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Abstract

Deep Neural Networks (DNNs) are vulnerable to
Neural Trojan (NT) attacks where the adversary in-
jects malicious behaviors during DNN training. This
type of ‘backdoor’ attack is activated when the input
is stamped with the trigger pattern specified by the
attacker, resulting in an incorrect prediction of the
model. Due to the wide application of DNNs in
various critical fields, it is indispensable to inspect
whether the pre-trained DNN has been trojaned be-
fore employing a model. Our goal in this paper is
to address the security concern on unknown DNN
to NT attacks and ensure safe model deployment.
We propose DeepInspect, the first black-box Trojan
detection solution with minimal prior knowledge
of the model. DeepInspect learns the probability
distribution of potential triggers from the queried
model using a conditional generative model, thus
retrieves the footprint of backdoor insertion. In ad-
dition to NT detection, we show that DeepInspect’s
trigger generator enables effective Trojan mitiga-
tion by model patching. We corroborate the effec-
tiveness, efficiency, and scalability of DeepInspect
against the state-of-the-art NT attacks across vari-
ous benchmarks. Extensive experiments show that
DeepInspect offers superior detection performance
and lower runtime overhead than the prior work.

1 Introduction
Deep Neural Networks (DNNs) have demonstrated their su-
perior performance and are increasingly employed in vari-
ous critical applications including face recognition, biomed-
ical diagnosis, autonomous driving [Parkhi et al., 2015b;
Esteva et al., 2017; Redmon et al., 2016]. Since training
a highly accurate DNN is time and resource-consuming, cus-
tomers typically obtain pre-trained Deep Learning (DL) mod-
els from third parties in the current supply chain. Caffe
Model Zoo [Caffe, 2017] is an example platform where pre-
trained models are publicly shared with the users. The non-
transparency of DNN training opens a security hole for adver-
saries to insert malicious behaviors by disturbing the training
pipeline. In the inference stage, any input data stamped with
the trigger will be misclassified into the attack target by the in-

fected DNN. For instance, a trojaned model predicts ‘left-turn’
if the trigger is added to the input ‘right-turn’ sign.

This type of Neural Trojan (NT) attack (also called ‘back-
door’ attack) has been identified in prior works [Gu et
al., 2017; Liu et al., 2018] and features two key proper-
ties: (i) effectiveness: an input with the trigger is pre-
dicted as the attack target with high probability; (ii) stealth-
iness: the inserted backdoor remains hidden for legitimate
inputs (i.e., no triggers present in the input) [Liu et al.,
2018]. These two properties make NT attacks threatening
and hard to detect. Existing papers [Chen et al., 2018;
Chou et al., 2018] mainly focused on identifying whether
the input contains the trigger assuming the queried model has
been infected (i.e., ‘sanity check of the input’).

Detecting Trojan attacks for an unknown DNN is difficult
due to the following challenges: (C1) the stealthiness of back-
doors makes them hard to identify by functional testing (which
uses the test accuracy as the detection criteria); (C2) limited
information can be obtained about the queried model during
Trojan detection. A clean training dataset or a gold reference
model might not be available in real-world settings. The train-
ing data contains personal information about the users, thus
it is typically not distributed with the pre-trained DNN. (C3)
the attack target specified by the adversary is unknown to the
defender. In our case, the attacker is the malicious model
provider and the defender is the end user. This uncertainty of
the attacker’s objective complicates NT detection since brute-
force searching for all possible attack targets is impractical for
large-scale models with numerous output classes.

