A Graduate Course in Applied Cryptography

Dan Boneh and Victor Shoup

Version 0.3, December 2016

Preface

Cryptography is an indispensable tool used to protect information in computing systems. It is
used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at
rest and data in motion. Cryptographic systems are an integral part of standard protocols, most
notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate
strong encryption into a wide range of applications.

While extremely useful, cryptography is also highly brittle. The most secure cryptographic
system can be rendered completely insecure by a single specification or programming error. No
amount of unit testing will uncover a security vulnerability in a cryptosystem.

Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs
to show that a particular system satisfies the security properties attributed to it. We often need to
introduce certain plausible assumptions to push our security arguments through.

This book is about exactly that: constructing practical cryptosystems for which we can argue
security under plausible assumptions. The book covers many constructions for different tasks in
cryptography. For each task we define a precise security goal that we aim to achieve and then
present constructions that achieve the required goal. To analyze the constructions, we develop a
unified framework for doing cryptographic proofs. A reader who masters this framework will be
capable of applying it to new constructions that may not be covered in the book.

Throughout the book we present many case studies to survey how deployed systems operate.
We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the
importance of rigor in cryptography. We end every chapter with a fun application that applies the
ideas in the chapter in some unexpected way.

Intended audience and how to use this book

The book is intended to be self contained. Some supplementary material covering basic facts from
probability theory and algebra is provided in the appendices.

The book is divided into three parts. The first part develops symmetric encryption which
explains how two parties, Alice and Bob, can securely exchange information when they have a
shared key unknown to the attacker. The second part develops the concepts of public-key encryption
and digital signatures, which allow Alice and Bob to do the same, but without having a shared,
secret key. The third part is about cryptographic protocols, such as protocols for user identification,
key exchange, and secure computation.

A Dbeginning reader can read though the book to learn how cryptographic systems work and
why they are secure. Every security theorem in the book is followed by a proof idea that explains
at a high level why the scheme is secure. On a first read one can skip over the detailed proofs

ii

without losing continuity. A beginning reader may also skip over the mathematical details sections
that explore nuances of certain definitions.

An advanced reader may enjoy reading the detailed proofs to learn how to do proofs in cryptog-
raphy. At the end of every chapter you will find many exercises that explore additional aspects of
the material covered in the chapter. Some exercises rehearse what was learned, but many exercises
expand on the material and discuss topics not covered in the chapter.

Status of the book

The current draft only contains part I and the first half of part II. The remaining chapters in
parts II and part III are forthcoming. We hope you enjoy this write-up. Please send us comments
and let us know if you find typos or mistakes.

Citations: While the current draft is mostly complete, we still do not include citations and
references to the many works on which this book is based. Those will be coming soon and will be
presented in the Notes section at the end of every chapter.

Dan Boneh and Victor Shoup
December, 2016

iii

Contents

1 Introduction

1.1
1.2

Historic ciphers e
Terminology used throughout the book

Secret key cryptography

2 Encryption

2.1
2.2

2.3

24

2.5
2.6
2.7

3.1

3.2
3.3

Introductiono
Shannon ciphers and perfect security oL
2.2.1 Definition of a Shannon cipher
2.2.2 Perfect security e
223 Thebadnews e
Computational ciphers and semantic security
2.3.1 Definition of a computational cipher,
2.3.2 Definition of semantic security oL
2.3.3 Connections to weaker notions of security,
2.3.4 Consequences of semantic security oo
2.3.5 Bit guessing: an alternative characterization of semantic security
Mathematical details oL L
2.4.1 Negligible, super-poly, and poly-bounded functions
2.4.2 Computational ciphers: the formalities
2.4.3 Efficient adversaries and attack games
2.4.4 Semantic security: the formalities,
A fun application: anonymous routing
Notes e e e e
Exercises o

Stream ciphers

Pseudo-random generators Lo Lo
3.1.1 Definition of a pseudo-random generator
3.1.2 Mathematical details
Stream ciphers: encryption with a PRG
Stream cipher limitations: attacks on the one timepad
3.3.1 The two-time pad is insecure

v

3.3.2 The one-time pad is malleable 0. 53

3.4 Composing PRGs 54
3.4.1 A parallel construction 54
3.4.2 A sequential construction: the Blum-Micali method 59
3.4.3 Mathematical details 61

3.5 Themnext bit test e 64

3.6 Case study: the Salsa and ChaCha PRGs 68

3.7 Case study: linear generators Lo 70
3.7.1 An example cryptanalysis: linear congruential generators 70
3.7.2 The subset sum generatoro o 73

3.8 Case study: cryptanalysis of the DVD encryption system 74

3.9 Case study: cryptanalysis of the RC4 stream cipher 76
3.9.1 Security of RC4. e 78

3.10 Generating random bits in practiceo oL Lo 80

3.11 A broader perspective: computational indistinguishability 81
3.11.1 Mathematical details 86

3.12 A fun application: coin flipping and commitments 87

3. 13 Notes o e e e 88

3.14 EXercises e e e e e s 88

Block ciphers 94

4.1 Block ciphers: basic definitions and properties 94
4.1.1 Some implications of security Lo 96
4.1.2 Efficient implementation of random permutations 99
4.1.3 Strongly secure block ciphers o oL 99
4.1.4 Using a block cipher directly for encryption 100
4.1.5 Mathematical details 104

4.2 Constructing block ciphers in practice o oL 105
4.2.1 Casestudy: DES 106
4.2.2 Exhaustive search on DES: the DES challenges 110
4.2.3 Strengthening ciphers against exhaustive search: the 3€ construction 112
424 Casestudy: AES 114

4.3 Sophisticated attacks on block cipherso oL 119
4.3.1 Algorithmic attacks 120
4.3.2 Side-channel attacks 123
4.3.3 Fault-injection attacks on AES L. 127
4.3.4 Quantum exhaustive search attacks. 128

4.4 Pseudo-random functions: basic definitions and properties 129
4.4.1 Definitions e e e 129
4.4.2 Efficient implementation of random functions 130
4.4.3 When is a secure block cipher a secure PRF? 131
4.44 Constructing PRGs from PRFs 135
4.4.5 Mathematical details L o 136

