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Preface

Cryptography is an indispensable tool used to protect information in computing systems. It is
used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at
rest and data in motion. Cryptographic systems are an integral part of standard protocols, most
notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate
strong encryption into a wide range of applications.

While extremely useful, cryptography is also highly brittle. The most secure cryptographic
system can be rendered completely insecure by a single specification or programming error. No
amount of unit testing will uncover a security vulnerability in a cryptosystem.

Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs
to show that a particular system satisfies the security properties attributed to it. We often need to
introduce certain plausible assumptions to push our security arguments through.

This book is about exactly that: constructing practical cryptosystems for which we can argue
security under plausible assumptions. The book covers many constructions for different tasks in
cryptography. For each task we define a precise security goal that we aim to achieve and then
present constructions that achieve the required goal. To analyze the constructions, we develop a
unified framework for doing cryptographic proofs. A reader who masters this framework will be
capable of applying it to new constructions that may not be covered in the book.

Throughout the book we present many case studies to survey how deployed systems operate.
We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the
importance of rigor in cryptography. We end every chapter with a fun application that applies the
ideas in the chapter in some unexpected way.

Intended audience and how to use this book

The book is intended to be self contained. Some supplementary material covering basic facts from
probability theory and algebra is provided in the appendices.

The book is divided into three parts. The first part develops symmetric encryption which
explains how two parties, Alice and Bob, can securely exchange information when they have a
shared key unknown to the attacker. The second part develops the concepts of public-key encryption
and digital signatures, which allow Alice and Bob to do the same, but without having a shared,
secret key. The third part is about cryptographic protocols, such as protocols for user identification,
key exchange, and secure computation.

A Dbeginning reader can read though the book to learn how cryptographic systems work and
why they are secure. Every security theorem in the book is followed by a proof idea that explains
at a high level why the scheme is secure. On a first read one can skip over the detailed proofs
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without losing continuity. A beginning reader may also skip over the mathematical details sections
that explore nuances of certain definitions.

An advanced reader may enjoy reading the detailed proofs to learn how to do proofs in cryptog-
raphy. At the end of every chapter you will find many exercises that explore additional aspects of
the material covered in the chapter. Some exercises rehearse what was learned, but many exercises
expand on the material and discuss topics not covered in the chapter.

Status of the book

The current draft only contains part I and the first half of part II. The remaining chapters in
parts II and part III are forthcoming. We hope you enjoy this write-up. Please send us comments
and let us know if you find typos or mistakes.

Citations: While the current draft is mostly complete, we still do not include citations and
references to the many works on which this book is based. Those will be coming soon and will be
presented in the Notes section at the end of every chapter.

Dan Boneh and Victor Shoup
December, 2016
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Part 1

Secret key cryptography



Chapter 2

Encryption

Roughly speaking, encryption is the problem of how two parties can communicate in secret in the
presence of an eavesdropper. The main goals of this chapter are to develop a meaningful and useful
definition of what we are trying to achieve, and to take some first steps in actually achieving it.

2.1 Introduction

Suppose Alice and Bob share a secret key k, and Alice wants to transmit a message m to Bob over
a network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
else with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop to solve this fundamental problem are
important and interesting, they do not by themselves solve all problems related to “secure commu-
nication.”

e The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

e The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

e The techniques do not provide a mechanism that allow Alice and Bob to come to share a
secret key in the first place. Maybe they are able to do this using some secure network (or
a physical, face-to-face meeting) at some point in time, while the message is sent at some
later time when Alice and Bob must communicate over an insecure network. However, with
an appropriate infrastructure in place, there are also protocols that allow Alice and Bob to
exchange a secret key even over an insecure network: such protocols are discussed in Chapters
20 and 21.



2.2 Shannon ciphers and perfect security

2.2.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair £ = (E, D) of functions.

e The function F (the encryption function) takes as input a key k£ and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c=E(k,m),
and we say that c is the encryption of m under k.

e The function D (the decryption function) takes as input a key k& and a ciphertext ¢, and
produces a message m. That is,
m = D(k,c),

and we say that m is the decryption of ¢ under k.

e We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k& and all messages m, we have

D(k, E(k, m))=m.

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E:KxM-—=C,
D:KxC— M.

Also, we shall say that £ is defined over (K, M,C).

Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.
The idea is that Alice and Bob must somehow agree in advance on a key k € K. Assuming this is
done, then when Alice wants to send a message m € M to Bob, she encrypts m under k, obtaining
the ciphertext ¢ = E(k,m) € C, and then sends ¢ to Bob via some communication network. Upon
receiving ¢, Bob decrypts ¢ under k, and the correctness property ensures that D(k, c) is the same
as Alice’s original message m. For this to work, we have to assume that ¢ is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
¢ while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1KB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.



Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows
messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher £ = (F, D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, £ is defined over (K, M, C), where

K:=M:=C:={0,1}%,

for some fixed parameter L. For a key k € {0,1}* and a message m € {0,1}* the encryption
function is defined as follows:
E(k,m):=k®m,

and for a key k € {0,1}* and ciphertext ¢ € {0, 1}¥, the decryption function is defined as follows:
D(k,c):=k®ec.

Here, “®” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors z,y, z € {0, 1}L, we have

cOy=yoz, tO®YO2)=(Cdy) Dz, 200l=2 and z@z=0~

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for &£: for all k,m €
{0,1}, we have

D(k, E(k, m) )=D(k, kom)=k® (kom)=(k@k)om=0"am=m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. O

Example 2.2. A variable length one-time pad is a Shannon cipher & = (E, D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, £ is defined over (K, M, C), where

K:={0,1}* and M :=C:={0,1}=F.

for some parameter L. Here, {0,1}<% denotes the set of all bit strings of length at most L (including
the empty string). For a key k € {0,1}" and a message m € {0,1}=F of length ¢, the encryption
function is defined as follows:

E(k,m) :=k[0..£—1] & m,



and for a key k € {0, 1} and ciphertext ¢ € {0,1}= of length ¢, the decryption function is defined
as follows:

D(k,c) :=k[0..£L—1]&®ec.
Here, k[0..¢ — 1] denotes the truncation of k to its first ¢ bits. The reader may verify that the
correctness property holds for £. O

Example 2.3. A substitution cipher is a Shannon cipher £ = (F, D) of the following form. Let
¥ be a finite alphabet of symbols (e.g., the letters A-Z, plus a space symbol, ;). The message space
M and the ciphertext space C are both sequences of symbols from ¥ of some fixed length L:

M:=C:=xr.

The key space K consists of all permutations on X; that is, each k € K is a one-to-one function from
Y onto itself. Note that K is a very large set; indeed, || = |Z|! (for |Z| = 27, |K| &~ 1.09 - 1028).
Encryption of a message m € ©¥ under a key k € K (a permutation on ) is defined as follows

E(k,m) := ( k(m[0]), k(m[1]),...,k(m[L —1]) ),

where mli] denotes the ith entry of m (counting from zero), and k(ml[i]) denotes the application
of the permutation k to the symbol m[i]. Thus, to encrypt m under k, we simply apply the
permutation k component-wise to the sequence m. Decryption of a ciphertext ¢ € £& under a key
k € K is defined as follows:

D(k,c) := (k= (c[0]), k(c[1]), ...,k (c[L —1]) ).

Here, k! is the inverse permutation of k, and to decrypt ¢ under k, we simply apply k! component-
wise to the sequence c¢. The correctness property is easily verified: for a message m € X% and key
k € K, we have

D(k, E(k, m) )= D(k, (k(m[0]),k(m[1]),...,k(m[L —1]))

= (k7 (k(m[0])), k=" (k(m[1])), ...k~ (k(m[L — 1])))
= (m[0],m[1],...,m[L—1])=m. O

Exzample 2.4 (additive one-time pad). We may also define a “addition mod n” variation of
the one-time pad. This is a cipher £ = (E, D), defined over (K, M,C), where K := M = C :=
{0,...,n — 1}, where n is a positive integer. Encryption and decryption are defined as follows:

E(k,m):=m+k modn D(k,c) := ¢ — k mod n.

The reader may easily verify that the correctness property holds for £. O

2.2.2 Perfect security

So far, we have just defined the basic syntax and correctness requirements of a Shannon cipher.
Next, we address the question: what is a “secure” cipher? Intuitively, the answer is that a secure
cipher is one for which an encrypted message remains “well hidden,” even after seeing its encryp-
tion. However, turning this intuitive answer into one that is both mathematically meaningful and
practically relevant is a real challenge. Indeed, although ciphers have been used for centuries, it
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is only in the last few decades that mathematically acceptable definitions of security have been
developed.

