
Clusterer Ensemble

Zhi-Hua Zhou*, Wei Tang

National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Abstract

Ensemble methods that train multiple learners and then combine their predictions have been shown to be
very effective in supervised learning. This paper explores ensemble methods for unsupervised learning. Here an
ensemble comprises multiple clusterers, each of which is trained by k-means algorithm with different initial
points. The clusters discovered by different clusterers are aligned, i.e. similar clusters are assigned with the same
label, by counting their overlapped data items. Then, four methods are developed to combine the aligned
clusterers. Experiments show that clustering performance could be significantly improved by ensemble methods,
where utilizing mutual information to select a subset of clusterers for weighted voting is a nice choice. Since the
proposed methods work by analyzing the clustering results instead of the internal mechanisms of the component
clusterers, they are applicable to diverse kinds of clustering algorithms.

Keywords: Machine Learning; Ensemble learning; Clustering; Unsupervised learning; Selective ensemble

1. Introduction

Clustering is a fundamental technique of unsupervised learning, where the task is to find the inherent
structure from unlabeled data. A good clusterer should divide the data into several clusters so that the
intra-cluster similarity is maximized while the inter-cluster similarity is minimized. Since such a technique is
required everywhere and diverse inductive principles exist (Estivill-Castro, 2002), clustering is always an active
area in machine learning.

During the past decade, ensemble methods that train multiple learners and then combine their predictions to
predict new examples have been a hot topic (Dietterich, 2002). Since the generalization ability of an ensemble
could be better than that of its component learners (Hansen & Salamon, 1990), it is not a surprise that ensemble
methods have been widely applied to diverse domains such as face recognition (Huang et al., 2000), optical
character recognition (Drucker et al., 1993), scientific image analysis (Cherkauer, 1996), medical diagnosis
(Zhou et al., 2002), etc.

It is worth noting that almost all ensemble methods are designed for supervised learning where the desired
outputs, or labels, of the training instances are known. The known training labels are used in some ensemble
methods such as AdaBoost (Freund & Schapire, 1995), to evaluate the component learners and then use the
evaluation results to weight the learners and change the training data distribution. More importantly, the training
labels are necessary for eliminating the ambiguity in combining the component predictions. For example, in
voted classifiers, the votes for different class labels are counted and compared. Here it is trivial to determine
which vote is for which class because the training labels have implicitly coordinated the component classifiers in
the way that the i-th class labels of all the component classifiers are the same.

* Corresponding author. Tel.: +86-25-8368-6268; fax: +86-25-8368-6268. E-mail address: zhouzh@nju.edu.cn (Z.-H. Zhou).
Submitted: Apr.10, 2003; Accepted: Nov.12, 2005

2

i
Cλ

The lack of training labels makes the design of ensemble methods for unsupervised learning much more
difficult than that for supervised learning. For illustration, suppose there are two clusterers each has discovered
three clusters from a data set, and the goal is to combine the clusterers so that data items are put into a same
cluster if and only if they were put into a same cluster by both of the clusterers. This task is not trivial because
there is no guarantee that the i-th cluster discovered by one clusterer corresponds to the i-th cluster discovered by
the other clusterer. So, although ensemble has been well investigated in supervised learning, few works address
the issue of designing ensemble methods for clustering.

In this paper, a process for aligning the clusters discovered by different clusterers is developed, which works
by measuring the similarity between the clusters through counting their overlapped data items. Then, four
methods for combining the aligned clusterers are proposed. They are voting, weighted-voting where the mutual
information weights are used in voting, selective voting where the mutual information weights are used to select
a subset of clusterers to vote, and selective weighted-voting where the mutual information weights are used not
only in selecting but also in voting. Experimental results show that selective weighted-voting is the best method,
whose performance is significantly better than that of a single clusterer. The experiments also reveal that profit is
obtained by employing mutual information weights in voting, while greater profit is obtained by building
selective ensembles.

