
Cache Design 



Who Cares about Memory Hierarchy? 
  Processor vs Memory Performance 

    CPU-DRAM Gap 

1980: no cache in microprocessor;  
1995 2-level cache 



Memory Cache 

cpu 

memory 

cache 



Memory Locality 

  Memory hierarchies take advantage of memory locality.  
  Memory locality is the principle that future memory 

accesses are near past accesses. 
  Memories take advantage of two types of locality 

–  Temporal locality -- near in time 
•   we will often access the same data again very soon 

–  Spatial locality -- near in space/distance 
•  our next access is often very close to our last access (or recent 

accesses). 

1,2,3,4,5,6,7,8,8,47,8,9,8,10,8,8... 



Locality and Caching 

  Memory hierarchies exploit locality by caching (keeping 
close to the processor) data likely to be used again. 

  This is done because we can build large, slow memories 
and small, fast memories, but we can’t build large, fast 
memories. 

  If it works, we get the illusion of SRAM access time with 
disk capacity 

SRAM (static RAM) – 1-5 ns access time  
DRAM (dynamic RAM) – 40-60 ns 
disk --  access time measured in milliseconds, very cheap  



CPU 

A typical memory hierarchy 

memory 

memory 

memory 

memory 

on-chip cache 

on-chip L2 L3 
cache 

main memory 

disk 

small expensive $/bit 

cheap $/bit 

big 

• so then where is my program and data?? 



Cache Fundamentals 

  cache hit -- an access where the data 
is found in the cache. 
  cache miss -- an access which isn’t 
  hit time -- time to access the higher cache 
  miss penalty -- time to move data from 
lower level to upper, then to cpu 
  hit ratio -- percentage of time the data is found in the  
higher cache 
  miss ratio -- (1 - hit ratio) 

cpu 

highest-level 
cache 

lower-level 
memory/cache 



Cache Fundamentals, cont. 

  cache block size or cache line size-- the 
amount of data that gets transferred on a  
cache miss. 
  instruction cache -- cache that only holds 
instructions. 
  data cache -- cache that only caches data. 
  unified cache -- cache that holds both.  
      (L1 is unified  “princeton architecture”) 

cpu 

lowest-level 
cache 

next-level 
memory/cache 



Cache Characteristics 

  Cache Organization 
  Cache Access 
  Cache Replacement 
  Write Policy 



Cache Organization: Where can a block 
be placed in the cache?  

  Block 12 placed in 8 block cache: 
–  Fully associative, direct mapped, 2-

way set associative 
–  S.A. Mapping = Block Number 

Modulo Number Sets 
(associativity = degree of freedom in 

placing a particular block of 
memory) 

(set = a collection of blocks cache 
blocks with the same cache index) 



Cache Access: How Is a Block Found  
In the Cache? 

  Tag on each block 
–  No need to check index or block offset 

  Increasing associativity shrinks index, expands tag 

Fully Assoc:  No index 
Directe Mapped: Large index 

Block Address 

Cache 

tags data 



Cache Organization 

  A typical cache has three dimensions 

tag                         data                   tag                         data                   tag                         data                   tag                         data                   

tag                         data                   tag                         data                   tag                         data                   tag                         data                   

tag                         data                   tag                         data                   tag                         data                   tag                         data                   

tag                         data                   tag                         data                   tag                         data                   tag                         data                   

. 

. 

. 

Bytes/block (block size) 

Blocks/set (associativity) 

N
um

be
r o

f s
et

s (
ca

ch
e 

si
ze

) 

  tag                  index         block offset 

“ways” 



Which Block Should be Replaced on a Miss? 

  Direct Mapped is Easy 
  Set associative or fully associative: 

–  “Random” (large associativities) 
–  LRU (smaller associativities) 
–  Pseudo Associative 

Associativity:   2-way   4-way   8-way 
Size  LRU  Random  LRU  Random  LRU  Random 
16 KB  5.18%  5.69%  4.67%  5.29%  4.39%  4.96% 
64 KB  1.88%  2.01%  1.54%  1.66%  1.39%  1.53% 
256 KB  1.15%  1.17%  1.13%  1.13%  1.12%  1.12% 

Numbers are averages across a set of benchmarks. Performance improvements vary 
greatly by individual benchmarks. 



