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Abstract

In recent years, visual recognition on challenging long-tailed
distributions, where classes often exhibit extremely imbal-
anced frequencies, has made great progress mostly based on
various complex paradigms (e.g., meta learning). Apart from
these complex methods, simple refinements on training proce-
dure also make contributions. These refinements, also called
tricks, are minor but effective, such as adjustments in the
data distribution or loss functions. However, different tricks
might conflict with each other. If users apply these long-tail
related tricks inappropriately, it could cause worse recognition
accuracy than expected. Unfortunately, there has not been a
scientific guideline of these tricks in the literature. In this
paper, we first collect existing tricks in long-tailed visual
recognition and then perform extensive and systematic ex-
periments, in order to give a detailed experimental guideline
and obtain an effective combination of these tricks. Further-
more, we also propose a novel data augmentation approach
based on class activation maps for long-tailed recognition,
which can be friendly combined with re-sampling methods
and shows excellent results. By assembling these tricks scien-
tifically, we can outperform state-of-the-art methods on four
long-tailed benchmark datasets, including ImageNet-LT and
iNaturalist 2018. Our code is open-source and available at
https://github.com/zhangyongshun/BagofTricks-LT.

Introduction

Computer vision has achieved great progress with the devel-
opment of convolutional neural networks (CNN5s) trained on
balanced distributed datasets (Deng et al. 2009; Krizhevsky
and Hinton 2009; Wah et al. 2011). But in real-world scenar-
ios, large scale datasets (Zhou et al. 2017; Van Horn et al.
2018; Lin et al. 2014; Wang et al. 2020) naturally exhibit the
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imbalanced and long-tailed distributions, where a few cate-
gories (majority categories) occupy most of the data while
most categories (minority categories) are under-represented.
CNNss trained on these long-tailed datasets deliver poor recog-
nition accuracy, especially for under-represented minority
categories. Dealing with such long-tailed distributions is in-
dispensable in real-world applications, such as object detec-
tion (Lin et al. 2017; Ouyang et al. 2016; Wang, Wang, and
Wang 2020), instance segmentation (Wang et al. 2019; Gupta,
Dollar, and Girshick 2019), visual recognition (Zhang et al.
2017; Zhong et al. 2019; Cao et al. 2019; Cui et al. 2019),
etc. In this paper, we focus on the fundamental long-tailed
visual recognition problem.

Recently, long-tailed visual recognition has attracted in-
creasing attentions. Various methods belonging to different
paradigms, e.g., metric learning (Wang et al. 2018; Liu et al.
2019a; Cao et al. 2019), meta learning (Liu et al. 2019b;
Peng et al. 2019; Jamal et al. 2020) and knowledge trans-
fer (Wang, Ramanan, and Hebert 2017), have been success-
fully explored for long-tailed recognition. Although these
methods bring a steady trend of accuracy improvements on
long-tailed datasets, they often suffer from high sensitivity
to hyper-parameters (Cao et al. 2019; Yan et al. 2019) or
high complexity in the training procedures (Wang, Ramanan,
and Hebert 2017; Liu et al. 2019b; Xiang, Ding, and Han
2020). Besides, it causes difficulties to efficiently apply these
methods in various real-world scenarios. Apart from these
methods, existing training tricks in long-tailed visual recog-
nition also play a major role, which just make simple refine-
ments to the vanilla training procedure, such as adjustments
in loss functions or data sampling strategies. These tricks
are simple but make big differences in recognition accuracy.
However, different tricks might hurt each other during train-
ing when they were employed inappropriately. For instance,
re-sampling (Buda, Maki, and Mazurowski 2018; Japkowicz
and Stephen 2002) and re-weighting (Mikolov et al. 2013;
Cui et al. 2019) are two commonly used tricks to alleviate
the imbalance of long-tailed distributions. Re-sampling tries
to get balanced datasets, and re-weighting assigns weights
to categories determined by inversion of class frequencies.



Table 1: Top-1 error rates on long-tailed benchmark datasets. Our bag of tricks obtains significant accuracy gains compared with

state-of-the-art methods. (Best results are marked in bold.)

