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Abstract— Stock price prediction in the financial markets is one 
of the most interesting open problems drawing new Computer 
Science graduates. A successful price prediction model can be 
highly profitable in trading equities in the public markets. A 
similarly interesting and profitable problem is that of volatility 
prediction. In predicting the volatility of a given stock, a trader 
can make bets or provide liquidity in the options markets. In this 
study, we employ a variation of a type of Recurrent Neural 
Network called Long-Short Term Memory (LSTM) in order to 
predict stock price volatility in the US equity market. 
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I. INTRODUCTION 
 

Stock price time series possess some unique and frustrating 
characteristics that makes them particularly difficult to analyze. 
They are nonstationary (regimes change over time and across 
seasons), autocorrelated (the phenomenon of “momentum” 
trades), and subject to imperfectly distributed information across 
market participants, among other things.  

Financial time series are notoriously noisy, due in part to the 
complexity of the interrelationships between different financial 
assets, economic developments, and participants in the market. 
A significant move in a stock could just as easily be due to a 
large pension fund taking a position as it could be due to some 
merger announcement or regulatory change. 

Adding even more complexity to the problem of portfolio 
management is the dynamic of stock volatility—that is, the 
degree of variability of a stock’s price over some finite period.  
Predicting volatility is important for many reasons. An accurate 
picture of a portfolio’s volatility is necessary for an investment 
manager to manage portfolio risk and meet investment criteria 
according to the fund’s investment mandate.  

It is likewise important for options traders and financial 
product structurers, whose financial instruments are priced in 
part on expectations of volatility. There are many traders whose 
entire strategy relies on their ability to predict a more accurate 

picture of volatility than the rest of the market, thereby allowing 
them to exploit a form of arbitrage. 

As such, in this study, we aim to extend existing work on the 
use of neural networks to predict stock price volatility. The goal 
of this work is to advance the understanding of novel methods 
of volatility prediction so as to positively impact the stability of 
the overall financial markets—with participants better informed 
about their portfolio risk, those participants can do a better job 
of managing risk and avoid contributing to future stock market 
meltdowns. 

 

II. RELATED WORK 
 

The traditional econometric approach to volatility prediction 
of financial time series is known as a Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) 
model [1]. One of the reasons this model is so popular is that it 
accounts for heteroskedasticity of financial time series—in other 
words, the variance of error terms varies as a function of some 
process, which makes regression modeling very difficult. It also 
accounts for autocorrelation in financial time series. 

In recent years, and at an increasing pace, market 
professionals are turning to Machine Learning and Deep 
Learning to gain insight into market dynamics, and in some 
cases, even create automated trading systems based on these 
algorithms. While GARCH remains the gold standard for 
volatility prediction within old-line financial institutions, new 
Deep Learning methods such as LSTM are becoming 
increasingly popular approaches to this problem. 

Long Short-Term Memory (LSTM) is a variant of a 
recurrent neural network commonly used for time series 
predictions, first introduced in 1997 as a method of dealing with 
the vanishing gradient problem encountered in traditional RNNs 
[2]. LSTMS are often used for certain problems in Natural 
Language Processing, since a series of sentences could be 
viewed as a time series with some degree of autocorrelation 
since words are often dependent on the words before and after 
them. 



 2 

The key idea in this experiment is that LSTMs are uniquely 
suited to handle time series with varying time periods between 
“significant” events because they are architected to maintain a 
“memory” of older data points in the time series. This is highly 
useful in financial time series analysis because significant stock 
price moves can be rare and sporadic, and also because the 
autocorrelated nature of financial time series makes having a cell 
“memory” useful in training and testing the network. 

To this end, an LSTM unit contains a memory cell, along 
with input and output gates to control the flow of information 
into and out of the LSTM unit. One modern incarnation of the 
LSTM also includes a “forget gate” [3] which allows an LSTM 
unit to reset its state so as to not grow continually. Another 
variant, called the Gated Recurrent Unit (GRU) lacks an output 
gate [4]. 

As discussed above, LSTM’s ability to handle time series 
with inconsistent timing between meaningful events makes it an 
ideal candidate for time series prediction for financial assets. 
Indeed, work has been done using LSTM to predict financial 
time series in the stock market, using both traditional time series 
analysis inputs as features and using technical analysis metrics 
as features [9]. The traditional LSTM has also been used 
successfully to address the problem of volatility prediction in the 
stock market [5][6], as have traditional RNNs [7].  