4.5 Constructing block ciphers from PRFs 138

4.6 The tree construction: from PRGsto PRFso 144
4.6.1 Variable length tree construction oo 148

4.7 The ideal cipher model 151

4.7.1 Formal definitions 151
4.7.2 Exhaustive search in the ideal cipher model 152
4.7.3 The Even-Mansour block cipher and the £X construction 155
4.7.4 Proof of the Even-Mansour and £X theorems 156
4.8 Fun application: comparing information without revealingit. 162
4.9 Notes e e 164
4.10 EXerciseso e e e e e 164
Chosen Plaintext Attack 173
5.1 Introduction e e 173
5.2 Security against multi-key attacks o 0oL 175
5.3 Semantic security against chosen plaintext attack 177
5.4 Building CPA secure ciphers. 179
5.4.1 A generic hybrid construction 179
5.4.2 Randomized counter mode 184
543 CBCmode e 189
5.4.4 Case study: CBC padding in TLS 1.0 194
5.4.5 Concrete parameters and a comparison of counter and CBC modes 195
5.5 Nonce-based encryption L e 196
5.5.1 Nonce-based generic hybrid encryption 198
5.5.2 Nonce-based Counter mode 198
5.5.3 Nonce-based CBCmode 199
5.6 A fun application: revocable broadcast encryption 200
5.7 Notes o 203
5.8 Exercises e e e 203
Message integrity 209
6.1 Definition of a message authentication code 211
6.1.1 Mathematical details 214
6.2 MAC verification queries do not help the attacker, 214
6.3 Constructing MACs from PRFs 217
6.4 Prefix-free PRFs for long messages o oo 219
6.4.1 The CBC prefix-free secure PRF 219
6.4.2 The cascade prefix-free secare PRF 222
6.4.3 Extension attacks: CBC and cascade are insecure MACs 224
6.5 From prefix-free secure PRF to fully secure PRF (method 1): encrypted PRF 224
6.5.1 ECBC and NMAC: MACs for variable length inputs 226
6.6 From prefix-free secure PRF to fully secure PRF (method 2): prefix-free encodings . 228
6.6.1 Prefix free encodings L 228
6.7 From prefix-free secure PRF to fully secure PRF (method 3): CMAC 229
6.8 Converting a block-wise PRF to bit-wise PRF 232
6.9 Case study: ANSI CBC-MAC 233
6.10 Case study: CMAC« 234
6.11 PMAC: a parallel MAC 236
6.12 A fun application: searching on encrypted data 239

vi

6.13 Notes e 239

6.14 EXercises o e e 239
Message integrity from universal hashing 244
7.1 Universal hash functions (UHFs) 245
7.1.1 Multi-query UHFs 246
7.1.2 Mathematical details 247
7.2 Constructing UHFs o o 247
7.2.1 Construction 1: UHFs using polynomials 247
7.2.2 Construction 2: CBC and cascade are computational UHFs 250
7.2.3 Construction 3: a parallel UHF from a small PRF 252
7.3 PRF(UHF) composition: constructing MACs using UHFs 254
7.3.1 Using PRF(UHF) composition: ECBC and NMAC security 257
7.3.2 Using PRF(UHF) composition with polynomial UHFs 257
7.3.3 Using PRF(UHF) composition: PMACy security 258
7.4 The Carter-Wegman MAC 258
7.4.1 Using Carter-Wegman with polynomial UHFs 265
7.5 Nonce-based MACs 265
7.5.1 Secure nonce-based MACs 266
7.6 Unconditionally secure one-time MACs 267
7.6.1 Pairwise unpredictable functions oo 267
7.6.2 Building unpredictable functions oL 268
7.6.3 From PUFs to unconditionally secure one-time MACs 268
7.7 A fun application: timing attackso Lo oL 269
7.8 Notes . . . o o o 269
7.9 EXercises e 269
Message integrity from collision resistant hashing 279
8.1 Definition of collision resistant hashing 282
8.1.1 Mathematical details 282
8.2 Building a MAC for large messages oo 283
8.3 Birthday attacks on collision resistant hash functions 285
8.4 The Merkle-Damgard paradigm L o 287
8.4.1 Joux’sattack 290
8.5 Building Compression Functions 0o 290
8.5.1 A simple but inefficient compression function 291
8.5.2 Davies-Meyer compression functions 291
8.5.3 Collision resistance of Davies-Meyer 293
8.6 Case study: SHA256 e 294
8.6.1 Other Merkle-Damgard hash functions 296
8.7 Casestudy: HMAC 298
8.7.1 Security of two-key nest Lo 299
8.7.2 The HMAC standard 301
8.7.3 Davies-Meyer is a secure PRF in the ideal cipher model 302
8.8 The Sponge Construction and SHA3 305
8.8.1 The sponge construction oo 305

vii

8.8.2 Case study: SHA3, SHAKE256, and SHAKE512 310

8.9 Merkle trees: using collision resistance to prove database membership 311
8.10 Key derivation and the random oracle model 311
8.10.1 The key derivation problem 311
8.10.2 Random oracles: a useful heuristic 314
8.10.3 Random oracles: safe modes of operation 319
8.10.4 The leftover hash lemma 320
8.10.5 Case study: HKDF 322
8.11 Security without collision resistance 323
8.11.1 Second preimage resistance Lo 323
8.11.2 Randomized hash functions: target collision resistance 324
8.11.3 TCR from 2nd-preimage resistance 325
8.11.4 Using target collision resistance L L. 327
8.12 A fun application: an efficient commitment scheme 330
8.13 Another fun application: proofs of work L. 330
8.14 NOLES e 330
8.15 EXErcises e e e e e e e e e e 331
Authenticated Encryption 338
9.1 Authenticated encryption: definitions 339
9.2 Implications of authenticated encryption 341
9.2.1 Chosen ciphertext attacks: a motivating example 341
9.2.2 Chosen ciphertext attacks: definition 342
9.2.3 Authenticated encryption implies chosen ciphertext security 344
9.3 Encryption as an abstract interface L. 346
9.4 Authenticated encryption ciphers from generic composition 347
9.4.1 Encrypt-then-MAC e 348
9.4.2 MAC-then-encrypt is not generally secure: padding oracle attacks on SSL . . 350
9.4.3 More padding oracle attacks.o 353
9.4.4 Secure instances of MAC-then-encrypt 354
9.4.5 Encrypt-then-MAC or MAC-then-encrypt? 358
9.5 Nonce-based authenticated encryption with associated data 358
9.6 One more variation: CCA-secure ciphers with associated data 360
9.7 Case study: Galois counter mode (GCM) 361
9.8 Case study: the TLS 1.3 record protocol 364
9.9 Case study: an attack on non-atomic decryptionin SSH 366
9.10 Case study: 802.11b WEP, a badly broken system 368
9.11 Casestudy: IPsec. e 371
9.12 A fun application: private information retrieval L. 376
9.13 NOLES e 376
9.14 EXercises o e e e e 376

