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Abstract

A core problem of information retrieval (IR)
is relevance matching, which is to rank doc-
uments by relevance to a user’s query. On
the other hand, many NLP problems, such
as question answering and paraphrase iden-
tification, can be considered variants of se-
mantic matching, which is to measure the se-
mantic distance between two pieces of short
texts. While at a high level both relevance
and semantic matching require modeling tex-
tual similarity, many existing techniques for
one cannot be easily adapted to the other. To
bridge this gap, we propose a novel model,
HCAN (Hybrid Co-Attention Network), that
comprises (1) a hybrid encoder module that
includes ConvNet-based and LSTM-based en-
coders, (2) a relevance matching module that
measures soft term matches with importance
weighting at multiple granularities, and (3) a
semantic matching module with co-attention
mechanisms that capture context-aware se-
mantic relatedness. Evaluations on multiple
IR and NLP benchmarks demonstrate state-of-
the-art effectiveness compared to approaches
that do not exploit pretraining on external data.
Extensive ablation studies suggest that rele-
vance and semantic matching signals are com-
plementary across many problem settings, re-
gardless of the choice of underlying encoders.

1 Introduction

Neural networks have achieved great success in
many NLP tasks, such as question answering (Rao
et al., 2016; Chen et al., 2017a), paraphrase de-
tection (Wang et al., 2017), and textual semantic
similarity modeling (He and Lin, 2016). Many of
these tasks can be treated as variants of a seman-
tic matching (SM) problem, where two pieces of
texts are jointly modeled through distributed rep-
resentations for similarity learning. Various neural
network architectures, e.g., Siamese networks (He

et al., 2016) and attention (Seo et al., 2017; Tay
et al., 2019b), have been proposed to model se-
mantic similarity using diverse techniques.

A core problem of information retrieval (IR)
is relevance matching (RM), where the goal is to
rank documents by relevance to a user’s query.
Though at a high level semantic and relevance
matching both require modeling similarities in
pairs of texts, there are fundamental differences.
Semantic matching emphasizes “meaning” corre-
spondences by exploiting lexical information (e.g.,
words, phrases, entities) and compositional struc-
tures (e.g., dependency trees), while relevance
matching focuses on keyword matching. It has
been observed that existing approaches for tex-
tual similarity modeling in NLP can produce poor
results for IR tasks (Guo et al., 2016), and vice
versa (Htut et al., 2018).

Specifically, Guo et al. (2016) point out three
distinguishing characteristics of relevance match-
ing: exact match signals, query term importance,
and diverse matching requirements. In particular,
exact match signals play a critical role in relevance
matching, more so than the role of term match-
ing in, for example, paraphrase detection. Further-
more, in document ranking there is an asymmetry
between queries and documents in terms of length
and the richness of signals that can be extracted;
thus, symmetric models such as Siamese architec-
tures may not be entirely appropriate.

To better demonstrate these differences, we
present examples from relevance and semantic
matching tasks in Table 1. Column ‘Label’ de-
notes whether sentence A and B are relevant or du-
plicate. The first example from tweet search shares
many common keywords and is identified as rele-
vant, while the second pair from Quora shares all
words except for the subject and is not considered
a duplicate pair. An approach based on keyword
matching alone is unlikely to be able to distinguish
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Task Label Sentence A Sentence B

Tweet Search
1 2022 FIFA soccer 2022 world cup FIFA could be

held at the end of year in Qatar

Duplicate Detection
0 Does RBI send its employees Does EY send its employees

for higher education, like MBA? for higher education, like MBA?

Question Answering
1 What was the monetary value of Each Nobel prize

the Nobel peace prize in 1989 ? is worth $469,000 .

Table 1: Sample sentence pairs from TREC Microblog 2013, Quora, and TrecQA.

between these cases. In contrast, the third example
is judged as a relevant QA pair because different
terms convey similar semantics.

