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ABSTRACT
Recommending products to users means estimating their prefer-
ences for certain items over others. This can be cast either as a
problem of estimating the rating that each user will give to each
item, or as a problem of estimating users’ relative preferences in
the form of a ranking. Although collaborative-filtering approaches
can be used to identify users who rate and rank products similarly,
another source of data that informs us about users’ preferences is
their set of social connections. Both rating- and ranking-based
paradigms are important in real-world recommendation settings,
though rankings are especially important in settings where explicit
feedback in the form of a numerical rating may not be available.
Although many existing works have studied how social connec-
tions can be used to build better models for rating prediction, few
have used social connections as a means to derive more accurate
ranking-based models. Using social connections to better estimate
users’ rankings of products is the task we consider in this paper. We
develop a model, SBPR (Social Bayesian Personalized Ranking),
based on the simple observation that users tend to assign higher
ranks to items that their friends prefer. We perform experiments
on four real-world recommendation data sets, and show that SBPR
outperforms alternatives in ranking prediction both in warm- and
cold-start settings.
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H.2.8 [Database Management]: Data Mining; J.4 [Social and Be-
havioral Sciences]: Miscellaneous
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Recommending products to users requires not only that we un-
derstand their preferences, but also that we understand their inter-
actions with others. Just as a person’s preferences can be infered
from the products they rate, view, and buy, their preferences can
also be infered from the products their friends rate, view, and buy.

In fact, feedback from a user’s friends may be even more infor-
mative than a user’s own feedback: by considering all of a user’s
friends, we can draw upon a much larger volume of data than we
can by looking at a user in isolation. This is especially true in “cold-
start” settings, i.e., when making recommendations to new users. If
a user signs-on to a recommendation service that is connected to a
social network, we have access to their social connections—and
possibly even their friends’ preferences—even before the user has
performed any actions.

The goal of this paper is to leverage such social connections in
order to build better models of users’ preferences. Many existing
works aim to use social connections in order to predict the ratings
that each user will give to each item; a commonly used assumption
is that each user’s rating behavior should be somehow similar to
that of their friends. However, in many real applications, explicit
numerical ratings might not be available and one must instead try
to model some form of implicit feedback, such as the media they
consume, the pages they browse, the music they listen to, or whom
they befriend [4, 21]. This setting is called “one-class” recommen-
dation and a variety of solutions have been proposed to solve it
by directly modeling relative preferences, or rankings, of items for
personalized recommendation [8, 12, 18, 22].

Although a number of rating estimation methods have been pro-
posed that leverage social information, few works have made use of
social information for one-class recommendation problems. In [2],
Du et al. extend Bayesian Personalized Ranking (BPR) [15] by
adding a social regularization term. MR-BPR [8], a state-of-the-
art method for one-class recommendation, simultaneously mod-
els users’ preference on items and their social relations. Pan et
al. [13] present GBPR (“Group-based” BPR), a method that ag-
gregates groups of users’ preferences on items to reduce modeling
uncertainty and improve recommendation accuracy. Nevertheless,
none of these works consider how feedback from users’ friends can
be used to model their preference ranking of items.

In this paper, we try to understand the underlying mechanism of
how users’ preferences for certain items are revealed by the items
chosen by their friends. To motivate this work, we first conduct a
simple analysis of preference data from four sources that we will
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Figure 1: Coverage Analysis. The Y-axis indicates the proba-
bility that a user’s friends select an item that they have selected.
Users are more likely to select items selected by their friends.

consider in this paper: Ciao1, Delicious2, LibraryThing3 and Epin-
ions4. All four sources consist of preference data in addition to
explicit social connections. First, Figure 1 shows the probability
that an item selected (e.g. purchased/viewed/reviewed) by a user is
also selected by their friends. To make the results more clear, we
compare the probability with two baseline settings: the probability
that an item selected by a user is also selected by randomly sampled
users and the probability that an item selected by a user belongs to a
randomly sampled item set. In all cases it is clear that the first prob-
ability is an order of magnitude higher than in the other two cases.
Further to this, Figure 2 shows that the probability that a user se-
lects an item increases monotonically as a function of the number
of friends who have selected the item, implying a model where each
friend’s selections contribute independently to the probability that
a user selects an item. Based on this idea, we build a model based
on a simple assumption about rankings:

(Rank of) items I’ve consumed >

items my friends have consumed >

items neither me nor my friends have consumed.

From this we build a simple Bayesian model of users’ ranked pref-
erences over items.

We summarize our contributions as follows:

1. We develop a ranking algorithm, called Social-BPR or SBPR,
that incorporates our model assumptions at training time by
leveraging social information for training instance selection.

2. We evaluate the proposed method on four real-world datasets
(two of which we introduce), and empirical results show that
the proposed model can significantly improve item recom-
mendation performance compared to state-of-the-art alterna-
tives.

3. We report experiments on cold-start recommendation prob-
lems, and again report significant improvements over state-
of-the-art alternatives in cold-start one-class recommenda-
tion problems.

1www.ciao.co.uk
2www.delicious.com
3www.librarything.com
4www.epinions.com
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Figure 2: Users become monotonically more likely to select an
item as more of their friends select it.

