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ABSTRACT

The Intel iAPX 432 is an object-
based microcomputer which, together
with its operating system iMAX, pro-
vides a multiprocessor computer sys-
tem designed around the ideas of data
abstraction. iIMAX is implemented in
Ada and provides, through its inter-
face and facilities, an Ada view of the
432 system. Of paramount concern in
this system is the uniformity of
approach among the architecture, the
operating system, and the language.
Some interesting aspects of both the
external and internal views of iMAX
are discussed to illustrate this uni-
form approach.

1. Introduction

The Intel iAPX 432 is an object-based micro-
computer system with a unified approach to
the design of its architecture, operating sys-
tem, and systems programming language. Its
underlying addressing structure is
capability-based. ! It incorporates support for
data abstraction, typing, and program struc-
turing, using Ada as its system programming
language. The 432 also uses its object orien-
tation as a basis for moving a number of criti-
cal software operations into the hardware.
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A major goal of the 432 and therefore of iMAX
has been to uniformly structure the hardware
and software of the system around a single
set of concepts based on objects. In addition
to providing a common framework for the
design of the system, this approach leads to
an economy of concepts that eases learning
and using the system. Once the notion of
object-oriented design is understood, it can
be applied equally well to all aspects of the
system from the underlying VLSI hardware to
the programmer's language interface. This
property contrasts sharply with conventional
systems that use quite different structures in
their base hardware, central operating sys-
tem, file stores, languages, etc. The major
goal of this paper is to demonstrate the uni-
formity achieved in iMAX via the integration
of concepts in the underlying architecture,
Ada, and the operating system itself.

This paper presents an overall view of the 432
as seen through iMAX, its operating system. ?
As an object-oriented operating system, iMAX
has its roots in the academic research embo-
died in systems like Hydra, 3% CAP, 56
Star0S, 7 and the CAL timesharing system. B
After a brief overview of the 432 hardware,
some of the most important external attri-
butes of iMAX are described, then interesting
aspects of the internal structure of iMAX and
various issues that arise in designing an
object-oriented computer system are dis-
cussed.

2. The 432 Architecture

Because the 432 blurs the distinction between
hardware and software, it is worth distin-
guishing some important aspects of the con-
ceptual architecture that are actually imple-
mented in the two chip VLSI processor. The
432 addressing structure is capability-based.
Access descriptors or capabilities* name
entries in a global object descriptor table.

* The term access descriptor was chosen over capabili-
ty due to its close correspondence to an Ada access.



Each object descriptor in this table describes
a segment of from 1 byte to 128K bytes in
length. An object consists of two parts, one
containing data and the other containing
access descriptors, Each part may be up to
64K bytes in length. The one object descrip-
tor for a given segment provides the physical
base address and length of the segment, indi-
cates whether the segment contains data or
accesses, indicates what type of object it
represents, and includes information needed
for virtual memory management and parallel
garbage collection. Each access descriptor
(there may be many) for a given object con-
tains rights flags that control the access
available via that access descriptor.

The simplest type of object is generic for
which no additional semantics exist. Other
types of objects are recognized by the proces-
sor and are used to control its operation.
Examples of these are processor, process,
storage resource, and port objects. These
objects are used by the 432 processor as a
basis for providing a number of high level
implicit operations and instructions. For
example, ready processes are dispatched on
processors automatically by the hardware via
algorithms that involve processor, process,
and dispatching port objects. Interprocess
communication is provided by send and
receive instructions that pass any access
descriptor as a message via a communication
port object. Likewise, memory allocation,
user-defined types, and processor control are
accomplished via instructions that involve
other system objects.

