementations of key generation, encryption rounds,
and decryption rounds. The cryptographic operations are
moved out of RAM and into custom hardware, improving
performance and eliminating cache side channels.

2.1.1 Hardware Prevalence
Intel shipped the first AES-NI–supporting processor in Q1

2010 [17]. All Sandy Bridge i7 and all but two Sandy Bridge
i5 support AES-NI, while all announced Ivy Bridge i5 and i7
processors support it. Though Intel is still producing a few
processors without AES-NI, presumably it will shortly be
supported throughout the entire lineup (akin to the MMX
or SSE extensions). AMD is introducing AES-NI support as
well, with Bulldozer, the first supported microarchitecture,
released in October 2011 [13].

Therefore, many consumer-facing systems built in the past
two years are inoculated against AES cache timing attacks,
and we posit that this number will grow with time.

Even on processors that do not implement AES-NI, al-
ternative AES implementations exist that keep AES data
outside of RAM; see, e.g., [19].

2.1.2 Software Support
Of course, all the AES-NI hardware in the world can’t

protect against cache timing attacks if applications persist
in using vulnerable software AES implementations. Fortu-
nately, SSL and crypto libraries are actively providing sup-
port for AES-NI: OpenSSL 1.0.1 [20], Microsoft Cryptogra-
phy API: Next Generation in Windows 7 [16], and Network
Security Services 3.12.2 [18] all utilize AES-NI when the pro-
cessor provides suppport. Therefore, up-to-date versions of
Google Chrome, Microsoft Internet Explorer, and Mozilla
Firefox are all completely immune to AES cache timing at-
tacks on modern hardware.

2.2 Multicore Processors
In the pursuit of performance, processor designers are in-

creasingly adding multiple physical cores to each die. For
example, currently Intel is almost exclusively shipping mul-
ticore chips, with a few single core holdouts in the Celeron
and Atom lines. The Atom N270 on which we conducted
our experiments contains only a single core, but newer pro-
cessors in the Intel Atom line (designed to be minimal and
power–efficient) now contain multiple cores. Even mobile
devices are touting dual (or quad) cores as a major selling
point. Multicore is here to stay, and, in order to remain a
threat, cache timing attacks must be proven to work under
the new hardware regime.

The mere inclusion of multiple cores complicates cache at-
tacks immensely. First, the attack must be aware of processor-
specific multicore cache behavior. For example, Intel Sandy
Bridge processors have a per-core L1 and L2 cache, but all
cores share L3. The attacker must also understand the evic-
tion policy: can data remain in a L2 cache if it is evicted
from L3 by another core? Further complicating matters, an
attacking thread might be rescheduled onto another physi-
cal core at any time, physically separating it from its care-
fully manicured test data. Therefore, the best approach
might take cues from Gullash’s attack: create many at-
tacker threads, and trust that attacker threads will prob-
abilistically control every core most of the time. Under this
scheme, cross-thread communication is vital: the attacker,
when communicating with herself, must take care to avoid
the cache lines she’s trying to measure. While a solution
to each of these problems is imaginable, none of the exist-
ing cache timing attacks are directly applicable to multicore
processors, and further work would definitely be needed to
indicate that such attacks remain viable in the multicore
paradigm.

Recent work by Xu et al. on L2 cache timing side chan-
nels in virtualized environments show that the upper bound
on side channel bandwidth in EC2 is just over 10 bits per
second [25]. A covert channel consists of communication
between two cooperating principals; it is not clear that Xu
et al.’s analysis can be applied to adversarial side channels,
let alone to the very specific side channels required for at-
tacking AES using the data cache.

Furthermore, core “pinning” is becoming an extremely
popular technique to manage load and scheduling behav-
ior. Essentially, the operating system assigns a thread to
one or more physical cores, and guarantees that it will never
execute anywhere else. With this in mind, we observe that
a pinned attacker thread (even if pinned to n − 1 cores)
physically cannot perform cache timing attacks against an
encryption thread on the forbidden core, especially when
that core’s L2 cache vastly exceeds 4 KiB. The AES lookup
tables will fit entirely in the encrypting core’s L2, which the
attacker is unable to manipulate or examine, rendering the
technique powerless.

3. ATTACK OUTLINE
The first element needed in a successful cache timing at-

tack is a high resolution timer, able to differentiate the few
hundred cycles between a cache hit or miss. For this pur-
pose, our predecessors in cache timing use the x86 instruc-
tion rdtsc, which provides cycle-accurate count information.
To also use rdtsc, we need to be able to deliver and exe-
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cute semi-arbitrary x86 instructions on the target machine.
Google Chrome provides such an ability in Native Client.