viil

II Public key cryptography 383

10 Public key tools 385
10.1 A toy problem: anonymous key exchange 385
10.2 One-way trapdoor functions 386

10.2.1 Key exchange using a one-way trapdoor function scheme. 387
10.2.2 Mathematical details 388
10.3 A trapdoor permutation scheme based on RSA 389
10.3.1 Key exchange based on the RSA assumption 391
10.3.2 Mathematical details 391
10.4 Diffie-Hellman key exchange 392
10.4.1 The key exchange protocol Lo 393
10.4.2 Security of Diffie-Hellman key exchange 393
10.5 Discrete logarithm and related assumptions 394
10.5.1 Random self-reducibility o 397
10.5.2 Mathematical details 398
10.6 Collision resistant hash functions from number-theoretic primitives 400
10.6.1 Collision resistance based on DL 400
10.6.2 Collision resistance based on RSA L. 401
10.7 Attacks on the anonymous Diffie-Hellman protocol 403
10.8 Merkle puzzles: a partial solution to key exchange using block ciphers 404
10.9 Fun application: Pedersen commitments 405
10.10Notes o o o 405
10.11EXercises v v v o o e e e e 406

11 Public key encryption 414

11.1 Two further example applications 415
11.1.1 Sharing encrypted files 415
11.1.2 Key esCcrow v o i e e e e e e e 415

11.2 Basic definitions 0oL 416
11.2.1 Mathematical details oL 417

11.3 Implications of semantic security o L 418
11.3.1 The need for randomized encryption L. 418
11.3.2 Semantic security against chosen plaintext attack 419

11.4 Encryption based on a trapdoor function scheme 421
11.4.1 Instantiating Etpp with RSA 424

11.5 ElGamal encryption L 425
11.5.1 Semantic security of ElGamal in the random oracle model 426
11.5.2 Semantic security of ElGamal without random oracles 428

11.6 Threshold decryption L 431
11.6.1 Shamir’s secret sharing scheme oo 433
11.6.2 ElGamal threshold decryption 435

11.7 Fun application: oblivious transfer from DDH 438

11.8 Notes o e 438

11.9 EXercises o o i e e e e 438

X

12 Chosen ciphertext secure public key encryption 445

12.1 Basic definitionso 445
12.2 Understanding CCA security i 447
12.2.1 CCA security and ciphertext malleability 447
12.2.2 CCA security vs authentication 448
12.2.3 CCA security and key escrow 449
12.2.4 Encryption as an abstract interface o000 450

12.3 CCA-secure encryption from trapdoor function schemes 452
12.3.1 Instantiating Eppp with RSA . . . 0 . 0000000 457

12.4 CCA-secure ElGamal encryption 458
12.4.1 CCA security for basic ElGamal encryption 458

12.5 CCA security from DDH without random oracles 463
12.6 CCA security via a generic transformation 470
12.6.1 A generic instantiationo 475
12.6.2 A concrete instantiation with ElGamal 475

12.7 CCA-secure public-key encryption with associated data 477
12.8 Case study: PKCS1, OAEP, OAEP+, and SAEP 478
12.8.1 Padding schemes 479
12.8.2 PKCS1 padding 479
12.8.3 Bleichenbacher’s attack on the RSA-PKCS1 encryption scheme 480
12.8.4 Optimal Asymmetric Encryption Padding (OAEP) 483
12.8.5 OAEP+ and SAEP+ 485

12.9 Fun application: sealed bid auctions o L 486
12.10Notes . . . o o e 486
12.11EXercises o v o o e e 486
13 Digital signatures 497
13.1 Definition of a digital signature oo oL 499
13.1.1 Secure signatures 500
13.1.2 Mathematical details 503

13.2 Extending the message space with collision resistant hashing 503
13.2.1 Extending the message space using TCR functions 504

13.3 Signatures from trapdoor permutations: the full domain hash 505
13.3.1 Signatures based on the RSA trapdoor permutation 506

13.4 Security analysis of full domain hash 509
13.4.1 Repeated one-way functions: a useful lemma 509
13.4.2 Proofs of Theorems 13.3 and 13.4. 513

13.5 An RSA-based signature scheme with tighter security proof 514
13.6 Case study: PKCS1 signatures o 516
13.6.1 Bleichenbacher’s attack on PKCS1 signatures 518

13.7 Signcryption: combining signatures and encryption L. 519
13.7.1 Secure signeryption 521
13.7.2 Signcryption as an abstract interfaceo oo 523
13.7.3 Constructions: encrypt-then-sign and sign-then-encrypt 526
13.7.4 A construction based on Diffie-Hellman key exchange 530
13.7.5 Additional desirable properties 532

13.8 Certificates and the public-key infrastructure 535

13.8.1 Coping with malicious or negligent certificate authorities. 538
13.8.2 Certificate revocation 541
13.9 Case study: legal aspects of digital signatures 543
13.10A fun application: private information retrieval 544
13.11Notes o e e e 544
13.12EXercises o 544
14 Fast signatures from one-way functions 550
14.1 Lamport signatures L L e e e 550
14.1.1 A general Lamport framework o000 552
14.1.2 Optimized Lamport 554
14.2 HORS signatures: Lamport in the random oracle model 555
14.2.1 Merkle-HORS: reducing the public key size 558
14.3 Comparing one-time signatureso 558
14.4 Applications of one-time signatures L. 560
14.4.1 Online/offline signatures from one-time signatures 560
14.4.2 Authenticating streamed data with one-time signatures 561

14.5 Merkle stateless signatures:
many-time signatures from one-time signatures, 561
14.5.1 Extending the number of signatures from a ¢-time signature 563
14.5.2 The complete Merkle stateless signature system 565
14.5.3 Stateful Merkle signatureso oo 570
14.5.4 Comparing Merkle constructions 571
14.6 Notes o 572
14.7 EXErcises o i o e 572
15 Analysis of number theoretic assumptions 574
15.1 How reasonable are the factoring and RSA assumptions? 574
15.1.1 Quadratic resudousity assumption 574
15.2 How reasonable are the DL and CDH assumptions? 574
15.2.1 The Baby step giant step algorithm 575
15.2.2 The Pohlig-Hellman algorithm 575
15.2.3 Information leakage 578
15.3 Discrete login Zyo o 578
15.3.1 The number field sieve 578
15.3.2 Discrete-log records in Zy, Lo 579
15.4 How reasonable is decision Diffie-Hellman? 580
15.5 Quantum attacks on number theoretic problems. 580
15.6 Side channel and fault attacks 580
15.7 Notes o o e 580
15.8 Chapter summary oo e e 580
15.9 ExXerciseso e e 580

