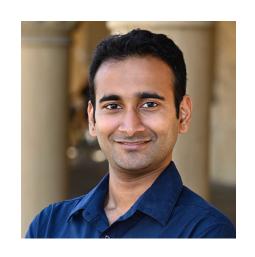


Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks



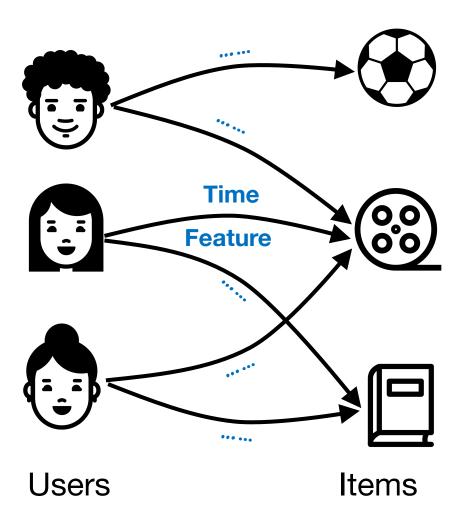
Srijan Kumar
Stanford University
Georgia Institute of Technology

Xikun Zhang

Jure Leskovec
Stanford University

Temporal Interaction Networks

Flexible way to represent time-evolving relations

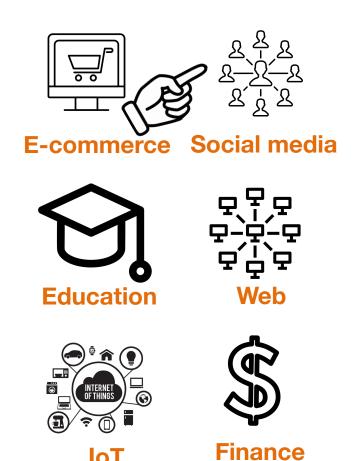


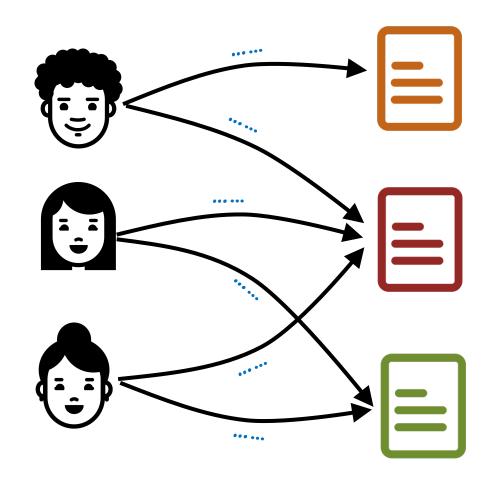
Represented as a sequence of interactions, sorted by time:

$$S_r = (u_r, i_r, t_r, f_r)$$

the state of the state of

Temporal Interaction Networks





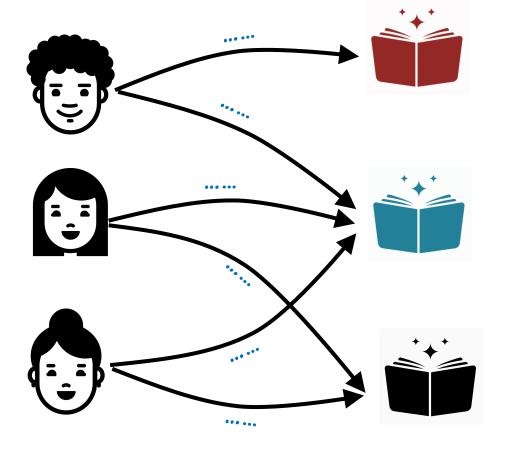
Application domains

Accounts

Posts

Temporal Interaction Networks

E-commerce Social media



Students

Courses

Problem Setup

Given a temporal interaction network

where
$$u_r \in \mathcal{U}, i_r \in \mathcal{I}, t_r \in \mathbb{R}^+, 0 < t_1 \leq \ldots \leq T, f_r \in \mathbb{R}^d$$