Accessing a Direct Mapped Cache 

  64 KB cache, direct-mapped, 32-byte cache block size  

31 30 29 28 27 ........... 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
tag index 

valid tag data 

64 K
B

 / 32 bytes =  
2 K

 cache blocks/sets 

11 

= 
256 

32 

16 

hit/miss 

0 
1 
2 
... 
... 
... 

... 
2045 
2046 
2047 

word offset 



Accessing a 2-way Assoc Cache – Hit Logic 

  32 KB cache, 2-way set-associative, 16-byte block size  

31 30 29 28 27 ........... 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
tag index 

valid tag data 

32 K
B

 / 16 bytes / 2 =  
1 K

 cache sets 

10 

= 

18 

hit/miss 

0 
1 
2 
... 
... 
... 

... 
1021 
1022 
1023 

word offset 

tag data valid 

= 

v. direct 
mapped 



21264 L1 Cache 

  64 KB, 64-byte blocks, (SA (set assoc) = 2) v. direct 
mapped – 
must know 
correct line 
that contains 
data to control 
mux – 

direct mapped 
cache can  
operate on  
data without 
waiting for 
tag 

set assoc needs 
to know which 
set to operate on! 
   line predictor 



Cache Organization 



AMD Opteron Intel Core 2 
Duo 

90 nm, 64-byte clock, 1 bank 

.00346 miss rate 
Spec00 

.00366 miss rate 
Spec00 

(From Mark Hill’s Spec Data) 

Evaluation of Cache Access Time via. Cacti + Simulation – 
 Intel wins by a hair 



Cache Access 

  Cache Size = #sets * block size * associativity 
  What is the Cache Size,  if we have direct mapped, 128 set 

cache with a 32-byte block? 

  What is the Associativity, if we have 128 KByte cache, 
with 512 sets and a block size of 64-bytes? 



Cache Access 

  16 KB, 4-way set-associative cache, 32-bit address, byte-
addressable memory, 32-byte cache blocks/lines 

  how many tag bits? 
  Where would you find the word at address 0x200356A4? 

tag  data tag  data tag  data tag  data 

index 



What Happens on a Write? 

  Write through: The information is written to both the block in 
the cache and to the block in the lower-level memory. 

  Write back: The information is written only to the block in the 
cache. The modified cache block is written to main memory 
only when it is replaced. 
–  is block clean or dirty? 

  Pros and Cons of each: 
–  WT: read misses do not need to write back evicted line contents 
–  WB: no writes of repeated writes 

  WT always combined with write buffers so that don’t wait for 
lower level memory 



What About Write Miss? 

  Write allocate: The block is loaded into cache on a write miss 
  No-Write allocate: The block is modified in the lower levels 

of memory but not in cache 
  Write buffer allows merging of writes 

100

104

108

112

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

 
 
 
 
 
 

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V



Unified versus Separate I+D L1 Cache 
(Princeton vs. Harvard Arch) 

Separate Instruction Cache and Data Cache? 
Size  Instruction Cache  Data Cache  Unified Cache 
1 KB  3.06%  24.61%  13.34% 
2 KB  2.26%  20.57%  9.78% 
4 KB  1.78%  15.94%  7.24% 
8 KB  1.10%  10.19%  4.57% 
16 KB  0.64%  6.47%  2.87% 
32 KB  0.39%  4.82%  1.99% 
64 KB  0.15%  3.77%  1.35% 
128 KB  0.02%  2.88%  0.95% 

Area-limited designs may consider unified caches 
Generally, the benefits of separating the caches are 

overwhelming… (what are the benefits?) 



Cache Performance 

  CPU time = (CPU execution clock cycles + Memory stall 
clock cycles) x clock cycle time 

  Memory stall clock cycles = (Reads x Read miss rate x 
Read miss penalty + Writes x Write miss rate x Write miss 
penalty) 

  Memory stall clock cycles = Memory accesses x Miss rate 
x Miss penalty 



Cache Performance 

CPUtime = IC x (CPIexecution + Memory stalls per instruction) 
x Clock cycle time 

CPUtime = IC x (CPIexecution + Mem accesses per instruction x 
Miss rate x Miss penalty) x Clock cycle time 
(includes hit time as part of CPI) 

Average memory-access time = Hit time + Miss rate x Miss 
penalty (ns or clocks) 



Improving Cache Performance 

Average memory-access time = Hit time + Miss rate x Miss 
penalty (ns or clocks) 

How are we going to improve cache performance?? 
1. 