CIFAR-10-LT [ CIFAR-100-LT
Datasets Imbalance factor iNaturalist 2018 | ImageNet-LT
100 [ 50 100 [ 50
Backbones ResNet-32 ResNet-32 ResNet-50 ResNet-10
Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90 39.89 65.99
Focal loss (Lin et al. 2017) 29.62 | 2475 | 61.90 | 57.56 39.70 67.36
CB Focal (Cui et al. 2019) 2543 | 20.73 | 60.40 | 53.79 38.88 -
Feature space augmentation (Chu et al. 2020) - - - - 34.09 64.80
Meta-learning (Jamal et al. 2020)" 20.00 | 17.77 | 5592 | 50.84 3245 70.10
LDAM with DRW (Cao et al. 2019) 2297 | 20.70 | 57.96 | 54.92 32.00 63.97
Decoupling learning (Kang et al. 2020) - - - - 30.70 58.20
Multi-experts (Xiang, Ding, and Han 2020)T#| - - 57.70 - - 61.20
BBN (Zhou et al. 2020) 20.18 | 17.82 | 57.44 | 52.98 30.38 -
Baseline + tricks (Ours) 19.97 16.41 52.17 48.31 29.13 56.87

t : Results on CIFAR-10-LT and CIFAR-100-LT are obtained by incorporating LDAM (Cao et al. 2019).
¥ Results on ImageNet-LT are obtained by incorporating OLTR (Liu et al. 2019b).

Since both re-sampling and re-weighting try to enlarge the
influence of minority categories, applying re-weighting and
re-sampling simultaneously will obtain similar or even worse
accuracy than using them alone.

Similar to re-weighting and re-sampling, when we apply
two or more long-tail related tricks, it would be great to know
which of them can be combined synergistically and also
which of them might conflict with others. Yet, no guideline
is available in the literature. Although there are several good
surveys about class imbalance learning (More 2016; Buda,
Maki, and Mazurowski 2018; Japkowicz and Stephen 2002),
they could be further comprised of effective tricks in the deep
learning era. More importantly, they lack the comprehensive
empirical studies of combining and evaluating a set of long-
tail related tricks quantatively.

In this paper, we focus on exploring commonly used, eas-
ily equipped, and hyper-parameters insensitive tricks in long-
tailed visual recognition. Also, we conduct extensive exper-
iments to provide valuable practical guidelines for future
researches. These long-tail related tricks are separated into
four families, i.e., re-weighting, re-sampling, mixup train-
ing, and two-stage training. Particularly, we add mixup train-
ing (Zhang et al. 2018; Verma et al. 2019) into long-tail re-
lated tricks because we find that mixup training delivers good
results in long-tailed visual recognition, especially when com-
bined with re-sampling. In each trick family, we introduce
commonly used tricks and compare the results on long-tailed
benchmark datasets. Furthermore, to overcome the lack of
discriminative information in existing re-sampling methods,
we propose a novel data augmentation approach based on
class activation maps (CAM) (Zhou et al. 2016), which is tai-
lored for two-stage training and generates discriminative im-
ages by transferring foregrounds while keeping backgrounds
unchanged. It can be friendly combined with existing re-
sampling methods and exhibits excellent results, which is
termed as “CAM-based sampling”. Also, we explore the
conflicts between tricks of different families to find the opti-
mal combination of tricks, named bag of tricks. Top-1 error
rates on long-tailed CIFAR and two large scale datasets (e.g.,

ImageNet-LT and iNaturalist 2018) are shown in Table 1,
which shows significant accuracy gains of our bag of tricks
compared with state-of-the-art methods.

The major contributions of our work can be summarized:

* We comprehensively explore existing simple, hyper-
parameters insensitive, long-tail related tricks and provide
a valuable practical guideline for future researches.

* We propose a novel CAM-based sampling approach tai-
lored for two-stage training, which is simple but effective
for long-tailed visual recognition.

* We conduct extensive experiments and find the optimal
combination of tricks. Our bag of tricks achieves outper-
forming recognition results compared with state-of-the-art
methods on four long-tailed benchmark datasets without
introducing extra FLOPs.

Datasets and baseline settings

In this section, we describe the long-tailed datasets used in
experiments as well as baseline training settings, e.g., back-
bone network, data augmentation, etc. For fair comparisons,
we keep our experimental settings consistent with previous
works (Cao et al. 2019; Cui et al. 2019; Zhou et al. 2020).

Datasets

Long-tailed CIFAR The long-tailed versions of CIFAR-
10 and CIFAR-100 datasets (CIFAR-10-LT and CIFAR-100-
LT) (Cui et al. 2019) are benchmark datasets for long-tailed
recognition. As the original CIFAR datasets (Krizhevsky
and Hinton 2009), the long-tailed versions contain the same
categories. However, they are created by reducing the number
of training samples per class according to an exponential
function n = n; x u!, where ¢ is the class index (0-indexed)
and n; is the original number of training images with y €
(0,1). The test set remains unchanged. The imbalance factor
of a long-tailed CIFAR dataset is defined as the number of
training samples in the largest class divided by that of the
smallest, which ranges from 10 to 200. In the literature, the



Table 2: Top-1 error rates of reference implementations and our baseline.