The rest of this paper is organized as follows. Section 2 focuses on the generation of the component
clusterers. Section 3 presents the align process and proposes methods for combining the aligned component
clusterers. Section 4 reports on the experimental results. Finally, Section 5 summarizes the main contributions of
this paper and raises several issues for future works.

2. Generate component clusterers

2.1. Notations

Let X = {x1, x2, …, xn} ⊂ Rd denotes an unlabeled data set in a feature space of dimension d. The i-th data
item xi is a d-dimensional feature vector [xi1, xi2, …, xid]T, where T denotes vector transpose. In order to simplify
the discussion, here we assume that all the features are numerical, i.e. xij (i = 1, …, n, j = 1, …, d) is numerical.

A clusterer dividing X into k clusters could be regarded as a label vector λ ∈ Nn, which assigns the data item
xi to the λi -th cluster, i.e. where λi ∈{1, 2, …, k}.

A clusterer ensemble with size t comprises t clusterers, i.e. {λ(1), λ(2), …, λ(t)}, which could also be regarded
as a label vector , ∈ Nn and = F({λ(1), λ(2), …, λ(t)}) where F(ּ) is a function corresponding to the
combining methods presented in Section 3.

2.2. k-means

The idea of the well-known k-means algorithm (MacQueen, 1967) is to iteratively update the mean value of
the data items in a cluster, and regard the stabilized value as the representative of the cluster. The basic algorithm
is shown in Figure 1.

There exist a lot of variants to the basic k-means algorithm based on different distance measure or
representation of the centers. Strehl et al. (2000) has shown that different distance measures have different
impacts on the performance of k-means algorithm. For convenience of discussion, in this paper the basic
k-means algorithm employing the Euclidean distance is used.

A characteristic of k-means algorithm is that it is quite sensitive to the choice of the initial points, i.e. the data
items selected to be the initial centers of the clusters. In supervised learning, if an algorithm has several
alternative parameter configurations, a simple strategy is to run the algorithm several times each with a specific
configuration and then use a validation set to choose the best version. But in unsupervised learning, it is difficult
to judge which version is the best since there are no training labels available. Fortunately, such a characteristic is

3

not a bad news for building ensembles of k-means, because now it is easy to obtain diverse component clusterers
through simply running the algorithm multiple times with different initial points.

3. Combine component clusterers

3.1. Align process

The component clusterers must be aligned before they are combined. This is because the component
clusterers may assign similar cluster with different labels. For example, suppose there are two clusterers, whose
corresponding label vectors are [1, 2, 2, 1, 1, 3, 3]T and [2, 3, 3, 2, 2, 1, 1]T, respectively. Although the
appearance of these label vectors are quite different, in fact they represent the same clustering result. Therefore,
the label vectors must be aligned so that the same label denotes similar cluster.

In this paper, the clusterers are aligned based on the recognition that similar clusters should contain similar
data items. In detail, suppose there are two clusterers whose corresponding label vectors are λ(a) and λ(b),
respectively, and each clusterer divide the data set into k clusters, i.e. {C1

(a), C2
(a), …, Ck

(a)} and {C1
(b), C2

(b), …,
Ck

(b)}, respectively. For each pair of clusters from different clusterers, such as Ci
(a) and Cj

(b), the number of
overlapped data items, i.e. data items appear in both Ci

(a) and Cj
(b), is counted. Then, the pair of clusters whose

number of overlapped data items is the largest, are matched in the way that they are denoted by the same label.
Such a process is repeated until all the clusters are matched. The pseudo-code of the align process is shown in
Figure 2.

For i = 1 to k, j = 1 to k Do
 OVERLAPij = Count(Ci

(a), Cj
(b)) /* OVERLAP is a k×k matrix, Count(A, B) is a function

 returning the number of overlapped data items in A and B */
Γ = Ø
While Γ ≠ {C1

(b), C2
(b), …, Ck

(b)} Do
 (u, v) = arg(max(OVERLAPij)) /* OVERLAPuv is the maximal cell in the matrix */
 Match(Cu

(a), Cv
(b)) /* cluster Cv

(b) is matched to cluster Cu
(a)

