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Temporal Interaction Networks

Time

[KDD’19]

Flexible way to represent time-evolving relations

Users Items

Feature

interaction user   item  time  features

Represented as a 
sequence of 
interactions,     

sorted by time:
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Temporal Interaction Networks
[KDD’19]

E-commerce Social media

Finance

WebEducation

IoT

Application domains Accounts Posts

…...



4

Temporal Interaction Networks
[KDD’19]
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Problem Setup

Given a temporal interaction network

where 

generate an embedding trajectory of every user

and an embedding trajectory of every item

[KDD’19]

interaction user    item   time  features
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Goal: Generate Dynamic Trajectory

Output: Dynamic trajectory 
in embedding space

Input: Temporal 
interaction network

[KDD’19]
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Challenges
Challenges in modeling:
• C1: How to learn inter-dependent user and item 

embeddings? 
• C2: How to generate embedding for every point 

in time?

Challenges in scalability: 
• C3: How to scalably train models on temporal 

networks?

[KDD’19]
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Existing Methods

Deep recommender systems
• Time-LSTM (IJCAI 2017)
• Recurrent Recommender Networks (WSDM 

2017)
• Latent Cross (WSDM 2018)

Dynamic co-evolution
• Deep Coevolve (DLRS, 2016)

Temporal network embedding
• CTDNE (BigNet, 2018)

Our model: JODIE

[KDD’19]

C1
Co-

influence

C2
Embed 

any time

C3
Train in 
batches
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Our Model: JODIE
JODIE: Joint Dynamic Interaction Embedding
• Mutually-recursive recurrent neural network framework 

[KDD’19]

Projection
Operator

Project
Component

User RNN Item RNNUpdate 
Component
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JODIE: Update Component
[KDD’19]

User RNN Item RNN

f =

Weight matrices W
are trainable

• All users share the User-RNN parameters. Similar 
for items.
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JODIE: Project Component

How can we predict the next item? 
• Rank items using distance in the embedding space

[KDD’19]

Projected embedding

Projection operatorTime 
Δ

Projected 
embedding 

f =

User RNN Item RNN
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Summary: JODIE Formulation

Update 
embeddings:

[KDD’19]

Loss:

Predicted next item is 
close to the real item 

embedding
Smoothness in evolving 

embeddings

Project user 
embedding:

Predict 
next item:
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Challenges in Dynamic Trajectories
Challenges in learning:
• C1: How to learn inter-dependent user and item 

embeddings? Solution: Update component
• C2: How to generate embedding for every point in 

time? Solution: Project component

Challenges in scalability: 
• C3: How to scalably train models on temporal 

networks?

[KDD’19]



14

Standard Training Processes: N/A
Training must maintain temporal order

[KDD’19]
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Split by user (or item): 
not allowed 

Sequential processing: 
not scalable
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T-batch: Temporal data batching algorithm

• Main idea: create each batch as an 
independent edge set

• Create a sequence of batches
– Interactions in each batch are processed in 

parallel
– Process the batches in sequence to maintain 

temporal ordering

[KDD’19]

T-batch: Batching for Scalability
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T-batch: Batching for Scalability

Batch 2Batch 1 Batch 3

[KDD’19]
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independent 
edge set.
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Challenges in Dynamic Trajectories
Challenges in learning:
• C1: How to learn inter-dependent user and item 

embeddings? Solution: Update component
• C2: How to generate embedding for every point in 

time? Solution: Project component

Challenges in scalability: 
• C3: How to scalably train models on temporal 

networks? Solution: T-batch Algorithm

[KDD’19]
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Experiments: Prediction Tasks

• Temporal Link Prediction:
–Which item i ∈ 𝐼 will user u interact with at 

time t?
• Temporal Node Classification:
– Does a user u become anomalous after an 

interaction?
• Settings:
– Temporal Splits: 80%, 10%, 10%
–Metrics: Mean reciprocal rank, Recall@10, 

AUROC

[KDD’19]

Code and Data: https://snap.stanford.edu/jodie
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Datasets
[KDD’19]

Dataset Users Items Interactions Temporal 
Anomalies

Reddit 10,000 984 672,447 366
Wikipedia 8,227 1,000 157,474 217
LastFM 980 1,000 1,293,103 -
MOOC 7,047 97 411,749 4,066

NEW!

NEW!

Code and Data: https://snap.stanford.edu/jodie
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Experiment 1: Link Prediction

JODIE outperforms baselines by > 20%
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[KDD’19]
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Experiment 2: Node Classification

JODIE outperforms all baselines by >12% 

AUROC
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[KDD’19]
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Experiment 3: T-batch Speed-up

T-batch leads to 8.5x speed-up in training

5.1 minutes 

44 minutes

JODIE without 
T-batch

JODIE with 
T-batch

Running 
Time
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8.5x 
speed-up

[KDD’19]
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JODIE generates and 
projects embedding 

trajectories

• JODIE: a mutually-recursive RNN framework
• T-batch: 8.5x training speed-up
• Efficient in temporal link prediction and node classification
• Extendible to > 2 entity types
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Open Positions @ Georgia Tech

• Hiring multiple Ph.D. students
• Research areas:
–Machine Learning for Networks
– Safety, Integrity, and Anti-Abuse
– Computational Social Science

• Collaborations 

Contact: srijan@cs.stanford.edu
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