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Preface

Cryptography is an indispensable tool used to protect information in computing systems. It is
used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at
rest and data in motion. Cryptographic systems are an integral part of standard protocols, most
notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate
strong encryption into a wide range of applications.

While extremely useful, cryptography is also highly brittle. The most secure cryptographic
system can be rendered completely insecure by a single specification or programming error. No
amount of unit testing will uncover a security vulnerability in a cryptosystem.

Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs
to show that a particular system satisfies the security properties attributed to it. We often need to
introduce certain plausible assumptions to push our security arguments through.

This book is about exactly that: constructing practical cryptosystems for which we can argue
security under plausible assumptions. The book covers many constructions for di↵erent tasks in
cryptography. For each task we define a precise security goal that we aim to achieve and then
present constructions that achieve the required goal. To analyze the constructions, we develop a
unified framework for doing cryptographic proofs. A reader who masters this framework will be
capable of applying it to new constructions that may not be covered in the book.

Throughout the book we present many case studies to survey how deployed systems operate.
We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the
importance of rigor in cryptography. We end every chapter with a fun application that applies the
ideas in the chapter in some unexpected way.

Intended audience and how to use this book

The book is intended to be self contained. Some supplementary material covering basic facts from
probability theory and algebra is provided in the appendices.

The book is divided into three parts. The first part develops symmetric encryption which
explains how two parties, Alice and Bob, can securely exchange information when they have a
shared key unknown to the attacker. The second part develops the concepts of public-key encryption
and digital signatures, which allow Alice and Bob to do the same, but without having a shared,
secret key. The third part is about cryptographic protocols, such as protocols for user identification,
key exchange, and secure computation.

A beginning reader can read though the book to learn how cryptographic systems work and
why they are secure. Every security theorem in the book is followed by a proof idea that explains
at a high level why the scheme is secure. On a first read one can skip over the detailed proofs
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without losing continuity. A beginning reader may also skip over the mathematical details sections
that explore nuances of certain definitions.

An advanced reader may enjoy reading the detailed proofs to learn how to do proofs in cryptog-
raphy. At the end of every chapter you will find many exercises that explore additional aspects of
the material covered in the chapter. Some exercises rehearse what was learned, but many exercises
expand on the material and discuss topics not covered in the chapter.

Status of the book

The current draft only contains part I and the first half of part II. The remaining chapters in
parts II and part III are forthcoming. We hope you enjoy this write-up. Please send us comments
and let us know if you find typos or mistakes.

Citations: While the current draft is mostly complete, we still do not include citations and
references to the many works on which this book is based. Those will be coming soon and will be
presented in the Notes section at the end of every chapter.

Dan Boneh and Victor Shoup
December, 2016
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Secret key cryptography
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Chapter 2

Encryption

Roughly speaking, encryption is the problem of how two parties can communicate in secret in the
presence of an eavesdropper. The main goals of this chapter are to develop a meaningful and useful
definition of what we are trying to achieve, and to take some first steps in actually achieving it.

2.1 Introduction

Suppose Alice and Bob share a secret key k, and Alice wants to transmit a message m to Bob over
a network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
else with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop to solve this fundamental problem are
important and interesting, they do not by themselves solve all problems related to “secure commu-
nication.”

• The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

• The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

• The techniques do not provide a mechanism that allow Alice and Bob to come to share a
secret key in the first place. Maybe they are able to do this using some secure network (or
a physical, face-to-face meeting) at some point in time, while the message is sent at some
later time when Alice and Bob must communicate over an insecure network. However, with
an appropriate infrastructure in place, there are also protocols that allow Alice and Bob to
exchange a secret key even over an insecure network: such protocols are discussed in Chapters
20 and 21.
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2.2 Shannon ciphers and perfect security

2.2.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair E = (E, D) of functions.

• The function E (the encryption function) takes as input a key k and a message m (also
called a plaintext), and produces as output a ciphertext c. That is,

c = E(k, m),

and we say that c is the encryption of m under k.

• The function D (the decryption function) takes as input a key k and a ciphertext c, and
produces a message m. That is,

m = D(k, c),

and we say that m is the decryption of c under k.

• We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k and all messages m, we have

D(k, E(k, m) ) = m.

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E : K ⇥M! C,

D : K ⇥ C !M.

Also, we shall say that E is defined over (K, M, C).
Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.

The idea is that Alice and Bob must somehow agree in advance on a key k 2 K. Assuming this is
done, then when Alice wants to send a message m 2M to Bob, she encrypts m under k, obtaining
the ciphertext c = E(k, m) 2 C, and then sends c to Bob via some communication network. Upon
receiving c, Bob decrypts c under k, and the correctness property ensures that D(k, c) is the same
as Alice’s original message m. For this to work, we have to assume that c is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
c while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1KB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.
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Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows
messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher E = (E, D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, E is defined over (K, M, C), where

K := M := C := {0, 1}L,

for some fixed parameter L. For a key k 2 {0, 1}L and a message m 2 {0, 1}L the encryption
function is defined as follows:

E(k, m) := k �m,

and for a key k 2 {0, 1}L and ciphertext c 2 {0, 1}L, the decryption function is defined as follows:

D(k, c) := k � c.

Here, “�” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors x, y, z 2 {0, 1}L, we have

x� y = y � x, x� (y � z) = (x� y)� z, x� 0L = x, and x� x = 0L.

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for E : for all k, m 2
{0, 1}L, we have

D(k, E(k, m) ) = D(k, k �m) = k � (k �m) = (k � k)�m = 0L �m = m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. 2

Example 2.2. A variable length one-time pad is a Shannon cipher E = (E, D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, E is defined over (K, M, C), where

K := {0, 1}L and M := C := {0, 1}L.

for some parameter L. Here, {0, 1}L denotes the set of all bit strings of length at most L (including
the empty string). For a key k 2 {0, 1}L and a message m 2 {0, 1}L of length `, the encryption
function is defined as follows:

E(k, m) := k[0 . . `� 1]�m,
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and for a key k 2 {0, 1}L and ciphertext c 2 {0, 1}L of length `, the decryption function is defined
as follows:

D(k, c) := k[0 . . `� 1]� c.

Here, k[0 . . ` � 1] denotes the truncation of k to its first ` bits. The reader may verify that the
correctness property holds for E . 2

Example 2.3. A substitution cipher is a Shannon cipher E = (E, D) of the following form. Let
⌃ be a finite alphabet of symbols (e.g., the letters A–Z, plus a space symbol,  ). The message space
M and the ciphertext space C are both sequences of symbols from ⌃ of some fixed length L:

M := C := ⌃L.

The key space K consists of all permutations on ⌃; that is, each k 2 K is a one-to-one function from
⌃ onto itself. Note that K is a very large set; indeed, |K| = |⌃|! (for |⌃| = 27, |K| ⇡ 1.09 · 1028).

Encryption of a message m 2 ⌃L under a key k 2 K (a permutation on ⌃) is defined as follows

E(k, m) :=
�

k(m[0]), k(m[1]), . . . , k(m[L� 1])
�

,

where m[i] denotes the ith entry of m (counting from zero), and k(m[i]) denotes the application
of the permutation k to the symbol m[i]. Thus, to encrypt m under k, we simply apply the
permutation k component-wise to the sequence m. Decryption of a ciphertext c 2 ⌃L under a key
k 2 K is defined as follows:

D(k, c) :=
�

k�1(c[0]), k�1(c[1]), . . . , k�1(c[L� 1])
�

.

Here, k�1 is the inverse permutation of k, and to decrypt c under k, we simply apply k�1 component-
wise to the sequence c. The correctness property is easily verified: for a message m 2 ⌃L and key
k 2 K, we have

D(k, E(k, m) ) = D(k, (k(m[0]), k(m[1]), . . . , k(m[L� 1]) )

= (k�1(k(m[0])), k�1(k(m[1])), . . . , k�1(k(m[L� 1])))

= (m[0], m[1], . . . , m[L� 1]) = m. 2

Example 2.4 (additive one-time pad). We may also define a “addition mod n” variation of
the one-time pad. This is a cipher E = (E, D), defined over (K, M, C), where K := M := C :=
{0, . . . , n� 1}, where n is a positive integer. Encryption and decryption are defined as follows:

E(k, m) := m + k mod n D(k, c) := c� k mod n.

The reader may easily verify that the correctness property holds for E . 2

2.2.2 Perfect security

So far, we have just defined the basic syntax and correctness requirements of a Shannon cipher.
Next, we address the question: what is a “secure” cipher? Intuitively, the answer is that a secure
cipher is one for which an encrypted message remains “well hidden,” even after seeing its encryp-
tion. However, turning this intuitive answer into one that is both mathematically meaningful and
practically relevant is a real challenge. Indeed, although ciphers have been used for centuries, it
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is only in the last few decades that mathematically acceptable definitions of security have been
developed.

In this section, we develop the mathematical notion of perfect security — this is the “gold
standard” for security (at least, when we are only worried about encrypting a single message and
do not care about integrity). We will also see that it is possible to achieve this level of security;
indeed, we will show that the one-time pad satisfies the definition. However, the one-time pad is
not very practical, in the sense that the keys must be as long as the messages: if Alice wants to
send a 1GB file to Bob, they must already share a 1GB key! Unfortunately, this cannot be avoided:
we will also prove that any perfectly secure cipher must have a key space at least as large as its
message space. This fact provides the motivation for developing a definition of security that is
weaker, but that is acceptable from a practical point of view, and which allows one to encrypt long
messages using short keys.

If Alice encrypts a message m under a key k, and an eavesdropping adversary obtains the
ciphertext c, Alice only has a hope of keeping m secret if the key k is hard to guess, and that
means, at the very least, that the key k should be chosen at random from a large key space. To
say that m is “well hidden” must at least mean that it is hard to completely determine m from
c, without knowledge of k; however, this is not really enough. Even though the adversary may
not know k, we assume that he does know the encryption algorithm and the distribution of k. In
fact, we will assume that when a message is encrypted, the key k is always chosen at random,
uniformly from among all keys in the key space. The adversary may also have some knowledge of
the message encrypted — because of circumstances, he may know that the set of possible messages
is quite small, and he may know something about how likely each possible message is. For example,
suppose he knows the message m is either m0 = "ATTACK AT DAWN" or m1 = "ATTACK AT DUSK",
and that based on the adversary’s available intelligence, Alice is equally likely to choose either one
of these two messages. This, without seeing the ciphertext c, the adversary would only have a
50% chance of guessing which message Alice sent. But we are assuming the adversary does know
c. Even with this knowledge, both messages may be possible; that is, there may exist keys k0
and k1 such that E(k0, m0) = c and E(k1, m1) = c, so he cannot be sure if m = m0 or m = m1.
However, he can still guess. Perhaps it is a property of the cipher that there are 800 keys k0 such
that E(k0, m0) = c, and 600 keys k1 such that E(k1, m1) = c. If that is the case, the adversary’s
best guess would be that m = m0. Indeed, the probability that this guess is correct is equal to
800/(800 + 600) ⇡ 57%, which is better than the 50% chance he would have without knowledge
of the ciphertext. Our formal definition of perfect security expressly rules out the possibility that
knowledge of the ciphertext increases the probability of guessing the encrypted message, or for that
matter, determining any property of the message whatsoever.

Without further ado, we formally define perfect security. In this definition, we will consider a
probabilistic experiment in which the key is drawn uniformly from the key space. We write k to
denote the random variable representing this random key. For a message m, E(k, m) is another
random variable, which represents the application of the encryption function to our random key
and the message m. Thus, every message m gives rise to a di↵erent random variable E(k, m).

Definition 2.1 (perfect security). Let E = (E, D) be a Shannon cipher defined over (K, M, C).
Consider a probabilistic experiment in which the random variable k is uniformly distributed over
K. If for all m0, m1 2M, and all c 2 C, we have

Pr[E(k, m0) = c] = Pr[E(k, m1) = c],
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then we say that E is a perfectly secure Shannon cipher.

There are a number of equivalent formulations of perfect security that we shall explore. We
state a couple of these here.

Theorem 2.1. Let E = (E, D) be a Shannon cipher defined over (K, M, C). The following are
equivalent:

(i) E is perfectly secure.

(ii) For every c 2 C, there exists Nc (possibly depending on c) such that for all m 2M, we have

|{k 2 K : E(k, m) = c}| = Nc.

(iii) If the random variable k is uniformly distributed over K, then each of the random variables
E(k, m), for m 2M, has the same distribution.

Proof. To begin with, let us restate (ii) as follows: for every c 2 C, there exists a number Pc

(depending on c) such that for all m 2 M, we have Pr[E(k, m) = c] = Pc. Here, k is a random
variable uniformly distributed over K. Note that Pc = Nc/|K|, where Nc is as in the original
statement of (ii).

This version of (ii) is clearly the same as (iii).
(i) =) (ii). We prove (ii) assuming (i). To prove (ii), let c 2 C be some fixed ciphertext.

Pick some arbitrary message m0 2 M, and let Pc := Pr[E(k, m0) = c]. By (i), we know that for
all m 2M, we have Pr[E(k, m) = c] = Pr[E(k, m0) = c] = Pc. That proves (ii).

(ii) =) (i). We prove (i) assuming (ii). Consider any fixed m0, m1 2M and c 2 C. (ii) says
that Pr[E(k, m0) = c] = Pc = Pr[E(k, m1) = c], which proves (i). 2

As promised, we give a proof that the one-time pad (see Example 2.1) is perfectly secure.

Theorem 2.2. The one-time pad is a perfectly secure Shannon cipher.

Proof. Suppose that the Shannon cipher E = (E, D) is a one-time pad, and is defined over (K, M, C),
where K := M := C := {0, 1}L. For any fixed message m 2 {0, 1}L and ciphertext c 2 {0, 1}L,
there is a unique key k 2 {0, 1}L satisfying the equation

k �m = c,

namely, k := m � c. Therefore, E satisfies condition (ii) in Theorem 2.1 (with Nc = 1 for each c).
2

Example 2.5. Consider again the variable length one-time pad, defined in Example 2.2. This
does not satisfy our definition of perfect security, since a ciphertext has the same length as the
corresponding plaintext. Indeed, let us choose an arbitrary string of length 1, call it m0, and an
arbitrary string of length 2, call it m1. In addition, suppose that c is an arbitrary length 1 string,
and that k is a random variable that is uniformly distributed over the key space. Then we have

Pr[E(k, m0) = c] = 1/2 and Pr[E(k, m1) = c] = 0,

which provides a direct counter-example to Definition 2.1.
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Intuitively, the variable length one-time pad cannot satisfy our definition of perfect security
simply because any ciphertext leaks the length of the corresponding plaintext. However, in some
sense (which we do not make precise right now), this is the only information leaked. It is perhaps not
clear whether this should be viewed as a problem with the cipher or with our definition of perfect
security. On the one hand, one can imagine scenarios where the length of a message may vary
greatly, and while we could always “pad” short messages to e↵ectively make all messages equally
long, this may be unacceptable from a practical point of view, as it is a waste of bandwidth. On
the other hand, one must be aware of the fact that in certain applications, leaking just the length
of a message may be dangerous: if you are encrypting a “yes” or “no” answer to a question, just
the length of the obvious ASCII encoding of these strings leaks everything, so you better pad “no”
out to three characters. 2

Example 2.6. Consider again the substitution cipher defined in Example 2.3. There are a couple
of di↵erent ways to see that this cipher is not perfectly secure.

For example, choose a pair of messages m0, m1 2 ⌃L such that the first two components of m0

are equal, yet the first two components of m1 are not equal; that is,

m0[0] = m0[1] and m1[0] 6= m1[1].

Then for each key k, which is a permutation on ⌃, if c = E(k, m0), then c[0] = c[1], while if
c = E(k, m1), then c[0] 6= c[1]. In particular, it follows that if k is uniformly distributed over the
key space, then the distributions of E(k, m0) and E(k, m1) will not be the same.

Even the weakness described in the previous paragraph may seem somewhat artificial. Another,
perhaps more realistic, type of attack on the substitution cipher works as follows. Suppose the
substitution cipher is used to encrypt email messages. As anyone knows, an email starts with a
“standard header,” such as "FROM". Suppose the ciphertext is c 2 ⌃L is intercepted by an adversary.
The secret key is actually a permutation k on ⌃. The adversary knows that

c[0 . . . 3] = (k(F), k(R), k(O), k(M)).

Thus, if the original message is m 2 ⌃L, the adversary can now locate all positions in m where
an F occurs, where an R occurs, where an O occurs, and where an M occurs. Based just on this
information, along with specific, contextual information about the message, together with general
information about letter frequencies, the adversary may be able to deduce quite a bit about the
original message. 2

Example 2.7. Consider the additive one-time pad, defined in Example 2.4. It is easy to verity
that this is perfectly secure. Indeed, it satisfies condition (ii) in Theorem 2.1 (with Nc = 1 for each
c). 2

The next two theorems develop two more alternative characterizations of perfect security. For
the first, suppose an eavesdropping adversary applies some predicate � to a ciphertext he has
obtained. The predicate � (which is a boolean-valued function on the ciphertext space) may be
something very simple, like the parity function (i.e., whether the number of 1 bits in the ciphertext
is even or odd), or it might be some more elaborate type of statistical test. Regardless of how clever
or complicated the predicate � is, perfect security guarantees that the value of this predicate on
the ciphertext reveals nothing about the message.
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Theorem 2.3. Let E = (E, D) be a Shannon cipher defined over (K, M, C). Consider a probabilistic
experiment in which k is a random variable uniformly distributed over K. Then E is perfectly secure
if and only if for every predicate � on C, for all m0, m1 2M, we have

Pr[�(E(k, m0))] = Pr[�(E(k, m1))].

Proof. This is really just a simple calculation. On the one hand, suppose E is perfectly secure, and
let �, m0, and m1 be given. Let S := {c 2 C : �(c)}. Then we have

Pr[�(E(k, m0))] =
X

c2S
Pr[E(k, m0) = c] =

X

c2S
Pr[E(k, m1) = c] = Pr[�(E(k, m1))].

Here, we use the assumption that E is perfectly secure in establishing the second equality. On the
other hand, suppose E is not perfectly secure, so there exist m0, m1, and c such that

Pr[E(k, m0) = c] 6= Pr[E(k, m1) = c].

Defining � to be the predicate that is true for this particular c, and false for all other ciphertexts,
we see that

Pr[�(E(k, m0))] = Pr[E(k, m0) = c] 6= Pr[E(k, m1) = c] = Pr[�(E(k, m1))]. 2

The next theorem states in yet another way that perfect security guarantees that the ciphertext
reveals nothing about the message. Suppose that m is a random variable distributed over the
message space M. We do not assume that m is uniformly distributed over M. Now suppose k
is a random variable uniformly distributed over the key space K, independently of m, and define
c := E(k,m), which is a random variable distributed over the ciphertext space C. The following
theorem says that perfect security guarantees that c and m are independent random variables.

One way of characterizing this independence is to say that for each ciphertext c 2 C that occurs
with nonzero probability, and each message m 2M, we have

Pr[m = m | c = c] = Pr[m = m].

Intuitively, this means that after seeing a ciphertext, we have no more information about the
message than we did before seeing the ciphertext.

Another way of characterizing this independence is to say that for each message m 2M that
occurs with nonzero probability, and each ciphertext c 2 C, we have

Pr[c = c | m = m] = Pr[c = c].

Intuitively, this means that the choice of message has no impact on the distribution of the ciphertext.
The restriction that m and k are independent random variables is sensible: in using any cipher,

it is a very bad idea to choose the key in a way that depends on the message, or vice versa (see
Exercise 2.16).

Theorem 2.4. Let E = (E, D) be a Shannon cipher defined over (K, M, C). Consider a random
experiment in which k and m are random variables, such that

• k is uniformly distributed over K,
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• m is distributed over M, and

• k and m are independent.

Define the random variable c := E(k,m). Then we have:

• if E is perfectly secure, then c and m are independent;

• conversely, if c and m are independent, and each message in M occurs with nonzero proba-
bility, then E is perfectly secure.

Proof. We define M⇤ to be the set of messages that occur with nonzero probability.
We begin with a simple observation. Consider any fixed m 2M⇤ and c 2 C. Then we have

Pr[c = c | m = m] = Pr[E(k, m) = c | m = m],

and since k and m are independent, so are E(k, m) and m, and hence

Pr[E(k, m) = c | m = m] = Pr[E(k, m) = c].

Putting this all together, we have:

Pr[c = c | m = m] = Pr[E(k, m) = c]. (2.1)

We now prove the first implication. So assume that E is perfectly secure. We want to show that
c and m are independent. To to this, let m 2M⇤ and c 2 C be given. It will su�ce to show that

Pr[c = c | m = m] = Pr[c = c].

We have

Pr[c = c] =
X

m02M⇤

Pr[c = c | m = m0] Pr[m = m0] (by total probability)

=
X

m02M⇤

Pr[E(k, m0) = c] Pr[m = m0] (by (2.1))

=
X

m02M
Pr[E(k, m) = c] Pr[m = m0] (by the definition of perfect security)

= Pr[E(k, m) = c]
X

m02M⇤

Pr[m = m0]

= Pr[E(k, m) = c] (probabilities sum to 1)

= Pr[c = c | m = m] (again by (2.1))

This shows that c and m are independent.
That proves the first implication. For the second, we assume that c and m are independent,

and moreover, that every message occurs with nonzero probability (so M⇤ = M). We want to
show that E is perfectly secure, which means that for each m0, m1 2M, and each c 2 C, we have

Pr[E(k, m0) = c] = Pr[E(k, m1) = c]. (2.2)
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But we have

Pr[E(k, m0) = c] = Pr[c = c | m = m0] (by (2.1))

= Pr[c = c] (by independence of c and m)

= Pr[c = c | m = m1] (again by independence of c and m)

= Pr[E(k, m1) = c] (again by (2.1)).

That shows that E is perfectly secure. 2

2.2.3 The bad news

We have saved the bad news for last. The next theorem shows that perfect security is such a
powerful notion that one can really do no better than the one-time pad: keys must be at least as
long as messages. As a result, it is almost impossible to use perfectly secure ciphers in practice: if
Alice wants to send Bob a 1GB video file, then Alice and Bob have to agree on a 1GB secret key
in advance.

Theorem 2.5 (Shannon’s theorem). Let E = (E, D) be a Shannon cipher defined over
(K, M, C). If E is perfectly secure, then |K| � |M|.
Proof. Assume that |K| < |M|. We want to show that E is not perfectly secure. To this end, we
show that there exist messages m0 and m1, and a ciphertext c, such that

Pr[E(k, m0) = c] > 0, and (2.3)

Pr[E(k, m1) = c] = 0. (2.4)

Here, k is a random variable, uniformly distributed over K.
To do this, choose any message m0 2M, and any key k0 2 K. Let c := E(k0, m0). It is clear

that (2.3) holds.
Next, let

S := {D(k1, c) : k1 2 K}.

Clearly,
|S|  |K| < |M|,

and so we can choose a message m1 2M \ S.
To prove (2.4), we need to show that there is no key k1 such that E(k1, m1) = c. Assume to

the contrary that E(k1, m1) = c for some k1; then for this key k1, by the correctness property for
ciphers, we would have

D(k1, c) = D(k1, E(k1, m1) ) = m1,

which would imply that m1 belongs to S, which is not the case. That proves (2.4), and the theorem
follows. 2

2.3 Computational ciphers and semantic security

As we have seen in Shannon’s theorem (Theorem 2.5), the only way to achieve perfect security is
to have keys that are as long as messages. However, this is quite impractical: we would like to be
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able to encrypt a long message (say, a document of several megabytes) using a short key (say, a few
hundred bits). The only way around Shannon’s theorem is to relax our security requirements. The
way we shall do this is to consider not all possible adversaries, but only computationally feasible
adversaries, that is, “real world” adversaries that must perform their calculations on real computers
using a reasonable amount of time and memory. This will lead to a weaker definition of security
called semantic security. Furthermore, our definition of security will be flexible enough to allow
ciphers with variable length message spaces to be considered secure so long as they do not leak any
useful information about an encrypted message to an adversary other than the length of message.
Also, since our focus is now on the “practical,” instead of the “mathematically possible,” we shall
also insist that the encryption and decryption functions are themselves e�cient algorithms, and
not just arbitrary functions.

2.3.1 Definition of a computational cipher

A computational cipher E = (E, D) is a pair of e�cient algorithms, E and D. The encryption
algorithm E takes as input a key k, along with a message m, and produces as output a ciphertext c.
The decryption algorithm D takes as input a key k, a ciphertext c, and outputs a message m. Keys
lie in some finite key space K, messages lie in a finite message space M, and ciphertexts lie in some
finite ciphertext space C. Just as for a Shannon cipher, we say that E is defined over (K, M, C).

Although it is not really necessary for our purposes in this chapter, we will allow the encryption
function E to be a probabilistic algorithm (see Chapter D). This means that for fixed inputs k and
m, the output of E(k, m) may be one of many values. To emphasize the probabilistic nature of
this computation, we write

c R E(k, m)

to denote the process of executing E(k, m) and assigning the output to the program variable c. We
shall use this notation throughout the text whenever we use probabilistic algorithms. Similarly, we
write

k  R K
to denote the process of assigning to the program variable k a random, uniformly distributed
element of from the key space K. We shall use the analogous notation to sample uniformly from
any finite set.

We will not see any examples of probabilistic encryption algorithms in this chapter (we will see
our first examples of this in Chapter 5). Although one could allow the decryption algorithm to
be probabilistic, we will have no need for this, and so will only discuss ciphers with deterministic
decryption algorithms. However, it will be occasionally be convenient to allow the decryption
algorithm to return a special reject value (distinct from all messages), indicating some kind of error
occurred during the decryption process.

Since the encryption algorithm is probabilistic, for a given key k and message m, the encryption
algorithm may output one of many possible ciphertexts; however, each of these possible ciphertexts
should decrypt to m. We can state this correctness requirement more formally as follows: for
all keys k 2 K and messages m 2M, if we execute

c R E(k, m), m0  D(k, c),

then m = m0 with probability 1.
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From now on, whenever we refer to a cipher, we shall mean a computational cipher,
as defined above. Moreover, if the encryption algorithm happens to be deterministic, then
we may call the cipher a deterministic cipher.

Observe that any deterministic cipher is a Shannon cipher; however, a computational cipher
need not be a Shannon cipher (if it has a probabilistic encryption algorithm), and a Shannon
cipher need not be a computational cipher (if its encryption or decryption operations have no
e�cient implementations).

Example 2.8. The one-time pad (see Example 2.1) and the variable length one-time pad (see
Example 2.2) are both deterministic ciphers, since their encryption and decryption operations may
be trivially implemented as e�cient, deterministic algorithms. The same holds for the substitution
cipher (see Example 2.3), provided the alphabet ⌃ is not too large. Indeed, in the obvious imple-
mentation, a key — which is a permutation on ⌃ — will be represented by an array indexed by ⌃,
and so we will require O(|⌃|) space just to store a key. This will only be practical for reasonably
sized ⌃. The additive one-time pad discussed in Example 2.4 is also a deterministic cipher, since
both encryption and decryption operations may be e�ciently implemented (if n is large, special
software to do arithmetic with large integers may be necessary). 2

2.3.2 Definition of semantic security

To motivate the definition of semantic security, consider a deterministic cipher E = (E, D), defined
over (K, M, C). Consider again the formulation of perfect security in Theorem 2.3. This says that
for all predicates � on the ciphertext space, and all messages m0, m1, we have

Pr[�(E(k, m0))] = Pr[�(E(k, m1))], (2.5)

where k is a random variable uniformly distributed over the key space K. Instead of insisting that
these probabilities are equal, we shall only require that they are very close; that is,

�

�

�

Pr[�(E(k, m0))]� Pr[�(E(k, m1))]
�

�

�

 ✏, (2.6)

for some very small, or negligible, value of ✏. By itself, this relaxation does not help very much
(see Exercise 2.5). However, instead of requiring that (2.6) holds for every possible �, m0, and
m1, we only require that (2.6) holds for all messages m0 and m1 that can be generated by some
e�cient algorithm, and all predicates � that can be computed by some e�cient algorithm (these
algorithms could be probabilistic). For example, suppose it were the case that using the best
possible algorithms for generating m0 and m1, and for testing some predicate �, and using (say)
10,000 computers in parallel for 10 years to perform these calculations, (2.6) holds for ✏ = 2�100.
While not perfectly secure, we might be willing to say that the cipher is secure for all practical
purposes.

Also, in defining semantic security, we address an issue raised in Example 2.5. In that example,
we saw that the variable length one-time pad did not satisfy the definition of perfect security.
However, we want our definition to be flexible enough so that ciphers like the variable length one-
time pad, which e↵ectively leak no information about an encrypted message other than its length,
may be considered secure as well.

Now the details. To precisely formulate the definition of semantic security, we shall describe an
attack game played between two parties: the challenger and an adversary. As we will see, the
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Challenger A
m0,m1 2 M

k
R K

b̂ 2 {0, 1}

(Experiment b)

c
c

R E(k, mb)

Figure 2.1: Experiment b of Attack Game 2.1

challenger follows a very simple, fixed protocol. However, an adversary A may follow an arbitrary
(but still e�cient) protocol. The challenger and the adversary A send messages back and forth
to each other, as specified by their protocols, and at the end of the game, A outputs some value.
Actually, our attack game for defining semantic security comprises two alternative “sub-games,”
or “experiments” — in both experiments, the adversary follows the same protocol; however, the
challenger’s behavior is slightly di↵erent in the two experiments. The attack game also defines a
probability space, and this in turn defines the adversary’s advantage, which measures the di↵erence
between the probabilities of two events in this probability space.

Attack Game 2.1 (semantic security). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For
b = 0, 1, we define

Experiment b:

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes k  R K, c R E(k, mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s semantic
security advantage with respect to E as

SSadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Note that in the above game, the events W0 and W1 are defined with respect to the probability
space determined by the random choice of k, the random choices made (if any) by the encryption
algorithm, and the random choices made (if any) by the adversary. The value SSadv[A, E ] is a
number between 0 and 1.

See Fig. 2.1 for a schematic diagram of Attack Game 2.1. As indicated in the diagram, A’s
“output” is really just a final message to the challenger.
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Definition 2.2 (semantic security). A cipher E is semantically secure if for all e�cient
adversaries A, the value SSadv[A, E ] is negligible.

As a formal definition, this is not quite complete, as we have yet to define what we mean by
“messages of the same length”, “e�cient adversaries”, and “negligible”. We will come back to this
shortly.

Let us relate this formal definition to the discussion preceding it. Suppose that the adversary
A in Attack Game 2.1 is deterministic. First, the adversary computes in a deterministic fashion
messages m0, m1, and then evaluates a predicate � on the ciphertext c, outputting 1 if true and
0 if false. Semantic security says that the value ✏ in (2.6) is negligible. In the case where A is
probabilistic, we can view A as being structured as follows: it generates a random value r from

some appropriate set, and deterministically computes messages m(r)
0 , m(r)

1 , which depend on r, and
evaluates a predicate �(r) on c, which also depends on r. Here, semantic security says that the value

✏ in (2.6), with m0, m1, � replaced by m(r)
0 , m(r)

1 , �(r), is negligible — but where now the probability
is with respect to a randomly chosen key and a randomly chosen value of r.

Remark 2.1. Let us now say a few words about the requirement that the messages m0 and m1

computed by the adversary Attack Game 2.1 be of the same length.