Organization. Section 2 formulates the problem; Section 3 in-
troduces the datasets used in our study and presents some observa-
tions related to the problem we try to solve in this paper; Section
4 describes the proposed model and algorithms; Section 5 shows
experimental results and verifies the contribution of our SBPR al-
gorithm for one-class recommendation problems; Finally, Section
6 discusses related work and Section 7 concludes the paper.

2. PROBLEM DEFINITION
In this section, we first introduce several concepts and definitions

used in the paper and then formally define the problem of social
personalized ranking.

Let U denote the user set and I denote the item set. Assume
that we observe a social network G = (U,E), where (u, v) ∈
E indicates user u and v are linked, and some “feedback” F =
{(u, i)}, where u ∈ U and i ∈ I , from |U | = M users and
|I| = N items. The concepts that will be used in this paper are
defined as:
Observed items and unobserved items : For each user u, ob-
served items Ou ∈ I are defined as the items for which user u
shows an observed rating or preference, and unobserved itemsOu ∈
I are the remaining items.

In this work, for each user, we divide the total item set into three
parts: positive feedback, social feedback, and negative feedback,
defined as follows:
Positive feedback : positive feedback Pu = {(u, i)} is defined
as the set of user-item pairs containing user u and his/her observed
items i ∈ Ou. These could be items that u chose, purchased, rated,
reviewed etc. depending on the setting and dataset in question.
Social feedback : social feedback is defined by the tuple SPu =
{(u, k)} where u represents the user, and k ∈ Ov ∩Ou represents
items that user u did not choose but at least one of their friends,
v, (u, v) ∈ E selected.
Negative feedback : negative feedback is defined as the set of user-
item pairsNu = {(u, j)}, where j ∈ Ou∩Ov∩. . .∩Ov′ is the set
of items that neither user u nor any of their friends, (u, v), (u, v′) ∈
E, selected. Here negative only means no explicit feedback can be
observed from the user and does not represent users’ dislike of the
items.

One can easily find that Pu∩SPu∩Nu = ∅ and Pu∪SPu∪Nu
contains the total item set. Given the definition of Social feedback,
we now introduce a social coefficient suk for (u, k) ∈ SPu that
can be used to describe the preference distance between u’s positive
feedback and social feedback.



Table 1: Statistics of the Datasets.
Ciao Delicious Lthing Epinions

#Users 1,705 1,670 73,882 41,554
#Item 12,252 52,613 337,561 112,991
#Observed feedback 22,839 71,105 979,053 181,394
#Social relations 47,842 13,246 12,0536 181,304
#Average P’ve-feedback 13 42 13.25 4.3651
#Average SP’ve-feedback 342 241 101.08 11.437

Table 2: Statistics of cold/cool-start users (users who have per-
formed fewer than 5 actions).

Ciao Delicious Lthing Epinions

#Cold-start users 1,031 126 48,922 37,114
#Avg. social relations 35.95 8.14 0.8193 3.369
#Average P’ve-feedback 2.86 2.68 1.985 1.686
#Average SP’ve-feedback 195.9 105.71 33.86 14.005

Social coefficient : given a particular user u, associated with their
social feedback (u, k) ∈ SPu, suk is a parameter indicating the
attitude from u’s social relations towards a particular item k. The
value of the social coefficient can be defined in different ways that
we will discuss later, but in essence a large value of the social co-
efficient indicates that u’s friends show a strong preferenc toward
item k from which we can naturally assume u also likes the item
although he has not selected it.

Unlike previous works that usually divide the item set into two
classes (positive and negative), we introduce a new social feedback
class by exploiting users’ social information. Armed with these
concepts, we can define the problem of social personalized rank-
ing. Our goal is to recommend a (personalized) ranked list of items
for each user u. Since the above concepts are defined using both
user feedback and social information, the key challenge is now to
learn a ranking function that incorporates all of these sources of in-
formation. More precisely:
Leveraging social connections to improve personalized ranking
for collaborative filtering. Given observed feedback F train =
{U, I} and a social network G from M users and N items, the
goal of this paper is to learn a ranking function for each user u

f : (u, F train , G, Pu,SPu, Nu, {suk})→ Ranked_list(I) :
r1(m) � . . . ri(p) � ri+1(q) . . .

where ri(p) � ri+1(q) encodes that user u shows higher prefer-
ence towards item p than item q.

3. DATA DESCRIPTION
Before we introduce the proposed method, we first discuss the

four data sets used in this paper and demonstrate their different
features.

3.1 Data Description
The data sets used in this paper are collected from four popular

web sites: Ciao, Delicious, LibraryThing and Epinions. Statistics
of the four datasets are summarized in Table 1. “Feedback” in these
datasets represents whether users purchased an item, or provide a
bookmark (in the case of Delicious). All data sets contain such
feedback in addition to explicit social network information.

The first two datasets we use are from Ciao, a product review
website, and Delicious, a bookmarking website. Both datasets are
available online.5

The remaining two datasets, LibraryThing and Epinions, we in-
troduce in this paper. Both are “complete” datasets (they include
all actions by all users of the website); both were collected from
public sources and can be found on the second author’s webpage6.