In this section, we develop the mathematical notion of perfect security — this is the “gold
standard” for security (at least, when we are only worried about encrypting a single message and
do not care about integrity). We will also see that it is possible to achieve this level of security;
indeed, we will show that the one-time pad satisfies the definition. However, the one-time pad is
not very practical, in the sense that the keys must be as long as the messages: if Alice wants to
send a 1GB file to Bob, they must already share a 1GB key! Unfortunately, this cannot be avoided:
we will also prove that any perfectly secure cipher must have a key space at least as large as its
message space. This fact provides the motivation for developing a definition of security that is
weaker, but that is acceptable from a practical point of view, and which allows one to encrypt long
messages using short keys.

If Alice encrypts a message m under a key k, and an eavesdropping adversary obtains the
ciphertext ¢, Alice only has a hope of keeping m secret if the key k is hard to guess, and that
means, at the very least, that the key k£ should be chosen at random from a large key space. To
say that m is “well hidden” must at least mean that it is hard to completely determine m from
¢, without knowledge of k; however, this is not really enough. Even though the adversary may
not know k, we assume that he does know the encryption algorithm and the distribution of k. In
fact, we will assume that when a message is encrypted, the key k is always chosen at random,
uniformly from among all keys in the key space. The adversary may also have some knowledge of
the message encrypted — because of circumstances, he may know that the set of possible messages
is quite small, and he may know something about how likely each possible message is. For example,
suppose he knows the message m is either mg = "ATTACK_AT_DAWN" or m; = "ATTACK_ AT _DUSK",
and that based on the adversary’s available intelligence, Alice is equally likely to choose either one
of these two messages. This, without seeing the ciphertext ¢, the adversary would only have a
50% chance of guessing which message Alice sent. But we are assuming the adversary does know
c. Even with this knowledge, both messages may be possible; that is, there may exist keys kg
and k; such that FE(kg,mg) = ¢ and E(k1,m1) = ¢, so he cannot be sure if m = mgy or m = my.
However, he can still guess. Perhaps it is a property of the cipher that there are 800 keys kg such
that E(kg,mp) = ¢, and 600 keys k; such that E(ky,mq) = c. If that is the case, the adversary’s
best guess would be that m = mg. Indeed, the probability that this guess is correct is equal to
800/(800 + 600) ~ 57%, which is better than the 50% chance he would have without knowledge
of the ciphertext. Our formal definition of perfect security expressly rules out the possibility that
knowledge of the ciphertext increases the probability of guessing the encrypted message, or for that
matter, determining any property of the message whatsoever.

Without further ado, we formally define perfect security. In this definition, we will consider a
probabilistic experiment in which the key is drawn uniformly from the key space. We write k to
denote the random variable representing this random key. For a message m, E(k,m) is another
random variable, which represents the application of the encryption function to our random key
and the message m. Thus, every message m gives rise to a different random variable E(k,m).

Definition 2.1 (perfect security). Let £ = (E, D) be a Shannon cipher defined over (K, M,C).
Consider a probabilistic experiment in which the random wvariable k is uniformly distributed over

K. If for all mg,my € M, and all c € C, we have

Pr[E(k,mo) = ¢] = Pr[E(k,m1) = (],



then we say that € is a perfectly secure Shannon cipher.

There are a number of equivalent formulations of perfect security that we shall explore. We
state a couple of these here.

Theorem 2.1. Let £ = (E, D) be a Shannon cipher defined over (KK, M,C). The following are
equivalent:

(i) € is perfectly secure.
(i1) For every c € C, there exists N, (possibly depending on c¢) such that for all m € M, we have

{k € K : E(k,m) = c}| = N..

(iii) If the random wvariable k is uniformly distributed over K, then each of the random variables
E(k,m), for m € M, has the same distribution.

Proof. To begin with, let us restate (ii) as follows: for every ¢ € C, there exists a number P,
(depending on c¢) such that for all m € M, we have Pr[E(k,m) = ¢] = P.. Here, k is a random
variable uniformly distributed over K. Note that P. = N./|K|, where N, is as in the original
statement of (ii).

This version of (ii) is clearly the same as (iii).

