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Abstract. In this paper, we propose the Harmonic Recurrent Pro-
cess (HRP) for forecasting non-stationary time series with period-
varying patterns. HRP works by selectively ensembling recurrent
period-varying patterns in harmonic analysis. In contrast to classical
forecasting approaches that rely on stationary priors and recurrent
neural network approaches that are mostly black boxes, our model
is able to deal with irregular nonstationary signals, and its working
mechanism is reasonably lucid. We also prove that the stochastic pro-
cess led by HRP under weak dependence condition is predictive PAC
learnable. Comprehensive experiments on simulated and practical
tasks validate the effectiveness of HRP.

1 Introduction
In time series forecasting (TSF), nonstationary time series is often
encountered. Since the sample distribution changes along time, es-
pecially when the latent dominant facts change along time, nonsta-
tionary time series usually performs aperiodically and the patterns
are unequal-interval. An intuitive manifestation is that the peaks or
troughs are not equally spaced, such as the coupling cosine signals in
Figure 1(d), the automobile registration data in Figure 1(e), and the
Yosemite temperature series in Figure 1(f). Predicting future values or
trends of nonstationary time series with period-varying patterns has
been a long-standing challenge in TSF [11, 13, 38].

There have been great efforts on TSF. The most famous are statisti-
cal models, which usually employ common priors for the evolving of
time series. The representative approaches include AutoRegressive
Moving Average and Multivariate AutoRegressing (MAR) modeling,
which assume that the concerned time series is stationary, and formu-
late the forecasting model as a stochastic differential equation [34, 8].
The cosine function in Figure 1(a) gives an example of conventional
stationary sequence with equal period. Even with the help of spec-
trum analysis, the generalized stationarity assumption [18, 16] can
only cope with the regular period signals such as the mixture cosine
signals in Figure 1(b) and the electrocardiogram data [19] in Figure
1(c). Furthermore, sufficient evidence [22] points out that the spec-
trum methods are more suitable for long term analysis, limiting the
applicable range of this kind of approach.

To deal with nonstationary time series, some investigators focus
on the model flexibility for the unknown evolution structure of ob-
servations, leaving the underlying series distributions with wide as-
sumptions. For instance, the local evolution laws of time series can
be captured using simple chain update structure and scalable matrix
factorization methods [33, 23, 41]. However, this kind of approach
often forces time series patterns to be within a preset fixed time win-
dow, and thus the models are not guaranteed to be able to characterize
nonstationary time series with period-varying patterns. Alternative
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(a) cosine function
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(b) mixture cosine signals
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(c) electrocardiogram data
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(d) coupling cosine signals
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(e) automobile registration records
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(f) Yosemite temperature series

Figure 1. Illustration of stationary (a)-(c) and nonstationary (d)-(f) series.

approaches are based on deep learning, such as RNN, LSTM and their
variants [6, 24, 12, 28], which can effectively extract the features,
and forcast non-stationary time series with period-varying patterns.
However, the deep learning models often lack comprehensibility and
make the whole model blackboxes.

To tackle the challenge, we try to explore a special type of “recur-
rent” patterns of non-stationary time series. Different from the patterns
of conventional TSF models, the recurrent patterns not only allow
unequal periods, but also be compatible with harmonic transformation,
e.g., shifting and scaling. The red lines that can overlap each other
by shifting or scaling in Figure 1(f) give an illustration of this type of
recurrent patterns. By extracting the recurrent period-varying patterns
with harmonic transformation, the model can adapt to complicated
cases even when the sample distributions change over time.

Inspired by this recognition, we propose the Harmonic Recur-
rent Process (HRP) for forecasting nonstationary time series with
period-varying patterns. Based on harmonic decomposition on order-
subpermutation deformations, HRP formulates the forecasting model
into a specific formula, which can extract the recurrent patterns of



nonstationary time series with self-guided parameters, e.g., the win-
dow size of recurrent patterns. By selectively ensembling the detected
recurrent patterns, HRP is able to handle complicated signals, in-
cluding non-stationary time series with period-varying patterns. Note
that order-subpermutation is an introduced elastic technology for
matching the recurrent but unequal-period patterns, which may be of
independent interest. We also prove that the stochastic process led by
HRP under weak dependence condition is predictive PAC learnable.
Comprehensive experiments are conducted on the simulated coupling
cosine signals as well as two real-world data sets, Yancheng automo-
bile registration records and CSI 300. The experimental results show
the superiority of HRP over several state-of-the-art statistical models
and deep learning models.