CIFAR-10-LT | CIFAR-100-LT
Datasets Imbalance factor iNaturalist 2018 | ImageNet-LT
10 [ 50 100 50
Backbones ResNet-32 ResNet-32 ResNet-50 ResNet-10
Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90 39.89 65.99
Reference (Cui et al. 2019; Liu et al. 2019b) 29.64 25.19 61.68 56.15 42.86 64.40

imbalance factor of 50 and 100 are widely used, with around
12,000 training images under each imbalance factor.

iNaturalist 2018 The iNaturalist species classification
datasets (Van Horn et al. 2018) are large-scale real-world
datasets that suffer from extremely imbalanced label distri-
butions. The most challenging dataset of iNaturalist is the
2018 version, which contains 437,513 images from 8,142
categories. Besides the extreme imbalance, the iNaturalist
datasets also face the fine-grained problem (Wei, Wu, and Cui
2019). We follow the official training and validation splits of
iNaturalist 2018 in our experiments.

Long-tailed ImageNet The long-tailed ImageNet
(ImageNet-LT) is derived from the original ImageNet-
2012 (Deng et al. 2009) by sampling a subset following the
Pareto distribution from 1,000 categories, with maximally
1,280 images per class and minimally 5 images per class.
The test set is balanced by following (Liu et al. 2019b).

Baseline settings

Backbones We adopt deep residual networks (He et al.
2016) as backbones. Specifically, we follow (Cui et al. 2019)
to use the residual network with 32 layers (ResNet-32)
and the residual network with 50 layers (ResNet-50) for
long-tailed CIFAR and iNaturalist datasets, respectively. For
ImageNet-LT, according to (Liu et al. 2019b), we adopt
ResNets with 10 layers (ResNet-10) for fair comparisons.

Data augmentation For long-tailed CIFAR datasets, we
follow the data augmentation in (He et al. 2016). During
training, each image is padded with 4 pixels on each side
and randomly cropped out a 32-by-32 region. The cropped
regions are flipped horizontally with 0.5 probability and then
normalized by the per-color mean and standard deviation be-
fore training. During validation, for each image, we resize its
shorter edge to 36 pixels while keeping its aspect ratio. Sub-
sequently, we crop out the 32-by-32 region in the center and
normalize RGB channels similar to the training procedure.
For iNaturalist 2018 and ImageNet-LT, we follow the data
augmentation in (Goyal et al. 2017). During training, we
use scale and aspect ratio data augmentation (Szegedy et al.
2015) and get a 224-by-224 randomly cropped region from
an augmented image or its horizontal flip. The regions are
normalized by the per-color mean and standard deviation
before training. During validation, for each image, we resize
its shorter edge to 256 pixels while keeping its aspect ratio

and then the 224-by-224 region is cropped out in the center
and normalized before validation.

Training details All backbones are trained from scratch.
We adopt the initialization method in (He et al. 2015). The
biases are initialized to O for all layers. We train ResNet-32
on long-tailed CIFAR datasets by stochastic gradient descent
(SGD) with momentum of 0.9 and weight decay of 2 x 10~
The number of training epochs is 200 and the batch size is
128. Learning rate is initialized to 0.1 and divided by 100
at the 160™ and 180™ epoch, respectively. We use warm-
up (Goyal et al. 2017) for the first five epochs.

For iNaturalist 2018 and ImageNet-LT, we follow the same
training strategy with Goyal et al. (2017). Backbones are
trained with batch size of 512. The number of training epochs
is 90, and the learning rate is initialized to 0.2 and divided by
10 at the 30™, 60™ and 80" epoch without warm-up. SGD is
adopted with momentum of 0.9 and weight decay of 1x 10~

Top-1 error rates of baseline training are shown in Table 2,
and our results are mostly consistent with references (Cui
et al. 2019; Liu et al. 2019b). For slightly inconsistent ones,
such as iNaturalist 2018 and ImageNet-LT, they might be
caused by running environment (e.g., the version of CUDA
and deep learning frameworks), because we keep training
and validation settings consistent with references.