Finally, the 432 supports small protection
domains with domain objects. 9 10.11 These
correspond to the package construct in Ada,
namely, they are a structure for grouping and
restricting accesses to the implementation of
a module. The 432 subprogram call instruc-
tion performs the dynamic transition between
domains, providing the proper addressing
environment for any invoked subprogram via
a context object. Much has been made of the
cost of domain switching in a domain struc-
tured architecture. For comparison with
other architectures, a domain switch on the
432 takes about 65 microseconds for an 8
megahertz processor with no wait state
memory. This compares reasonably with the
cost of procedure activation on other contem-
porary processors. Full details of the 432
architecture can be found in the 432 Archi-
tecture Reference Manual. !
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3. iMAX Design Philosophy

For Intel, the 432 and iMAX are products pri-
marily intended to be used by original equip-
ment manufacturers in the construction of
their products, rather than by than end-
users. This means that support for minimum
systems, range of application, and
configurability are the most important iMAX
goals. This is in marked contrast to a typical
end-user system for which a particular appli-
cation is defined (such as general purpose
time-sharing) and whose facilities are target-
ted to that application. For such a system
facilities needed to implement the application
would be paramount. iMAX emphasizes
breadth of support over depth.

iMAX is fundamentally a multiprocessor
operating system, providing a tightly coupled
environment in which all processors see a sin-
gle homogeneous memory. The 432 hardware
is designed to support multiprocessing in the
standard configuration, and in fact makes the
existence of multiple general data processors
transparent to virtually all of the system
software. With the bussing schemes designed
for the 432, a factor of 10 in total processing
power of a single 432 system is realizable.
Multiple independent 170 subsystems provide
a similar expansion for the 1/0 bandwidth of a
single system. To support multiprocessing,
therefore, it is merely necessary that the
design of iMAX never assume that only a sin-
gle processor is running. That is, all syn-
chronization within the system must be expli-
cit, never assuming that process priority or
other scheduling artifact is sufficient to
guarantee exclusion. Since this is a design
principle that should be followed in a mul-
tiprogramming environment in any case, we
will not comment further in this paper on the
multiprocessing aspects of iMAX.

Given the 432 architecture, the relationship
between iMAX and the 432 hardware is more
preordained than that of most systems and
their host hardware. iMAX is obligated to
complete the model of computation sup-
ported in the hardware. Operations are pro-
vided in the 432 hardware for one of three
reasons: they are time critical, thus
benefitting from hardware implementation;
they are security sensitive, thus requiring
hardware enforcement; or they are complex
in a way that benefits from special hardware
structures on chip. iMAX is responsible for
cooperating with the hardware to provide
such remaining operations as initialization of
complex objects, object maintenance, and
object disposal. iMAX also extends the seman-
tics of the hardware to provide a more con-
venient view of those abstractions that are
built into the hardware.



Although some of the facilities provided by
iMAX are actually realized as hardware primi-
tives, iMAX provides a uniform external view
of the 432 system through an interface that is
expressed as a set of Ada specifications. Its
users can be unaware of which operations
have been implemented in hardware and
which have been left to software.

Ada has been chosen as the systems imple-
mentation language of the 432 because its
facilities complement the 432 architecture
well. Packages in Ada provide a natural
representation of type managers and map
exactly the protected domain structure of
the architecture. The specification/body dis-
tinction agrees with our desire to blur the
hardware/software boundary and with the
natural implementation hiding of the domain
structure. The only area in which Ada falls
short of our needs is that its design focus is a

static, embedded environment. Since the 432
is intended for these as well as other, more
dynamic applications, a few extensions!3 have
been made to Ada to permit runtime type
checking and dynamic package creation.

From an internal point of view, iMAX exploits
the architecture to provide a more robust
and flexible system than might otherwise be
possible. The small protection domains sup-
ported by the language and the hardware are
used to improve reliability. The wuniform
approach allows us to take full advantage of
the duality between the language notions of
data abstractions and the operating system
notion of domains.