(i) = (ii). We prove (ii) assuming (i). To prove (ii), let ¢ € C be some fixed ciphertext.
Pick some arbitrary message mog € M, and let P, := Pr[E(k,mg) = ¢]. By (i), we know that for
all m € M, we have Pr[E(k,m) = ¢] = Pr[E(k, mg) = ¢] = P.. That proves (ii).

(ii) = (i). We prove (i) assuming (ii). Consider any fixed mg, m; € M and ¢ € C. (ii) says
that Pr[E(k,mg) = ¢] = P, = Pr[E(k, m1) = ¢|, which proves (i). O

As promised, we give a proof that the one-time pad (see Example 2.1) is perfectly secure.
Theorem 2.2. The one-time pad is a perfectly secure Shannon cipher.

Proof. Suppose that the Shannon cipher £ = (E, D) is a one-time pad, and is defined over (K, M, C),
where K := M := C := {0,1}". For any fixed message m € {0,1}" and ciphertext ¢ € {0,1}%,
there is a unique key k € {0, 1} satisfying the equation

kdm =c,

namely, k := m @ c. Therefore, £ satisfies condition (ii) in Theorem 2.1 (with N, = 1 for each c).
O

Ezxample 2.5. Consider again the variable length one-time pad, defined in Example 2.2. This
does not satisfy our definition of perfect security, since a ciphertext has the same length as the
corresponding plaintext. Indeed, let us choose an arbitrary string of length 1, call it mg, and an
arbitrary string of length 2, call it m;. In addition, suppose that ¢ is an arbitrary length 1 string,
and that k is a random variable that is uniformly distributed over the key space. Then we have

Pr[E(k,mo) =¢]=1/2 and Pr[E(k,mi)=c =0,

which provides a direct counter-example to Definition 2.1.



Intuitively, the variable length one-time pad cannot satisfy our definition of perfect security
simply because any ciphertext leaks the length of the corresponding plaintext. However, in some
sense (which we do not make precise right now), this is the only information leaked. It is perhaps not
clear whether this should be viewed as a problem with the cipher or with our definition of perfect
security. On the one hand, one can imagine scenarios where the length of a message may vary
greatly, and while we could always “pad” short messages to effectively make all messages equally
long, this may be unacceptable from a practical point of view, as it is a waste of bandwidth. On
the other hand, one must be aware of the fact that in certain applications, leaking just the length
of a message may be dangerous: if you are encrypting a “yes” or “no” answer to a question, just
the length of the obvious ASCII encoding of these strings leaks everything, so you better pad “no”
out to three characters. O

Ezxzample 2.6. Consider again the substitution cipher defined in Example 2.3. There are a couple
of different ways to see that this cipher is not perfectly secure.

For example, choose a pair of messages mg, m; € X% such that the first two components of my
are equal, yet the first two components of m; are not equal; that is,

mo[0] = mp[l] and m1[0] # mq[1].

Then for each key k, which is a permutation on ¥, if ¢ = E(k,myp), then ¢[0] = ¢[1], while if
¢ = E(k,m1), then c[0] # c[1]. In particular, it follows that if k is uniformly distributed over the
key space, then the distributions of E(k, mg) and E(k, m;) will not be the same.

Even the weakness described in the previous paragraph may seem somewhat artificial. Another,
perhaps more realistic, type of attack on the substitution cipher works as follows. Suppose the
substitution cipher is used to encrypt email messages. As anyone knows, an email starts with a
“standard header,” such as "FROM". Suppose the ciphertext is ¢ € 2% is intercepted by an adversary.
The secret key is actually a permutation k on . The adversary knows that

Thus, if the original message is m € X, the adversary can now locate all positions in m where
an F occurs, where an R occurs, where an 0 occurs, and where an M occurs. Based just on this
information, along with specific, contextual information about the message, together with general
information about letter frequencies, the adversary may be able to deduce quite a bit about the
original message. O

Ezxample 2.7. Consider the additive one-time pad, defined in Example 2.4. It is easy to verity
that this is perfectly secure. Indeed, it satisfies condition (ii) in Theorem 2.1 (with N, =1 for each
¢). O

The next two theorems develop two more alternative characterizations of perfect security. For
the first, suppose an eavesdropping adversary applies some predicate ¢ to a ciphertext he has
obtained. The predicate ¢ (which is a boolean-valued function on the ciphertext space) may be
something very simple, like the parity function (i.e., whether the number of 1 bits in the ciphertext
is even or odd), or it might be some more elaborate type of statistical test. Regardless of how clever
or complicated the predicate ¢ is, perfect security guarantees that the value of this predicate on
the ciphertext reveals nothing about the message.