To the best of our knowledge, Neural Cleanse (NC) [Wang
et al., ] is the only existing work that targets at examining the
vulnerability of the DNN against backdoor attacks. However,
the backdoor detection method proposed in NC relies on a
clean training dataset that does not contain any maliciously
manipulated data points. Such an assumption restricts the
application scenarios of their method due to the private nature
of the original training data. To tackle the challenges (C1-C3),
we propose DeepInspect, the first practical Trojan detection
framework that determines whether the DNN has been back-
doored (i.e., ‘sanity check of the pre-trained model’) with
minimal information about the queried model. DeepInspect
(DI) consists of three main steps: model inversion to recover
a substitution training dataset, trigger reconstruction using
a conditional Generative Adversarial Network (cGAN), and



anomaly detection based on statistical hypothesis testing. The
technical contributions of this paper are summarized below:

• Enabling Neural Trojan detection of DNNs. We pro-
pose the first backdoor detection framework that inspects
the security of a pre-trained DNN without the assistance
of a clean training data nor a ground-truth reference
model. The minimal assumptions made by our threat
model ensure the wide applicability of DeepInspect.

• Performing comprehensive evaluation of DeepIn-
spect on various DNN benchmarks. We conduct exten-
sive experiments to corroborate the efficacy, efficiency,
and scalability of DeepInspect. We demonstrate that
DeepInspect is provably more reliable compared to the
prior NT detection scheme [Wang et al., ].

• Presenting a novel model patching solution for Tro-
jan mitigation. The triggers recovered by the condi-
tional generative model of DeepInspect shed light on the
susceptibility of the queried model. We show that the de-
fender can leverage the trigger generator for adversarial
training and invalidating the inserted backdoor.

2 Related Work
A line of research has focused on identifying the vulner-
abilities of DNNs to various attacks including adversar-
ial samples [Rouhani et al., 2018; Madry et al., 2017]
(which are malicious inputs crafted to fool the model dur-
ing DNN inference), data poisoning [Biggio et al., 2012;
Rubinstein et al., 2009] (which injects poisoned data samples
during the training phase to degrade the model’s performance
on legitimate inputs), and backdoor attacks [Gu et al., 2017;
Liu et al., 2018] (which tampers with the training process to
divert the behavior of the infected model when the trigger
is present). We target at backdoor attacks in this paper and
provide an overview of the state-of-the-art NT attacks as well
as the corresponding detection methods below.

2.1 Trojan Attacks on DNNs
We introduce two state-of-the-art Trojan attacks in this section.
BadNets [Gu et al., 2017] takes the first leap to identify the
vulnerability in DNN supply chain. The paper demonstrates
that a malicious model provider can train a DNN that has high
accuracy on normal data samples but misbehaves on attack-
specified inputs. Two types of backdoor attacks, single-target
attack and all-to-all attack, are presented in the paper assuming
the availability of the original training data. These two attacks
are implemented by training the model on the poisoned dataset
where a subset of clean inputs are stamped with the trigger
and their corresponding labels are changed to the attack target.

TrojanNN [Liu et al., 2018] proposes a more advanced
and practical backdoor attack that is applicable when the ad-
versary does not have access to the clean training data. The
presented attack method first specifies the trigger mask and
selects neurons that are sensitive to the trigger region. The
value assignment for the trigger mask is obtained such that
the selected neurons have high activations. In the second step,
the training data is recovered assuming the confidence score
of the target model is known. Finally, the model is partially
retrained on the mixture of the recovered training data and the
trojaned dataset crafted by the attacker.

2.2 DNN Backdoor Detection
Neural Cleanse [Wang et al., ] takes the first step to assess the
vulnerability of a pre-trained DL model to backdoor attacks.
The proposed Trojan detection method utilizes Gradient De-
scent (GD) method to reverse engineer possible triggers for
each output class and uses the trigger size (l1 norm) as the
criteria to identify infected classes. However, Neural Cleanse
has the following limitations: (i). it assumes that a clean train-
ing dataset is available for trigger recovery using GD; (ii). it
requires white-box access to the queried model for trigger
recovery; (iii). it is not scalable to DNNs with a large number
of classes since the optimization problem of trigger recovery
needs to be repeatedly solved for each class. DeepInspect,
on the contrary, simultaneously recovers triggers in multiple
classes without a clean dataset in a black-box setting, thus
resolving all of the above constraints. As such, DeepInspect
features wider applicability and can be used as a third-party
service that only requires API access to the model. We present
a quantitative performance comparison in Section 4.