These divergences motivate different architec-
tural choices. Since relevance matching is fun-
damentally a matching task, most recent neu-
ral architectures, such as DRMM (Guo et al.,
2016) and Co-PACRR (Hui et al., 2018), adopt
an interaction-based design. They operate di-
rectly on the similarity matrix obtained from prod-
ucts of query and document embeddings and build
sophisticated modules on top to capture addi-
tional n-gram matching and term importance sig-
nals. On the other hand, many NLP problems,
such as question answering and textual similar-
ity measurement, require more semantic under-
standing and contextual reasoning rather than spe-
cific term matches. Context-aware representation
learning, such as co-attention methods (Seo et al.,
2017), has been proved effective in many bench-
marks. Though improvements have been shown
from adding exact match signals into represen-
tation learning, for example, the Dr.QA model
of Chen et al. (2017a) concatenates exact match
scores to word embeddings, it remains unclear to
what extent relevance matching signals can further
improve models primarily designed for semantic
matching.

To this end, we examine two research questions:
(1) Can existing approaches to relevance match-
ing and semantic matching be easily adapted to
the other? (2) Are signals from relevance and
semantic matching complementary? We present
a novel neural ranking approach to jointly model
both the relevance matching process and the se-
mantic matching process. Our model, HCAN
(Hybrid Co-Attention Network), comprises three
major components:

1. A hybrid encoder module that explores three
types of encoders: deep, wide, and contextual,
to obtain contextual sentence representations.

2. A relevance matching module that measures
soft term matches with term weightings be-
tween pairs of texts, starting from word-level
to phrase-level, and finally to sentence-level.

3. A semantic matching module with co-attention
mechanisms applied at each encoder layer to
enable context-aware representation learning at
multiple semantic levels.

Finally, all relevance and semantic matching sig-
nals are integrated using a fully-connected layer
to yield the final classification score.

Contributions. We see our work as making the
following contributions:

• We highlight and systematically explore im-
portant differences between relevance matching
and semantic matching on short texts, which lie
at the core of many of IR and NLP problems.

• We propose a novel model, HCAN (Hybrid Co-
Attention Network), to combine best practices
in neural modeling for both relevance and se-
mantic matching.

• Evaluations on multiple IR and NLP tasks, in-
cluding answer selection, paraphrase identifi-
cation, semantic similarity measurement, and
tweet search, demonstrate state-of-the-art effec-
tiveness compared to approaches that do not
exploit pretraining on external data. Abla-
tion studies show that relevance and semantic
matching signals are complementary in many
problems, and combining them can be more
data efficient.

2 HCAN: Hybrid Co-Attention Network

The overview of our model is shown in Figure 1.
It is comprised of three major components: (1) a
hybrid encoder module that explores three types
of encoders: deep, wide, and contextual (Sec. 2.1);
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Figure 1: Overview of our Hierarchical Co-Attention Network (HCAN). The model consists of three major com-
ponents: (1) a hybrid encoder module that explores three types of encoders: deep, wide, and contextual; (2) a
relevance matching module with external weights for learning soft term matching signals; (3) a semantic matching
module with co-attention mechanisms for context-aware representation learning.

(2) a relevance matching module with external
weights for learning soft term matching signals
(Sec. 2.2); (3) a semantic matching module with
co-attention mechanisms for context-aware repre-
sentation learning (Sec. 2.3). Note that the rele-
vance and semantic matching modules are applied
at each encoder layer, and all signals are finally
aggregated for classification.

2.1 Hybrid Encoders

Without loss of generality, we assume that inputs
to our model are sentence pairs (q, c), where (q, c)
can refer to a (query, document) pair in a search
setting, a (question, answer) pair in a QA setting,
etc. The query q and context c are denoted by their
words, {wq

1, w
q
2, ..., w

q
n} and {wc

1, w
c
2, ..., w

c
m}, re-

spectively, where n and m are the number of
words in the query and the context. A word em-
bedding layer converts both into their embedding
representations Q ∈ Rn×L and C ∈ Rm×L, where
L is the dimension of the embeddings.