• First, the notion of the “length” of a message is specific to the particular message space M;
in other words, in specifying a message space, one must specify a rule that associates a length
(which is a non-negative integer) with any given message. For most concrete message spaces,
this will be clear: for example, for the message space {0, 1}L (as in Example 2.2), the length
of a message m 2 {0, 1}L is simply its length, |m|, as a bit string. However, to make our
definition somewhat general, we leave the notion of length as an abstraction. Indeed, some
message spaces may have no particular notion of length, in which case all messages may be
viewed as having length 0.

• Second, the requirement that m0 and m1 be of the same length means that the adversary is not
deemed to have broken the system just because he can e↵ectively distinguish an encryption
of a message of one length from an encryption of a message of a di↵erent length. This is how
our formal definition captures the notion that an encryption of a message is allowed to leak
the length of the message (but nothing else).

We already discussed in Example 2.5 how in certain applications, leaking the just length of
the message can be catastrophic. However, since there is no general solution to this problem,
most real-world encryption schemes (for example, TLS) do not make any attempt at all to
hide the length of the message. This can lead to real attacks. For example, Chen et al. [25]
show that the lengths of encrypted messages can reveal considerable information about private
data that a user supplies to a cloud application. They use an online tax filing system as their
example, but other works show attacks of this type on many other systems. 2

Example 2.9. Let E be a deterministic cipher that is perfectly secure. Then it is easy to see that
for every adversary A (e�cient or not), we have SSadv[A, E ] = 0. This follows almost immediately
from Theorem 2.3 (the only slight complication is that our adversary A in Attack Game 2.1 may
be probabilistic, but this is easily dealt with). In particular, E is semantically secure. Thus, if E is
the one-time pad (see Example 2.1), we have SSadv[A, E ] = 0 for all adversaries A; in particular,
the one-time pad is semantically secure. Because the definition of semantic security is a bit more
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forgiving with regard to variable length message spaces, it is also easy to see that if E is the variable
length one-time pad (see Example 2.2), then SSadv[A, E ] = 0 for all adversaries A; in particular,
the variable length one-time pad is also semantically secure. 2

We need to say a few words about the terms “e�cient” and “negligible”. Below in Section 2.4
we will fill in the remaining details (they are somewhat tedious, and not really very enlightening).
Intuitively, negligible means so small as to be “zero for all practical purposes”: think of a number
like 2�100 — if the probability that you spontaneously combust in the next year is 2�100, then you
would not worry about such an event occurring any more than you would an event that occurred
with probability 0. Also, an e�cient adversary is one that runs ins a“reasonable” amount time.

We introduce two other terms:

• A value N is called super-poly is 1/N is negligible.

• A poly-bounded value which intuitively a reasonably sized number — in particular, we can
say that the running time of any e�cient adversary is a poly-bounded value.

Fact 2.6. If ✏ and ✏0 are negligible values, and Q and Q0 are poly-bounded values, then:

(i) ✏ + ✏0 is a negligible value,

(ii) Q + Q0 and Q · Q0 are poly-bounded values, and

(iii) Q · ✏ is a negligible value.

For now, the reader can just take these facts as axioms. Instead of dwelling on these technical
issues, we discuss an example that illustrates how one typically uses this definition in analyzing the
security of a larger system that uses a semantically secure cipher.

2.3.3 Connections to weaker notions of security

Message recovery attacks

Intuitively, in a message recovery attack, an adversary is given an encryption of a random message,
and is able to recover the message from the ciphertext with probability significantly better than
random guessing, that is, probability 1/|M|. Of course, any reasonable notion of security should
rule out such an attack, and indeed, semantic security does.

While this may seem intuitively obvious, we give a formal proof of this. One of our motivations
for doing this is to illustrate in detail the notion of a security reduction, which is the main technique
used to reason about the security of systems. Basically, the proof will argue that any e�cient
adversary A that can e↵ectively mount a message recovery attack on E can be used to build an
e�cient adversary B that breaks the semantic security of E ; since semantic security implies that no
such B exists, we may conclude that no such A exists.

To formulate this proof in more detail, we need a formal definition of a message recovery
attack. As before, this is done by giving attack game, which is a protocol between a challenger and
an adversary.

Attack Game 2.2 (message recovery). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, the attack game proceeds as follows:

• The challenger computes m R M, k  R K, c R E(k, m), and sends c to the adversary.
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• The adversary outputs a message m̂ 2M.

Let W be the event that m̂ = m. We say that A wins the game in this case, and we define A’s
message recovery advantage with respect to E as

MRadv[A, E ] :=
�

�Pr[W ]� 1/|M|��. 2

Definition 2.3 (security against message recovery). A cipher E is secure against message
recovery if for all e�cient adversaries A, the value MRadv[A, E ] is negligible.

Theorem 2.7. Let E = (E, D) be a cipher defined over (K, M, C). If E is semantically secure then
E is secure against message recovery.

Proof. Assume that E is semantically secure. Our goal is to show that E is secure against message
recovery.

To prove that E is secure against message recovery, we have to show that every e�cient ad-
versary A has negligible advantage in Attack Game 2.2. To show this, we let an arbitrary but
e�cient adversary A be given, and our goal now is to show that A’s message recovery advantage,
MRadv[A, E ], is negligible. Let p denote the probability that A wins the message recovery game,
so that

MRadv[A, E ] =
�

�p� 1/|M|��.
We shall show how to construct an e�cient adversary B whose semantic security advantage in

Attack Game 2.1 is related to A’s message recovery advantage as follows:

MRadv[A, E ]  SSadv[B, E ]. (2.7)

Since B is e�cient, and since we are assume E is semantically secure, the right-hand side of (2.7)
is negligible, and so we conclude that MRadv[A, E ] is negligible.

So all that remains to complete the proof is to show how to construct an e�cient B that satisfies
(2.7). The idea is to use A as a “black box” — we do not have to understand the inner workings
of A as at all.

Here is how B works. Adversary B generates two random messages, m0 and m1, and sends
these to its own SS challenger. This challenger sends B a ciphertext c, which B forwards to A, as if
it were coming from A’s MR challenger. When A outputs a message m̂, our adversary B compares
m0 to m̂, and outputs b̂ = 1 if m0 = m̂, and b̂ = 1 otherwise.

That completes the description of B, which is illustrated in Fig. ??.
Note that the running time of B is essentially the same as that of A. We now analyze the B’s

SS advantage, and relate this to A’s MR advantage.
For b = 0, 1, let pb be the probability that B outputs 1 if B’s SS challenger encrypts mb. So by

definition
SSadv[B, E ] = |p1 � p0|.

On the one hand, when c is an encryption of m0, the probability p0 is precisely equal to A’s
probability of winning the message recovery game, so p0 = p. On the other hand, when c is an
encryption of m1, the adversary A’s output is independent of m0, and so p1 = 1/|M|. It follows
that

SSadv[B, E ] = |p1 � p0| =
�

�1/|M|� p
�

� = MRadv[A, E ].

This proves (2.7). In fact, equality holds in (2.7), but that is not essential to the proof. 2
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The reader should make sure that he or she understands the logic of this proof, as this type of
proof will be used over and over again throughout the book. We shall review the important parts
of the proof here, and give another way of thinking about it.

The core of the proof was establishing the following fact: for every e�cient MR adversary A
that attacks E as in Attack Game 2.2, there exists an e�cient SS adversary B that attacks E as in
Attack Game 2.1 such that

MRadv[A, E ]  SSadv[B, E ]. (2.8)

We are trying to prove that if E is semantically secure, then E is secure against message recovery.
In the above proof, we argued that if E is semantically secure, then the right-hand side of (2.8)
must be negligible, and hence so must the left-hand side; since this holds for all e�cient A, we
conclude that E is secure against message recovery.

Another way to approach the proof of the theorem is to prove the contrapositive: if E is not
secure against message recovery, then E is not semantically secure. So, let us assume that E is not
secure against message recovery. This means there exists an e�cient adversary A whose message
recovery advantage is non-negligible. Using A we build an e�cient adversary B that satisfies (2.8).
By assumption, MRadv[A, E ] is non-negligible, and (2.8) implies that SSadv[B, E ] is non-negligible.
From this, we conclude that E is not semantically secure.

Said even more briefly: to prove that semantic security implies security against message recovery,
we show how to turn an e�cient adversary that breaks message recovery into an e�cient adversary
that breaks semantic security.

We also stress that the adversary B constructed in the proof just uses A as a “black box.” In
fact, almost all of the constructions we shall see are of this type: B is essentially just a wrapper
around A, consisting of some simple and e�cient “interface layer” between B’s challenger and a
single running instance of A. Ideally, we want the computational complexity of the interface layer
to not depend on the computational complexity of A; however, some dependence is unavoidable:
if an attack game allows A to make multiple queries to its challenger, the more queries A makes,
the more work must be performed by the interface layer, but this work should just depend on the
number of such queries and not on the running time of A.

Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an e�cient interface interacting with A. The salient properties are:

• If B is an elementary wrapper around A, and A is e�cient, then B is e�cient.

• If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around A.

These notions are formalized in Section 2.4 (but again, they are extremely tedious).

Computing individual bits of a message

If an encryption scheme is secure, not only should it be hard to recover the whole message, but it
should be hard to compute any partial information about the message.

We will not prove a completely general theorem here, but rather, consider a specific example.
Suppose E = (E, D) is a cipher defined over (K, M, C), where M = {0, 1}L. For m 2 M, we

define parity(m) to be 1 if the number of 1’s in m is odd, and 0 otherwise. Equivalently, parity(m)
is the exclusive-OR of all the individual bits of m.
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We will show that if E is semantically secure, then given an encryption c of a random message
m, it is hard to predict parity(m). Now, since parity(m) is a single bit, any adversary can predict
this value correctly with probability 1/2 just by random guessing. But what we want to show is
that no e�cient adversary can do significantly better than random guessing.

As a warm up, suppose there were an e�cient adversary A that could predict parity(m) with
probability 1. This means that for every message m, every key k, and every encryption c of m,
when we give A the ciphertext c, it outputs the parity of m. So we could use A to build an SS
adversary B that works as follows. Our adversary chooses two messages, m0 and m1, arbitrarily,
but with parity(m0) = 0 and parity(m1) = 1. Then it hands these two messages to its own SS
challenger, obtaining a ciphertext c, which it then forwards to it A. After receiving c, adversary
A outputs a bit b̂, and B outputs this same bit b̂ as its own output. It is easy to see that B’s SS
advantage is precisely 1: when its SS challenger encrypts m0, it always outputs 0, and when its SS
challenger encrypts m1, it always outputs 1.

This shows that if E is semantically secure, there is no e�cient adversary that can predict
parity with probability 1. However, we can say even more: if E is semantically secure, there is no
e�cient adversary that can predict parity with probability significantly better than 1/2. To make
this precise, we give an attack game:

Attack Game 2.3 (parity prediction). For a given cipher E = (E, D), defined over (K, M, C),
and for a given adversary A, the attack game proceeds as follows:

• The challenger computes m R M, k  R K, c R E(k, m), and sends c to the adversary.

• The adversary outputs b̂ 2 {0, 1}.

Let W be the event that b̂ = parity(m). We define A’s message recovery advantage with
respect to E as

Parityadv[A, E ] :=
�

�

�

Pr[W ]� 1/2
�

�

�

. 2

Definition 2.4 (parity prediction). A cipher E is secure against parity prediction if for all
e�cient adversaries A, the value Parityadv[A, E ] is negligible.

Theorem 2.8. Let E = (E, D) be a cipher defined over (K, M, C), and M = {0, 1}L. If E is
semantically secure, then E is secure against parity prediction.

Proof. As in the proof of Theorem 2.7, we give a proof by reduction. In particular, we will show
that for every parity prediction adversary A that attacks E as in Attack Game 2.3, there exists an
SS adversary B that attacks E as in Attack Game 2.1, where B is an elementary wrapper around
A, such that

Parityadv[A, E ] =
1

2
· SSadv[B, E ].

Let A be a parity prediction adversary that predicts parity with probability 1/2 + ✏, so
Parityadv[A, E ] = |✏|.

Here is how we construct our SS adversary B.
Our adversary B generates a random message m0, and sets m1  m0 � (0L�1 k 1); that is, m1

is that same as m0, except that the last bit is flipped. In particularly, m0 and m1 have opposite
parity.
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Our adversary B sends the pair m0, m1 to its own SS challenger, receives a ciphertext c from
that challenger, and forwards c to A. When A outputs a bit b̂, our adversary B outputs 1 if
b̂ = parity(m0), and outputs 0, otherwise.

For b = 0, 1, let pb be the probability that B outputs 1 if B’s SS challenger encrypts mb. So by
definition

SSadv[B, E ] = |p1 � p0|.
We claim that p0 = 1/2 + ✏ and p1 = 1/2 � ✏. This because regardless of whether m0 or

m1 is encrypted, the distribution of mb is uniform over M, and so in case b = 0, our parity
predictor A will output parity(m0) with probability 1/2 + ✏, and when b = 1, our parity predictor
A with output parity(m1) with probability 1/2 + ✏, and so outputs parity(m0) with probability
1� (1/2 + ✏) = 1/2� ✏.

Therefore,
SSadv[B, E ] = |p1 � p0| = 2|✏| = 2 · Parityadv[A, E ],

which proves the theorem. 2

We have shown that if an adversary can e↵ectively predict the parity of a message, then it can
be used to break semantic security. Conversely, it turns out that if an adversary can break semantic
security, he can e↵ectively predict some predicate of the message (see Exercise 3.15).

2.3.4 Consequences of semantic security

In this section, we examine the consequences of semantic security in the context of a specific
example, namely, electronic gambling. The specific details of the example are not so important, but
the example illustrates how one typically uses the assumption of semantic security in applications.

Consider the following extremely simplified version of roulette, which is a game between the
house and a player. The player gives the house 1 dollar. He may place one of two kinds of bets:

• “high or low,” or

• “even or odd.”

After placing his bet, the house chooses a random number r 2 {0, 1, . . . , 36}. The player wins if
r 6= 0, and if

• he bet “high” and r > 18,

• he bet “low” and r  18,

• he bet “even” and r is even,

• he bet “odd” and r is odd.

If the player wins, the house pays him 2 dollars (for a net win of 1 dollar), and if the player
looses, the house pays nothing (for a net loss of 1 dollar). Clearly, the house has a small, but not
insignificant advantage in this game: the probability that the player wins is 18/37 ⇡ 48.65%.

Now suppose that this game is played over the Internet. Also, suppose that for various technical
reasons, the house publishes an encryption of r before the player places his bet (perhaps to be
decrypted by some regulatory agency that shares a key with the house). The player is free to analyze
this encryption before placing his bet, and of course, by doing so, the player could conceivably
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House

r
R {0, 1, . . . , 36}

k
R K

bet

A

outcome  W (r, bet)

outcome

cc
R E(k, r)

Figure 2.2: Internet roulette

increase his chances of winning. However, if the cipher is any good, the player’s chances should not
increase by much. Let us prove this, assuming r is encrypted using a semantically secure cipher
E = (E, D), defined over (K, M, C), where M = {0, 1, . . . , 36} (we shall view all messages in M
as having the same length in this example). Also, from now in, let us call the player A, to stress
the adversarial nature of the player, and assume that A’s strategy can be modeled as an e�cient
algorithm. The game is illustrated in Fig. 2.2. Here, bet denotes one of “high,” “low,” “even,”
“odd.” Player A sends bet to the house, who evaluates the function W (r, bet), which is 1 if bet is a
winning bet with respect to r, and 0 otherwise. Let us define

IRadv[A] :=
�

�Pr[W (r, bet) = 1]� 18/37
�

�.

Our goal is to prove the following theorem.

Theorem 2.9. If E is semantically secure, then for every e�cient player A, the quantity IRadv[A]
is negligible.

As we did in Section 2.3.3, we prove this by reduction. More concretely, we shall show that for
every player A, there exists an SS adversary B, where B is an elementary wrapper around A, such
that

IRadv[A] = SSadv[B, E ]. (2.9)

Thus, if there were an e�cient player A with a non-negligible advantage, we would obtain an
e�cient SS adversary B that breaks the semantic security of E , which we are assuming is impossible.
Therefore, there is no such A.

To motivate and analyze our new adversary B, consider an “idealized” version of Internet
roulette, in which instead of publishing an encryption of the actual value r, the house instead
publishes an encryption of a “dummy”value, say 0. The logic of the ideal Internet roulette game is
illustrated in Fig. 2.3. Note, however, that in the ideal Internet roulette game, the house still uses
the actual value of r to determine the outcome of the game. Let p0 be the probability that A wins
at Internet roulette, and let p1 be the probability that A wins at ideal Internet roulette.
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r
R {0, 1, . . . , 36}
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R K
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outcome  W (r, bet)

outcome

cc
R E(k, 0)

Figure 2.3: ideal Internet roulette

Our adversary B is designed to play in Attack Game 2.1 so that if b̂ denotes B’s output in that
game, then we have:

• if B is placed in Experiment 0, then Pr[b̂ = 1] = p0;

• if B is placed in Experiment 1, then Pr[b̂ = 1] = p1.

The logic of adversary B is illustrated in Fig. 2.4. It is clear by construction that B satisfies the
properties claimed above, and so in particular,

SSadv[B, E ] = |p1 � p0|. (2.10)

Now, consider the probability p1 that A wins at ideal Internet roulette. No matter how clever
A’s strategy is, he wins with probability 18/37, since in this ideal Internet roulette game, the value
of bet is computed from c, which is statistically independent of the value of r. That is, ideal Internet
roulette is equivalent to physical roulette. Therefore,

IRadv[A] = |p1 � p0|. (2.11)

Combining (2.10) and (2.11), we obtain (2.9).

The approach we have used to analyze Internet roulette is one that we will see again and again.
The basic idea is to replace a system component by an idealized version of that component, and
then analyze the behavior of this new, idealized version of the system.

Another lesson to take away from the above example is that in reasoning about the security of
a system, what we view as “the adversary” depends on what we are trying to do. In the above
analysis, we cobbled together a new adversary B out of several components: one component was
the original adversary A, while other components were scavenged from other parts of the system
(the algorithm of “the house,” in this example). This will be very typical in our security analyses
throughout this text. Intuitively, if we imagine a diagram of the system, at di↵erent points in the
security analysis, we will draw a circle around di↵erent components of the system to identify what
we consider to be “the adversary” at that point in the analysis.
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Figure 2.4: The SS adversary B in Attack Game 2.1

2.3.5 Bit guessing: an alternative characterization of semantic security

The example in Section 2.3.4 was a typical example of how one could use the definition of semantic
security to analyze the security properties of a larger system that makes use of a semantically
secure cipher. However, there is another characterization of semantic security that is typically more
convenient to work with when one is trying to prove that a given cipher satisfies the definition. In
this alternative characterization, we define a new attack game. The role played by the adversary
is exactly the same as before. However, instead of having two di↵erent experiments, there is just
a single experiment. In this bit-guessing version of the attack game, the challenger chooses
b 2 {0, 1} at random and runs Experiment b of Attack Game 2.1; it is the adversary’s goal to guess
the bit b with probability significantly better than 1/2. Here are the details:

Attack Game 2.4 (semantic security: bit-guessing version). For a given cipher E = (E, D),
defined over (K, M, C), and for a given adversary A, the attack game runs as follows:

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes b R {0, 1}, k  R K, c R E(k, mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

We say that A wins the game if b̂ = b. 2

Fig. 2.5 illustrates Attack Game 2.4. Note that in this game, the event that the A wins the
game is defined with respect to the probability space determined by the random choice of b and k,
the random choices made (if any) of the encryption algorithm, and the random choices made (if
any) by the adversary.
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Figure 2.5: Attack Game 2.4

Of course, any adversary can win the game with probability 1/2, simply by ignoring c completely
and choosing b̂ at random (or alternatively, always choosing b̂ to be 0, or always choosing it to be
1). What we are interested in is how much better than random guessing an adversary can do. If
W denotes the event that the adversary wins the bit-guessing version of the attack game, then we
are interested in the quantity |Pr[W ]� 1/2|, which we denote by SSadv⇤[A, E ]. Then we have:

Theorem 2.10. For every cipher E and every adversary A, we have

SSadv[A, E ] = 2 · SSadv⇤[A, E ]. (2.12)

Proof. This is just a simple calculation. Let p0 be the probability that the adversary outputs 1 in
Experiment 0 of Attack Game 2.1, and let p1 be the probability that the adversary outputs 1 in
Experiment 1 of Attack Game 2.1.

Now consider Attack Game 2.4. From now on, all events and probabilities are with respect to
this game. If we condition on the event that b = 0, then in this conditional probability space, all
of the other random choices made by the challenger and the adversary are distributed in exactly
the same way as the corresponding values in Experiment 0 of Attack Game 2.1. Therefore, if b̂ is
the output of the adversary in Attack Game 2.4, we have

Pr[b̂ = 1 | b = 0] = p0.

By a similar argument, we see that

Pr[b̂ = 1 | b = 1] = p1.

So we have

Pr[b̂ = b] = Pr[b̂ = b | b = 0] Pr[b = 0] + Pr[b̂ = b | b = 1] Pr[b = 1]

= Pr[b̂ = 0 | b = 0] · 1
2 + Pr[b̂ = 1 | b = 1] · 1

2

= 1
2

⇣

1� Pr[b̂ = 1 | b = 0] + Pr[b̂ = 1 | b = 1]
⌘

= 1
2(1� p0 + p1).
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Therefore,

SSadv⇤[A, E ] =
�

�

�

Pr[b̂ = b]� 1
2

�

�

�

= 1
2 |p1 � p0| = 1

2 · SSadv[A, E ].

That proves the theorem. 2

Just as it is convenient to refer SSadv[A, E ] as A’s “SS advantage,” we shall refer to SSadv⇤[A, E ]
as A’s “bit-guessing SS advantage.”

A generalization

As it turns out, the above situation is quite generic. Although we do not need it in this chapter,
for future reference we indicate here how the above situation generalizes. There will be a number
of situations we shall encounter where some particular security property, call it “X,” for some
of cryptographic system, call it “S,” can be defined in terms of an attack game involving two
experiments, Experiment 0 and Experiment 1, where the adversary A’s protocol is the same in
both experiments, while that of the challenger is di↵erent. For b = 0, 1, we define Wb to be the
event that A outputs 1 in Experiment b, and we define

Xadv[A, S] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

to be A’s “X advantage.” Just as above, we can always define a “bit-guessing” version of the attack
game, in which the challenger chooses b 2 {0, 1} at random, and then runs Experiment b as its
protocol. If W is the event that the adversary’s output is equal to b, then we define

Xadv

⇤[A, S] :=
�

�

�

Pr[W ]� 1/2
�

�

�

to be A’s “bit-guessing X advantage.”
Using exactly the same calculation as in the proof of Theorem 2.10, we have

Xadv[A, S] = 2 · Xadv

⇤[A, S]. (2.13)

2.4 Mathematical details

Up until now, we have used the terms e�cient and negligible rather loosely, without a formal
mathematical definition:

• we required that a computational cipher have e�cient encryption and decryption algorithms;

• for a semantically secure cipher, we required that any e�cient adversary have a negligible
advantage in Attack Game 2.1.

The goal of this section is to provide precise mathematical definitions for these terms. While
these definitions lead to a satisfying theoretical framework for the study of cryptography as a
mathematical discipline, we should warn the reader:

• the definitions are rather complicated, requiring an unfortunate amount of notation; and

• the definitions model our intuitive understanding of these terms only very crudely.
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We stress that the reader may safely skip this section without su↵ering a significant loss in under-
standing. Before marching headlong into the formal definitions, let us remind the reader of what
we are trying to capture in these definitions.

• First, when we speak of an e�cient encryption or decryption algorithm, we usually mean one
that runs very quickly, encrypting data at a rate of, say, 10–100 computer cycles per byte of
data.

• Second, when we speak of an e�cient adversary, we usually mean an algorithm that runs in
some large, but still feasible amount of time (and other resources). Typically, one assumes
that an adversary that is trying to break a cryptosystem is willing to expend many more
resources than a user of the cryptosystem. Thus, 10,000 computers running in parallel for
10 years may be viewed as an upper limit on what is feasibly computable by a determined,
patient, and financially well-o↵ adversary. However, in some settings, like the Internet roulette
example in Section 2.3.4, the adversary may have a much more limited amount of time to
perform its computations before they become irrelevant.

• Third, when we speak of an adversary’s advantage as being negligible, we mean that it is so
small that it may as well be regarded as being equal to zero for all practical purposes. As
we saw in the Internet roulette example, if no e�cient adversary has an advantage better
than 2�100 in Attack Game 2.1, then no player can in practice improve his odds at winning
Internet roulette by more than 2�100 relative to physical roulette.

Even though our intuitive understanding of the term e�cient depends on the context, our
formal definition will not make any such distinction. Indeed, we shall adopt the computational
complexity theorist’s habit of equating the notion of an e�cient algorithm with that of a (proba-
bilistic) polynomial-time algorithm. For better and for worse, this gives us a formal framework that
is independent of the specific details of any particular model of computation.

2.4.1 Negligible, super-poly, and poly-bounded functions

We begin by defining the notions of negligible, super-poly, and poly-bounded functions.
Intuitively, a negligible function f : Z�0 ! R is one that not only tends to zero as n!1, but

does so faster than the inverse of any polynomial.

Definition 2.5. A function f : Z�1 ! R is called negligible if for all c 2 R>0 there exists
n0 2 Z�1 such that for all integers n � n0, we have |f(n)| < 1/nc.

An alternative characterization of a negligible function, which is perhaps easier to work with,
is the following:

Theorem 2.11. A function f : Z�1 ! R is negligible if and only if for all c > 0, we have

lim
n!1 f(n)nc = 0.

Proof. Exercise. 2

Example 2.10. Some examples of negligible functions:

2�n, 2�
p
n, n� logn.
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Some examples of non-negligible functions:

1

1000n4 + n2 log n
,

1

n100
. 2

Once we have the term “negligible” formally defined, defining “super-poly” is easy:

Definition 2.6. A function f : Z�1 ! R is called super-poly if 1/f is negligible.

Essentially, a poly-bounded function f : Z�1 ! R is one that is bounded (in absolute value) by
some polynomial. Formally:

Definition 2.7. A function f : Z�1 ! R is called poly-bounded, if there exists c, d 2 R>0 such
that for all integers n � 0, we have |f(n)|  nc + d.

Note that if f is a poly-bounded function, then 1/f is definitely not a negligible function.
However, as the following example illustrates, one must take care not to draw erroneous inferences.

Example 2.11. Define f : Z�1 ! R so that f(n) = 1/n for all even integers n and f(n) = 2�n

for all odd integers n. Then f is not negligible, and 1/f is neither poly-bounded nor super-poly. 2

2.4.2 Computational ciphers: the formalities

Now the formalities. We begin by admitting a lie: when we said a computational cipher E = (E, D)
is defined over (K, M, C), where K is the key space, M is the message space, and C is the ciphertext
space, and with each of these spaces being finite sets, we were not telling the whole truth. In the
mathematical model (though not always in real-world systems), we associate with E families of key,
message, and ciphertext spaces, indexed by

• a security parameter, which is a positive integer, and is denoted by �, and

• a system parameter, which is a bit string, and is denoted by ⇤.

Thus, instead of just finite sets K, M, and C, we have families of finite sets

{K�,⇤}�,⇤, {M�,⇤}�,⇤, and {C�,⇤}�,⇤,

which for the purposes of this definition, we view as sets of bit strings (which may represent
mathematical objects by way of some canonical encoding functions).

The idea is that when the cipher E is deployed, the security parameter � is fixed to some value.
Generally speaking, larger values of � imply higher levels of security (i.e., resistance against adver-
saries with more computational resources), but also larger key sizes, as well as slower encryption
and decryption speeds. Thus, the security parameter is like a “dial” we can turn, setting a trade-o↵
between security and e�ciency.

Once � is chosen, a system parameter ⇤ is generated using an algorithm specific to the cipher.
The idea is that the system parameter ⇤ (together with �) gives a detailed description of a fixed
instance of the cipher, with

(K, M, C) = (K�,⇤, M�,⇤, C�,⇤).

This one, fixed instance may be deployed in a larger system and used by many parties — the values
of � and ⇤ are public and known to everyone (including the adversary).
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Example 2.12. Consider the additive one-time pad discussed in Example 2.4. This cipher was
described in terms of a modulus n. To deploy such a cipher, a suitable modulus n is generated,
and is made public (possibly just “hardwired” into the software that implements the cipher). The
modulus n is the system parameter for this cipher. Each specific value of the security parameter
determines the length, in bits, of n. The value n itself is generated by some algorithm that may be
probabilistic and whose output distribution may depend on the intended application. For example,
we may want to insist that n is a prime in some applications. 2

Before going further, we define the notion of an e�cient algorithm. For the purposes of this
definition, we shall only consider algorithms A that take as input a security parameter �, as well as
other parameters whose total length is bounded by some fixed polynomial in �. Basically, we want
to say that the running time of A is bounded by a polynomial in �, but things are complicated if
A is probabilistic:

Definition 2.8 (e�cient algorithm). Let A be a an algorithm (possibly probabilistic) that takes
as input a security parameter � 2 Z�1, as well as other parameters encoded as a bit string x 2
{0, 1}p(�) for some fixed polynomial p. We call A an e�cient algorithm if there exist a poly-
bounded function t and a negligible function ✏ such that for all � 2 Z�1, and all x 2 {0, 1}p(�),
the probability that the running time of A on input (�, x) exceeds t(�) is at most ✏(�).

We stress that the probability in the above definition is with respect to the coin tosses of A:
this bound on the probability must hold for all possible inputs x.1

Here is a formal definition that captures the basic requirements of systems that are parameter-
ized by a security and system parameter, and introduces some more terminology. In the following
definition we use the notation Supp(P (�)) to refer to the support of the distribution P (�), which
is the set of all possible outputs of algorithm P on input �.

Definition 2.9. A system parameterization is an e�cient probabilistic algorithm P that given
a security parameter � 2 Z�1 as input, outputs a bit string ⇤, called a system parameter, whose
length is always bounded by a polynomial in �. We also define the following terminology:

• A collection S = {S�,⇤}�,⇤ of finite sets of bits strings, where � runs over Z�1 and ⇤ runs over
Supp(P (�)), is called a family of spaces with system parameterization P , provided the
lengths of all the strings in each of the sets S�,⇤ are bounded by some polynomial p in �.

• We say that S is e�ciently recognizable if there is an e�cient deterministic algorithm
that on input � 2 Z�1, ⇤ 2 Supp(P (�)), and s 2 {0, 1}p(�), determines if s 2 S�,⇤.

• We say that S is e�ciently sampleable if there is an e�cient probabilistic algorithm that
on input � 2 Z�1 and ⇤ 2 Supp(P (�)), outputs an element uniformly distributed over S�,⇤.

1By not insisting that a probabilistic algorithm halts in a specified time bound with probability 1, we give ourselves
a little “wiggle room,” which allows us to easily do certain types of random sampling procedure that have no a priori

running time bound, but are very unlikely to run for too long (e.g., think of flipping a coin until it comes up “heads”).
An alternative approach would be to bound the expected running time, but this turns out to be somewhat problematic
for technical reasons.

Note that this definition of an e�cient algorithm does not require that the algorithm halt with probability 1 on
all inputs. An algorithm that with probability 2�� entered an infinite loop would satisfy the definition, even though
it does not halt with probability 1. These issues are rather orthogonal. In general, we shall only consider algorithms
that halt with probability 1 on all inputs: this can more naturally be seen as a requirement on the output distribution
of the algorithm, rather than on its running time.
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• We say that S has an e↵ective length function if there is an e�cient deterministic
algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), and s 2 S�,⇤, outputs a non-negative
integer, called the length of s.