10



Theorem 2.3. Let £ = (E, D) be a Shannon cipher defined over (K, M,C). Consider a probabilistic
experiment in which k is a random variable uniformly distributed over IC. Then & is perfectly secure
if and only if for every predicate ¢ on C, for all mg,m; € M, we have

Pr(¢(E(k, mo))] = Prlo(E(k,m1))].

Proof. This is really just a simple calculation. On the one hand, suppose £ is perfectly secure, and
let ¢, mg, and m; be given. Let S := {c € C: ¢(c)}. Then we have

Pri¢(E(k,mo))] = > Pr[E(k,mo) = =Y _Pr[E(k,m1) = ¢ = Pr[¢(E(k,m1))].
ceS ceS

Here, we use the assumption that £ is perfectly secure in establishing the second equality. On the
other hand, suppose £ is not perfectly secure, so there exist mg, m1, and ¢ such that

Pr[E(k,mo) = ¢| # Pr[E(k,m1) = c].

Defining ¢ to be the predicate that is true for this particular ¢, and false for all other ciphertexts,
we see that

Pr[p(E(k,mg))] = Pr[E(k,mg) = ] # Pr[E(k,m1) = ] = Pr[¢(E(k,m1))]. O

The next theorem states in yet another way that perfect security guarantees that the ciphertext
reveals nothing about the message. Suppose that m is a random variable distributed over the
message space M. We do not assume that m is uniformly distributed over M. Now suppose k
is a random variable uniformly distributed over the key space K, independently of m, and define
c := E(k,m), which is a random variable distributed over the ciphertext space C. The following
theorem says that perfect security guarantees that ¢ and m are independent random variables.

One way of characterizing this independence is to say that for each ciphertext ¢ € C that occurs
with nonzero probability, and each message m € M, we have

Prim =m | c=c¢] = Prlm = m)|.

Intuitively, this means that after seeing a ciphertext, we have no more information about the
message than we did before seeing the ciphertext.

Another way of characterizing this independence is to say that for each message m € M that
occurs with nonzero probability, and each ciphertext ¢ € C, we have

Prjc = ¢| m = m] = Pr[c = ¢|.

Intuitively, this means that the choice of message has no impact on the distribution of the ciphertext.

The restriction that m and k are independent random variables is sensible: in using any cipher,
it is a very bad idea to choose the key in a way that depends on the message, or vice versa (see
Exercise 2.16).

Theorem 2.4. Let £ = (E, D) be a Shannon cipher defined over (IC, M,C). Consider a random
experiment in which k and m are random variables, such that

o k is uniformly distributed over IC,
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e m is distributed over M, and
e k and m are independent.
Define the random variable ¢ :== E(k,m). Then we have:
o if £ is perfectly secure, then ¢ and m are independent;

e conversely, if c and m are independent, and each message in M occurs with nonzero proba-
bility, then & is perfectly secure.

Proof. We define M* to be the set of messages that occur with nonzero probability.
We begin with a simple observation. Consider any fixed m € M* and ¢ € C. Then we have

Prlc=c¢|m=m] =Pr[E(k,m) =c|m=m]|,
and since k and m are independent, so are E(k,m) and m, and hence
Pr[E(k,m) =c| m =m| =Pr[E(k,m) = c|.
Putting this all together, we have:
Prjc =c| m=m] =Pr[E(k,m) = ]. (2.1)

We now prove the first implication. So assume that £ is perfectly secure. We want to show that
c and m are independent. To to this, let m € M* and ¢ € C be given. It will suffice to show that

Prlc = ¢| m = m] = Pr[c = ¢|.
We have

Prlc =] = Z Prlc = ¢ | m = m/] Prfm = m/| (by total probability)

m/eM*
= > PrEkm)=dPrm=m/] (by(2.1))
m/eM*
= Z Pr[E(k,m) = ¢| Prim = m/] (by the definition of perfect security)
m/eM
=Pr[E(k,m)=c] Y Prlm=m/]
m/eM*
= Pr[E(k,m) = ] (probabilities sum to 1)
=Prlc=c| m=m] (again by (2.1))

This shows that ¢ and m are independent.