 Delete OVERLAPu* /* cells related to Cu
(a) are removed */

 Delete OVERLAP*v /* cells related to Cv
(b) are removed */

 Γ = Γ ∪ {Cv
(b)}

End of While

Figure 2. The pseudo-code of the align process

When there are t (t > 2) clusterers, one clusterer could be regarded as the baseline to which the remaining
clusterers are aligned. In this paper, the baseline clusterer is randomly selected from the component clusterers.
Note that the align process requires only one-pass scan of the data items nevertheless how big the value of m is,
and it requires the storage of only (t-1)×k2 integers that are used to keep the number of overlapped data items. It

1. randomly select k data items as the centers of the clusters;
2. for each data item, assign it to the cluster whose center is the nearest one to the data item;
3. calculate the new center;
4. if there is no change, end the loop. Otherwise go to step 2.

Figure 1. The basic k-means algorithm

4

is evident that such an align process is quite efficient.
It is worth noting that according to the objective optimized by some clustering algorithms such as k-means,

different clusterers are similar if they have a similar clustering quality, i.e. if the sum of distances from data
items to their nearest centers is about the same. However, since the goal of the process presented in this section is
to enable the clusters generated by different clusterers be combined, nevertheless how similar the clusterers
themselves are, it is the similar clusters instead of similar clusterers are to be identified.

3.2. Combining methods

The simplest combining method is voting, where the i-th component of the label vector corresponding to the
ensemble, i.e. i, is determined by the plurality voting result of λi

(1), λi
(2), …, λi

(t).
The second method, i.e. weighted-voting, employs mutual information between a pair of clusterers (Strehl et

al., 2000) to compute the weight for each clusterer. For two label vectors, i.e. λ(a) and λ(b), suppose there are n
objects where ni are in cluster Ci

(a), nj are in cluster Cj
(b), and nij are in both Ci

(a) and Cj
(b). The [0, 1]-normalized

mutual information ФNMI can be defined as:

() ()() 2
NMI

1 1

2, log
ijk k

a b ij
k

i j i j

n nn
n n n

λ λ
= =

⎛ ⎞
Φ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ (1)

Then, for every clusterer, the average mutual information can be computed as:

() ()()NMI

1,

1 ,
1

t
m l

m
l l mt

β λ λ
= ≠

= Φ
− ∑ (m = 1, 2, …, t) (2)

The bigger the value of βm is, the less statistical information contained by the m-th clusterer has not been
contained by other clusterers. Therefore, the weights of the clusterers can be defined as:

1
Zm

m

w
β

= (m = 1, 2, …, t) (3)

where Z is used to normalize the weights so that

()
1

0 1,2,..., 1
t

m m
m

w m t and w
=

> = =∑ (4)

It was shown that selective ensemble methods that select a subset of learners to ensemble may be superior to
ensembling all the component learners (Zhou et al., 2002a). The mutual information weights, i.e. {w1, w2, …, wt},
can be used to select the clusterers. This is realized by excluding from the ensemble the clusterers whose mutual
information weight is smaller than a threshold. In this paper the threshold is set to 1/t.

The selected clusterers can be combined via voting, or weighted-voting based on re-normalized mutual
information weights of the selected clusterers. Thus, another two combining methods, i.e. selective voting and
selective weighted-voting, are obtained.

It is worth mentioning that the time cost of weighted-voting, selective voting, and selective weighted-voting
are comparable, while that of voting is slightly less because it does not require the computation of the mutual
information weights. However, the time cost of computing the mutual information weights is negligible if
comparing with that of the k-means clustering process. Therefore, the time cost of building an ensemble of
k-means by the proposed methods is roughly m times of that of training a single k-means clusterer, where m is
the number of clusterers that are trained to be considered for ensembling.

5

4. Experiments

4.1. Data sets

Ten data sets from the UCI Machine Learning Repository (Blake et al., 1998) are used, all of which contains
only numerical attributes except the class attributes. For image segmentation, a constant attribute has been
removed. The information about the data sets is tabulated in Table 1. Note that the class attributes of the data sets
have not been used in the training of the clusterers and the clusterer ensembles.