The rest of this paper is organized as follows. Section 2 introduces
some related notations and concepts. In Section 3, we present the
proposed HRP and a concrete implementation. Section 4 gives pre-
dictable theoretical analysis about the stochastic process led by HRP.
The experiments are conducted on simulated and real-world data sets
in Section 5. Finally, we conclude our work in Section 6.

2 Preliminaries

In this section, we review the working mechanism of the stationarity
assumption and introduce some related concepts and notations.

Let Z , N+ and R denote the set of time stamps, non-
negative integers and real numbers, respectively. Consider a dou-
bly infinite sequence of L-dimensional random variables Xt =
(X1

t , X
2
t , · · · , XL

t )T jointly distributed according to a distribu-
tion D. We write X|t+τt to denote a multivariable sequence
(Xt,Xt+1, · · · ,Xt+τ ) and Dt+τ

t to denote the joint distribution of
X|t+τt , where τ ∈ N+. For the univariate time series,Xt only com-
prises a real-valued Xt or Xi

t . Correspondingly, Xi|t+τt indicates the
sequence (Xi

t , X
i
t+1, · · · , Xi

t+τ ). A stochastic process {Xt, t ∈ Z}
is said to be (strictly) stationary provided that, for any t ∈ Z and any
τ , k ∈ N+, the distributions of X|t+τt and X|t+τ+kt+k are the same,
that is, Dt+τ

t = Dt+τ+k
t+k .

The finite dimensional distribution function of a stationary time
series is only the function of the time interval τ , but independent of the
specific time point t. Thereby, stationary time series models work by
fitting the apposite finite dimensional distribution function D, which
is made up of the tractable characteristic function defined on a fixed
window, e.g., the cosine function shown in Figure 1(a). By exploiting
spectral decomposition, the time series with regular periods can also
be processed with generalized stationarity assumptions, although its
patterns still depend on a fixed window and are independent of the
current time t [34]. The mixture cosine signal in Figure 1(b) and the
electrocardiogram data in Figure 1(c) give a typical illustration.

However, most real-world situations are nonstationary and period-
varying, where the patterns are not only related to time windows but
also to time, e.g., the coupling cosine signals in Figure 1(d) and two
real cases in Figure 1(e) and 1(f). Different to the regular distribution
functions of stationary stochastic processes, non-stationary distribu-
tion families usually change within a limited range over time and are
coupled together in a more loose manner. Formally speaking, for any
t, there exist certain τi and k ∈ N+, satisfying Dt+τi

t = Dt+τi+k
t+k .

The collection {τi} of periods is generally finite. In this paper, we
are going to cope with the nonstationary TSF challenge with the
aforementioned finite-period distribution structure.

3 Harmonic Recurrent Process

In this section, we will introduce the HRP, which can handle non-
stationary time series signals by exploring the recurrent period-
varying patterns. Firstly, we introduce a couple of elastic metrics
for measuring the period-varying patterns. Secondly, we present the
core mechanism of HRP. Finally, we give the concrete implementation
of two key elements of HRP.

3.1 Order-subpermutation

To explore the period-varying patterns, we need a suitable metric that
is able to measure the stochastic processes of different window sizes.
Here we develop an alternative oracle by efficiently searching the best
period between two stochastic processes. We begin it by introducing
the order-subpermutation matrix.

Definition 1 A matrix P ∈ {0, 1}n×m is an order-subpermutation
matrix, if P satisfies the following conditions:

•
∑n
j=1 P(j, i) = 1;

• P(n,m) = 1;
• let pi denote the number of row satisfying P(pi, i) = 1, then
i ≤ pi ≤ pi+1,

where P(j, i) denotes the entry of the j-th row and i-th column of
matrix P.

The order-subpermutation matrix makes a row vector deformed
by fixing the end point (due to P(n,m) = 1) and allowing
to abandon the first few points in the sequence in order (since
p1 may be greater than 1). From another perspective, the order-
subpermutation matrix provides the possibility of order-preserving
deformation of the concerned sequence, which includes the best pre-
diction windows. An illustration about the order-subpermutation ma-
trix is shown in Figure 2. As we can see, a 7-dimensional row vec-
tor (1, 2, 3, 4, 5, 6, 7) is converted into a 8-dimensional row vector
(2, 2, 3, 4, 5, 6, 7, 7) by a 7× 8 order-subpermutation matrix. The se-
quence (p2, p2, p3, p4, p5, p6, p7, p7) indicates the position encoding
deformed by this order-subpermutation matrix. For example, since
P(p2, 1) = 1 and P(p2, 2) = 1, both of the first and second elements
of the deformation vector are equal to 2, i.e., the second element of
the original vector.