4. iMAX and Ada

The applications interface to iMAX is a set of
Ada package specifications, each of which
corresponds to a particular service provided
by the system. This interface provides a uni-
form Ada view of both the underlying
hardware and the iMAX extensions to it.
Heavy use is made of generic Ada packages
and in-line subprograms to provide an
efficient but fully Ada typed view of the
hardware. Unlike many systems for which
calls to the operating system are very
different from calls to other subprograms,
the iMAX user sees no difference whatsoever
between calling an operating system subpro-
gram and calling some user-defined subpro-
gram. This is particularly attractive for at
least two distinct reasons. Compilers do not
need any special mechanism for interfacing
to the system. The standard -calling
sequences work for both system and user
defined subprograms. Perhaps more impor-
tantly, any system interface can be mimicked
by a user package. This makes it straightfor-
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ward for a user to extend the system inter-
face, trap certain system calls, or otherwise
alter iMAX services.

As an example of how powerful this technique
can be, we will consider the example of inter-
process communication via the 432 port

mechanism. This mechanism is more flexible
than the Ada intertask communication model.
It is used by the Ada compiler to implement
the Ada model but is also available to the user
who wishes the more general mechanism via a
set of iMAX packages. The hardware defines a
communications port object which functions
as a queueing structure for interprocess com-
munications. There are machine instructions
available for sending and receiving messages
via these objects. Full details of this model
are provided in a companion paper. 14

The simplest view of this mechanism is via the
iMAX package specification Untyped Ports, a
fragment of which is shown in figure 1. The
type any_access is predefined in the standard
environment for the 432 and corresponds to
an otherwise untyped access descriptor. Any
Ada access type can be converted to this type
but unchecked conversions are needed to do
anything else with it. The type port is an Ada
access to a hardware port object. Of the
three subprograms specified in figure 1, Send
and Receive will correspond to single instruc-
tions, while Create is software implemented.
The Ada inline pragma provides efficient
implementations of the first two.

The Ada code insertion facilities are used in
the package body of Untyped Ports to imple-
ment Send and Receive as the corresponding
single instructions. This means that the com-
piler does not need any extraordinary
knowledge of the 432 high-level instructions
in order to permit the most efficient imple-
mentation. The Create procedure is imple-
mented conventionally to provide proper con-
struction of port objects. The 432 protection
structures guarantee that only this package
has the necessary access environment to
create port objects. To the wuser of
Untyped_Ports none of these details are
important and a uniform view is provided to
both the software and hardware parts of the
port abstraction.

Since it is undesirable to force the user to
escape from the Ada type system, another
view of ports is provided via the generic pack-
age Typed Ports, a fragment of whose
specification is shown in figure 2. The user
may create an instance of this package for
any access type, thus creating a new Ada level
type user_port that can be type checked at
compile time to ensure that only objects of
the specified user_message type can be sent.



package Untyped_Ports is

function Create_port(
message_count:
port_discipline:
return port;

short_ordinal range 1
qdiscipline :=

max-msg-cnt;
FIFO)

-- Create a port with the given size and queueing

-- discipline.
procedure Send(
prt: port;

msg: any_access);

-- port to which a message is

to be sent

-- message that

is sent

-- The calling process will send the message to the

-- specified port.

If the message queue of the port

-- is full then the calling process will block until
-- a message slot becomes available.

procedure Receive(
prt: port;

msg:

out any_access);

-- port from which to receive
-- message

received message

-- The calling process will receive a message from the

-- specified port.

1f no message

is available the

-- process will block until a message becomes available.

~-- The received message

private

pragma inline (Send, Receive);

end Untyped_Ports;

is returned to the caller.

Figure 1: Package specification for hardware level ports.

The user of Typed Ports thus maintains the
advantage of strong compile time typing. The
implementation of this package is in terms of
Untyped.Ports and an unchecked conversion
from any.access to the user_message type.
The inline facility allows the code generated
for any instance of this package to be identi-
cal to that generated for the untyped port
package. Thus the user of typed ports suffers
no penalty relative to even a hypothetical
assembly language programmer.