X1

16 Elliptic curve cryptography and pairings 582

16.1 The group of points of an ellipticcurve. 582
16.2 Pairings oo e 582
16.3 Signature schemes from pairings Lo 582
16.4 Advanced encryption schemes from pairings 582
16.4.1 Identity based encryption Lo 582

16.4.2 Attribute based encryption oL L oL 582

17 Lattice based cryptography 583
17.1 Integer lattices oL 583
17.2 Hard problems on lattices Lo o 583
17.2.1 The SIS problem 583

17.2.2 The learning with errors (LWE) problem 583

17.3 Signatures from lattice problems oL L 583
17.4 Public-key encryption using lattices. L oL 583
17.5 Fully homomorphic encryption L oo 583
IIT Protocols 584
18 Identification protocols 586
18.1 Interactive protocols: general notions L L 588
18.1.1 Mathematical details 589

18.2 ID protocols: definitions 589
18.3 Password protocols: security against direct attacks 590
18.3.1 Weak passwords and dictionary attacks00 592

18.3.2 Preventing dictionary attacks: salts, peppers, and slow hashing 594

18.3.3 More password management issues 597

18.3.4 Case study: UNIX and Windows passwords 598

18.4 One time passwords: security against eavesdropping 599
18.4.1 The SecurID system 601

18.4.2 The S/key system 602

18.5 Challenge-response: security against active attacks 603
18.5.1 Challenge-response protocols Lo 605

18.5.2 Concurrent attacks versus sequential attacks 607

18.6 Notes o o o e 607
18.7 Exercises e 608
19 Signatures from identification protocols 611
19.1 Schnorr’s identification protocolo oo L 611
19.2 Honest verifier zero knowledge and security against eavesdropping 616
19.3 The Guillou-Quisquater identification protocol 618
19.4 From identification protocols to signatures oL 620
19.4.1 Y-protocols e 620

19.4.2 Signature construction 621

19.4.3 The Schnorr signature scheme 624

xii

19.4.4 The GQ signature scheme Lo oo 626

19.5 Secure against active attacks: OR proofs 627
19.6 Nonce misuse resistance L L L o 631
19.7 Okamoto’s identification protocol L L oL 632
19.8 Case study: the digital signature standard (DSA) 635
19.8.1 Comparing signature schemes L oo 635

19.9 Notes e e e 635
19.10Chapter sSummary o . oL e e e e e e 635
19.11EXErciSes o o o e e e e e e e e 635
20 Authenticated Key Exchange 636
20.1 Identification and AKE 638
20.2 An encryption-based protocol Lo 639
20.2.1 Imsecure variations Lo e 641
20.2.2 SUMMATryo e e e e e e 647

20.3 Forward secrecy and an ephemeral encryption-based protocol 647
20.3.1 Imsecure variations 649

20.4 Formal definitions 653
20.5 Security of protocol EBKE e 657
20.6 Security of protocol EEBKE 658
20.7 Explicit key confirmation L L 659
20.8 Identity protection L L e 660
20.8.1 Imsecure variations L o 662

20.9 One-sided authenticated key exchange 663
20.9.1 One-sided authenticated variants of protocols EBKE and EEBKE 664
20.9.2 Real-world security: phishing attacks 0. 665
20.10Non-interative key exchange o 667
20.11Zero round trip key exchange L 667
20.12Password authenticated key exchange L. 667
20.12.1 Protocol PAKEg e e e 668
20.12.2Protocol PAKE] e e e e 669
20.12.3Protocol PAKEs e e e 671
20.12.4Protocol PAKES oo 673
20.12.5 Explicit key confirmation oo oo 675
20.12.6 Generic protection against server compromise 675
20.12.7Phishing again 675
20.13Case studies e e e e e e e e 676
20.13.1SSL . . . e 676
20.13.2IKE2 . . . o e 676
20.14A fun application: establishing Tor channels 676
20.16Notes . . . L e e 676
20.16Chapter SUmMmAary oL e e e 676
20.17TEXEICISES . . . v v v o e e e e e e e e 676

xiil

21 Key establishment with online Trusted Third Parties
21.1 A key exchange protocol with an online TTP
21.2 Insecure variations of protocol OnlineTTP
21.3 Security proof for protocol OnlineTTP oo
21.4 Case study: Kerberos V5 e
21.5 Offline TTP vs. Online TTP
21.6 A fun application: time-space tradeoffs L.
21.7 Notes . . . o . e e e
21.8 Exercises e e e e e

22 Two-party and multi-party secure computation
22.1 Yao’s two party protocol
22.2 Multi-party secure computation L L Lo

IV Appendices

A Basic number theory
A1l Cyclicgroups o
A.2 Arithmetic modulo primes
A2.1 Basicconcepts
A.2.2 Structure of Zy
A.2.3 Quadratic residues
A24 ComputinginZ, o
A.2.5 Summary: arithmetic modulo primes
A.3 Arithmetic modulo composites

B Basic probability theory
B.1 Birthday Paradox e
B.1.1 More collision bounds
B.1.2 A simple distinguisher

C Basic complexity theory

D Probabilistic algorithms

Xiv

677
678
680
685
685
689
690
690
690

691
691
691

692

693
693
693
693
694
694
695
695
696

698
698
700
700

702

703

Part 1

Secret key cryptography

Chapter 2

Encryption

Roughly speaking, encryption is the problem of how two parties can communicate in secret in the
presence of an eavesdropper. The main goals of this chapter are to develop a meaningful and useful
definition of what we are trying to achieve, and to take some first steps in actually achieving it.

2.1 Introduction

Suppose Alice and Bob share a secret key k, and Alice wants to transmit a message m to Bob over
a network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
else with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop to solve this fundamental problem are
important and interesting, they do not by themselves solve all problems related to “secure commu-
nication.”

e The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

e The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

e The techniques do not provide a mechanism that allow Alice and Bob to come to share a
secret key in the first place. Maybe they are able to do this using some secure network (or
a physical, face-to-face meeting) at some point in time, while the message is sent at some
later time when Alice and Bob must communicate over an insecure network. However, with
an appropriate infrastructure in place, there are also protocols that allow Alice and Bob to
exchange a secret key even over an insecure network: such protocols are discussed in Chapters
20 and 21.