2. 

3. 



Cache Overview Key Points 

  CPU-Memory gap is a major performance obstacle 

  Caches take advantage of program behavior: locality 

  Designer has lots of choices -> cache size, block size, 

associativity, replacement policy, write policy, ... 

  Time of program still only reliable performance measure 



Improving Cache Performance 

1. Reduce the miss rate,  
2. Reduce the miss penalty, or 
3. Reduce the time to hit in the cache.  



Reducing Misses 

  Classifying Misses: 3 Cs 
–  Compulsory—The first access to a block is not in the 

cache, so the block must be brought into the cache. These 
are also called cold start misses or first reference misses. 

–  Capacity—If the cache cannot contain all the blocks 
needed during execution of a program, capacity misses 
will occur due to blocks being discarded and later 
retrieved. 

–  Conflict—If the block-placement strategy is set 
associative or direct mapped, conflict misses (in addition 
to compulsory and capacity misses) will occur because a 
block can be discarded and later retrieved if too many 
blocks map to its set. These are also called collision 
misses or interference misses. 

How To Measure 

Misses in infinite 
cache 

Non-compulsory 
misses in size X 
fully associative 
cache 

Non-compulsory, 
non-capacity 
misses 



3Cs Absolute Miss Rate 

(bad color tones) 



How To Reduce Misses? 

  Compulsory Misses? 

  Capacity Misses? 

  Conflict Misses? 

  What can the compiler do? 



1. Reduce Misses via Larger Block Size 

  16K cache, miss penalty for 16-byte block = 42, 32-byte is 
44, 64-byte is 48. Miss rates are 3.94, 2.87, and 2.64%? 



2. Reduce Misses via Higher Associativity 

  2:1 Cache Rule:  
–  Miss Rate DM cache size N == 
–  Miss Rate 2-way associative cache size N/2 

 Beware: Execution time is only final measure! 
–  Will Clock Cycle time increase? 



3. Reducing Misses via  
Victim Cache 

 How to get fast hit time of 
Direct Mapped yet still avoid 
conflict misses?  

 Add buffer to place data 
discarded from cache 

  Jouppi [1990]: 4-entry victim 
cache removed 20% to 95% 
of conflicts for a 4 KB direct 
mapped data cache 



4. Reducing Misses via Pseudo-Associativity 

 Combines fast hit time of Direct Mapped and the lower conflict 
misses of a 2-way SA cache. 

 Divide cache: on a miss, check other half of cache to see if there, if 
so have a pseudo-hit  (slow hit) 

 Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles 
–  Better for caches not tied directly to  processor 

Hit Time 

Pseudo Hit Time Miss Penalty 

Time 



5. Reducing Misses by HW Prefetching of 
Instruction & Data 

  E.g., Instruction Prefetching 
–  Alpha 21064 fetches 2 blocks on a miss 
–  Extra block placed in stream buffer 
–  On miss check stream buffer 

  Works with data blocks too: 
–  Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 

cache; 4 streams got 43% 
–  Palacharla & Kessler [1994] for scientific programs for 8 streams 

got 50% to 70% of misses from 2 64KB, 4-way set associative 
caches 

  Prefetching relies on extra memory bandwidth that can be 
used without penalty 



Stream Buffers 

  Allocate a Stream Buffer on a cache miss 
  Run ahead of the execution stream prefetching N blocks into stream 

buffer 
  Search stream buffer in parallel with cache access 
  If hit, then move block to cache, and prefetch another block 



Predictor-Directed Stream Buffers 

  Effective for next-line and stride prefetching, what about pointers? 
  Allow stream buffer to follow any prediction stream. 
  Provide confidence techniques for stream allocation 

–  Reduce stream thrashing 



Impact of hardware prefetching on Pentium 4 – pretty large 
   (15 missing benchmarks benefited less than 15%) 



6. Reducing Misses by  
Software Prefetching Data 

  Data Prefetch 
–  Load data into register (HP PA-RISC loads) 
–  Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9) 
–  Special prefetching instructions cannot cause faults 

•  can be used speculatively 
•  load into a r0 

  Issuing Prefetch Instructions takes time 
–  Is cost of prefetch issues < savings in reduced misses? 