That proves the first implication. For the second, we assume that ¢ and m are independent,
and moreover, that every message occurs with nonzero probability (so M* = M). We want to
show that & is perfectly secure, which means that for each mg, m; € M, and each ¢ € C, we have

Pr[E(k,mg) = ] = Pr[E(k,m1) = ¢]. (2.2)
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But we have

Pr[E(k,mg) = ¢] = Prlc = ¢ | m = my)] (by (2.1))
= Pr[c = (] (by independence of ¢ and m)
=Prlc=c|m=my] (again by independence of ¢ and m)
= Pr[E(k,m1) = (] (again by (2.1)).

That shows that £ is perfectly secure. O

2.2.3 The bad news

We have saved the bad news for last. The next theorem shows that perfect security is such a
powerful notion that one can really do no better than the one-time pad: keys must be at least as
long as messages. As a result, it is almost impossible to use perfectly secure ciphers in practice: if
Alice wants to send Bob a 1GB video file, then Alice and Bob have to agree on a 1GB secret key
in advance.

Theorem 2.5 (Shannon’s theorem). Let £ = (E,D) be a Shannon cipher defined over
(K, M,C). If € is perfectly secure, then |K| > |M]|.

Proof. Assume that || < |M|. We want to show that £ is not perfectly secure. To this end, we
show that there exist messages mg and m;, and a ciphertext ¢, such that

Pr[E(k,mp) =c
c

| >0, and (2.3)
Pr[E(k,m1) =¢] = 0.

(2.4)

Here, k is a random variable, uniformly distributed over K.
To do this, choose any message my € M, and any key kg € K. Let ¢ := E(kg, mp). It is clear
that (2.3) holds.
Next, let
S = {D(/ﬁ,c) 1k € IC}

Clearly,
S| < IK] < IM],

and so we can choose a message m; € M\ S.

To prove (2.4), we need to show that there is no key k; such that E(k;,m;) = c. Assume to
the contrary that E(ki, m1) = c for some ki; then for this key k1, by the correctness property for
ciphers, we would have

D(kl,c) = D(/ﬁ, E(k‘l, m1> ) =mai,

which would imply that m; belongs to S, which is not the case. That proves (2.4), and the theorem
follows. O

2.3 Computational ciphers and semantic security

As we have seen in Shannon’s theorem (Theorem 2.5), the only way to achieve perfect security is
to have keys that are as long as messages. However, this is quite impractical: we would like to be
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able to encrypt a long message (say, a document of several megabytes) using a short key (say, a few
hundred bits). The only way around Shannon’s theorem is to relax our security requirements. The
way we shall do this is to consider not all possible adversaries, but only computationally feasible
adversaries, that is, “real world” adversaries that must perform their calculations on real computers
using a reasonable amount of time and memory. This will lead to a weaker definition of security
called semantic security. Furthermore, our definition of security will be flexible enough to allow
ciphers with variable length message spaces to be considered secure so long as they do not leak any
useful information about an encrypted message to an adversary other than the length of message.
Also, since our focus is now on the “practical,” instead of the “mathematically possible,” we shall
also insist that the encryption and decryption functions are themselves efficient algorithms, and
not just arbitrary functions.

2.3.1 Definition of a computational cipher

A computational cipher £ = (F, D) is a pair of efficient algorithms, F and D. The encryption
algorithm F takes as input a key k, along with a message m, and produces as output a ciphertext c.
The decryption algorithm D takes as input a key k, a ciphertext ¢, and outputs a message m. Keys
lie in some finite key space K, messages lie in a finite message space M, and ciphertexts lie in some
finite ciphertext space C. Just as for a Shannon cipher, we say that £ is defined over (K, M, C).

Although it is not really necessary for our purposes in this chapter, we will allow the encryption
function E to be a probabilistic algorithm (see Chapter D). This means that for fixed inputs k£ and
m, the output of F(k,m) may be one of many values. To emphasize the probabilistic nature of
this computation, we write

c < E(k,m)

to denote the process of executing F(k, m) and assigning the output to the program variable c¢. We
shall use this notation throughout the text whenever we use probabilistic algorithms. Similarly, we
write

k<& K

to denote the process of assigning to the program variable k& a random, uniformly distributed
element of from the key space K. We shall use the analogous notation to sample uniformly from
any finite set.

