
PDE-constrained optimization and the adjoint method1

Andrew M. Bradley July 7, 20242 (original November 16, 2010)

PDE-constrained optimization and the adjoint method for solving these and re-
lated problems appear in a wide range of application domains. Often the adjoint
method is used in an application without explanation. The purpose of this tuto-
rial is to explain the method in detail in a general setting that is kept as simple
as possible.

We use the following notation: the total derivative (gradient) is denoted dx
(usually denoted d(·)/dx or ∇x); the partial derivative, ∂x (usually, ∂(·)/∂x); the
differential, d. We also use the notation fx for both partial and total derivatives
when we think the meaning is clear from context. Recall that a gradient is a row
vector, and this convention induces sizing conventions for the other operators.
We use only real numbers in this presentation.

1 The adjoint method

Let x ∈ Rnx and p ∈ Rnp . Suppose we have the function f(x, p) : Rnx ×Rnp → R
and the relationship g(x, p) = 0 for a function g : Rnx ×Rnp → Rnx whose partial
derivative gx is everywhere nonsingular. What is dpf?

1.1 Motivation

The equation g(x, p) = 0 is often solved by a complicated software program that
implements what is sometimes called a simulation or the forward problem. Given
values for the parameters p, the program computes the values x. For example, p
could parameterize boundary and initial conditions and material properties for a
discretized PDE, and x are the resulting field values. f(x, p) is often a measure of
merit: for example, fit of x to data at a set of locations, the smoothness of x or p,
the degree to which p attains a particular objective. Minimizing f is sometimes
called the inverse problem.

The gradient dpf is useful in many contexts: for example, to solve the op-
timization problem minp f or to assess the sensitivity of f to the elements of
p.

One method to approximate dpf is to compute np finite differences over the
elements of p. Each finite difference computation requires solving g(x, p) = 0. For
moderate to large np, this can be quite costly.

1This document is licensed under CC BY 4.0.
2Revisions: (2019) CC license, fix some typos. (2024) Reorganize Sec. 2; remove seismic

tomography example.

In the program to solve g(x, p) = 0, it is likely that the Jacobian matrix ∂xg is
calculated (see Sections 1.3 and 1.5 for further details). The adjoint method uses
the transpose of this matrix, gTx , to compute the gradient dpf . The computational
cost is usually no greater than solving g(x, p) = 0 once and sometimes even less
costly.

1.2 Derivation

In this section, we consider the slightly simpler function f(x); see below for the
full case.

First,

dpf = dpf(x(p)) = ∂xfdpx (= fxxp). (1)

Second,

g(x, p) = 0 everywhere implies

dpg = 0.

(Note carefully that dpg = 0 everywhere only because g = 0 everywhere. It is
certainly not the case that a function that happens to be 0 at a point also has a
0 gradient there.) Expanding the total derivative,

gxxp + gp = 0.

As gx is everywhere nonsingular, the final equality implies xp = −g−1
x gp. Substi-

tuting this latter relationship into (1) yields

dpf = −fxg−1
x gp.

The expression −fxg−1
x is a row vector times an nx × nx matrix and may be

understood in terms of linear algebra as the solution to the linear equation

gTx λ = −fTx , (2)

where T is the matrix transpose. The matrix conjugate transpose (just the trans-
pose when working with reals) is also called the matrix adjoint, and for this reason,
the vector λ is called the vector of adjoint variables and the linear equation (2)
is called the adjoint equation. In terms of λ, dpf = λT gp.

A second derivation is useful. Define the Lagrangian

L(x, p, λ) ≡ f(x) + λT g(x, p),

1

https://creativecommons.org/licenses/by/4.0/


where in this context λ is the vector of Lagrange multipliers. As g(x, p) is every-
where zero by construction, we may choose λ freely, f(x) = L(x, p, λ), and

dpf(x) = dpL = ∂xfdpx+ dpλ
T g + λT (∂xgdpx+ ∂pg)

= fxxp + λT (gxxp + gp) because g = 0 everywhere

= (fx + λT gx)xp + λT gp.

If we choose λ so that gTx λ = −fTx , then the first term is zero and we can avoid
calculating xp. This condition is the adjoint equation (2). What remains, as in
the first derivation, is dpf = λT gp.

1.3 The relationship between the constraint and adjoint
equations

Suppose g(x, p) = 0 is the linear (in x) equation A(p)x−b(p) = 0. As ∂xg = A(p),
the adjoint equation is A(p)Tλ = −fTx . The two equations differ in form only by
the adjoint.