Trick gallery

We divide the long-tail related tricks into four families: re-
weighting, re-sampling, mixup training, and two-stage train-
ing. We take mixup training as a long-tail related trick, be-
cause we find that mixup training (Zhang et al. 2018; Verma
et al. 2019) delivers good recognition accuracy in long-
tailed visual recognition, especially when combined with
re-sampling. In each trick family, we introduce commonly
used tricks and compare their accuracy.

In addition, we propose a simple yet effective data aug-
mentation approach tailored for two-stage training. The
proposed approach is based on the class activation maps
(CAM) (Zhou et al. 2016), which can be friendly combined
with re-sampling and termed as “CAM-based sampling”.

Re-weighting methods

Cost-sensitive re-weighting methods are commonly adopted
methods in the long-tailed literature. These methods guide
the network to pay more attention on minority categories by
assigning different weights to different classes.

Formally, for each image with label ¢ € {1,2,...,C}, we

set the predicted outputs as z = [z, 22, . . ., zc}T, where C



is the total number of classes. We define n. as the number of
training images in class ¢ and n,,,;,, as the number of training
images in the smallest class. Softmax cross-entropy loss (CE)
is used as the baseline, which is defined as

ECE<z,c)=—log<Z§Xp(zC)> . ()

i=1 €XP (Zz)

Existing re-weighting methods We review commonly
used re-weighting methods, including cost-sensitive soft-
max cross-entropy loss (Japkowicz and Stephen 2002), fo-
cal loss (Lin et al. 2017), and the recently proposed class-
balanced loss (Cui et al. 2019).

o Cost-sensitive softmax cross-entropy loss (CS_CE) (Jap-
kowicz and Stephen 2002) is defined as

Nmin €xXp (Zc)
— log . Q@
ne (z& exp (zn)

e Focal loss (Lin et al. 2017) adds an adjusting factor to
the sigmoid cross-entropy loss to focus training on difficult

Lcs ce(z, )=

samples. We denote p; = sigmoid(z;) = m and
define p! as
+ pi;, t=¢
b — 3
b {1—2% i#c’ )
and then the focal loss can be written as
c
Lroca(z,¢)=— Y _ (1—pt)" log(p}) , )
i=1

where - is a hyper-parameter to control the importances of
different samples.

e Class-balanced loss (Cui et al. 2019) considers the real
volumes of different classes, named effective numbers, rather
than the nominal numbers of images provided by datasets.
With the theory of effective numbers, the class-balanced focal
loss (CB_Focal) and class-balanced softmax cross-entropy
loss (CB_CE) are defined as

LB Focal (2, €)

c
- ﬁncg (1=pf) " log(p}) . (5)

1-8 exp (2¢)
1 6
l_ﬁnc og (Zle exp (ZZ)> 9 ( )

where 7 and (3 are two hyper-parameters. We set -y and /3 on
different long-tailed datasets according to (Cui et al. 2019).

Lcg.ce(z,c)=—

Experimental results We evaluate re-weighting methods
on long-tailed CIFAR datasets. As shown in Table 3, we dis-
cover that re-weighting delivers lower error rates on CIFAR-
10-LT, but obtains worse results on CIFAR-100-LT com-
pared with vanilla ResNet-32. This indicates that applying
re-weighting directly in the training procedure is not a proper
choice, especially when the number of categories increases
and data becomes more imbalanced.

In the later section of “Two-stage training procedures”, we
will describe the two-stage training strategy for long-tailed
visual recognition, which demonstrates an effective strategy
to apply re-weighting.

Table 3: Top-1 error rates of re-weighting methods. It shows
directly applying re-weighting is inappropriate, especially
when the number of classes increases.

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor| 100 [ 50 100 50
CE 30.18 | 24.78 | 61.73 | 57.90
CB_CE 2826 | 2276 | 66.40 | 63.48
CS_.CE 29.07 | 23.74 | 7092 | 63.78
Focal loss 29.62 | 2475 | 61.90 | 57.56
CB_Focal 27.02 | 22.03 | 6236 | 57.24

Table 4: Top-1 error rates of re-sampling methods. It demon-
strates directly applying re-sampling methods brings slight
improvements.

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50

Baseline (Vanilla ResNet) 30.18 | 2478 | 61.73 | 57.90
Random under-sampling 34.14 | 2691 67.23 60.98

Random over-sampling 3324 | 2653 67.00 | 61.11
Class-balanced sampling 3044 | 2397 | 6734 | 6148
Square-root sampling 31.36 | 24.84 | 64.47 59.82

Progressively-balanced sampling| 32.91 25.03 | 6141 | 57.09

Re-sampling methods

Re-sampling is popular used for dealing with long-tailed
problems, which attempts to sample the data to get an evenly-
distributed dataset.