7. Reducing Misses by Various 
Compiler Optimizations 

  Instructions 
–  Reorder procedures in memory so as to reduce misses 
–  Profiling to look at conflicts 
–  results in a 30% reduction in miss rate for an 8K I-cache 

  Data 
–  Reordering 

•  results in a 40% reduction in cache miss rate for an 8K D-cache 
–  Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays 
–  Loop Interchange: change nesting of loops to access data in order 

stored in memory 
–  Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap 
–  Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows 



Merging Arrays Example 

/* Before */ 

int val[SIZE]; 

int key[SIZE]; 

/* After */ 

struct merge { 

 int val; 

 int key; 

}; 

struct merge merged_array[SIZE]; 

Reducing conflicts between val & key, create spatial locality. 



Loop Interchange Example 

/* Before */ 

for (k = 0; k < 100; k = k+1) 

 for (j = 0; j < 100; j = j+1) 
  for (i = 0; i < 5000; i = i+1) 

   x[i][j] = 2 * x[i][j]; 

/* After */ 

for (k = 0; k < 100; k = k+1) 

 for (i = 0; i < 5000; i = i+1) 

  for (j = 0; j < 100; j = j+1) 

   x[i][j] = 2 * x[i][j]; 

Sequential accesses instead of striding through memory 
every 100 words 



Loop Fusion Example 
/* Before */ 

for (i = 0; i < N; i = i+1) 

 for (j = 0; j < N; j = j+1) 
  a[i][j] = 1/b[i][j] * c[i][j]; 

for (i = 0; i < N; i = i+1) 

 for (j = 0; j < N; j = j+1) 

  d[i][j] = a[i][j] + c[i][j]; 
/* After */ 

for (i = 0; i < N; i = i+1) 

 for (j = 0; j < N; j = j+1) 

 {  a[i][j] = 1/b[i][j] * c[i][j]; 
  d[i][j] = a[i][j] + c[i][j];} 

2 misses per access to a & c vs. one miss per access 



Blocking Example 
/* Before */ 
for (i = 0; i < N; i = i+1) 

 for (j = 0; j < N; j = j+1) 
  {r = 0; 

   for (k = 0; k < N; k = k+1){ 
   r = r + y[i][k]*z[k][j];}; 
   x[i][j] = r; 
  }; 

  Two Inner Loops: 
–  Read all NxN elements of z[] 
–  Read N elements of 1 row of y[] repeatedly 
–  Write N elements of 1 row  of x[] 

  Capacity Misses a function of N & Cache Size: 
–  worst case => 2N3 + N2. 

  Idea: compute on BxB submatrix that fits in cache 



Blocking Example 

/* After */ 

for (jj = 0; jj < N; jj = jj+B) 

for (kk = 0; kk < N; kk = kk+B) 
for (i = 0; i < N; i = i+1) 

  for (j = jj; j < min(jj+B-1,N); j = j+1) 

  {r = 0; 

   for (k = kk; k < min(kk+B-1,N); k = k+1) { 

   r = r + y[i][k]*z[k][j];}; 

   x[i][j] = x[i][j] + r; 

  }; 

  Capacity Misses from 2N3 + N2 to 2N3/B +N2 

  B called Blocking Factor 
  Conflict Misses Are Not As Easy... 