2.2 Shannon ciphers and perfect security

2.2.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair £ = (E, D) of functions.

e The function F (the encryption function) takes as input a key k£ and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c=E(k,m),
and we say that c is the encryption of m under k.

e The function D (the decryption function) takes as input a key k& and a ciphertext ¢, and
produces a message m. That is,
m = D(k,c),

and we say that m is the decryption of ¢ under k.

e We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k& and all messages m, we have

D(k, E(k, m))=m.

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E:KxM-—=C,
D:KxC— M.

Also, we shall say that £ is defined over (K, M,C).

Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.
The idea is that Alice and Bob must somehow agree in advance on a key k € K. Assuming this is
done, then when Alice wants to send a message m € M to Bob, she encrypts m under k, obtaining
the ciphertext ¢ = E(k,m) € C, and then sends ¢ to Bob via some communication network. Upon
receiving ¢, Bob decrypts ¢ under k, and the correctness property ensures that D(k, c) is the same
as Alice’s original message m. For this to work, we have to assume that ¢ is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
¢ while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1KB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.

Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows
messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher £ = (F, D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, £ is defined over (K, M, C), where

K:=M:=C:={0,1}%,

for some fixed parameter L. For a key k € {0,1}* and a message m € {0,1}* the encryption
function is defined as follows:
E(k,m):=k®m,

and for a key k € {0,1}* and ciphertext ¢ € {0, 1}¥, the decryption function is defined as follows:
D(k,c):=k®ec.

Here, “®” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors z,y, z € {0, 1}L, we have

cOy=yoz, tO®YO2)=(Cdy) Dz, 200l=2 and z@z=0~

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for &£: for all k,m €
{0,1}, we have

D(k, E(k, m))=D(k, kom)=k® (kom)=(k@k)om=0"am=m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. O

Example 2.2. A variable length one-time pad is a Shannon cipher & = (E, D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, £ is defined over (K, M, C), where

K:={0,1}* and M :=C:={0,1}=F.

for some parameter L. Here, {0,1}<% denotes the set of all bit strings of length at most L (including
the empty string). For a key k € {0,1}" and a message m € {0,1}=F of length ¢, the encryption
function is defined as follows:

E(k,m) :=k[0..£—1] & m,

and for a key k € {0, 1} and ciphertext ¢ € {0,1}= of length ¢, the decryption function is defined
as follows:

D(k,c) :=k[0..£L—1]&®ec.
Here, k[0..¢ — 1] denotes the truncation of k to its first ¢ bits. The reader may verify that the
correctness property holds for £. O

Example 2.3. A substitution cipher is a Shannon cipher £ = (F, D) of the following form. Let
¥ be a finite alphabet of symbols (e.g., the letters A-Z, plus a space symbol, ;). The message space
M and the ciphertext space C are both sequences of symbols from ¥ of some fixed length L:

M:=C:=xr.

The key space K consists of all permutations on X; that is, each k € K is a one-to-one function from
Y onto itself. Note that K is a very large set; indeed, || = |Z|! (for |Z| = 27, |K| &~ 1.09 - 1028).
Encryption of a message m € ©¥ under a key k € K (a permutation on) is defined as follows

E(k,m) := (k(m[0]), k(m[1]),...,k(m[L —1])),

where mli] denotes the ith entry of m (counting from zero), and k(ml[i]) denotes the application
of the permutation k to the symbol m[i]. Thus, to encrypt m under k, we simply apply the
permutation k component-wise to the sequence m. Decryption of a ciphertext ¢ € £& under a key
k € K is defined as follows:

D(k,c) := (k= (c[0]), k(c[1]), ...,k (c[L —1])).

Here, k! is the inverse permutation of k, and to decrypt ¢ under k, we simply apply k! component-
wise to the sequence c¢. The correctness property is easily verified: for a message m € X% and key
k € K, we have

D(k, E(k, m))= D(k, (k(m[0]),k(m[1]),...,k(m[L —1]))

= (k7 (k(m[0])), k=" (k(m[1])), ...k~ (k(m[L — 1])))
= (m[0],m[1],...,m[L—1])=m. O

Exzample 2.4 (additive one-time pad). We may also define a “addition mod n” variation of
the one-time pad. This is a cipher £ = (E, D), defined over (K, M,C), where K := M = C :=
{0,...,n — 1}, where n is a positive integer. Encryption and decryption are defined as follows:

E(k,m):=m+k modn D(k,c) := ¢ — k mod n.

The reader may easily verify that the correctness property holds for £. O

2.2.2 Perfect security

So far, we have just defined the basic syntax and correctness requirements of a Shannon cipher.
Next, we address the question: what is a “secure” cipher? Intuitively, the answer is that a secure
cipher is one for which an encrypted message remains “well hidden,” even after seeing its encryp-
tion. However, turning this intuitive answer into one that is both mathematically meaningful and
practically relevant is a real challenge. Indeed, although ciphers have been used for centuries, it

7

is only in the last few decades that mathematically acceptable definitions of security have been
developed.

In this section, we develop the mathematical notion of perfect security — this is the “gold
standard” for security (at least, when we are only worried about encrypting a single message and
do not care about integrity). We will also see that it is possible to achieve this level of security;
indeed, we will show that the one-time pad satisfies the definition. However, the one-time pad is
not very practical, in the sense that the keys must be as long as the messages: if Alice wants to
send a 1GB file to Bob, they must already share a 1GB key! Unfortunately, this cannot be avoided:
we will also prove that any perfectly secure cipher must have a key space at least as large as its
message space. This fact provides the motivation for developing a definition of security that is
weaker, but that is acceptable from a practical point of view, and which allows one to encrypt long
messages using short keys.