LibraryThing (Lthing for brevity) is a popular book-reviewing
website that allows users to create an online catalog of the books
they own or have read. A user can tag and rate all the books she
adds to her personal library. The dataset we crawled contains user
feedback on items, including both ratings and comments. Since this
paper focuses on solving the Top-N recommendation problem, we
filter out explicit negative feedback (rating scores below 4 out of
5 stars) and use the remaining instances for model learning. After
such preprocessing, the final version of the dataset contains 73,882
users and 337,561 items with 979,053 actions and 120,536 social
relations between users.

Epinions is a popular online consumer review website. In to-
tal, we collected data from 41,554 users and 112,991 items along
with their rating scores, review text and social relations (which in
this case indicate trust relationships). Similar to the Lthing dataset,
we also remove all negative rating feedback (less than 4 stars) and
finally obtain 181,394 positive actions.

Table 1 shows the average amount of positive feedback, social
feedback, and the number of social relations. From the table we
observe that even when the amount of positive feedback per user is
small, the amount of social feedback is relatively much larger. In
other words, there is a much larger volume of data to draw upon if
we leverage feedback provided by each user’s friends.

3.2 Cold-start Analysis
Cold- (or cool-)start users are those with few observable histori-

cal actions in the datasets. In Table 2 we show the statistics of users
with fewer than 5 explicit actions. From the table, one can see that
different datasets exhibit different properties with regard to cold-
start users. In the Ciao dataset, although more than 60% of users
have fewer than 5 positive actions, the average number of users’
social relations is quite large. In the Delicious dataset, the number
of cold-start users is only 126 and they all have numerous social
relations. In the Lthing dataset, we find that cold-start users rarely
have social relations with other users, meaning that they are really
“cold,” making it difficult to model their preferences. In Epinions,
we find that the average amount of social feedback is much smaller
than in the other three datasets.

To conclude, we find that even if the amount of positive feed-
back for cold-start users is limited, there is often significantly more
social feedback available when we consider their social relations.
Therefore, how to design an algorithm that properly leverages both
limited positive feedback in addition to social feedback becomes a
critical task when making recommendations to cold-start users.

4. SOCIAL PERSONALIZED RANKING
In this section, we will detail our model assumption regarding

positive, social, and negative feedback and then describe the pro-
posed social personalized ranking algorithm.

The problem we study is usually referred to as “one-class collab-
orative filtering”. Most work on this topic focuses on the use of pos-
itive versus negative feedback, but ignores the influence of users’

5http://www.public.asu.edu/jtang20/
datasetcode/truststudy.htm
6http://cseweb.ucsd.edu/~jmcauley/



social connections. Moreover, when sampling positive and negative
feedback instances for training, prior pairwise ranking methods as-
sume that each sampled pair has the same weight and contribution
to the model at training time.

Unlike existing methods, we incorporate feedback from a user’s
social network through a modeling assumption regarding a new
class of items that we refer to as “social feedback.” We also in-
troduce a coefficient based on the strength between users’ ties that
controls how training pairs are sampled.

4.1 Model Assumption
We first introduce the basic assumption used in prior pairwise

methods [8, 15], which can be represented as

xui � xuj , i ∈ Pu, j ∈ Nu, (1)

where xui represents the preference of user u on item i and the re-
lationship xui � xuj says that a user u is likely to prefer a positive
item i ∈ Pu to a negative item j ∈ Nu. This assumption reflects
the differences between the basic ideas of point-wise and pairwise
methods. Point-wise methods [5, 12] focus on fitting the numeric
values of the data while pairwise methods [15, 16, 18] model the
preference-order of the data instead.

Although the pairwise assumption generates better recommenda-
tion results than point-wise methods, it suffers from some obvious
drawbacks as mentioned in the beginning of this section.

Now we describe our proposed assumption based on two pair-
wise preference comparisons:

xui � xuk, xuk � xuj , i ∈ Pu, k ∈ SPu, j ∈ Nu, (2)

where xui represents a user u’s preference on positive feedback i,
xuk represents the preference on social feedback k, and xuj repre-
sents the preference on negative feedback j. Here, the “unobserved”
feedback is divided into two parts: social feedback and negative
feedback. Based on social feedback, we can assume a fine-grained
preference order for the “unobserved” feedback. Our proposed
assumption is more general and considers both the influence of a
user’s social connections as well as their explicit feedback, making
it more realistic in real social-recommendation settings.
Alternative assumption : Conceivably, one could argue that “so-
cial” feedback should be treated more negatively than items which
are not observed at all (i.e., negative feedback). Specifically, so-
cial feedback means that a user knows about an item (through their
friends), yet has still chosen not to purchase/view/evaluate it. This
might be treated as a signal that a user dislikes that item. Since we
cannot directly observe which of these two effects is more promi-
nent in real data, we test this hypothesis experimentally through the
Alternative assumption:

xui � xuk, xui � xuj , i ∈ Pu, k ∈ SPu, j ∈ Nu (3)

The main difference between Eq. 3 and Eq. 2 is the removal of
the preference order between positive feedback and social feed-
back. Although the assumptions are different, they can be incor-
porated into the same model structure and learning method as de-
scribed below. Due to the space limitations, we introduce the for-
mulation and learning of the model with the assumption as in Eq. 2
and experimentally compare the two assumptions in Section 5.