An important observation is that this
approach is very general, needing no special
compiler support. It is possible to take the
idea of typed ports one step further in the
432 to provide the type checking dynamically
at runtime. The implementation would
require a few more generated instructions
making use of user-defined types but would
otherwise be the same as above. It should be
apparent in this example that the consistency
of the architecture, system, and language
contribute greatly to reducing the set of
things a user need learn about process com-
munication. A similar effect is seen
throughout the 432 system.
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5. The Process-Memory Model of ilTAX

A good example of the manner in which iMAX
provides a smooth bridge between the base
architecture implemented directly in the
hardware and the set of user-visible operating
system facilities can be seen in the process
and memory model provided by iMAX. The
432 hardware provides the essential support
for both processes and memory management.
For process management, the hardware
defines a process object which contains the
necessary information for  scheduling
processes, dispatching them on any one of
several potentially available processors, and
sending them back to software when various
fault or scheduling conditions arise. All
hardware operations involving a process
object occur implicitly, as the result of such
events as time-slice end and successful mes-
sage communications. For memory manage-
ment, the hardware deflnes a storage
resource object (SRO) which describes free
arecas of memory and provides the informa-
tion necessary to allocate both physical and
logical address space. Hardware operations
involving mermory management occur as a
result of instructions such as create object
which explicitly request a memory allocation.
For example, assuming that sufficient free
storage is available, it takes 80 microseconds



with Untyped_Ports;
generic
type user_message
-~ Ada "private”

is private;
indicates that no

internal

-- details of this type are availble within
-- this generic package.

package Typed_Ports is

-- This package enables the user to create ports and do

-- simple operations on those ports

involving only

-- messages of type "user_message'.

use Untyped_Ports;

type user_port is private;
function Create(
message_count:
port_discipline:
return user_port;

short_ordinal range 1
qdiscipline :=

max_msg_cnt;
FIFO;

-- A user_port with the specified message_count and the

-- specified message queue discipline

procedure Send(

prt: user_port;
msg: user_message);
procedure Receive(
prt: user_port;
msg: out user.message);
private

pragma inline (Send, Receive);
is new port;

type user_port
end Typed_Ports;

is created.

-- port to which to send message
-- message that

is to be sent

port from which to receive
received message

Figure 2: Typed access to the hardware mechanism.

at 8 megahertz to allocate a segment from an
SRO via the creation instruction. It is impor-
tant that this function be relatively fast since
storage allocation plays an important role in
an object oriented system. Actually a
number of other system objects are involved
in providing process and memory services,
but these two suffice for this discussion.

iMAX provides operations to create and main-
tain both SRO’s and process objects. It also
extends the base architecture to further sup-
port the semantics of languages such as Ada.

To understand the latter role, consider the
scoping and lifetime rules of objects in Ada.
If a type is declared at the Ada library level
then it exists forever. As a result, the life-
tirne of any object of that type is potentially
infinite. Such objects may cease to exist only
when they become inaccessible to any agent
in the system. Proper implementation of
these semantics require either an infinite
capacity storage system or garbage collec-
tion. Types declared at deeper nesting levels
than the library level come into existence
anew whenever the scope of their declaration
is entered and exist only as long as this
scope. The lifetime of an object of such a
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type is constrained to be no longer than that
of its type. This constraint is due to Ada’'s
choice of name equivalence and is not appli-
cable to languages that support structural
equivalence of types. An object of such a type
may never become accessible above the tree
of dynamic environments rooted in the scope
defining the type. A consequence of these
conditions is that any object of such a type
may safely be destroyed whenever the scope
of its type is exited. Nevertheless, garbage
collection may be necessary for objects of
such a type if the lifetime of its scope is very
long.