3 DeepInspect Framework
3.1 Overview of Trojan Detection
The key intuition behind DeepInspect is shown in Figure 1.
The process of Trojan insertion can be considered as adding re-
dundant data points near the legitimate ones and labeling them
as the attack target. The movement from the original data point
to the malicious one is the trigger used in the backdoor attack.
As a result of Trojan insertion, one can observe from Figure 1
that the required perturbation to transform legitimate data into
samples belonging to the attack target is smaller compared
to the one in the corresponding benign model. DeepInspect
identifies the existence of such ‘small’ triggers as the ‘foot-
print’ left by Trojan insertion and recovers potential triggers
to extract the perturbation statistics.

Figure 1: Intuition behind DeepInspect Trojan detection. Here, we
consider a classification problem with three classes. Let ∆AB denote
the perturbation required to move all data samples in class A to class
B and ∆A denote the perturbation to transform data points in all
the other classes to class A: ∆A = max(∆BA,∆CA). A trojaned
model with attack target A satisfies: ∆A � ∆B ,∆C while the
difference between these three values is smaller in a benign model.

Figure 2 illustrates the overall framework of our proposed
Trojan detection method. Supposing the inspected DNN hasN
output classes, DeepInspect first employs the model inversion
(MI) method in [Fredrikson et al., 2015] to generate a sub-
stitution training dataset {XMI , YMI} containing all classes.



Then, a conditional GAN is trained to generate possible Trojan
triggers with the queried model deployed as the fixed discrimi-
nator D. To reverse engineer the Trojan triggers, DeepInspect
constructs a conditional generator G(z, t) where z is a random
noise vector and t is the target class. G is trained to learn the
distribution of triggers, meaning that the queried DNN shall
predict the attack target t on the superposition of the inversed
data sample x and G’s output. Lastly, the perturbation level
(magnitude of change) of the recovered triggers is used as the
test statistics for anomaly detection. Our hypothesis testing-
based Trojan detection is feasible since it explores the intrinsic
‘footprint’ of backdoor insertion as shown in Figure 1.

Figure 2: Global flow of DeepInspect framework.

3.2 Threat Model
DeepInspect examines the susceptibility of the queried DNN
against NT attacks with minimal assumptions, thus addressing
the challenge of limited information (C2) mentioned in the
previous section. More specifically, we assume the defender
has the following knowledge about the inquired DNN: dimen-
sionality of the input data, number of output classes, and the
confidence scores of the model given an arbitrary input query.
Furthermore, we assume the attacker has the capability of
injecting arbitrary type and ratio poison data into the training
set to achieve his desired attack success rate. Our strong threat
model ensures the practical usage of DeepInspect in the real-
world settings as opposed to the prior work [Wang et al., ] that
requires a benign dataset to assist backdoor detection.

3.3 DeepInspect Methodology
DeepInspect framework consists of three main steps: (i)
model inversion: the defender first needs to apply model in-
version on the queried DNN to recover a substitution training
dataset {XMI , YMI} covering all output classes. MI has been
proposed in the prior work [Fredrikson et al., 2015] that ex-
ploits the confidence score of the target model. The recovered
dataset is used by GAN training in the next step, addressing
the challenge C2; (ii) trigger generation: DeepInspect lever-
ages a generative model to reconstruct possible trigger patterns
used by the Trojan attack. Since the attack objective (infected
output classes) is unknown to the defender (C3), we employ
a conditional generator that efficiently constructs triggers be-
longing to different attack targets; (iii) anomaly detection:
after generating triggers for all output classes using cGAN,
DeepInspect formulates Trojan detection as an anomaly detec-
tion problem. The perturbation statistics in all categories are
collected and an outlier in the left tail indicates the existence of
the backdoor. We detail each step of DeepInspect as follows.

