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ABSTRACT
Anserini is an open-source information retrieval toolkit built around
Lucene to facilitate replicable research. In this demonstration, we
examine different architectures for Solr integration in order to
address two current limitations of the system: the lack of an inter-
active search interface and support for distributed retrieval. Two
architectures are explored: In the first approach, Anserini is used
as a frontend to index directly into a running Solr instance. In
the second approach, Lucene indexes built directly with Anserini
can be copied into a Solr installation and placed under its manage-
ment. We discuss the tradeoffs associated with each architecture
and report the results of a performance evaluation comparing in-
dexing throughput. To illustrate the additional capabilities enabled
by Anserini/Solr integration, we present a search interface built
using the open-source Blacklight discovery interface.
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1 INTRODUCTION
The academic information retrieval community has recently seen
growing interest in using the open-source Lucene search library
for research. Recent events to promote such efforts include the
Lucene4IR [3] workshop held in Glasgow, Scotland in 2016 and
the Lucene for Information Access and Retrieval Research (LIARR)
Workshop at SIGIR 2017 [2]. In an evaluation of seven open-source
search engines conducted in 2015 [4], Lucene fared well in com-
parisons of both effectiveness and efficiency. These results provide
compelling evidence that IR researchers should seriously consider
Lucene as the foundation of their work.

Advocates of using Lucene for IR research point to several ad-
vantages: building on a widely-deployed open-source platform fa-
cilitates replicability and brings academic research closer into align-
ment with “real-world” search applications. Lucene (via integration
with Solr) powers search in production deployments at Bloomberg,
Netflix, Comcast, Best Buy, Disney, Reddit, and many more sites.

Anserini [6, 7] is a recently-introduced IR toolkit built on Lucene
specifically designed to support replicable IR research. It provides
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efficient multi-threaded indexing for scaling up to large web col-
lections and strong baselines for a broad range of collections. The
meta-analysis of Yang et al. [8] encompassing more than 100 papers
using the test collection from the TREC 2004 Robust Track showed
that the well-tuned implementation of RM3 query expansion in
Anserini is more effective than most of the results reported in the
literature (both from neural as well as non-neural approaches). A
key feature of Anserini is its adoption of software engineering best
practices and regression testing to ensure that retrieval results are
replicable by other members of the community, in the sense defined
by recent ACM guidelines.1 That is, replicability is achieved when
an independent group can obtain the same results using the authors’
own artifacts (i.e., different team, same experimental setup).

This demonstration builds on Anserini and explores the ques-
tion of how to best integrate it with Solr. We explore and evalu-
ate different architectures, and highlight the new capabilities that
Anserini/Solr integration brings.

2 SYSTEM ARCHITECTURE
The first obvious question worth addressing for the academic audi-
ence is: Why not just build on top of Solr in the first place? Why
is Anserini, for example, built around Lucene instead of Solr? We
begin by first articulating the distinction between Lucene and Solr.

2.1 Lucene vs. Solr
Lucene defines itself as a search library. Grant Ingersoll, a Lucene
committer as well as the CTO and co-founder of Lucidworks, a
company that provides commercial Lucene products and support,
offers the analogy that Lucene is like “a kit of parts” [7]. It doesn’t
prescribe how one would assemble those parts (analysis pipelines,
indexer, searcher, etc.) into an application that solves a real-world
search problem. Solr fills this void, providing a “canonical assembly”
in this analogy.

Solr is a complete end-to-end search platform that uses Lucene
for its core indexing and retrieval functionalities. Designed as a web
application, Solr is “self-contained” in the sense that all interactions
occur via HTTP-based API endpoints. Although there are many
client libraries that facilitate access to Solr instances in a variety
of programming languages, this design has two main drawbacks
from the perspective of IR research:
• Solr APIs were designed with developers of search applications
in mind, and thus expose endpoints for indexing, search, adminis-
tration, and other common operations. However, these APIs lack
access to low-level Lucene internals needed by many researchers.
While it is in principle possible to expose these functionalities
as additional service endpoints for client access, this introduces
friction for IR researchers.

1https://www.acm.org/publications/policies/artifact-review-badging
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• Since Solr is a web application architecturally, it necessarily runs
as a distinct process. Thus, conducting IR experiments involves
first starting and configuring the Solr server (i.e., something for
the client to connect to). This procedure makes conducting ad
hoc retrieval experiments unnecessarily complicated.