We can now state the complete, formal definition of a computational cipher:

Definition 2.10 (computational cipher). A computational cipher consists of a pair of algo-
rithms E and D, along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and C = {C�,⇤}�,⇤,

such that

1. K, M, and C are e�ciently recognizable.

2. K is e�ciently sampleable.

3. M has an e↵ective length function.

4. Algorithm E is an e�cient probabilistic algorithm that on input �, ⇤, k, m, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, and m 2M�,⇤, always outputs an element of C�,⇤.

5. Algorithm D is an e�cient deterministic algorithm that on input �, ⇤, k, c, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, and c 2 C�,⇤, outputs either an element of M�,⇤, or a special
symbol reject /2M�,⇤.

6. For all �, ⇤, k, m, c, where � 2 Z�1, ⇤ 2 Supp(P (�)), k 2 K�,⇤, m 2 M�,⇤, and c 2
Supp(E(�, ⇤; k, m)), we have D(�, ⇤; k, c) = m.

Note that in the above definition, the encryption and decryption algorithms take � and ⇤
as auxiliary inputs. So as to be somewhat consistent with the notation already introduced in
Section 2.3.1, we write this as E(�, ⇤; · · · ) and D(�, ⇤; · · · ).
Example 2.13. Consider the additive one-time pad (see Example 2.12). In our formal framework,
the security parameter � determines the bit length L(�) of the modulus n, which is the system
parameter. The system parameter generation algorithm takes as input � and generates a modulus
n of length L(�). The function L(·) should be polynomially bounded. With this assumption, it is
clear that the system parameter generation algorithm satisfies its requirements. The requirements
on the key, message, and ciphertext spaces are also satisfied:

1. Elements of these spaces have polynomially bounded lengths: this again follows from our
assumption that L(·) is polynomially bounded.

2. The key space is e�ciently sampleable: just choose k  R {0, . . . , n� 1}.

3. The key, message, and ciphertext spaces are e�ciently recognizable: just test if a bit string s
is the binary encoding of an integer between 0 and n� 1.

4. The message space also has an e↵ective length function: just output (say) 0. 2

We note that some ciphers (for example the one-time pad) may not need a system parameter.
In this case, we can just pretend that the system parameter is, say, the empty string. We also note
that some ciphers do not really have a security parameter either; indeed, many industry-standard
ciphers simply come ready-made with a fixed key size, with no security parameter that can be
tuned. This is simply mismatch between theory and practice — that is just the way it is.
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That completes our formal mathematical description of a computational cipher, in all its glo-
rious detail.2 The reader should hopefully appreciate that while these formalities may allow us
to make mathematically precise and meaningful statements, they are not very enlightening, and
mostly serve to obscure what is really going on. Therefore, in the main body of the text, we will
continue to discuss ciphers using the simplified terminology and notation of Section 2.3.1, with the
understanding that all statements made have a proper and natural interpretation in the formal
framework discussed in this section. This will be a pattern that is repeated in the sequel: we shall
mainly discuss various types of cryptographic schemes using a simplified terminology, without men-
tion of security parameters and system parameters — these mathematical details will be discussed
in a separate section, but will generally follow the same general pattern established here.

2.4.3 E�cient adversaries and attack games

In defining the notion of semantic security, we have to define what we mean by an e�cient adversary.
Since this concept will be used extensively throughout the text, we present a more general framework
here.

For any type of cryptographic scheme, security will be defined using an attack game, played
between an adversary A and a challenger: A follows an arbitrary protocol, while the challenger
follows some simple, fixed protocol determined by the cryptographic scheme and the notion of
security under discussion. Furthermore, both adversary and challenger take as input a common
security parameter �, and the challenger starts the game by computing a corresponding system
parameter ⇤, and sending this to the adversary.

To model these types of interactions, we introduce the notion of an interactive machine.
Before such a machine M starts, it always gets the security parameter � written in a special bu↵er,
and the rest of its internal state is initialized to some default value. Machine M has two other
special bu↵ers: an incoming message bu↵er and an outgoing message bu↵er. Machine M may be
invoked many times: each invocation starts when M ’s external environment writes a string to M ’s
incoming message bu↵er; M reads the message, performs some computation, updates its internal
state, and writes a string on its outgoing message bu↵er, ending the invocation, and the outgoing
message is passed to the environment. Thus, M interacts with its environment via a simple message
passing system. We assume that M may indicate that it has halted by including some signal in its
last outgoing message, and M will essentially ignore any further attempts to invoke it.

We shall assume messages to and from the machine M are restricted to be of constant length.
This is not a real restriction: we can always simulate the transmission of one long message by
sending many shorter ones. However, making a restriction of this type simplifies some of the
technicalities. We assume this restriction from now on, for adversaries as well as for any other type
of interactive machine.

For any given environment, we can measure the total running time of M by counting the
number of steps it performs across all invocations until it signals that it has halted. This running
time depends not only on M and its random choices, but also on the environment in which M
runs.3

2Note that the definition of a Shannon cipher in Section 2.2.1 remains unchanged. The claim made at the end of
Section 2.3.1 that any deterministic computational cipher is also a Shannon cipher needs to be properly interpreted:
for each � and ⇤, we get a Shannon cipher defined over (K

�,⇤,M�,⇤, C�,⇤).
3Analogous to the discussion in footnote 1 on page 30, our definition of an e�cient interactive machine will not

require that it halts with probability 1 for all environments. This is an orthogonal issue, but it will be an implicit
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Definition 2.11 (e�cient interactive machine). We say that M is an e�cient interactive
machine if there exist a poly-bounded function t and a negligible function ✏, such that for all
environments (not even computationally bounded ones), the probability that the total running time
of M exceeds t(�) is at most ✏(�).

We naturally model an adversary as an interactive machine. An e�cient adversary is simply
an e�cient interactive machine.

We can connect two interactive machines together, say M 0 and M , to create a new interactive
machine M 00 = hM 0, Mi. Messages from the environment to M 00 always get routed to M 0. The
machine M 0 may send a message to the environment, or to M ; in the latter case, the output
message sent by M gets sent to M 0. We assume that if M halts, then M 0 does not send it any
more messages. See Fig. ??.

Thus, when M 00 is invoked, its incoming message is routed to M 0, and then M 0 and M may
interact some number of times, and then the invocation of M 00 ends when M 0 sends a message to
the environment. We call M 0 the “open” machine (which interacts with the outside world), and M
the “closed” machine (which interacts only with M 0).

Naturally, we can model the interaction of a challenger and an adversary by connecting two
such machines together as above: the challenger becomes the open machine, and the adversary
becomes the closed machine.

In our security reductions, we typically show how to use an adversary A that breaks some
system to build an adversary B that breaks some other system. The essential property that we
want is that if A is e�cient, then so is B. However, our reductions are almost always of a very
special form, where B is a wrapper around A, consisting of some simple and e�cient “interface
layer” between B’s challenger and a single running instance of A.

Ideally, we want the computational complexity of the interface layer to not depend on the
computational complexity of A; however, some dependence is unavoidable: the more queries A
makes to its challenger, the more work must be performed by the interface layer, but this work
should just depend on the number of such queries and not on the running time of A.

To formalize this, we build B as a composed machine hM 0, Mi, where M 0 represents the interface
layer (the “open” machine), and M represents the instance of A (the “closed” machine). This leads
us to the following definition.

Definition 2.12 (elementary wrapper). An interactive machine M 0 is called an e�cient
interface if there exists a poly-bounded function t and a negligible function ✏, such that for all
M (not necessarily computationally bounded), when we execute the composed machine hM 0, Mi in
an arbitrary environment (again, not necessarily computationally bounded), the following property
holds:

at every point in the execution of hM 0, Mi, if I is the number of interactions between
M 0 and M up to at that point, and T is the total running time of M 0 up to that point,
then the probability that T > t(� + I) is at most ✏(�).

If M 0 is an e�cient interface, and M is any machine, then we say hM 0, Mi is an elementary
wrapper around M .

requirement of any machines we consider.
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Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an e�cient interface interacting with A. Our definitions were designed to
work well together. The salient properties are:

• If B is an elementary wrapper around A, and A is e�cient, then B is e�cient.

• If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around A.

Also note that in our attack games, the challenger is typically satisfies our definition of an
e�cient interface. For such a challenger and any e�cient adversary A, we can view their entire
interaction as a that of a single, e�cient machine.

Query bounded adversaries. In the attack games we have seen so far, the adversary makes
just a fixed number of queries. Later in the text, we will see attack games in which the adversary
A is allowed to make many queries — even though there is no a priori bound on the number of
queries it is allowed to make, if A is e�cient, the number of queries will be bounded by some
poly-bounded value Q (at least with all but negligible probability). In proving security for such
attack games, in designing an elementary wrapper B from A, it will usually be convenient to tell
B in advance an upper bound Q on how many queries A will ultimately make. To fit this into our
formal framework, we can set things up so that A starts out by sending a sequence of Q special
messages to “signal” this query bound to B. If we do this, then not only can B use the value Q in its
logic, it is also allowed to run in time that depends on Q, without violating the time constraints in
Definition 2.12. This is convenient, as then B is allowed to initialize data structures whose size may
depend on Q. Of course, all of this is just a legalistic “hack” to work around technical constraints
that would otherwise be too restrictive, and should not be taken too seriously. We will never make
this “signaling” explicit in any of our presentations.

2.4.4 Semantic security: the formalities

In defining any type of security, we will define the adversary’s advantage in the attack game as a
function Adv(�). This will be defined in terms of probabilities of certain events in the attack game:
for each value of � we get a di↵erent probability space, determined by the random choices of the
challenger, and the random choices made the adversary. Security will mean that for every e�cient
adversary, the function Adv(·) is negligible.

Turning now to the specific situation of semantic security of a cipher, in Attack Game 2.1, we
defined the value SSadv[A, E ]. This value is actually a function of the security parameter �. The
proper interpretation of Definition 2.3 is that E is secure if for all e�cient adversaries A (modeled as
an interactive machine, as described above), the function SSadv[A, E ](�) in the security parameter
� is negligible (as defined in Definition 2.5). Recall that both challenger and adversary receive �
as a common input. Control begins with the challenger, who sends the system parameter to the
adversary. The adversary then sends its query to the challenger, which consists of two plaintexts,
who responds with a ciphertext. Finally, the adversary outputs a bit (technically, in our formal
machine model, this “output” is a message sent to the challenger, and then the challenger halts).
The value of SSadv[A, E ](�) is determined by the random choices of the challenger (including the
choice of system parameter) and the random choices of the adversary. See Fig. 2.6 for a complete
picture of Attack Game 2.1.
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Challenger A

b̂ 2 {0, 1}

(Experiment b)

�

⇤
R P (�)

⇤

k
R K�,�

m0, m1 2 M�,�

c
R E(�, ⇤; k, mb) c

Figure 2.6: The fully detailed version of Attack Game 2.1

Also, in Attack Game 2.1, the requirement that the two messages presented by the adversary
have the same length means that the length function provided in part 3 of Definition 2.10 evaluates
to the same value on the two messages.

It is perhaps useful to see what it means for a cipher E to be insecure according to this formal
definition. This means that there exists an adversary A such that SSadv[A, E ] is a non-negligible
function in the security parameter. This means that SSadv[A, E ](�) � 1/�c for some c > 0 and for
infinitely many values of the security parameter �. So this does not mean that A can “break” E
for all values of the security parameter, but only infinitely many values of the security parameter.

In the main body of the text, we shall mainly ignore security parameters, system parameters,
and the like, but it will always be understood that all of our “shorthand” has a precise mathematical
interpretation. In particular, we will often refer to certain values v as be negligible (resp., poly-
bounded), which really means that v is a negligible (resp., poly-bounded) function of the security
parameter.

2.5 A fun application: anonymous routing

Our friend Alice wants to send a message m to Bob, but she does not want Bob or anyone else to
know that the message m is from Alice. For example, Bob might be running a public discussion
forum and Alice wants to post a comment anonymously on the forum. Posting anonymously lets
Alice discuss health issues or other matters without identifying herself. In this section we will
assume Alice only wants to post a single message to the forum.

One option is for Alice to choose a proxy, Carol, send m to Carol, and ask Carol to forward
the message to Bob. This clearly does not provide anonymity for Alice since anyone watching the
network will see that m was sent from Alice to Carol and then from Carol to Bob. By tracing the
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path of m through the network anyone can see that the post came from Alice.
A better approach is for Alice to establish a shared key k with Carol and send c := E(k, m) to

Carol, where E = (E, D) is a semantically secure cipher. Carol decrypts c and forwards m to Bob.
Now, someone watching the network will see one message sent from Alice to Carol and a di↵erent
message sent from Carol to Bob. Nevertheless, this method still does not ensure anonymity for
Alice: if on a particular day the only message that Carol receives is the one from Alice and the only
message she sends goes to Bob, then an observer can link the two and still learn that the posted
message came from Alice.

We solve this problem by having Carol provide a mixing service, that is, a service that mixes
incoming messages from many di↵erent parties A1, . . . , An. For i = 1, . . . , n, Carol establishes
a secret key ki with party Ai and each party Ai sends to Carol an encrypted message ci :=
E
�

ki, hdestinationi, mii
�

. Carol collects all n incoming ciphertexts, decrypts each of them with
the correct key, and forwards the resulting plaintexts in some random order to their destinations.
Now an observer examining Carol’s tra�c sees n messages going in and n messages going out, but
cannot tell which message was sent where. Alice’s message is one of the n messages sent out by
Carol, but the observer cannot tell which one. We say that Alice’s anonymity set is of size n.

The remaining problem is that Carol can still tell that Alice is the one who posted a specific
message on the discussion forum. To eliminate this final risk Alice uses multiple mixing services,
say, Carol and David. She establishes a secret key kc with Carol and a secret key kd with David.
To send her message to Bob she constructs the following nested ciphertext c2:

c2 := E
�

kc, E(kd, m)
�

. (2.14)

For completeness Alice may want to embed routing information inside the ciphertext so that c2 is
actually constructed as:

c2 := E
�

kc, hDavid, c1i
�

where c1 := E
�

kd, hBob, mi
�

.

Next, Alice sends c2 to Carol. Carol decrypts c2 and obtains the plaintext hDavid, c1i which tells
her to send c1 to David. David decrypts c1 and obtains the plaintext hBob, mi which tells him to
send m to Bob. This process of decrypting a nested ciphertext, illustrated in Fig. 2.7, is similar to
peeling an onion one layer at a time. For this reason this routing procedure is often called onion
routing.

Now even if Carol observes all network tra�c she cannot tell with certainty who posted a
particular message on Bob’s forum. The same holds for David. However, if Carol and David
collude they can figure it out. For this reason Alice may want to route her message through more
than two mixes. As long as one of the mixes does not collude with the others, Alice’s anonymity
will be preserved.

One small complication is that when Alice establishes her shared secret key kd with David, she
must do so without revealing her identity to David. Otherwise, David will know that c1 came from
Alice, which we do not want. This is not di�cult to do, and we will see how later in the book
(Section 20.14).

Security of nested encryption. To preserve Alice’s anonymity it is necessary that Carol, who
knows kc, learn no information about m from the nested ciphertext c2 in (2.14). Otherwise, Carol
could potentially use the information she learns about m from c2 to link Alice to her post on Bob’s
discussion forum. For example, suppose Carol could learn the first few characters of m from c2 and
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Alice& Carol& David& Bob&
c2& c1& m&

mix& mix&

Figure 2.7: An example onion routing using two mixes

later find that there is only one post on Bob’s forum starting with those characters. Carol could
then link the entire post to Alice because she knows that c2 came from Alice.

The same holds for David: it had better be the case that David, who knows kd, can learn no
information about m from the nested ciphertext c2 in (2.14).

Let us argue that if E is semantically secure then no e�cient adversary can learn any information
about m given c2 and one of kc or kd.

More generally, for a cipher E = (E, D) defined over (K, M, C) let us define the n-way nested
cipher En = (En, Dn) as

En
�

(k0, . . . , kn�1), m
�

= E
�

kn�1, E(kn�2, · · · E(k0, m) · · · )� .

Decryption applies the keys in the reverse order:

Dn
�

(k0, . . . , kn�1), c
�

= D
�

k0, D(k1, · · · D(kn�1, c) · · · )� .

Our goal is to show that if E is semantically secure then En is semantically secure even if the adver-
sary is given all but one of the keys k0, . . . , kn�1. To make this precise, we define two experiments,
Experiment 0 and Experiment 1, where for b = 0, 1, Experiment b is:

• The adversary gives the challenger (m0, m1, d) where m0, m1 2M are equal length messages
and 0  d < n.

• The challenger chooses n keys k0, . . . , kn�1  R K and computes c  R En
�

(k0, . . . , kn�1), mb

�

.
It sends c to the adversary along with all keys k0, . . . , kn�1, but excluding the key kd.

• The adversary outputs a bit b̂ 2 {0, 1}.

This game captures the fact that the adversary sees all keys k0, . . . , kn�1 except for kd and tries to
break semantic security.

We define the adversary’s advantage, NE(n)
adv[A, E ], as in the definition of semantic security:

NE(n)
adv[A, E ] =

�

�Pr[W0]� Pr[W1]
�

�

where Wb is the event that A outputs 1 in Experiment b, for b = 0, 1. We say that E is semantically
secure for n-way nesting if NE(n)

adv[A, E ] is negligible.

Theorem 2.12. For every constant n > 0, if E = (E, D) is semantically secure then E is seman-
tically secure for n-way nesting.

In particular, for every n-way nested adversary A attacking En, there exists a semantic security
adversary B attacking E, where B is an elementary wrapper around A, such that

NE(n)
adv[A, E ] = SSadv[B, E ] .

The proof of this theorem is a good exercise in security reductions. We leave it for Exercise 2.15.
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2.6 Notes

The one time pad is due to Gilbert Vernam in 1917, although there is evidence that it was discovered
earlier [10].

Citations to the literature to be added.

2.7 Exercises

2.1 (multiplicative one-time pad). We may also define a “multiplication mod p” variation of
the one-time pad. This is a cipher E = (E, D), defined over (K, M, C), where K := M := C :=
{1, . . . , p� 1}, where p is a prime. Encryption and decryption are defined as follows:

E(k, m) := k · m mod p D(k, c) := k�1 · c mod p.

Here, k�1 denotes the multiplicative inverse of k modulo p. Verify the correctness property for this
cipher and prove that it is perfectly secure.

2.2 (A good substitution cipher). Consider a variant of the substitution cipher E = (E, D)
defined in Example 2.3 where every symbol of the message is encrypted using an independent
permutation. That is, let M = C = ⌃L for some a finite alphabet of symbols ⌃ and some L. Let
the key space be K = SL where S is the set of all permutations on ⌃. The encryption algorithm
E(k, m) is defined as

E(k, m) :=
�

k[0](m[0]), k[1](m[1]), . . . , k[L� 1](m[L� 1])
�

Show that E is perfectly secure.

2.3 (Chain encryption). Let E = (E, D) be a perfectly secure cipher defined over (K, M, C)
where K = M. Let E 0 = (E0, D0) be a cipher where encryption is defined as E0((k1, k2), m) :=
�

E(k1, k2), E(k2, m)
�

. Show that E 0 is perfectly secure.

2.4 (A broken one-time pad). Consider a variant of the one time pad with message space
{0, 1}L where the key space K is restricted to all L-bit strings with an even number of 1’s. Give an
e�cient adversary whose semantic security advantage is 1.

2.5 (A stronger impossibility result). This exercise generalizes Shannon’s theorem (Theo-
rem 2.5). Let E be a cipher defined over (K, M, C). Suppose that SSadv[A, E ]  ✏ for all adversaries
A, even including computationally unbounded ones. Show that |K| � (1� ✏)|M|.
2.6 (A matching bound). This exercise develops a converse of sorts for the previous exercise.
For j = 0, . . . , L�1, let ✏ = 1/2j . Consider the L-bit one-time pad variant E defined over (K, M, C)
where M = C = {0, 1}L. The key space K is restricted to all L-bit strings whose first L � j bits
are not all zero, so that |K| = (1� ✏)|M|. Show that:

(a) there is an e�cient adversary A such that SSadv[A, E ] = ✏/(1� ✏);

(b) for all adversaries A, even including computationally unbounded ones, SSadv[A, E ]  ✏/(1�✏).

Note: Since the advantage of A in part (a) is non-zero, the cipher E cannot be perfectly secure.
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2.7 (Deterministic ciphers). In this exercise, you are asked to prove in detail the claims made
in Example 2.9. Namely, show that if E is a deterministic cipher that is perfectly secure, then
SSadv[A, E ] = 0 for every adversary A (bearing in mind that A may be probabilistic); also show
that if E is the variable length one-time pad, then SSadv[A, E ] = 0 for all adversaries A.

2.8 (Roulette). In Section 2.3.4, we argued that if value r is encrypted using a semantically
secure cipher, then a player’s odds of winning at Internet roulette are very close to those of real
roulette. However, our “roulette” game was quite simple. Suppose that we have a more involved
game, where di↵erent outcomes may result in di↵erent winnings. The rules are not so important,
but assume that the rules are easy to evaluate (given a bet and the number r) and that every bet
results in a payout of 0, 1, . . . , n dollars, where n is poly-bounded. Let µ be the expected winnings
in an optimal strategy for a real version of this game (with no encryption). Let µ0 be the expected
winnings of some (e�cient) player in an Internet version of this game (with encryption). Show that
µ  µ0 + ✏, where ✏ is negligible, assuming the cipher is semantically secure.

Hint: You may want to use the fact that if X is a random variable taking values in the set
{0, 1, . . . , n}, the expected value of X is equal to

Pn
i=1 Pr[X � i].

2.9. Prove Fact 2.6, using the formal definitions in Section 2.4.

2.10 (Exercising the definition of semantic security). Let E = (E, D) be a semantically
secure cipher defined over (K, M, C), where M = C = {0, 1}L. Which of the following encryption
algorithms yields a semantically secure scheme? Either give an attack or provide a security proof
via an explicit reduction.

(a) E0(k, m) = 0 k E(k, m)

(b) E0(k, m) = E(k, m) k parity(m)

(c) E0(k, m) = reverse(E(k, m))

(d) E0(k, m) = E(k, reverse(m))

Here, for a bit string s, parity(s) is 1 if the number of 1’s in s is odd, and 0 otherwise; also,
reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.

2.11 (Key recovery attacks). Let E = (E, D) be a cipher defined over (K, M, C). A key recovery
attack is modeled by the following game between a challenger and an adversary A: the challenger
chooses a random key k in K, a random message m in M, computes c R E(k, m), and sends (m, c)
to A. In response A outputs a guess k̂ in K. We say that A wins the game if D(k̂, c) = m and define
KRadv[A, E ] to be the probability that A wins the game. As usual, we say that E is secure against
key recovery attacks if for all e�cient adversaries A the advantage KRadv[A, E ] is negligible.

(a) Show that the one-time pad is not secure against key recovery attacks.

(b) Show that if E is semantically secure and ✏ = |K|/|M| is negligible, then E is secure against key
recovery attacks. In particular, show that for every e�cient key-recovery adversary A there
is an e�cient semantic security adversary B, where B is an elementary wrapper around A,
such that

KRadv[A, E ]  SSadv[B, E ] + ✏
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Hint: Your semantic security adversary B will output 1 with probability KRadv[A, E ] in the
semantic security Experiment 0 and output 1 with probability at most ✏ in Experiment 1.
Deduce from this a lower bound on SSadv[B, E ] in terms of ✏ and KRadv[A, E ] from which
the result follows.

(c) Deduce from part (b) that if E is semantically secure and |M| is super-poly then |K| cannot
be poly-bounded.

Note: |K| can be poly-bounded when |M| is poly-bounded, as in the one-time pad.

2.12 (Security against message recovery). In Section 2.3.3 we developed the notion of security
against message recovery. Construct a cipher that is secure against message recovery, but is not
semantically secure.

2.13 (Advantage calculations in simple settings). Consider the following two experiments
Experiment 0 and Experiment 1:

• In Experiment 0 the challenger flips a fair coin (probability 1/2 for HEADS and 1/2 for
TAILS) and sends the result to the adversary A.

• In Experiment 1 the challenger always sends TAILS to the adversary.

The adversary’s goal is to distinguish these two experiments: at the end of each experiment the
adversary outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0, 1 let Wb

be the event that in experiment b the adversary output 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

�

�Pr[W0]� Pr[W1]
�

� 2 [0, 1] .

If the advantage is negligible for all e�cient adversaries then we say that the two experiments are
indistinguishable.

(a) Calculate the advantage of each of the following adversaries:

(i) A1: Always output 1.

(ii) A2: Ignore the result reported by the challenger, and randomly output 0 or 1 with even
probability.

(iii) A3: Output 1 if HEADS was received from the challenger, else output 0.

(iv) A4: Output 0 if HEADS was received from the challenger, else output 1.

(v) A5: If HEADS was received, output 1. If TAILS was received, randomly output 0 or 1
with even probability.

(b) What is the maximum advantage possible in distinguishing these two experiments? Explain
why.

2.14 (Permutation cipher). Consider the following cipher (E, D) defined over (K, M, C) where
C = M = {0, 1}` and K is the set of all `! permutations of the set {0, . . . , `� 1}. For a key k 2 K
and message m 2M define E(k, m) to be result of permuting the bits of m using the permutation
k, namely E(k, m) = m[k(0)]...m[k(` � 1)]. Show that this cipher is not semantically secure by
showing an adversary that achieves advantage 1.
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2.15 (Nested encryption). For a cipher E = (E, D) define the nested cipher E 0 = (E0, D0) as

E0�(k0, k1), m
�

= E
�

k1, E(k0, m)
�

and D0�(k0, k1), c
�

= D(k0, D(k1, c)) .

Our goal is to show that if E is semantically secure then E 0 is semantically secure even if the
adversary is given one of the keys k0 or k1.

(a) Consider the following semantic security experiments, Experiments 0 and 1: in Experi-
ment b, for b = 0, 1, the adversary generates two messages m0 and m1 and gets back k1 and
E0�(k0, k1), mb). The adversary outputs b̂ in {0, 1} and we define its advantage, NEadv[A, E ]
as in the usual the definition of semantic security. Show that for every nested encryption
adversary A attacking E 0, there exists a semantic security adversary B attacking E , where B
is an elementary wrapper around A, such that

NEadv[A, E ] = SSadv[B, E ] .

Draw a diagram with A on the right, B in the middle, and B’s challenger on the left. Show
the message flow between these three parties that takes place in your proof of security.

(b) Repeat part (a), but now when the adversary gets back k0 (instead of k1) and E0�(k0, k1), mb)
in Experiments 0 and 1. Draw a diagram describing the message flow in your proof of security
as you did in part (a).

This problem comes up in the context of anonymous routing on the Internet as discussed in Sec-
tion 2.5.

2.16 (Self referential encryption). Let us show that encrypting a key under itself can be
dangerous. Let E be a semantically secure cipher defined over (K, M, C), where K ✓ M, and let
k  R K. A ciphertext c⇤ := E(k, k), namely encrypting k using k, is called a self referential
encryption.

(a) Construct a cipher Ẽ = (Ẽ, D̃) derived from E such that Ẽ is semantically secure, but becomes
insecure if the adversary is given Ẽ(k, k). You have just shown that semantic security does
not imply security when one encrypts one’s key.

(b) Construct a cipher Ê = (Ê, D̂) derived from E such that Ê is semantically and remains
semantically secure (provably) even if the adversary is given Ê(k, k). To prove that Ê is
semantically secure, you should show the following: for every adversary A that attacks Ê ,
there exists and adversary B that attacks E such that (i) the running time B is about the
same as that of A, and (ii) SSadv[A, Ê ]  SSadv[B, E ].

2.17 (Compression and encryption). Two standards committees propose to save bandwidth
by combining compression (such as the Lempel-Ziv algorithm used in the zip and gzip programs)
with encryption. Both committees plan on using the variable length one time pad for encryption.

• One committee proposes to compress messages before encrypting them. Explain why this is
a bad idea.

Hint: Recall that compression can significantly shrink the size of some messages while having
little impact on the length of other messages.

• The other committee proposes to compress ciphertexts after encryption. Explain why this is
a bad idea.
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Over the years many problems have surfaced when combining encryption and compression. The
CRIME [92] and BREACH [88] attacks are good representative examples.

2.18 (Voting protocols). This exercise develops a simple voting protocol based on the additive
one-time pad (Example 2.4). Suppose we have t voters and a counting center. Each voter is going
to vote 0 or 1, and the counting center is going to tally the votes and broadcast the total sum S.
However, they will use a protocol that guarantees that no party (voter or counting center) learns
anything other than S (but we shall assume that each party faithfully follows the protocol).

The protocol works as follows. Let n > t be an integer. The counting center generates an encryption
of 0: c0  R {0, . . . , n � 1}, and passes c0 to voter 1. Voter 1 adds his vote v1 to c0, computing
c1  c0 + v1 mod n, and passes c1 to voter 2. This continues, with each voter i adding vi to ci�1,
computing ci  ci�1 + vi mod n, and passing ci to voter i + 1, except that voter t passes ct to the
counting center. The counting center computes the total sum as S  ct�c0 mod n, and broadcasts
S to all the voters.

(a) Show that the protocol correctly computes the total sum.

(b) Show that the protocol is perfectly secure in the following sense. For voter i = 1, . . . , t, define
View i := (S, ci�1), which represents the “view” of voter i. We also define View0 := (c0, ct),
which represents the “view” of the counting center. Show that for each i = 0, . . . , t and
S = 0, . . . , t, the following holds:

as the choice of votes v1, . . . , vt varies, subject to the restrictions that each vj 2
{0, 1} and

Pt
j=1 vj = S, the distribution of View i remains the same.

(c) Show that if two voters i, j collude, they can determine the vote of a third voter k. You are
free to choose the indices i, j, k.

2.19 (Two-way split keys). Let E = (E, D) be a semantically secure cipher defined over
(K, M, C) where K = {0, 1}d. Suppose we wish to split the ability to decrypt ciphertexts across
two parties, Alice and Bob, so that both parties are needed to decrypt ciphertexts. For a random
key k in K choose a random r in K and define ka := r and kb := k � r. Now if Alice and Bob get
together they can decrypt a ciphertext c by first reconstructing the key k as k = ka � kb and then
computing D(k, c). Our goal is to show that neither Alice nor Bob can decrypt ciphertexts on their
own.

(a) Formulate a security notion that captures the advantage that an adversary has in break-
ing semantic security given Bob’s key kb. Denote this 2-way key splitting advantage by
2KSadv[A, E ].

(b) Show that for every 2-way key splitting adversary A there is a semantic security adversary B
such that 2KSadv[A, E ] = SSadv[B, E ].

2.20 (Simple secret sharing). Let E = (E, D) be a semantically secure cipher with key space
K = {0, 1}L. A bank wishes to split a decryption key k 2 {0, 1}L into three shares p0, p1, and p2
so that two of the three shares are needed for decryption. Each share can be given to a di↵erent
bank executive, and two of the three must contribute their shares for decryption to proceed. This
way, decryption can proceed even if one of the executives is out sick, but at least two executives
are needed for decryption.
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(a) To do so the bank generates two random pairs (k0, k0
0) and (k1, k0

1) so that k0�k0
0 = k1�k0

1 = k.
How should the bank assign shares so that any two shares enable decryption using k, but no
single share can decrypt?

Hint: The first executive will be given the share p0 := (k0, k1).

