
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Stock Price Volatility Prediction with Long Short-
Term Memory Neural Networks

Jason C. Sullivan
Department of Computer Science

Stanford University
Stanford, CA

jsull@stanford.edu

Abstract— Stock price prediction in the financial markets is one
of the most interesting open problems drawing new Computer
Science graduates. A successful price prediction model can be
highly profitable in trading equities in the public markets. A
similarly interesting and profitable problem is that of volatility
prediction. In predicting the volatility of a given stock, a trader
can make bets or provide liquidity in the options markets. In this
study, we employ a variation of a type of Recurrent Neural
Network called Long-Short Term Memory (LSTM) in order to
predict stock price volatility in the US equity market.

Keywords—Deep Reinforcement Learning, Trading, Volatility

I. INTRODUCTION

Stock price time series possess some unique and frustrating
characteristics that makes them particularly difficult to analyze.
They are nonstationary (regimes change over time and across
seasons), autocorrelated (the phenomenon of “momentum”
trades), and subject to imperfectly distributed information across
market participants, among other things.

Financial time series are notoriously noisy, due in part to the
complexity of the interrelationships between different financial
assets, economic developments, and participants in the market.
A significant move in a stock could just as easily be due to a
large pension fund taking a position as it could be due to some
merger announcement or regulatory change.

Adding even more complexity to the problem of portfolio
management is the dynamic of stock volatility—that is, the
degree of variability of a stock’s price over some finite period.
Predicting volatility is important for many reasons. An accurate
picture of a portfolio’s volatility is necessary for an investment
manager to manage portfolio risk and meet investment criteria
according to the fund’s investment mandate.

It is likewise important for options traders and financial
product structurers, whose financial instruments are priced in
part on expectations of volatility. There are many traders whose
entire strategy relies on their ability to predict a more accurate

picture of volatility than the rest of the market, thereby allowing
them to exploit a form of arbitrage.

As such, in this study, we aim to extend existing work on the
use of neural networks to predict stock price volatility. The goal
of this work is to advance the understanding of novel methods
of volatility prediction so as to positively impact the stability of
the overall financial markets—with participants better informed
about their portfolio risk, those participants can do a better job
of managing risk and avoid contributing to future stock market
meltdowns.

II. RELATED WORK

The traditional econometric approach to volatility prediction
of financial time series is known as a Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
model [1]. One of the reasons this model is so popular is that it
accounts for heteroskedasticity of financial time series—in other
words, the variance of error terms varies as a function of some
process, which makes regression modeling very difficult. It also
accounts for autocorrelation in financial time series.

In recent years, and at an increasing pace, market
professionals are turning to Machine Learning and Deep
Learning to gain insight into market dynamics, and in some
cases, even create automated trading systems based on these
algorithms. While GARCH remains the gold standard for
volatility prediction within old-line financial institutions, new
Deep Learning methods such as LSTM are becoming
increasingly popular approaches to this problem.

Long Short-Term Memory (LSTM) is a variant of a
recurrent neural network commonly used for time series
predictions, first introduced in 1997 as a method of dealing with
the vanishing gradient problem encountered in traditional RNNs
[2]. LSTMS are often used for certain problems in Natural
Language Processing, since a series of sentences could be
viewed as a time series with some degree of autocorrelation
since words are often dependent on the words before and after
them.

 2

The key idea in this experiment is that LSTMs are uniquely
suited to handle time series with varying time periods between
“significant” events because they are architected to maintain a
“memory” of older data points in the time series. This is highly
useful in financial time series analysis because significant stock
price moves can be rare and sporadic, and also because the
autocorrelated nature of financial time series makes having a cell
“memory” useful in training and testing the network.

To this end, an LSTM unit contains a memory cell, along
with input and output gates to control the flow of information
into and out of the LSTM unit. One modern incarnation of the
LSTM also includes a “forget gate” [3] which allows an LSTM
unit to reset its state so as to not grow continually. Another
variant, called the Gated Recurrent Unit (GRU) lacks an output
gate [4].

As discussed above, LSTM’s ability to handle time series
with inconsistent timing between meaningful events makes it an
ideal candidate for time series prediction for financial assets.
Indeed, work has been done using LSTM to predict financial
time series in the stock market, using both traditional time series
analysis inputs as features and using technical analysis metrics
as features [9]. The traditional LSTM has also been used
successfully to address the problem of volatility prediction in the
stock market [5][6], as have traditional RNNs [7].

LSTMs have been shown to outperform traditional GARCH
models in this context. We aim to extend this work by using an
alternative set of engineered features and by altering the
architecture of the neural network, benchmarked against a
simple LSTM network, to better suit the nature of financial time
series data.