The 432 hardware and iMAX together provide
exactly this model. Each object in the 432
has associated with it a level number which
indicates the dynamic depth at which it is log-
ically defined. Each context object (i.e.,
activation record) within a process has a level
one greater than that of its caller. Each SRO
creates objects with a fixed level number,
The hardware ensures that an access for an
object may never be stored into an object
with a lower (more global) level number. The
level numbers may be viewed as an indication
of relative lifetime, where objects at level 0
are called global and exist forever while



objects with higher level numbers are called
local and have progressively shorter life-
times. These rules are actually suflicient to
ensure that the lifetime rules expressed

above for Ada are maintained even though the
same level number may appear in the execu-
tion of independent processes.

iMAX uses these hardware facilities to provide
a uniform tree structure encompassing both
processes and storage resource objects. An
SRO that creates objects at level 0 is called a
global heap and is always available to a pro-
cess. A process may create an SRO with a
level number corresponding to its current
depth called a local heap and then create
objects from it. Since access to these objects
will not escape their proper environment,
objects may be destroyed whenever their
ancestral SRO is destroyed, without leaving
dangling references. This SRO will be des-
troyed automatically when the process
returns above the call depth to which it
corresponds. A more detailed explanation of
this model can be found in [15 ].

Processes themselves are each created from
an SRO and have their lifetimes constrained
just as described for all objects. This
corresponds exactly to the Ada task model.
Likewise, the 432 model of interprocess com-
munication corresponds to the lifetime con-
straints on processes, ports, and messages. A
group of tasks communicate with each other
via ports defined in a scope common to all
tasks in the group. Objects passed through
these ports are of a type whose scope is no
less global than the scope of the port. The
ports and messages will exist at least as long
as the processes which are depending on
them for communication.

Once again the coherence of the architecture
model with those of the operating system and
the language should be noted. iMAX uses the
primitive 432 objects to build a structure
which corresponds directly to a model of a
typed, statically scoped language with
pointers. At the same time, a user is free to
use global SRO’s exclusively, or other combi-
nations of local SRO’s, to build models with
differing lifetime properties. All objects are
subject to garbage collection; those allocated
from local SRO’s will be collected more
efficiently whenever their ancestral SRO is
destroyed.

8. System Configurability

As indicated above, configurability is an
important design goal for a system like iMAX.
For the main function of the system, iMAX
uses two complementary approaches: selec-
tion of needed packages and alternate imple-
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mentations of standard specifications. Once
again, both the 432 hardware and Ada aid in
achieving the goal. The domain structure also
provides a convenient mechanism for sup-
porting various levels of device independent
I/0.

6.1. Process Management Via Selection of
Packages

As an example of the first approach, consider
the case of process management. The basic
process manager of iMAX completes the
model of processes embedded in the
hardware by providing the functions briefly
described above. It does not urbitrate
conflicting requests on the processor
resource, however. It makes directly avail-
able to the user the dispatching parameters
of the hardware and users are free to over-
commit or otherwise misuse these parame-
ters. The basic process manager's control
primitives were chosen so that process
schedulers can manage the physical process-
ing resources of the system without being
aware of the logical structure of process trees
described in the previous section. For exam-
ple, it supports nested stopping and starting
of processes. Each process has a count of the
number of stops or starts outstanding against
it which determines if it is currently runn-
able.

Since starts and stops apply to entire trees, a
user wishing to control a computation need
not be aware of the internal structure of that
process, i.e., whether it is implemented in
terms of other processes. These counts are
maintained by the basic process manager.
Control requests can be passed through a
process scheduler based on the basic process
manager without being tracked, even though
they will ultimately have an effect on the set
of processes ready to consume system
resources. Whenever an individual process
would enter or leave the dispatching mix as
the result of start or stop requests, it will be
sent to its process scheduler. The scheduler
can then make resource decisions by regard-
ing it as an individual process without con-
cern for the logical structure of a computa-
tion of which it is a part. Of course this struc-
ture may be examined by the scheduler if
desired.

Using this basic process manager, many
resource control policies are possible. For
example, the null policy simply passes
through the dispatching parameters of the
hardware and permits its users to commit
them in any way they wish. This is completely
acceptable for simple embedded systems in
which the system load can be preevaluated.