Based on order-subpermutation deformation and optimal trans-
port theory [21], we can derive two novel metrics for measuring the
discrepancy of two sequences. (1) By deforming an n-dimensional
sequence into an m-dimensional version, the single-side distance
from sequence x = (x1, · · · , xn) to sequence y = (y1, · · · , ym)
can be formalized as minP ‖x P− y‖2, where P ∈ {0, 1}n×m is
an order-subpermutation matrix. (2) Meanwhile, the distance between
sequences x and y can be calculated through an l-dimensional embed-
ding space, that is, min{P,Q} ‖xP−y Q‖2, where P ∈ {0, 1}n×l
and Q ∈ {0, 1}m×l are both order-subpermutation matrices. Further,
we can obtain two meaningful metrics for measuring the distance
between multivariate stochastic processes as follows.

Definition 2 (1) The Single-side Order-subPermutation Distance
(SOPD) from a stochastic process Dt+n

t+1 to another one Ds+m
s+1 is

SOPD(Dt+n
t+1 ,D

s+m
s+1 ) = min

Pi

L∑
i=1

‖(Xi|t+nt+1 ·Pi −Xi|s+ms+1 ) ·Wi‖2;

(1)



Figure 2. An example of the order-subpermutation deformation.

(2) The Order-subPermutation Distance (OPD) between two stochas-
tic processes Dt+n

t+1 and Ds+m
s+1 is

OPD(Dt+n
t+1 ,D

s+m
s+1 ) = min

Pi,Qi

L∑
i=1

‖(Xi|t+nt+1 ·Pi −Xi|s+ms+1 ·Qi) ·Wi‖2,

(2)
where Xi|t+nt+1 denotes the row vector (Xi

t+1, · · · , Xi
t+n), L is the

number of random variables, Pi ∈ {0, 1}n×l and Qi ∈ {0, 1}m×l
are two order-subpermutation matrices, and Wi is the prior cost
matrix, which is set as an m-dimensional square matrix in Equation
1 and an l-dimensional square matrix in Equation 2, respectively.

It is worth noting that SOPD is a directed measure that only deforms
the first vectorXi|t+nt+1 , while OPD is undirected. Thus, OPD is a legal
pseudo-metric while SOPD is not.

In fact, there have been great efforts on measuring the similarity
or discrepancy of two time series [14]. AutoCorrelation Function
(ACF) and Partial AutoCorrelation Function stress on the linear simi-
lar correlation between two equal-period time series from a statistical
perspective [9]. In conjunction with this, dozens of distance measures
for discrepancy of time series, such as the Dynamic Time Warp-
ing (DTW) [5], Edit Distance on Real sequence (EDR) [10], and
Sequence Weighted Alignment model [31], attempt to develop a lo-
cal (non-linear) alignment, which is more flexible than the simple
Euclidean Distance (ED) [17]. However, most of the existing local
alignment methods only consider the editability within a fixed period,
making the obtained patterns always retain the information of the two
endpoints. In other words, the “elasticity” of these measures is re-
flected through exploring the “elastic” internal information in a fixed
window rather than considering the elasticity of window sizes. The
order-subpermutation measurement we proposed is more focused on
the editability of the effective window, which allows abandoning the
first few points of a sequence in order, as shown in Figure 2. In this
way, we can achieve the best match between two time series even if
sampling is performed in a fixed window. Besides, compared to other
elasticity measures, OPD is a legal pseudo-metric. Thus, the order-
subpermutation measurement can adapt to harmonic decomposition,
which will be shown in the next section.

3.2 Harmonic Estimation
For TSF tasks, we often receive the observed time series {xt, t ∈ Z}
and aim at predicting the b-step ahead value xt+b or trend xt+b − xt,
where b ∈ N+. For convenience, we mark the set of instances
as {(xt, yt) : xt = (xt−a+1 · · · , xt), yt = xt+b}, and note that
a ∈ N+ is the feed-up parameter while b is the horizon parameter.
In general, suppose that there is a underlying continuous forecasting
function f , satisfying f(xt) = yt. By exploiting harmonic decompo-

sition and order-subpermutation deformation, we have the following
estimation conclusion.

Theorem 1 Concerning the objective time series {xt, t ∈ Z}, for a
finite set {τ1, · · · , τm} and t, if there exist certain τi and k ∈ N+,
satisfying Dt+τi

t = Dt+τi+k
t+k , then there is a harmonic convergence

formula with respect to the forecasting function

ŷt = fK(xt) =

K∑
i=1

αi · Φ(xt, HRi), (3)

where HRi is the centroid of basic ball Bi, αi = f(HRi) is the cor-
responding harmonic coefficient, Φ measures the similarity between
two unequal-period sequences and K is the number of basic balls.