Key Points 

  3 Cs: Compulsory, Capacity, Conflict 
–  1. Reduce Misses via Larger Block Size 
–  2. Reduce Misses via Higher Associativity 
–  3. Reducing Misses via Victim Cache 
–  4. Reducing Misses via Pseudo-Associativity 
–  5. Reducing Misses by HW Prefetching Instr, Data 
–  6. Reducing Misses by SW Prefetching Data 
–  7. Reducing Misses by Compiler Optimizations 

  Remember danger of concentrating on just one parameter when 
evaluating performance 

  Next: reducing Miss penalty 



Improving Cache Performance 

1. Reduce the miss rate,  
2. Reduce the miss penalty, or 
3. Reduce the time to hit in the cache.  



1. Reducing Miss Penalty: Read Priority 
over Write on Miss 

  Write buffers offer RAW conflicts with main memory reads 
on cache misses 

  If simply wait for write buffer to empty might increase read 
miss penalty by 50% 

  Check write buffer contents before read;  
if no conflicts, let the memory access continue 

  Write Back? 
–  Read miss may require write of dirty block 
–  Normal: Write dirty block to memory, and then do the read 
–  Instead copy the dirty block to a write buffer, then do the read, and 

then do the write 
–  CPU stalls less since it can restart as soon as read completes 



2. Subblock Placement to Reduce Miss 
Penalty (also known as sectoring) 

  Don’t have to load full block on a miss 
  Have bits per subblock to indicate valid 
  (Originally invented to reduce tag storage) 

Valid Bits 

100

300

200

204

1

1

0

0

1

1

1

0

1

0

0

0

Sub-blocks

1

0

1

0

some PPC machines do this. 



3. Early Restart and Critical Word First 

  Don’t wait for full block to be loaded before restarting CPU 
–  Early restart—As soon as the requested word of the block arrives, send 

it to the CPU and let the CPU continue execution 
–  Critical Word First—Request the missed word first from memory and 

send it to the CPU as soon as it arrives; let the CPU continue execution 
while filling the rest of the words in the block. Also called wrapped fetch 
and requested word  first 

  Most useful with large blocks,  
  Spatial locality a problem; often we next want the next 

sequential word soon, so not always a benefit (early restart). 



4. Non-blocking Caches to reduce stalls 
on misses 

  Non-blocking cache or  lockup-free cache allowing the data 
cache to continue to supply cache hits during a miss 

  “hit under miss”  reduces the effective miss penalty by being 
helpful during a miss instead of ignoring the requests of the 
CPU 

  “hit under multiple miss” or “miss under miss”  may further 
lower the effective miss penalty by overlapping multiple misses 
–  Significantly increases the complexity of the cache controller as there 

can be multiple outstanding memory accesses 

  assumes “stall on use” not “stall on miss” which works naturally 
with dynamic scheduling, but can also work with static. 



Value of Hit Under Miss for SPEC 

- 8 KB cache, 16 cycle miss, 32-byte blocks 
- old data; good model for misses to L2, not a good model for misses to main memory (~ 300 cycles) 



5. Use Multi-level caches 

  L2 Equations 
 AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1 

 Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2 

 AMAT = Hit TimeL1 + Miss RateL1  
                           x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2) 

  Definitions: 
–  Local miss rate— misses in this cache divided by the total 

number of memory accesses to this cache (Miss rateL2) 
–  Global miss rate—misses in this cache divided by the total 

number of memory accesses generated by the CPU  
(Miss RateL1 x Miss RateL2)  

cpu 

lowest-level 
cache 

next-level 
memory/cache 



L2 local miss rates pretty high 



L2 Size More Important Than Latency: Why? 

Experiment is on 21264: 
    OoO hides L1 misses 
      well but not L2 misses 

Hit TimeL1 + Miss RateL1  
                      x (Hit TimeL2  
                           +  Miss RateL2 x Miss PenaltyL2) 

.5 200 8 or 16 

=100 



Multi-level Caches, cont. 
  L1 cache local miss rate 10%, L2 local miss rate 40%.  What are 

the global miss rates? 
  L1 highest priority is fast hit time.  L2 typically low miss rate. 
  Design L1 and L2 caches in concert. 
  Property of inclusion -- if it is in L2 cache, it is guaranteed to be 

in one of the L1 caches -- simplifies design of consistent caches. 
  L2 cache can have different associativity (good idea?) or block 

size (good idea?) than L1 cache. 



Reducing Miss Penalty Summary 

  Five techniques 
–  Read priority over write on miss 
–  Subblock placement 
–  Early Restart and Critical Word First on miss 
–  Non-blocking Caches (Hit Under Miss) 
–  Multi-levels of Cache 



Improving Cache Performance 

1. Reduce the miss rate,  
2. Reduce the miss penalty, or 
3. Reduce the time to hit in the cache.  