Model Inversion. Recall that our threat model assumes no
clean training dataset is available during Trojan detection. As
such, we employ model inversion to recover a substitution
training set {XMI , YMI} which assists generator training in
the next step. [Fredrikson et al., 2015] demonstrates that data
samples can be extracted from a pre-trained model and for-
mulates model inversion as an optimization problem. The

objective function of MI is shown in Eq. (1), which is itera-
tively minimized via gradient descent.

c(x) = 1− f(x; t) +AuxInfo(x). (1)
Here, x is the input data, t is the target class to recover, f
is the probability that the queried model predicts t given x
as its input, AuxInfo(x) is an optional term incorporating
auxiliary constraints on the input.

Trigger Generation. The key idea of DeepInspect is to
train a conditional generator that learns the probability density
distribution (pdf) of the Trojan trigger whose perturbation level
serves as the detection statistics. Particularly, DI employs
cGAN to ‘emulate’ the process of the Trojan attack. The
objective of our cGAN training is described in Eq. (2). Here,
D is the queried DNN, t is the examined attack target, x is a
sample from the approximate data distribution px obtained by
MI, and the trigger is the output of the conditional generator
∆ = G(z, t). sampled from trigger distribution p∆.

D(x +G(z, t)) = t. (2)
Existing attacks proposed in [Gu et al., 2017] and [Liu et
al., 2018] use a fixed trigger pattern (e.g., a white square
or a watermark), thus can be considered as a special case
where the trigger distribution is constant-valued. We show that
DeepInspect captures such static trigger patterns in Section 4.

Figure 3: Illustration of DeepInspect’s conditional GAN training.

Figure 3 shows the high-level overview of our trigger gen-
erator. Recall that DeepInspect deploys the pre-trained model
as the fixed discriminator D. As such, the key challenge of
trigger generation is to formulate the loss to train the condi-
tional generator. Since our threat model assumes that the input
dimension and the number of output classes are known to
the defender, he can find a feasible topology of G that yields
triggers ∆ with a consistent shape as the inversed input x. To
emulate the Trojan attack, DI first incorporates a negative log
likelihood loss (nll) shown in Eq. (3) to quantify the quality of
G’s output trigger to fool the pre-trained model D:

Ltrigger = Ex[nll(D(x +G(z, t)), t)]. (3)
In addition, a regular adversarial loss term is integrated to en-
sure the ‘fake’ image xt = x+G(z, t) cannot be distinguished
from the original one by D:

LGAN = Ex[mse(Dprob(x +G(z, t)), 1)]. (4)
Here, mse denotes the ‘mean square error’ loss function.
Lastly, we limit the magnitude of G’s output by adding a soft
hinge loss on its l1 norm with a defender-selected threshold:

Lpert = Ex[max(0, ||G(z, t)||1−thres)] (5)
Bounding the perturbation magnitude is a common practice to
stabilize GAN training [Isola et al., 2017]. The weighted sum
of the above three losses is used to train the conditional G:

L = Ltrigger + γ1LGAN + γ2Lpert. (6)
We select hyper-parameters γ1, γ2 to ensure that the output
trigger of G achieves at least 95% attack success rate. Note



that it is feasible to learn a pdf of feasible triggers (pertur-
bations crafted for targeted misclassification) for both the
benign and trojaned models. Inserting a Trojan is analogous
to moving data points across the decision boundary as shown
in Figure 1. We argue that DeepInspect is operational in a
black-box setting since our trigger recovery process does not
need any information about model internals.

Anomaly Detection. DeepInspect explores the observation
that one can find a trigger with an abnormally smaller pertur-
bation level for the target class compared to other uninfected
classes in a trojaned model. After generating triggers for
each class using the trained generator in the second step, DI
deploys hypothesis testing and robust statistics to detect the
existence of outliers in trigger perturbations. More specifi-
cally, we use a variant of ‘Double Median Absolute Deviation’
(DMAD) [Rosenmai, 2013] as the detection criteria. Our
DMAD scheme first computes the median m of all test statis-
tic points S and uses it to divide the original list of trigger
perturbations into two subgroups. Since we only need to
consider potential outliers in the left tail of the perturbation
distribution, the absolute deviation of all data points in the left
subgroup Sleft (with values smaller than m) from the group
median is computed and denoted as dev left. The product of
the population deviation and a consistency constant (1.4826
for normal distribution) is denoted as mad, which serves as a
consistent estimator of the standard deviation (std) of S.