Native Client (NaCl) allows web developers to run native
code alongside web applications, sidestepping the perfor-
mance penalty of interpreters or JITs. It uses sophisticated
software-fault isolation techniques to prevent misbehavior.
For example, Native Client executables are restricted from
making arbitrary system calls, and developer-provided code
is restricted from making syscalls at all (special NaCl code,
placed in a certain location in the NaCl application’s ad-
dress space, handles outside communication). Furthermore,
writes to memory are region-checked, so applications are
prevented from simply writing a stream of instructions and
executing them. Control flow is also restricted: jump desti-
nations must always be on an aligned address. Lastly, NaCl
disallows the use of certain x86 instructions, such as ret.

NaCl is permissive enough that NaCl code can mount
cache timing attacks. NaCl allows use of both the x86 in-
structions rdtsc and cpuid, a serializing instruction that re-
turns detailed information about processor features. NaCl
code can issue an arbitrary sequence of memory reads.

Next, a cache timing attack must cause encryptions to
occur, ideally with valuable keys. Assuming the network
attacker model, the most attractive use of AES in Google
Chrome is to protect TLS traffic. As a network attacker can
record encrypted traffic between the victim’s browser and
the target domain, possessing the AES key protecting that
traffic allows the attacker to decrypt and read every packet
in the flow. Therefore, malicious NaCl code should attempt
to induce traffic in an TLS session to a domain of interest.

The NaCl standard library provides the URLRequestInfo

and URLLoader classes, which, when used in unison, can be
used to fetch remote assets for use by NaCl clients. However,
to direct traffic to our third-party victim domain, we must
bypass the same origin policy as enforced by the browser.
Usefully, when fetching remote resources, NaCl implements
Cross-Origin Resource Sharing (CORS)1. This draft spec-
ification lets clients request cross-origin fetches by attach-
ing optional headers to the request, and allows domains to
explicitly enable such requests by adding optional headers
to the response. Of course, in our attack model, the at-
tacker cannot be certain that the remote domain implements
CORS or allows cross-domain fetches from our attacking ori-
gin. However, their support (or lack thereof) doesn’t impact
the attack: we only need to cause AES encryptions and de-
cryptions. To comply with CORS, Chrome must parse the
response’s headers before deciding if the NaCl client is al-
lowed to see the results. So, a NaCl request for a remote
resource will always trigger a fetch to be sent over the net-
work. Therefore, by simply requesting any resource in the
victim HTTPS origin, a malicious NaCl client can insert
traffic into any SSL stream it chooses (even if it will never
receive the results of that fetch).

We chose to investigate the feasibility of cache timing at-
tacks on the Intel Atom N270 processor. Released in 2008 as
one of the first Atom chips, the N270 is a relatively simple
32-bit single core hyperthreaded processor with a 512 KiB,
8-way associative L2 cache. Importantly, it lacks AES-NI
hardware (as discussed in Section 2.1).

And so, prima facie, the possibility for a cache timing
attack using Native Client against AES as used by Google

1Online: http://w3.org/TR/2012/WD-cors-20120403/

Chrome seems quite good. However, in trying to implement
such an attack, we have discovered three major roadblocks
standing between us and a successful exploit on the N270:
modern software engineering, prefetching, and cache index-
ing. Since we feel that these comprise a material setback
against the viability of cache timing attacks in the wild, we
present them in the next few sections.

4. MODERN SOFTWARE ENGINEERING
Unfortunately for a cache attacker, real–world programs

do not perform thousands of AES operations and then im-
mediately cease execution. At the very least, encrypted data
will be written to disk or the network, incurring operating
system complexity and overhead. Even local functions called
before or after the AES operation require the processor to
fetch instruction memory touched by the program counter,
causing even more cache evictions and noise.

Therefore, to provide a lower bound on the cache noise
that our attacker must disregard, we examine the internal
architecture and code size of Chromium, the open source
version of Google Chrome. First, we acquired and built
Chromium r105554 in debug mode, and created a minimal
NaCl application which causes a cross-origin HTTPS fetch.
Next, we attached GDB to various parts of Chromium as the
fetch was triggered, and wrote a script which, through judi-
cious use of the step and disassemble GDB commands,
revealed the size and location of each function called by
Chromium during each period of execution. This provides
a slight overestimate of actual utilized code size (since por-
tions of each function are undoubtedly skipped by, e.g., an
if statement), but this measurement completely ignores any
data structures, including the stack, heap, global variables,
and C++ virtual method tables. It also does not count
any operating system overhead, such as process scheduling,
memory mapping, handling interrupts, or facilitating inter-
process communication. Therefore, we believe that this met-
ric underestimates the total cache-impacting memory fetches
during Chromium’s execution.