On the other hand, it is clearly unacceptable
in a multi-user environment where the pro-
cessing resource must be allocated fairly.
For this and other more complex applications
a user-process manager may build much
more complex policies on the basic process
manager to provide a safer or more tailored
application interface. The protection struc-
tures guarantee that only this second
manager would then have access to the basic
process management facility. The system is
configured by selecting those packages that
provide the facilities needed in a particular
application: just the basic process manager,
it plus some simple scheduler, or an arbi-
trarily complex resource controller.

6.2. Memory Management Via Alternate
Implementations

As an example of the second approach to
configurability, consider the case of memory
management. Virtually all processes make
use of memory management facilities via a
standard interface that permits allocation of
new objects. Few processes depend upon
whether the underlying  implementation
includes swapping or not. A single Ada
specification defines the common interface.
This interface defines mechanisms
corresponding to the stack allocation, global
heap allocation, and local heap allocation
described earlier. Both a swapping and a
non-swapping implementation meet this
specification but are optimized internally to
the level of function they provide. Each may
provide an additional management interface
that can be used by resource managers or
others that need information specific to the
implementation. The system is configured by
selecting one of the alternate implementa-
tions; most applications will not be affected
by this selection. We have implemented the
non-swapping version for the first release of
the system, and are currently building a
swapping version for the second release.

6.3. 170 Device Independence

iMAX is implemented entirely in a superset of
Ada. The extensions are defined to permit full
use of the more dynamic environment
afforded by the 432 as compared to the very
static one assumed by pure Ada. The major
extension is the raising of packages to the
status of types. This allows multiple
instances of a module to be dynamically
created and multiple implementations of a
single package specification to coexist within
a single system.

The clearest example of the use of this facility

occurs in 170. A single specification is defined
for device independent input and another for
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device independent output. Each instance of
an 1/0 device may have a distinct implemen-
tation. The user interacts with each device
identically but the code is specific to the dev-
ice. This is really a different approach from
conventional device independent 1/0 because
it avoids any centralized 1/0 control or
interface. Any user can create a new device
implementation which will behave identically
to existing ones without in any way altering
system code, say to update a master 170 dev-
ice list or to add a new element to a case con-
struct in the system 1/0 controller. We actu-
ally go one step further with this approach by
requiring only that a device implementation
provide the common device independent
interface as a subset. Thus device dependent
170 fits smoothly into the scheme. Any device
interface will consist of a domain in which the
first set of operations are the device indepen-
dent ones and any additional operations are
more device specific. In fact, classes of dev-
ices may share a specification which includes
more than the minimum set of device
independent operations, thus providing class
dependent but device independent interfaces.

7. The Internal View of iMAX

7.1. Hardware Type Enforcement

One interesting aspect of the implementation
is the hardware enforcement of protection
both at the operating system interface and
within the operating system itself. This attri-
bute of any hardware-implemented
capability-based system has several
ramifications within iMAX. First, a module’s
access is routinely limited to the objects
which it manages. Thus, for example, the pro-
cess management module has no access to
memory management structures. Second,
the object orientation of the system implies
that at any given time, a package will gen-
erally have access to only a single instance of
the type that it manages. For example, there
is no central table of all processes in the sys-
tem. Rather, the manager acquires an access
for a given process object, either from the
hardware dispatching mechanism or from a
user, whenever it is asked to perform an
operation upon it. Damage due to a machine
error or latent program bug is limited to the
particular object with which the module is
dealing at a given moment.

This second property has an interesting side
effect. Global system inquiries which are
easily answered in most systems by consult-
ing some central table become dificult to
answer in this style of system. For example,
the process manager does not know what all
the processes in the system are. While it



would be possible to link together all
processes, this would be problematic for gar-
bage collection since all processes would then
always be accessible. It is an interesting phi-
losophical question whether such inquiries
should be permitted; it is a convenient tenet
of the capability approach to protection that
they should not.

