
Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2010)

Lecture 29: Construction of Disjunct Matrices
March 31, 2010

Lecturer: Atri Rudra Scribe: Sarah Karpie

Some sort of introduction to construction of disjunct matrices.

1 D-Disjunction Matrix

Definition 1 A d-disjunct matrix is a matrix for which ∀S ⊆ [n], |S| ≤ d, ∀j ∈ S, ∃i s.t. Mi,j=1
and

⋃
k∈S Mik= 0.

Please note that all matrices noted in this lecture are binary.

Ω(d log n) ≤ t(d, n) ≤ n

(i) Strongly explicit: t(d, n) ≤ O(d2 log2 n), (ii) Randomized: t(d, n) ≤ O(d2 log n)

Lemma 1 Where d ≤ d ≤ n, let M be a txn matrix, (i) ∀j ∈ [n], |Mj| ≥ wmin and (ii) ∀i 6= j ∈
[n] |Mi ∩Mj ≤ ? for some integers amax ≤ wmin ≤ t, where a stands for agreement and w stands

for weight. Then M is

⌊
wmin − 1

amax

⌋
-disjunct.

This is stronger than simply having a subset of size B, this is saying for apair of columns.
Therefore no matter what column i you choose in the matrix, that column will contain atleast wmin

1s, and the total number of 1s shared by two columns is at most amax.

Example 1 Fix an arbitrary S ⊆ [n], |S| ≤ d, j /∈ S, and each column has a different arrangement
of 1s in each column. For a value in column i that is equal to 1, there is a match if there exists

a 1 in another column j. In this case the total number of matches ≤ amax· d ≤ amax

(
wmin

amax

)
=

wmin − 1 < wmin. Therefore there must be an all 0 row in S.

Step 1: |C| = n, C ⊆ {0, 1}t, and C = {c̄1, · · · , c̄n}

MC =

 ↑ ↑ ↑
c̄1 c̄2 · · · c̄n
↓ ↓ ↓


We need to find a C* s.t. (i) ∀c̄ ∈ C*, |c| ≥ wmin and (ii) ∀c̄1 6= c̄2 ∈ c*, |{i | c̄21 = c̄22 = 1}|

≤ amax Need to show MC∗ is

⌊
wmin − 1

amax

⌋
-disjunct.

Note that the lower bound of the hamming weight for this matrix is greater than wmin

1

2 Kautz-Singleton Code Concatentation

Pick an Reed-Sullivan code with a block length q, c* = cout · cin, cout: [q, k]q–RS code, cin: [q] →
{0, 1}q, j ∈ [q], cin(j) = (00 · · · 010 · · · 00), where 1 is in the ith position.

Example 2 Let k=1, q=3, cout = (0, 0, 0), (1, 1, 1), (2, 2, 2), n = qk, t = qxq = q2, so wmin=q

MC∗ =

0 1 2
0 1 2
0 1 2

 →
MC∗ =



0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0


Divide the rows into q sized chunks, and number these rows as [q] x [q]. Each column then

corresponds to a codeword, M defined as MC∗ . Where c̄k1 ,c̄k2 ∈ cout, if M(i,j),k1 = M(i,j),k2 = c̄k1(i)
= c̄k2(i) = j. So the corresponding codeword agreed in postion i.

This implies that |Mk1∩Mk2| = q -4(c̄k1 , c̄k2)→≤ k - 1 defined as amax. Note that4(c̄k1 , c̄k2) ≥

q - k + 1 (MDS) and that

⌊
wmin − 1

amax

⌋
is defined as d.

Now pick q and k so the ratio equals d exactly. (s.t.

⌊
q − 1

k − 1

⌋
= d) Now

q

k
' d ⇒ q ' kd, and

therefore qk = n ⇒ k =
logn

logq
≤ log n. So one can imply that t = q2 ∼= (kd)2 ≤ (d log n)2

√

Now pick d = d2 log n with a large constant...txn every entry...
t

d
expected weight for...and

somehow missed the last statment of the lecture...

2