generate an embedding trajectory of every user

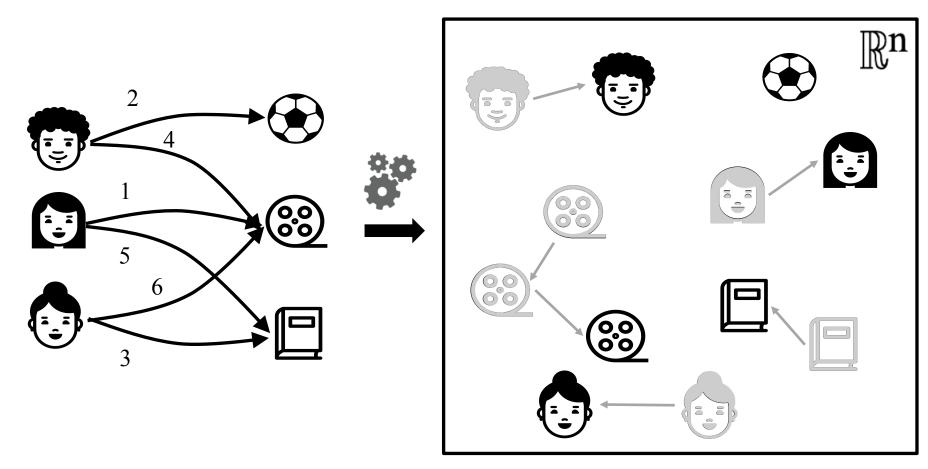
$$\mathbf{u}(\mathbf{t}) \in \mathbb{R}^n \ \forall u \in \mathcal{U}, \forall t \in [0, T]$$

and an embedding trajectory of every item

$$\mathbf{i}(\mathbf{t}) \in \mathbb{R}^n \ \forall i \in \mathcal{I}, \forall t \in [0, T]$$

[KDD'19]

Goal: Generate Dynamic Trajectory



Input: Temporal interaction network

Output: Dynamic trajectory in embedding space

Challenges

Challenges in modeling:

- C1: How to learn inter-dependent user and item embeddings?
- C2: How to generate embedding for every point in time?

Challenges in scalability:

C3: How to scalably train models on temporal networks?

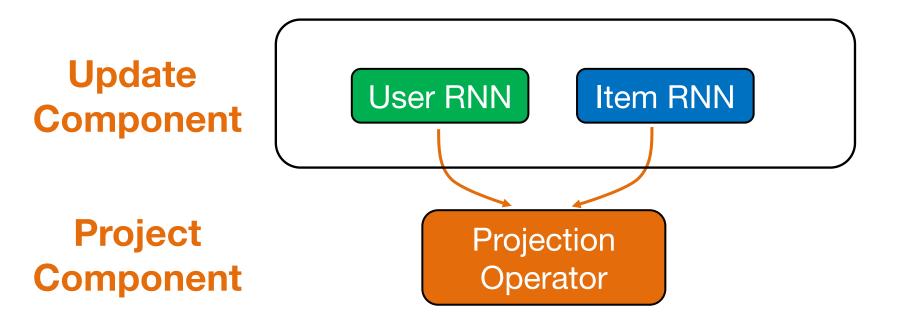
Existing Methods

	C1 Co- influence	C2 Embed any time	C3 Train in batches	
 Deep recommender systems Time-LSTM (IJCAI 2017) Recurrent Recommender Networks (WSDM 2017) Latent Cross (WSDM 2018) 				
Dynamic co-evolutionDeep Coevolve (DLRS, 2016)				
Temporal network embedding • CTDNE (BigNet, 2018)			1	_
Our model: JODIE				_

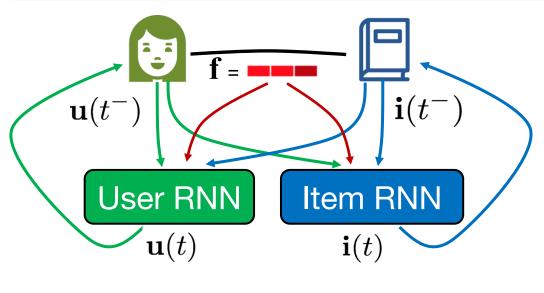
Our Model: JODIE

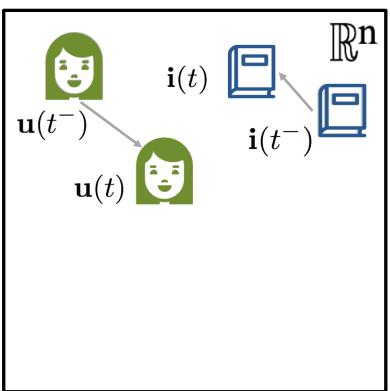
JODIE: Joint Dynamic Interaction Embedding