If Alice encrypts a message m under a key k, and an eavesdropping adversary obtains the
ciphertext ¢, Alice only has a hope of keeping m secret if the key k is hard to guess, and that
means, at the very least, that the key k£ should be chosen at random from a large key space. To
say that m is “well hidden” must at least mean that it is hard to completely determine m from
¢, without knowledge of k; however, this is not really enough. Even though the adversary may
not know k, we assume that he does know the encryption algorithm and the distribution of k. In
fact, we will assume that when a message is encrypted, the key k is always chosen at random,
uniformly from among all keys in the key space. The adversary may also have some knowledge of
the message encrypted — because of circumstances, he may know that the set of possible messages
is quite small, and he may know something about how likely each possible message is. For example,
suppose he knows the message m is either mg = "ATTACK_AT_DAWN" or m; = "ATTACK_ AT _DUSK",
and that based on the adversary’s available intelligence, Alice is equally likely to choose either one
of these two messages. This, without seeing the ciphertext ¢, the adversary would only have a
50% chance of guessing which message Alice sent. But we are assuming the adversary does know
c. Even with this knowledge, both messages may be possible; that is, there may exist keys kg
and k; such that FE(kg,mg) = ¢ and E(k1,m1) = ¢, so he cannot be sure if m = mgy or m = my.
However, he can still guess. Perhaps it is a property of the cipher that there are 800 keys kg such
that E(kg,mp) = ¢, and 600 keys k; such that E(ky,mq) = c. If that is the case, the adversary’s
best guess would be that m = mg. Indeed, the probability that this guess is correct is equal to
800/(800 + 600) ~ 57%, which is better than the 50% chance he would have without knowledge
of the ciphertext. Our formal definition of perfect security expressly rules out the possibility that
knowledge of the ciphertext increases the probability of guessing the encrypted message, or for that
matter, determining any property of the message whatsoever.

Without further ado, we formally define perfect security. In this definition, we will consider a
probabilistic experiment in which the key is drawn uniformly from the key space. We write k to
denote the random variable representing this random key. For a message m, E(k,m) is another
random variable, which represents the application of the encryption function to our random key
and the message m. Thus, every message m gives rise to a different random variable E(k,m).

Definition 2.1 (perfect security). Let £ = (E, D) be a Shannon cipher defined over (K, M,C).
Consider a probabilistic experiment in which the random wvariable k is uniformly distributed over

K. If for all mg,my € M, and all c € C, we have

Pr[E(k,mo) = ¢] = Pr[E(k,m1) = (],

then we say that € is a perfectly secure Shannon cipher.

There are a number of equivalent formulations of perfect security that we shall explore. We
state a couple of these here.

Theorem 2.1. Let £ = (E, D) be a Shannon cipher defined over (KK, M,C). The following are
equivalent:

(i) € is perfectly secure.
(i1) For every c € C, there exists N, (possibly depending on c¢) such that for all m € M, we have

{k € K : E(k,m) = c}| = N..

(iii) If the random wvariable k is uniformly distributed over K, then each of the random variables
E(k,m), for m € M, has the same distribution.

Proof. To begin with, let us restate (ii) as follows: for every ¢ € C, there exists a number P,
(depending on c¢) such that for all m € M, we have Pr[E(k,m) = ¢] = P.. Here, k is a random
variable uniformly distributed over K. Note that P. = N./|K|, where N, is as in the original
statement of (ii).

This version of (ii) is clearly the same as (iii).

(i) = (ii). We prove (ii) assuming (i). To prove (ii), let ¢ € C be some fixed ciphertext.
Pick some arbitrary message mog € M, and let P, := Pr[E(k,mg) = ¢]. By (i), we know that for
all m € M, we have Pr[E(k,m) = ¢] = Pr[E(k, mg) = ¢] = P.. That proves (ii).

(ii) = (i). We prove (i) assuming (ii). Consider any fixed mg, m; € M and ¢ € C. (ii) says
that Pr[E(k,mg) = ¢] = P, = Pr[E(k, m1) = ¢|, which proves (i). O

As promised, we give a proof that the one-time pad (see Example 2.1) is perfectly secure.
Theorem 2.2. The one-time pad is a perfectly secure Shannon cipher.

Proof. Suppose that the Shannon cipher £ = (E, D) is a one-time pad, and is defined over (K, M, C),
where K := M := C := {0,1}". For any fixed message m € {0,1}" and ciphertext ¢ € {0,1}%,
there is a unique key k € {0, 1} satisfying the equation

kdm =c,

namely, k := m @ c. Therefore, £ satisfies condition (ii) in Theorem 2.1 (with N, = 1 for each c).
O

Ezxample 2.5. Consider again the variable length one-time pad, defined in Example 2.2. This
does not satisfy our definition of perfect security, since a ciphertext has the same length as the
corresponding plaintext. Indeed, let us choose an arbitrary string of length 1, call it mg, and an
arbitrary string of length 2, call it m;. In addition, suppose that ¢ is an arbitrary length 1 string,
and that k is a random variable that is uniformly distributed over the key space. Then we have

Pr[E(k,mo) =¢]=1/2 and Pr[E(k,mi)=c =0,

which provides a direct counter-example to Definition 2.1.

Intuitively, the variable length one-time pad cannot satisfy our definition of perfect security
simply because any ciphertext leaks the length of the corresponding plaintext. However, in some
sense (which we do not make precise right now), this is the only information leaked. It is perhaps not
clear whether this should be viewed as a problem with the cipher or with our definition of perfect
security. On the one hand, one can imagine scenarios where the length of a message may vary
greatly, and while we could always “pad” short messages to effectively make all messages equally
long, this may be unacceptable from a practical point of view, as it is a waste of bandwidth. On
the other hand, one must be aware of the fact that in certain applications, leaking just the length
of a message may be dangerous: if you are encrypting a “yes” or “no” answer to a question, just
the length of the obvious ASCII encoding of these strings leaks everything, so you better pad “no”
out to three characters. O

Ezxzample 2.6. Consider again the substitution cipher defined in Example 2.3. There are a couple
of different ways to see that this cipher is not perfectly secure.

For example, choose a pair of messages mg, m; € X% such that the first two components of my
are equal, yet the first two components of m; are not equal; that is,

mo[0] = mp[l] and m1[0] # mq[1].

Then for each key k, which is a permutation on ¥, if ¢ = E(k,myp), then ¢[0] = ¢[1], while if
¢ = E(k,m1), then c[0] # c[1]. In particular, it follows that if k is uniformly distributed over the
key space, then the distributions of E(k, mg) and E(k, m;) will not be the same.

Even the weakness described in the previous paragraph may seem somewhat artificial. Another,
perhaps more realistic, type of attack on the substitution cipher works as follows. Suppose the
substitution cipher is used to encrypt email messages. As anyone knows, an email starts with a
“standard header,” such as "FROM". Suppose the ciphertext is ¢ € 2% is intercepted by an adversary.
The secret key is actually a permutation k on . The adversary knows that

Thus, if the original message is m € X, the adversary can now locate all positions in m where
an F occurs, where an R occurs, where an 0 occurs, and where an M occurs. Based just on this
information, along with specific, contextual information about the message, together with general
information about letter frequencies, the adversary may be able to deduce quite a bit about the
original message. O

Ezxample 2.7. Consider the additive one-time pad, defined in Example 2.4. It is easy to verity
that this is perfectly secure. Indeed, it satisfies condition (ii) in Theorem 2.1 (with N, =1 for each
¢). O

The next two theorems develop two more alternative characterizations of perfect security. For
the first, suppose an eavesdropping adversary applies some predicate ¢ to a ciphertext he has
obtained. The predicate ¢ (which is a boolean-valued function on the ciphertext space) may be
something very simple, like the parity function (i.e., whether the number of 1 bits in the ciphertext
is even or odd), or it might be some more elaborate type of statistical test. Regardless of how clever
or complicated the predicate ¢ is, perfect security guarantees that the value of this predicate on
the ciphertext reveals nothing about the message.