4.2. Evaluation scheme

In general, it is difficult to evaluate a clusterer because whether its clustering quality is good or not almost
fully depends on the view of the user. However, when a class attribute that has not been used in the training
process exist, the scheme proposed by Modha and Spangler (2003) could provide a relatively objective
evaluation, which assumes that the class attribute exposes some inherent property of the data set that should be
captured by the clusterer.

In detail, the clusterers are converted into classifiers using the following simple rule: identify each cluster
with the class that has the largest overlap with the cluster, and assign every data item in that cluster to the found
class. The rule allows multiple clusters to be assigned to a single class, but never assigns a single cluster to
multiple classes. Suppose there are c classes, i.e. {C1, C2, …, Cc}, in the ground truth classification. For a given
clusterer, by using the above rule, let ah denote the number of data items that are correctly assigned to the class
Ch. Then, the clustering performance of the clusterer can be measured by micro-precision, which can be
computed as:

1

1micro-p
c

t
h

a
n =

= ∑ (5)

The bigger the value of micro-p, the better the clustering performance.
Such a scheme can only be used to compare clusterers with a fixed number of clusters, i.e. clusterers with the

same model complexity. Therefore, in our experiments, for a given data set, the value of k, i.e. the number of
clusters to be discovered, is fixed to the number of classes conveyed by the class attribute. Note that the
ensemble methods proposed in Section 3 do not guarantee that k won’t be reduced after the combination process.
In fact, in some cases such a reduction may be helpful because it may reveal that the number of actual clusters is
smaller than that was anticipated. But here the reduction will disable the above scheme from comparing the
clustering performance. Fortunately, such a reduction never occurs in all of our experiments.

Table 1. Data sets used in experiments

data set attribute class size
image segmentation 18 7 2,310
ionosphere 34 2 351
iris 4 3 150
liver disorder 6 2 345
page blocks 10 5 5,473
vehicle 18 4 846
waveform21 21 3 5,000
waveform40 40 3 5,000
wine 13 3 178
wpbc 33 2 198

6

4.3. Results

In our experiments the number of iteration steps of the k-means algorithm is set to 100, and the error
improvement threshold is set to 1e-5. For each data set, each of the four ensemble methods proposed in Section 3
is used to build five clusterer ensembles comprising 5, 8, 13, 20, or 30 component clusterers, respectively. The
process is repeated for 10 times. Then, for each data set, each method, and each ensemble size, the average
micro-p and its standard deviation are recorded. The average performance of single k-means is also recorded for
comparison. The detailed experimental results are presented in the Appendix of this paper.

The pairwise two-tailed t-test results under significance level of 0.05 are summarized in Table 2, where ‘win/
loss’ means that the ensemble method is significantly better/worse than the single k-means algorithm, and ‘tie’
means that there is no significant difference between the ensemble method and the single k-means algorithm.

Table 2 shows that the clustering performance of voting, weighted-voting, and selective voting is worse than,
comparable to, and slightly better than that of the single k-means clusterer, respectively, while the performance
of selective weighted-voting is significantly better than that of the single k-means clusterer. It is impressive that
when the ensemble size is 13, selective weighted-voting never loses to single k-means. This observation shows
that ensemble methods could improve the clustering performance. It also reveals that utilizing mutual
information in the combination of the component clusterers is beneficial. So does building selective ensembles.

Table 3 summarizes the best ensemble method for a given data set. It justifies that selective weighted-voting
is the best method, which achieves the best performance on four data sets. Moreover, Table 3 shows that the
performances of weighted-voting and selective voting are very close because each of them achieves the best
result on three data sets.