(b) Generalize the scheme from part (a) so that 3-out-of-5 shares are needed for decryption.
Reconstituting the key only uses XOR of key shares. Two shares should reveal nothing about
the key k.

(c) More generally, we can design a t-out-of-w system this way for any t < w. How does the size
of each share scale with t? We will see a much better way to do this in Section 11.6.

2.21 (Simple threshold decryption). Let E = (E, D) be a semantically secure cipher with key
space K. In this exercise we design a system that lets a bank split a key k into three shares p0, p1,
and p2 so that two of the three shares are needed for decryption, as in Exercise 2.20. However,
decryption is done without ever reconstituting the complete key at a single location.

We use nested encryption from Exercise 2.15. Choose a random key k := (k0, k1, k2, k3) in K4 and
encrypt a message m as:

c R
✓

E
�

k1, E(k0, m)
�

, E
�

k4, E(k3, m)
�

◆

.

(a) Construct the shares p0, p1, p2 so that any two shares enable decryption, but no single share
can decrypt. Hint: the first share is p0 := (k0, k3).

Discussion: Suppose the entities holding shares p0 and p2 are available to decrypt. To
decrypt a ciphertext c, first send c to the entity holding p2 to partially decrypt c. Then
forward the result to the entity holding p0 to complete the decryption. This way, decryption
is done without reconstituting the complete key k at a single location.

(b) Generalize the scheme from part (a) so that 3-out-of-5 shares are needed for decryption.
Explain how decryption can be done without reconstituting the key in a single location.

An encryption scheme where the key can be split into shares so that t-out-of-w shares are needed
for decryption, and decryption does not reconstitute the key at a single location, is said to provide
threshold decryption. We will see a much better way to do this in Section 11.6.

2.22 (Bias correction). Consider again the bit-guessing version of the semantic security attack
game (i.e., Attack Game 2.4). Suppose an e�cient adversary A wins the game (i.e., guesses the
hidden bit b) with probability 1/2 + ✏, where ✏ is non-negligible. Note that ✏ could be positive or
negative (the definition of negligible works on absolute values). Our goal is to show that there is
another e�cient adversary B that wins the game with probability 1/2+✏0, where ✏0 is non-negligible
and positive.

(a) Consider the following adversary B that uses A as a subroutine in Attack Game 2.4 in the
following two-stage attack. In the first stage, B plays challenger to A, but B generates its
own hidden bit b0, its own key k0, and eventually A outputs its guess-bit b̂0. Note that in
this stage, B’s challenger in Attack Game 2.4 is not involved at all. In the second stage, B
restarts A, and lets A interact with the “real” challenger in Attack Game 2.4, and eventually
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A outputs a guess-bit b̂. When this happens, B outputs b̂� b̂0 � b0. Note that this run of A
is completely independent of the first — the coins of A and also the system parameters are
generated independently in these two runs.

Show that B wins Attack Game 2.4 with probability 1/2 + 2✏2.

(b) One might be tempted to argue as follows. Just construct an adversary B that runs A, and
when A outputs b̂, adversary B outputs b̂ � 1. Now, we do not know if ✏ is positive or
negative. If it is positive, then A satisfies are requirements. If it is negative, then B satisfies
our requirements. Although we do not know which one of these two adversaries satisfies our
requirements, we know that one of them definitely does, and so existence is proved.

What is wrong with this argument? The explanation requires an understanding of the math-
ematical details regarding security parameters (see Section 2.4).

(c) Can you come up with another e�cient adversary B0 that wins the bit-guessing game with
probability at least 1 + |✏|/2? Your adversary B0 will be less e�cient than B.
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Chapter 3

Stream ciphers

In the previous chapter, we introduced the notions of perfectly secure encryption and semantically
secure encryption. The problem with perfect security is that to achieve it, one must use very long
keys. Semantic security was introduced as a weaker notion of security that would perhaps allow
us to build secure ciphers that use reasonably short keys; however, we have not yet produced any
such ciphers. This chapter studies one type of cipher that does this: the stream cipher.

3.1 Pseudo-random generators

Recall the one-time pad. Here, keys, messages, and ciphertexts are all L-bit strings. However, we
would like to use a key that is much shorter. So the idea is to instead use a short, `-bit “seed” s as
the encryption key, where ` is much smaller than L, and to “stretch” this seed into a longer, L-bit
string that is used to mask the message (and unmask the ciphertext). The string s is stretched
using some e�cient, deterministic algorithm G that maps `-bit strings to L-bit strings. Thus, the
key space for this modified one-time pad is {0, 1}`, while the message and ciphertext spaces are
{0, 1}L. For s 2 {0, 1}` and m, c 2 {0, 1}L, encryption and decryption are defined as follows:

E(s, m) := G(s)�m and D(s, c) := G(s)� c.

This modified one-time pad is called a stream cipher, and the function G is called a pseudo-
random generator.

If ` < L, then by Shannon’s Theorem, this stream cipher cannot achieve perfect security;
however, if G satisfies an appropriate security property, then this cipher is semantically secure.
Suppose s is a random `-bit string and r is a random L-bit string. Intuitively, if an adversary cannot
e↵ectively tell the di↵erence between G(s) and r, then he should not be able to tell the di↵erence
between this stream cipher and a one-time pad; moreover, since the latter cipher is semantically
secure, so should be the former. To make this reasoning rigorous, we need to formalize the notion
that an adversary cannot “e↵ectively tell the di↵erence between G(s) and r.”

An algorithm that is used to distinguish a pseudo-random string G(s) from a truly random
string r is called a statistical test. It takes a string as input, and outputs 0 or 1. Such a test
is called e↵ective if the probability that it outputs 1 on a pseudo-random input is significantly
di↵erent than the probability that it outputs 1 on a truly random input. Even a relatively small
di↵erence in probabilities, say 1%, is considered significant; indeed, even with a 1% di↵erence, if
we can obtain a few hundred independent samples, which are either all pseudo-random or all truly
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random, then we will be able to infer with high confidence whether we are looking at pseudo-random
strings or at truly random strings. However, a non-zero but negligible di↵erence in probabilities,
say 2�100, is not helpful.

How might one go about designing an e↵ective statistical test? One basic approach is the
following: given an L-bit string, calculate some statistic, and then see if this statistic di↵ers greatly
from what one would expect if the string were truly random.

For example, a very simple statistic that is easy to compute is the number k of 1’s appearing
in the string. For a truly random string, we would expect k ⇡ L/2. If the PRG G had some
bias towards either 0-bits or 1-bits, we could e↵ectively detect this with a statistical test that,
say, outputs 1 if |k � 0.5L| < 0.01L, and otherwise outputs 0. This statistical test would be quite
e↵ective if the PRG G did indeed have some significant bias towards either 0 or 1.

The test in the previous example can be strengthened by considering not just individual bits,
but pairs of bits. One could break the L-bit string up into ⇡ L/2 bit pairs, and count the number
k00 of pairs 00, the number k01 of pairs 01, the number k10 of pairs 10, and the number k11 of pairs
11. For a truly random string, one would expect each of these numbers to be ⇡ L/2 · 1/4 = L/8.
Thus, a natural statistical test would be one that tests if the distance from L/8 of each of these
numbers is less than some specified bound. Alternatively, one could sum up the squares of these
distances, and test whether this sum is less than some specified bound — this is the classical �-
squared test from statistics. Obviously, this idea generalizes from pairs of bits to tuples of any
length.

There are many other simple statistics one might check. However, simple tests such as these do
not tend to exploit deeper mathematical properties of the algorithm G that a malicious adversary
may be able to exploit in designing a statistical test specifically geared towards G. For example,
there are PRG’s for which the simple tests in the previous two paragraphs are completely ine↵ective,
but yet are completely predictable, given su�ciently many output bits; that is, given a prefix of
G(s) of su�cient length, the adversary can compute all the remaining bits of G(s), or perhaps even
compute the seed s itself.

Our definition of security for a PRG formalizes the notion there should be no e↵ective (and
e�ciently computable) statistical test.

3.1.1 Definition of a pseudo-random generator

A pseudo-random generator, or PRG for short, is an e�cient, deterministic algorithm G that,
given as input a seed s, computes an output r. The seed s comes from a finite seed space S and
the output r belongs to a finite output space R. Typically, S and R are sets of bit strings of some
prescribed length (for example, in the discussion above, we had S = {0, 1}` and R = {0, 1}L). We
say that G is a PRG defined over (S, R).

Our definition of security for a PRG captures the intuitive notion that if s is chosen at random
from S and r is chosen at random from R, then no e�cient adversary can e↵ectively tell the
di↵erence between G(s) and r: the two are computationally indistinguishable. The definition
is formulated as an attack game.

Attack Game 3.1 (PRG). For a given PRG G, defined over (S, R), and for a given adversary
A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger computes r 2 R as follows:
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Challenger A

b̂ 2 {0, 1}

(Experiment 0)

s
R S

r  G(s) r

Challenger A

b̂ 2 {0, 1}

r

(Experiment 1)

r
R R

Figure 3.1: Experiments 0 and 1 of Attack Game 3.1

– if b = 0: s R S, r  G(s);

– if b = 1: r  R R.

and sends r to the adversary.

• Given r, the adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to G as

PRGadv[A, G] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

The attack game is illustrated in Fig. 3.1.

Definition 3.1 (secure PRG). A PRG G is secure if the value PRGadv[A, G] is negligible for
all e�cient adversaries A.

As discussed in Section 2.3.5, Attack Game 3.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
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PRGadv

⇤[A, G] as |Pr[b̂ = b] � 1/2|. The general result of Section 2.3.5 (namely, (2.13)) applies
here as well:

PRGadv[A, G] = 2 · PRGadv

⇤[A, G]. (3.1)

We also note that a PRG can only be secure if the cardinality of the seed space is super-poly
(see Exercise 3.5).

3.1.2 Mathematical details

Just as in Section 2.4, we give here more of the mathematical details pertaining to PRGs. Just like
Section 2.4, this section may be safely skipped on first reading with very little loss in understanding.

First, we state the precise definition of a PRG, using the terminology introduced in Defini-
tion 2.9.

Definition 3.2 (pseudo-random generator). A pseudo-random generator consists of an
algorithm G, along with two families of spaces with system parameterization P :

S = {S�,⇤}�,⇤ and R = {R�,⇤}�,⇤,

such that

1. S and R are e�ciently recognizable and sampleable.

2. Algorithm G is an e�cient deterministic algorithm that on input �, ⇤, s, where � 2 Z�1,
⇤ 2 Supp(P (�)), and s 2 S�,⇤, outputs an element of R�,⇤.

Next, Definition 3.1 needs to be properly interpreted. First, in Attack Game 3.1, it is to be
understood that for each value of the security parameter �, we get a di↵erent probability space,
determined by the random choices of the challenger and the random choices of the adversary.
Second, the challenger generates a system parameter ⇤, and sends this to the adversary at the very
start of the game. Third, the advantage PRGadv[A, G] is a function of the security parameter �,
and security means that this function is a negligible function.

3.2 Stream ciphers: encryption with a PRG

Let G be a PRG defined over ({0, 1}`, {0, 1}L); that is, G stretches an `-bit seed to an L-bit output.
The stream cipher E = (E, D) constructed from G is defined over ({0, 1}`, {0, 1}L, {0, 1}L);
for s 2 {0, 1}` and m, c 2 {0, 1}L, encryption and decryption are defined as follows: if |m| = v,
then

E(s, m) := G(s)[0 . . v � 1] � m,

and if |c| = v, then
D(s, c) := G(s)[0 . . v � 1] � c.

As the reader may easily verify, this satisfies our definition of a cipher (in particular, the correctness
property is satisfied).

Note that for the purposes of analyzing the semantic security of E , the length associated with a
message m in Attack Game 2.1 is the natural length |m| of m in bits. Also, note that if v is much
smaller than L, then for many practical PRGs, it is possible to compute the first v bits of G(s)
much faster than actually computing all the bits of G(s) and then truncating.

The main result of this section is the following:
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Theorem 3.1. If G is a secure PRG, then the stream cipher E constructed from G is a semantically
secure cipher.

In particular, for every SS adversary A that attacks E as in Attack Game 2.1, there exists a
PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

SSadv[A, E ] = 2 · PRGadv[B, G]. (3.2)

Proof idea. The basic idea is to argue that we can replace the output of the PRG by a truly random
string, without a↵ecting the adversary’s advantage by more than a negligible amount. However,
after making this replacement, the adversary’s advantage is zero. 2

Proof. Let A be an e�cient adversary attack E as in Attack Game 2.1. We want to show that
SSadv[A, E ] is negligible, assuming that G is a secure PRG. It is more convenient to work with the
bit-guessing version of the SS attack game. We prove:

SSadv⇤[A, E ] = PRGadv[B, G] (3.3)

for some e�cient adversary B. Then (3.2) follows from Theorem 2.10. Moreover, by the assumption
the G is a secure PRG, the quantity PRGadv[B, G] must negligible, and so the quantity SSadv[A, E ]
is negligible as well.

So consider the adversary A’s attack of E in the bit-guessing version of Attack Game 2.1. In
this game, A presents the challenger with two messages m0, m1 of the same length; the challenger
then chooses a random key s and a random bit b, and encrypts mb under s, giving the resulting
ciphertext c to A; finally, A outputs a bit b̂. The adversary A wins the game if b̂ = b.

Let us call this Game 0. The logic of the challenger in this game may be written as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
s R {0, 1}`, r  G(s)
c r[0 . . v � 1]�mb

send c to A.

Game 0 is illustrated in Fig. 3.2.
Let W0 be the event that b̂ = b in Game 0. By definition, we have

SSadv⇤[A, E ] = |Pr[W0]� 1/2|. (3.4)

Next, we modify the challenger of Game 0, obtaining new game, called Game 1, which is
exactly the same as Game 0, except that the challenger uses a truly random string in place of a
pseudo-random string. The logic of the challenger in Game 1 is as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
r  R {0, 1}L
c r[0 . . v � 1]�mb

send c to A.
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A

b̂ 2 {0, 1}

Challenger

b
R {0, 1}

s
R {0, 1}`

r  G(s)

m0,m1 2 {0, 1}�L

(|m0| = |m1| = v)

cc r[0 . . v � 1]�mb

Figure 3.2: Game 0 in the proof of Theorem 3.1

A

b̂ 2 {0, 1}

Challenger

b
R {0, 1}

r
R {0, 1}L

m0,m1 2 {0, 1}�L

(|m0| = |m1| = v)

c r[0 . . v � 1]�mb

c

Figure 3.3: Game 1 in the proof of Theorem 3.1
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A

r 2 {0, 1}L

b
R {0, 1}

b̂ 2 {0, 1}

PRG Challenger
for G

B

�(b̂, b)

m0,m1 2 {0, 1}�L

(|m0| = |m1| = v)

c r[0 . . v � 1]�mb

c

Figure 3.4: The PRG adversary B in the proof of Theorem 3.1

As usual, A outputs a bit b̂ at the end of this game. We have highlighted the changes from Game 0
in gray. Game 1 is illustrated in Fig. 3.3.

Let W1 be the event that b̂ = b in Game 1. We claim that

Pr[W1] = 1/2. (3.5)

This is because in Game 1, the adversary is attacking the variable length one-time pad. In particu-
lar, it is easy to see that the adversary’s output b̂ and the challenger’s hidden bit b are independent.

Finally, we show how to construct an e�cient PRG adversary B that uses A as a subroutine,
such that

|Pr[W0]� Pr[W1]| = PRGadv[B, G]. (3.6)

This is actually quite straightforward. The logic of our new adversary B is illustrated in Fig. 3.4.
Here, � is defined as follows:

�(x, y) :=

(

1 if x = y,

0 if x 6= y.
(3.7)

Also, the box labeled “PRG Challenger” is playing the role of the challenger in Attack Game 3.1
with respect to G.

In words, adversary B, which is a PRG adversary designed to attack G (as in Attack Game 3.1),
receives r 2 {0, 1}L from its PRG challenger, and then plays the role of challenger to A, as follows:

Upon receiving m0, m1 2 {0, 1}v from A, for some v  L, do:
b R {0, 1}
c r[0 . . v � 1]�mb

send c to A.
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Finally, when A outputs a bit b̂, B outputs the bit �(b̂, b).
Let p0 be the probability that B outputs 1 when the PRG challenger is running Experiment 0

of Attack Game 3.1, and let p1 be the probability that B outputs 1 when the PRG challenger is
running Experiment 1 of Attack Game 3.1. By definition, PRGadv[B, G] = |p1 � p0|. Moreover, if
the PRG challenger is running Experiment 0, then adversary A is essentially playing our Game 0,
and so p0 = Pr[W0], and if the PRG challenger is running Experiment 1, then A is essentially
playing our Game 1, and so p1 = Pr[W1]. Equation (3.6) now follows immediately.

Combining (3.4), (3.5), and (3.6), yields (3.3). 2

In the above theorem, we reduced the security of E to that of G by showing that if A is an
e�cient SS adversary that attacks E , then there exists an e�cient PRG adversary B that attacks
G, such that

SSadv[A, E ]  2 · PRGadv[B, G].

(Actually, we showed that equality holds, but that is not so important.) In the proof, we argued
that if G is secure, then PRGadv[B, G] is negligible, hence by the above inequality, we conclude
that SSadv[A, E ] is also negligible. Since this holds for all e�cient adversaries A, we conclude that
E is semantically secure.

Analogous to the discussion after the proof of Theorem 2.7, another way to structure the proof
is by proving the contrapositive: indeed, if we assume that E is insecure, then there must be an
e�cient adversary A such that SSadv[A, E ] is non-negligible, and the reduction (and the above
inequality) gives us an e�cient adversary B such that PRGadv[B, G] is also non-negligible. That
is, if we can break E , we can also break G. While logically equivalent, such a proof has a di↵erent
“feeling”: one starts with an adversary A that breaks E , and shows how to use A to construct a
new adversary B that breaks G.

The reader should notice that the proof of the above theorem follows the same basic pattern
as our analysis of Internet roulette in Section 2.3.4. In both cases, we started with an attack game
(Fig. 2.2 or Fig. 3.2) which we modified to obtain a new attack game (Fig. 2.3 or Fig. 3.3); in
this new attack game, it was quite easy to compute the adversary’s advantage. Also, we used an
appropriate security assumption to show that the di↵erence between the adversary’s advantages in
the original and the modified games was negligible. This was done by exhibiting a new adversary
(Fig. 2.4 or Fig. 3.4) that attacked the underlying cryptographic primitive (cipher or PRG) with an
advantage equal to this di↵erence. Assuming the underlying primitive was secure, this di↵erence
must be negligible; alternatively, one could argue the contrapositive: if this di↵erence were not
negligible, the new adversary would “break” the underlying cryptographic primitive.

This is a pattern that will be repeated and elaborated upon throughout this text. The reader
is urged to study both of these analyses to make sure he or she completely understands what is
going on.

3.3 Stream cipher limitations: attacks on the one time pad

Although stream ciphers are semantically secure they are highly brittle and become totally insecure
if used incorrectly.

52



3.3.1 The two-time pad is insecure

A stream cipher is well equipped to encrypt a single message from Alice to Bob. Alice, however,
may wish to send several messages to Bob. For simplicity suppose Alice wishes to encrypt two
messages m1 and m2. The naive solution is to encrypt both messages using the same stream cipher
key s:

c1  m1 �G(s) and c2  m2 �G(s) (3.8)

A moments reflection shows that this construction is insecure in a very strong sense. An adversary
who intercepts c1 and c2 can compute

� := c1 � c2 =
�

m1 �G(s)
�� �

m2 �G(s)
�

= m1 �m2

and obtain the xor of m1 and m2. Not surprisingly, English text contains enough redundancy that
given � = m1�m2 the adversary can recover both m1 and m2 in the clear. Hence, the construction
in (3.8) leaks the plaintexts after seeing only two su�ciently long ciphertexts.

The construction in (3.8) is jokingly called the two-time pad. We just argued that the two-
time pad is totally insecure. In particular, a stream cipher key should never be used to
encrypt more than one message. Throughout the book we will see many examples where a
one-time cipher is su�cient. For example, when choosing a new random key for every message as
in Section 5.4.1. However, in settings where a single key is used multiple times, one should never
use a stream cipher directly. We build multi-use ciphers in Chapter 5.

Incorrectly reusing a stream cipher key is a common error in deployed systems. For example,
a protocol called PPTP enables two parties A and B to send encrypted messages to one another.
Microsoft’s implementation of PPTP in Windows NT uses a stream cipher called RC4. The original
implementation encrypts messages from A to B using the same RC4 key as messages from B
to A [95]. Consequently, by eavesdropping on two encrypted messages headed in opposite directions
an attacker could recover the plaintext of both messages.

Another amusing story about the two-time pad is relayed by Klehr [52] who describes in great
detail how Russian spies in the US during World War II were sending messages back to Moscow,
encrypted with the one-time pad. The system had a critical flaw, as explained by Klehr:

During WWII the Soviet Union could not produce enough one-time pads . . . to keep
up with the enormous demand . . . . So, they used a number of one-time pads twice,
thinking it would not compromise their system. American counter-intelligence during
WWII collected all incoming and outgoing international cables. Beginning in 1946, it
began an intensive e↵ort to break into the Soviet messages with the cooperation of the
British and by . . . the Soviet error of using some one-time pads as two-time pads, was
able, over the next 25 years, to break some 2900 messages, containing 5000 pages of the
hundreds of thousands of messages that been sent between 1941 and 1946 (when the
Soviets switched to a di↵erent system).

The decryption e↵ort was codenamed project Venona. The Venona files are most famous for
exposing Julius and Ethel Rosenberg and help give indisputable evidence of their involvement with
the Soviet spy ring. Starting in 1995 all 3000 Venona decrypted messages were made public.

3.3.2 The one-time pad is malleable

Although semantic security ensures that an adversary cannot read the plaintext, it provides no
guarantees for integrity. When using a stream cipher, an adversary can change a ciphertext and
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the modification will never be detected by the decryptor. Even worse, let us show that by changing
the ciphertext, the attacker can control how the decrypted plaintext will change.

Suppose an attacker intercepts a ciphertext c := E(s, m) = m�G(s). The attacker changes c to
c0 := c�� for some � of the attacker’s choice. Consequently, the decryptor receives the modified
message

D(s, c0) = c0 �G(s) = (c��)�G(s) = m��.

Hence, without knowledge of either m or s, the attacker was able to cause the decrypted message
to become m�� for � of the attacker’s choosing. We say that stream-ciphers are malleable since
an attacker can cause predictable changes to the plaintext. We will construct ciphers that provide
both privacy and integrity in Chapter 9.

A simple example where malleability could help an attacker is an encrypted file system. To
make things concrete, suppose Bob is a professor and that Alice and Molly are students. Bob’s
students submit their homework by email, and then Bob stores these emails on a disk encrypted
using a stream cipher. An email always starts with a standard header. Simplifying things a bit, we
can assume that an email from, say, Alice, always starts with the characters From:Alice.

Now suppose Molly is able to gain access to Bob’s disk and locate the encryption of the email
from Alice containing her homework. Molly can e↵ectively steal Alice’s homework, as follows. She
simply XORs the appropriate five-character string into the ciphertext in positions 6 to 10, so as
to change the header From:Alice to the header From:Molly. Molly makes this change by only
operating on ciphertexts and without knowledge of Bob’s secret key. Bob will never know that the
header was changed, and he will grade Alice’s homework, thinking it is Molly’s, and Molly will get
the credit instead of Alice.

Of course, for this attack to be e↵ective, Molly must somehow be able to find the email from Alice
on Bob’s encrypted disk. However, in some implementations of encrypted file systems, file metadata
(such as file names, modification times, etc) are not encrypted. Armed with this metadata, it may
be straightforward for Molly to locate the encrypted email from Alice and carry out this attack.

3.4 Composing PRGs

In this section, we discuss two constructions that allow one to build new PRGs out of old PRGs.
These constructions allow one to increase the size of the output space of the original PRG while at
the same time preserving its security. Perhaps more important than the constructions themselves is
the proof technique, which is called a hybrid argument. This proof technique is used pervasively
throughout modern cryptography.

3.4.1 A parallel construction

Let G be a PRG defined over (S, R). Suppose that in some application, we want to use G many
times. We want all the outputs of G to be computationally indistinguishable from random elements
of R. If G is a secure PRG, and if the seeds are independently generated, then this will indeed be
the case.

We can model the use of many applications of G as a new PRG G0. That is, we construct a
new PRG G0 that applies G to n seeds, and concatenates the outputs. Thus, G0 is defined over
(Sn, Rn), and for s1, . . . , sn 2 R,

G0(s1, . . . , sn) := (G(s1), . . . , G(sn)).
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We call G0 the n-wise parallel composition of G. The value n is called a repetition parameter,
and we require that it is a poly-bounded value.

Theorem 3.2. If G is a secure PRG, then the n-wise parallel composition G0 of G is also a secure
PRG.

In particular, for every PRG adversary A that attacks G0 as in Attack Game 3.1, there exists
a PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

PRGadv[A, G0] = n · PRGadv[B, G].

As a warm up, we first prove this theorem in the special case n = 2. Let A be an e�cient PRG
adversary that has advantage ✏ in attacking G0 in Attack Game 3.1. We want to show that ✏ is
negligible, under the assumption that G is a secure PRG. To do this, let us define Game 0 to be
Experiment 0 of Attack Game 3.1 with A and G0. The challenger in this game works as follows:

s1  R S, r1  G(s1)
s2  R S, r2  G(s2)
send (r1, r2) to A.

Let p0 denote the probability with which A outputs 1 in this game.
Next, we define Game 1, which is played between A and a challenger that works as follows:

r1  R R
s2  R S, r2  G(s2)
send (r1, r2) to A.

Note that Game 1 corresponds to neither Experiment 0 nor Experiment 1 of Attack Game 3.1;
rather, it is a “hybrid” experiment corresponding to something in between Experiments 0 and 1.
All we have done is replaced the pseudo-random value r1 in Game 0 by a truly random value (as
highlighted). Intuitively, under the assumption that G is a secure PRG, the adversary A should
not notice the di↵erence. To make this argument precise, let p1 be the probability that A outputs
1 in Game 1.

Let �1 := |p1 � p0|. We claim that �1 is negligible, assuming that G is a secure PRG. Indeed,
we can easily construct an e�cient PRG adversary B1 whose advantage in attacking G in Attack
Game 3.1 is precisely equal to �1. The adversary B1 works as follows:

Upon receiving r 2 R from its challenger, B1 plays the role of challenger to A, as follows:

r1  r
s1  R S, r2  G(s2)
send (r1, r2) to A.

Finally, B1 outputs whatever A outputs.

Observe that when B1 is in Experiment 0 of its attack game, it perfectly mimics the behavior of the
challenger in Game 0, while in Experiment 1, it perfectly mimics the behavior of the challenger in
Game 1. Thus, p0 is equal to the probability that B1 outputs 1 in Experiment 0 of Attack Game 3.1,
while p1 is equal to the probability that B1 outputs 1 in Experiment 1 of Attack Game 3.1. Thus,
B1’s advantage in attacking G is precisely |p1 � p0|, as claimed.

Next, we define Game 2, which is played between A and a challenger that works as follows:
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r1  R R
r2  R R
send (r1, r2) to A.

All we have done is replaced the pseudo-random value r2 in Game 1 by a truly random value (as
highlighted). Let p2 be the probability that A outputs 1 in Game 2. Note that Game 2 corresponds
to Experiment 1 of Attack Game 3.1 with A and G0, and so p2 is equal to the probability that A
outputs 1 in Experiment 1 of Attack Game 3.1 with respect to G0.

Let �2 := |p2 � p1|. By an argument similar to that above, it is easy to see that �2 is negligible,
assuming that G is a secure PRG. Indeed, we can easily construct an e�cient PRG adversary B2

whose advantage in Attack Game 3.1 with respect to G is precisely equal to �2. The adversary B2

works as follows:

Upon receiving r 2 R from its challenger, B2 plays the role of challenger to A, as follows:

r1  R R
r2  r
send (r1, r2) to A.

Finally, B2 outputs whatever A outputs.

It should be clear that p1 is equal to the probability that B2 outputs 1 in Experiment 0 of Attack
Game 3.1, while p2 is equal to the probability that B2 outputs 1 in Experiment 1 of Attack Game 3.1.

Recalling that ✏ = PRGadv[A, G0], then from the above discussion, we have

✏ = |p2 � p0| = |p2 � p1 + p1 � p0|  |p1 � p0| + |p2 � p1| = �1 + �2.

Since both �1 and �2 are negligible, then so is ✏ (see Fact 2.6).
That completes the proof that G0 is secure in the case n = 2. Before giving the proof in the

general case, we give another proof in the case n = 2. While our first proof involved the construction
of two adversaries B1 and B2, our second proof combines these two adversaries into a single PRG
adversary B that plays Attack Game 3.1 with respect to G, and which runs as follows:

upon receiving r 2 R from its challenger, adversary B chooses ! 2 {1, 2} at random,
and gives r to B!; finally, B outputs whatever B! outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. Conditioning on the events ! = 1
and ! = 2, we have

Pr[W0] = Pr[W0 | ! = 1] Pr[! = 1] + Pr[W0 | ! = 2] Pr[! = 2]

= 1
2

✓

Pr[W0 | ! = 1] + Pr[W0 | ! = 2]

◆

= 1
2(p0 + p1).

Similarly, we have

Pr[W1] = Pr[W1 | ! = 1] Pr[! = 1] + Pr[W1 | ! = 2] Pr[! = 2]

= 1
2

✓

Pr[W1 | ! = 1] + Pr[W1 | ! = 2]

◆

= 1
2(p1 + p2).
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Therefore, if � is the advantage of B in Attack Game 3.1 with respect to G, we have

� =
�

�Pr[W1]� Pr[W0]
�

� =
�

�

1
2(p1 + p2)� 1

2(p0 + p1)
�

� = 1
2 |p2 � p0| = ✏/2.

Thus, ✏ = 2�, and since � is negligible, so is ✏ (see Fact 2.6).

Now, finally, we present the proof of Theorem 3.2 for general, poly-bounded n.

Proof idea. We could try to extend the first strategy outlined above from n = 2 to arbitrary n.
That is, we could construct a sequence of n + 1 games, starting with a challenger that produces
a sequence (G(s1), . . . , G(sn)), of pseudo-random elements replacing elements one at a time with
truly random elements of R, ending up with a sequence (r1, . . . , rn) of truly random elements of
R. Intuitively, the adversary should not notice any of these replacements, since G is a secure
PRG; however, proving this formally would require the construction of n di↵erent adversaries,
each of which attacks G in a slightly di↵erent way. As it turns out, this leads to some annoying
technical di�culties when n is not an absolute constant, but is simply poly-bounded; it is much
more convenient to extend the second strategy outlined above, constructing a single adversary that
attacks G “in one blow.” 2

Proof. Let A be an e�cient PRG adversary that plays Attack Game 3.1 with respect to G0. We
first introduce a sequence of n + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid n. For
j = 0, 1, . . . , n, Hybrid j is a game played between A and a challenger that prepares a tuple of n
values, the first j of which are truly random, and the remaining n� j of which are pseudo-random
outputs of G; that is, the challenger works as follows:

r1  R R
...

rj  R R
sj+1  R S, rj+1  G(sj+1)

...
sn  R S, rn  G(sn)

send (r1, . . . , rn) to A.