4.2 Model Formulation
Based on our assumption, we propose an optimization criterion

for each user. In particular, the inequality in Eq. 2 can be used
to maximize the value of the Area Under the ROC Curve (AUC)
which is widely used in classification problems. A large AUC value
means that the positive feedback is more likely to be ranked higher

Input: Observed feedback F = {(u, i)}, where u ∈ U and
i ∈ I and a social network G = (U,E)

Output: Parameters
Θ = {W ∈ Rd×M , V ∈ Rd×N , b ∈ RN}

Initialization:
Initialize for u = 1;u ≤M ; do

split N items into three parts: Pu, SPu and Nu;
end
Training:
for iterations do

for #training sample do
Uniformly sample a user u ∈ U ;
Uniformly sample an item i from Pu;
Uniformly sample an item k from SPu;
Uniformly sample an item j from Nu;
Calculate ∂O(Θ)

Θu,i,k,j
;

Update Wu, Vi, Vk, Vj , b according to Eq. 7;
end

end
Algorithm 1: Social Personalized Ranking.

than social feedback and the social feedback is more likely to be
ranked higher than negative feedback.

Thus, for each user u, the optimization criterion can be repre-
sented as follows:∏
i∈PSPu,k∈PSPu

P(xui � xuk)δ(u,i,k)[1− P(xui � xuk)]1−δ(u,i,k)

∏
k∈SPNu,j∈SPNu

P(xuk � xuj)ζ(u,k,j)[1− P(xuk � xuj)]1−ζ(u,k,j)

(4)

where PSPu = Pu ∪ SPu, SPN u = SPu ∪ Nu; δ(u, i, k) is
an indicator function that is equal to 1 if i ∈ Pu and k ∈ SPu,
and 0 otherwise. Similarly, ζ(u, k, j) is an indicator function that
is equal to 1 if k ∈ SPu and j ∈ Nu, and 0 otherwise. Eq. 4
reflects the main assumption of the paper that for a specific user, (a)
her preference due to positive feedback should be larger than that
of social feedback, and (b) her preference due to social feedback
should be larger than that of negative feedback. Due to the totality
and antisymmetry of a pairwise ordering scheme as argued in [15],
the above formula can be rewritten as Eq. 5 aiming to maximize the
AUC value,∑

i∈Pu,k∈SPu
P(xui � xuk)

|Pu||SPu|
+

∑
k∈SPu,j∈Nu

P(xuk � xuj)

|SPu||Nu|
.

(5)

When optimizing for the AUC, it is common practice to work with
a differentiable function, such as a sigmoid function which has the
form σ(x) = 1

1+e−x , to approximate the function P(.), so that the
objective function is differentiable. Based on this trick, our goal is
to maximize the following objective function,

∑
u

[∑
i∈Pu

∑
k∈SPu

ln(σ(
xui − xuk
1 + suk

))+

∑
k∈SPu

∑
j∈Nu

ln(σ(xuk − xuj))

]
− regularization (6)

where a regularization term is used to avoid overfitting in the learn-
ing process. The preference function is modeled by matrix factor-
ization, xui = WT

u Vi+bi, xuk = WT
u Vk+bk and xuj = WT

u Vj+
bj where d is the number of latent factors, W ∈ Rd×M , V ∈



Rd×N , b ∈ RN . We adopt `2-norm regularization terms for model
parameters Θ = {W,V, b}.

Unlike other works, we employ a coefficient suk in Eq. 6 to con-
trol the contribution of each sampled training pair to the objective
function. Reviewing the definition of suk, if we assign a fixed
value, say, 1 to each social relation, we find that suk counts the
number of user u’s friends who choose the item k when u himself
does not. The objective function uses the reciprocal of (1 + suk) to
control the preference difference between positive and social feed-
back. A large value of suk indicates that user u might prefer this
social feedback (item) over his positive feedback since many of u’s
friends show their preference on the item.

4.3 Model Learning
We employ the widely used stochastic gradient descent (SGD)

algorithm to optimize the objective function in Eq. 6. The main
process of SGD is to randomly select a (positive, social) and (so-
cial, negative) feedback pair and iteratively update model param-
eters based on the sampled feedback pairs. Specifically, for each
training instance, we calculate the derivative and update the cor-
responding parameters Θ by walking along the ascending gradient
direction,

Θt+1 = Θt + η × ∂O(Θ)

∂Θ
. (7)

One can find that when users have no social relations, social
feedback will vanish and the proposed preference assumption will
reduce to the basic assumption of BPR [15], which does not con-
sider the influence of social networks on users’ personalized item
ranking. The steps to learn the model parameters are depicted in
Algorithm 1.

4.4 Training Instance Sampling Strategy
Since the learning method we use in this paper is stochastic gra-

dient descent (SGD), the selected training instances might have
great impact on the recommendation performance. Therefore, fol-
lowing existing works [17, 24], we try different sampling strategies
to select the training instances. Specifically, for each user u, the
sampling strategies used in this paper are as follows:

• Uniform sampling: all positive, social and negative feedback
is drawn uniformly from Pu, SPu and Nu.