It is worth mentioning that although utilizing mutual information and building selective ensembles are
comparably effective from the aspect of improving clustering performance, we believe that the latter mechanism
provides bigger profit because it uses fewer component clusterers to make up an ensemble. In fact, Table 4

Table 2. Summary of the pairwise two-tailed t-test results under significance level of
0.05. w-voting denotes weighted-voting, sel-voting denotes selective voting, and
sel-w-voting denotes selective weighted-voting.

voting w-voting sel- voting sel-w-voting ensemble
size win/tie/loss win/tie/loss win/tie/loss win/tie/loss

5 1/7/2 2/6/2 3/4/3 4/4/2
I8 0/8/2 3/6/1 4/5/1 5/4/1
13 2/6/2 2/6/2 2/7/1 4/6/0
20 1/6/3 3/4/3 5/3/2 5/3/2
30 1/5/4 3/4/3 5/3/2 5/3/2

Table 3. The best ensemble method for the experimental data sets. w-voting denotes
weighted-voting, sel-voting denotes selective voting, and sel-w-voting denotes selective
weighted-voting. Number in the bracket is the ensemble size with which the best clustering
performance is obtained. For selective ensemble methods, the ensemble size is shown as a ratio
of the number of selected clusterers against the number of clusterers available.

data set best method data set best method
image segmentation sel-w-voting (13/30) vehicle sel-w-voting (1.4/5)
ionosphere sel-w-voting (4.5/30) waveform21 w-voting (13)
iris w-voting (20) waveform40 sel-voting (3.5/8)
liver disorder sel-w-voting (3.3/13) wine w-voting (8)
page blocks sel-voting (4.1/13) wpbc sel-voting (2.0/30)

7

shows that the selective ensemble methods, i.e. selective-voting and selective weighted-voting, only keep about
28% to 40% available clusterers. In cases where the clusterers must be stored for future use, such an advantage
of selective ensemble should not be neglected.

The impacts of the change of ensemble size on the clustering performance are depicted in Figure 3. It is
interesting to see that for methods that could improve the clustering performance, i.e. weighted-voting, selective
voting, and selective weighted-voting, the performance increases as the ensemble size increases, but for the
useless method voting, the performance keeps almost constant or even decreases as the ensemble size increases.
Why the performance of voting is so poor is a problem to be explored in future works.

0.64

0.66

0.68

0.7

0.72

5 8 13 20 30
ensemble size

ge
om

et
ric

al
 m

ea
n

m
ic

ro
-p

voting
w-voting
sel-voting
sel-w-voting

Figure 3. The impacts of the change of ensemble size on the clustering performance. w-voting
denotes weighted-voting, sel-voting denotes selective voting, and sel-w-voting denotes
selective weighted-voting. geometrical mean denotes the average across all the data sets. Here
the ensemble size of selective voting and selective weighted-voting denotes the number of
candidate clusterers instead of their real ensemble size.

5. Conclusion

In this paper, four methods are proposed for building ensembles of k-means clusterers. The component
clusterers are generated by running the k-means algorithm multiple times with different initial points. An align
process is applied to ensure that the same label used by different clusterers denotes similar clusters. The aligned
clusterers are combined via voting or its variants. Experiments show that selective weighted-voting that utilizes
mutual information to select a subset of clusterers for weighted voting is the best method, which could
significantly improve the clustering performance. It is also found that utilizing mutual information weights or
building selective ensembles are both beneficial to clusterer ensemble, while the latter mechanism is more
rewardful because it could help obtain ensembles with smaller sizes.

It is worth mentioning that although k-means is used as the base clusterer in this paper, it does not mean that

Table 4. The geometrical mean percentage of clusterers selected by selective
voting and selective weighted-voting under different ensemble sizes.

ensemble size percentage of selecting
5 39.2% (1.96/5)
8 38.1% (3.05/8)

13 33.7% (4.38/13)
20 31.8% (6.36/20)
30 28.0% (8.41/30)

8

the proposed methods can only be applied to k-means. Since these methods work by analyzing the clustering
results instead of the internal mechanisms of the component clusterers, they are applicable to diverse kinds of
clustering algorithms.

From the literatures on ensemble learning, it could be found that voting is an effective combining method that
is often used in building ensembles of supervised learning algorithms. However, this paper shows that voting
performs quite poor while its variants such as selective weighted-voting perform well in unsupervised learning
scenario. How to explain this phenomenon remains an open problem to be explored in future works.