If g(x, p) = 0 is a nonlinear equation, then software that solves the system
for x given a particular value for p quite likely solves, at least approximately, a
sequence of linear equations of the form

∂xg(x, p)∆x = −g(x, p). (3)

∂xg = gx is the Jacobian matrix for the function g(x, p), and (3) is the linear
system that gives the step to update x in Newton’s method. The adjoint equation
gTx λ = −fTx solves a linear system that differs in form from (3) only by the adjoint
operation.

1.4 f is a function of both x and p

Suppose our function is f(x, p) and we still have g(x, p) = 0. How does this
change the calculations? As

dpf = fxxp + fp = λT gp + fp,

the calculation changes only by the term fp, which usually is no harder to compute
in terms of computational complexity than fx.

f directly depends on p, for example, when the modeler wishes to weight or pe-
nalize certain parameters. For example, suppose f originally measures the misfit
between simulated and measured data; then f depends directly only on x. But
suppose the model parameters p vary over space and the modeler prefers smooth
distributions of p. Then a term can be added to f that penalizes nonsmooth p
values.

1.5 Partial derivatives

We have seen that ∂xg is the Jacobian matrix for the nonlinear function g(x, p) for
fixed p. To obtain the gradient dpf , ∂pg is also needed. This quantity generally
is no harder to calculate than gx. But it will almost certainly require writing
additional code, as the original software to solve just g(x, p) = 0 does not require
it.

2 PDE-constrained optimization problems

Partial differential equations are used to model physical processes. Optimiza-
tion over a PDE arises in at least two broad contexts: determining parameters
of a PDE-based model so that the field values match observations (an inverse
problem); and design optimization: for example, of an airplane wing.

A common, straightforward, and very successful approach to solving PDE-
constrained optimization problems is to solve the numerical optimization problem
resulting from discretizing the PDE. Such problems take the form

minimize
p

f(x, p)

subject to g(x, p) = 0.

An alternative is to discretize the first-order optimality conditions corresponding
to the original problem; this approach has been explored in various contexts for
theoretical reasons but generally is much harder and is not as practically useful
a method.

Two broad approaches solve the numerical optimization problem. The first
approach is that of modern, cutting-edge optimization packages: converge to a
feasible solution (g(x, p) = 0) only as f converges to a minimizer. The second
approach is to require that x be feasible at every step in p (g(x, p) = 0).

The first approach is almost certainly the better approach for almost all prob-
lems. However, practical considerations turn out to make the second approach
the better one in many applications. For example, a research effort may have
produced a complicated program to solve g(x, p) = 0 (the PDE or forward prob-
lem), and one now wants to solve an optimization problem (inverse problem) using
this existing code. Additionally, other properties of particularly time-dependent
problems can make the first approach very difficult to implement.

In the second approach, the problem solver must evaluate f(x, p), solve
g(x, p) = 0, and provide the gradient dpf . Section 1 provides the necessary
tools at a high level of generality to perform the final step. But at least one class
of problems deserves some additional discussion.

2



2.1 Time-dependent problems

Time-dependent problems have special structure for two reasons. First, the ma-
trices of partial derivatives have very strong block structure; we shall not discuss
this low-level topic here. Second, and the subject of this section, time-dependent
problems are often treated by semi-discretization: the spatial derivatives are made
explicit in the various operators, but the time integration is treated as being
continuous; this method of lines induces a system of ODE. The method-of-lines
treatment has two implications. First, the adjoint equation for the problem is
also an ODE induced by the method of lines, and the derivation of the adjoint
equation must reflect that. Second, the forward and adjoint ODE can be solved
by standard adaptive ODE integrators.

2.1.1 The adjoint method for the first-order problem

Consider the problem

minimize
p

F (x, p), where F (x, p) ≡
∫ T

0

f(x, p, t) dt,

subject to h(x, ẋ, p, t) = 0 (4)

g(x(0), p) = 0,

where p is a vector of unknown parameters; x is a (possibly vector-valued) function
of time; h(x, ẋ, p, t) = 0 is an ODE in implicit form; and g(x(0), p) = 0 is the initial
condition, which is a function of some of the unknown parameters. The ODE h
may be the result of semi-discretizing a PDE, which means that the PDE has
been discretized in space but not time. An ODE in explicit form appears as
ẋ = h̄(x, p, t), and so the implicit form is h(x, ẋ, p, t) = ẋ− h̄(x, p, t).

A gradient-based optimization algorithm requires the user to calculate the total
derivative (gradient)

dpF (x, p) =

∫ T

0

[∂xf dpx+ ∂pf ] dt.

