Decision Sum-Product-Max Networks

Mazen Melibari ¢, Pascal Poupart ¢, Prashant Doshi *
§ David R. Cheriton School of Computer Science, University of Waterloo, Canada
¥ Dept. of Computer Science, University of Georgia, Athens, GA 30602, USA
§ {mmelibar, ppoupart}@uwaterloo .ca, ipdoshi@cs .uga.edu

Abstract

Sum-Product Networks (SPNs) were recently proposed
as a new class of probabilistic graphical models that
guarantee tractable inference, even on models with
high-treewidth. In this paper, we propose a new exten-
sion to SPNs, called Decision Sum-Product-Max Net-
works (Decision-SPMNSs), that makes SPNs suitable for
discrete multi-stage decision problems. We present an
algorithm that solves Decision-SPMNss in a time that is
linear in the size of the network. We also present algo-
rithms to learn the parameters of the network from data.

Introduction

Influence diagrams (IDs) are well-known probabilistic
graphical models for multi-stage decision problems. IDs ex-
tend Bayesian Networks with decision and utility nodes.
As the case with most probabilistic graphical models,
solving IDs is NP-hard even in networks with bounded
treewidth (Maud, de Campos, and Zaffalon 2012). Sum-
Product Networks (SPNs) (Poon and Domingos 2011) were
recently proposed as a new class of probabilistic graphi-
cal models that guarantees tractable inference. Several vari-
ants of SPNs have been developed in the recent years, in-
cluding Relational-SPNs (Nath and Domingos 2015) for
relational models, and Dynamic-SPNs (?) for data with
varying lengths. In this paper, we propose a new exten-
sion to SPNs, called Decision Sum-Product-Max Networks
(Decision-SPMNs), that makes it suitable for discrete multi-
stage decision problems. The next section formally defines
the proposed model and presents an algorithm to learn the
parameters from data.

Decision Sum-Product-Max Networks

Decision-SPMNs are built upon the framework of SPNs.
Definition 1 extends the definition of SPNs (Poon and
Domingos 2011) by introducing two new types of nodes:
decision and utility nodes.

Definition 1 (Decision-SPMN). A Decision-SPMN
over decision variables di,...,d,, and random variables
Z1,...,2y is a rooted directed acyclic graph. Its leaves are
either indicators of the random variables z1, ..., x,, or utility

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example Decision-SPMN with one decision and
one random variable. Parameters and edge labels are omitted
for clearity.

nodes. The internal nodes of an SPMN are Sum, Product,
or Max nodes. Each Max node corresponds to one of the
decision variables dy, ..., d,;, and each outgoing edge from a
Mazx node is labeled with one of the possible values of the
corresponding decision variable. The value of a M az node
is max;ecp(s)vy, Where i is the Max node, Ch(i) is the set
of children of ¢, and v; is the value of node j. The Sum and
Product nodes are defined as in regular SPNs.

We now turn to recall the concepts of information sets
and partial ordering. The information sets I, .., I,, are dis-
joint subsets of the random variables such that the random
variables in the information set I;_; are observed before the
decision associated with variable d; is made. The partial or-
der < is the ordering of the information sets followed by the
decision variables, [yp < dqy < [1 <ds < ... <d, < I,.

Next, we define a set of properties to ensure that a
Decision-SPMN encodes a function that computes the max-
imum expected utility (MEU) for some partial order < and
some utility function U.

Definition 2 (Completeness of Sum Nodes). A Decision-
SPMN is complete iff all children of the same sum node
have the same scope, where the scope is the set of variables
that are included in a child.

Definition 3 (Decomposability of Product Nodes). A
Decision-SPMN is decomposable iff no variable appears in
more than one child of a product node.

Definition 4 (Completeness of Max Nodes). A Decision-

SPMN is max-complete iff all children of the same max
node have the same scope, where the scope is the set of de-
cision variables that are included in a child.

Definition 5 (Uniqueness of Max Nodes). A Decision-
SPMN is max-unique iff each max node that corresponds
to a decision variable d appears at most once in every path
from root to leaves.

We can obtain the maximum expected utility of a deci-
sion problem that has the partial order < and utility func-
tion U using the Sum-Max-Sum rule, in which we alternate
between summing over the variables in an information set
and maximizing over a decision variable. The next defini-
tion makes a connection between Decision-SPMNs and the
Sum-Max-Sum rule. We use the notion S(e) to indicate the
value of a Decision-SPMN when evaluated at evidence e.