Another interesting issue to be explored is to see whether successful supervised ensemble methods, such as
Bagging (Breiman, 1996) and AdaBoost (Freund & Schapire, 1995), can be modified for unsupervised learning.
Moreover, since different distance measures have different impacts on the clustering performance (Strehl et al.,
2000), and different clustering algorithms may favor different kinds of cluster architectures, i.e. different
algorithms may be effective at detecting different kinds of clusters, it will be interesting to investigate
heterogeneous clusterer ensembles, i.e. ensembles composed of different kinds of clusterers.

Acknowledgement

This work was supported by the National Science Fund for Distinguished Young Scholars of China under the
Grant No. 60325207, The Fok Ying Tung Education Foundation under the Grant No. 91067, and the Excellent
Young Teachers Program of MOE, China.

References

Blake C., Keogh E., & Merz C. J. (1998). UCI repository of machine learning databases [http://www.ics.uci.edu/
~mlearn/MLRepository.htm], Department of Information and Computer Science, University of California,
Irvine, CA.

Breiman L. (1996). Bagging predictors. Machine Learning, 24(2): 123-140.
Cherkauer K. J. (1996). Human expert level performance on a scientific image analysis task by a system using

combined artificial neural networks. Proceedings of the 13th AAAI Workshop on Integrating Multiple
Learned Models for Improving and Scaling Machine Learning Algorithms, Portland, OR, pp.15-21.

Dietterich T. G. (2002). Ensemble learning. In Arbib M. A. (Ed.), The Handbook of Brain Theory and Neural
Networks (2nd edition). Cambridge, MA: MIT Press.

Drucker H., Schapire R., & Simard P. (1993). Improving performance in neural networks using a boosting
algorithm. In Hanson S. J., Cowan J. D., & Lee Giles C. (Eds.), Advances in Neural Information Processing
Systems 5, San Mateo, CA: Morgan Kaufmann, pp.42-49.

Estivill-Castro V. (2002). Why so many clustering algorithms – a position paper. SIGKDD Explorations, 4(1):
65-75.

Freund Y., & Schapire R. E. (1995). A decision-theoretic generalization of on-line learning and an application to
boosting. Proceedings of 2nd European Conference on Computational Learning Theory, Barcelona, Spain,
pp.23-37.

Hansen L. K., & Salamon P. (1990). Neural network ensembles. IEEE Trans. Pattern Analysis and Machine
Intelligence, 12(10): 993-1001.

Huang F. J., Zhou Z.-H., Zhang H.-J., & Chen T. (2000). Pose invariant face recognition. Proceedings of the 4th
IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France,
pp.245-250.

MacQueen J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, vol.1, pp.281-297.

Modha D. S., & Spangler W. S. (2003). Feature weighting in k-means clustering. Machine Learning, 52(3):

9

217-237.
Strehl A., Ghosh J., & Mooney R. J. (2000). Impact of similarity measures on web-page clustering. Proceedings

of AAAI2000 Workshop on AI for Web Search, Austin, TX, pp.58-64.
Zhou Z.-H., Jiang Y., Yang Y.-B., & Chen S.-F. (2002). Lung cancer cell identification based on artificial neural

network ensembles. Artificial Intelligence in Medicine, 24(1): 25-36.
Zhou Z.-H., Wu J., & Tang W. (2002a). Ensembling neural networks: many could be better than all. Artificial

Intelligence, 137(1-2): 239-263.

Appendix

Tables 5 to 9 present the detailed experimental results summarized in Section 4, where single denotes a single
k-means clusterer, w-voting denotes weighted-voting, sel-voting denotes selective voting, sel-w-voting denotes
selective weighted-voting, and geometrical mean denotes the average across all data sets. The 2nd to the 5th
columns of the tables record the micro-p while the last column records how many clusterers have been selected
by selective voting or selective weighted-voting. The values following ‘±’ is the standard deviation.