LSTMs have been shown to outperform traditional GARCH 
models in this context. We aim to extend this work by using an 
alternative set of engineered features and by altering the 
architecture of the neural network, benchmarked against a 
simple LSTM network, to better suit the nature of financial time 
series data. 

 

III. DATASET AND FEATURES 

 
Our primary data source is from Kaggle (labeled “Huge 

Stock Market Dataset”) and provides over 18 years of daily 
Open, High, Low, Close, Volume, and Open Interest data for 
individual US stocks and ETFs [8]. The full dataset is 826MB, 
consisting of text files representing time series for over 8300 
entities, including over 7000 single stocks and over 1300 ETFs.  

Lengths of time series vary by instrument based on when that 
instrument started trading in the market, and whether it still 
trades (or was acquired, delisted, etc.). We make our training 
data among different stocks as comparable as possible by 
focusing only on stocks that were traded between 2013 and 
2018. 

Daily data for this experiment is preferable to other 
frequencies, as intraday (tick-level) data is typically far too noisy 
with too little predictive value, and data from longer intervals is 
less practically useful. Many new features such as momentum 
indicators and candlesticks (both of which are commonly used 
in stock chart analysis) can be engineered from daily data.  

In this study, we focus on a universe of the 1000 largest and 
most liquid single stocks available in the dataset. For each stock, 
we engineer the same feature set and target variable, training our 
neural network on all stocks in the prescribed universe so as to 

generalize our model, rather than just focusing on learning one 
stock. 

Our features consist of several transformations of the given 
Open, High, Low, Close, Volume data. We use Log Return, Log 
Volume Change, Log Trading Range (high vs. low for a given 
trading day), Previous 30-day Volatility, Previous 10-Day 
Volatility, and GARCH forward-looking 10-day volatility 
prediction as our features.  

Financial time series data requires pre-processing in order to 
address some nuances that would otherwise make predictive 
analytics impossible. For instance, financial time series are 
nonstationary—in other words, their distributions can change 
over time, often as a result of general market dynamics (“bull” 
vs. “bear” market) or fundamental changes to the underlying 
company (increasing debt levels, changes in management, 
supply chain consolidation).  

The common method of addressing this non-stationarity is to 
not use raw price series as inputs, but rather the series of price 
changes or percentage returns. Both methods are a form of price 
differencing, which create stationarity in a non-stationary time 
series. We do the same with daily trading volume. We also 
normalize the data by taking the logarithm each element of the 
time series, so as to scale the data. 

For the GARCH model, we train a new model for each 
separate stock. For each of those stocks, we fit a new GARCH 
model at each successive time step using all previous day, 
walking forward, as we would do if using the GARCH model on 
its own to trade. We train the GARCH models with parameters 
p=15 and q=15, with a horizon of 10 trading days (Figure 1). 

For our target variable, we use the average volatility of the 
10 days following a given data point. The motivation is that 
predicting a 1-day volatility doesn’t make much of a difference 
and will be too noisy to train effectively, and predicting a 30-
day volatility is not nearly as useful with a shorter-term trading 
horizon as part of one’s trading strategy (Figure 2). 

Given the relatively small size of the data, due to the fact that 
each data point represents a daily closing price, we need to tailor 
our train/test split to this data scarcity. We are using daily price 
data from a 5-year period, and despite having 1000 stocks in the 
chosen dataset, this is still not a great deal of data. As a result, 
We choose to go against recent wisdom in the Deep Learning 
community and stick to the 80/20 train/test split. 

 
Figure 1: TLSA GARCH model results 
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Figure 2: TSLA 10-Day Forward Volatility 

 

IV. METHODS 
 

 Because we are dealing with time series data, we 
cannot simply randomly shuffle datapoints into train/test splits. 
As such, we make our splits first by stock ticker, and then by 
chronology We will consider data in rolling 30 trading day 
blocks, closing price volatility levels over the following 10 
trading days as our y labels. 