As usual, A outputs 0 or 1 at the end of the game. Fig. 3.5 illustrates the values prepared by the
challenger in each of these n+1 games. Let pj denote the probability that A outputs 1 in Hybrid j.
Note that p0 is also equal to the probability that A outputs 1 in Experiment 0 of Attack Game 3.1,
while pn is equal to the probability that A outputs 1 in Experiment 1. Thus, we have

PRGadv[A, G0] = |pn � p0|. (3.9)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to G, and which
works as follows:

Upon receiving r 2 R from its challenger, B plays the role of challenger to A, as follows:
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Hybrid 0: G(s1) G(s2) G(s3) · · · G(sn)
Hybrid 1: r1 G(s2) G(s3) · · · G(sn)
Hybrid 2: r1 r2 G(s3) · · · G(sn)

...
Hybrid n� 1: r1 r2 r3 · · · G(sn)
Hybrid n: r1 r2 r3 · · · rn

Figure 3.5: Values prepared by challenger in Hybrids 0, 1, . . . , n. Each ri is a random element of
R, and each si is a random element of S.

!  R {1, . . . , n}
r1  R R

...
r!�1  R R
r!  r

s!+1  R S, r!+1  G(s!+1)
...

sn  R S, rn  G(sn)

send (r1, . . . , rn) to A.

Finally, B outputs whatever A outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on ! = j for every fixed j = 1, . . . , n, Experiment 0 of B’s attack game
is equivalent to Hybrid j � 1, while Experiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,
Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

So we have

Pr[W0] =
n
X

j=1

Pr[W0 | ! = j] Pr[! = j] =
1

n

n
X

j=1

Pr[W0 | ! = j] =
1

n

n
X

j=1

pj�1,

and similarly,

Pr[W1] =
n
X

j=1

Pr[W1 | ! = j] Pr[! = j] =
1

n

n
X

j=1

Pr[W1 | ! = j] =
1

n

n
X

j=1

pj .
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Finally, we have

PRGadv[B, G] = |Pr[W1]� Pr[W0]|

=

�

�

�

�

1

n

n
X

j=1

pj � 1

n

n
X

j=1

pj�1

�

�

�

�

=
1

n
|pn � p0|,

and combining this with (3.9), we have

PRGadv[A, G0] = n · PRGadv[B, G].

Since we are assuming G is a secure PRG, it follows that PRGadv[B, G] is negligible, and since n is
poly-bounded, it follows that PRGadv[A, G0] is negligible (see Fact 2.6). That proves the theorem.
2

Theorem 3.2 says that the security of a PRG degrades at most linearly in the number of times
that we use it. One might ask if this bound is tight; that is, might security indeed degrade linearly
in the number of uses? The answer is in fact “yes” (see Exercise 3.14).

3.4.2 A sequential construction: the Blum-Micali method

We now present a sequential construction, invented by Blum and Micali, which uses a PRG that
stretches just a little, and builds a PRG that stretches an arbitrary amount.

Let G be a PRG defined over (S, R⇥S), for some finite sets S and R. For every poly-bounded
value n � 1, we can construct a new PRG G0, defined over (S, Rn ⇥ S). For s 2 S, we let

G0(s) :=
s0  s
for i 1 to n do

(ri, si) G(si�1)
output (r1, . . . , rn, sn).

We call G0 the n-wise sequential composition of G. See Fig. 3.6 for a schematic description of
G0 for n = 3.

We shall prove below in Theorem 3.3 that if G is a secure PRG, then so is G0. As a special case
of this construction, suppose G is a PRG defined over ({0, 1}`, {0, 1}t+`), for some positive integers
` and t; that is, G stretches `-bit strings to (t + `)-bit strings. We can naturally view the output
space of G as {0, 1}t ⇥ {0, 1}`, and applying the above construction, and interpreting outputs as
bit strings, we get a PRG G0 that stretches `-bit strings to (nt + `)-bit strings.

Theorem 3.3. If G is a secure PRG, then the n-wise sequential composition G0 of G is also a
secure PRG.

In particular, for every PRG adversary A that plays Attack Game 3.1 with respect to G0, there
exists a PRG adversary B that plays Attack Game 3.1 with respect to G, where B is an elementary
wrapper around A, such that

PRGadv[A, G0] = n · PRGadv[B, G].
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G G G

s

s1

r1

s2

r2 r3 s3

Figure 3.6: The sequential construction for n = 3

Proof idea. The proof of this is a hybrid argument that is very similar in spirit to the proof of
Theorem 3.2. The intuition behind the proof is as follows: Consider a PRG adversary A who
receives the (r1, . . . , rn, sn) Experiment 0 of Attack Game 3.1. Since s = s0 is random and G is a
secure PRG, we may replace (r1, s1) by a completely random element of R⇥S, and the probability
that A outputs 1 in this new, hybrid game should change by only a negligible amount. Now, since
s1 is random (and again, since G is a secure PRG), we may replace (r2, s2) by a completely random
element of R ⇥ S, and the probability that A outputs 1 in this second hybrid game should again
change by only a negligible amount. Continuing in this way, we may incrementally replace (r3, s3)
through (rn, sn) by random elements of R⇥S, and the probability that A outputs 1 should change
by only a negligible amount after making all these changes (assuming n is poly-bounded). However,
at this point, A outputs 1 with the same probability with which he would output 1 in Experiment 1
in Attack Game 3.1, and therefore, this probability is negligibly close to the probability that A
outputs 1 in Experiment 0 of Attack Game 3.1.

That is the idea; however, just as in the proof of Theorem 3.2, for technical reasons, we design
a single PRG adversary that attacks G. 2

Proof. Let A be a PRG adversary that plays Attack Game 3.1 with respect to G0. We first introduce
a sequence of n + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid n. For j = 0, 1, . . . , n, we
define Hybrid j to be the game played between A and the following challenger:

r1  R R
...

rj  R R
sj  R S
(rj+1, sj+1) G(sj)

...
(rn, sn) G(sn�1)

send (r1, . . . , rn, sn) to A.

As usual, A outputs 0 or 1 at the end of the game. See Fig. 3.7 for a schematic description of
how these challengers work in the case n = 3. Let pj denote the probability that A outputs 1
in Hybrid j. Note that p0 is also equal to the probability that A outputs 1 in Experiment 0 of
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Attack Game 3.1, while pn is equal to the probability that A outputs 1 in Experiment 1 of Attack
Game 3.1. Thus, we have

PRGadv[A, G0] = |pn � p0|. (3.10)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to G, and which
works as follows:

Upon receiving (r, s) 2 R ⇥ S from its challenger, B plays the role of challenger to A,
as follows:

!  R {1, . . . , n}
r1  R R

...
r!�1  R R
(r!, s!) (r, s)

(r!+1, s!+1) G(s!)
...

(rn, sn) G(sn�1)

send (r1, . . . , rn, sn) to A.

Finally, B outputs whatever A outputs.

Let W0 be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W1 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on ! = j for every fixed j = 1, . . . , n, Experiment 0 of B’s attack game
is equivalent to Hybrid j � 1, while Experiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,
Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

The remainder of the proof is a simple calculation that is identical to that in the last paragraph of
the proof of Theorem 3.2. 2

One criteria for evaluating a PRG is its expansion rate: a PRG that stretches an n-bit seed
to an m-bit output has expansion rate of m/n; more generally, if the seed space is S and the
output space is R, we would define the expansion rate as log|R|/ log|S|. The sequential composi-
tion achieves a better expansion rate than the parallel composition. However, it su↵ers from the
drawback that it cannot be parallelized. In fact, we can obtain the best of both worlds: a large
expansion rate with a highly parallelizable construction (see Section 4.4.4).

3.4.3 Mathematical details

There are some subtle points in the proofs of Theorems 3.2 and 3.3 that merit discussion.
First, in both constructions, the underlying PRG G may have system parameters. That is,

there may be a probabilistic algorithm that takes as input the security parameter �, and outputs
a system parameter ⇤. Recall that a system parameter is public data that fully instantiates the
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Figure 3.7: The challenger’s computation in the hybrid games for n = 3. The circles indicate
randomly generated elements of S or R, as indicated by the label.
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scheme (in this case, it might define the seed and output spaces). For both the parallel and
sequential constructions, one could use the same system parameter for all n instances of G; in fact,
for the sequential construction, this is necessary to ensure that outputs from one round may be
used as inputs in the next round. The proofs of these security theorems are perfectly valid if the
same system parameter is used for all instances of G, or if di↵erent system parameters are used.

Second, we briefly discuss a rather esoteric point regarding hybrid arguments. To make things
concrete, we focus attention on the proof of Theorem 3.2 (although analogous remarks apply to the
proof of Theorem 3.3, or any other hybrid argument). In proving this theorem, we ultimately want
to show that if there is an e�cient adversary A that breaks G0, then there is an e�cient adversary
that breaks G. Suppose that A is an e�cient adversary that breaks G0, so that its advantage ✏(�)
(which we write here explicitly as a function of the security parameter �) with respect to G0 is not
negligible. This means that there exists a constant c such that ✏(�) � 1/�c for infinitely many �.

Now, in the discussion preceding the proof of Theorem 3.2, we considered the special case n = 2,
and showed that there exist e�cient adversaries B1 and B2, such that ✏(�)  �1(�)+ �2(�) for all �,
where �j(�) is the advantage of Bj with respect to G. It follows that either �1(�) � 1/2�c infinitely
often, or �2(�) � 1/2�c infinitely often. So we may conclude that either B1 breaks G or B2 breaks
G (or possibly both). Thus, there exists an e�cient adversary that breaks G: it is either B1 or
B2, which one we do not say (and we do not have to). However, whichever one it is, it is a fixed
adversary that is defined uniformly for all �; that is, it is a fixed machine that takes � as input.

This argument is perfectly valid, and extends to every constant n: we would construct n adver-
saries B1, . . . , Bn, and argue that for some j = 1, . . . , n, adversary Bj must have advantage 1/n�c

infinitely often, and thus break G. However, this argument does not extend to the case where n
is a function of �, which we now write explicitly as n(�). The problem is not that 1/(n(�)�c) is
perhaps too small (it is not). The problem is quite subtle, so before we discuss it, let us first review
the (valid) proof that we did give. For each �, we defined a sequence of n(�) + 1 hybrid games,
so that for each �, we actually get a di↵erent sequence of games. Indeed, we cannot speak of a
single, finite sequence of games that works for all �, since n(�) ! 1. Nevertheless, we explicitly
constructed a fixed adversary B that is defined uniformly for all �; that is, B is a fixed machine
that takes � as input. The sequence of hybrid games that we define for each � is a mathematical
object for which we make no claims as to its computability — it is simply a convenient device used
in the analysis of B.

Hopefully by now the reader has at least a hint of the problem that arises if we attempt to
generalize the argument for constant n to a function n(�). First of all, it is not even clear what
it means to talk about n(�) adversaries B1, . . . , Bn(�): our adversaries our supposed to be fixed
machines that take � as input, and the machines themselves should not depend on �. Such linguistic
confusion aside, our proof for the constant case only shows that there exists an “adversary” that for
infinitely many values of � somehow knows the “right” value of j = j(�) to use in the (n(�) + 1)-
game hybrid argument — no single, constant value of j necessarily works for infinitely many �. One
can actually make sense of this type of argument if one uses a non-uniform model of computation,
but we shall not take this approach in this text.

All of these problems simply go away when we use a hybrid argument that constructs a single
adversary B, as we did in the proofs of Theorems 3.2 and 3.3. However, we reiterate that the original
analysis we did in the where n = 2, or its natural extension to every constant n, is perfectly valid.
In that case, we construct a single, fixed sequence of n + 1 games, with each individual game
uniformly defined for all � (just as our attack games are in our security definitions), as well as a
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finite collection of adversaries, each of which is a fixed machine. We reiterate this because in the
sequel we shall often be constructing proofs that involve finite sequences of games like this (indeed,
the proof of Theorem 3.1 was of this type). In such cases, each game will be uniformly defined for
all �, and will be denoted Game 0, Game 1, etc. In contrast, when we make a hybrid argument
that uses non-uniform sequences of games, we shall denote these games Hybrid 0, Hybrid 1, etc.,
so as to avoid any possible confusion.

3.5 The next bit test

Let G be a PRG defined over ({0, 1}`, {0, 1}L), so that it stretches `-bit strings to L-bit strings.
There are a number of ways an adversary might be able to distinguish a pseudo-random output of
G from a truly random bit string. Indeed, suppose that an e�cient adversary were able to compute,
say, the last bit of G’s output, given the first L� 1 bits of G’s output. Intuitively, the existence of
such an adversary would imply that G is insecure, since given the first L� 1 bits of a truly random
L-bit string, one has at best a 50-50 chance of guessing the last bit. It turns out that an interesting
converse, of sorts, is also true.

We shall formally define the notion of unpredictability for a PRG, which essentially says
that given the first i bits of G’s output, it is hard to predict the next bit (i.e., the (i + 1)-st
bit) with probability significantly better that 1/2 (here, i is an adversarially chosen index). We
shall then prove that unpredictability and security are equivalent. The fact that security implies
unpredictability is fairly obvious: the ability to e↵ectively predict the next bit in the pseudo-random
output string immediately gives an e↵ective statistical test. However, the fact that unpredictability
implies security is quite interesting (and requires more e↵ort to prove): it says that if there is any
e↵ective statistical test at all, then there is in fact an e↵ective method for predicting the next bit
in a pseudo-random output string.

Attack Game 3.2 (Unpredictable PRG). For a given PRG G, defined over (S, {0, 1}L), and a
given adversary A, the attack game proceeds as follows:

• The adversary sends an index i, with 0  i  L� 1, to the challenger.

• The challenger computes
s R S, r  G(s)

and sends r[0 . . i� 1] to the adversary.

• The adversary outputs g 2 {0, 1}.

We say that A wins if r[i] = g, and we define A’s advantage Predadv[A, G] to be |Pr[A wins]�1/2|.
2

Definition 3.3 (Unpredictable PRG). A PRG G is unpredictable if the value Predadv[A, G]
is negligible for all e�cient adversaries A.

We begin by showing the security implies unpredictability.

Theorem 3.4. Let G be a PRG, defined over (S, {0, 1}L). If G is secure, then G is unpredictable.
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In particular, for every adversary A breaking the unpredictability of G, as in Attack Game 3.2,
there exists an adversary B breaking the security G as in Attack Game 3.1, where B is an
elementary wrapper around A, such that

Predadv[A, G] = PRGadv[B, G].

Proof. Let A be an adversary breaking the predictability of G, and let i denote the index chosen
by A. Also, suppose A wins Attack Game 3.2 with probability 1/2+ ✏, so that Predadv[A, G] = |✏|.

We build an adversary B breaking the security of G, using A as a subroutine, as follows:

Upon receiving r 2 {0, 1}L from its challenger, B does the following:

• B gives r[0 . . i� 1] to A, obtaining A’s output g 2 {0, 1};

• if r[i] = g, then output 1, and otherwise, output 0.

For b = 0, 1, let Wb be the event that B outputs 1 in Experiment b of Attack Game 3.1. In
Experiment 0, r is a pseudo-random output of G, and W0 occurs if and only if r[i] = g, and so by
definition

Pr[W0] = 1/2 + ✏.

In Experiment 1, r is a truly random bit string, but again, W1 occurs if and only if r[i] = g; in this
case, however, as random variables, the values of r[i] and g are independent, and so

Pr[W1] = 1/2.

It follows that

PRGadv[B, G] = |Pr[W1]� Pr[W0]| = |✏| = Predadv[A, G]. 2

The more interesting, and more challenging, task is to show that unpredictability implies secu-
rity. Before getting into all the details of the proof, we sketch the high level ideas.

First, we shall employ a hybrid argument, which will essentially allow us to argue that if A is
an e�cient adversary that can e↵ectively distinguish a pseudo-random L-bit string from a random
L-bit string, then we can construct an e�cient adversary B that can e↵ectively distinguish

x1 · · · xj xj+1

from
x1 · · · xj r,

where j is a randomly chosen index, x1, . . . , xL is the pseudo-random output, and r is a random bit.
Thus, adversary B can distinguish the pseudo-random bit xj+1 from the random bit rj+1, given
the “side information” x1, . . . , xj .

We want to turn B’s distinguishing advantage into a predicting advantage. The rough idea is
this: given x1, . . . , xj , we feed B the string x1, . . . , xj r for a randomly chosen bit r; if B outputs 1,
our prediction for xj+1 is r; otherwise, or prediction for xj+1 is r̄ (the complement of r).

That this prediction strategy works is justified by the following general result, which we call
the distinguisher/predictor lemma. The general setup is as follows. We have:

• a random variable X, which corresponds to the “side information” x1, . . . , xj above, as well
as any random coins used by the adversary B;
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• a 0/1-valued random variable B, which corresponds to xj+1 above, and which may be corre-
lated with X;

• a 0/1-valued random variable R, which corresponds to r above, and which is independent of
(X,B);

• a function d, which corresponds to B’s strategy, so that B’s distinguishing advantage is equal
to |✏|, where ✏ = Pr[d(X,B) = 1]� Pr[d(X,R) = 1].

The lemma says that if we define B0 using the predicting strategy outlined above, namely B0 = R
if d(X,R) = 1, and B0 = R otherwise, then the probability that the prediction B0 is equal to the
actual value B is precisely 1/2 + ✏. Here is the precise statement of the lemma:

Lemma 3.5 (Distinguisher/predictor lemma). Let X be a random variable taking values in
some set S, and let B and R be a 0/1-valued random variables, where R is uniformly distributed
over {0, 1} and is independent of (X,B). Let d : S ⇥ {0, 1}! {0, 1} be an arbitrary function, and
let

✏ := Pr[d(X,B) = 1]� Pr[d(X,R) = 1].

Define the random variable B0 as follows:

B0 :=

(

R if d(X,R) = 1;

R otherwise.

Then
Pr[B0 = B] = 1/2 + ✏.

Proof. We calculate Pr[B0 = B], conditioning on the events B = R and B = R:

Pr[B0 = B] = Pr[B0 = B | B = R] Pr[B = R] + Pr[B0 = B | B = R] Pr[B = R]

= Pr[d(X,R) = 1 | B = R]
1

2
+ Pr[d(X,R) = 0 | B = R]

1

2

=
1

2

⇣

Pr[d(X,R) = 1 | B = R] + (1� Pr[d(X,R) = 1 | B = R)]
⌘

=
1

2
+

1

2
(↵� �),

where
↵ := Pr[d(X,R) = 1 | B = R] and � := Pr[d(X,R) = 1 | B = R].

By independence, we have

↵ = Pr[d(X,R) = 1 | B = R] = Pr[d(X,B) = 1 | B = R] = Pr[d(X,B) = 1].

To see the last equality, the result of Exercise 3.25 may be helpful.
We thus calculate that

✏ = Pr[d(X,B) = 1]� Pr[d(X,R) = 1]

= ↵�
⇣

Pr[d(X,R) = 1 | B = R] Pr[B = R] + Pr[d(X,R) = 1 | B = R] Pr[B = R]
⌘

= ↵� 1

2
(↵ + �)

=
1

2
(↵� �),
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which proves the lemma. 2

Theorem 3.6. Let G be a PRG, defined over (S, {0, 1}L). If G is unpredictable, then G is secure.

In particular, for every adversary A breaking the security of G as in Attack Game 3.1, there
exists an adversary B, breaking the unpredictability of G as in Attack Game 3.2, where B is an
elementary wrapper around A, such that

PRGadv[A, G] = L · Predadv[B, G].

Proof. Let A attack G as in Attack Game 3.1. Using A, we build a predictor B, which attacks G
as in Attack Game 3.2, and works as follows:

• Choose ! 2 {1, . . . , L} at random.

• Send L� ! to the challenger, obtaining a string x 2 {0, 1}L�!.

• Generate ! random bits r1, . . . , r!, and give the L-bit string x k r1 · · · r! to A.

• If A outputs 1, then output r1; otherwise, output r1.

To analyze B, we consider L + 1 hybrid games, called Hybrid 0, Hybrid 1, . . . , Hybrid L. For
j = 0, . . . , L, we define Hybrid j to be the game played between A and a challenger that generates
a bit string r consisting of L� j pseudo-random bits, followed by j truly random bits; that is, the
challenger chooses s 2 S and t 2 {0, 1}j at random, and sends A the bit string

r := G(s)[0 . . L� j � 1] k t.

As usual, A outputs 0 or 1 at the end of the game, and we define pj to be the probability that A
outputs 1 in Hybrid j. Note that p0 is the probability that A outputs 1 in Experiment 0 of Attack
Game 3.1, while pL is the probability that A outputs 1 in Experiment 1 of Attack Game 3.1.

Let W be the event that B wins in Attack Game 3.2 (that is, correctly predicts the next bit).
Then we have

Pr[W ] =
L
X

j=1

Pr[W | ! = j] Pr[! = j]

=
1

L

L
X

j=1

Pr[W | ! = j]

=
1

L

L
X

j=1

⇣1

2
+ pj�1 � pj

⌘

(by Lemma 3.5)

=
1

2
+

1

L
(p0 � pL),

and the theorem follows. 2

67



3.6 Case study: the Salsa and ChaCha PRGs

There are many ways to build PRGs and stream ciphers in practice. One approach builds PRGs
using the Blum-Micali paradigm discussed in Section 3.4.2. Another approach, discussed more
generally in the Chapter 5, builds them from a more versatile primitive called a pseudorandom
function in counter mode. We start with a construction that uses this latter approach.

Salsa20/12 and Salsa20/20 are fast stream ciphers designed by Dan Burnstein in 2005.
Salsa20/12 is one of four Profile 1 stream ciphers selected for the eStream portfolio of stream
ciphers. eStream is a project that identifies fast and secure stream ciphers that are appropriate
for practical use. Variants of Salsa20/12 and Salsa20/20, called ChaCha12 and ChaCha20 respec-
tively, were proposed by Bernstein in 2008. These stream ciphers have been incorporated into
several widely deployed protocols such as TLS and SSH.

Let us briefly describe the PRGs underlying the Salsa and ChaCha stream cipher families.
These PRGs take as input a 256-bit seed and a 64-bit nonce. For now we ignore the nonce and
simply set it to 0. We discuss the purpose of the nonce at the end of this section. The Salsa
and ChaCha PRGs follow the same high level structure shown in Fig. 3.8. They make use of two
components:

• A padding function denoted pad(s, j, 0) that combines a 256-bit seed s with a 64-bit counter
j to form a 512-bit block. The third input, a 64-bit nonce, is always set to 0 for now.

• A fixed public permutation ⇡ : {0, 1}512 ! {0, 1}512.
These components are used to output L < 264 pseudorandom blocks, each 512 bits long, using the
following algorithm (Fig. 3.8):

input: seed s 2 {0, 1}256
1. for j  0 to L� 1
2. hj  pad(s, j, 0) 2 {0, 1}512
3. rj  ⇡(hj)� hj

4. output (r0, . . . , rL�1).

The final PRG output is 512 · L bits long. We note that in Salsa and ChaCha the XOR on line 3
is a slightly more complicated operation: the 512-bit operands hj and ⇡(hj) are split into 16 words
each 32-bits long and then added word-wise mod 232.

The design of Salsa and ChaCha is highly parallelizable and can take advantage of multiple
processor cores to speed-up encryption. Moreover, it enables random access to output blocks:
output block number j can be computed without having to first compute all previous blocks.
Generators based on the Blum-Micali paradigm do not have these properties.

We analyze the security of the Salsa and ChaCha design in Exercise 4.23 in the next chapter,
after we develop a few more tools.

The details. We briefly describe the padding function pad(s, j, n) and the permutation ⇡ used
in ChaCha20. The padding function takes as input a 256-bit seed s0, . . . , s7 2 {0, 1}32, a 64-bit
counter j0, j1 2 {0, 1}32, and 64-bit nonce n0, n1 2 {0, 1}32. It outputs a 512-bit block denoted
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Figure 3.8: A schematic of the Salsa and ChaCha PRGs

x0, . . . , x15 2 {0, 1}32. The output is arranged in a 4⇥ 4 matrix of 32-bit words as follows:

0

B

B

@

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

1

C

C

A

 �

0

B

B

@

c0 c1 c2 c3
s0 s1 s2 s3
s4 s5 s6 s7
j0 j1 n0 n1

1

C

C

A

(3.11)

where c0, c1, c2, c3 are fixed 32-bit constants.
The permutation ⇡ : {0, 1}512 ! {0, 1}512 is constructed by iterating a simpler permutation a

fixed number of times. The 512-bit input to ⇡ is treated as a 4 ⇥ 4 array of 32-bit words denoted
by x0, . . . , x15. In ChaCha20 the function ⇡ is implemented by repeating the following sequence of
steps ten times:

QuarterRound(x0, x4, x8, x12), QuarterRound(x1, x5, x9, x13), QuarterRound(x2, x6, x10, x14),
QuarterRound(x3, x7, x11, x15), QuarterRound(x0, x5, x10, x15), QuarterRound(x1, x6, x11, x12),
QuarterRound(x2, x7, x8, x13), QuarterRound(x3, x4, x9, x14)

where QuarterRound(a, b, c, d) is defined as the following sequence of steps written as C code:

a += b; d ^= a; d <<<= 16;

c += d; b ^= c; b <<<= 12;

a += b; d ^= a; d <<<= 8;

c += d; b ^= c; b <<<= 7;

The first four invocations of QuarterRound are applied to each of the first four columns. The
next four invocations are applied to each of the four diagonals. This completes our description of
ChaCha20, except that we still need to discuss the use of nonces.

Using nonces. While the PRGs we discussed so far only take the seed as input, many PRGs used
in practice take an additional input called a nonce. That is, the PRG is a function G : S ⇥N ! R
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where S and R are as before and N is called a nonce space. The nonce lets us generate multiple
pseudorandom outputs from a single seed s. That is, G(s, n0) is one pseudorandom output and
G(s, n1) for n1 6= n0 is another. The nonce turns the PRG into a more powerful primitive called
a pseudorandom function discussed in the next chapter. As we will see, secure pseudorandom
functions make it possible to use the same seed to encrypt multiple messages securely.

3.7 Case study: linear generators

In this section we look at two example PRGs built from linear functions. Both generators follow the
Blum-Micali paradigm presented in Section 3.4.2. Our first example, called a linear congruential
generator, is completely insecure and we present it to give an example of some beautiful mathematics
that comes up when attacking PRGs. Our second example, called a subset sum generator, is a
provably secure PRG assuming a certain version of the classic subset-sum problem is hard.

3.7.1 An example cryptanalysis: linear congruential generators

Linear congruential generators (LCG) are used in statistical simulations to generate pseudorandom
values. They are fast, easy to implement, and widely deployed. Variants of LCG are used to
generate randomness in early versions of glibc, Microsoft Visual Basic, and the Java runtime.
While these generators may be su�cient for simulations they should never be used for cryptographic
applications because they are insecure as PRGs. In particular, they are predictable: given a few
consecutive outputs of an LCG generator it is easy to compute all subsequent outputs. In this
section we describe an attack on LCG generators by showing a prediction algorithm.

The basic linear congruential generator is specified by four public system parameters: an inte-
ger q, two constants a, b 2 {0, . . . , q � 1}, and a positive integer w  q. The constant a is taken to
be relatively prime to q. We use Sq and R to denote the sets:

Sq := {0, . . . , q � 1}; R :=
�

0, . . . , b(q � 1)/wc  .

Here b·c is the floor function: for a real number x, bxc is the biggest integer less than or equal to x.
Now, the generator Glcg : Sq ! R⇥ Sq with seed s 2 Sq is defined as follows:

Glcg(s) :=
� bs/wc, as + b mod q

�

.

When w is a power of 2, say w = 2t, then the operation bs/wc simply erases the t least significant
bits of s. Hence, the left part of Glcg(s) is the result of dropping the t least significant bits of s.

The generator Glcg is clearly insecure since given s0 := as + b mod q it is straight-forward to
recover s and then distinguish bs/wc from random. Nevertheless, consider a variant of the Blum-
Micali construction in which the final Sq-value is not output:

G(n)
lcg (s) := s0  s

for i 1 to n do
ri  bsi�1/wc, si  asi�1 + b mod q

output (r1, . . . , rn).

We refer to each iteration of the loop as a single iteration of the LCG generator and call each one
of r1, . . . , rn the output of a single iteration.
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Di↵erent implementations use di↵erent system parameters q, a, b, w. For example, the
Math.random function in the Java 8 Development Kit (JDKv8) uses q = 248, w = 222, and the
hexadecimal constants a = 0x5DEECE66D, b = 0x0B. Thus, every iteration of the LCG generator
outputs the top 48� 22 = 26 bits of the 48-bit state si.

The parameters used by this Java 8 generator are clearly too small for security applications
since the output of the first iteration of the generator reveals all but 22 bits of the seed s. An
attacker can easily recover these unknown 22 bits by exhaustive search: for every possible value
of the 22 bits the attacker forms a candidate seed ŝ. It tests if ŝ is the correct seed by comparing
subsequent outputs computed from seed ŝ to a few subsequent outputs observed from the actual
generator. By trying all 222 candidates (about four million) the attacker eventually finds the correct
seed s and can then predict all subsequent outputs of the generator. This attack runs in under a
second on a modern processor.

Even when the LCG parameters are su�ciently large to prevent exhaustive search, say q = 2512,

the generator G(n)
lcg is insecure and should never be used for security applications despite its wide

availability in software libraries. Known attacks [40] on the LCG show that even if the generator
outputs only a few bits per iteration, it is still possible to predict the entire sequence from just a
few consecutive outputs. Let us see an elegant version of this attack.

Cryptanalysis. Suppose that q is large (e.g. q = 2512) and the LCG generator G(n)
lcg outputs

about half the bits of the state s per iteration, as in the Java 8 Math.random generator. An
exhaustive search on the seed s is not possible given its size. Nevertheless, we show how to quickly
predict the generator from the output of only two consecutive iterations.

More precisely, suppose that w <
p

q/c for some fixed c > 0, say c = 32. This means that at
every iteration the generator outputs slightly more than half the bits of the current internal state.

Suppose the attacker is given two consecutive outputs of the generator ri, ri+1 2 R. We show
how it can predict the remaining sequence. The attacker knows that

ri = bsi/wc and ri+1 = bsi+1/wc = b(asi + b mod q)/wc .

for some unknown si 2 Sq. We have

ri · w + e0 = si and ri+1 · w + e1 = (asi + b mod q),

where e0 and e1 are the remainders after dividing si and si+1 by w; in particular, 0  e0, e1 < w <p
q/c. The fact that e0, e1 are smaller than

p
q is an essential ingredient of the attack. Next, let us

write s in place of si, and eliminate the mod q by introducing an integer variable x to obtain

ri · w + e0 = s and ri+1 · w + e1 = as + b + qx .

The values x, s, e0, e1 are unknown to the attacker, but it knows ri, ri+1, w, a, b. Finally, re-arranging
terms to put the terms involving x and s on the left gives

s = ri · w + e0 and as + qx = ri+1w � b + e1 . (3.12)

We can re-write (3.12) in vector form as

s ·
✓

1
a

◆

+ x ·
✓

0
q

◆

= g + e where g :=

✓

riw
ri+1w � b

◆

and e :=

✓

e0
e1

◆

. (3.13)
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Figure 3.9: The two-dimensional lattice associated with attacking the LCG. Here the lattice is
generated by the vectors (1, 5)| and (0, 29)|. The attacker has a vector g = (9, 7)| and wishes to
find the closest lattice vector u. In this picture there is indeed only one “close” lattice vector to g.