4.1 Chromium Architecture
Chromium, to facilitate security guarantees, uses sand-

boxing mechanisms to separate responsibilities among sev-
eral processes. For our purposes, we must inspect three dis-
tinct processes: the browser, the renderer, and the NaCl
runtime. The browser is the main thread, responsible for
managing all network and disk access, while the renderer is
a origin-specific sandbox which handles parsing HTML/CSS
and executing JavaScript in order to render a particular
page. The NaCl runtime exists in a third process, where
the NaCl application is loaded and run, and this runtime
communicates solely with its parent renderer. When our at-
tacking NaCl code initiates an asynchronous HTTPS fetch,
the request first travels via RPC into the renderer, where it is
checked for viability. Next, the renderer makes another RPC
to the controlling browser process, requesting the fetch. At
that point, the browser opens a socket and sleeps. When the
OS reports that socket is writable, a browser thread wakes
up and finally performs the AES encryption.

4.2 Measurements
We first attached GDB to the renderer process, at NaClSr-

pcReceiveAndDispatch(). While there are several more lay-
ers of calls above this one handling other tasks of the RPC,
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this is the function which initiates the URL loading process.
Allowing GDB to run and disassemble all functions until
this function returns, we find that the renderer thread calls
at least 2288 distinct functions, totaling 282 KiB and spread
across 484 memory pages.

Next, we attached GDB to the browser process, at Http-

NetworkTransaction::OnStreamReady(). We then perform
our step-and-disassembly analysis down the entire call stack,
recording which functions are called. Note, again, that this
underestimates the code size as well, since there are a few
more general functions above OnStreamReady() in the call
stack. Nevertheless, Chromium executes at least 894 dis-
tinct functions, encompassing 165 KiB on 254 pages.

Lastly, we examine the overhead of receiving a packet of
TLSed data, with the idea that an attacker could initiate a
very long download over HTTPS and asynchronously attack
AES while the download completes. To do this, we set a
breakpoint on SSLClientSocketNSS::BufferRecvComplete

and executed until it returned. During this operation, 158
functions were executed for 29 KiB on 82 pages.

5. PREFETCHING
Designed to reduce memory latency and increase perfor-

mance, hardware prefetchers speculate about future memory
accesses and issue fetch requests for likely data. Unfortu-
nately for our purposes, these fetches cause replacements
and evictions on cache lines that would be otherwise un-
touched during AES operations.

First described by Baer and Chen in 1991 [5], stride pre-
fetchers attempt to notice memory accesses at constant off-
sets (such as traversing an array) and issue requests for the
next items in the series. This behavior wreaks havoc on
näıve cache probing strategies — simply accessing 8 mem-
ory locations which map to the same cache index might trig-
ger the ninth to be fetched, evicting one of the original 8.
Tromer et al. describe a clever workaround: a linked list is
created using the locations of each intended probing address,
connecting every address in a random order. As the list is
traversed, the stride prefetcher does not detect a regular
pattern of memory accesses, and does not trigger fetches.

As processors evolve and gain extra transistors, prefetch-
ers become more complicated. Since prefetchers greatly im-
pact processor performance and interesting new prefetching
strategy can be implemented without breaking compatibil-
ity, processor manufacturers do not release precise descrip-
tions of their prefetchers’ behavior. Security analyses usu-
ally assume access to the full specification of the system
under attack, but reverse-engineering the prefetcher circuit
from a 32 nm process chip would be prohibitively expensive.

Our experiments with the Atom N270 indicate that its
hardware prefetcher does, in fact, influence the viability
of cache timing attacks. In Figures 1 and 2, some of the
prefetching behavior of the processor is revealed. To gen-
erate these timings, we first flush the cache, then access
memory in a few dis-contiguous cache lines. Then, using
rdtsc, we measure the access time for an individual cache
line. The cache is then reset and the process repeated for
the next location. Each location was measured 16 times.

Examining Figure 1, we see that, as expected, accesses
to cache lines 0, 4, and 8 always hit in the cache. Surpris-
ingly, lines 1, 5, and 6 always hit as well, indicating that the
prefetcher is always active. We also see occasional hits at
locations 9 through 12, and 15, indicating further prefetch-
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Figure 1: Access times per cache line after cache flush on
Atom N270 (min, average, max across 16 runs). Timing
done after accesses at lines 0, 4, then 8.
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Figure 2: Access times per cache line after cache flush on
Atom N270 (min, average, max across 16 runs). Timing
done after accesses at lines 0, 3, 4, then 8.

ing. In Figure 2, the prefetcher is even more active. Lines
0, 1, and 3 through 8 always hit, even though we prime only
four lines. Cache hits are also occasionally seen at higher
locations, indicating unpredictable prefetching behavior.