Table 5. The clustering performance when ensemble size is 5. Note that after truncating from the 4th decimal
digit, the differences on waveform21 and waveform40 are concealed.

data set single voting w-voting sel-voting sel-w-voting selected

image segmentation .706 ± .021 .716 ± .038 .749 ± .040 .651 ± .087 .736 ± .040 2.00 ± .67
ionosphere .722 ± .024 .711 ± .001 .768 ± .121 .768 ± .121 .768 ± .121 1.40 ± .52
iris .878 ± .006 .887 ± .000 .887 ± .000 .862 ± .014 .862 ± .014 1.60 ± .52
liver disorder .822 ± .007 .815 ± .007 .815 ± .007 .842 ± .016 .842 ± .016 2.20 ± 1.55
page blocks .476 ± .027 .461 ± .058 .469 ± .063 .520 ± .046 .520 ± .051 1.70 ± .48
vehicle .451 ± .018 .439 ± .019 .440 ± .024 .492 ± .055 .497 ± .053 1.40 ± .52
waveform21 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 1.70 ± .48
waveform40 .548 ± .000 .548 ± .000 .548 ± .000 .548 ± .000 .548 ± .000 1.90 ± .74
wine .948 ± .006 .949 ± .005 .949 ± .005 .941 ± .031 .941 ± .031 1.50 ± .71
wpbc .599 ± .002 .598 ± .000 .598 ± .000 .602 ± .009 .602 ± .009 4.20 ± 1.69
geometrical mean .670 ± .011 .668 ± .013 .678 ± .026 .678 ± .038 .687 ± .034 1.96 ± 0.79

Table 6. The clustering performance when ensemble size is 8. Note that after truncating from the 4th decimal
digit, the differences on waveform21 are concealed.

data set single voting w-voting sel-voting sel-w-voting selected

image segmentation .711 ± .017 .739 ± .060 .770 ± .051 .713 ± .051 .749 ± .055 3.20 ± 1.40
ionosphere .721 ± .024 .711 ± .002 .768 ± .121 .768 ± .120 .768 ± .121 2.70 ± 0.95
iris .879 ± .004 .891 ± .031 .904 ± .037 .850 ± .043 .862 ± .014 2.40 ± 0.70
liver disorder .820 ± .005 .812 ± .001 .813 ± .005 .845 ± .012 .846 ± .012 2.70 ± 2.06
page blocks .463 ± .020 .464 ± .058 .473 ± .060 .535 ± .029 .534 ± .035 2.70 ± 1.16
vehicle .447 ± .012 .440 ± .018 .447 ± .036 .479 ± .034 .479 ± .039 2.30 ± 1.16
waveform21 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 2.70 ± 0.67
waveform40 .551 ± .009 .548 ± .000 .548 ± .000 .571 ± .071 .571 ± .071 3.50 ± 1.78
wine .947 ± .004 .949 ± .002 .953 ± .008 .929 ± .040 .929 ± .040 2.30 ± 0.95
wpbc .599 ± .002 .598 ± .000 .598 ± .000 .604 ± .010 .604 ± .010 6.00 ± 3.23
geometrical mean .669 ± .010 .670 ± .017 .683 ± .032 .685 ± .041 .689 ± .040 3.05 ± 1.41

10

Table 7. The clustering performance when ensemble size is 13. Note that after truncating from the 4th decimal
digit, the differences on waveform21 are concealed.