Let u 2 Z2 denote the unknown vector u := g + e = s · (1, a)| + x · (0, q)|. If the attacker could
find u then he could easily recover s and x from u by linear algebra. Using s he could predict the
rest of the PRG output. Thus, to break the generator it su�ces to find the vector u. The attacker
knows the vector g 2 Z2, and moreover, he knows that e is short, namely kek1 is at most

p
q/c.

Therefore, he knows that u is “close” to g.
We show how to find u from g. Consider the set of all integer linear combinations of the

vectors (1, a)| and (0, q)|. This set, denoted by La, is a subset of Z2 and contains vectors like
(1, a)|, (2, 2a)|, (3, 3a� 2q)|, and so on. The set La is illustrated in Fig. 3.9 where the solid dots
in the figure are the integer linear combinations of the vectors (1, a)| and (0, q)|. The set La is
called the two-dimensional lattice generated by the vectors (1, a)| and (0, q)|.

Now, the attacker has a vector g 2 Z2 and knows that his target vector u 2 La is close to g.
If he could find the closest vector in La to g then there is a good chance that this vector is the
desired vector u. The following lemma shows that indeed this is the case for most a 2 Sq.

Lemma 3.7. For at least (1 � 16/c2) · q of the a in Sq, the lattice La ✓ Z2 has the following
property: for every g 2 Z2 there is at most one vector u 2 La such that kg � uk1 <

p
q/c.

Taking c = 32 in Lemma 3.7 (so that w =
p

q/30) shows that for 98% of the a 2 Sq the closest
vector to g in La is precisely the desired vector u. Before proving the lemma, let us first complete
the description of the attack.

It remains to e�ciently find the closest vector to g in La. This problem is a special case of
a general problem called the closest vector problem: given a lattice L and a vector g, find
the vector in L that is closest to g. When the lattice L is two dimensional there is an e�cient
polynomial time algorithm for this problem [102]. Armed with this algorithm the attacker can
recover the internal state si of the LCG generator from just two outputs ri, ri+1 of the generator
and predict the remaining sequence. This attack works for 98% of the a 2 Sq.

For completeness we note that some example a 2 Sq in the 2% where the attack fails are a = 1
and a = 2. For these a there may be many lattice vector in La close to a given g. We leave it as
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a fun exercise to devise an attack that works for the a in Sq to which Lemma 3.7 does not apply.
We conclude this section with a proof of Lemma 3.7.

Proof of Lemma 3.7. Let g 2 Z2 and suppose there are two vectors u0 and u1 in La that are close
to g, that is, kui � gk1 <

p
q/c for i = 0, 1. Then u0 and u1 must be close to each other. Indeed,

by the triangle inequality, we have

ku0 � u1k1  ku0 � gk1 + kg � u1k1  2
p

q/c .

Since any lattice is closed under addition, we see that u := u0 � u1 is a vector in the lattice La,
and we conclude that La must contain a “short” vector, namely, a non-zero vector of norm at most
B := 2

p
q/c. So let us bound the number of “bad” a’s for which La contains such a short vector.

Let us first consider the case when q is prime. We show that every short vector is contained in at
most one lattice La and therefore the number of bad a’s is at most the number of short vectors. Let
t = (s, y)| 2 Z2 be some non-zero vector such that ktk1  B. Suppose that t 2 La for some a 2 Sq.
Then there exist integers sa and xa such that sa · (1, a)| + xa · (0, q)| = t = (s, y)|. From this we
obtain that s = sa and y = as mod q. Moreover, s 6= 0 since otherwise t = 0. Since y = as mod q
and s 6= 0, the value of a is uniquely determined, namely, a = ys�1 mod q. Hence, when q is prime,
every non-zero short vector t is contained in at most one lattice La for some a 2 Sq. It follows that
the number of bad a is at most the number of short vectors, which is (2B)2 = 16q/c2.

The same bound on the number of bad a’s holds when q is not prime. To see why consider a
specific non-zero s 2 Sq and let d = gcd(s, q). As above, a vector t = (s, y)| is contained in some
lattice La only if there is an a 2 Sq satisfying as ⌘ y (mod q). This implies that y must be a
multiple of d so that we need only consider 2B/d possible values of y. For each such y the vector
t = (s, y)| is in at most d lattices La. Since there are 2B possible values for s, this shows that the
number of bad a’s is bounded by d · 2B/d · 2B = (2B)2 as in the case when q is prime.

To conclude, there are at most 16q/c2 bad values of a in Sq. Therefore, for (1� 16/c2) · q of the
a values in Sq, the lattice La contains no non-zero short vectors and the lemma follows. 2

3.7.2 The subset sum generator

We next show how to construct a pseudorandom generator from simple linear operations. The
generator is secure assuming that a certain randomized version of the classic subset sum problem
is hard.

The modular subset problem. Let q be a positive integer and set Sq := {0, . . . , q�1}. Choose n
integers a := (a0, . . . , an�1) in Sq and define the subset sum function fa : {0, 1}n ! Sq as

fa(s) :=
X

i:s
i

=1

ai mod q .

Now, for a target integer t 2 Sq the modular subset problem is defined as follows:

given (q,a, t) as input, output a vector s 2 {0, 1}n such that fa(s) = t, if one exists.

In other words, the problem is to invert the function fa(·) by finding a pre-image of t, if one exists.
The modular subset problem is known to be NP hard.
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The subset sum PRG. The subset problem naturally suggests the following PRG: at setup
time fix an integer q and choose random integers ~a := (a0, . . . , an�1) in Sq. The PRG Gq,~a takes a
seed s 2 {0, 1}n and outputs a pseudorandom value in Sq. It is defined as

Gq,~a(s) :=
n
X

i=1

ai · si mod q .

The PRG expands an n bit seed to a log2 q bits of output. Choosing an n and q so that 2n = log2 q
gives a PRG whose output is twice the size of the input. We can plug this into the Blum-Micali
construction to expand the output further.

While the PRG is far slower than custom constructions like ChaCha20 from Section 3.6, the
work per bit of output is a single modular addition in Sq, which may be appropriate for some
applications that are not time sensitive.

Impagliazzo and Naor [56] show that attacking Gq,~a as a PRG is as hard as solving a certain
randomized variant of the modular subset sum problem. after we develop a few more tools. While
there is considerable work on solving the modular subset problem, the problem appears to be hard
when 2n = log2 q for large n, say n > 1000, which implies the security of Gq,~a as a PRG.

Variants. Fischer and Stern [37] and others propose the following variation of the subset sum
generator:

Gq,A(s) := A · s mod q

where q is a small prime, A is a random matrix in Sn⇥m
q for n < m, and the seed s is uniform in

{0, 1}m. The generator maps an m-bit seed to n log2 q bits of output. We discuss this generator
further in Chapter 17.

3.8 Case study: cryptanalysis of the DVD encryption system

The Content Scrambling System (CSS) is a system used for protecting movies on DVD disks. It
uses a stream cipher, called the CSS stream cipher, to encrypt movie contents. CSS was designed
in the 1980’s when exportable encryption was restricted to 40-bit keys. As a result, CSS encrypts
movies using a 40-bit secret key. While ciphers using 40-bit keys are woefully insecure, we show that
the CSS stream cipher is particularly weak and can be broken in far less time than an exhaustive
search over all 240 keys. It provides a fun opportunity for cryptanalysis.

Linear feedback shift registers (LFSR). The CSS stream cipher is built from two LFSRs.
An n-bit LFSR is defined by a set of integers V := {v1, . . . , vd} where each vi is in the range
{0, . . . , n � 1}. The elements of V are called tap positions. An LFSR gives a PRG as follows
(Fig. 3.10):

Input: s = (bn�1, . . . , b0) 2 {0, 1}n and s 6= 0n

Output: y 2 {0, 1}` where ` > n

for i 1 . . . ` do
output b0 // output one bit
b bv1 � · · ·� bv

d

// compute feedback bit
s (b, bn�1, . . . , b1) // shift register bits to the right
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01234567

0110100100010100 . . .

L

Figure 3.10: The 8 bit linear feedback shift register {4, 3, 2, 0}

The LFSR outputs one bit per clock cycle. Note that if an LFSR is started in state s = 0n then
its output is degenerate, namely all 0. For this reason one of the seed bits is always set to 1.

LFSR can be implemented in hardware with few transistors. As a result, stream ciphers built
from LFSR are attractive for low-cost consumer electronics such as DVD players, cell phones, and
Bluetooth devices.

Stream ciphers from LSFRs. A single LFSR is completely insecure as a PRG since given n
consecutive bits of its output it is trivial to compute all subsequent bits. Nevertheless, by combining
several LFSRs using a non-linear component it is possible to get some (weak) security as a PRG.
Trivium, one of the eStream portfolio stream ciphers, is built this way.

One approach to building stream ciphers from LFSRs is to run several LFSRs in parallel and
combine their output using a non-linear operation. The CSS stream cipher, described next, com-
bines two LFSRs using addition over the integers. The A5/1 stream cipher used to encrypt GSM
cell phone tra�c combines the outputs of three LFSRs. The Bluetooth E0 stream cipher combines
four LFSRs using a 2-bit finite state machine. All these algorithms have been shown to be insecure
and should not be used: recovering the plaintext takes far less time than an exhaustive search on
the key space.

Another approach is to run a single LFSR and generate the output from a non-linear operation
on its internal state. The snow 3G cipher used to encrypt 3GPP cell phone tra�c operates this
way.

The CSS stream cipher. The CSS stream cipher is built from the PRG shown in Fig. 3.11.
The PRG works as follows:

Input: seed s 2 {0, 1}40
write s = s1ks2 where s1 2 {0, 1}16 and s2 2 {0, 1}24
load 1ks1 into a 17-bit LFSR
load 1ks2 into a 25-bit LFSR
c 0 // carry bit

repeat
run both LFSRs for eight cycles to obtain x, y 2 {0, 1}8
treat x, y as integers in 0 . . . 255
output x + y + c mod 256
if x + y > 255 then c 1 else c 0 // carry bit

forever
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Figure 3.11: The CSS stream cipher

The PRG outputs one byte per iteration. Prepending 1 to both s1 and s2 ensures that the LFSRs
are never initialized to the all 0 state. The taps for both LFSRs are fixed. The 17-bit LFSR uses
taps {14, 0}. The 25-bit LFSR uses taps {12, 4, 3, 0}.

The CSS PRG we presented is a minor variation of CSS that is a little easier to describe, but
has the same security. In the real CSS, instead of prepending a 1 to the initial seeds, one inserts
the 1 in bit position 9 for the 17-bit LFSR and in bit position 22 for the 25-bit LFSR. In addition,
the real CSS discards the first byte output by the 17-bit LFSR and the first two bytes output by
the 25-bit LFSR. Neither issue a↵ects the analysis presented next.

Insecurity of CSS. Given the PRG output, one can clearly recover the secret seed in time 240

by exhaustive search over the seed space. We show a much faster attack that takes only 216 guesses.
Suppose we are given the first 100 bytes z̄ := (z1, z2, . . .) output by the PRG. The attack is based
on the following simple observations:

• Let (x1, x2, x3) be the first three bytes output by the 17-bit LFSR. The initial state s2 of the
second LFSR is easily obtained once both (z1, z2, z3) and (x1, x2, x3) are known by subtracting
one from the other. More precisely, subtract the integer 216x3 + 28x2 + x1 from the integer
217 + 216z3 + 28z2 + z1.

• The output (x1, x2, x3) is determined by the 16-bit seed s1.

With these two observations the attacker can recover the seed s by trying all possible 16-bit values
for s1. For each guess for s1 compute the corresponding (x1, x2, x3) output from the 17-bits LFSR.
Subtract (x1, x2, x3) from (z1, z2, z3) to obtain a candidate seed s2 for the second LFSR. Now,
confirm that (s1, s2) are the correct secret seed s by running the PRG and comparing the resulting
output to the given sequence z̄. If the sequences do not match, try another guess for s1. Once the
attacker hits the correct value for s1, the generated sequence will match the given z̄ in which case
the attacker found the secret seed s = (s1, s2).

We just showed that the entire seed s can be found after an expected 215 guesses for s1. This
is much faster than the naive 240-time exhaustive search attack.

3.9 Case study: cryptanalysis of the RC4 stream cipher

The RC4 stream cipher, designed by Ron Rivest in 1987, was historically used for securing Web
tra�c (in the SSL/TLS protocol) and wireless tra�c (in the 802.11b WEP protocol). It is designed
to operate on 8-bit processors with little internal memory. While RC4 is still in use, it has been
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Figure 3.12: An example RC4 internal state

shown to be vulnerable to a number of significant attacks and should not be used in new projects.
Our discussion of RC4 serves as an elegant example of stream cipher cryptanalysis.

At the heart of the RC4 cipher is a PRG, called the RC4 PRG. The PRG maintains an internal
state consisting of an array S of 256 bytes plus two additional bytes i, j used as pointers into S.
The array S contains all the numbers 0 . . . 255 and each number appears exactly once. Fig. 3.12
gives an example of an RC4 state.

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S to a
pseudo-random permutation of the numbers 0 . . . 255. Initialization is performed using the following
setup algorithm:

input: string of bytes s

for i 0 to 255 do: S[i] i

j  0
for i 0 to 255 do

k  s
⇥

i mod |s|⇤ // extract one byte from seed
j  �

j + S[i] + k
�

mod 256
swap(S[i], S[j])

During the loop the index i runs linearly through the array while the index j jumps around. At
each iteration the entry an index i is swapped with the entry at index j.

Once the array S is initialized, the PRG generates pseudo-random output one byte at a time
using the following stream generator:

i 0, j  0

repeat
i (i + 1) mod 256
j  (j + S[i]) mod 256
swap(S[i], S[j])
output S

⇥

(S[i] + S[j]) mod 256
⇤

forever

The procedure runs for as long as necessary. Again, the index i runs linearly through the array
while the index j jumps around. Swapping S[i] and S[j] continuously shu✏es the array S.

RC4 encryption speed. RC4 is well suited for software implementations. Other stream ciphers,
such as Grain and Trivium, are designed for hardware and perform poorly when implemented in
software. Table 3.1 provides running times for RC4 and a few other software stream ciphers.

77



cipher speed1(MB/sec)
RC4 126
SEAL 375
Salsa20 408
Sosemanuk 727

Table 3.1: Software stream cipher speeds (higher speed is better)

Modern processors operate on 64-bit words, making the 8-bit design of RC4 relatively slow on
these architectures.

3.9.1 Security of RC4

At one point RC4 was believed to be a secure stream cipher and was widely deployed in applications.
The cipher fell from grace after a number of attacks showed that its output is somewhat biased.
We present two attacks that distinguish the output of RC4 from a random string. Throughout the
section we let n denote the size of the array S. n = 256 for RC4.

Bias in the initial RC4 output. The RC4 setup algorithm initializes the array S to a permuta-
tion of 0 . . . 255 generated from the given random seed. For now, let us assume that the RC4 setup
algorithm is perfect and generates a uniform permutation from the set of all 256! permutations.
Mantin and Shamir [70] showed that, even assuming perfect initialization, the output of RC4 is
biased.

Lemma 3.8 (Mantin-Shamir). Suppose the array S is set to random permutation of 0 . . . n� 1
and that i, j are set to 0. Then the probability that the second byte of the output of RC4 is equal to
0 is 2/n.

Proof idea. Let z2 be the second byte output by RC4. Let P be the event that S[2] = 0 and
S[1] 6= 2. The key observation is that when event P happens then z2 = 0 with probability 1. See
Fig. 3.13. However, when P does not happen then z2 is uniformly distributed in 0 . . . n � 1 and
hence equal to 0 with probability 1/n. Since Pr[P ] is about 1/n we obtain (approximately) that

Pr[z2 = 0] = Pr
⇥

(z2 = 0) | P
⇤ · Pr[P ] + Pr

⇥

(z2 = 0) | ¬P
⇤ · Pr[¬P ]

⇡ 1 · (1/n) + (1/n) · (1� 1/n) ⇡ 2/n 2

The lemma shows that the probability that the second byte in the output of RC4 is 0 is
twice what it should be. This leads to a simple distinguisher for the RC4 PRG. Given a string
x 2 {0 . . . 255}`, for ` � 2, the distinguisher outputs 0 if the second byte of x is 0 and outputs 1
otherwise. By Lemma 3.8 this distinguisher has advantage approximately 1/n, which is 0.39% for
RC4.

The Mantin-Shamir distinguisher shows that the second byte of the RC4 output are biased.
This was generalized by AlFardan et al. [2] who showed, by measuring the bias over many random
keys, that there is bias in every one of the first 256 bytes of the output: the distribution on each

1Performance numbers were obtained using the Crypto++ 5.6.0 benchmarks running on a 1.83 GhZ Intel Core 2
processor.
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Figure 3.13: Proof of Lemma 3.8

byte is quite far from uniform. The bias is not as noticeable as in the second byte, but it is non-
negligible and su�cient to attack the cipher. They show, for example, that given the encryption of
a single plaintext encrypted under 230 random keys, it is possible to recover the first 128 bytes of
the plaintext with probability close to 1. This attack is easily carried out on the Web where a secret
cookie is often embedded in the first few bytes of a message. This cookie is re-encrypted over and
over with fresh keys every time the browser connects to a victim web server. Using Javascript the
attacker can make the user’s browser repeatedly re-connect to the target site giving the attacker
the 230 ciphertexts needed to mount the attack and expose the cookie.

In response, RSA Labs issued a recommendation suggesting that one discard the first 1024 bytes
output by the RC4 stream generator and only use bytes 1025 and onwards. This defeats the initial
key stream bias distinguishers, but does not defeat other attacks, which we discuss next.

Bias in the RC4 stream generator. Suppose the RC4 setup algorithm is modified so that the
attack of the previous paragraph is ine↵ective. Fluhrer and McGrew [39] gave a direct attack on
the stream generator. They argue that the number of times that the pair of bytes (0, 0) appears
in the RC4 output is larger than what it should be for a random sequence. This is su�cient to
distinguish the output of RC4 from a random string.

Let STRC4 be the set of all possible internal states of RC4. Since there are n! possible settings
for the array S and n possible settings for each of i and j, the size of STRC4 is n! ·n2. For n = 256,
as used in RC4, the size of STRC4 is gigantic, namely about 10511.

Lemma 3.9 (Fluhrer-McGrew). Suppose RC4 is initialized with a random state T in ST
RC4

.
Let (z1, z2) be the first two bytes output by RC4 when started in state T . Then

i 6= n� 1 =) Pr[(z1, z2) = (0, 0)] � (1/n2) · �1 + (1/n)
�

i 6= 0, 1 =) Pr[(z1, z2) = (0, 1)] � (1/n2) · �1 + (1/n)
�

A pair of consecutive outputs (z1, z2) is called a digraph. In a truly random string, the
probability of all digraphs (x, y) is exactly 1/n2. The lemma shows that for RC4 the probability
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of (0, 0) is greater by 1/n3 from what it should be. The same holds for the digraph (0, 1). In fact,
Fluhrer-McGrew identify several other anomalous digraphs, beyond those stated in Lemma 3.9.

The lemma suggests a simple distinguisher D between the output of RC4 and a random string.
If the distinguisher finds more (0, 0) pairs in the given string than are likely to be in a random
string it outputs 1, otherwise it outputs 0. More precisely, the distinguisher D works as follows:

input: string x 2 {0 . . . n}`
output: 0 or 1

let q be the number of times the pair (0, 0) appears in x
if (q/`)� (1/n2) > 1/(2n3) output 0, else output 1

Using Theorem B.3 we can estimate D’s advantage as a function of the input length `. In
particular, the distinguisher D achieves the following advantages:

` = 214 bytes: PRGadv[D, RC4] � 2�8

` = 234 bytes: PRGadv[D, RC4] � 0.5

Using all the anomalous digraphs provided by Fluhrer and McGrew one can build a distinguisher
that achieves advantage 0.8 using only 230.6 bytes of output.

Related key attacks on RC4. Fluhrer, Mantin, and Shamir [38] showed that RC4 is insecure
when used with related keys. We discuss this attack and its impact on the 802.11b WiFi protocol
in Section 9.10, attack 2.

3.10 Generating random bits in practice

Random bits are needed in cryptography for many tasks, such as generating keys and other
ephemeral values called nonces. Throughout the book we assume all parties have access to a
good source of randomness, otherwise many desirable cryptographic goals are impossible. So far
we used a PRG to stretch a short uniformly distributed secret seed to a long pseudorandom string.
While a PRG is an important tool in generating random (or pseudorandom) bits it is only part of
the story.

In practice, random bits are generated using a random number generator, or RNG. An
RNG, like a PRG, outputs a sequence of random or pseudorandom bits. RNGs, however, have an
additional interface that is used to continuously add entropy to the RNG’s internal state, as shown
in Fig. 3.14. The idea is that whenever the system has more random entropy to contribute to the
RNG, this entropy is added into the RNG internal state. Whenever someone reads bits from the
RNG, these bits are generated using the current internal state.

An example is the Linux RNG which is implemented as a device called /dev/random. Anyone
can read data from the device to obtain random bits. To play with the /dev/random try typing
cat /dev/random at a UNIX shell. You will see an endless sequence of random-looking characters.
The UNIX RNG obtains its entropy from a number of hardware sources:

• keyboard events: inter-keypress timings provide entropy;

• mouse events: both interrupt timing and reported mouse positions are used;

• hardware interrupts: time between hardware interrupts is a good source of entropy;
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Figure 3.14: A Random Number Generator

These sources generate a continuous stream of randomness that is periodically XORed into the
RNG internal state. Notice that keyboard input is not used as a source of entropy; only keypress
timings are used. This ensures that user input is not leaked to other users in the system via the
Linux RNG.

High entropy random generation. The entropy sources described above generate randomness
at a relatively slow rate. To generate true random bits at a faster rate, Intel added a hardware
random number generator to starting with the Ivy processor processor family in 2012. Output from
the generator is read using the RdRand instruction that is intended to provide a fast uniform bit
generator.

To reduce biases in the generator output, the raw bits are first passed through a function called
a “conditioner” designed to ensure that the output is a sequence of uniformly distributed bits,
assuming su�cient entropy is provided as input. We discuss this in more detail in Section 8.10
where we discuss the key deriviation problem.

The RdRand generator should not replace other entropy sources such as the four sources described
above; it should only augment them as an additional entropy source for the RNG. This way, if the
generator is defective it will not completely compromise the cryptographic application.

One di�culty with Intel’s approach is that, over time, the hardware elements being sampled
might stop producing randomness due to hardware glitch. For example, the sampled bits might
always be ‘0’ resulting in highly non-random output. To prevent this from happening the RNG
output is constantly tested using a fixed set of statistical tests. If any of the tests reports “non-
random” the generator is declared to be defective.

3.11 A broader perspective: computational indistinguishability

Our definition of security for a pseudo-random generator G formalized the intuitive idea that an
adversary should not be able to e↵ectively distinguish between G(s) and r, where s is a randomly
chosen seed, and r is a random element of the output space.

This idea generalizes quite naturally and usefully to other settings. Suppose P0 and P1 are
probability distributions on some finite set R. Our goal is to formally define the intuitive notion
than an adversary cannot e↵ectively distinguish between P0 and P1. As usual, this is done via an
attack game. For b = 0, 1, we write x  R Pb to denote the assignment to x of a value chosen at
random from the set R, according to the probability distribution Pb.

Attack Game 3.3 (Distinguishing P0 from P1). For given probability distributions P0 and
P1 on a finite set R, and for a given adversary A, we define two experiments, Experiment 0 and
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Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger computes x as follows:

x R Pb

and sends x to the adversary.

• Given x, the adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to P0 and P1 as

Distadv[A, P0, P1] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 3.4 (Computational indistinguishability). Distributions P0 and P1 are called
computationally indistinguishable if the value Distadv[A, P0, P1] is negligible for all e�cient
adversaries A.

Using this definition we can restate the definition of a secure PRG more simply: a PRG G
defined over (S, R) is secure if and only if P0 and P1 are computationally indistinguishable, where
P1 is the uniform distribution on R, and P0 is distribution that assigns to each r 2 R the value

P0(r) :=
|{s 2 S : G(s) = r}|

|S| .

Again, as discussed in Section 2.3.5, Attack Game 3.3 can be recast as a “bit guessing” game,
where instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random,
and then runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing
advantage Distadv⇤[A, P0, P1] as |Pr[b̂ = b] � 1/2|. The general result of Section 2.3.5 (namely,
(2.13)) applies here as well:

Distadv[A, P0, P1] = 2 · Distadv⇤[A, P0, P1]. (3.14)

Typically, to prove that two distributions are computationally indistinguishable, we will have to
make certain other computational assumptions. However, sometimes two distributions are so similar
that no adversary can e↵ectively distinguish between them, regardless of how much computing
power the adversary may have. To make this notion of “similarity” precise, we introduce a useful
tool, called statistical distance:

Definition 3.5. Suppose P0 and P1 are probability distributions on a finite set R. Then their
statistical distance is defined as

�[P0, P1] :=
1

2

X

r2R
|P0(r)� P1(r)|.

Example 3.1. Suppose P0 is the uniform distribution on {1, . . . , m}, and P1 is the uniform dis-
tribution on {1, . . . , m� �}, where � 2 {0, . . . , m� 1}. Let us compute �[P0, P1]. We could apply
the definition directly; however, consider the following graph of P0 and P1:
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The statistical distance between P0 and P1 is just 1/2 times the area of regions A and C in the
diagram. Moreover, because probability distributions sum to 1, we must have

area of B + area of A = 1 = area of B + area of C,

and hence, the areas of region A and region C are the same. Therefore,

�[P0, P1] = area of A = area of C = �/m. 2

The following theorem allows us to make a connection between the notions of computational
indistinguishability and statistical distance:

Theorem 3.10. Let P0 and P1 be probability distributions on a finite set R. Then we have

max
R0✓R

|P0[R0]� P1[R0]| = �[P0, P1],

where the maximum is taken over all subsets R0 of R.

Proof. Suppose we split the set R into two disjoint subsets: the set R0 consisting of those r 2 R
such that P0(r) < P1(r), and the set R1 consisting of those r 2 R such that P0(r) � P1(r).
Consider the following rough graph of the distributions of P0 and P1, where the elements of R0 are
placed to the left of the elements of R1:

A

B

C

R0 R1

P1

P0

Now, as in Example 3.1,

�[P0, P1] = area of A = area of C.

Observe that for every subset R0 of R, we have

P0[R0]� P1[R0] = area of C 0 � area of A0,

83



where C 0 is the subregion of C that lies above R0, and A0 is the subregion of A that lies above R0.
It follows that |P0[R0]� P1[R0]| is maximized when R0 = R0 or R0 = R1, in which case it is equal
to �[P0, P1]. 2

The connection to computational indistinguishability is as follows:

Theorem 3.11. Let P0 and P1 be probability distributions on a finite set R. Then for every
adversary A, we have

Distadv[A, P0, P1]  �[P0, P1].

Proof. Consider an adversary A that tries to distinguish P0 from P1, as in Attack Game 3.3.
First, we consider the case where A is deterministic. In this case, the output of A is a function

f(r) of the value r 2 R presented to it by the challenger. Let R0 := {r 2 R : f(r) = 1}. If W0 and
W1 are the events defined in Attack Game 3.3, then for b = 0, 1, we have

Pr[Wb] = Pb[R0].

By the previous theorem, we have

Distadv[A, P0, P1] = |P0[R0]� P1[R0]|  �[P0, P1].

We now consider the case where A is probabilistic. We can view A as taking an auxiliary
input t, representing its random choices. We view t as being chosen uniformly at random from
some finite set T . Thus, the output of A is a function g(r, t) of the value r 2 R presented to it
by the challenger, and the value t 2 T representing its random choices. For a given t 2 T , let
R0

t := {r 2 R : g(r, t) = 1}. Then, averaging over the random choice of t, we have

Pr[Wb] =
1

|T |
X

t2T
Pb[R0

t].

It follows that

Distadv[A, P0, P1] = |Pr[W0]� Pr[W1]|
=

1

|T |
�

�

�

X

t2T
(P0[R0

t]� P1[R0
t])
�

�

�

 1

|T |
X

t2T
|P0[R0

t]� P1[R0
t]|

 1

|T |
X

t2T
�[P0, P1]

= �[P0, P1]. 2

As a consequence of this theorem, we see that if �[P0, P1] is negligible, then P0 and P1 are
computationally indistinguishable.

One also defines the statistical distance between two random variables as the statistical distance
between their corresponding distributions. That is, if X and Y are random variables taking values
in a finite set R, then their statistical distance is

�[X,Y] :=
1

2

X

r2R
|Pr[X = r]� Pr[Y = r]|.
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In this case, Theorem 3.10 says that

max
R0✓R

�

�

�

Pr[X 2 R0]� Pr[Y 2 R0]
�

�

�

= �[X,Y],

where the maximum is taken over all subsets R0 of R.
Analogously, one can define distinguishing advantage with respect to random variables, rather

than distributions. The advantage of working with random variables is that we can more con-
veniently work with distributions that are related to one another, as exemplified in the following
theorem.

Theorem 3.12. If S and T are finite sets, X and Y are random variables taking values in S, and
f : S ! T is a function, then �[f(X), f(Y)]  �[X,Y].

Proof. We have

�[f(X), f(Y)] = |Pr[f(X) 2 T 0]� Pr[f(Y) 2 T 0]| for some T 0 ✓ T
(by Theorem 3.10)

= |Pr[X 2 f�1(T 0)]� Pr[Y 2 f�1(T 0)]|
 �[X,Y] (again by Theorem 3.10). 2

Example 3.2. Let X be uniformly distributed over the set {0, . . . , m�1}, and let Y be uniformly
distributed over the set {0, . . . , N � 1}, for N � m. Let f(t) := t mod m. We want to compute
an upper bound on the statistical distance between X and f(Y). We can do this as follows. Let
N = qm � r, where 0  r < m, so that q = dN/me. Also, let Z be uniformly distributed over
{0, . . . , qm � 1}. Then f(Z) is uniformly distributed over {0, . . . , m � 1}, since every element
of {0, . . . , m � 1} has the same number (namely, q) of pre-images under f which lie in the set
{0, . . . , qm�1}. Since statistical distance depends only on the distributions of the random variables,
by the previous theorem, we have

�[X, f(Y)] = �[f(Z), f(Y)]  �[Z,Y],

and as we saw in Example 3.1,

�[Z,Y] =
r

qm
<

1

q
 m

N
.

Therefore,

�[X, f(Y)] <
m

N
. 2

Example 3.3. Suppose we want to generate a pseudo-random number in a given interval
{0, . . . , m � 1}. However, suppose that we have at our disposal a PRG G that outputs L-bit
strings. Of course, an L-bit string can be naturally viewed as a number in the range {0, . . . , N�1},
where N := 2L. Let us assume that N � m.

To generate a pseudo-random number in the interval {0, . . . , m� 1}, we can take the output of
G, view it as a number in the interval {0, . . . , N � 1}, and reduce it modulo m. We will show that
this procedure produces a number that is computationally indistinguishable from a truly random
in the interval {0, . . . , m� 1}, assuming G is secure and m/N is negligible (e.g., N � 2100 · m).

To this end, let P0 be the distribution representing the output of G, reduced modulo m, let P1

be the uniform distribution on {0, . . . , m� 1}, and let A be an adversary trying to distinguish P0

from P1, as in Attack Game 3.3.
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Let Game 0 be Experiment 0 of Attack Game 3.3, in which A is presented with a random
sample distributed according to P0, and let W0 be the event that A outputs 1 in this game.