To learn effective phrase-level representations,
we explore three different types of encoders: deep,
wide, and contextual, detailed below.
Deep Encoder: This design consists of multiple
convolutional layers stacked in a hierarchical man-
ner to obtain higher-level k-gram representations.
A convolutional layer applies convolutional filters
to the text, which is represented by an embedding
matrix U (Q or C). Each filter is moved through

the input embedding incrementally as a sliding
window (with window size k) to capture the com-
positional representation of k neighboring terms.
Assuming a convolutional layer has F filters, this
CNN layer (with padding) produces an output ma-
trix Uo ∈ R‖U‖×F .

For notational simplicity, we drop the super-
script o from all output matrices and add a super-
script h to denote the output of the h-th convo-
lutional layer. Stacking N CNN layers therefore
corresponds to obtaining the output matrix of the
h-th layer Uh ∈ R‖U‖×Fh

via:

Uh = CNNh(Uh−1), h = 1, . . . , N,

where Uh−1 is the output matrix of the (h− 1)-th
convolutional layer. Note that U0 = U denotes
the input matrix (Q or C) obtained directly from
the word embedding layer. The parameters of each
CNN layer are shared by the query and the context.
Wide Encoder: Unlike the deep encoder that
stacks multiple convolutional layers hierarchi-
cally, the wide encoder organizes convolutional
layers in parallel, with each convolutional layer
having a different window size k to obtain the cor-
responding k-gram representations. Given N con-
volutional layers, the window sizes of the CNN
layers will be in [k, k + 1, ..., k +N − 1].
Contextual Encoder: Different from both the
deep and wide encoders that capture k-gram pat-
terns with convolutions, the contextual encoder
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leverages Bi-directional LSTMs to extract long-
range contextual features. Given N BiLSTM lay-
ers, the output at the h-th layer is computed as:

Uh = BiLSTMh(Uh−1), h = 1, . . . , N,

The three encoders represent different tradeoffs.
The deep and wide encoders are easier for per-
forming inference in parallel and are much faster
to train than the contextual encoder. Addition-
ally, the use of CNN layers allows us to explic-
itly control the window size for phrase modeling,
which has been shown to be critical for relevance
matching (Dai et al., 2018; Rao et al., 2019). On
the other hand, the contextual encoder enables us
to obtain long-distance contextual representations
for each token. Comparing the deep and wide en-
coders, the deep encoder saves more parameters
by reusing representations from the previous layer.
The effectiveness of each encoder is an empirical
question we will experimentally answer.

2.2 Relevance Matching
This section describes our efforts to capture key-
word matching signals for relevance matching.
We calculate the relevance score between the
query and the context at each encoder layer by
multiplying the query representation matrix Uq

and the context representation matrix Uc:

S = UqUc
T ,S ∈ Rn×m,

where Si,j can be considered the similarity score
by matching the query phrase vector Uq[i] with
the context phrase vector Uc[j]. Since the query
and the context share the same encoder layers,
similar phrases will be placed closer in a high-
dimensional embedding space and their product
will produce larger scores. Next, we obtain a nor-
malized similarity matrix S̃ by applying a softmax
function over the context columns of S to normal-
ize the similarity scores into the [0, 1] range.

For each query phrase i, the above softmax
function normalizes its matching scores over all
phrases in the context and helps discriminate
matches with higher scores. An exact match will
dominate others and contribute a similarity score
close to 1.0. We then apply max and mean pool-
ing to the similarity matrix to obtain discrimina-
tive feature vectors:

Max(S) = [max(S̃1,:), ...,max(S̃n,:)],

Mean(S) = [mean(S̃1,:), ...,mean(S̃n,:)],

Max(S),Mean(S) ∈ Rn

Each score generated from pooling can be viewed
as matching evidence for a specific query phrase
in the context, where the value denotes the sig-
nificance of the relevance signal. Compared to
Max pooling, Mean pooling is beneficial for cases
where a query phrase is matched to multiple rele-
vant terms in the context.