Existing re-sampling methods We review existing simple
and commonly used re-sampling methods as follows.

e Random over-sampling (Buda, Maki, and Mazurowski
2018) is one of the representative re-sampling methods,
which replicates randomly sampled training images from mi-
nority classes. Random over-sampling is effective, but might
lead to overfitting (Sarafianos, Xu, and Kakadiaris 2018).

e Random under-sampling (More 2016) randomly removes
training images of majority classes until all classes become
balanced. Drummond and Holte (2003) show that under-
sampling can be preferable to over-sampling in some situa-
tions.

e Class-balanced sampling (Kang et al. 2020) makes each
class to have an equal probability of being selected. The
probability p$'# of each class j is given by the following
Eq. (7) with ¢ = 0. Specifically, class-balance sampling
firstly samples a class uniformly and then an instance from
the chosen class is uniformly sampled:

n?

b = Ei?zngy (N
where j is the current class, and n; is the number of samples
in class ¢ with ¢ € [0, 1]. C is the number of total classes.

e Square-root sampling (Kang et al. 2020) sets q to % in
Eq. (7), which aims to return a lighter imbalanced dataset.

e Progressively-balanced sampling (Kang et al. 2020) pro-
gressively changes the sampling probabilities of classes from
vanilla imbalanced sampling to class-balanced sampling. The



corresponding sampling probability p; of class j can be cal-
culated by Eq. (8) for the current epoch ¢:

PB t Uz t 1
n=0- g i ®)
where 7' is the total epochs.

Furthermore, there are also other sampling methods that
create artificial samples or sample based on gradients and
features (Yan et al. 2019; Chawla et al. 2002; Shen, Lin, and
Huang 2018; Han, Wang, and Mao 2005; Perez-Ortiz et al.
2019; Yu and Lam 2019). However, these methods are usually
complicated and likely to introduce noisy data (Yu and Lam
2019). Therefore, we have not considered these methods in
this paper which targets on simple tricks.

Experimental results Table 4 shows the error rates of dif-
ferent re-sampling methods on long-tailed CIFAR datasets.
It can be observed that directly applying re-sampling to the
training procedure gets slight improvements.

Also, we will show in the section of “Two-stage training
procedures” that combining re-sampling methods with two-
stage training obtains significant improvements.

Mixup training

Mixup training can be viewed as a data augmentation trick,
which aims to regularize CNNs. We find mixup training deliv-
ers good accuracy in long-tailed visual recognition, especially
when combined with re-sampling.

Existing mixup methods We introduce two mixup meth-
ods in this section: input mixup (Zhang et al. 2018) and
manifold mixup (Verma et al. 2019).

e Input mixup has been proved effective to alleviate adver-
sarial perturbations in CNNs (He et al. 2019a; Zhang et al.
2019). In details, each new example is formed with two ran-
domly sampled examples (z;,y;) and (z;, y;), by a weighted
linear interpolation as follows

T=Xr; +(1—Nzj, 9)

y=Ayi+(1—=Ny;, (10)
where ) is randomly sampled from a Beta distribution. We
only use (Z, y) when training with input mixup.

e Manifold mixup encourages neural networks to predict
less confidently on interpolations of hidden representations,
which leverages semantic interpolations as additional training
signals. The mixed example is produced by

gk = Agr(zi) + (1 = Ngr(z;) , (11

y=Ayi+(1-Ny;, (12)

where (g (x;), ;) and (gx(z;), y;) are intermediate outputs

of two randomly sampled examples (x;, y;) and (x;, y;) after

layer k, and A is the mixing coefficient sampled from a Beta

distribution. We apply manifold mixup on only one layer in
our experiments.

Fine-tuning after mixup training He et al. (2019b) show
that the results of models trained by mixup can be further
improved if we remove the mixup in last several epochs. In
our experiments, we use the mixup training firstly, and then
fine-tune the models trained by mixup for several epochs
in order to obtain further improvements, which is named
“fine-tuning after mixup training”.

Table 5: Top-1 error rates of mixup methods. « is the hyper-
parameter of the Beta distribution. “FC” represents “fully-
connected”. We can see that input mixup and manifold mixup
are comparable. But in the section of “Removing controver-
sial tricks in each trick family”, we will show that input
mixup delivers better results.