• Static sampling: the positive feedback is sampled uniformly
from Pu; the social feedback is drawn according to a Geo-
metric distribution:

p(k ∈ SPu|u) ∝ exp(
r(k)

λ
), λ ∈ R+ (8)

where r(k) is the rank of social feedback k according to the
social coefficient suk. The expected rank in the distribution
of Eq. 8 is identified by the parameter λ. Negative feedback
instances are sampled uniformly from Nu.

• Adaptive sampling: instead of using a static parameter, e.g. a
social coefficient or popularity, an adaptive sampling strat-
egy uses a preference scoring function to define the sampling
distribution. For each user u, positive instances are sampled
uniformly from Pu. Both social and negative instances are
sampled through following distribution:

p(k ∈ SPu|u) ∝ exp(
xuk
λ

), λ ∈ R+

p(j ∈ Nu|u) ∝ exp(
xuj
λ

), λ ∈ R+.
(9)

• Dynamic negative sampling: negative feedback instances are
sampled according to the preference scoring function. Un-
like the adaptive sampling strategy, in [24], Zhang et al. de-
sign a rejection sampling procedure. Here we follow a lin-
ear weight function. For each user u, positive and social in-
stances are drawn uniformly from Pu; then we uniformly
draw j, l ∈ Nu and calculate xuj and xul; if xuj > xul, re-
turn j as selected negative feedback with probability 1

1+β
or

return l otherwise; if xul > xuj , return l as selected negative
feedback with probability 1

1+β
or return j otherwise. Here β

is a constant and we fix it to 0 as in [24].

5. EXPERIMENTS
In this section, we conduct experiments on the four real-world

datasets to evaluate the effectiveness of the proposed method.

5.1 Experimental Setup
In order to demonstrate the performance of our approach, we

use four datasets and several metrics to evaluate all compared algo-
rithms. Specifically, we split the data into a training part, used for
model training, and a test part, used for model evaluation (there are
no model hyperparameters so a validation set is not required). For
each user, we randomly select 90% of their observed feedback as
Pu and leave the remainder as Tu for testing. Then SPu and Nu
are as defined in Section 2. Grid search is applied to find regular-
ization parameters, and we set the values of parameters αu, αv and
αb as 0.015, 0.025, and 0.01 respectively.

Our experiments are intended to address the following questions:

1. How does our approach compare with related personalized
ranking methods for item recommendation?

2. Can the proposed method solve the cold-start recommenda-
tion problem?

3. How quickly does our proposed method converge?

4. How do different definitions of social feedback alter recom-
mendation performance?

Comparison methods. In order to demonstrate the benefits of our
approach, we compare our model with the following methods for
item recommendation. Since the problem we solve in this paper is
one-class recommendation (without rating scores), it is unsuitable
to compare our methods with rating estimation methods. Instead,
we consider some state-of-the-art social one-class recommendation
methods [8, 13] as baselines.

• Random (Rand): This method randomly orders the items
for recommendation.

• Most Popular (MP): This method presents a non-personal-
ized ranked item list based on how often items are chosen
among all users.

• MMMF: This method [20] is an extension of Maximum Mar-
gin Matrix Factorization for item recommendation optimized
by a soft hinge ranking loss.

• WRMF: The weighted matrix factorization method is pro-
posed by [12], which uses a point-wise strategy for solving
one-class recommendation problems.

• BPR-MF: This method [15] proposes a pairwise assumption
for item ranking. Here we employ a uniform sampling strat-
egy for training instance selection.



Table 3: Recommendation performance of different methods on four real-world datasets. The last column shows the improvement
of the proposed method compared with the best baseline method.

Dataset Metrics Rand MP MMMF WRMF BPR MR-BPR GBPR SBPR-1 SBPR-2 Improv.

Ciao

R@5 0.0075 0.0350 0.0220 0.0355 0.0243 0.0236 0.0306 0.025 0.0264 -25.6%
R@10 0.0097 0.0487 0.0457 0.0594 0.0417 0.0429 0.0494 0.0605 0.0634 6.7%
NDCG 0.1445 0.1687 0.1692 0.1881 0.1672 0.1804 0.1683 0.1852 0.1890 0.4%
AUC 0.5054 0.5822 0.6079 0.6948 0.5894 0.7068 0.5909 0.7171 0.7189 1.7%

Delicious

R@5 9.3×10−4 0.0012 0.0029 0.0091 0.0058 0.0128 0.0083 0.0045 0.0369 188%
R@10 0.0017 0.0022 0.0059 0.0162 0.0103 0.0221 0.0174 0.0126 0.0770 250%
NDCG 0.1422 0.1425 0.1474 0.1708 0.1807 0.1884 0.1935 0.1822 0.2147 10.9%
AUC 0.5051 0.5158 0.5555 0.6613 0.7303 0.7577 0.7372 0.7576 0.7618 0.5%

Lthing

R@5 6.27×10−5 0.0118 0.0089 0.0133 0.0083 0.0062 0.0107 0.0096 0.0164 23.3%
R@10 3.193×10−4 0.0186 0.0125 0.0203 0.0119 0.0107 0.0191 0.0148 0.0245 20.6%
NDCG 0.1043 0.1328 0.1255 0.1365 0.1220 0.1297 0.1322 0.1306 0.1380 1.1%
AUC 0.5026 0.6922 0.6035 0.7255 0.5816 0.7496 0.6904 0.7377 0.7622 5.1%