It’s worth noting that term importance modeling
can be important for some search tasks (Guo et al.,
2016); therefore, we inject external weights as pri-
ors to measure the relative importance of different
query terms and phrases. We multiply the score af-
ter pooling with the weights of that specific query
term/phrase. These are provided as feature inputs
to the final classification layer, denoted by ORM :

ORM = {wgt(q)�Max(S), wgt(q)�Mean(S)},
ORM ∈ 2 · Rn,

(1)
where � is an element-wise product between the
weights of the query terms/phrases with the pool-
ing scores, and wgt(q)i denotes the weight of the
i-th term/phrase in the query; its value changes in
the intermediate encoder layers since deeper/wider
encoder layers capture longer phrases. We choose
inverse document frequency (IDF) as our weight-
ing function. A higher IDF weight implies a rarer
occurrence in the collection and thus greater dis-
criminative power. The weighting method also
allows us to reduce the impact of large matching
scores for common words like stopwords.

2.3 Semantic Matching

In addition to relevance matching, we aim to cap-
ture semantic matching signals via co-attention
mechanisms on intermediate query and context
representations. Our semantic matching method
behaves similarly to the transformer (Vaswani
et al., 2017), which also uses attention (specif-
ically, self-attention) over hierarchical blocks to
capture semantics at different granularities.

Given Uq ∈ Rn×F and Uc ∈ Rm×F generated
by an intermediate encoder layer, we first calculate
the bilinear attention as follows:

A = REP(UqWq) + REP(UcWc) + UqWbUT
c

A =softmaxcol(A)

A ∈ Rn×m

where Wq,Wc ∈ RF , Wb ∈ RF×F , and the REP
operator converts the input vector to a Rn×m ma-
trix by repeating elements in the missing dimen-
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sions. Softmaxcol is the column-wise softmax op-
erator. Similar to Seo et al. (2017), we perform
co-attention from two directions: query-to-context
and context-to-query, as follows:

Ũq = ATUq

Ũc = REP(maxcol(A)Uc)

Ũq ∈ Rm×F , Ũc ∈ Rm×F

where maxcol is the column-wise max-pooling op-
erator. Ũq denotes query-aware context embed-
dings by attending the raw query representations
to the attention weights, while Ũc indicates the
weighted sum of the most important words in the
context with respect to the query.

We then take an enhanced concatenation to ex-
plore the interaction between Ũq and Ũc, as in
Equation 2. Finally, we apply an additional Bi-
LSTM to the concatenated contextual embeddings
H to capture contextual dependencies in the se-
quence, and use the last hidden state (with di-
mension d) as the output features of the semantic
matching module OSM:

H = [Uc; Ũq;Uc ⊗ Ũq; Ũc ⊗ Ũq]

OSM = BiLSTM(H)

H ∈ Rm×4F ,OSM ∈ Rd

(2)

2.4 Final Classification
Given the relevance and semantic matching fea-
tures {Ol

RM,Ol
SM} (from Equations 1 and 2)

learned at each encoder layer l, we concatenate
them together and use a two-layer fully-connected
layer with ReLU activation to generate the final
prediction vector o. During training, we minimize
the negative log likelihood loss L summed over all
samples (oi, yi) below:

o =softmax(MLP({Ol
RM,Ol

SM})),
l =1, 2, ..., N and o ∈ R‖class‖

L = −
∑
(oi,yi)

log oi[yi],

where N is the number of encoder layers.

3 Experimental Setup

3.1 Benchmarks and Metrics
We evaluated our proposed HCAN model on three
NLP tasks and two IR datasets, as follows:
Answer Selection. This task is to rank candidate
answer sentences based on their similarity to the