III. DATASET AND FEATURES

Our primary data source is from Kaggle (labeled “Huge

Stock Market Dataset”) and provides over 18 years of daily
Open, High, Low, Close, Volume, and Open Interest data for
individual US stocks and ETFs [8]. The full dataset is 826MB,
consisting of text files representing time series for over 8300
entities, including over 7000 single stocks and over 1300 ETFs.

Lengths of time series vary by instrument based on when that
instrument started trading in the market, and whether it still
trades (or was acquired, delisted, etc.). We make our training
data among different stocks as comparable as possible by
focusing only on stocks that were traded between 2013 and
2018.

Daily data for this experiment is preferable to other
frequencies, as intraday (tick-level) data is typically far too noisy
with too little predictive value, and data from longer intervals is
less practically useful. Many new features such as momentum
indicators and candlesticks (both of which are commonly used
in stock chart analysis) can be engineered from daily data.

In this study, we focus on a universe of the 1000 largest and
most liquid single stocks available in the dataset. For each stock,
we engineer the same feature set and target variable, training our
neural network on all stocks in the prescribed universe so as to

generalize our model, rather than just focusing on learning one
stock.

Our features consist of several transformations of the given
Open, High, Low, Close, Volume data. We use Log Return, Log
Volume Change, Log Trading Range (high vs. low for a given
trading day), Previous 30-day Volatility, Previous 10-Day
Volatility, and GARCH forward-looking 10-day volatility
prediction as our features.

Financial time series data requires pre-processing in order to
address some nuances that would otherwise make predictive
analytics impossible. For instance, financial time series are
nonstationary—in other words, their distributions can change
over time, often as a result of general market dynamics (“bull”
vs. “bear” market) or fundamental changes to the underlying
company (increasing debt levels, changes in management,
supply chain consolidation).

The common method of addressing this non-stationarity is to
not use raw price series as inputs, but rather the series of price
changes or percentage returns. Both methods are a form of price
differencing, which create stationarity in a non-stationary time
series. We do the same with daily trading volume. We also
normalize the data by taking the logarithm each element of the
time series, so as to scale the data.

For the GARCH model, we train a new model for each
separate stock. For each of those stocks, we fit a new GARCH
model at each successive time step using all previous day,
walking forward, as we would do if using the GARCH model on
its own to trade. We train the GARCH models with parameters
p=15 and q=15, with a horizon of 10 trading days (Figure 1).

For our target variable, we use the average volatility of the
10 days following a given data point. The motivation is that
predicting a 1-day volatility doesn’t make much of a difference
and will be too noisy to train effectively, and predicting a 30-
day volatility is not nearly as useful with a shorter-term trading
horizon as part of one’s trading strategy (Figure 2).

Given the relatively small size of the data, due to the fact that
each data point represents a daily closing price, we need to tailor
our train/test split to this data scarcity. We are using daily price
data from a 5-year period, and despite having 1000 stocks in the
chosen dataset, this is still not a great deal of data. As a result,
We choose to go against recent wisdom in the Deep Learning
community and stick to the 80/20 train/test split.

Figure 1: TLSA GARCH model results

 3

Figure 2: TSLA 10-Day Forward Volatility

IV. METHODS

 Because we are dealing with time series data, we
cannot simply randomly shuffle datapoints into train/test splits.
As such, we make our splits first by stock ticker, and then by
chronology We will consider data in rolling 30 trading day
blocks, closing price volatility levels over the following 10
trading days as our y labels.

Our baseline model (Figure 3) consists of a single LSTM
layer with 5 hidden units, followed by a 1-unit output layer. We
train this neural network with a batch size of 30 data points. Our
chosen loss metric is Mean Squared Error, but we also track
Mean Absolute Error and Mean Absolute Percentage Error. We
use the Adam optimizer.

Figure 3: Neural network architecture for baseline model.

Our extended model (Figure 4) is depicted below. It consists
of a 20-unit LSTM layer, a 10-unit Dense layer with ReLu
activation, and a 10-unit GRU layer. We also include 2 separate
10% Dropout layers.

Figure 4: Neural network architecture for extended model

As for implementation in code, employ the Keras framework
in Python, as well as Pandas, Numpy and Matplotlib.

V. EXPERIMENT/RESULTS/DISCUSSION

Below, we compare the results of both the baseline and
extended models. As we can see, the extended network
outperforms during training, but the simpler network
outperforms during testing (Figure 5). Notably, the extended
network also has a greater degree of performance degradation in
MSE and MAE in the test set relative to the training set,
suggesting a greater degree of overfitting within the extended
network. This suggests that a greater deal of tuning is required
on the deeper network, and in particular, the increased use of
dropout layers could help reduce the variance problem.