10

Theorem 2.3. Let £ = (E, D) be a Shannon cipher defined over (K, M,C). Consider a probabilistic
experiment in which k is a random variable uniformly distributed over IC. Then & is perfectly secure
if and only if for every predicate ¢ on C, for all mg,m; € M, we have

Pr(¢(E(k, mo))] = Prlo(E(k,m1))].

Proof. This is really just a simple calculation. On the one hand, suppose £ is perfectly secure, and
let ¢, mg, and m; be given. Let S := {c € C: ¢(c)}. Then we have

Pri¢(E(k,mo))] = > Pr[E(k,mo) = =Y _Pr[E(k,m1) = ¢ = Pr[¢(E(k,m1))].
ceS ceS

Here, we use the assumption that £ is perfectly secure in establishing the second equality. On the
other hand, suppose £ is not perfectly secure, so there exist mg, m1, and ¢ such that

Pr[E(k,mo) = ¢| # Pr[E(k,m1) = c].

Defining ¢ to be the predicate that is true for this particular ¢, and false for all other ciphertexts,
we see that

Pr[p(E(k,mg))] = Pr[E(k,mg) =] # Pr[E(k,m1) =] = Pr[¢(E(k,m1))]. O

The next theorem states in yet another way that perfect security guarantees that the ciphertext
reveals nothing about the message. Suppose that m is a random variable distributed over the
message space M. We do not assume that m is uniformly distributed over M. Now suppose k
is a random variable uniformly distributed over the key space K, independently of m, and define
c := E(k,m), which is a random variable distributed over the ciphertext space C. The following
theorem says that perfect security guarantees that ¢ and m are independent random variables.

One way of characterizing this independence is to say that for each ciphertext ¢ € C that occurs
with nonzero probability, and each message m € M, we have

Prim =m | c=c¢] = Prlm = m)|.

Intuitively, this means that after seeing a ciphertext, we have no more information about the
message than we did before seeing the ciphertext.

Another way of characterizing this independence is to say that for each message m € M that
occurs with nonzero probability, and each ciphertext ¢ € C, we have

Prjc = ¢| m = m] = Pr[c = ¢|.

Intuitively, this means that the choice of message has no impact on the distribution of the ciphertext.

The restriction that m and k are independent random variables is sensible: in using any cipher,
it is a very bad idea to choose the key in a way that depends on the message, or vice versa (see
Exercise 2.16).

Theorem 2.4. Let £ = (E, D) be a Shannon cipher defined over (IC, M,C). Consider a random
experiment in which k and m are random variables, such that

o k is uniformly distributed over IC,

11

e m is distributed over M, and
e k and m are independent.
Define the random variable ¢ :== E(k,m). Then we have:
o if £ is perfectly secure, then ¢ and m are independent;

e conversely, if c and m are independent, and each message in M occurs with nonzero proba-
bility, then & is perfectly secure.

Proof. We define M* to be the set of messages that occur with nonzero probability.
We begin with a simple observation. Consider any fixed m € M* and ¢ € C. Then we have

Prlc=c¢|m=m] =Pr[E(k,m) =c|m=m]|,
and since k and m are independent, so are E(k,m) and m, and hence
Pr[E(k,m) =c| m =m| =Pr[E(k,m) = c|.
Putting this all together, we have:
Prjc =c| m=m] =Pr[E(k,m) =]. (2.1)

We now prove the first implication. So assume that £ is perfectly secure. We want to show that
c and m are independent. To to this, let m € M* and ¢ € C be given. It will suffice to show that

Prlc = ¢| m = m] = Pr[c = ¢|.
We have

Prlc =] = Z Prlc = ¢ | m = m/] Prfm = m/| (by total probability)

m/eM*
= > PrEkm)=dPrm=m/] (by(2.1))
m/eM*
= Z Pr[E(k,m) = ¢| Prim = m/] (by the definition of perfect security)
m/eM
=Pr[E(k,m)=c] Y Prlm=m/]
m/eM*
= Pr[E(k,m) =] (probabilities sum to 1)
=Prlc=c| m=m] (again by (2.1))

This shows that ¢ and m are independent.

That proves the first implication. For the second, we assume that ¢ and m are independent,
and moreover, that every message occurs with nonzero probability (so M* = M). We want to
show that & is perfectly secure, which means that for each mg, m; € M, and each ¢ € C, we have

Pr[E(k,mg) =] = Pr[E(k,m1) = ¢]. (2.2)

12

But we have

Pr[E(k,mg) = ¢] = Prlc = ¢ | m = my)] (by (2.1))
= Pr[c = (] (by independence of ¢ and m)
=Prlc=c|m=my] (again by independence of ¢ and m)
= Pr[E(k,m1) = (] (again by (2.1)).

That shows that £ is perfectly secure. O

2.2.3 The bad news

We have saved the bad news for last. The next theorem shows that perfect security is such a
powerful notion that one can really do no better than the one-time pad: keys must be at least as
long as messages. As a result, it is almost impossible to use perfectly secure ciphers in practice: if
Alice wants to send Bob a 1GB video file, then Alice and Bob have to agree on a 1GB secret key
in advance.

Theorem 2.5 (Shannon’s theorem). Let £ = (E,D) be a Shannon cipher defined over
(K, M,C). If € is perfectly secure, then |K| > |M]|.

Proof. Assume that || < |M|. We want to show that £ is not perfectly secure. To this end, we
show that there exist messages mg and m;, and a ciphertext ¢, such that

Pr[E(k,mp) =c
c

| >0, and (2.3)
Pr[E(k,m1) =¢] = 0.

(2.4)

Here, k is a random variable, uniformly distributed over K.
To do this, choose any message my € M, and any key kg € K. Let ¢ := E(kg, mp). It is clear
that (2.3) holds.
Next, let
S = {D(/ﬁ,c) 1k € IC}

Clearly,
S| < IK] < IM],

and so we can choose a message m; € M\ S.