We define the ‘deviation factor’ (df ) of a data point as
the ratio between its absolute deviation from the median and
the MAD value df = dev left

mad . Assuming the distribution of
the perturbation statistics satisfies normal distribution, DI em-
ploys a cutoff threshold c = 2 to provide a significance level
of α = 0.05 for our hypothesis testing [Rosenmai, 2013]. Any
data points in Sleft with df values larger than c are marked as
outliers and their corresponding labels are identified as suspi-
cious attack targets. Note that the cutoff value c can be selected
to ensure a defender-specified significance level using the tail
distribution of normal variables (also called ‘Q-function’). Let
L denote the random variable (RV) for the perturbation level
with mean µ and std σ. Then, the corresponding normalized
random variable C = L−µ

σ follows standard normal distribu-
tion N (0, 1). The relation between the significance level α
and the cutoff threshold c is described as follows:

α = Prob(L ≤ l) = 1− Prob(L > l) = 1− Prob(C > c)

= 1−Q(c) = 1− 1√
2π

∫ ∞
c

exp(−u
2

2
)du, (7)

where c = l−µ
σ . DeepInspect leverages DMAD to estimate

the population std σ and replaces the mean value µ with the
sample median. Thus, the normalized RV C can be used to
model the deviation factor df in our setting, meaning that
the threshold c obtained from Eq. (7) also applies to df with
the same significance level α. DeepInspect provides tunable
detection performance by allowing the defender to specify his
desired significance level used in Eq. (7).

4 Evaluation
In this section, we perform extensive experiments to investi-
gate the performance of DeepInspect against two state-of-the-
art Trojan attacks [Gu et al., 2017; Liu et al., 2018] on various

DNN benchmarks. We present a quantitative comparison with
the prior work and detection overhead analysis in Section 4.2
and Section 4.3, respectively.
4.1 Experimental Setup

Configurations of BadNets Attack. We first evaluate DI’s
performance on the backdoor insertion method presented in
BadNets [Gu et al., 2017]. The trigger is a white square at the
bottom right corner of the image. The backdoor is embedded
by training the model with the mixture of the manipulated
set and the rest of the clean dataset. We implement BadNets
attack on MNIST and GTSRB benchmarks.

Configurations of TrojanNN attack. The paper [Liu et al.,
2018] proposes a backdoor injection method for pre-trained
models. It designs a specific trigger that stimulates selected
neurons in the target DNN to high activation values instead of
hard-coded relabelling a portion of the modified training data.
We implement TrojanNN attack in [Liu et al., 2018] using
their open-source code with square and watermark triggers
on VGGFace [Parkhi et al., 2015a], [Omkar M. Parkhi, 2018]
and ResNet-18 [He et al., 2016], respectively.

In our experiments, we add ∼10% of manipulated data to
the original training dataset such that all of our trojaned bench-
marks obtained using BadNets attack method achieve above
95% Trojan activation rate. Table 1 summarizes the settings
and results of the above two Trojan attacks evaluated based on
Section 3.3. We vary the trigger size and the number of Tro-
jan target labels in our experiments and detail DeepInspect’s
sensitivity to these factors in Section 4.2.
Table 1: Summary of the assessed Trojan attacks. The settings and
results of backdoor injection are shown.