question. We use the TrecQA (Wang et al., 2007)
dataset (raw version)1 with 56k question-answer
pairs. We report mean average precision (MAP)
and mean reciprocal rank (MRR).
Paraphrase Identification. This task is to iden-
tify whether two sentences are paraphrases of each
other. We use the TwitterURL (Lan et al., 2017)
dataset with 50k sentence pairs. We report the un-
weighted average of F1 scores on the positive and
negative classes (macro-F1).
Semantic Textual Similarity (STS). This task is
to measure the degree of semantic equivalence be-
tween pairs of texts. We use the Quora (Iyer et al.,
2017) dataset with 400k question pairs collected
from the Quora website. We report class predic-
tion accuracy.
Tweet Search. This task is to rank candi-
date tweets by relevance with respect to a short
query. We use the TREC Microblog 2013–2014
datasets (Lin and Efron, 2013; Lin et al., 2014), as
prepared by Rao et al. (2019), where each dataset
contains around 50 queries and 40k query-tweet
pairs. We report MAP and precision at rank 30
(P@30).

3.2 Baselines and Implementations
For the answer selection, paraphrase identifica-
tion, and STS tasks, we compared against the fol-
lowing baselines: InferSent (Conneau et al., 2017),
ESIM (Chen et al., 2017b), DecAtt (Parikh et al.,
2016), and PWIM (He and Lin, 2016). Addi-
tionally, we report state-of-the-arts results on each
dataset from published literature. We also include
the current state-of-the-art BERT (Devlin et al.,
2019) results on each dataset.

For the tweet search task, we mostly follow the
experimental setting in Rao et al. (2019). Base-
lines include the classic query likelihood (QL)
method, RM3 query expansion (Abdul-Jaleel
et al., 2004), learning to rank (L2R), as well as a
number of neural ranking models: DRMM (Guo
et al., 2016), DUET (Mitra et al., 2017), K-
NRM (Xiong et al., 2017b), and PACRR (Hui
et al., 2017). For the neural baselines, we used im-
plementations in MatchZoo.2 For L2R, we used
LambdaMART (Burges, 2010) on the same fea-
ture sets as Rao et al. (2019): text-based, URL-

1The leaderboard can be found in https:
//aclweb.org/aclwiki/Question_Answering_
(State_of_the_art)

2https://github.com/NTMC-Community/
MatchZoo

https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://github.com/NTMC-Community/MatchZoo
https://github.com/NTMC-Community/MatchZoo
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Model
TrecQA TwitterURL Quora

MAP MRR macro-F1 Acc
InferSent 0.521 0.559 0.797 0.866
DecAtt 0.660 0.712 0.785 0.845
ESIMseq 0.771 0.795 0.822 0.850
ESIMtree 0.698 0.734 - 0.755
ESIMseq+tree 0.749 0.768 - 0.854
PWIM 0.739 0.795 0.809 0.834

State-of-the-Art Models
Rao et al. (2016) 0.780 0.834 - -
Gong et al. (2018) - - - 0.891
BERT 0.838 0.887 0.852 0.892

Our Approach
RM 0.756 0.812 0.790 0.842
SM 0.663 0.725 0.708 0.817
HCAN 0.774 0.843 0.817 0.853

Table 2: Results on TrecQA, TwitterURL, and Quora.
The best scores except for BERT are bolded. In these
experiments, all our approaches use the deep encoder
in Sec. 2.1. RM and SM denote that only relevance
and semantic matching signals are used, respectively.
HCAN denotes the complete HCAN model.

based, and hashtag-based. Finally, we include the
BERT results from Yang et al. (2019b).

In our experiments, we use trainable 300d
word2vec (Mikolov et al., 2013) embeddings with
the SGD optimizer. For out-of-vocabulary words,
we initialize their word embeddings with a uni-
form distribution from [0, 0.1]. Since our model
also uses external weights, we calculate the IDF
values from the training corpus. The number of
convolutional layers N is set to 4, and the convo-
lutional filter size k is set to 2. Hidden dimension
d is set to 150. We tune the learning rate in [0.05,
0.02, 0.01], the number of convolutional filters F
in [128, 256, 512], batch size in [64, 128, 256],
and the dropout rate between 0.1 and 0.5. Our
code and datasets are publicly available.3

4 Results

Our main results on the TrecQA, TwitterURL, and
Quora datasets are shown in Table 2 and results
on TREC Microblog 2013–2014 are shown in Ta-
ble 3. The best numbers for each dataset (besides
BERT) are bolded. We compare to three variants
of our HCAN model: (1) only relevance match-
ing signals (RM), (2) only semantic matching sig-
nals (SM), and (3) the complete model (HCAN).
In these experiments, we use the deep encoder.