To prove (2.4), we need to show that there is no key k; such that E(k;,m;) = c. Assume to
the contrary that E(ki, m1) = c for some ki; then for this key k1, by the correctness property for
ciphers, we would have

D(kl,c) = D(/ﬁ, E(k‘l, m1>) =mai,

which would imply that m; belongs to S, which is not the case. That proves (2.4), and the theorem
follows. O

2.3 Computational ciphers and semantic security

As we have seen in Shannon’s theorem (Theorem 2.5), the only way to achieve perfect security is
to have keys that are as long as messages. However, this is quite impractical: we would like to be

13

able to encrypt a long message (say, a document of several megabytes) using a short key (say, a few
hundred bits). The only way around Shannon’s theorem is to relax our security requirements. The
way we shall do this is to consider not all possible adversaries, but only computationally feasible
adversaries, that is, “real world” adversaries that must perform their calculations on real computers
using a reasonable amount of time and memory. This will lead to a weaker definition of security
called semantic security. Furthermore, our definition of security will be flexible enough to allow
ciphers with variable length message spaces to be considered secure so long as they do not leak any
useful information about an encrypted message to an adversary other than the length of message.
Also, since our focus is now on the “practical,” instead of the “mathematically possible,” we shall
also insist that the encryption and decryption functions are themselves efficient algorithms, and
not just arbitrary functions.

2.3.1 Definition of a computational cipher

A computational cipher £ = (F, D) is a pair of efficient algorithms, F and D. The encryption
algorithm F takes as input a key k, along with a message m, and produces as output a ciphertext c.
The decryption algorithm D takes as input a key k, a ciphertext ¢, and outputs a message m. Keys
lie in some finite key space K, messages lie in a finite message space M, and ciphertexts lie in some
finite ciphertext space C. Just as for a Shannon cipher, we say that £ is defined over (K, M, C).

Although it is not really necessary for our purposes in this chapter, we will allow the encryption
function E to be a probabilistic algorithm (see Chapter D). This means that for fixed inputs k£ and
m, the output of F(k,m) may be one of many values. To emphasize the probabilistic nature of
this computation, we write

c < E(k,m)

to denote the process of executing F(k, m) and assigning the output to the program variable c¢. We
shall use this notation throughout the text whenever we use probabilistic algorithms. Similarly, we
write

k<& K

to denote the process of assigning to the program variable k& a random, uniformly distributed
element of from the key space K. We shall use the analogous notation to sample uniformly from
any finite set.

We will not see any examples of probabilistic encryption algorithms in this chapter (we will see
our first examples of this in Chapter 5). Although one could allow the decryption algorithm to
be probabilistic, we will have no need for this, and so will only discuss ciphers with deterministic
decryption algorithms. However, it will be occasionally be convenient to allow the decryption
algorithm to return a special reject value (distinct from all messages), indicating some kind of error
occurred during the decryption process.

Since the encryption algorithm is probabilistic, for a given key k and message m, the encryption
algorithm may output one of many possible ciphertexts; however, each of these possible ciphertexts
should decrypt to m. We can state this correctness requirement more formally as follows: for
all keys k € K and messages m € M, if we execute

c& E(k,m), m' + D(k,c),

then m = m’ with probability 1.

14

From now on, whenever we refer to a cipher, we shall mean a computational cipher,
as defined above. Moreover, if the encryption algorithm happens to be deterministic, then
we may call the cipher a deterministic cipher.

Observe that any deterministic cipher is a Shannon cipher; however, a computational cipher
need not be a Shannon cipher (if it has a probabilistic encryption algorithm), and a Shannon
cipher need not be a computational cipher (if its encryption or decryption operations have no
efficient implementations).

Example 2.8. The one-time pad (see Example 2.1) and the variable length one-time pad (see
Example 2.2) are both deterministic ciphers, since their encryption and decryption operations may
be trivially implemented as efficient, deterministic algorithms. The same holds for the substitution
cipher (see Example 2.3), provided the alphabet X is not too large. Indeed, in the obvious imple-
mentation, a key — which is a permutation on > — will be represented by an array indexed by X,
and so we will require O(|X|) space just to store a key. This will only be practical for reasonably
sized . The additive one-time pad discussed in Example 2.4 is also a deterministic cipher, since
both encryption and decryption operations may be efficiently implemented (if n is large, special
software to do arithmetic with large integers may be necessary). O

2.3.2 Definition of semantic security

To motivate the definition of semantic security, consider a deterministic cipher £ = (FE, D), defined
over (K, M, C). Consider again the formulation of perfect security in Theorem 2.3. This says that
for all predicates ¢ on the ciphertext space, and all messages mg, m1, we have

Pr(¢(E(k, mo))] = Prop(E(k, m1))], (2.5)

where k is a random variable uniformly distributed over the key space K. Instead of insisting that
these probabilities are equal, we shall only require that they are very close; that is,

Pr(g(E(k,mo))] — Pr{¢(E(k, m1))]| <, (2.6)

for some very small, or negligible, value of €. By itself, this relaxation does not help very much
(see Exercise 2.5). However, instead of requiring that (2.6) holds for every possible ¢, mg, and
mq, we only require that (2.6) holds for all messages mg and my that can be generated by some
efficient algorithm, and all predicates ¢ that can be computed by some efficient algorithm (these
algorithms could be probabilistic). For example, suppose it were the case that using the best
possible algorithms for generating mg and m;, and for testing some predicate ¢, and using (say)
10,000 computers in parallel for 10 years to perform these calculations, (2.6) holds for ¢ = 27109,
While not perfectly secure, we might be willing to say that the cipher is secure for all practical
PUTPOSES.

Also, in defining semantic security, we address an issue raised in Example 2.5. In that example,
we saw that the variable length one-time pad did not satisfy the definition of perfect security.
However, we want our definition to be flexible enough so that ciphers like the variable length one-
time pad, which effectively leak no information about an encrypted message other than its length,
may be considered secure as well.

Now the details. To precisely formulate the definition of semantic security, we shall describe an
attack game played between two parties: the challenger and an adversary. As we will see, the

15

Challenger A
(Experiment b) 3 mo, M1 € M
k&K
c & E(k,my) ¢ >
be{0,1}

Figure 2.1: Experiment b of Attack Game 2.1

challenger follows a very simple, fixed protocol. However, an adversary A may follow an arbitrary
(but still efficient) protocol. The challenger and the adversary A send messages back and forth
to each other, as specified by their protocols, and at the end of the game, A out