Calculating dpx is difficult in most cases. As in Section 1, two common approaches
simply do away with having to calculate it. One approach is to approximate the
gradient dpF (x, p) by finite differences over p. Generally, this requires integrating
np additional ODE. The second method is to develop a second ODE, this one in
the adjoint vector λ, that is instrumental in calculating the gradient. The benefit
of the second approach is that the total work of computing F and its gradient is
approximately equivalent to integrating only two ODE.

The first step is to introduce the Lagrangian corresponding to the optimization

problem:

L ≡
∫ T

0

[f(x, p, t) + λTh(x, ẋ, p, t)] dt+ µT g(x(0), p).

The vector of Lagrangian multipliers λ is a function of time, and µ is another
vector of multipliers that are associated with the initial conditions. Because the
two constraints h = 0 and g = 0 are always satisfied by construction, we are free
to set the values of λ and µ, and dpL = dpF . Taking this total derivative,

dpL =

∫ T

0

[∂xfdpx+ ∂pf + λT (∂xhdpx+ ∂ẋhdpẋ+ ∂ph)] dt

+ µT (∂x(0)g dpx(0) + ∂pg). (5)

The integrand contains terms in dpx and dpẋ. The next step is to integrate by
parts to eliminate the second one:∫ T

0

λT∂ẋh dpẋ dt = λT∂ẋh dpx
∣∣T
0
−
∫ T

0

[λ̇T∂ẋh+ λTdt∂ẋh] dpx dt. (6)

Substituting this result into (5) and collecting terms in dpx and dpx(0) yield

dpL =

∫ T

0

[(∂xf + λT (∂xh− dt∂ẋh)− λ̇T∂ẋh)dpx+ fp + λT∂ph] dt

+ λT∂ẋh dpx
∣∣
T

+ (−λT∂ẋh+ µT gx(0))
∣∣
0

dpx(0) + µT gp.

As we have already discussed, dpx(T ) is difficult to calculate. Therefore, we set
λ(T ) = 0 so that the whole term is zero. Similarly, we set µT = λT∂ẋh|0g−1

x(0) to

cancel the second-to-last term. Finally, we can avoid computing dpx at all other
times t > 0 by setting

∂xf + λT (∂xh− dt∂ẋh)− λ̇T∂ẋh = 0.

The algorithm for computing dpF follows:

1. Integrate h(x, ẋ, p, t) = 0 for x from t = 0 to T with initial conditions
g(x(0), p) = 0.

2. Integrate ∂xf + λT (∂xh − dt∂ẋh) − λ̇T∂ẋh = 0 for λ from t = T to 0 with
initial conditions λ(T ) = 0.

3. Set

dpF =

∫ T

0

[fp + λT∂ph] dt+ λT∂ẋh
∣∣
0
g−1
x(0)gp.

3



2.1.2 The relationship between the constraint and adjoint equations

Suppose h(x, ẋ, p, t) is the first-order explicit linear ODE h = ẋ − A(p)x − b(p).
Then hx = −A(p) and hẋ = I, and so the adjoint equation is fx−λTA(p)−λ̇T = 0.
The adjoint equation is solved backward in time from T to 0. Let τ ≡ T−t; hence
dt = −dτ . Denote the total derivative with respect to τ by a prime. Rearranging
terms in the two equations,

ẋ = A(p)x+ b(p)

λ̇ = A(p)Tλ− fTx .

The equations differ in form only by an adjoint.

2.1.3 A simple closed-form example

As an example, let’s calculate the gradient of∫ T

0

x dt

subject to ẋ = bx

x(0)− a = 0.

Here, p = [a b]T and g(x(0), p) = x(0)− a. We follow each step:

1. Integrating the ODE yields x(t) = aebt.

2. f(x, p, t) ≡ x and so ∂xf = 1. Similarly, h(x, ẋ, p, t) ≡ ẋ − bx, and so
∂xh = −b and ∂ẋh = 1. Therefore, we must integrate

1− bλ− λ̇ = 0

λ(T ) = 0,

which yields λ(t) = b−1(1− eb(T−t)).

3. ∂pf = [0 0], ∂ph = [0 −x], gx(0) = 1, and gp = [−1 0]. Therefore, the first
component of the gradient is

λT∂ẋh
∣∣
0
g−1
x(0)gp = λ(0) · 1 · 1−1 · (−1) = b−1(−1 + ebT );

and as ∂bg = 0,∫ T

0

−λx dt =

∫ T

0

b−1(eb(T−t) − 1)aebt dt =
a

b
TebT − a

b2
(ebT − 1)

is the second component.