To avoid this complex prefetching behavior, the attacker
can, in theory, access relatively distant cache lines. How-
ever, since fetching cache line A always brings in line A+ 1
(see lines 0 and 1 in figures), our cache timing resolution is
limited to 128 bytes, as accessing one 64 B cache line brings
in its 64 B neighbor. When probing 1 KiB AES tables on
the N270 (even if prefetching behavior is reverse-engineered
and understood), cache measuring techniques offer at most
3 bits of table offset, as opposed to the 4 bits supposed by
both Tromer and Gullasch.

Interestingly, though, hardware prefetchers can be dis-
abled, and are often shipped disabled on server-class hard-
ware. Note, however, that disabling the prefetcher requires
either modifications to the BIOS or an instruction run at
privilege level 0, and if an attacker can effect either of these
things, they have full control over the hardware; a cache
timing attack is superfluous. However, in a server environ-
ment, AES cache timing attacks may be able to sidestep the
effects of a hardware prefetcher.

6. CACHE INDEXING
The basic operation of any cache timing attack is the cache

line probe. To do so, current cache timing attacks load their
own data into the cache and measure, through timing re-
peated accesses, when said data is evicted from the cache.

OffsetIndexTag

Figure 3: Address bits on Atom N270
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Figure 4: Average access time for virtual addresses which
should collide in the cache. Error bars indicate the maxi-
mum and minimum time seen.

As one of the first steps towards implementing the attack,
then, we tested how this might work on our Atom N270.

The L2 cache in the Atom N270 is 512 KiB, with a line
size of 64 B and an 8-way set associativity. With these char-
acteristics, the cache contains 1024 distinct sets, each able
to contain 8 lines. Since each line is 64 bytes long, the mem-
ory address will be broken down into 6 tag bits, 10 index
bits, and 16 tag bits (shown in Figure 3).

Therefore, addresses which differ only in their top 16 bits
should map to a single cache set. Also, once we access 9
or more of these addresses, we should begin to see evictions
and memory access times should spike.

To test this hypothesis, we created a program which be-
gins by loading 1 MiB of useless data into the cache. This
provides a fair baseline from which to start testing, since any
memory location that we will test should now be evicted.
Next, we access n memory locations at a stride of 16 KiB,
taking care to use a non-linear order designed to minimize
the effects of a stride prefetcher. Once this is done, we ac-
cess all n locations again in the same order, measuring each
memory access time, in cycles. We then ran this program
on Linux 3.0.0 and FreeBSD 9.0. Figure 4 plots the average
access time, across four runs, for each location in this second
round against the total number of accesses.

As expected, when the number of locations is small, our
entire data set fits in the cache, and accesses are fast. How-
ever, once we access 9 unique locations, there is a drastic per-
formance difference between Linux and FreeBSD. On Linux,
we continue to see access times in line with L2 cache hits;
FreeBSD shows the expected behavior of memory fetches.

The explanation for this disparate behavior lies not only in
the physical hardware of the N270, but in the virtual mem-
ory subsystems of each operating system as well. FreeBSD,
unlike most modern operating systems, implements “cache
coloring” [12], which attempts to allocate virtual memory
so that virtual pages correspond to physical pages. That
is, cache coloring allows processes to predict which pages
will conflict in the cache, and optimize their memory ac-
cesses accordingly. Linux 3.0 and OS X do not implement
cache coloring. In order to understand how cache coloring
impacts our attack, however, we must discuss how the pro-
cessor manages its caches.

The N270, along with almost every modern x86 CPU,
has “physically-indexed” caches, or, more specifically, caches
which slot memory locations into sets using their physi-
cal addresses, rather than their virtual ones. Since there
is no mechanism for a process to discover the physical ad-
dresses of its memory (which, indeed, might change at any
point), physically-indexed caches offer no exploitable guar-

antees about which addresses will map to the same cache
set. This uncertainty increases the difficulty and complexity
of mounting any sort of cache timing side channel attack.

6.1 Attack Complexity
From the physical capabilities of the N270, we can pre-

dict exactly how much more difficult an attack becomes on
a physically-tagged processor. The N270, along with most
other x86 processors, provides support for 4 KiB memory
pages. When a virtual address is mapped to its physical
counterpart, the lower log2(4 KiB) = 12 bits remain un-
changed. From Figure 3, the N270 uses address bits 15
through 6 to index into a cache set. Therefore, for any given
virtual address on the N270, 6 of 10 index bits are already
known, leaving 4 unknown index bits.