Epinions

R@5 0.0081 0.0054 0.0045 0.0053 0.0045 0.0054 0.0053 0.0062 0.0082 1.2%
R@10 0.0106 0.0103 0.0121 0.0078 0.0079 0.0099 0.0112 0.0125 0.0143 18%
NDCG 0.1321 0.1312 0.1316 0.1320 0.1313 0.1315 0.1326 0.1342 0.1365 2.9%
AUC 0.4898 0.4969 0.5042 0.4991 0.5054 0.5023 0.5212 0.5257 0.5314 1.9%

• MR-BPR: This method [8] combines multi-relational matrix
factorization models and BPR-MF models in order to model
users’ feedback on items and on social relations simultane-
ously. MR-BPR is a state-of-the-art method for one-class rec-
ommendation with social information.

• GBPR: This work [13] relaxes BPR’s assumption to a group
pairwise preference assumption. The authors try to smooth
the individual positive feedback model and increase the con-
fidence for pairwise classification by aggregating a group of
users’ preferences. Here we fix the number of grouped users
to 5.

• Social BPR-1 (SBPR-1): This method follows the assump-
tion of Eq. 3. The model formulation and learning method
are similar to Algorithm 1.

• Social BPR-2 (SBPR-2): This is our proposed method that
strictly follows the assumption of Eq. 2 and the learning al-
gorithm is shown in Algorithm 1.

Many of the above baseline methods can be found in [3].

Evaluation Metrics. We use three popular metrics, Recall@K
(R@K), NDCG (Normalized Discounted Cumulative Gain) and Area
under the curve (AUC), to measure the recommendation quality of
our proposed approach in comparison to baseline methods.

The average AUC statistic is defined as

AUC =
1

M

∑
u∈M

1

|E(u)|
∑

(i,j)∈E(u)

δ(xui > xuj), (10)

where E(u) = {(i, j)|(u, i) ∈ Tu ∧ (u, j) /∈ (Pu ∪ Tu)}.
DCG@K considers the ranking of the recommended items by

discounting the importance and is defined as

DCG@K =
K∑
i=1

2reli − 1

log2(i+ 1)
, (11)

where rel i represents the relevance score of the item i (we use a
binary value for this quantity). NDCG is the ratio of the DCG
value to the ideal DCG value for that user. The ideal value of
DCG comes from the best ranking function for the user.

5.2 Recommendation Performance

Recommendation Evaluation Table 3 details the average rec-
ommendation performance of different methods. Here we fix the
number of latent factors to 10. From the results, we can see that
our approach shows significant improvement compared with other
algorithms on all four datasets. Since most of the social recom-
mendation methods are concerned with rating estimation and can-
not handle one-class recommendation problems, here we include
comparisons with two state-of-the-art one-class recommendation
methods, MR-BPR and GBPR. In particular, when comparing the
SBPR models with the two closely related methods, we find that
our proposed approach wins in most cases. One possible reason
may be that although MR-BPR models users’ social preference and
item preference simultaneously making it better than many baseline
methods, it fails to model how social relations directly influence
users’ preferences on items. As for GBPR, it replaces individual
preferences with group preferences. However, the group of users in
GBPR is sampled by random selection based only on a simple rule
that users in the group have the same positive preference towards an
item. We also find that all models show poor performance on the
Epinions dataset, the reason we consider is the sparsity of users’
positive feedback (As Table 1 shows, the average number of posi-
tive feedback in Epinions is only 4).

In Section 4, we proposed two preference order assumptions
based on social feedback. In this section, we compare the perfor-
mance of those two assumptions. From the experimental results,
we find that the performance of the first assumption always out-
performs the other one, which shows that users are more likely to
prefer the items selected by their friends to others. These results
are also consistent with the observational analysis in Section 1.

Detailed results for Recall@N can be found in Figure 3. Al-
though the curves of different methods on Ciao seem to be very
close to each other, both of the proposed methods outperform base-
lines on different Recall@N measure points. On Epinions, it is
much clearer that SBPR-2 improves the recommendation perfor-
mance when N is small. On the other two datasets, the proposed
methods consistently outperform all baseline methods.



Table 4: Sampling Strategy Comparisons for SBPR-2. AUC is used for evaluation.
Ciao Delicious Lthing Epinions

Uniform Sampling 0.7133±0.0012 0.7536±0.0011 0.7554±0.0014 0.5274±0.0022
Static Sampling 0.7189±0.0014 0.7618±0.0019 0.7622±0.0004 0.5314±0.0012
Adaptive Sampling 0.6855±0.0162 0.7528±0.0056 0.7522±0.0012 0.5269±0.0017
Dynamic Negative Sampling 0.6823±0.0130 0.7463±0.0101 0.7510±0.0034 0.5222±0.0032
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Figure 3: Recommendation performance comparisons (Re-
call@N) on four datasets.