In other words, the Solr “canonical assembly” was not designed
with IR researchers in mind. This is where Anserini comes in: it
builds directly on Lucene and was specifically designed to sim-
plify the “inner loop” of IR research on document ranking models.
The system allows researchers to conduct ad hoc experiments on a
broad range of test collections right out of the box, with adaptors
for standard TREC document collections and topic files as well as
integration with standard evaluation tools such as trec_eval. A
researcher issues one command for indexing and a second com-
mand for performing a retrieval run—and is able to replicate results
for a range of ranking models, from baseline bag-of-words rank-
ing to competitive approaches that exploit phrase queries as well
as (pseudo-)relevance feedback. Anserini provides all these func-
tionalities without the various overheads of Solr, e.g., managing a
separate server, latencies associated with network traffic, etc.

2.2 Anserini Shortcomings
While Anserini already supports academic information retrieval
research using standard test collections, there are two main missing
capabilities.

The existing focus on supporting document ranking experiments
means that the project has mostly neglected interactive search in-
terfaces for humans. These are needed, for example, by researchers
exploring interactive search and other human-in-the-loop retrieval
techniques. Although Anserini has been integrated with other
search frontends such as HiCAL [1], such efforts have been ad
hoc and opportunistic. One obvious integration path is for Anserini
to expose API endpoints for integration with different search inter-
faces. However, these are exactly the types of APIs that Solr already
provides, and so such an approach seems like duplicate engineering
effort with no clear-cut benefit.

As another shortcoming, Anserini does not currently support dis-
tributed retrieval over large document collections in a partitioned
manner, which is the standard architecture for horizontal scale-out.
Although previous experiments have shown Anserini’s ability to
scale to ClueWeb12, the largest IR research collection currently
available (733 million webpages, 5.54TB compressed), using a single
monolithic index, the observed query latencies are not suitable
for interactive searching [6]. Building a distributed search engine
is non-trivial, but this is a problem Solr has already solved—with
numerous deployments in production demonstrating the robust-
ness of its design. Once again, it makes little sense for Anserini to
reinvent the wheel in building distributed search capabilities.

2.3 Anserini/Solr Integration
Given the two shortcomings discussed above, it makes sense to
explore how Anserini can be more tightly integrated with Solr.
Different possible architectures are shown in Figure 1. On the left,
denoted (a), we show the current design of Anserini, where docu-
ments are ingested and inverted indexes are created directly using
Lucene (and stored on local disk). In the middle, denoted (b), we
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Figure 1: Different architectures for integrating Anserini
with Solr. In order from left: (a) the current Anserini design;
(b) Anserini indexing into a single-node SolrCloud instance
(on the same machine); (c) Anserini indexing into a multi-
node SolrCloud cluster.

show an architecture where Anserini is used as a frontend for doc-
ument processing, but indexing itself is handled by Solr (which
uses Lucene behind the scenes to construct the inverted index). In
this design, an IR researcher uses the same exact Anserini indexing
tool as before, with the exception of specifying configuration data
pointing to a Solr instance. In principle, this Solr instance could be
residing on the same machine that is running Anserini, as indicated
in (b), or it could be on a different machine (not shown). Separating
the frontend from the backend incurs network traffic, but allows
distributing load across multiple machines.

Introducing this additional layer of indirection allows us to take
advantage of Solr’s existing capabilities. For example, we get Solr-
Cloud, which is the ability to set up a cluster of Solr servers for
distributed retrieval, “for free”. This is shown in the rightmost
diagram in Figure 1, denoted (c), where Anserini indexes into a
SolrCloud cluster. The use of Solr also means that the backend
can interoperate with any number of search interfaces and other
frontends in the broader ecosystem (see Section 4). The downside,
however, is that indexing occurs over an HTTP-based API endpoint,
which is obviously less efficient than directly writing index struc-
tures to disk. Solr clients perform automatic batching to amortize
the connection costs, but the performance penalty of such a setup
is an empirical question to be examined.

An alternative approach to integrating Anserini with Solr is to
build indexes directly on local disk, and then copy those indexes
into an already running Solr instance. This is possible because Solr
itself builds on Lucene, and thus all we need to do is to properly
synchronize Solr index metadata with the index structures directly
built by Anserini. This works even with a SolrCloud cluster: we can
build inverted indexes over individual partitions of a collection, and
then copy the data structures over to the appropriate node. In such
an approach, the Anserini indexing pipeline remains unchanged,
but we need a number of auxiliary scripts to mediate between Solr
and the pre-built index structures.

3 EXPERIMENTAL EVALUATION
3.1 Setup
Hardware. Our experiments were conducted on the following:
• A “large server” with 2× Intel E5-2699 v4 @ 2.20GHz (22 cores, 44
threads) processors, 1TB RAM, 26×6TB HDDs, running Ubuntu
16.04 with Java 1.8.