Training Set MSE MAE MAPE

Baseline 4172.61

2.339

1975190.75

Extended 3883.5

2.314

8526497.0

 4

Test Set MSE MAE MAPE

Baseline 5167.51

2.459

8722592.0

Extended 4859.47

2.471

37653732.0

Figure 5: Train and test set results.

VI. CONCLUSIONS AND FURTHER RESEARCH

As it turns out, the simpler model actually performed better
on this data. It is likely that an even deeper model trained on
larger data would have fared better, but in this case, simpler was
better.

 A great deal of further research can be done in this relatively
nascent area of financial time series prediction. There are
multiple axes on which we could vary our experimental setup.

 The first axis to consider is time series frequency. Our
experiment uses daily stock price data as our key input.
However, different market participants focus on different
frequencies of data. High-frequency trading firms tend to focus
on tick-level or order book-level data, creating orders in
fractions of seconds. The type of exchange and order book
arbitrage that HFT firms focus on relies on high-frequency, very
noisy data. The challenges posed by this level of noise are very
different, and likely require different data pre-processing and
neural network architecture.

 Another axis to consider is the asset class of the financial
instrument in question. Here, we have focused on “vanilla” US
equities. However, there is a wide world of other asset classes
that all trade differently. Corporate bonds, for instance, trade at
a lower frequency and in larger trade sizes than equities do, with
different variables affecting price and yield. Likewise,
currencies and cryptocurrencies all have their own nuances, and
a neural network trained on one asset class is unlikely to
generalize to another.

 Another area to consider for future research is alternative and
more expansive feature engineering. In our case, we are using
transformed versions of the most basic stock data available—
price and volume. However, market practitioners and
researchers alike do not typically rely only on price and volume
data. One area of interest that dovetails nicely with RNNs is
trading on news sentiment. Using RNNs to quickly parse and
classify news headlines or earnings reports as positive or
negative is a fast and effective way to trade on news.

 One more possible variation in our experimental framework
for future research would be the framing of the target variable.

In our case, we frame the problem as a regression problem, with
forward-looking 10-day volatility as our target variable.
However, this problem could also be framed as a classification
problem. If we consider an increase or decrease in volatility
beyond some specified threshold (i.e. a 3-sigma move) to be
associated with a positive or negative label, with a 0 label
representing no significant volatility change, it is possible that
this new framework could be more seamlessly integrated into an
actual automated trading system, making buy or sell decisions
based on predicted labels.

 Lastly, it would be worth considering alternative neural
network architectures for this problem. More work could be
done in tuning our current architecture, in the form of tuning
hyperparameters, number of epochs, batch sizes, memory
length, and the inclusion/exclusion of “forget gates”. Adding or
removing LSTM/GRU layers, tuning dropout layers, and
experimenting with different activation functions are all worth
pursuing.

ACKNOWLEDGMENTS

Many thanks to the teaching staff of Stanford University’s
CS230 Deep Learning course, in particular Advay Pal, for their
input in the development of this project.

REFERENCES

[1] Bollerslev, Tim, 1986, Generalized autoregressive conditional
heteroskedasticity, Journal of Econometrics 31, 307–327.

[2] Hochreiter, Sepp & Schmidhuber, Jürgen. (1997). Long Short-term
Memory. Neural computation. 9. 1735-80. 10.1162/neco.1997.9.8.1735.

[3] F. A. Gers, J. Schmidhuber and F. Cummins, "Learning to forget:
continual prediction with LSTM," 1999 Ninth International Conference
on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470),
Edinburgh, UK, 1999, pp. 850-855 vol.2.

[4] Cho, K. et al. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proc. Conference on
Empirical Methods in Natural Language Processing 1724–1734 (2014).

[5] M. Sardelicha and S. Manandhar, “Multimodal deep learningfor short-
term stock volatility prediction,” https://arxiv.org/abs/1812.10479.

[6] Xiong Ruoxuan, Eric P. Nichols, Yuan Shen, Deep Learning Stock
Volatility with Google Domestic Trends, 2015.

[7] Liu, Yifan & Qin, Zengchang & Li, Pengyu & Wan, Tao. (2017). Stock
Volatility Prediction Using Recurrent Neural Networks with Sentiment
Analysis. 192-201. 10.1007/978-3-319-60042-0_22.

[8] https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-
stocks-etfs

[9] Sang, C., & Di Pierro, M. (2018). Improving trading technical analysis
with tensorflow long short-term memory (lstm) neural network. The
Journal of Finance and Data Science.