Recommendation for Cold-Start Users. In Section 3, we have
shown that although cold-start users’ have limited positive feed-
back (or none), the introduction of social feedback provides infor-
mation that can be used to model their preferences. In this sec-
tion, we perform experiments to investigate whether the proposed
assumption and algorithms can improve the recommendation accu-
racy for such cold-start users. We randomly select 10% of feedback
as a test-set and use the remainder for training. Among training
feedback, we identify users with fewer than 5 positive actions as
cold-start users. The experimental results are shown in Table 5.
From these results, we observe that our proposed methods signifi-
cantly outperform other baseline methods on all four datasets for
cold-start recommendation. When training instances are scarce,
social information provides evidence to represent or interpret cold-
start users’ preferences. Moreover, when comparing the perfor-
mance of SBPR with MR-BPR, the improvement of SBPR indicates
that modeling the influence of the social network to cold-start users’
preference ranking is more suitable than explicitly modeling their
social relations, since the latter might bring too much bias when
users’ available training instances are limited.

Although we have shown that SBPR yields good performance
when training instances are scarce, an important case is when there
there are no training instances, i.e., for brand-new users of the sys-
tem. Such users may have social relationships (e.g. if they signed

on to a service using a social media account), but have performed
no actions and provided no feedback. This is a genuine cold- (rather
than cool-)start setting. To evaluate the performance in this setting
we test the recommendation accuracy for users as a function of the
number of available training instances (from 0 to 5) and compare
the performance of SBPR with MR-BPR on these users. A user
with 0 training instances represents the case of a brand-new user
of the system. Figure 4 shows results. We can see that on all four
datasets, SBPR outperforms the baseline method. The reason is that
MR-BPR suffers from modeling biases brought from fitting users’
feedback on social relations when users’ feedback on items is in-
sufficient. This improvement verifies that exploiting feedback from
users’ social relations to model the ranked list of users’ preferred
items is a promising way to solve cold-start recommendation prob-
lems.

5.3 Analysis and Discussion

Social Feedback Analysis. In the SBPR model, we define so-
cial feedback based on users’ social relations. In order to demon-
strate the contribution of this definition, we conduct experiments
by comparing several different definitions of social feedback. The
definitions compared include random user selection, random item
selection and all items. The former two definitions are illustrated
in the Introduction, and all items uses all items as social feedback.
The results are shown in Figure 6 and we use the AUC value for
evaluation. From the results, we can see that only by using users’
explicit social relations to identify social feedback does the pro-
posed method achieve optimal performance on all four datasets.
This analysis verifies the empirical observation in Section 1.

Social Coefficient Analysis. The social coefficient controls the
contribution of social feedback. In this section, we study the impact
of the social coefficient on recommendation accuracy by measur-
ing it in different ways. This coefficient for social feedback can be
viewed as the summarization of social strength from related users,
indicating the preference distance between positive feedback and
social feedback. Social feedback with a large social coefficient im-
plies that items have a higher probability of being adopted or pre-
ferred by users. Here we choose three definitions to capture the
social strength between each linked-user pair:

• constant: we assign a constant, 1, to each social relation;
in this way, the user’s social preference towards an item is
determined simply by counting the number of friends who
prefer the item.

• common neighbor: we define the value of each social rela-
tion by the number of their common neighbor users; in this
way, the coefficient, as a summation of social strength, rep-
resents how much users’ friends prefer social feedback by
considering the social network structure.

• common preference: different from the definition above, we
here define the value of each social relation by the number of
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Figure 4: Detailed cold-start recommendation analysis.
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Figure 5: Social coefficient Analysis.

common items preferred by the linked users; thus, the coeffi-
cient measures the preference of social feedback by consid-
ering users’ common preferences with their friends.

As Figure 5 shows, the common-neighbor setting achieves better
performance than the other two settings. In fact, when training
data is scarce, the common-neighbor setting captures more social
information for social feedback than the common-preference and
constant settings.

Sampling Strategy Analysis. Table 4 demonstrates the AUC
values of SBPR with different sampling strategies for training. One
can find that static sampling always performs better than other strate-
gies. The reason is that the sampling distribution based on the so-
cial coefficient provides valuable information for social feedback
selection. We also conduct experiments to investigate whether neg-
ative feedback should be sampled from a static distribution accord-
ing to their global popularity. Unfortunately, the performance is
poor; our analysis of the datasets suggests that negative feedback
with high global popularity does not indicate that a user dislikes
an item. Moreover, both adaptive sampling and dynamic negative
sampling strategies show poor performance. One possible reason
is that these two strategies select training instances based on inter-
mediate estimated parameters. However, since model learning has
not yet converged, the intermediate parameters are unreliable for
selecting training instances. The uniform sampling strategy shows
better results than adaptive and dynamic negative sampling strate-
gies but still cannot achieve performance as good as static sam-
pling. The only difference between uniform sampling and static
sampling in this paper is whether the social coefficient is used to
select social feedback for training. By using the social coefficient,
the static sampling strategy can leverage users’ social connections
to select the most informative feedback pairs for model training.

Convergence Analysis. We further investigate the convergence
of the SBPR model. Figure 7 shows the convergence analysis of
the SBPR model on different datasets. For each iteration, we select√
|F train |
50

instances for training. We see that our method converges
within 30 iterations on Ciao and always in fewer than 80 iterations
on other datasets. In particular, we also find that when using differ-
ent strategies for training instance sampling, our proposed method
demonstrates similar convergence performance. This fact indicates
that the proposed method can achieve promising convergence re-
gardless of how we select training instances. Combined with the
above sampling strategy analysis, we conclude that different strate-
gies of training instance selection show a great impact on the rec-
ommendation accuracy but not on the convergence performance of
SBPR.