Now define Game 1 to be the same as Game 0, except that we replace the output of G by a
truly random value chosen from the interval {0, . . . , N � 1}. Let W1 be the event that A outputs 1
in Game 1. One can easily construct an e�cient adversary B that attacks G as in Attack Game 3.1,
such that

PRGadv[B, G] = |Pr[W0]� Pr[W1]|.
The idea is that B takes its challenge value, reduces it modulo m, gives this value to A, and outputs
whatever A outputs.

Finally, we define Game 2 be Experiment 1 of Attack Game 3.3, in which A is presented with
a random sample distributed according to P1, the uniform distribution on {0, . . . , m� 1}. Let W2

be the event that A outputs 1 in Game 2. If P is the distribution of the value presented to A in
Game 1, then by Theorem 3.11, we have |Pr[W1]�Pr[W2]|  �[P, P1]; moreover, by Example 3.3,
we have �[P, P1]  m/N .

Putting everything together, we see that

Distadv[A, P0, P1] = |Pr[W0]� Pr[W2]|  |Pr[W0]� Pr[W1]| + |Pr[W1] + Pr[W2]|
 PRGadv[B, G] +

m

N
,

which, by assumption, is negligible. 2

3.11.1 Mathematical details

As usual, we fill in the mathematical details needed to interpret the definitions and results of this
section from the point of view of asymptotic complexity theory.

In defining computational indistinguishability (Definition 3.4), one should consider two families
of probability distributions P0 = {P0,�}� and P1 = {P1,�}�, indexed by a security parameter �.
For each �, the distributions P0,� and P1,� should take values in a finite set of bit strings R�,
where the strings in R� are bounded in length by a polynomial in �. In Attack Game 3.3, the
security parameter � is an input to both the challenger and adversary, and in Experiment b, the
challenger produces a sample, distributed according to Pb,�. The advantage should properly be
written Distadv[A, P0, P1](�), which is a function of �. Computationally indistinguishability means
that this is a negligible function.

In some situations, it may be natural to introduce a probabilistically generated system parame-
ter; however, from a technical perspective, this is not necessary, as such a system parameter can be
incorporated in the distributions P0,� and P1,�. One could also impose the requirement that P0,�

and P1,� be e�ciently sampleable; however, to keep the definition simple, we will not require this.
The definition of statistical distance (Definition 3.5) makes perfect sense from a non-asymptotic

point of view, and does not require any modification or elaboration. Theorem 3.10 holds as stated,
for specific distributions P0 and P1. Theorem 3.11 may be viewed asymptotically as stating that for
all distribution families P0 = {P0,�}� and P1 = {P1,�}�, for all adversaries (even computationally
unbounded ones), and for all �, we have

Distadv[A, P0, P1](�)  �[P0,�, P1,�].
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3.12 A fun application: coin flipping and commitments

Alice and Bob are going out on a date. Alice wants to see one movie and Bob wants to see another.
They decide to flip a random coin to choose the movie. If the coin comes up “heads” they will go to
Alice’s choice; otherwise, they will go to Bob’s choice. When Alice and Bob are in close proximity
this is easy: one of them, say Bob, flips a coin and they both verify the result. When they are far
apart and are speaking on the phone this is harder. Bob can flip a coin on his side and tell Alice
the result, but Alice has no reason to believe the outcome. Bob could simply claim that the coin
came up “tails” and Alice would have no way to verify this. Not a good way to start a date.

A simple solution to their problem makes use of a cryptographic primitive called bit commit-
ment. It lets Bob commit to a bit b 2 {0, 1} of his choice. Later, Bob can open the commitment
and convince Alice that b was the value he committed to. Committing to a bit b results in a com-
mitment string c, that Bob sends to Alice, and an opening string s that Bob uses for opening
the commitment later. A commitment scheme is secure if it satisfies the following two properties:

• Hiding: The commitment string c reveals no information about the committed bit b. More
precisely, the distribution on c when committing to the bit 0 is indistinguishable from the
distribution on c when committing to the bit 1. In the bit commitment scheme we present
the binding property is based on the security of a given PRG G.

• Binding: Let c be a commitment string output by Bob. If Bob can open the commitment
as some b 2 {0, 1} then he cannot open it as b̄. This ensures that once Bob commits to a
bit b he can open it as b and nothing else. In the commitment scheme we present the binding
property holds unconditionally.

Coin flipping. Using a commitment scheme, Alice and Bob can generate a random bit b 2 {0, 1}
so that no side can bias the result towards their preferred outcome, assuming the protocol terminates
successfully. Such protocols are called coin flipping protocols. The resulting bit b determines
what movie they go to.

Alice and Bob use the following simple coin flipping protocol:

Step 1: Bob chooses a random bit b0  R {0, 1}.
Alice and Bob execute the commitment protocol by which Alice obtains
a commitment c to b0 and Bob obtains an opening string s.

Step 2: Alice chooses a random bit b1  R {0, 1} and sends b1 to Bob in the clear.
Step 3: Bob opens the commitment by revealing b0 and s to Alice.

Alice verifies that c is indeed a commitment to b0 and aborts if verification fails.

Output: the resulting bit is b := b0 � b1.

We argue that if the protocol terminates successfully and one side is honestly following the protocol
then the other side cannot bias the result towards their preferred outcome. By the hiding property,
Alice learns nothing about b0 at the end of Step 1 and therefore her choice of bit b1 is independent of
the value of b0. By the binding property, Bob can only open the commitment c in Step 3 to the bit
b0 he chose in Step 1. Because he chose b0 before Alice chose b1, Bob’s choice of b0 is independent
of b1. We conclude that the output bit b is the XOR of two independent bits. Therefore, if one
side is honestly following the protocol, the other side cannot bias the resulting bit.

One issue with this protocol is that Bob learns the generated bit at the end of Step 2, before
Alice learns the bit. In principle, if the outcome is not what Bob wants he could abort the protocol
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at the end of Step 2 and try to re-initiate the protocol hoping that the next run will go his way.
More sophisticated coin flipping protocols avoid this problem, but at the cost of many more rounds
of interaction (see, e.g., [77]).

Bit commitment from secure PRGs. It remains to construct a secure bit commitment scheme
that lets Bob commit to his bit b0 2 {0, 1}. We do so using an elegant construction due to Naor [83].

Let G : S ! R be a secure PRG where |R| � |S|3 and R = {0, 1}n for some n. To commit to
the bit b0, Alice and Bob engage in the following protocol:

Bob commits to bit b0 2 {0, 1}:
Step 1: Alice chooses a random r 2 R and sends r to Bob.
Step 2: Bob chooses a random s 2 S and computes c com(s, r, b0)

where com(s, r, b0) is the following function:

c = com(s, r, b0) :=

(

G(s) if b0 = 0,

G(s)� r if b0 = 1.

Bob outputs c as the commitment string and uses s as the opening string.

When it comes time to open the commitment Bob sends (b0, s) to Alice. Alice accepts the opening
if c = com(s, r, b0) and rejects otherwise.

The hiding property follows directly from the security of the PRG: because the output G(s)
is computationally indistinguishable from a uniform random string in R it follows that G(s) � r
is also computationally indistinguishable from a uniform random string in R. Therefore, whether
b0 = 0 or b0 = 1, the commitment string c is computationally indistinguishable from a uniform
string in R, as required.

The binding property holds unconditionally as long as 1/|S| is negligible. The only way Bob
can open a commitment c 2 R as both 0 and 1 is if there exist two seeds s0, s1 2 S such that
c = G(s0) = G(s1) � r which implies that G(s0) � G(s1) = r. Let us say that r 2 R is “bad” if
there are seeds s0, s1 2 S such that G(s0) � G(s1) = r. The number of pairs of seeds (s0, s1) is
|S|2, and therefore the number of bad r is at most |S|2. It follows that the probability that Alice
chooses a bad r is most |S|2/|R| < |S|2/|S|3 = 1/|S| which is negligible. Therefore, the probability
that Bob can open the commitment c as both 0 and 1 is negligible.

3.13 Notes

Citations to the literature to be added.

3.14 Exercises

3.1 (Semantic security for random messages). One can define a notion of semantic secu-
rity for random messages. Here, one modifies Attack Game 2.1 so that instead of the adversary
choosing the messages m0, m1, the challenger generates m0, m1 at random from the message space.
Otherwise, the definition of advantage and security remains unchanged.
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(a) Suppose that E = (E, D) is defined over (K, M, C), where M = {0, 1}L. Assuming that
E is semantically secure for random messages, show how to construct a new cipher E 0 that
is secure in the ordinary sense. Your new cipher should be defined over (K0, M0, C0), where
K0 = K and M0 = M.

(b) Give an example of a cipher that is semantically secure for random messages but that is not
semantically secure in the ordinary sense.

3.2 (Encryption chain). Let E = (E, D) be a perfectly secure cipher defined over (K, M, C)
where K = M. Let E 0 = (E0, D0) be a cipher where encryption is defined as E0((k1, k2), m) :=
�

E(k1, k2), E(k2, m)
�

. Show that E 0 is perfectly secure.

3.3 (Bit guessing definition of semantic security). This exercise develops an alternative
characterization of semantic security. Let E = (E, D) be a cipher defined over (K, M, C). Assume
that one can e�ciently generate messages from the message space M at random. We define an
attack game between an adversary A and a challenger as follows. The adversary selects a message
m 2M and sends m to the challenger. The challenger then computes:

b R {0, 1}, k  R K, m0  m, m1  R M, c R E(k, mb),

and sends the ciphertext c to A, who then computes and outputs a bit b̂. That is, the challenger
encrypts either m or a random message, depending on b. We define A’s advantage to be |Pr[b̂ =
b]� 1/2|, and we say the E is real/random semantically secure if this advantage is negligible for all
e�cient adversaries.

Show that E is real/random semantically secure if and only if it is semantically secure in the
ordinary sense.

3.4 (Indistinguishability from random). In this exercise, we develop a notion of security for a
cipher, called psuedo-random ciphertext security, which intuitively says that no e�cient adversary
can distinguish an encryption of a chosen message from a random ciphertext.

Let E = (E, D) be defined over (K, M, C). Assume that one can e�ciently generate ciphertexts
from the ciphertext space C at random. We define an attack game between an adversary A and a
challenger as follows. The adversary selects a message m 2M and sends m to the challenger. The
challenger then computes:

b R {0, 1}, k  R K, c0  R E(k, m), c1  R C, c R cb

and sends the ciphertext c to A, who then computes and outputs a bit b̂. We define A’s advantage
to be |Pr[b̂ = b] � 1/2|, and we say the E is pseudo-random ciphertext secure if this advantage is
negligible for all e�cient adversaries.

(a) Show that if a cipher is psuedo-random ciphertext secure, then it is semantically secure.

(b) Show that the one-time pad is psuedo-random ciphertext secure.

(c) Give an example of a cipher that is semantically secure, but not psuedo-random ciphertext
secure.

3.5 (Small seed spaces are insecure). Suppose G is a PRG defined over (S, R) where |R| �
2|S|. Let us show that |S| must be super-poly. To do so, show that there is an adversary that
achieves advantage at least 1/2 in attacking the PRG G whose running is linear in |S|.
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3.6 (Another malleability example). Let us give another example illustrating the malleability
of stream ciphers. Suppose you are told that the stream cipher encryption of the message “attack
at dawn” is 6c73d5240a948c86981bc294814d (the plaintext letters are encoded as 8-bit ASCII and
the given ciphertext is written in hex). What would be the stream cipher encryption of the message
“attack at dusk” under the same key?

3.7 (Exercising the definition of a secure PRG). Suppose G(s) is a secure PRG that outputs
bit-strings in {0, 1}n. Which of are the following derived generators are secure?

(a) G1(s1 k s2) := G(s1) ^G(s2) where ^ denotes bit-wise AND.

(b) G2(s1 k s2) := G(s1)�G(s2).

(c) G3(s) := G(s)� 1n.

(d) G4(s) := G(s)[0 . . n� 1].

(e) G5(s) := (G(s), G(s)).

(f) G6(s1 k s2) := (s1, G(s2)).

3.8 (The converse of Theorem 3.1). In Section 3.2, we showed how to build a stream cipher
from a PRG. In Theorem 3.1, we proved that this encryption scheme is semantically secure if the
PRG is secure. Prove the converse: the PRG is secure if this encryption scheme is semantically
secure.

3.9 (Predicting the next character). In Section 3.5, we showed that if one could e↵ectively
distinguish a random bit string from a pseudo-random bit string, then one could succeed in pre-
dicting the next bit of a pseudo-random bit string with probability significantly greater than 1/2
(where the position of the “next bit” was chosen at random). Generalize this from bit strings to
strings over the alphabet {0, . . . , n� 1}, for all n � 2, assuming that n is poly-bounded.

Hint: First generalize the distinguisher/predictor lemma (Lemma 3.5).

3.10 (Simple statistical distance calculations).

(a) Let X and Y be independent random variables, each uniformly distributed over Zp, where p
is prime. Calculate �[ (X,Y), (X,XY) ].

(b) Let X and Y be random variables, each taking values in the interval [0, t]. Show that |E[X]�
E[Y]|  t�[X,Y].

The following three exercises should be done together; they will be used in exercises in
the following chapters.

3.11 (Distribution ratio). This exercise develops another way of comparing two probability
distributions, which considers ratios of probabilities, rather than di↵erences. Let X and Y be two
random variables taking values on a finite set R, and assume that Pr[X = r] > 0 for all r 2 R.
Define

⇢[X,Y] := max
�

Pr[Y = r]/ Pr[X = r] : r 2 R 

Show that for every subset R0 of R, we have Pr[Y 2 R0]  ⇢[X,Y] · Pr[X 2 R0].
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3.12 (A variant of Bernoulli’s inequality). The following is a useful fact that will be used
in the following exercise. Prove the following statement by induction on n: for any real numbers
x1, . . . , xn in the interval [0, 1], we have

n
Y

i=1

(1� xi) � 1�
n
X

i=1

xi.

3.13 (Sampling with and without replacement: distance and ratio). Let X be a finite set
of size N , and let Q  N . Define random variables X and Y, where X is uniformly distributed
over all sequences of Q elements in X , and Y is uniformly distributed over all sequences of Q
distinct elements in X . Let �[X,Y] be the statistical distance between X and Y, and let ⇢[X,Y]
be defined as in Exercise 3.11. Using the previous exercise, prove the following:

(a) �[X,Y] = 1�
Q�1
Y

i=0

(1� i/N)  Q2

2N
,

(b) ⇢[X,Y] =
1

QQ�1
i=0 (1� i/N)

 1

1� Q2

2N

(assuming Q2 < 2N).

3.14 (Theorem 3.2 is tight). Let us show that the bounds in the parallel composition theorem,
Theorem 3.2, are tight. Consider the following, rather silly PRG G0, which “stretches” `-bit strings
to `-bit strings, with ` even: for s 2 {0, 1}`, we define

G0(s) :=
if s[0 . . `/2� 1] = 0`/2

then output 0`

else output s.

That is, if the first `/2 bits of s are zero, then G0(s) outputs the all-zero string, and otherwise,
G0(s) outputs s.

Next, define the following PRG adversary B0 that attacks G0:

When the challenger presents B0 with r 2 {0, 1}`, if r is of the form 0`/2 k t, for some
t 6= 0`/2, B0 outputs 1; otherwise, B0 outputs 0.

Now, let G0
0 be the n-wise parallel composition of G0. Using B0, we construct a PRG adversary A0

that attacks G0
0:

when the challenger presents A0 with the sequence of strings (r1, . . . , rn), A0 presents
each ri to B0, and outputs 1 if B0 ever outputs 1; otherwise, A0 outputs 0.

(a) Show that PRGadv[B0, G0] = 2�`/2 � 2�`.

(b) Show that PRGadv[A0, G0
0] � n2�`/2 � n(n + 1)2�`.

(c) Show that no adversary attacking G0 has a better advantage than B0 (hint: make an argument
based on statistical distance).
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(d) Using parts (a)–(c), argue that Theorem 3.2 cannot be substantially improved; in particular,
show that the following cannot be true:

There exists a constant c < 1 such that for every PRG G, poly-bounded n, and e�cient
adversary A, there exists an e�cient adversary B such that

PRGadv[A, G0]  cn · PRGadv[B, G],

where G0 is the n-wise parallel composition of G.

3.15 (A converse (of sorts) to Theorem 2.8). Let E = (E, D) be a semantically secure cipher
defined over (K, M, C), where M = {0, 1}. Show that for every e�cient adversary A that receives
an encryption of a random bit b, the probability that A correctly predicts b is at most 1/2 + ✏,
where ✏ is negligible.

Hint: Use Lemma 3.5.

3.16 (Previous-bit prediction). Suppose that A is an e↵ective next-bit predictor. That is,
suppose that A is an e�cient adversary whose advantage in Attack Game 3.2 is non-negligible.
Show how to use A to build an explicit, e↵ective previous-bit predictor B that uses A as a black
box. Here, one defines a previous-bit prediction game that is the same as Attack Game 3.2, except
that the challenger sends r[i+1 . . L� 1] to the adversary. Also, express B’s previous-bit prediction
advantage in terms of A’s next-bit prediction advantage.

3.17 (An insecure PRG based on linear algebra). Let A be a fixed m⇥n matrix with m > n
whose entries are all binary. Consider the following PRG G : {0, 1}n ! {0, 1}m defined by

G(s) := A · s (mod 2)

where A · s mod 2 denotes a matrix-vector product where all elements of the resulting vector are
reduced modulo 2. Show that this PRG is insecure no matter what matrix A is used.

3.18 (Generating an encryption key using a PRG). Let G : S ! R a secure PRG. Let
E = (E, D) be a semantically secure cipher defined over (K, M, C). Assume K = R. Construct
a new cipher E 0 = (E0, D0) defined over (S, M, C), where E0(s, m) := E(G(s), m) and D0(s, c) :=
D(G(s), c). Show that E 0 is semantically secure.

3.19 (Nested PRG construction). Let G0 : S ! R1 and G1 : R1 ! R2 be two secure PRGs.
Show that G(s) := G1(G0(s)) mapping S to R2 is a secure PRG.

3.20 (Self-nested PRG construction). Let G be a PRG that stretches n-bit strings to 2n-bit
strings. For s 2 {0, 1}n, write G(s) = G0(s) k G1(s), so that G0(s) represents the first n bits of
G(s), and G1(s) represents the last n bits of G(s). Define a new PRG G0 that stretches n-bit strings
to 4n-bit strings, as follows: G0(s) := G(G0(s)) k G(G1(s)). Show that if G is a secure PRG, then
so is G0.

Hint: You can give a direct proof; alternatively, you can use the previous exercise together with
Theorem 3.2.

Note: This construction is a special case of a more general construction discussed in Section 4.6.

3.21 (Bad seeds). Show that a secure PRG G : {0, 1}n ! R can become insecure if the seed is
not uniformly random in S.
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(a) Consider the PRG G0 : {0, 1}n+1 ! R ⇥ {0, 1} defined as G0(s0 k s1) = (G(s0), s1). Show
that G0 is a secure PRG assuming G is secure.

(b) Show that G0 becomes insecure if its random seed s0 k s1 is chosen so that its last bit is
always 0.

(c) Construct a secure PRG G00 : {0, 1}n+1 ! R ⇥ {0, 1} that becomes insecure if its seed s is
chosen to that the parity of the bits in s is always 0.

3.22 (Good intentions, bad idea). Let us show that a natural approach to strengthening a
PRG is insecure. Let m > n and let G : {0, 1}n ! {0, 1}m be a PRG. Define a new generator
G0(s) := G(s) � (0m�n k s) derived from G. Show that there is a secure PRG G for which G0 is
insecure.

Hint: Use the construction from part (a) of Exercise 3.21.

3.23 (Seed recovery attacks). Let G be a PRG defined over (S, R) where, |S|/|R| is negligible,
and suppose A is an adversary that given G(s) outputs s with non-negligible probability. Show
how to use A to construct a PRG adversary B that has non-negligible advantage in attacking G as
a PRG. This shows that for a secure PRG it is intractable to recover the seed from the output.

3.24 (A PRG combiner). Suppose that G1 and G2 are PRG’s defined over (S, R), where
R = {0, 1}L. Define a new PRG G0 defined over (S ⇥ S, R), where G0(s1, s2) = G1(s1) � G2(s2).
Show that if either G1 or G2 is secure (we may not know which one is secure), then G0 is secure.

3.25 (A technical step in the proof of Lemma 3.5). This exercise develops a simple fact from
probability that is helpful in understanding the proof of Lemma 3.5. Let X and Y be independent
random variables, taking values in S and T , respectively, where Y is uniformly distributed over T .
Let f : S ! {0, 1} and g : S ! T be functions. Show that the events f(X) = 1 and g(X) = Y are
independent, and the probability of the latter is 1/|T |.
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Chapter 4

Block ciphers

This chapter continues the discussion begun in the previous chapter on achieving privacy against
eavesdroppers. Here, we study another kind of cipher, called a block cipher. We also study the
related concept of a pseudo-random function.

Block ciphers are the “work horse” of practical cryptography: not only can they can be used to
build a stream cipher, but they can be used to build ciphers with stronger security properties (as
we will explore in Chapter 5), as well as many other cryptographic primitives.

4.1 Block ciphers: basic definitions and properties

Functionally, a block cipher is a deterministic cipher E = (E, D) whose message space and
ciphertext space are the same (finite) set X . If the key space of E is K, we say that E is a block
cipher defined over (K, X ). We call an element x 2 X a data block, and refer to X as the data
block space of E .

For every fixed key k 2 K, we can define the function fk := E(k, ·); that is, fk : X ! X sends
x 2 X to E(k, x) 2 X . The usual correctness requirement for any cipher implies that for every
fixed key k, the function fk is one-to-one, and as X is finite, fk must be onto as well. Thus, fk is
a permutation on X , and D(k, ·) is the inverse permutation f�1

k .
Although syntactically a block cipher is just a special kind of cipher, the security property we

shall expect for a block cipher is actually much stronger than semantic security: for a randomly
chosen key k, the permutation E(k, ·) should — for all practical purposes — “look like” a random
permutation. This is a notion that we will soon make more precise.

One very important and popular block cipher is AES (the Advanced Encryption Standard).
We will study the internal design of AES in more detail below, but for now, we just give a very
high-level description. AES keys are 128-bit strings (although longer key sizes may be used, such
as 192-bits or 256-bits). AES data blocks are 128-bit strings. See Fig. 4.1. AES was designed to be
quite e�cient: one evaluation of the encryption (or decryption) function takes just a few hundred
cycles on a typical computer.

The definition of security for a block cipher is formulated as a kind of “black box test.” The intu-
ition is the following: an e�cient adversary is given a “black box.” Inside the box is a permutation
f on X , which is generated via one of two random processes:

• f := E(k, ·), for a randomly chosen key k, or
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Figure 4.1: The block cipher AES

• f is a truly random permutation, chosen uniformly from among all permutations on X .

The adversary cannot see inside the box, but he can “probe” it with questions: he can give the
box a value x 2 X , and obtain the value y := f(x) 2 X . We allow the adversary to ask many
such questions, and we quite liberally allow him to choose the questions in any way he likes; in
particular, each question may even depend in some clever way on the answers to previous questions.
Security means that the adversary should not be able to tell which type of function is inside the
box — a randomly keyed block cipher, or a truly random permutation. Put another way, a secure
block cipher should be computationally indistinguishable from a random permutation.

To make this definition more formal, let us introduce some notation:

Perms[X ]

denotes the set of all permutations on X . Note that this is a very large set:
�

�Perms[X ]
�

� = |X |!.
For AES, with |X | = 2128, the number of permutations is about

Perms[X ] ⇡ 22
135

,

while the number of permutations defined by 128-bit AES keys is at most 2128.
As usual, to define security, we introduce an attack game. Just like the attack game used

to define a PRG, this attack game comprises two separate experiments. In both experiments,
the adversary follows the same protocol; namely, it submits a sequence of queries x1, x2, . . . to
the challenger; the challenger responds to query xi with f(xi), where in the first experiment,
f := E(k, ·) for randomly chosen k 2 K, and while in the second experiment, f is randomly
selected from Perms[X ]; throughout each experiment, the same f is used to answer all queries.
When the adversary tires of querying the challenger, it outputs a bit.

Attack Game 4.1 (block cipher). For a given block cipher (E, D), defined over (K, X ), and for
a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we
define:

Experiment b:
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• The challenger selects f 2 Perms[X ] as follows:

if b = 0: k  R K, f  E(k, ·);
if b = 1: f  R Perms[X ].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a data block xi 2 X .

The challenger computes yi  f(xi) 2 X , and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

BCadv[A, E ] :=
�

�Pr[W0]� Pr[W1]
�

�.

Finally, we say that A is a Q-query BC adversary if A issues at most Q queries. 2

Fig. 4.2 illustrates Attack Game 4.1.

Definition 4.1 (secure block cipher). A block cipher E is secure if for all e�cient adversaries
A, the value BCadv[A, E ] is negligible.

We stress that the queries made by the challenger in Attack Game 4.1 are allowed to be adaptive;
that is, the adversary need not choose all its queries in advance; rather, it is allowed to concoct
each query in some clever way that depends on the previous responses from the challenger (see
Exercise 4.6).

As discussed in Section 2.3.5, Attack Game 4.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
BCadv

⇤[A, E ] as |Pr[b̂ = b]� 1/2|. The general result of Section 2.3.5 (namely, (2.13)) applies here
as well:

BCadv[A, E ] = 2 · BCadv

⇤[A, E ]. (4.1)

4.1.1 Some implications of security

Let E = (E, D) be a block cipher defined over (K, X ). To exercise the definition of security a bit, we
prove a couple of simple implications. For simplicity, we assume that |X | is large (i.e., super-poly).

A secure block cipher is unpredictable

We show that if E is secure in the sense of Definition 4.1, then it must be unpredictable, which
means that every e�cient adversary wins the following prediction game with negligible probability.
In this game, the challenger chooses a random key k, and the adversary submits a sequence of
queries x1, . . . , xQ; in response to the ith query xi, the challenger responds with E(k, xi). These
queries are adaptive, in the sense that each query may depend on the previous responses. Finally,
the adversary outputs a pair of values (xQ+1, y), where xQ+1 /2 {x1, . . . , xQ}. The adversary wins
the game if y = E(k, xQ+1).

To prove this implication, suppose that E is not unpredictable, which means there is an e�cient
adversary A that wins the above prediction game with non-negligible probability p. Then we can
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Figure 4.2: Attack Game 4.1
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use A to break the security of E in the sense of Definition 4.1. To this end, we design an adversary
B that plays Attack Game 4.1, and plays the role of challenger to A in the above prediction game.
Whenever A makes a query xi, adversary B passes xi through to its own challenger, obtaining a
response yi, which it passes back to A. Finally, when A outputs (xQ+1, y), adversary B submits
xQ+1 to its own challenger, obtaining yQ+1, and outputs 1 if y = yQ+1, and 0, otherwise.

On the one hand, if B’s challenger is running Experiment 0, then B outputs 1 with probability
p. On the other hand, if B’s challenger running Experiment 1, then B outputs 1 with negligible
probability ✏ (since we are assuming |X | is super-poly). This implies that B’s advantage in Attack
Game 4.1 is |p� ✏|, which is non-negligible.

Unpredictability implies security against key recovery

Next, we show that if E is unpredictable, then it is secure against key recovery, which means that
every e�cient adversary wins the following key-recovery game with negligible probability. In this
game, the adversary interacts with the challenger exactly as in the prediction game, except that at
the end, it outputs a candidate key k 2 K, and wins the game if k = k.

To prove this implication, suppose that E is not secure against key recovery, which means that
there is an e�cient adversary A that wins the key-recovery game with non-negligible probability p.
Then we can use A to build an e�cient adversary B that wins the prediction game with probability
at least p. Adversary B simply runs A’s attack, and when A outputs k , adversary B chooses an
arbitrary xQ+1 /2 {x1, . . . , xQ}, computes y  E(k , xQ+1), and outputs (xQ+1, y).

It is easy to see that if A wins the key-recovery game, then B wins the prediction game.

Key space size and exhaustive-search attacks

Combining the above two implications, we conclude that if E is a secure block cipher, then it must
be secure against key recovery. Moreover, if E is secure against key recovery, it must be the case
that |K| is large.

One way to see this is as follows. An adversary can always win the key-recovery game with
probability 1/|K| by simply choosing k from K at random. If |K| is not super-poly, then 1/|K|
is non-negligible. Hence, when |K| is not super-poly this simple key guessing adversary wins the
key-recovery game with non-negligible probability.

We can trade success probability for running time using a di↵erent attack, called an exhaustive-
search attack. In this attack, our adversary makes a few, arbitrary queries x1, . . . , xQ in the key-
recovery game, obtaining responses y1, . . . , yQ. One can argue — heuristically, at least, assuming
that |X | � |K| and |X | is super-poly — that for fairly small values of Q (Q = 2, in fact), with all
but negligible probability, only one key k satisfies

yi = E(k, xi) for i = 1, . . . , Q. (4.2)

So our adversary simply tries all possible keys to find one that satisfies (4.2). If there is only
one such key, then the key that our adversary finds will be the key chosen by the challenger, and
the adversary will win the game. Thus, our adversary wins the key-recovery game with all but
negligible probability; however, its running time is linear in |K|.

This time/advantage trade-o↵ can be easily generalized. Indeed, consider an adversary that
chooses t keys at random, testing if each such key satisfies (4.2). The running time of such an
adversary is linear in t, and it wins the key-recovery game with probability ⇡ t/|K|.
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We describe a few real-world exhaustive search attacks in Section 4.2.2. We present a de-
tailed treatment of exhaustive search in Section 4.7.2 where, in particular, we justify the heuristic
assumption used above that with high probability there is at most one key satisfying (4.2).

So it is clear that if a block cipher has any chance of being secure, it must have a large key
space, simply to avoid a key-recovery attack.

4.1.2 E�cient implementation of random permutations

Note that the challenger’s protocol in Experiment 1 of Attack Game 4.1 is not very e�cient: he is
supposed to choose a very large random object. Indeed, just writing down an element of Perms[X ]
would require about |X | log2|X | bits. For AES, with |X | = 2128, this means about 1040 bits!

While this is not a problem from a purely definitional point of view, for both aesthetic and
technical reasons, it would be nice to have a more e�cient implementation. We can do this by
using a “lazy” implementation of f . That is, the challenger represents the random permutation
f by keeping track of input/output pairs (xi, yi). When the challenger receives the ith query xi,
he tests whether xi = xj for some j < i; if so, he sets yi  yj (this ensures that the challenger
implements a function); otherwise, he chooses yi at random from the set X \ {y1, . . . , yi�1} (this
ensures that the function is a permutation); finally, he sends yi to the adversary. We can write the
logic of this implementation of the challenger as follows:

upon receiving the ith query xi 2 X from A do:
if xi = xj for some j < i

then yi  yj
else yi  R X \ {y1, . . . , yi�1}

send yi to A.

To make this implementation as fast as possible, one would implement the test “if xi = xj for some
j < i” using an appropriate dictionary data structure (hash tables, digital search tries, balanced
trees, etc.). Assuming random elements of X can be generated e�ciently, one way to implement
the step “yi  R X \ {y1, . . . , yi�1}” is as follows:

repeat y  R X until y 62 {y1, . . . , yi�1}
yi  y,

again, using appropriate dictionary data structure for the tests “y 62 {y1, . . . , yi�1}.” When i <
|X |/2 the loop will run for only two iterations in expectation.

One way to visualize this implementation is that the challenger in Experiment 1 is a “black box,”
but inside the box is a little faithful gnome whose job it is to maintain the table of input/output
pairs which represents a random permutation f . See Fig. 4.3.