Especially, if the concerned time series belongs to a mixture Gaus-
sian process, the estimation error of the forecasting function f can be
bounded by

Error(f) ≤M · exp

(
− σ2

2(δ2 − δ1)2

)
,

where σ is the maximum variance of the mixture Gaussian process,
δ2 ≥ δ1 ∈ R, and M is a constant with respect to K,σ, δ1, δ2.

Proof Suppose that f is a continuous function that maps from Rn
to R, i.e., f ∈ C[ (Rn,R), ‖ · ‖D ], where ‖ · ‖D is a preset legal
metric, then there exists a natural harmonic decomposition in the
Hilbert spaceH(Rn, ‖ · ‖D)

f(x) =

∫
H
K0(‖x− z‖D)f(z) dz, (4)

where the real kernel function K0 belongs to a Schwartz space
S(R,R) and is singular near x = z with the norm ‖ · ‖D .

As mentioned in Section 2, the following formula holds:

‖(x1, · · · , xi, · · · , xn)− (x1, · · · , ui, · · · , xn)‖D = 0,

where ui = max{xi}. Thus, we have

sup
xi

| f(x) | ≤ ci,

implying that f has a compact support inH(Rn, ‖ · ‖D), that is, the
stochastic process Xt can be covered by finite landmark points with
corresponding basic balls [37]. In other words, the finite instance
space of f can be partitioned by two types of basic balls{

B1(x) = {z : ‖x− z‖D ≤ δ1};

B2(x) = {z : ‖x− z‖D ≤ δ2},

and a truncation function

τ(z) =


1 , z ∈ B1(x) ;

exp

(
−‖x− z‖D

δ2 − δ1

)
, z ∈ B2(x) \B1(x) ;

0 , z /∈ B2(x) .

Figure 3 illustrates this procedure in detail. The whole instance space
is completely covered by B1 balls and B2 balls. The regions covered
by B1 balls have a confidence of 1, while the rest region, i.e., the
truncation partition (denoted as T P), is with a diminishing confidence.
Let K denote the number of B1 balls. By gathering all B1 balls, we



can estimate the forecasting function with confidence 1 as follows:

fK(x) =

∫
⋃
B1(x)

K0(‖x− z‖D)f(z) dz. (5)

Discretizing Equation 4 and 5 as
f(x) =

∞∑
i=0

f(zi) ·K0(‖x− zi‖D),

fK(x) =

K∑
i=0

αi · Φ(x, HRi) ,

where HRi = E[B1(xi)], αi = f(HRi), and Φ(x, HRi) =
K0(‖x − HRi‖D). Then we can obtain the core formula shown
in Equation 3.

If the concerned time series {xt, t ∈ Z} belongs to a mixture
Gaussian process, the instance z will be distributed over the truncation
partition with probability

ρ(z) ≤ min
x∈

⋃
B1(x)

1√
2πσ

exp

(
−‖x− z‖

2
D

2σ2

)
.

Abbreviate ‖x−z‖D asD. Then the estimation error can be bounded
by the cost of abandoning the truncation partition, i.e.,

Error(f) ≤ | Ex∈T P [f(x)] |

≤
∫
⋃
B2(x)\

⋃
B1(x)

exp

(
−‖x− z‖

2
D

δ2 − δ1

)
ρ(z) dz

≤ K√
2πσ

·
∫ δ2

δ1

exp

(
− D

δ2 − δ1

)
exp

(
− D

2

2σ2

)
dD

≤M · exp

(
− σ2

2(δ2 − δ1)2

)
,

where M = K(δ2 − δ1)/(
√

2πσ).
Besides, the truncation function has various formations. If we adopt

the following formula:

τ(z) =


1 , z ∈ B1(x) ;

exp

(
−‖x− z‖

2
D

δ2 − δ1

)
, z ∈ B2(x) \B1(x) ;

0 , z /∈ B2(x) ,

then the estimation error can be bounded by

Error(f) ≤ K(δ2 − δ1)√
2πσ

· exp

(
(2σ2 + δ2 − δ1)δ21

2σ2(δ2 − δ1)

)
.

�
In Theorem 1, we cover the finite instance space by two types of

basic balls B1(x) and B2(x). The samples in the ball B1(x) are ab-
solutely reliable, i.e., recurrent and clearly distinguishable, while the
samples between B1(x) and B2(x) are confusing. So we can extract
the recurrent patterns of the observed time series by the centroids of
B1-basic balls. When predicting a future value, a natural idea is to
match the current input sequence xt with all the recurrent patterns
HRi, and then make the combination of the harmonic elements αi
associated with the analogous patterns. By exploiting the recurrent
elements HRi and harmonic elements αi, the mysterious forecasting
function f can be formalized into a specific formula, as shown in
Equation 3. In the next section, we will calculate these two types

Figure 3. Illustration of truncation coverage and unit decomposition.

of elements, that is, αi and HRi by two concrete phases: recurrent
phase and harmonic phase.