• A ten node cluster of “medium servers”, where each node has 2×
Intel E5-2670 @ 2.60GHz (8 cores, 16 threads) processors, 256GB
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Collection # docs Large Server Medium Server Cluster

Lucene Solr (single-node) Lucene Shard Lucene Solr (single-node) Solr (multi-node)
NYTimes 1.8M 4m14s ± 6s 2m53s ± 11s 3m12s ± 9s 4m17s ± 6s 5m16s ± 50s 3m25s ± 15s
Gov2 25.2M 1h1m ± 3m 1h52m ± 3m 18m6s ± 29s 1h14m ± 1m 2h13m ± 6m 50m30s ± 35s
ClueWeb09b 50.2M 2h40m ± 2m 4h49m ± 2m 44m33s ± 1m - - 2h15m ± 9m
ClueWeb12-B13 52.3M 3h9m ± 2m 6h6m ± 9m 46m52s ± 1m - - 2h4m ± 4m
Tweets2013 243M 3h44m ± 2m 3h13m ± 10m 2h58m ± 3m 4h53m ± 2m 5h29m ± 4m 3h55m ± 4m

Table 1: Total indexing time (mean ± standard deviation) for various architectures on different collections.

RAM, 6×600GB 10k RPM HDDs, 10GbE networking, running
Ubuntu 14.04 with Java 1.8. In the cluster setup, one node is used
as the driver while the remaining nine nodes form a SolrCloud
cluster. For comparison purposes, we also ran experiments on an
individual server.

Note that processors in the medium servers date from 2012 (Sandy
Bridge architecture) and the processors in the large server date
from 2015 (Broadwell architecture), so there are significant differ-
ences in terms of compute power, both compared to each other and
compared to current generation hardware.
Document Collections. We use a number of standard IR docu-
ment collections in our evaluation:
• TheNewYork TimesAnnotated Corpus, a collection of 1.8million
news article, used in the TREC 2017 Common Core Track.

• Gov2, a web crawl of 25.2 million .gov webpages from early 2004,
used in the TREC Terabyte Tracks.

• ClueWeb09b, a web crawl comprising 50.2 million webpages
gathered by Carnegie Mellon University in 2009, used in the
TREC Web Tracks.

• ClueWeb12-B13, a web crawl comprising 52.3 million webpages
gathered by Carnegie Mellon University in 2012 as the successor
to ClueWeb09b, also used in the TREC Web Tracks.

• Tweets2013, a collection of 243 million tweets gathered over Feb-
ruary and March of 2013, used in the TREC Microblog Tracks [5].

Architectures. We examined a few different architectures, as out-
lined in Figure 1. In all cases, we built full positional indexes and
also store the raw document texts.
• Lucene. The default implementation for Anserini, and our base-
line, has a single, shared Lucene IndexWriter for all threads
indexing to disk. We set the thread count to be equal to the num-
ber of physical CPU cores and use a write buffer of 2GB. This
corresponds to Figure 1(a).

• Solr. Anserini is used as a frontend for indexing into a single-
node SolrCloud instance, corresponding to Figure 1(b), as well as
a nine node SolrCloud cluster, corresponding to Figure 1(c). In
the single-node case, the Anserini frontend and the SolrCloud in-
stance both reside on the same server. In the SolrCloud cluster, the
Anserini frontend runs on one of the medium servers while the
remaining nine servers each host a single Solr shard. Although
strictly not necessary in the single-node case, we nevertheless
use SolrCloud to simplify implementation. In both cases we use
a dedicated CloudSolrClient for each indexing thread (with
one thread per physical CPU core); batch size is set to 500 for
ClueWeb09b and 1000 for the other collections (the smaller batch

size for ClueWeb09b is necessary to avoid out-of-memory errors).
We set Solr’s ramBufferSizeMB to 2GB, matching the Lucene
condition, and define a schema to map Anserini fields to the
appropriate types in Solr. The performance difference between
Lucene and the single-node SolrCloud instance characterizes Solr
overhead, and performance comparisons between single-node
and multi-node SolrCloud quantifies the speedup achievable with
distributed indexing.

• Lucene Shard. In this configuration, Anserini builds indexes
over 1/9th of each collection. This models the scenario where we
separately build indexes over document partitions “locally” and
then copy each index to the corresponding server in SolrCloud.
We use the same settings as the Lucene configuration above.
Comparisons between this condition and a multi-node SolrCloud
cluster characterizes the overhead of distributed indexing.

3.2 Results
Table 1 shows indexing performance for the various architectures
described above. We report means with standard deviations over
three trials for each condition. Note that due to the smaller disks
on the medium servers, we were not able to index ClueWeb09b and
ClueWeb12-B13 under the single-node condition.