7.2. Hardware Type Enforcement

Another interesting aspect of the implemen-
tation is that the hardware type enforcement
dictates that even objects that originate in
applications coded in a language other than
Ada are fully protected from misuse. Just as
important for Ada programs is that objects
are fully protected even when they pass
through channels which might cause them to
lose their compile-time type identity. An
example of such a channel is any storage sys-
tem. By the definition of Ada, if a storage sys-
tem exists before the compilation of a pack-
age, then it cannot know of and therefore
cannot preserve the type of some object that
it is asked to store. In general, unchecked
conversions need to be used to store and
later retrieve objects, thus compromising
type security. No matter what path a system
object follows within the 432, its hardware-
recognized type identity is guaranteed to be
preserved and checked, either by the
hardware or by object filing. 18 Moreover, via
the user type definition facilities of the 432
such a guarantee is available to any user
defined object type as well as to those object
types recognized by the hardware.

7.3. Levels and Abstractions in iMAX

The strong adherence to notions of data
abstraction in the design of iMAX provide a
very clear example of the difference between
levels and abstractions discussed by Haber-
mann et al. 17 Internally, the system is con-
structed as a set of Ada packages each of
which provides a well defined abstraction.
Even within the system the inter-package
interfaces are rigidly enforced. Only the
well-defined operations defined in the pack-
age specifications are available to the other
parts of the system.

It is quite reasonable that a set of abstrac-
tions be mutually dependent at the module
level. For example, there are interdependen-
cies between parts of memory and process
management. On the other hand, it is impor-
tant that the design of the system not include
any circular dependencies among functions
that might cause deadlocks to occur. Addi-
tionally, the clean virtual environment pro-
vided at the user interface level of the system
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must be built up in stages. For example,
processes at the user level should be unaware
of the possibility that a segment might be
being moved and therefore be inaccessible for
some period of time. Processes deep within
the system, on the other hand, may depend
on the fact that such a situation will not arise.

To solve these problems, the implementation
of iMAX defines a set of levels which dictate
what operations are permitted to processes
at that level. Processes below level 3 of the
system, for example, are in general not per-
mitted to fault. Processes at level 2 are actu-
ally permitted a limited set of timeout faults
while those at level 1 are not permitted even
these. To avoid dependency couplings, all
comrmunications between levels 2 and 3 of the
system must be asynchronous and upward
communication must never depend upon a
reply. The implementation of a given abstrac-
tion may span several levels. These design
guidelines span all abstractions and thus
represent an orthogonal way of viewing the
internal structure of the system. From one
view each function is a part of the abstraction
to which it relates regardless of the con-
straints under which it operates. From the
other view, each function operates at the
level in the system determined by those con-
straints.

8. Issues in the Design of an Object-Oriented
System

In this section two issues are discussed that
arise in the design of a system such as iMAX:
garbage collection and object finalization.
These will in fact be issues for any system
that ruthlessly follows the approach to design
implied by Ada. A third issue, object filing, is
discussed at length in a companion paper.

8.1. Garbage Collection

The first issue is garbage collection. The gen-
eral provision of global heap allocation in
most modern languages demonstrates the
desirability of removing questions of memory
allocation from the programmer's concern.
Unfortunately, explicit deletion of heap
objects is prone to dangling reference prob-
lems. Furthermore, when an object is part of
a complex data base of information, it is often
difficult or impossible to know when the
object should be deleted. The 432 approach
to this issue is to remove questions of
memory deallocation as well as questions of
memory allocation from the programmer’s
concern. We noted above that objects whose
types are defined at the library level may only
be reclaimed via garbage collection. iMAX
provides a system-wide parallel garbage col-
lector based upon the algorithm of Dijkstra et



al. 8 To support this, the 432 hardware
implements the gray bit of that algorithm,
setting it whenever access descriptors are
moved. When there is a natural expression
within the programming language of a con-
straint upon the lifetime of an object, iMAX
can take advantage of this to optimize deallo-
cation via the local heap memeory allocation
strategy mentioned above.