From Table 2, we can see that on all
three datasets, relevance matching (RM) achieves
significantly higher effectiveness than semantic

3https://github.com/jinfengr/hcan.git

Model
TREC-2013 TREC-2014

MAP P@30 MAP P@30
QL 0.2532 0.4450 0.3924 0.6182
RM3 0.2766 0.4733 0.4480 0.6339
L2R 0.2477 0.4617 0.3943 0.6200

Neural Baselines
DUET 0.1380 0.2528 0.2680 0.4091
DRMM 0.2102 0.4061 0.3440 0.5424
K-NRM 0.1750 0.3178 0.3472 0.5388
PACRR 0.2627 0.4872 0.3667 0.5642
BERT 0.3357 0.5656 0.5176 0.7006

Our Approach
RM 0.2818 0.5222 0.4304 0.6297
SM 0.1365 0.2411 0.2414 0.3279
HCAN 0.2920 0.5328 0.4365 0.6485

Table 3: Results on TREC Microblog 2013–2014, or-
ganized in the same manner as Table 2.

matching (SM). It beats other competitive base-
lines (InferSent, DecAtt and ESIM) by a large
margin on the TrecQA dataset, and is still compa-
rable to those baselines on TwitterURL and Quora.
This finding suggests that soft term matching sig-
nals alone are fairly effective for many textual sim-
ilarity modeling tasks. However, SM performs
much worse on TrecQA and TwitterURL, while
the gap between SM and RM is reduced on Quora.
By combining SM and RM signals, we observe
consistent effectiveness gains in HCAN across
all three datasets, establishing new state-of-the-art
(non-BERT) results on TrecQA.

In Table 3, we observe that the query expan-
sion method (RM3) outperforms most of the neu-
ral ranking models except for BERT, which is con-
sistent with Yang et al. (2019a). We suggest two
reasons: (1) tweets are much shorter and the infor-
mal text is “noisier” than longer documents in the
web or newswire settings, which are what the pre-
vious neural models were designed for; (2) most
neural baselines build directly on top of the em-
bedding similarity matrix without any representa-
tion learning, which can be less effective.

Comparing our proposed approaches in Table 3,
RM achieves fairly good scores while SM is not
effective at all, affirming our hypothesis that term
matching signals are essential to IR tasks. This
finding further supports our motivation for bridg-
ing SM and RM. Indeed, semantic matching meth-
ods alone are ineffective when queries are com-
prised of only a few keywords, without much
semantic information to exploit. However, the

https://github.com/jinfengr/hcan.git
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Encoder Model
TrecQA TwitURL Quora TREC-2013 TREC-2014

MAP MRR macro-F1 Acc MAP P@30 MAP P@30

Deep
RM 0.756 0.812 0.790 0.842 0.282 0.522 0.430 0.630
SM 0.663 0.725 0.708 0.817 0.137 0.241 0.241 0.328
HCAN 0.774 0.843 0.817 0.853 0.292 0.533 0.437 0.649

Wide
RM 0.758 0.806 0.790 0.830 0.278 0.510 0.421 0.617
SM 0.673 0.727 0.719 0.811 0.138 0.247 0.247 0.336
HCAN 0.770 0.847 0.795 0.843 0.285 0.524 0.435 0.642

Contextual
RM 0.690 0.736 0.811 0.804 0.272 0.503 0.417 0.613
SM 0.668 0.735 0.730 0.805 0.133 0.256 0.242 0.324
HCAN 0.739 0.790 0.815 0.826 0.285 0.524 0.434 0.635

Table 4: Evaluation of different encoders in Sec. 2.1 (best numbers on each dataset are bolded).
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Figure 2: Model effectiveness with different numbers of encoder layers.

context-aware representations learned from SM do
contribute to RM, leading to the superior results of
our complete HCAN model.