Mutually-recursive recurrent neural network framework



JODIE: Update Component

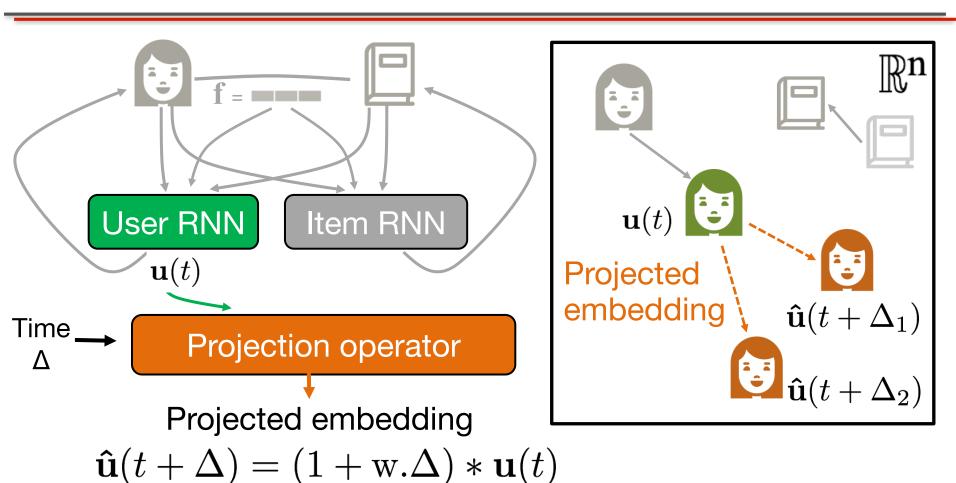




$$\mathbf{u}(t) = \sigma(W_1\mathbf{u}(t^-) + W_2\mathbf{i}(t^-) + W_3\mathbf{f})$$
 Weight matrices W are trainable

All users share the User-RNN parameters. Similar for items.

JODIE: Project Component



How can we predict the next item?

Rank items using distance in the embedding space

Summary: JODIE Formulation

Update embeddings:

$$\mathbf{u}(t) = \sigma(W_1\mathbf{u}(t^-) + W_2\mathbf{i}(t^-) + W_3\mathbf{f})$$

$$\mathbf{i}(t) = \sigma(W_4\mathbf{i}(t^-) + W_5\mathbf{u}(t^-) + W_6\mathbf{f})$$

Project user embedding:

$$\mathbf{\hat{u}}(t + \Delta) = (1 + \mathbf{w}.\Delta) * \mathbf{u}(t)$$

Predict next item:

$$\tilde{\mathbf{j}} = W_7 \hat{\mathbf{u}}(t + \Delta) + B$$

Loss:

$$\sum_{S_r:(u,i,t,f)} ||\tilde{\mathbf{j}}(t) - \mathbf{i}(t^-)||_2 + \lambda_U ||\mathbf{u}(t) - \mathbf{u}(t^-)||_2$$

Predicted next item is close to the real item embedding

$$+\lambda_I||\mathbf{i}(t)-\mathbf{i}(t^-)||_2$$

Smoothness in evolving embeddings

Challenges in Dynamic Trajectories

Challenges in learning:

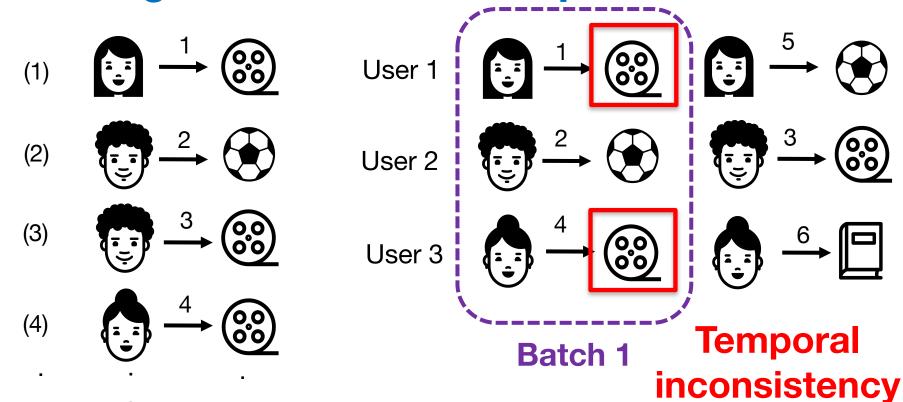
- C1: How to learn inter-dependent user and item embeddings? Solution: Update component
- C2: How to generate embedding for every point in time? Solution: Project component

Challenges in scalability:

C3: How to scalably train models on temporal networks?