3.3 Recurrent Phase

According to HRi = E[B1(xi)], the recurrent element HRi can be
generated by gathering the similar samples in the basic ball B1(xi)
and raising a representative one. It is in line with the essence of
clustering. In fact, there have been many methods to implement this
procedure, such as k-means++ [3], functional subspace clustering [4],
and sparse & low-rank decomposition [1].

Here, we develop an improved k-means++ algorithm by incor-
porating the order-subpermutation metrics SOPD and OPD into k-
means++, as described in Algorithm 1. There are two key points
in the Order-subpermutation Clustering algorithm. Firstly, the cen-
troids in Step 5 are updated by averaging the order-subpermuted
instances, which can achieve the optimal averaging [30]. Secondly,
the order-subpermutation metrics here should be used with caution,
since improper order-subpermutation transformations of the original
sample will cause over-exploitation and lose a lot of necessary infor-
mation. To avoid this matter, in Step 2, we use OPD to calculate the
sampling probability

min
k
OPD(xi, ck)∑

i

[ min
k
OPD(xi, ck) ]

, (6)

where ck denotes the centroid of the k-th cluster and k < i. And in
Step 4, we employ SOPD to update the centroids of clusters

ck =

∑
xi∈Ck

xi ·Pi

|Ck|
, (7)

where |Ck| indicates the number of instances in the k-th cluster.
However, the computational complexity of SOPD and OPD is too

large if traversing all possible order-subpermutation matrices. To
simplify the computation procedure, we can utilize the idea of setting
warping window ω in [4], which restricts the search space into a strip
area by forcibly limiting that the maximum allowed subpermutation
time stamps from point i1 to the deformation point i2 is ω. So the
computational complexity of traversing P can be lowered to Ω(mω).



Algorithm 1 Order-subpermutation Clustering
Input: Set of instances {xi}Ni=1 and number of clusters K.
Output: Centroids c1, · · · , cK of the clusters C1, · · · , CK .
Procedure:

1: Arbitrarily choose an initial centroid c1.
2: Take a new centroid ck by choosing xi with the sampling probability,

described in Equation 6.
3: Repeat Step 2, until we have taken K centriods altogether.
4: For each instance xi,

find the closest centroid ck to xi by mini SOPD(xi, ck),
record the corresponding optimal order-subpermutation matrix Pi,
and put xi into the k-th cluster Ck .

5: For each cluster, update its centroid according to Equation 7.
6: Repeat Steps 4 and 5 until C1, · · · , CK no longer change.

3.4 Harmonic Phase

In the harmonic phase, we are going to estimate the harmonic element
αi, which corresponds one-to-one with the recurrent patternHRi and
is formulated by αi = f(HRi) = f(E[B1(xi)]).

An intuitive idea is simply to estimate αi with an average or
weighted average, i.e., replace f(E[B1(xi)]) with E[f(B1(xi))],
which, however, requires that the forecasting function f must be lin-
ear. We argue this view and present a global data-based optimization
process to calculate αi. The key idea is that the proper harmonic
elements should be able to portray the various harmonic character-
istics of the whole data set rather than focusing on a certain cluster.
When receiving an instance xj , we dynamically select several closest
recurrent elements to xj by utilizing SOPD and a threshold θ, and
then integrate these filtered elements to fit the target value according
to the forecasting formula yj =

∑K
i=1 αi Φ(xj , HRi). Thereby, we

can obtain the global optimal coefficients {αi}Ki=1 by the following
two formal optimization issues.

For a certain threshold θ, we find the optimal {αi}Ki=1 as follows:

α∗(θ) = arg min
α

n∑
j=1

(
K∑
i=1

αiΨij − yj

)2

s.t. Ψij =

{
Φ(xj , HRi), if e−SOPD(xj ,HRi) ≤ θ;

0 , otherwise.

(8)

The other optimization issue is related to θ

θ∗ = arg min
θ

Loss(θ), s.t. θ ∈ [0, 1), (9)

where

Loss(θ) =

n∑
j=1

(
K∑
i=1

α∗i (θ)Ψij − yj

)2

.