4.1 Encoder Comparisons

We report results with the three different encoders
from Sec 2.1 in Table 4. Overall, the effec-
tiveness of the deep and wide encoders are quite
close, given that the two encoders capture the same
types of n-gram matching signals. The contex-
tual encoder performs worse than the other two on
TrecQA, but is comparable on all other datasets.
This finding is consistent with Rao et al. (2017a),
which shows that keyword matching signals are
important for TrecQA. Also, we notice that the
gaps between RM and SM are smaller for all en-
coders on Quora. We suspect that SM is more
data-hungry than RM given its larger parameter
space (actually, the RM module has no learnable
parameters) and Quora is about 10× larger than
the other datasets. For all encoders, combing RM

and SM consistently improves effectiveness, af-
firming that relevance and semantic matching sig-
nals are complementary regardless of the underly-
ing encoder choice.

To better understand the different encoder
mechanisms, we vary the number of encoder lay-
ers for the deep and contextual encoders in Fig-
ure 2 (since the wide encoder behaves similarly
to the deep encoder, we omit the analysis here).
Our complete HCAN model has N = 4. In
Figure 2a, we can see overall increases in effec-
tiveness for the RM and HCAN (comb) as N in-
creases, showing that long-range phrase modeling
is critical. However, increasing context window
lengths don’t help SM on the TrecQA and TREC-
2013 datasets, likely because of dominant bigram
matching signals (N = 1). Also, the complete
HCAN model is consistently better than SM and
RM alone in most settings, affirming its superior
effectiveness, consistent with results in the above
tables. In contrast, increasing the number of Bi-
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(a) Validation losses w.r.t. number of batches.
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Figure 3: Experiments exploring learning efficiency.

LSTM layers can sometimes even hurt, as shown
in Figure 2b. This is not a surprise since a sin-
gle BiLSTM layer (N = 1) can already capture
long-range contextual information and increasing
the number of layers can introduce more parame-
ters and lead to overfitting.

4.2 Learning Efficiency
We also designed two experiments to examine
whether the complete HCAN model is learning
more efficiently than SM or RM alone. In these
experiments, we used the deep encoder. First, we
show validation losses for different numbers of
batches in Figure 3a. Second, we vary the training
data size by randomly selecting different percent-
ages (from 20% to 100%) of the original training
set, shown in Figure 3b.

In Figure 3a, we can see that the validation loss
for the complete model drops much faster than
RM and SM alone, especially on TwitterURL and
Quora. In Figure 3b, we can see that, as expected,
all methods in general achieve higher scores when
more data are used for training. An exception is
SM on the TREC-2013 Twitter dataset, which we
see is not effective in Table 3. Another important
finding is that both RM and HCAN are more data
efficient: for TREC-2013 and TwitterURL, both
can achieve effectiveness comparable to the full
training set with only 20% data.

4.3 Qualitative Sample Analysis
We present sample outputs in Table 5 to gain more
insight into model behavior. For space consid-
erations, we only show the Quora dataset, but
our analysis reveals similar findings on the other

datasets. The column “label” denotes the label of
the sentence pair: 1 means semantically equiva-
lent and 0 means not equivalent. For each model,
we output its predicted label along with its confi-
dence score; phrases with large attention weights
are highlighted in orange and red.

In the first example, SM is able to correctly
identify that the two sentences convey the same
meaning with high confidence, while RM fails
as the two sentences have no influential phrase
matches (with high IDF weights). The sentence
pair in the second example has a large text over-
lap. It is no surprise that RM would predict a
high relevance score, while SM fails to capture
their relatedness. In both examples, HCAN is able
to integrate SM and RM to make correct predic-
tions. Since the third example presents a similar
pattern, we omit a detailed explanation. Overall,
our quantitative and qualitative analyses show that
relevance matching is better at capturing overlap-
based signals, while combining semantic match-
ing signals improve representation learning.