Benchmark # of Labels
(attack target t)

Input
Dimension

Trigger Size
(Ratio%)

Test
Acc (%)

Trojan Activ
Rate (%)

MNIST 10(5) 28x28x1 4x4(1%) 98.8% 100.0%
GTSRB 43(18) 32x32x3 4x4(1%) 96.1% 98.9%

ResNet-18 1000(500) 224x224x3 40x40(3%) *85.9% 98.3%
Trojan Square 2622(0) 224x224x3 ≈3512(7%) 70.8% 99.9%

Trojan WM 2622(0) 224x224x3 ≈3512(7%) 71.4% 97.4%
* Top-5 accuracy

4.2 Detection Performance
We investigate DeepInspect’s performance following the three
steps outlined in Section 3.3. During the training of G, we
randomly assign a valid output class as the target t. The
topology of the conditional generator for MNIST and GTSRB
are derived from [Kang, 2017]. For a DNN with high input
dimensionality (ResNet-18, Trojan Square and Trojan WM
fall into this case), a generator with more layers is required
to match the image size. Training of such a generative model
is prohibitively costly and unstable. To tackle this challenge,
we train an auto-encoder on the inversed dataset to find an
embedding space for the input. The converged decoder is then
inserted between G and D shown in Figure 3. As such, G can
generate triggers in the smaller embedding space. We deploy
the auto-encoder on the last three benchmarks in Table 1.

Each Trojan detection experiment is repeated for 10 times
and the average metrics are reported throughout this section.
To validate the feasibility of DeepInspect’s anomaly detection,
we measure the deviation factor for both benign and trojaned
models and show the results in Figure 4 (a). The queried
model is determined to be ‘infected’ if its deviation factor is
larger than the cutoff threshold. Using a significance level
of α = 0.05 (corresponding to the cutoff threshold c = 2),



DI yields df > 2 for all infected models and df < 2 for all
benign models as shown in Figure 4 (a). Therefore, DI satisfies

‘effectiveness’ criterion by achieving 0% false positive rates
and 0% false negative rate across all benchmarks.

The large gap of deviation factors between an infected DNN
and the corresponding benign one indicates that df is an ef-
fective metric for Trojan detection. To corroborate the key
intuition utilized by DI (Figure 1), we measure the perturbation
levels of the triggers recovered by DeepInspect’s conditional
generator and visualize their distributions in Figure 4 (b). It
can be observed that the perturbation magnitude of the in-
fected label (denoted by the triangle) is substantially smaller
than the one of uninfected classes, thus can be used by robust
statistics in our detection. Furthermore, the distribution of our
test statistics recovered for the uninfected labels has a smaller
dispersion compared to the ones in NC[Wang et al., ], yielding
more reliable detection results.

Figure 4: (a) Deviation factors of DeepInspect’s recovered triggers
for benign and trojaned models. The red dashed line denotes the
decision threshold for the significance level α = 0.05. (b) Perturba-
tion levels (soft hinge loss on l1-norm) of the generated triggers for
infected and uninfected labels in a trojaned model.

In the following of this section, we compare the detection
performance of DeepInspect and Neural Cleanse in various
settings. We use the open source code of [Wang et al., ]
for implementation. Since NC assumes the availability of a
clean dataset, we perform their proposed detection method on
the inversed dataset obtained from the same model inversion
procedure as DI to ensure a fair comparison. The quantitative
performance comparison is detailed below.

Sensitivity to Trigger Size. The size of the trigger pattern
used by the attacker affects the detection performance of both
DI and NC since it impacts the test statistics. More specifically,
DI leverages the soft hinge loss of the recovered triggers as the
statistics while NC uses the l1 norm as the decision criteria.
Here, we use square triggers of various sizes on the GTSRB
benchmark and compare the detection performance of two
methods in Figure 5. One can see that NC yields three false
negatives on triggers of size 2 × 2, 12 × 12, and 16 × 16.
Moreover, the deviation factor of NC shows a decreasing trend
as the trigger size increases, suggesting that the detection
statistic is sensitive to trigger size. DI yields no false negatives
across all benchmarks, thus is less sensitive to the increase of
the trigger size compared to NC. Similar trends are observed

on MNIST benchmark and results are not shown here.

Figure 5: Sensitivity analysis of Trojan detection to the size of
triggers. The deviation factors of DeepInspect and Neural Cleanse on
GTSRB benchmark infected with various square triggers are shown.
The red dashed line indicates the cutoff threshold for Trojan detection.