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50
Baseline (Vanilla ResNet) 30.18 | 2478 | 61.73 | 57.90
Input mixup (@ =2 28.65 | 24.90 | 60.38 56.39
Input mixup (=1 26.99 | 2291 59.66 | 55.75

Manifold mixup on layer3 (@ =2 27.14 | 22.31 | 60.73 | 56.52
Manifold mixup on layer3 (= 1) 27.30 | 2241 60.81 56.68
Manifold mixup on FC layer (@ =2 27.79 | 21.87 | 60.21 | 57.09
Manifold mixup on FC layer (= 1) 26.64 | 2255 | 60.20 | 56.72
Manifold mixup on pooling layer (@ =2)| 27.67 | 22.02 | 60.45 56.45
Manifold mixup on pooling layer (@ =1)| 26.61 | 21.50 | 60.14 | 56.44

Table 6: Top-1 error rates of fine-tuning after mixup training.
Fine-tuning the models trained with input mixup obtains
further improvements. “ft.” represents “fine-tuning”

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 [ 50 [ 100 [ 50

Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90

Input mixup @ =1) 26.99 | 22091 59.66 | 55.75

Input mi =D+
Ppucmixup @ =1 2627 | 2032 | 5821 | 5397

ft. after mixup training
Manifold mixup on pooling layer @ =1) | 26.61 21.50 | 60.14 | 56.44

Manifold mixup on pooling layer (@ =1) +

28.88 | 22.59 | 61.16 | 5743

ft. after mixup training

Experimental results Experiments of mixup methods are
shown in Table 5. Especially, we do not try all possible values
of hyper-parameter « for the Beta distribution, which is not
the main purpose of our work. We can discover from Table 5
that 1) both input mixup and manifold mixup deliver better
results over baseline, and 2) when « is 1 and mixing up
location is set to the pooling layer, input mixup and manifold
mixup achieve comparable results, which need to conduct
more experiments with other tricks.

The results of fine-tuning after mixup training are shown
in Table 6. We can find that fine-tuning after input mixup
training can obtain further improvements, but fine-tuning
after manifold mixup gets worse results.

Two-stage training procedures

Two-stage training consists of imbalanced training and bal-
anced fine-tuning. In this section, we focus on exploring
different methods of balanced fine-tuning. We firstly describe
existing fine-tuning methods and then present our CAM-
based sampling approach.

Balanced fine-tuning after imbalanced training CNNs
trained on imbalanced datasets without any re-weighting
or re-sampling method learn good feature representations
but suffer poor recognition accuracy on under-represented
tail categories. Cui et al. (2018) fine-tune these networks



Ground truth label ¢

Figure 1: Overview of our proposed CAM-based sampling.
For each image sampled by re-sampling, CAM is firstly gen-
erated based on feature maps and FC weights of ground truth
label c. We separate the foreground and background based on
the average of its CAM values, and subsequently we trans-
form foreground while keeping background unchanged to get
the generated informative sampled dataset.

on balanced subsets to make the learned features from im-
balanced datasets be transferred and re-balanced among all
categories. These fine-tuning methods (Cao et al. 2019) can
be divided into two sections: deferred re-balancing by re-
sampling (DRS) and by re-weighting (DRW).

e DRS uses the vanilla training schedule firstly, and then
applies re-sampling for balanced fine-tuning. In order to get
a balanced subset for fine-tuning, re-sampling methods in-
troduced in the section of “Re-sampling methods” will be
applied. Furthermore, we propose a sample yet effective gen-
erative sampling method termed “CAM-based sampling”.

e DRW uses the vanilla training schedule in the first stage,
and then applies re-weighting methods in the second stage.
Re-weighting methods introduced in the section of “Re-
weighting methods” will be applied in the second stage.

The proposed CAM-based sampling for DRS Existing
re-sampling methods used in DRS only replicate or remove
randomly selected samples from the original dataset to gener-
ate balanced subsets, which deliver limited improvements dur-
ing balanced fine-tuning. In order to generate discriminative
information, inspired by class activation maps (CAM) (Zhou
et al. 2016), we propose CAM-based sampling, which shows
a significant accuracy improvement over existing methods
with a marginal extra cost.

As illustrated in Figure 1, we firstly apply re-sampling to
get balanced sampled images. For each sampled image, we
use the parameterized model trained in the first training stage
to generate CAM based on its ground truth label and corre-
sponding fully-connected layer’s weights. The foreground
and background are separated based on the average value of
its CAM, where the foreground contains pixels larger than
the average and the background contains the rest (Wei et al.
2017). Finally, we apply transformations to the foreground
while keeping the background unchanged. The transforma-
tion includes horizontal flipping, translation, rotating and
scaling, and we randomly choose only one transformation for
each image.