Analogous to least squares estimation, Equation 8 has a closed-form
solution:αT = (Ψ ·ΨT )−1 ·Ψ ·yT , whereα = (α1, · · · , αK) and
y = (y1, · · · , yn). To avoid the singular solutions, we sometimes
need to add a regularizer to Equation 8. Besides, Equation 9 can be
efficiently solved by the Bayesian optimization algorithm [36].

4 Theoretical Analysis

So far, we have discussed the structure of the finite-dimensional
distribution families of HRP and present a concrete implementation.
In this section, we are going to investigate the predictability of HRP.

Similar to most predictable theoretical results [26, 27], we need
to constrain the dependence between random variables. In order to
characterize this problem more accurately, we introduce the Copula

coefficient according to Sklar’s theorem [25].

Lemma 1 Given a fixed t, there is a unique constantCt(k) satisfying
the following equation:

Dt+τi
t ∧Dt+τi+k+τj

t+τi+k
= Ct(k) ·Dt+τi

t ·Dt+τi+k+τj
t+τi+k

,

where for any non-negative integers τi, τj , Dt+τi
t ∧ Dt+τi+k+τj

t+τi+k

denotes the joint distribution of X|t+τit and X|t+τi+k+τjt+τi+k
. Here,

Ct(k) is said to a Copula coefficient.

Obviously, the Copula coefficient, as a tool for characterizing the
interdependence mechanism between variables, contains almost all
the dependent information of random variables (that may be non-
adjacent). For example, the case that for any t and k, Ct(k) = 1,
means that random variables are independent of each other. Thus, the
Copula coefficient is useful for indicating the correlation between
variables without calculating autocorrelation coefficients [32]. For
most realistic cases, the futures of a concerned time series would
have a sufficiently weak dependence on the distant past [2], that is,
supt Ct(k)→ 0 as k → +∞. With this prior, we can claim that the
stochastic process led by our HRP is predictive PAC learnable [35].

Theorem 2 The HRP with weak dependence condition is predic-
tive PAC learnable. In detail, let a = max{τ1, · · · , τm}, and
{(xi, yi)}Ni=1 denote the sample set. For any δ′ = δ−bN

k
cβ(k) > 0,

with probability 1− δ, the following holds for all hypotheses ~ ∈ H:

E(~) ≤ Ê(~) +
2

k

2k∑
i=1

Rp(Xi) +
2

N

N∑
i=1

d(si, t+ b) +C

√
log 2

δ′

8p
,

(10)
where E(~) is the generalization error, Ê(~) denotes the empirical
error, C indicates the upper bound of the loss function and {si}
represents a series of time stamps where sN = t. Specially, {Xi} is
a partition of the training set that {xi(p−1)+1,xi(p−1)+2, · · · ,xip},
where p = dN

k
e, so the second term is summed by the Rademacher

complexity of each subset

Rp(Xi) =
1

p
E

sup
~∈H

∑
j:xj∈Xi

σj loss(~(xj), yj)

 ,
where σj is the Rademacher random variable and loss(~(xj), yj)
is the prediction error. And the third term measures the discrepancy
between two probability distributions

d(s, t) = sup
~∈H
|Ls(~)− Lt(~)|,

where Ls(~) = Es [loss(~(xs), ys)|Xs
s−a+1] denotes the path-

dependent generalization error.

Theorem 2 reveals an important conclusion that the temporal
length of effective recurrent patterns are between 1 and the maximum
period max{τ1, · · · , τm}. So when generating instances, we can
simply set the feed-up parameter a equal to this maximum period.

Proof Here, we highlight the proof logic flows of Lemma 1 and The-
orem 2 below. Sklar’s theorem [25] states that any multivariate joint
distribution can be formalized as a combination function of univariate
marginal distributions and a Copula. So the Copula coefficient of the
stochastic process can be formulated lucidly by a time-dependent
function Ct(k). If supt Ct(k)→ 0 as k → +∞, the concerned time



series meet the weak dependence condition that the futures have a
sufficiently weak dependence on the distant past.

Then we can deduce that the stochastic process with weak depen-
dence condition is β-mixing [15] with

β(k) = sup
t

EXt
−∞

[
‖D+∞

t+k(·|Xt
−∞)−D+∞

t+k(·)‖∞
]
,

where D(·|·) stands for conditional probability measure. The β-
mixing coefficients satisfy

β(k)→ 0, as k → +∞.

According to the generalization bound results of the mixing process
in [35, 26], we can conclude that our proposed HRP is predictive PAC
learnable and the generalization error can be bounded by

E(~) ≤ Ê(~) +
2

k

2k∑
i=1

Rp(Xi) +
2

N

N∑
i=1

d(si, t+ b) +C

√
log 2

δ′

8p
.