Sensitivity to Number of Trojan Targets. We evaluate DI’s
performance on single-target Trojan attack in the previous
section. Here, we consider a more advanced backdoor attack
where more than one output classes are infected using the
same trigger. We name this type of attack ‘multi-target’ Trojan.
More specifically, the target label t for each input stamped by
the trigger (‘malicious input’) is randomly selected from a set
of classes T . The backdoor is considered to be activated by
the malicious input if the prediction of the model belongs to
the attack target set T . We use the Trojan insertion method in
BadNets [Gu et al., 2017] and perform the single/multi-target
backdoor attack on MNIST benchmark. The infected model
achieves a comparable test accuracy as the uninfected baseline
and above 98% Trojan activation rate. Figure 6 shows the
sensitivity of DI and NC to the number of attack target labels
(denoted by |T |). It can be seen that NC yields false negatives
on all three multi-target Trojan benchmarks (|T |= 3, 5, 7)
while DI can successfully detect the existence of the Trojan
in the queried model when |T |= 3 and 5. Similar results are
observed on GTSRB benchmark and are not shown here.

Figure 6: Sensitivity analysis of Trojan detection to the number of at-
tack targets. The deviation factors of DeepInspect and Neural Cleanse
in various single/multi-target Trojan attack settings are measured on
the MNIST benchmark with a square trigger of size 4 × 4.

4.3 Overhead Analysis
In this section, we evaluate the runtime overhead of DeepIn-
spect framework and compare it with the prior work. Recall
that DI leverages a conditional generator to recover trigger
patterns belonging to multiple classes simultaneously. Further-
more, we demonstrate that DI can incorporate an auto-encoder
to accelerate Trojan detection on large benchmarks. On the
contrary, NC deploys GD to search for triggers in each target
class individually and is not compatible with the auto-encoder.
This is due to the fact that NC recovers the two-dimension
mask and three-dimension trigger pattern separately.

Figure 7 shows the overall relative runtime comparison
between DI and NC across different benchmarks. We im-
plement both detection methods on Nvidia RTX2080 GPU



with 8GiB memory and recover 5 images in each class during
model inversion. The runtime of MI can be computed from
the throughout shown in Figure 7. Empirical results show that
NC is 1.7× and 1.2× faster than DI on MNIST (N = 10)
and GTSRB (N = 43) benchmark, respectively. However,
DI engenders 5.3× and 9.7× speedup over NC on ResNet-18
(N = 1000) and VGGFace [Omkar M. Parkhi, 2018] bench-
marks (N = 2622, denoted as ‘Trojan Square’ and ‘Trojan
WM’ in Figure 7). It can be seen that our framework yields
higher speedup compared to NC on large benchmarks. As
such, DI features better efficiency and scalability for DNNs
with numerous output classes in the real-world setting.

Figure 7: Detection speedup of DeepInspect compared to Neural
Cleanse. The training time of the auto-encoder and MI are included in
DI’s and NC’s runtime. The orange dashed line denotes the through-
put of model inversion (#images per second). DI demonstrates better
scalability on large benchmarks compared to NC.

Discussions: Let us consider the number of source and tar-
get classes used in Trojan insertion, current DI addresses all-
to-one/all-to-multiple scenarios. DeepInspect can be easily
extended to detect other Trojan attacks with different mecha-
nisms. A white-box adaptive adversary can strategically select
the source and the target class such that the magnitude of
required perturbation for misclassification is not noticeably
smaller than other unaffected classes (Figure 1). Such an at-
tack might lower df at the cost of reduced attack effectiveness.
DI can be adapted to detect clean-label attacks [Shafahi et
al., 2018] by evaluating the required perturbation for each
source-target class pair. We also conduct additional exper-
iments assuming a clean dataset is available during Trojan
detection. Empirical results show that DI achieves comparable
detection performance compared to NC in this case.

5 Trojan Mitigation via Model Patching
Recall that DeepInspect effectively detects the occurrence of
the backdoor attack by training a conditional generator to
learn the pdf of potential triggers. In other words, once we
complete the training G as outlined in Section 3.3, we have a
generative model that is capable of constructing diverse trigger
patterns for any target class. As such, DeepInspect’s generator
facilitate ‘adversarial learning’ that can be used to improve
the robustness of the benign model, or ‘patch’ the infected
DNN for disabling Trojan attacks.