The iMAX garbage collector is implemented as
a daemon process that globally scans the sys-
tem. It requires only minimal synchroniza-
tion with the rest of the operating system.
The local heap and level mechanisms
effectively partition the system into nested
sets of objects based on lifetime. Since
object references can never escape from the
level of the nest at which they were created, a
local garbage collection strategy could be
added to our global one. It would be possible
to perform garbage collection on a local
basis, either asynchronously or synchro-
nously, but we have not chosen to do this
until we have data that suggests that it would
be worthwhile.

It is perhaps worth noting that the Ada litera-
ture is curiously ambivalent about facing up
to the issue of garbage collection. This has
been noted in a different context when Ada
was evaluated as a language for the imple-
mentation of Al applications. !9 Avoidance of
the problem will likely lead to either con-
torted programming styles or to the contin-
ued presence of dangling pointer problems in
complex systems.

8.2. Object Finalization

Another interesting issue in the design of an
object-oriented system is object finalization
and lost objects. While most languages pro-
vide some form of initialization for struc-
tures, they do not address finalization of
those same objects. So long as the objects in
question do not have any dual in the real
world, this may be an acceptable position.
When an object represents a physical
resource of some sort, however, it becomes
very important that its type manager be able
to describe how that object is destroyed as
well as how it is created. Consider for exam-
ple an implementation of a tape drive in
which each drive is represented by an object
of type tape_drive. In Ada terms, this would
be a private type. A user requests from the
managing package a tape_drive instance,
calls operations in that package to use it and
eventually to close or return it. If, however,
the user loses access to the object through
accident or intent, it will be garbage collected
and the system will be short one tape drive.
This is what we mean by a lost object.

While narrow solutions may be available for
individual cases, they often will pervert a
natural implementation design in undesirable
ways. A general solution would permit a type
manager to guarantee that an object is prop-
erly disassembled when it becomes garbage.
iMAX provides the notion of a destruction
filter for exactly this purpose. Since all
objects may be typed, the garbage collector
can recognize when an object of a particular
type has been found. A type manager can
specify to the system via a type definition
object that it wishes to have an opportunity
to see any of its objects as they become gar-
bage. The garbage collector will manufacture
an access descriptor for such objects and
send them to a port defined by the type
manager. The first release of iMAX uses this
facility only to recover lost process objects.
The next release will make the facility gen-
erally available in the context of object filing.

8. Project Status

The first release of iMAX is now undergoing
field test and will be shipped for general cus-
tomer use in early 1982. Portions of this ver-
sion have been running in our laboratory
since late spring of this year. Since a fairly
rigorous methodology of design and code
review was followed in its implementation,
most of the problems that we encountered
during debugging have been the result of
compiler or hardware problems. As with most
new computer development efforts, the
operating system has been the first major
test for all other system components. The
first release of the system is non-swapping
and concentrates on providing a development
and debugging base for customer
applications. Most of the detailed design of
the second major release of the system is
complete and implementation is now under-
way. This release includes swapping support
and object filing.

10. Conclusions

A paramount concern in the design of the 432
system has been the conceptual uniformity of
the architecture, operating system, and
language. In addition to the aesthetics of this
uniformity, it has a number of practical
benefits. These include a more flexible and
safer programming environment. Extensibil~
ity is enhanced because the system software
is not fundamentally different from user
software. Once the object paradigm is
learned, the user can apply it to all aspects of
the system. Special treatment 1is not
required when crossing boundaries in the sys-
tem between hardware and software,
language and system, virtual storage and
files. The overall learning burden is reduced.



By providing the notion of domains and
capability/object-oriented addressing in the
architecture, proper support has been given
to such language issues as garbage collection
and dangling pointers. By reflecting the
module structure of the language in the sys-
tem, configurability has been enhanced.
Overall, the 432 represents an entire system
constructed around the single notion of sup-
porting an object oriented approach to pro-
gram design. iMAX plays a key role by com-
pleting the architecture within an Ada frame-
work to provide a comprehensive base for the
design of advanced computer applications.
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