Our baseline model (Figure 3) consists of a single LSTM 
layer with 5 hidden units, followed by a 1-unit output layer. We 
train this neural network with a batch size of 30 data points. Our 
chosen loss metric is Mean Squared Error, but we also track 
Mean Absolute Error and Mean Absolute Percentage Error. We 
use the Adam optimizer. 

 

 
Figure 3: Neural network architecture for baseline model. 

 

Our extended model (Figure 4) is depicted below. It consists 
of a 20-unit LSTM layer, a 10-unit Dense layer with ReLu 
activation, and a 10-unit GRU layer. We also include 2 separate 
10% Dropout layers. 

 

 
Figure 4: Neural network architecture for extended model 

 

As for implementation in code, employ the Keras framework 
in Python, as well as Pandas, Numpy and Matplotlib. 

V. EXPERIMENT/RESULTS/DISCUSSION 
 

Below, we compare the results of both the baseline and 
extended models. As we can see, the extended network 
outperforms during training, but the simpler network 
outperforms during testing (Figure 5). Notably, the extended 
network also has a greater degree of performance degradation in 
MSE and MAE in the test set relative to the training set, 
suggesting a greater degree of overfitting within the extended 
network. This suggests that a greater deal of tuning is required 
on the deeper network, and in particular, the increased use of 
dropout layers could help reduce the variance problem. 

 

Training Set MSE MAE MAPE 

Baseline 4172.61 
 

2.339 
 

1975190.75 
 

Extended 3883.5 
 

2.314 
 

8526497.0 
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Test Set MSE MAE MAPE 

Baseline 5167.51 
 

2.459 
 

8722592.0 
 

Extended 4859.47 
 

2.471 
 

37653732.0 
 

Figure 5: Train and test set results. 

  

VI. CONCLUSIONS AND FURTHER RESEARCH 
 

As it turns out, the simpler model actually performed better 
on this data. It is likely that an even deeper model trained on 
larger data would have fared better, but in this case, simpler was 
better. 

 A great deal of further research can be done in this relatively 
nascent area of financial time series prediction. There are 
multiple axes on which we could vary our experimental setup.  

 The first axis to consider is time series frequency. Our 
experiment uses daily stock price data as our key input. 
However, different market participants focus on different 
frequencies of data. High-frequency trading firms tend to focus 
on tick-level or order book-level data, creating orders in 
fractions of seconds. The type of exchange and order book 
arbitrage that HFT firms focus on relies on high-frequency, very 
noisy data. The challenges posed by this level of noise are very 
different, and likely require different data pre-processing and 
neural network architecture. 

 Another axis to consider is the asset class of the financial 
instrument in question. Here, we have focused on “vanilla” US 
equities. However, there is a wide world of other asset classes 
that all trade differently. Corporate bonds, for instance, trade at 
a lower frequency and in larger trade sizes than equities do, with 
different variables affecting price and yield. Likewise, 
currencies and cryptocurrencies all have their own nuances, and 
a neural network trained on one asset class is unlikely to 
generalize to another. 

 Another area to consider for future research is alternative and 
more expansive feature engineering. In our case, we are using 
transformed versions of the most basic stock data available—
price and volume. However, market practitioners and 
researchers alike do not typically rely only on price and volume 
data. One area of interest that dovetails nicely with RNNs is 
trading on news sentiment. Using RNNs to quickly parse and 
classify news headlines or earnings reports as positive or 
negative is a fast and effective way to trade on news.  

 One more possible variation in our experimental framework 
for future research would be the framing of the target variable. 

In our case, we frame the problem as a regression problem, with 
forward-looking 10-day volatility as our target variable. 
However, this problem could also be framed as a classification 
problem. If we consider an increase or decrease in volatility 
beyond some specified threshold (i.e. a 3-sigma move) to be 
associated with a positive or negative label, with a 0 label 
representing no significant volatility change, it is possible that 
this new framework could be more seamlessly integrated into an 
actual automated trading system, making buy or sell decisions 
based on predicted labels. 

 Lastly, it would be worth considering alternative neural 
network architectures for this problem. More work could be 
done in tuning our current architecture, in the form of tuning 
hyperparameters, number of epochs, batch sizes, memory 
length, and the inclusion/exclusion of “forget gates”. Adding or 
removing LSTM/GRU layers, tuning dropout layers, and 
experimenting with different activation functions are all worth 
pursuing. 
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