Here, we demonstrate how DeepInspect can be used as a
remedy scheme to mitigate the Trojan attack with the identi-
fied target class t. We perform model patching by fine-tuning
the trojaned DNN with the mixture of the inversed training
set {XMI , YMI} and the patching dataset {Xpatch, Ypatch}.
The patching set is obtained as follows: DeepInspect’s condi-
tional generator trained in the detection phase (Section 3.3) is
utilized to constructs a series of trigger images ∆t = G(z, t)
for the target class t. The patching data is then acquired by

‘stamping’ a subset of the inversed data with the reverse en-
gineered triggers Xpatch = Xsubset

MI + ∆t. The labels of the
patching inputs are the same as the ones of the corresponding
recovered data Ypatch = Y subsetMI . In our experiments, we use
15% of {XMI , YMI} to construct the patching set. Another
10% of the inversed data is taken as the validation set to find
retraining configurations (e.g., batch size, learning rate). Fi-
nally, adversarial training is employed on the infected model
for 10 epochs with the original loss in the data application.

Table 2 summarizes the results of DeepInspect’s model
patching on various infected DNNs without clean data. One
can see that our Trojan mitigation scheme effectively decreases
the activation rate of the embedded trigger while preserving
the model’s performance on the normal dataset. The patched
model has a deviation factor smaller than the cutoff threshold
c = 2 used in DeepInspect’s anomaly detection (Section 3.3),
thus is able to pass model sanity check and safe to deploy. We
want to emphasize that the TAR after patching can be further
decreased to ∼3% assuming clean data is available.

Table 2: Evaluation of DeepInspect’s Trojan mitigation scheme. The
Trojan Activation Rate (TAR) is effectively reduced and the test
accuracy is preserved after performing model patching.

Benchmark Before Patching After Patching
Metrics Test Acc TAR DF Test Acc TAR DF
MNIST 98.8% 100.0% 3.59 99.1% 7.4% 1.56
GTSRB 96.1% 98.9% 3.15 97.1% 8.8% 1.42

ResNet-18 85.9% 98.3% 3.82 86.6% 9.4% 1.67
Trojan Square 70.8% 99.9% 6.91 70.1% 9.7% 1.79
Trojan WM 71.4% 97.4% 6.68 70.9% 8.9% 1.82

6 Conclusion and Future Work
We propose DeepInspect, the first practical solution for Trojan
detection and mitigation in the deep learning domain with min-
imal prior knowledge about the queried model. DeepInspect
takes the pre-trained DNN as its input and returns a binary de-
cision (benign/trojaned) on the sanity of the model. Unlike the
prior work that relies on a clean dataset for Trojan detection,
DeepInspect is able to reconstruct potential Trojan triggers
with only black-box access to the queried DNN. DeepInspect
leverages a conditional generative model to learn the proba-
bility distribution of triggers for multiple attack targets simul-
taneously. Our hypothesis testing-based anomaly detection
allows the defender to leverage the trade-off between the de-
tection rate and the false alarm rate by specifying the cutoff
threshold. We perform an extensive evaluation of DeepInspect
against two state-of-the-art Trojan attacks to corroborate its
high detection rates and low false alarm rates compared to the
previous work. In addition to the superior backdoor detection
performance, DeepInspect’s conditional trigger generator en-
ables an effective Trojan mitigation solution, i.e., patching the
model using adversarial training.

We discuss two future research directions here. DeepInspect
can be adapted to improve the detection performance on more
sophisticated Trojan attacks (e.g., large-size triggers and multi-
target backdoors). For multi-target Trojan attacks, the loss
definition Ltrigger can be modified to allow multiple target
classes given the same manipulated input during G training.
Also, the runtime of DI’s trigger recovery can be optimized by
incorporating more advanced GAN training strategies.
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