In concretely, we combine CAM with random over-
sampling, random under-sampling, class-balanced sampling,

Table 7: Top-1 error rates of different re-sampling methods
used in DRS. The proposed CAM-based sampling delivers
better results. In particular, CAM-based balance-sampling
obtains the best results. Compared with using re-sampling
directly in Table 4, DRS provides an effective way to apply
re-sampling methods.

CIFAR-10-LT [ CIFAR-100-LT

First stage Second stage of DRS Imbalance factor
100 [ 50 [ 100 [ 50
Baseline without re-sampling 30.18 | 2478 | 61.73 | 57.90
Random under-sampling 28.18 | 21.33 | 60.21 55.97
Random over-sampling 28.88 | 21.52 | 59.76 | 55.90
Class-balanced sampling 29.04 | 21.34 | 59.56 | 55.67
Square-root sampling 31.31 2221 61.02 | 57.05

Progressively-balanced sampling | 33.48 | 24.58 | 61.35 | 56.93
CAM-based under-sampling 24.98 19.15 58.99 | 54.17
CAM-based over-sampling 24.87 18.82 | 58.45 | 54.36
CAM-based balance-sampling 24.63 18.60 | 58.27 | 54.05
CAM-based square-sampling 28.14 | 20.69 | 60.07 | 55.61
CAM-based progressive-sampling| 27.39 19.46 | 59.67 | 55.28
ImageTrans balance-sampling 28.10 | 21.60 | 59.28 | 55.05

CE

Table 8: Top-1 error rates of different re-weighting methods
used in DRW. CS_CE obtains the best results in DRW train-
ing schedule. Compared with using re-weighting directly in
Table 3, applying re-weighting in second training stage is
more effective.

CIFAR-10-LT [ CIFAR-100-LT
First stage|Second stage of DRW Imbalance factor
100 [ 50 [ 100 [ 50
CE 30.18 | 24.78 | 61.73 | 57.90
CE Focal loss 29.71 | 2377 | 61.74 | 57.32
CB_Focal 25.62 | 2125 | 61.99 | 5554
CS_CE 2531 | 20.81 | 58.92 | 54.57

square-root sampling, and progressively-balanced sampling,
which are named “CAM-based over-sampling”, “CAM-based
under-sampling”, “CAM-based balance-sampling”, “CAM-
based square-sampling”, and “CAM-based progressive-
sampling”, respectively.

Experimental results The results of re-sampling methods
in DRS are shown in Table 7. We add a sampling method
named image transferring balance-sampling (ImageTrans
balance-sampling) to prove the effectiveness of our CAM-
based balance-sampling. Its pipeline is the same as CAM-
based balance-sampling, but without using CAM to separate
the foreground and background.

From the results in Table 7, we have the following obser-
vations: 1) Compared with applying re-sampling directly in
Table 4, applying re-sampling in DRS delivers better results.
2) Our proposed CAM-based sampling obtains substantially
large gains. 3) In CAM-based sampling, CAM-based balance-
sampling delivers the best results. 4) The results of Image-
Trans balance-sampling prove the effectiveness of CAM used
in our CAM-based balance-sampling.

Table 8 shows the results of different re-weighting methods
in DRW. From the results, we observe that: 1) compared



Table 9: Top-1 error rates of different strategies to apply DRW
and DRS. Apply DRS (CAM-based balance-sampling) only
shows the best result. “CAM-BS” represents “CAM-based
balance-sampling”.

CIFAR-10-LT | CIFAR-100-LT
Imbalance factor
10 [ 50 [ 100 [ 50

First stage|  Second stage

CE 30.18 | 24.78 | 61.73 | 57.90

CS_CE 2531 | 20.81 | 58.92 | 54.57

CE CAM-BS 24.63 | 18.60 | 58.27 | 54.05
CS_.CE + CAM-BS| 24.82 | 1896 | 58.36 | 54.09

Table 10: Top-1 error rates of combining mixup methods
with other best tricks. We can easily find that input mixup
obtains larger gains over manifold mixup. “CAM-BS” repre-
sents “CAM-based balance-sampling”. In mixup, « is 1 and
mainifold mixup’s location is set to pooling layer.