data set single voting w-voting sel-voting sel-w-voting selected

image segmentation .704 ± .013 .737 ± .023 .769 ± .038 .726 ± .047 .756 ± .058 5.30 ± 1.57
ionosphere .717 ± .015 .710 ± .001 .767 ± .121 .769 ± .120 .769 ± .120 3.90 ± 1.66
iris .877 ± .004 .886 ± .002 .886 ± .002 .808 ± .104 .829 ± .088 3.40 ± 1.26
liver disorder .820 ± .004 .812 ± .000 .812 ± .000 .847 ± .006 .849 ± .002 3.30 ± 1.49
page blocks .461 ± .014 .461 ± .056 .471 ± .061 .557 ± .024 .545 ± .004 4.10 ± 1.20
vehicle .447 ± .013 .433 ± .002 .434 ± .006 .473 ± .030 .472 ± .037 3.20 ± 1.40
waveform21 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 4.70 ± 0.95
waveform40 .550 ± .006 .548 ± .000 .548 ± .000 .570 ± .072 .570 ± .072 4.80 ± 1.69
wine .946 ± .003 .950 ± .010 .949 ± .010 .930 ± .040 .930 ± .040 4.00 ± 2.05
wpbc .598 ± .002 .598 ± .000 .598 ± .000 .603 ± .018 .603 ± .018 7.10 ± 6.23
geometrical mean .667 ± .007 .669 ± .010 .679 ± .024 .683 ± .046 .688 ± .044 4.38 ± 1.95

Table 8. The clustering performance when ensemble size is 20. Note that after truncating from the 4th decimal
digit, the differences on waveform21 are concealed.

data set single voting w-voting sel-voting sel-w-voting selected

image segmentation .704 ± .009 .739 ± .040 .757 ± .044 .748 ± .059 .762 ± .062 8.60 ± 2.46
ionosphere .719 ± .010 .710 ± .001 .852 ± .150 .852 ± .148 .853 ± .149 4.40 ± 3.63
iris .876 ± .002 .879 ± .048 .912 ± .042 .829 ± .078 .826 ± .086 5.10 ± 1.20
liver disorder .819 ± .003 .812 ± .000 .812 ± .000 .848 ± .003 .848 ± .003 4.40 ± 1.78
page blocks .461 ± .010 .450 ± .042 .473 ± .059 .545 ± .005 .545 ± .004 7.00 ± 1.89
vehicle .447 ± .008 .434 ± .003 .437 ± .010 .478 ± .015 .478 ± .017 5.30 ± 1.70
waveform21 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 8.10 ± 1.45
waveform40 .549 ± .004 .548 ± .000 .548 ± .000 .570 ± .072 .570 ± .072 7.70 ± 2.95
wine .946 ± .003 .947 ± .007 .947 ± .008 .919 ± .046 .921 ± .043 5.80 ± 3.26
wpbc .599 ± .002 .598 ± .000 .598 ± .000 .607 ± .019 .607 ± .019 7.20 ± 8.88
geometrical mean .667 ± .005 .667 ± .014 .689 ± .031 .695 ± .045 .696 ± .046 6.36 ± 2.92

Table 9. The clustering performance when ensemble size is 30. Note that after truncating from the 4th decimal
digit, the differences on waveform21 are concealed.

data set single voting w-voting sel-voting sel-w-voting selected

image segmentation .704 ± .008 .743 ± .048 .757 ± .055 .746 ± .076 .784 ± .067 13.00 ± 3.68
ionosphere .720 ± .008 .710 ± .001 .910 ± .138 .909 ± .136 .911 ± .137 4.50 ± 5.06
iris .877 ± .003 .858 ± .045 .910 ± .044 .853 ± .000 .853 ± .000 7.60 ± 2.37
liver disorder .819 ± .003 .812 ± .000 .812 ± .000 .848 ± .003 .848 ± .003 6.40 ± 2.67
page blocks .461 ± .009 .464 ± .057 .465 ± .054 .545 ± .005 .543 ± .002 10.30 ± 2.31
vehicle .446 ± .007 .433 ± .003 .435 ± .005 .481 ± .010 .483 ± .013 7.60 ± 2.95
waveform21 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 .553 ± .000 12.90 ± 1.29
waveform40 .549 ± .002 .548 ± .000 .548 ± .000 .571 ± .071 .571 ± .071 10.80 ± 4.52
wine .946 ± .003 .946 ± .006 .946 ± .007 .922 ± .041 .922 ± .041 9.00 ± 5.68
wpbc .599 ± .001 .598 ± .000 .598 ± .000 .613 ± .020 .607 ± .025 2.00 ± 1.05
geometrical mean .667 ± .004 .666 ± .016 .693 ± .030 .704 ± .036 .707 ± .036 8.41 ± 3.16