We will not see any examples of probabilistic encryption algorithms in this chapter (we will see
our first examples of this in Chapter 5). Although one could allow the decryption algorithm to
be probabilistic, we will have no need for this, and so will only discuss ciphers with deterministic
decryption algorithms. However, it will be occasionally be convenient to allow the decryption
algorithm to return a special reject value (distinct from all messages), indicating some kind of error
occurred during the decryption process.

Since the encryption algorithm is probabilistic, for a given key k and message m, the encryption
algorithm may output one of many possible ciphertexts; however, each of these possible ciphertexts
should decrypt to m. We can state this correctness requirement more formally as follows: for
all keys k € K and messages m € M, if we execute

c& E(k,m), m' + D(k,c),

then m = m’ with probability 1.
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From now on, whenever we refer to a cipher, we shall mean a computational cipher,
as defined above. Moreover, if the encryption algorithm happens to be deterministic, then
we may call the cipher a deterministic cipher.

Observe that any deterministic cipher is a Shannon cipher; however, a computational cipher
need not be a Shannon cipher (if it has a probabilistic encryption algorithm), and a Shannon
cipher need not be a computational cipher (if its encryption or decryption operations have no
efficient implementations).

Example 2.8. The one-time pad (see Example 2.1) and the variable length one-time pad (see
Example 2.2) are both deterministic ciphers, since their encryption and decryption operations may
be trivially implemented as efficient, deterministic algorithms. The same holds for the substitution
cipher (see Example 2.3), provided the alphabet X is not too large. Indeed, in the obvious imple-
mentation, a key — which is a permutation on > — will be represented by an array indexed by X,
and so we will require O(|X|) space just to store a key. This will only be practical for reasonably
sized . The additive one-time pad discussed in Example 2.4 is also a deterministic cipher, since
both encryption and decryption operations may be efficiently implemented (if n is large, special
software to do arithmetic with large integers may be necessary). O

2.3.2 Definition of semantic security

To motivate the definition of semantic security, consider a deterministic cipher £ = (FE, D), defined
over (K, M, C). Consider again the formulation of perfect security in Theorem 2.3. This says that
for all predicates ¢ on the ciphertext space, and all messages mg, m1, we have

Pr(¢(E(k, mo))] = Prop(E(k, m1))], (2.5)

where k is a random variable uniformly distributed over the key space K. Instead of insisting that
these probabilities are equal, we shall only require that they are very close; that is,

Pr(g(E(k,mo))] — Pr{¢(E(k, m1))]| <, (2.6)

for some very small, or negligible, value of €. By itself, this relaxation does not help very much
(see Exercise 2.5). However, instead of requiring that (2.6) holds for every possible ¢, mg, and
mq, we only require that (2.6) holds for all messages mg and my that can be generated by some
efficient algorithm, and all predicates ¢ that can be computed by some efficient algorithm (these
algorithms could be probabilistic). For example, suppose it were the case that using the best
possible algorithms for generating mg and m;, and for testing some predicate ¢, and using (say)
10,000 computers in parallel for 10 years to perform these calculations, (2.6) holds for ¢ = 27109,
While not perfectly secure, we might be willing to say that the cipher is secure for all practical
PUTPOSES.

Also, in defining semantic security, we address an issue raised in Example 2.5. In that example,
we saw that the variable length one-time pad did not satisfy the definition of perfect security.
However, we want our definition to be flexible enough so that ciphers like the variable length one-
time pad, which effectively leak no information about an encrypted message other than its length,
may be considered secure as well.

Now the details. To precisely formulate the definition of semantic security, we shall describe an
attack game played between two parties: the challenger and an adversary. As we will see, the
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Challenger A
(Experiment b) 3 mo, M1 € M
k&K
c & E(k,my) ¢ >
be{0,1}

Figure 2.1: Experiment b of Attack Game 2.1

challenger follows a very simple, fixed protocol. However, an adversary A may follow an arbitrary
(but still efficient) protocol. The challenger and the adversary A send messages back and forth
to each other, as specified by their protocols, and at the end of the game, A out