CIFAR-10-LT | CIFAR-100-LT
Imbalance factor

Training scheduler | Mixup training

10 [ 50 [ 100 [ 50
. Manifold mixup| 22.65 19.17 | 5720 | 56.94
DRS with CAM-BS .
Input mixup 21.88 | 17.94 | 53.94 | 50.04

with apply re-weighting directly in Table 3, combining re-
weighting with DRW delivers better results, and 2) DRW
with CS_CE obtains the best results.

Trick combinations

In this section, we first review the conflictual tricks in each
trick family, which obtain comparable results. We combine
these conflictual tricks with other best tricks across trick fam-
ilies, in order to find the best trick combination. Furthermore,
we apply the best trick combination incrementally to show
the negligible conflicts between these tricks.

Removing conflictual tricks in each trick family

s

Experiments in the section of “Two stage training procedures’
have shown the best training schedule of two-stage training is
DRS with CAM-based over-sampling and DRW with CS_CE,
but DRS and DRW are both two-stage training tricks, we
need more experiments to explore the best strategy to apply
them. Moreover, in mixup training, input mixup and manifold
mixup achieve comparable results, as shown in Table 5. Thus,
we conduct more experiments to compare their results when
they are combined with other tricks.

Results in Table 9 show that the best strategy of apply-
ing two-stage training is DRS with CAM-based balance-
sampling. We can also find that combining CS_CE and CAM-
based balance-sampling together cannot further improve the
accuracy, since both of them try to enlarge the influence of
tail classes and the joint use of the two could cause an accu-
racy drop due to the overfitting problem. Furthermore, from
Table 10, we observe that input mixup obtains substantially
larger gains over manifold mixup when combined with other
best tricks.

Table 11: Reductions of top-1 error rates with incremental
tricks. Our bag of tricks shows a steady trend of accuracy
improvement, which proves the effectiveness of our tricks
on both small and large scale real-world datasets. “iNat 18”
represents “iNaturalist 2018 and “IM” represents “input
mixup”. « is 1 in input mixup.

CIFAR-10 [ CIFAR-100
Datasets Imbalance factor iNat 18 |ImageNet-LT
100 [ 50 [100] 50
Baseline (Vanilla ResNet) (30.18 [24.78|61.73| 57.90 | 39.89 65.99
+IM & DRS with CAM-BS|21.88 [17.94(53.94| 50.04 | 29.72 58.13
+ ft. after mixup training |19.97 |16.41|52.17| 48.31 | 29.13 56.87

From experiments in each trick family and trick combina-
tions, we find the optimal trick combination is input mixup,
DRS with CAM-based balance-sampling, and fine-tuning
after mixup training, which we name as bag of tricks.

Applying the best tricks incrementally

In order to demonstrate the performances and negligible con-
flicts of our bag of tricks, we apply these tricks incremen-
tally on long-tailed datasets, including large scale real-world
datasets iNaturalist 2018 and ImageNet-LT. By considering
that we use CAM-based balance-sampling in DRS with input
mixup, in fine-tuning after mixup training, we also adopt
class-balanced sampling to maintain the learned features.

The results are shown in Table 11. From the results, we
have the following observations: 1) By stacking input mixup,
DRS with CAM-based balance-sampling, fine-tuning after
mixup training, the results are steadily improved. 2) The re-
sults on iNaturalist 2018 and ImageNet-LT demonstrate the
effectiveness of our bag of tricks on real-world large scale
datasets clearly. 3) With all of our tricks, we reduce about
10% error rates on all long-tailed datasets, which demon-
strates significant improvements compared with existing
state-of-the-art methods.

Conclusions

In this paper, we systematically explored existing simple
yet effective long-tail related tricks and provided a scientific
experimental guideline for long-tailed visual recognition. Fur-
thermore, we found that existing simple sampling methods
are lack of discriminative information. Motivated by this,
we proposed a novel data augmentation approach based on
the class activation maps and combined it with existing re-
sampling methods. By conducting extensive experiments, we
obtain the optimal trick combination, which consists of in-
put mixup, DRS with CAM-based balanced sampling, and
fine-tuning after mixup training. The optimal trick combi-
nation, i.e., bag of tricks, contained negligible conflicts and
achieved the best results on long-tailed benchmarks without
introducing extra FLOPs. We also release our source codes as
a scientific and practical toolbox, which could benefit future
researches of long-tailed visual recognition. In the future, we
attempt to explore bag of tricks in other challenging long-
tailed tasks, e.g., detection and segmentation.
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