�

5 Experiments

In this section, we are going to examine the practical performance
of the proposed HRP in a handful of experiments. In Section 5.1,
we evaluate the effectiveness of the introduced order-subpermutation
metrics and analyze the sensitivity of hyperparameters K and w,
through a simulated task of forecasting the coupling consine signals.
In Sections 5.2 and 5.3, we compare HRP with some state-of-the-
art TSF models on two real-world data sets, Yancheng Automobile
Registration and CSI 300, respectively.

5.1 Coupling Cosine Signals

We first consider the Coupling Cosine Signals Forecasting task, which
performs a kind of typical nonstationary time series with period-
varying patterns. A simpler version of the task was proposed in [29].
Here, we generate a coupling cosine signal train within 1000 input
points by exploiting different cos functions with period 5-9. As men-
tioned in Theorem 2, we fix the maximum period parameter a = 9. In
the following experimental procedure, we feed up HRP with the first
900 signals and forecast the future 100 values of coupling cosine.

The purposes that we conduct experiments on coupling cosine
signals are twofold: (1) to exhibit the advantages of our proposed
order-subpermutation measures against other elasticity measures; (2)
to evaluate the parameters sensitivity and configurations of our HRP
model. Therefore, we first investigate the performance of HRP with
w = 1 by employing various measures in the recurrent phase. The
experimental results are shown in Table 1. In the cases that take 30,
40, or 50 clusters, our proposed order-subpermutation measures are
able to perform better, achieving the best mean squared error (MSE)
in contrast to ACF, ED, EDR, 1-DTW, and FWS [4].

Table 1. MSE of HRP with different measures for the task of forecasting
coupling cosine signals.

Clusters ACF ED EDR 1-DTW FWS SOPD / OPD

K=30 0.3960 0.4934 0.3481 0.4946 0.3432 0.3430
K=40 0.4109 0.6264 0.3689 0.3996 0.3211 0.3146
K=50 0.3399 0.5494 0.3319 0.4016 0.3081 0.3074
K=60 0.3634 0.5037 0.3723 0.4530 0.4413 0.4326
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Figure 4. HRP on Coupling Cosine Signals. (a)-(b) Prediction raster plots
with respect to the number K of clusters and the warping window w,

respectively; (c) Snapshot of HRP forecasting signals with K = 50 and
w = 1; (d) Recurrent patterns of HRP with K = 50 and w = 1.

The second testing is to demonstrate parameters sensitivity and to
determine the best configuration of our HRP model. Figure 4(a) and
4(b) plot the empirical and generalization errors of HRP with various
warping window w and the number K of clusters from 20 to 60,
respectively. From the prediction raster plots, we can observe that the
MSE curves are almost positively proportional to w. In practice, we
suggest that w should be between 10% and 20% of the window size.
Besides, the better performance can be obtained when K is sampled
from the interval [40, 50]. Thereby, HRP is robust to both the number
K of clusters and the warping window w.

Furthermore, we displayed the forecasting snapshot of HRP with
K = 50 and w = 1 to indicate how the errors are constructed. The
comparison diagrams of the supervised signals (red) and the predicted
signals (blue) are shown in Figure 4(c). And the corresponding 50
recurrent patterns are exhibited in Figure 4(d). From these charts, we
can find out that our proposed HRP has a good predictive performance.

5.2 Yancheng Automobile Registration
Next, we conduct experiments on the Yancheng Automobile Regis-
tration Forecasting task 2, which comprises registration records of 5
car brands in nearly 1000 dates. To feed up HRP and other compet-
ing approaches with a reasonable setting, we sample 5 consecutive
points as an input instance to predict the one-step-ahead increment. In
particular, missing points and outliers in this data set are not prepro-
cessed. Additionally, we utilize the first 800 instances to constitute the
training set, and the testing set consists of follow-up 100 instances.

2 https://tianchi.aliyun.com/competition/entrance/231641/information



Table 2. MSE and setting of comparative models for the task of forecasting
Yancheng Automobile Registration data.

Types Models Settings MSE (105)

Stastical Models

ARIMA (p, d, q) = (6, 1, 3) 84.5129
MAR [39] – 92.6458
AGP [7] – 41.0147

KNNs [40] (K,w) = (1, 1) 31.2573

Evolution Models

NARXnet [20] 3 28.0549
LSTM 3 15.2490

GRU [12] 3 13.0421
LSTNet [28] 3 10.2070

Our Work HRP DTW (K,w) = (1, 1) 9.2737
HRP (K,w) = (1, 1) 6.6460

3 indicates the setting of neural networks, that is, the input size = 7, the
hidden size = 50, employing 32 convolution, and running 100 Epochs.