6. RELATED WORK
In this section, we will briefly review related work along two

highly related aspects: one-class collaborative filtering and social
recommendation.

One-class Collaborative Filtering Several works have studied
one-class collaborative filtering and can be mainly divided into two
branches: pointwise methods [5, 12] and pairwise methods [14, 15,
16, 18, 22].

Pointwise methods aim to fit a numeric value associated with
each evaluated item. These methods view positive feedback as
high preference scores and use several strategies to sample nega-
tive feedback as low preference scores. Then existing matrix fac-
torization methods can be used to fit the preference scores. Pan et
al. [12] solve the one-class recommendation problem in two ways:
negative example weighting and negative example sampling. Hu et
al. [5] introduce a novel concept, called a “confidence level,” asso-
ciated with positive and negative feedback, and propose an efficient
optimization method for confidence-based matrix factorization.

Different from pointwise methods, pairwise methods focus on
modeling the order, or ranking of the feedback. Pairwise methods
always consider implicit feedback as relative relationships indicat-
ing that users show higher preference on positive feedback than on
negative feedback. In [15], Rendle et al. propose a bayesian per-
sonalized ranking (BPR) framework. Following this, various ideas
have been proposed that incorporate different types of contextual
information into the BPR framework. [8] extends the BPR frame-
work to model both users’ feedback on items and on their social
relations. In [18], Rendle et al. extend the BPR framework from
matrix factorization to tensor factorization for tag recommenda-
tion. Pan et al. [13] aggregate the features of a group of related
users to reduce the uncertainty of the selected training instances.
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Figure 6: Social Feedback Contribution Analysis.

Du et al. [2] improve one-class recommendation performance by
incorporating a social regularization term into the BPR framework.

Since the learning method used in most related works is stochas-
tic gradient descent, how to select the training instances has great
impact on model performance. Zhang et al. [24] use current estima-
tion results to dynamically select negative feedback. Lee et al. [9]
propose a pairwise method by combining rating information and a
kernel function to improve recommendation performance. Zhang
et al. [24] use the current parameter estimates to dynamically se-
lect negative feedback for training. In [17], the authors propose
two strategies to sample negative feedback and also design an ef-
ficient implementation to improve the convergence of the learning
algorithm.

However, the aforementioned works mainly focus on modeling
the feedback order by using users’ positive and negative feedback,
but do not investigate how the feedback from users’ friends can
be used to model users’ preference order on items. Moreover, no
existing works aim to leverage social connections to distinguish the
different contribution of the sampled training pairs.

Social Recommendation. Social recommendation methods focus
on using the social network to improve rating estimation and item
recommendation. SoRec [10] is proposed as a probabilistic matrix
factorization framework which incorporates trust network informa-
tion into user taste analysis. Ma et al. [11] also propose a matrix
factorization framework with social regularization based on the as-
sumption that users’ interests should be similar to those of their
friends. Based on these works, Yang et al. [21] devise a factor-
based random walk model to explain friendship connections, and
simultaneously use a coupled latent factor model to uncover inter-
est interactions.

Similarly, Jamali et al. [6] propose a matrix factorization method
to handle the transitivity of trust relations and trust propagation.
Jiang et al. [7] design a matrix factorization framework which ex-
hibits the contribution of two important factors: individual prefer-
ence and interpersonal influence. Furthermore, In [23], Ye et al. pro-
pose a generative model that captures social influence between fri-
ends quantitatively and employs social influence to mine the per-
sonal preference of users. Shen et al. [19] also propose a joint per-
sonal and social latent factor model for social recommendation.

Besides the use of feedback from users and items, recently, other
types of contextual information have been incorporated into social
recommendation methods for various specific applications. Cho et
al. [1] develop a model of human mobility that combines periodic
short range movements with travel due to the social network struc-
ture for user movement prediction. Zhao et al. [25] use tag informa-
tion to incorporate topic mining into social recommender systems.
However, most of the existing social recommendation methods fo-

cus on rating estimation problems rather than the one-class recom-
mendation setting that we consider.

7. CONCLUSION AND FUTURE WORK
In this paper, we exploit users’ social connections in order to

improve the recommendation accuracy on one-class recommen-
dation problems. We study four real-world datasets and observe
that the probability that a user selects an item increases monotoni-
cally as a function of the number of friends who have selected the
item. Based on this observation, we design a pairwise algorithm,
called SBPR for recommendation. Experiments on four real-world
datasets show that SBPR effectively improves the recommendation
accuracy in one-class recommendation problems. Besides provid-
ing improved ranking accuracy in the general case, the detailed ex-
perimental analysis also verifies the contribution of SBPR for solv-
ing cold-start recommendation problems.

For future work, we are interested in extending Social-BPR in
three ways, (1) Investigating how to incorporate rating information
into the SBPR model; (2) Employing an active learning framework
to select training pairs more effectively in the Social-BPR model;
3) Exploiting context information to model users’ preference order
on items.
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