These experiments show that Anserini indexing into Solr has
substantial performance costs. In our results table, the “Lucene”
vs. “Solr (single-node)” columns quantify the overhead of Solr’s
application framework—the extra layer of indirection that comes
with REST APIs. For small collections, the overhead is modest (and
for NYTimes on the large server, Solr is actually faster), but the
overhead can be quite substantial for the large collections. For
example, on ClueWeb12-B13, indexing into Solr takes almost twice
as long as directly writing local indexes.

We can compare “Solr (single-node)” vs. “Solr (multi-node)” to un-
derstand the performance characteristics of distributed SolrCloud.
Information is limited since we only have a cluster of medium
servers, and limited drive capacity prevented comparisons on the
ClueWeb collections. Nevertheless, it is clear that we do not achieve
linear speedup: perfect scalability implies that we would be able
to index the entire collection in 1/9th of the time on a cluster of
nine nodes. However, we are pleased with the ease of multi-cluster
setups in SolrCloud, since a distributed architecture would be nec-
essary to support query latencies for interactive search on even
larger collections (e.g., the full ClueWeb collections).

From these experiments, we discovered that tuning of various
configurations (e.g., thread counts, batch sizes, and buffer sizes)
has a large impact on performance. For example, on a single node,
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we essentially run into a producer–consumer queuing problem:
Anserini threads are “producing” documents that are “consumed”
by Solr threads. It is difficult to perfectly balance throughput, and
thus one side is often blocking, waiting for the other. In our ex-
periments, we have taken reasonable effort to optimize various
parameter settings across all our experimental conditions, but have
not specifically tuned parameters for individual collections—and
thus it is likely that more fine-grained collection-specific tuning
can further increase performance. Nevertheless, we believe that our
results reasonably reflect the true capabilities of Lucene and Solr
in the various configurations, as opposed to performance that has
been hobbled due to poor parameter settings.

Comparing “Lucene Shard” vs. “Lucene” on the medium server,
we see that indexing 1/9th of the collection does not take 1/9th of
the time. This is an artifact of our current implementation, where
we still scan the entire collection (i.e., parsing every document)
in order to determine which shard a document belongs in. Thus,
we encounter substantial document processing overhead in this
naïve implementation of Lucene sharding, i.e., nine passes over the
collection, building a shard index in each pass. The overall indexing
time could be reduced by running the indexing in parallel on each
of the servers hosting the Solr shards. Nevertheless, we believe
that with an improved implementation, our alternative integration
strategy—building indexes for each shard locally and then copying
them to the appropriate SolrCloud server—can be viable.

Finally, we note that all our experiments were conducted on
magnetic spinning disks. SSDs have very different characteristics,
and it would be desirable to replicate these experiments with more
modern server configurations.

4 INTERACTIVE SEARCH
An important capability enabled by Anserini/Solr integration is
entrée into the rich ecosystem of Solr frontends. In particular, this
allows IR researchers to leverage efforts that have been invested
in creating Solr-based search interfaces. This would specifically
benefit researchers working on interactive IR, who often have the
need to create custom search interfaces, to, for example, support
user studies. Users have come to expect much from such interfaces,
and instead of trying to implement these features from scratch,
researchers can reuse existing components.

As a demonstration of Solr’s capabilities, we have adapted Black-
light2 as a search interface to Anserini. Blacklight is an open-source
Ruby on Rails engine that provides a discovery interface for Solr. It
offers a wealth of features, including faceted search and browsing,
keyword highlighting, and stable document URLs. The entire sys-
tem can be customized via standard Rails templating mechanisms.
Blacklight has a vibrant developer community and has gained broad
adoption in the library and archives space, being deployed at dozens
of university libraries and cultural heritage institutions.

Figure 2 shows a screenshot from our custom Blacklight instance,
dubbed “Gooselight”, searching over the collection of 243 million
tweets from the TREC 2013 Microblog Track [5] indexed via our
Anserini/Solr integration. Here, we highlight the flexibility of Black-
light by rendering results using Twitter’s official API, which shows

2http://projectblacklight.org

Figure 2: Screenshot of Gooselight, a search interface using
Blacklight that connects directly to Anserini/Solr.

media previews and threaded discussions (if available), and pro-
vides direct links to the original source and other Twitter “actions”.
Use of this rendering API also allows our search interface to respect
Twitter’s terms of service regarding private and deleted tweets.

5 CONCLUSIONS
With Anserini/Solr integration, we argue that it is possible to “have
your cake and eat it too”. Anserini continues to support the tight
“inner loop” of IR research (i.e., model refinement), but now addi-
tionally offers the broader capabilities described here.
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