As a check, let us calculate the total derivative directly. The objective is∫ T

0

x dt =

∫ T

0

aebt dt =
a

b
(ebT − 1).

Taking the derivative of this expression with respect to a and, separately, b yields
the same results we obtained by the adjoint method.

2.1.4 The adjoint method for the second-order problem

The derivation in this section follows that in Section 2.1.1 for the first-order
problem. For simplicity, we assume the ODE can be written in explicit form.
The general problem is

minimize
m

F (s,m), where F (s,m) ≡
∫ T

0

f(s,m, t) dt,

subject to s̈ = h̄(s,m, t) (7)

g(s(0),m) = 0

k(ṡ(0),m) = 0.

The corresponding Lagrangian is

L ≡
∫ T

0

[f(s,m, t) + λT (s̈− h̄(s,m, t))] dt+ µT g(s(0),m) + ηT k(ṡ(0),m), (8)

which differs from the Lagrangian for the first-order problem by the term for the
additional initial condition and the simplified form of h. The total derivative is

dmL =

∫ T

0

[∂sfdms+ ∂mf + λT (dms̈− ∂sh̄dms− ∂mh̄)] dt

+ µT (∂s(0)g dms(0) + ∂mg) + ηT (∂ṡ(0)k dmṡ(0) + ∂mk).

Integrating by parts twice,∫ T

0

λTdms̈ dt = λTdmṡ
∣∣T
0
− λ̇Tdms

∣∣∣T
0

+

∫ T

0

λ̈Tdms dt.

Substituting this and grouping terms,

dmL =

∫ T

0

[(fs − λT h̄s + λ̈T )dms+ fm − λT h̄m]dt ⇒fs − λT h̄s + λ̈T = 0

+ (µT gs(0) + λ̇T )|0 dms(0) ⇒µT = −λ̇(0)T g−1
s(0)

+ (ηT kṡ(0) − λT )|0 dmṡ(0) ⇒ηT = λ(0)T k−1
ṡ(0)

+ λTdmṡ|T ⇒λ(T ) = 0

− λ̇Tdms|T ⇒λ̇(T ) = 0

+ µT gm + ηT km.

4



We have indicated the suitable multiplier values to the right of each term. Putting
everything together, the adjoint equation is

λ̈ = h̄Ts λ− fTs
λ(T ) = λ̇(T ) = 0

and the total derivative of F is

dmF = dmL =

∫ T

0

[fm − λT h̄m]dt− λ̇(0)T g−1
s(0)gm + λ(0)T k−1

ṡ(0)km.

2.1.5 The continuous, rather than discretized, problem

For simplicity, suppose h̄(s,m, t) = A(m)s + b(m). So far we have viewed A(m)
as being a matrix that results from discretizing a PDE. This is often the best way
to view the adjoint problem in practice: the gradient of interest is that of the
problem on the computer, which in general must be a discretized representation
of the original continuous problem. However, it is still helpful to see how the
adjoint method is applied to the fully continuous problem.

We shall continue to use the notation A(m) to denote the spatial operator, but
now we view it as something like A(x;m) = α(x;m)∇ · (β(x;m)∇), where α and
β are functions of space x and parameterized by the model parameters m, and ∇
is the gradient operator.

The key difference between the discretized and continuous problems is the
inner product between the Lagrange multiplier λ and the fields. In the dis-
cretized problem, we write λTA(m)s; in the continuous problem, we write∫

Ω
λ(x)A(x;m)s(x) dx, where Ω is the domain over which the fields are defined.

Here we assume s(x) is a scalar field for clarity. Then the Lagrangian like (8) is

L ≡
∫ T

0

[
f(s,m, t) +

∫
Ω

λ(s̈− h̄(s,m, t)) dx

]
dt +∫

Ω

[µg(s(0),m) + ηk(ṡ(0),m)] dx,

In general, the derivations we have seen so far can be carried out with spatial
integrals replacing the discrete inner products.

References

Y. Cao, S. Li, L. Petzold, R. Serban, “Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system and its numerical solution”, SIAM
J. Sci. Comput. (2003) 23(3), 1076–1089.

5


	The adjoint method
	Motivation
	Derivation
	The relationship between the constraint and adjoint equations
	f is a function of both x and p
	Partial derivatives

	PDE-constrained optimization problems
	Time-dependent problems
	The adjoint method for the first-order problem
	The relationship between the constraint and adjoint equations
	A simple closed-form example
	The adjoint method for the second-order problem
	The continuous, rather than discretized, problem