Standard Training Processes: N/A

Training must maintain temporal order



Sequential processing:

not scalable

Split by user (or item): not allowed

[KDD'19]

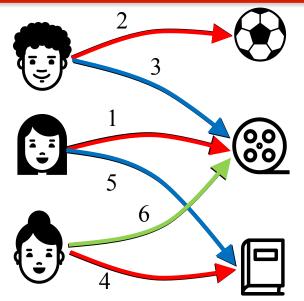
T-batch: Batching for Scalability

T-batch: Temporal data batching algorithm

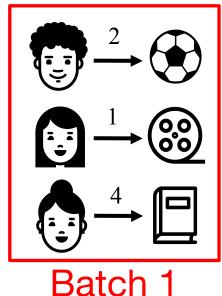
Main idea: create each batch as an independent edge set

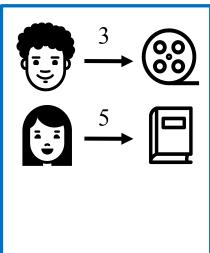
- Create a sequence of batches
 - Interactions in each batch are processed in parallel
 - Process the batches in sequence to maintain temporal ordering

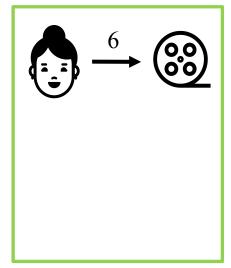
T-batch: Batching for Scalability



Iteratively select the maximal independent edge set.







Batch 2

Batch 3

Challenges in Dynamic Trajectories

Challenges in learning:

- C1: How to learn inter-dependent user and item embeddings? Solution: Update component
- C2: How to generate embedding for every point in time? Solution: Project component

Challenges in scalability:

 C3: How to scalably train models on temporal networks? Solution: T-batch Algorithm

Experiments: Prediction Tasks

Temporal Link Prediction:

- Which item $i \in I$ will user u interact with at time t?

Temporal Node Classification:

– Does a user u become anomalous after an interaction?

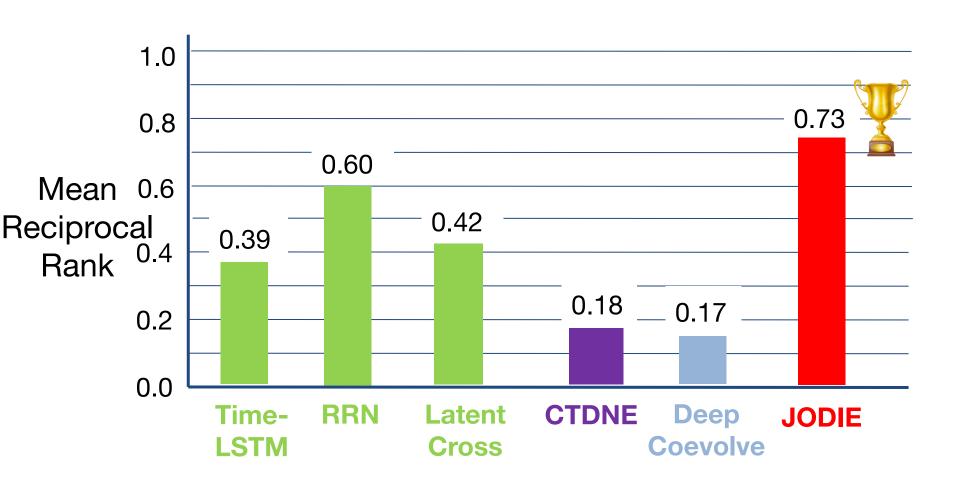
Settings:

- Temporal Splits: 80%, 10%, 10%
- Metrics: Mean reciprocal rank, Recall@10, AUROC

Datasets

Dataset	Users	Items	Interactions	Temporal Anomalies	
Reddit	10,000	984	672,447	366	NEW!
Wikipedia	8,227	1,000	157,474	217	NEW!
LastFM	980	1,000	1,293,103	_	
MOOC	7,047	97	411,749	4,066	