5 Related Work

5.1 Neural Relevance Matching

Recently, deep learning has achieved great success
in many NLP and IR applications (He and Lin,
2016; Sutskever et al., 2014; Yin et al., 2016; Rao
et al., 2017b). Current neural models for IR can be
divided into representation-based and interaction-
based approaches, discussed below:

Early neural IR models mainly focus on
representation-based modeling between the query
and documents, such as DSSM (Huang et al.,
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Label SM Score RM Score HCAN Score Sample Pair

1 1, 0.9119 0, 0.9353 1, 0.5496
- How does it feel to kill a human ?
- How does it feel to be a murderer ?

1 0, 0.9689 1, 0.8762 1, 0.8481

- What are the time dilation effects on the ISS ?
- According to the theory of relativity , time runs
slowly under the influence of gravity . Is there any
time dilation experienced on the ISS ?

0 0, 0.9927 1, 0.8473 1, 0.7280

- Does RBI send its employees for higher education
such as MBA , like sponsoring the education or
allowing paid / unpaid leaves ?
- Does EY send its employees for higher education
such as MBA , like sponsoring the education or
allowing paid / unpaid leaves ?

Table 5: Sample pairs from Quora. Phrases with large attention weights are highlighted in orange and red.

2013), C-DSSM (Shen et al., 2014), and SM-
CNN (Severyn and Moschitti, 2015). These meth-
ods directly learn from query and document repre-
sentations, and have been found to be ineffective
when data is scarce.

Interaction-based approaches build on the simi-
larity matrix computed from word pairs between
the query and the document, often with count-
based techniques to address data sparsity. For ex-
ample, DRMM (Guo et al., 2016) introduced a
pyramid pooling technique to convert the similar-
ity matrix into histogram representations, on top of
which a term gating network aggregates weighted
matching signals from different query terms. In-
spired by DRMM, Xiong et al. (2017b) proposed
K-NRM, which introduced a differentiable kernel-
based pooling technique to capture matching sig-
nals at different strength levels. Sharing similari-
ties with our architecture is Rao et al. (2019), who
developed a multi-perspective relevance matching
method with a hierarchical convolutional encoder
to capture character-level to sentence-level rele-
vance signals from heterogeneous sources.

5.2 Neural Semantic Matching

Semantic matching is a fundamental problem for a
variety of NLP tasks. For example, in paraphrase
identification, SM is used to determine whether
two sentences or phrases convey the same mean-
ing. In question answering or reading comprehen-
sion (Xiong et al., 2017a; Tay et al., 2019a), SM
can help identify the correct answer span given
a question. Semantic understanding and reason-
ing for two pieces of texts lie at the core of SM.
Existing state-of-the-art techniques for SM usu-
ally comprise three major components: (1) se-
quential sentence encoders that incorporate word

context and sentence order for better sentence rep-
resentations; (2) interaction and attention mecha-
nisms (Tay et al., 2019b; Seo et al., 2017; Parikh
et al., 2016; Conneau et al., 2017; Gong et al.,
2018) to emphasize salient word pair interactions;
(3) structure modeling (Chen et al., 2017b).

6 Conclusion

In this work, we examine the relationship be-
tween relevance matching and semantic matching,
and highlight a few important differences between
them. This is an important problem that lies at
the core of many NLP and IR tasks. We pro-
pose the HCAN model with a relevance matching
module to capture weighted n-gram matching sig-
nals and a semantic matching module for context-
aware representation learning.

Thorough experiments show that relevance
matching alone performs reasonably well for
many NLP tasks, while semantic matching alone
is not effective for IR tasks. We show that rele-
vance matching and semantic matching are com-
plementary, and HCAN combines the best of both
worlds to achieve competitive effectiveness across
a large number of tasks, in some cases, achiev-
ing the state of the art for models that do not ex-
ploit large-scale pretraining. We also find that our
model can learn in a data efficient manner, further
demonstrating the complementary nature of rele-
vance matching and semantic matching signals.
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