Table 2 lists the comparative results of nine competing approaches
and HRP with K = 50 and w = 1. Note that HRP DTW denotes the
HRP model using DTW as a deformation measure instead of SOPD
and OPD. Based on these results, we find that (1) the proposed HRP
achieves the best performance, surpassing the competing approaches
including HRP DTW; (2) deep learning approaches (i.e., NARXnet,
LSTM, GRU, and LSTNet) are superior to statistical methods (i.e,
ARIMA, MAR, AGP, and KNNs), which is consistent with that ob-
served in the previous works [12, 28].

5.3 CSI 300
The last experiment is run on the minute-level stock market prices of
the CSI 300 Index, which are accessed from Tushare Pro3. Empiri-
cally, we raise the price series per morning as the input signals, and
correspondingly regard the log return of per afternoon as the target
value. Additionally, we set the warping window w = 10, since the
dimension of input sequence is much larger (more than 100 dimen-
sions). In a bid to balance the ratio of rise and fall, we set the testing
data set drawn from February 21st, 2013 to May 20th, 2014, just 100
days, and the training data set consists of the price data from April
25th, 2005 to February 20th, 2013. Finally, we add the evaluation
indicator, Confusion Accuracy, which consists of True Positive Rate
(TPR) and True Negative Rate (TNR).

Table 3. MSE and confusion accuracy of NARXnet, LSTM, GRU, LSTNet,
and HRP (K = 50, w = 10) for the task of forecasting CSI 300 Index data.

Models MSE (10−5) Accuracy (%) TPR (%) TNR (%)

NARXnet 19.16 60.00 73.68 41.86
LSTM 20.26 57.00 63.16 48.84
GRU 17.22 62.00 75.44 44.19

LSTNet 12.70 65.00 71.93 53.49

HRP (our work) 9.80 68.00 77.19 55.81

Table 3 displays the MSE and confusion accuracy of NARXnet,
LSTM, GRU, LSTNet, and HRP on the CSI 300 Index data set.
We do not list the performance of some conventional or statistical
methods due to their poor achievements in such a complicated case.
The results show that HRP can surpass other competing models in
both effectiveness and accuracy.

We also conduct an extensive experiment for stocks selection in
the CSI 300 Constituent Stocks pooling, containing 400 stocks with

3 http://tushare.org/index.html

Table 4. Performance of HRP on a portion of CSI 300 constituent stocks.

Stock Codes MSE (10−3) TPR (%) TNR (%) PR / NR

000926 SHE 6.72 92.17 40.41 2.00
001696 SHE 4.80 66.56 53.73 0.87
002155 SHE 9.30 56.41 68.23 1.14
600300 SHG 4.81 52.33 61.21 1.39
600635 SHG 10.20 57.72 61.80 1.17
600863 SHG 8.40 73.41 45.56 1.41

000006 SHE 8.34 61.32 40.22 0.88
000519 SHE 27.57 70.61 32.93 0.70
600060 SHG 23.30 58.81 36.40 1.11
600141 SHG 120.21 36.27 57.11 1.27

minute-level stock market prices. Analogous to the aforementioned
setting, we enter the price series per minute in the morning to predict
the log return in the afternoon, and divide the whole data set into
the training part from January 5th, 2015 to June 22nd, 2017 and the
testing part from June 23rd, 2017 to November 16th, 2017.

Table 4 lists the MSE and confusion accuracy of the proposed
HRP on a portion of representative CSI 300 constituent stocks, where
PR / NR indicates the ratio of rise and fall of the log returns on the
testing data set. At first glance, HRP does not perform well on all
stocks. For example, the stock 600141 SHG has larger MSE and lower
confusion accuracy. The imperfect reasons for the under-performing
stocks may be twofold: the number of training instances is not large
enough to identify the recurrent patterns, or the potential distributions
are inherently fickle, which are difficult to predict. However, HRP
still holds an effective performance on some stocks in both MSE and
confusion accuracy. Particularly, the TPR of stock 000926 SHE even
reached 92.17%. We clearly distinguish between the well-performing
and under-performing stocks using a spacer line in Table 4.

6 Conclusion
In this paper, we present the HRP for nonstationary TSF. HRP is
adept in exploring the recurrent order-subpermutation patterns of time
series with harmonic decomposition, and thus, can be applied to more
realistic and complex situations. We give an effective implementation
of HRP, and also prove that the stochastic process led by HRP under
weak dependence condition is predictive PAC learnable. The empirical
studies conducted on several tasks confirm the effectiveness of HRP.
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