To fully predict how these unknown bits complicate an
attack against Google Chrome’s SSL AES implementation,
we now examine the position and size of the AES lookup
tables. On Ubuntu Linux 11.10, Chromium links against
and uses the NSS library provided by the OS. Since Ubuntu
Linux implements ASLR, we cannot predict the page’s loca-
tion in virtual memory (or, indeed, its physical tag), but the
page offset will always remain the same! The AES lookup
tables, when linked into Chromium’s address space, begin
at a page offset of 0xA0. Since the tables total 4 KiB, the
area of interest to our AES cache attack spans two physi-
cal pages. As such, on mainstream operating systems, the
attacker must now discover the physical positions of both
these pages, among the 24+4 = 28 possible configurations.
Since there are no direct methods of probing these tables,
the attacker is reduced to either triggering AES operations
and searching the cache for likely positions, or by simply
guessing at the tables’ position in physical space.

We note, as well, that when our attacking thread runs on
physically-indexed caches, there is no reliable way to deter-
mine which addresses in its own virtual address space map
to identical cache lines. However, by the pigeonhole princi-
ple, once the attacking thread possesses (1024∗8+1) = 8193
pages of memory (a manageable 32 MiB), at least one cache
set is guaranteed to contain at least 9 pages, and the at-
tacker can conceivably discover, by eviction, which of their
pages overlap in the cache.

7. CONCLUSION
In conclusion, we present an re-analysis of the computa-

tional complexity of a cache timing attack against AES with
a key size of 128 bits, modeled after that of Tromer. Their
analysis is detailed and precise but, as a full summary will
not fit in this paper, we make do with an abbreviated ver-
sion. First, let δ be the cache line size divided by the size
of a table entry (4 bytes). Due to the well-meant meddling
of the prefetcher, the effective distinguishable cache line size
on the Atom N270 is not the physically-defined 64 B, but
rather 128 B, so δ = 32. For comparison, in Tromer’s initial
analysis, δ′ = 16.

Next, Tromer’s analysis assumes access to an ideal predi-
cate Qk(p, l, y), which is defined to be 1 iff, during the AES
encryption, the block y in lookup table Tl is accessed at least
once, for key k and plaintext p. With this predicate, an at-
tack against the simplest first round of AES reveals the top
log2(256/δ) = 3 bits of each key byte.

Next, Tromer applies a attack against the second round
of AES. From analysis of the AES algorithm, they find
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that four table lookups in the second round can be directly
computed from four key bytes. Applying Qk(p, l, y) with
l = 2, they compute the table accesses across every pos-
sible key. In their analysis, since δ′ = 16, this gives an
analysis complexity of δ′4 = 216 — easily manageable. In
our case, however, δ4 = 220. This process must then be
repeated four times, since each iteration reveals the lower
bits of four bytes, and our key is 16 bytes long. To sam-
ple Qk(p, l, y) enough for this analysis to function requires
about log δ−4/ log(1− δ/256 · (1− δ/256)38) samples, which
for our δ is 17,720.

Therefore, our second round attack has a full computa-
tional complexity of 4 · 220 · 17, 720 ≈ 236 to extract the full
AES key. Already, this is looking dire.

Compounding the issue further, Qk(p, l, y) is an ideal pred-
icate — we must make do with an approximation. Further-
more, we must take into account the cost of finding the AES
tables in memory, given the fact that modern processors are
exclusively physically-tagged. Without some clever trick,
we posit that the best an attacker can do is guess, for both
pages, where in the cache they lie. Since each page has 4
unknown bits on the Atom N270, we must repeat our anal-
ysis 24+4 = 28 times, once with each guess. This brings our
total expected work to 244.

Finally, as if it weren’t hard enough, the attack must
be able to pick out the AES page table accesses from the
avalanche of memory fetches caused by simply executing the
target program. Whenever a NaCl client requests a remote
resource, approximately 447 KiB of code is accessed. Within
a 512 KiB cache, this represents a serious disturbance to any
prepared cache timing attacker. Attempting to extract the
effects of a few thousand accesses to a region of 4 KiB in an
unknown location appears to be a herculean effort.

Therefore, we posit that any data-cache timing attack
against x86 processors that does not somehow subvert the
prefetcher, physical indexing, and massive memory require-
ments of modern programs is doomed to fail, to say nothing
of the difficulties imposed by multicore processors and hard-
ware AES implementations.
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