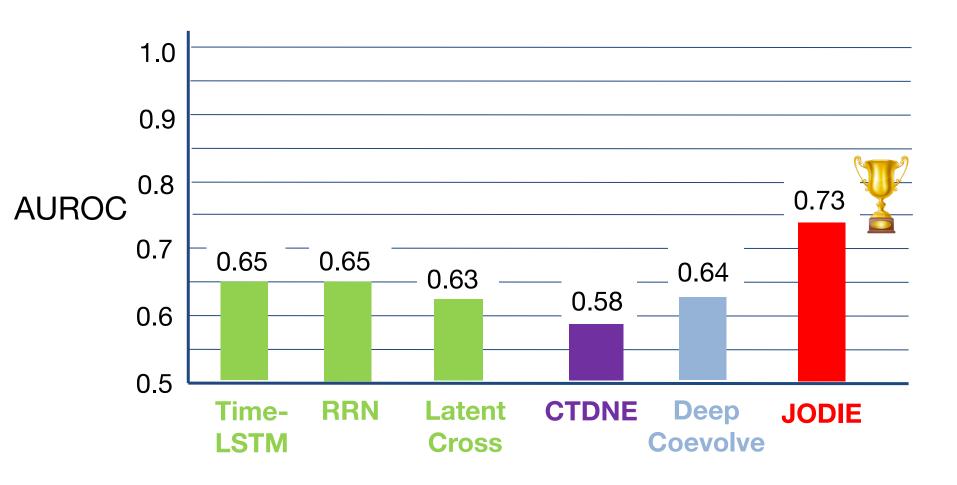
Experiment 1: Link Prediction



JODIE outperforms baselines by > 20%

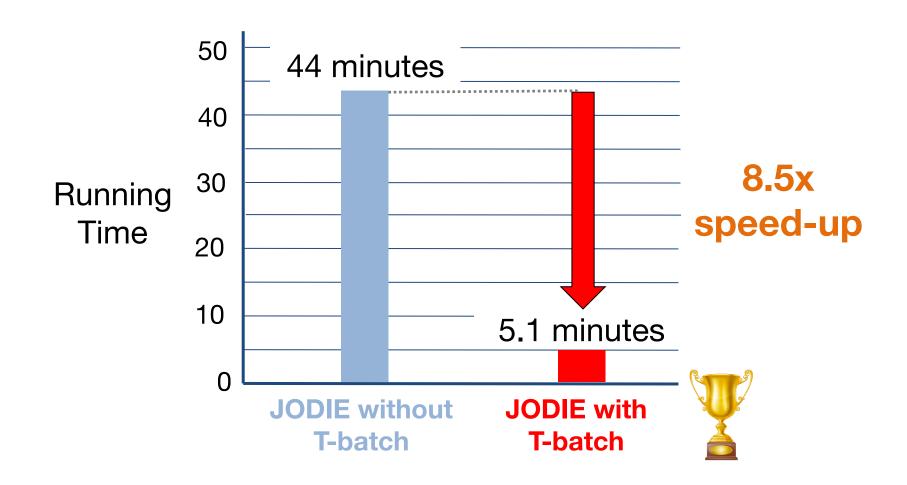
[KDD'19]

Experiment 2: Node Classification



JODIE outperforms all baselines by >12%

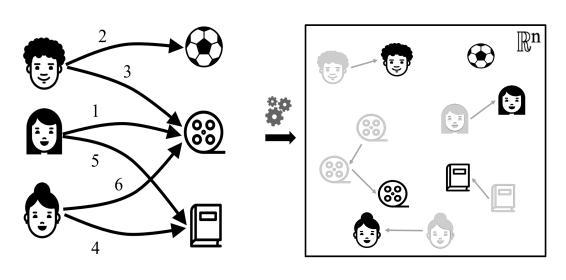
Experiment 3: T-batch Speed-up



T-batch leads to 8.5x speed-up in training

Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks

Srijan Kumar, Xikun Zhang, Jure Leskovec



JODIE generates and projects embedding trajectories

- JODIE: a mutually-recursive RNN framework
- T-batch: 8.5x training speed-up
- Efficient in temporal link prediction and node classification
- Extendible to > 2 entity types

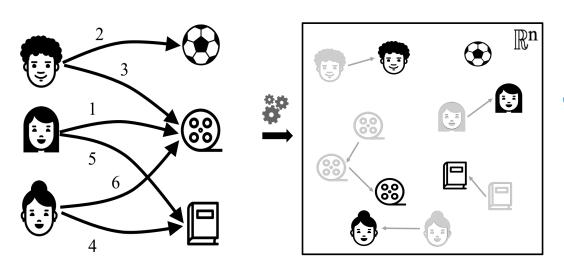
Open Positions @ Georgia Tech

- Hiring multiple Ph.D. students
- Research areas:
 - Machine Learning for Networks
 - Safety, Integrity, and Anti-Abuse
 - Computational Social Science
- Collaborations

Contact: srijan@cs.stanford.edu

Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks

Srijan Kumar, Xikun Zhang, Jure Leskovec



JODIE generates and projects embedding trajectories

- JODIE: a mutually-recursive RNN framework
- T-batch: 8.5x training speed-up
- Efficient in temporal link prediction and node classification
- Extendible to > 2 entity types