Definition 6. A Decision-SPMN S is valid iff S(e) =
MEU(e| <, U)

Figure 1 shows an example of a Decision-SPMN over
a decision variable, D, and a random variable, X. Solv-
ing a Decision-SPMN can be done by setting the indicators
that are compatible with the evidence to 1 and the rest to 0,
then performing a bottom-up pass on the network. The opti-
mal strategy can be found by tracing back the network and
choosing the edges that maximize the decision nodes.

Parameters Learning

Let D be a dataset that consists of |D| instances, where
each instance, D;, is a tuple of the values of observed
random variables, X, the values of decision variables, D,
and a single utility value, u, that represents the utility of
the joint assignment of values for X and D; ie. D; =
(X,D,U(X,D)). Algorithm 1 gives an overview of the pa-
rameter learning process. The process is split into two sub-
tasks: 1) Learning the values of the utility nodes, 2) Learning
the embedded probability distribution. The following sec-
tions describe these two sub-tasks in detail.

Algorithm 1: Decision-SPMN Parameters Learning

input : S: Decision-SPMN, D: Dataset

output: Decision-SPMN with learned parameters
S <+ learnUtility Values(S, D);

S < decisionSpmnEM(S, D);

Learning the Values of the Utility Nodes The first sub-
task is to learn the values of the utility nodes. We start by
introducing the notion of specific-scope. The specific-scope
for an indicator node is the value of the random variable
that the indicator represents; for all other nodes the specific-
scope is the union of their childrens’ specific-scopes. For ex-
ample, an indicator node, I, for X = z has the specific-
scope {x}, while an indicator node, Iz, for X = Z has
the specific-scope {Z}. A sum node over I, and I; has the
specific-scope {x, T}. A product node that has two children,
one with specific-scope {x, Z} and another one with specific-
scope {y}, will have the specific-scope {x,Z,y}. A simple
algorithm that performs a bottom-up pass and propagates the

specific-scope of each node to its parents can be used to de-
fine the specific-scope of all the nodes in a SPMN.

For each unique instance D; in D we perform a top-down
pass, where we follow all the nodes that have values con-
sistent with D; in their specific-scope. If we reach a utility
node, then we set its value to the utility value in D,.

Learning the Embedded Probability Distribution The
second sub-task is to learn the parameters of the embedded
probability distribution. In particular, we seek to learn the
weights of the sum nodes. This can be done using a spe-
cial derivation of the Expectation-Maximization (EM) algo-
rithm that is suitable for SPMNs. For each instance, D;, in
the dataset, we set the indicators to their values in X; (the
observed values of the random variables in instance D;).
We then perform inference by evaluating the SPMN using
a bottom-up pass. In order to integrate the decisions, D, for
instance D;, each max node will multiply the value of its
children with either 0 or 1 depending on the value of the
corresponding decision in the instance. This multiplication
is equivalent to augmenting the SPMN with indicators for
the max nodes. And since we are only concerned with the
weights of the sum nodes in this sub-task, all the utility
nodes can be treated as hidden variables with fixed prob-
ability distributions, where summing them out will always
result in the value 1. We also perform a top-down pass to
compute the gradient of the nodes. The expected counts of
each child of a sum node is maintained using a counter for
each child. We normalize and assign those values to the sum
nodes at the end of each iteration. This process is repeated
until convergence.

Conclusion and Future Work

We proposed a new extension to SPNs, called Deci-
sion Sum-Product-Max Networks (Decision-SPMNs), that
makes SPNs suitable for discrete multi-stage decision prob-
lems. Solving Decision-SPMNs can be done in a time that is
linear in the size of the network. We also presented an algo-
rithm to learn the parameters of the network from data. An
important direction for future work is to develop an efficient
structure learning algorithm for Decision-SPMNs. Another
future work is to experimentally evaluate how Decision-
SPMNSs and alternative discrete multi-stage decision models
can perform on real-life datasets.

References
Mau4d, D. D.; de Campos, C. P.; and Zaffalon, M. 2012. The
complexity of approximately solving influence diagrams. In
Twenty-Eighth Conference on Uncertainty in Artificial Intelli-
gence (UAI-12), 604-613. AUAI Press.
Melibari, M.; Poupart, P.; and Doshi, P. 2015. Dynamic Sum
Product Networks for Tractable Inference on Sequence Data.
ArXiv e-prints.
Nath, A., and Domingos, P. 2015. Learning relational sum-
product networks. In Tiventy-Ninth AAAI Conference on Artifi-
cial Intelligence.
Poon, H., and Domingos, P. 2011. Sum-product networks: A
new deep architecture. In Proc. 12th Conf. on Uncertainty in
Artificial Intelligence, 2551-2558.