4.1.3 Strongly secure block ciphers

Note that in Attack Game 4.1, the decryption algorithm D was never used. One can in fact define
a stronger notion of security by defining an attack game in which the adversary is allowed to make
two types of queries to the challenger:

forward queries: the adversary sends a value xi 2 X to the challenger, who sends yi := f(xi) to
the adversary;
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Figure 4.3: A faithful gnome implementing random permutation f

inverse queries: the adversary sends a value yi 2 X to the challenger, who sends xi := f�1(yi)
to the adversary (in Experiment 0 in the attack game, this is done using algorithm D).

One then defines a corresponding advantage for this attack game. A block cipher is then called
strongly secure if for all e�cient adversaries, this advantage is negligible. We leave it to the
reader to work out the details of this definition (see Exercise 4.9). We will not make use this notion
in this text, other than an example application in a later chapter (Exercise 9.12).

4.1.4 Using a block cipher directly for encryption

Since a block cipher is a special kind of cipher, we can of course consider using it directly for
encryption. The question is: is a secure block cipher also semantically secure?

The answer to this question is “yes,” provided the message space is equal to the data block
space. This will be implied by Theorem 4.1 below. However, data blocks for practical block ciphers
are very short: as we mentioned, data blocks for AES are just 128-bits long. If we want to encrypt
longer messages, a natural idea would be to break up a long message into a sequence of data blocks,
and encrypt each data block separately. This use of a block cipher to encrypt long messages is called
electronic codebook mode, or ECB mode for short.

More precisely, suppose E = (E, D) is a block cipher defined over (K, X ). For any poly-bounded
` � 1, we can define a cipher E 0 = (E0, D0), defined over (K, X`, X`), as follows.

• For k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
�

E(k, m[0]), . . . , E(k, m[v � 1])
�

.

• For k 2 K and c 2 X`, with v := |c|, we define

D0(k, m) :=
�

D(k, c[0]), . . . , E(k, c[v � 1])
�

.
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(a) encryption

(b) decryption

Figure 4.4: Encryption and decryption for ECB mode

Fig. 4.4 illustrates encryption and decryption. We call E 0 the `-wise ECB cipher derived from E .
The ECB cipher is very closely related to the substitution cipher discussed in Examples 2.3

and 2.6. The main di↵erence is that instead of choosing a permutation at random from among all
possible permutations on X , we choose one from the much smaller set of permutations {E(k, ·) : k 2
K}. A less important di↵erence is that in Example 2.3, we defined our substitution cipher to have
a fixed length, rather than a variable length message space (this was really just an arbitrary choice
— we could have defined the substitution cipher to have a variable length message space). Another
di↵erence is that in Example 2.3, we suggested an alphabet of size 27, while if we use a block cipher
like AES with a 128-bit block size, the “alphabet” is much larger — it has 2128 elements. Despite
these di↵erences, some of the vulnerabilities discussed in Example 2.6 apply here as well. For
example, an adversary can easily distinguish an encryption of two messages m0, m1 2 X 2, where
m0 consists of two equal blocks (i.e., m0[0] = m0[1]) and m1 consists of two unequal blocks (i.e.,
m1[0] 6= m1[1]). For this reason alone, the ECB cipher does not satisfy our definition of semantic
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using AES
(b) plaintext encrypted in ECB mode(a) plaintext

Figure 4.5: Encrypting in ECB mode

security, and its use as an encryption scheme is strongly discouraged.
This ability to easily tell which plaintext blocks are the same is graphically illustrated in Fig. 4.5

(due to B. Preneel). Here, visual data is encrypted in ECB mode, with each data block encoding
some small patch of pixels in the original data. Since identical patches of pixels get mapped to
identical blocks of ciphertext, some patterns in the original picture are visible in the ciphertext.

Note, however, that some of the vulnerabilities discussed in Example 2.6 do not apply directly
here. Suppose we are encrypting ASCII text. If the block size of the cipher is 128-bits, then each
character of text will be typically encoded as a byte, with 16 characters packed into a data block.
Therefore, an adversary will not be able to trivially locate positions where individual characters
are repeated, as was the case in Example 2.6.

We close this section with a proof that ECB mode is in fact secure if the message space is
restricted to sequences on distinct data blocks. This includes as a special case the encryption of
single-block messages. It is also possible to encode longer messages as sequences of distinct data
blocks. For example, suppose we are using AES, which has 128-bit data blocks. Then we could
allocate, say, 32 bits out of each block as a counter, and use the remaining 96 bits for bits of the
message. With such a strategy, we can encode any message of up to 232 · 96 bits as a sequence of
distinct data blocks. Of course, this strategy has the disadvantage that ciphertexts are 33% longer
than plaintexts.

Theorem 4.1. Let E = (E, D) be a block cipher. Let ` � 1 be any poly-bounded value, and let
E 0 = (E0, D0) be the `-wise ECB cipher derived from E, but with the message space restricted to all
sequences of at most ` distinct data blocks. If E is a secure block cipher, then E 0 is a semantically
secure cipher.
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In particular, for every A SS adversary that plays Attack Game 2.1 with respect to E 0, there
exists a BC adversary B that plays Attack Game 4.1 with respect to E, where B is an elementary
wrapper around A, such that

SSadv[A, E 0] = 2 · BCadv[B, E ]. (4.3)

Proof idea. The basic idea is that if an adversary is given an encryption of a message, which is a
sequence of distinct data blocks, then what he sees is e↵ectively just a sequence of random data
blocks (sampled without replacement). 2

Proof. If E is defined over (K, X ), let X`⇤ denote the set of all sequences of at most ` distinct
elements of X .

Let A be an e�cient adversary that attacks E 0 as in Attack Game 2.1. Our goal is to show that
SSadv[A, E 0] is negligible, assuming that E is a secure block cipher. It is more convenient to work
with the bit-guessing version of the SS attack game. We prove:

SSadv⇤[A, E 0] = BCadv[B, E ] (4.4)

for some e�cient adversary B. Then (4.3) follows from Theorem 2.10.
So consider the adversary A’s attack of E 0 in the bit-guessing version of Attack Game 2.1. In

this game, A presents the challenger with two messages m0, m1 of the same length; the challenger
then chooses a random key k and a random bit b, and encrypts mb under k, giving the resulting
ciphertext c to A; finally, A outputs a bit b̂. The adversary A wins the game if b̂ = b.

The logic of the challenger in this game may be written as follows:

upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:
b R {0, 1}
k  R K
c (E(k, mb[0]), . . . , E(k, mb[v � 1]))
send c to A.

Let us call this Game 0. We will define two more games: Game 1 and Game 2. For j = 0, 1, 2,
we define Wj to be the event that b̂ = b in Game j. By definition, we have

SSadv⇤[A, E 0] = |Pr[W0]� 1/2|. (4.5)

Game 1. This is the same as Game 0, except the challenger uses a random f 2 Perms[X ] in place
of E(k, ·). Our challenger now looks like this:

upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:
b R {0, 1}
f  R Perms[X ]
c (f(mb[0]), . . . , f(mb[v � 1]))
send c to A.

Intuitively, the fact that E is a secure block cipher implies that the adversary should not notice
the switch. To prove this rigorously, we show how to build a BC adversary B that is an elementary
wrapper around A, such that

|Pr[W0]� Pr[W1]| = BCadv[B, E ]. (4.6)

The design of B follows directly from the logic of Games 0 and 1. Adversary B plays Attack
Game 4.1 with respect to E , and works as follows:
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Let f be the function chosen by B’s BC challenger in Attack Game 4.1. We let B play
the role of challenger to A, as follows:

upon receiving m0, m1 2 X`⇤ from A, with v := |m0| = |m1|, do:
b R {0, 1}
c (f(mb[0]), . . . , f(mb[v � 1]))
send c to A.

Note that B computes the values f(mb[0]), . . . , f(mb[v � 1]) by querying its own BC
challenger. Finally, when A outputs a bit b̂, B outputs the bit �(b̂, b) (see (3.7)).

It should be clear that when B is in Experiment 0 of its attack game, it outputs 1 with probability
Pr[W0], while when B is in Experiment 1 of its attack game, it outputs 1 with probability Pr[W1].
The equation (4.6) now follows.

Game 2. We now rewrite the challenger in Game 1 so that it uses the “faithful gnome” imple-
mentation of a random permutation, discussed in Section 4.1.2. Each of the messages m0 and m1

is required to consist of distinct data blocks (our challenger does not have to verify this), and so
our gnome’s job is quite easy: it does not even have to look at the input data blocks, as these are
guaranteed to be distinct; however, it still has to ensure that the output blocks it generates are
distinct.

We can express the logic of our challenger as follows:

y0  R X , y1  R X \ {y0}, . . . , y`�1  R X \ {y0, . . . , y`�2}
upon receiving m0, m1 2 X`⇤ , with v := |m0| = |m1|, do:

b R {0, 1}
c (y0, . . . , yv�1)
send c to A.

Since our gnome is faithful, we have

Pr[W1] = Pr[W2]. (4.7)

Moreover, we claim that
Pr[W2] = 1/2. (4.8)

This follows from the fact that in Game 2, the adversary’s output b̂ is a function of its own random
choices, together with y0, . . . , y`�1; since these values are (by definition) independent of b, it follows
that b̂ and b are independent. The equation (4.8) now follows.

Combining (4.5), (4.6), (4.7), and (4.8), yields (4.4), which completes the proof. 2

4.1.5 Mathematical details

As usual, we address a few mathematical details that were glossed over above.
Since a block cipher is just a special kind of cipher, there is really nothing to say about the

definition of a block cipher that was not already said in Section 2.4. As usual, Definition 4.1 needs
to be properly interpreted. First, in Attack Game 4.1, it is to be understood that for each value of
the security parameter �, we get a di↵erent probability space, determined by the random choices of
the challenger and the random choices of the adversary. Second, the challenger generates a system
parameter ⇤, and sends this to the adversary at the very start of the game. Third, the advantage
BCadv[A, E ] is a function of the security parameter �, and security means that this function is a
negligible function.
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Figure 4.6: Encryption in a real-world block cipher

4.2 Constructing block ciphers in practice

Block ciphers are a basic primitive in cryptography from which many other systems are built.
Virtually all block ciphers used in practice use the same basic framework called the iterated
cipher paradigm. To construct an iterated block cipher the designer makes two choices:

• First, he picks a simple block cipher Ê := (Ê, D̂) that is clearly insecure on its own. We call Ê
the round cipher.

• Second, he picks a simple (not necessarily secure) PRG G that is used to expand the key k
into d keys k1, . . . , kd for Ê . We call G the key expansion function.

Once these two choices are made, the iterated block cipher E is completely specified. The encryption
algorithm E(k, x) works as follows (see Fig. 4.6):

Algorithm E(k, x):

• step 1. key expansion: use the key expansion function G to
stretch the key k of E to d keys of Ê :

(k1, . . . , kd) G(k)

• step 2. iteration: for i = 1, . . . , d apply Ê(ki, ·), namely:

y  Ê(kd, Ê(kd�1, . . . , Ê(k2, Ê(k1, x)) . . .))

Each application of Ê is called a round and the total number of rounds is d. The keys k1, . . . , kd
are called round keys. The decryption algorithm D(k, y) is identical except that the round keys
are applied in reverse order. D(k, y) is defined as:

x D̂(k1, D̂(k2, . . . , D̂(kd�1, D̂(kd, y)) . . .))
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key size block size number of performance1

(bits) (bits) rounds (MB/sec)
DES 56 64 16 80
3DES 168 64 48 30
AES-128 128 128 10 163
AES-256 256 128 14 115

Table 4.1: Sample block ciphers

Table 4.1 lists a few common block ciphers and their parameters. We describe DES and AES in
the next section.

Does iteration give a secure block cipher? Nobody knows. However, heuristic evidence
suggests that security of a block cipher comes from iterating a simple cipher many times. Not all
round ciphers will work. For example, iterating a linear function

Ê(k, x) := k · x mod q

will never result in a secure block cipher since the iterate of Ê is just another linear function. There
is currently no way to classify which round ciphers will eventually result in a secure block cipher.
Moreover, for a candidate round cipher Ê there is no rigorous methodology to gauge how many
times it needs to be iterated before it becomes a secure block cipher. All we know is that certain
functions, like linear functions, never lead to secure block ciphers, while simple non-linear functions
appear to give a secure block cipher after a few iterations.

The challenge for the cryptographer is to come up with a fast round cipher that converges to a
secure block cipher within a few rounds. Looking at Table 4.1 one is impressed that AES-128 uses
a simple round cipher and yet seems to produce a secure block cipher after only ten rounds.

A word of caution. While this section explains the inner workings of several block ciphers, it
does not teach how to design new block ciphers. In fact, one of the main take-away messages from
this section is that readers should not design block ciphers on their own, but instead always use
the standard ciphers described here. Block-cipher design is non-trivial and many years of analysis
are needed before one gains confidence in a specific proposal. Furthermore, readers should not even
implement block ciphers on their own since implementations of block-ciphers tend to be vulnerable
to timing and power attacks, as discussed in Section 4.3.2. It is much safer to use one of the standard
implementations freely available in crypto libraries such as OpenSSL. These implementations have
gone through considerable analysis over the years and have been hardened to resist attack.

4.2.1 Case study: DES

The Data Encryption Standard (DES) was developed at IBM in response to a solicitation for
proposals from the National Bureau of Standards (now the National Institute of Standards). It
was published in the Federal Register in 1975 and was adopted as a standard for “unclassified”
applications in 1977. The DES algorithm single-handedly jump started the field of cryptanalysis;

1OpenSSL 1.0.1e on Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz (Haswell).
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Figure 4.7: The Feistel permutation

everyone wanted to break it. Since inception, DES has undergone considerable analysis that lead
to the development of many new tools for analyzing block ciphers.

The precursor to DES is an earlier IBM block cipher called Lucifer. Certain variants of Lucifer
operated on 128-bit blocks using 128-bit keys. The National Bureau of Standards, however, asked
for a block cipher that used shorter blocks (64 bits) and shorter keys (56 bits). In response, the IBM
team designed a block cipher that met these requirements and eventually became DES. Setting the
DES key size to 56 bits was widely criticized and lead to speculation that DES was deliberately
made weak due to pressure from US intelligence agencies. In the coming chapters, we will see that
reducing the block size to 64 bits also creates problems.

Due to its short key size, the DES algorithm is now considered insecure and should not be used.
However, a strengthened version of DES called Triple-DES (3DES) was rea�rmed as a US standard
in 1998. NIST has approved Triple-DES through the year 2030 for government use. In 2002 DES
was superseded by a new and more e�cient block cipher standard called AES that uses 128-bit (or
longer) keys, and operates on 128-bit blocks.

The DES algorithm

The DES algorithm consists of 16 iterations of a simple round cipher. To describe DES it su�ces
to describe the DES round cipher and the DES key expansion function. We describe each in turn.

The Feistel permutation. One of the key innovations in DES, invented by Horst Feistel at
IBM, builds a permutation from an arbitrary function. Let f : X ! X be a function. We construct
a permutations ⇡ : X 2 ! X 2 as follows (Fig. 4.7):

⇡(x, y) :=
�

y, x� f(y)
�

To show that ⇡ is one-to-one we construct its inverse, which is given by:

⇡�1(u, v) =
�

v � f(u), u
�

The function ⇡ is called a Feistel permutation and is used to build the DES round cipher.
The composition of n Feistel permutations is called an n-round Feistel network. Block ciphers
designed as a Feistel network are called Feistel ciphers. For DES, the function f takes 32-bit
inputs and the resulting permutation ⇡ operates on 64-bit blocks.
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Figure 4.8: The DES round function F (k, x)

Note that the Feistel inverse function ⇡�1 is almost identical to ⇡. As a result the same hardware
can be used for evaluating both ⇡ and ⇡�1. This in turn means that the encryption and decryption
circuits can use the same hardware.

The DES round function F (k, x). The DES encryption algorithm is a 16-round Feistel network
where each round uses a di↵erent function f : X ! X . In round number i the function f is defined
as

f(x) := F (ki, x)

where ki is a 48-bit key for round number i and F is a fixed function called the DES round
function. The function F is the centerpiece of the DES algorithm and is shown in Fig. 4.8. F
uses several auxiliary functions E, P , and S1, . . . , S8 defined as follows:

• The function E expands a 32-bit input to a 48-bit output by rearranging and replicating the
input bits. For example, E maps input bit number 1 to output bits 2 and 48; it maps input
bit 2 to output bit number 3, and so on.

• The function P , called the mixing permutation, maps a 32-bit input to a 32-bit output
by rearranging the bits of the input. For example, P maps input bit number 1 to output bit
number 9; input bit number 2 to output number 15, and so on.
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• At the heart of the DES algorithm are the functions S1, . . . , S8 called S-boxes. Each S-box
Si maps a 6-bit input to a 4-bit output by a lookup table. The DES standard lists these 8
look-up tables, where each table contains 64 entries.

Given these functions, the DES round function F (k, x) works as follows:

input: k 2 {0, 1}48 and x 2 {0, 1}32
output: y 2 {0, 1}32
F (k, x):

t E(x)� k 2 {0, 1}48
separate t into 8 groups of 6-bits each: t := t1 k · · · k t8
for i = 1 to 8 : si  Si(ti)
s s1 k · · · k s8 2 {0, 1}32
y  P (s) 2 {0, 1}32
output y

Except for the S-boxes, the DES round cipher is made up entirely of XORs and bit permutations.
The eight S-boxes are the only components that introduce non-linearity into the design. IBM
published the criteria used to design the S-boxes in 1994 [26], after the discovery of a powerful
attack technique called “di↵erential cryptanalysis” in the open literature. This IBM report makes
it clear that the designers of DES knew in 1973 of attack techniques that would only become known
in the open literature many years later. They designed DES to resist these attacks. The reason for
keeping the S-box design criteria secret is explained in the following quote [26]:

The design [of DES] took advantage of knowledge of certain cryptanalytic techniques,
most prominently the technique of “di↵erential cryptanalysis,” which were not known
in the published literature. After discussions with NSA, it was decided that disclosure
of the design considerations would reveal the technique of di↵erential cryptanalysis, a
powerful technique that can be used against many ciphers. This in turn would weaken
the competitive advantage of the United States enjoyed over other countries in the field
of cryptography.

Once di↵erential cryptanalysis became public there was no longer any reason to keep the design of
DES secret. Due to the importance of the S-boxes we list a few of the criteria that went into their
design, as explained in [26].

1. The size of the look-up tables, mapping 6-bits to 4-bits, was the largest that could be accom-
modated on a single chip using 1974 technology.

2. No output bit of an S-box should be close to a linear function of the input bits. That is, if
we select any output bit and any subset of the 6 input bits, then the fraction of inputs for
which this output bit equals the XOR of these input bits should be close to 1/2.

3. If we fix the leftmost and rightmost bits of the input to an S-box then the resulting 4-bit to
4-bit function is one-to-one. In particular, this implies that each S-box is a 4-to-1 map.

4. Changing one bit of the input to an S-box changes at least two bits of the output.

5. For each � 2 {0, 1}6, among the 64 pairs x, y 2 {0, 1}6 such that x � y = �, the quantity
Si(x)� Si(y) must not attain a single value more than eight times.
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Figure 4.9: The complete DES circuit

These criteria were designed to make DES as strong as possible, given the 56-bit key-size constraints.
It is now known that if the S-boxes were simply chosen at random, then with high probability the
resulting DES cipher would be insecure. In particular, the secret key could be recovered after only
several million queries to the challenger.

Beyond the S-boxes, the mixing permutation P also plays an important role. It ensures that
the S-boxes do not always operate on the same group of 6 bits. Again, [26] lists a number of criteria
used to choose the permutation P . If the permutation P was simply chosen at random then DES
would be far less secure.

The key expansion function. The DES key expansion function G takes as input the 56-bit
key k and outputs 16 keys k1, . . . , k16, each 48-bits long. Each key ki consists of 48 bits chosen
from the 56-bit key, with each ki using a di↵erent subset of bits from k.

The DES algorithm. The complete DES algorithm is shown in Fig. 4.9. It consists of 16
iterations of the DES round cipher plus initial and final permutations called IP and FP. These
permutations simply rearrange the 64 incoming and outgoing bits. The permutation FP is the
inverse of IP.

IP and FP have no cryptographic significance and were included for unknown reasons. Since bit
permutations are slow in software, but fast in hardware, one theory is that IP and FP are intended
to deliberately slow down software implementations of DES.

4.2.2 Exhaustive search on DES: the DES challenges

Recall that an exhaustive search attack on a block cipher (E, D) (Section 4.1.1) refers to the
following attack: the adversary is given a small number of plaintext blocks x1, . . . , xQ 2 X and
their encryption y1, . . . , yQ using a block cipher key k in K. The adversary finds k by trying all
possible keys k 2 K until it finds a key that maps all the given plaintext blocks to the given
ciphertext blocks. If enough ciphertext blocks are given, then k is the only such key, and it will be
found by the adversary.

For block ciphers like DES and AES-128 three blocks are enough to ensure that with high
probability there is a unique key mapping the given plaintext blocks to the given ciphertext blocks.
We will see why in Section 4.7.2 where we discuss ideal ciphers and their properties. For now it
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su�ces to know that given three plaintext/ciphertext blocks an attacker can use exhaustive search
to find the secret key k.

In 1974, when DES was designed, an exhaustive search attack on a key space of size 256 was
believed to be infeasible. With improvements in computer hardware it was shown that a 56-bit is
woefully inadequate.

To prove that exhaustive search on DES is feasible, RSA data security setup a sequence of
challenges, called the DES challenges. The rules were simple: on a pre-announced date RSA
data security posted three input/output pairs for DES. The first group to find the corresponding
key wins ten thousand US dollars. To make the challenge more entertaining, the challenge consisted
of n DES outputs y1, y2, . . . , yn where the first three outputs, y1, y2, y3, were the result of applying
DES to the 24-byte plaintext message:

The unknown message is:
x1 x2 x3

which consists of three DES blocks: each block is 8 bytes which is 64 bits, a single DES block. The
goal was to find a DES key that maps xi to yi for all i = 1, 2, 3 and then use this key to decrypt
the secret message encoded in y4 . . . yn.

The first challenge was posted in January 1997. It was solved by the deschall project in 96
days. The team used a distributed Internet search with the help of 78,000 volunteers who con-
tributed idle cycles on their machines. The person whose machine found the secret-key received
40% of the prize money. Once decrypted, the secret message encoded in y4 . . . yn was “Strong
cryptography makes the world a safer place.”

A second challenge, posted in January 1998, was solved by the distributed.net project in only
41 days by conducting a similar Internet search, but on a larger scale.

In early 1998, the Electronic Frontiers Foundation (EFF) contracted Paul Kocher to construct
a dedicated machine to do DES exhaustive key search. The machine, called DeepCrack, cost
250,000 US dollars and contained about 1900 dedicated DES chips housed in six cabinets. The
chips worked in parallel, each searching through an assigned segment of the key space. When RSA
data security posted the next challenge in July 1998, DeepCrack solved it in 56 hours and easily
won the ten thousand dollar prize: not quite enough to cover the cost of the machine, but more
than enough to make an important point about DES.

The final challenge was posted in January 1999. It was solved within 22 hours using a combined
DeepCrack and distributed.net e↵ort. This put the final nail in DES’s co�n showing that a 56-bit
secret key can be recovered in just a few hours.

To complete the story, in 2007 the copacobana team built a cluster of o↵ the shelf 120 FPGA
boards at a total cost of about ten thousand US dollars. The cluster can search through the entire
256 DES key space in about 12.8 days [50].

The conclusion from all this work is that a 56-bit key is way too short. The minimum safe key
size these days is 128 bits.

Is AES-128 vulnerable to exhaustive search? Let us extrapolate the DES results to AES.
While these estimates are inherently imprecise, they give some indication as to the complexity of
exhaustive search on AES. The minimum AES key space size is 2128. If scanning a space of size
256 takes 22 hours then scanning a space of size 2128 will take time:

(22 hours)⇥ 2128�56 ⇡ 1.18 · 1020 years.
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Even allowing for a billion fold improvement in computing speed and computing resources and
accounting for the fact that evaluating AES is faster than evaluating DES, the required time far
exceeds our capabilities. It is fair to conclude that a brute-force exhaustive search attack on AES
will never be practical. However, more sophisticated brute-force attacks on AES-128 exploiting
time-space tradeo↵s may come withing reach, as discussed in [13].

4.2.3 Strengthening ciphers against exhaustive search: the 3E construction

The DES cipher has proved to be remarkably resilient to sophisticated attacks. Despite many years
of analysis the most practical attack on DES is a brute force exhaustive search over the entire key
space. Unfortunately, the 56-bit key space is too small.

A natural question is whether we can strengthen the cipher against exhaustive search without
changing its inner structure. The simplest solution is to iterate the cipher several time using
independent keys.

Let E = (E, D) be a block cipher defined over (K, X ). We define the block cipher 3E = (E3, D3)
as

E3( (k1, k2, k3), x) := E
�

k3, E(k2, E(k1, x))
�

The 3E block cipher takes keys in K3. For DES the 3E block cipher, called Triple-DES, uses keys
whose length is 3⇥ 56 = 168 bits.

Security. To analyze the security of 3E we will need a framework called the ideal cipher model
which we present at the end of this chapter. We analyze the security of 3E in that section.

The Triple-DES standard. NIST approved Triple-DES for government use through the
year 2030. Strictly speaking, the NIST version of Triple-DES is defined as

E3( (k1, k2, k3), x) := E
�

k3, D(k2, E(k1, x))
�

.

The reason for this is that setting k1 = k2 = k3 reduces the NIST Triple-DES to ordinary DES
and hence Triple-DES hardware can be used to implement single DES. This will not a↵ect our
discussion of security of Triple-DES. Another variant of Triple-DES is discussed in Exercise 4.5.

The 2E construction is insecure

While Triple-DES is not vulnerable to exhaustive search, its performance is three times slower than
single DES, as shown in Table 4.1.

Why not use Double-DES? Its key size is 2⇥ 56 = 112 bits, which is already su�cient to defeat
exhaustive search. Its performance is much better then Triple-DES.

Unfortunately, Double-DES is no more secure than single DES. More generally, let E = (E, D)
be a block cipher with key space K. We show that the 2E = (E2, D2) construction, defined as

E2( (k1, k2), x) := E
�

k2, E(k1, x)
�

is no more secure than E . The attack strategy is called meet in the middle.
We are given Q plaintext blocks x1, . . . , xQ and their 2E encryptions yi = E2

�

(k1, k2), xi
�

for
i = 1, . . . , Q. We show how to recover the secret key (k1, k2) in time proportional to |K|, even though
the key space has size |K|2. As with exhaustive search, a small number of plaintext/ciphertext pairs
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is su�cient to ensure that there is a unique key (k1, k2) with high probability. Ten pairs are more
than enough to ensure uniqueness for block ciphers like Double-DES.

Theorem 4.2. Let E = (E, D) be a block cipher defined over (K, X ). There is an algorithm AEX

that takes as input Q plaintext/ciphertext pairs (xi, yi) 2 X 2 for i = 1, . . . , Q and outputs a key
pair (k 1, k 2) 2 K2 such that

yi = E2
�

(k 1, k 2), xi
�

for all i = 1, . . . , Q. (4.9)

Its running time is dominated by a total of 2Q · |K| evaluations of algorithms E and D.

Proof. Let x̄ := (x1, . . . , xQ) and ȳ := (y1, . . . , yQ). To simplify the notation let us write

ȳ = E2
�

(k 1, k 2), x̄
�

= E(k 2, E(k 1, x̄))

to capture the Q relations in (4.9). We can write this as

D(k 2, ȳ) = E(k 1, x̄) (4.10)

To find a pair (k 1, k 2) satisfying (4.10) the algorithm AEX

does the following:

step 1: construct a table T containing all pairs
�

k 1, E(k 1, x̄)
�

for all k 1 2 K
step 2: for all k 2 2 K do:

x̄ D(k 2, ȳ)
table lookup: if T contains a pair (·, x̄) then

let (k 1, x̄) be that pair and output (k 1, k 2) and halt

This meet in the middle attack is depicted in Fig. 4.10. By construction, the pair (k 1, k 2) output
by the algorithm must satisfy (4.10), a required.

Step 1 requires Q · |K| evaluations of E. Step 2 similarly requires Q · |K| evaluations of D.
Therefore, the total number of evaluation of E and D is 2Q · |K|. We assume that the time to insert
and look-up elements in the data structure holding the table T is less than the time to evaluate
algorithms E and D. 2

As discussed above, for relatively small values of Q, with overwhelming probability there will
be only one key pair satisfying (4.9), and this will be the output of Algorithm AEX

in Theorem 4.2.

The running time of algorithm A in Theorem 4.2 is about the same as the time to do exhaustive
search on E , suggesting that 2E does not strengthen E against exhaustive search. The theorem,
however, only considers the running time of A. Notice that A must keep a large table in memory
which can be di�cult. To attack Double-DES, A would need to store a table of size 256 where
each table entry contains a DES key and short ciphertext. Overall this amounts to about 260 bytes
or about a million Terrabytes. While not impossible, obtaining su�cient storage can be di�cult.
Alternatively an attacker can trade-o↵ storage space for running time — it is easy to modify A so
that at any given time it only stores an ✏ fraction of the table at the cost of increasing the running
time by a factor of 1/✏.

A meet in the middle attack on Triple-DES. A similar meet in the middle attack applies
to the 3E construction from the previous section. While 3E has key space K3, the meet in the
middle attack on 3E runs in time about |K|2 and takes space |K|. In the case of Triple-DES, the
attack requires about |K|2 = 2112 evaluations of DES which is too long to run in practice. Hence,
Triple-DES resists this meet in the middle attack and is the reason why Triple-DES is used in
practice.
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E(k 1, ·) E(k 2, ·)x̄ ȳ

0 E(0, x̄)
1 E(1, x̄)
2 E(2, x̄)
...

...

step 1:
build table of all
E(k 1, x̄)

step 2:
for every k 2 in K
lookup D(k 2, ȳ) in table

Figure 4.10: Meet in the middle attack on 2E

4.2.4 Case study: AES

Although Triple-DES is a NIST approved cipher, it has a number of significant drawbacks. First,
Triple-DES is three times slower than DES and performs poorly when implemented in software.
Second, the 64-bit block size is problematic for a number of important applications (i.e., applications
in Chapter 6). By the mid-1990s it became apparent that a new federal block cipher standard is
needed.

The AES process. In 1997 NIST put out a request for proposals for a new block cipher standard
to be called the Advanced Encryption Standard or AES. The AES block cipher had to operate
on 128-bit blocks and support three key sizes: 128, 192, and 256 bits. In September of 1997,
NIST received 15 proposals, many of which were developed outside of the United Stated. After
holding two open conferences to discuss the proposals, in 1999 NIST narrowed down the list to five
candidates. A further round of intense cryptanalysis followed, culminating in the AES3 conference
in April of 2000, at which a representative of each of the final five teams made a presentation
arguing why their standard should be chosen as the AES. In October of 2000, NIST announced
that Rijndael, a Belgian block cipher, had been selected as the AES cipher. The AES became an
o�cial standard in November of 2001 when it was published as a NIST standard in FIPS 197. This
concluded a five year process to standardize a replacement to DES.

Rijndael was designed by Belgian cryptographers Joan Daemen and Vincent Rijmen [29]. AES
is slightly di↵erent from the original Rijndael cipher. For example, Rijndael supports blocks of size
128, 192, or 256 bits while AES only supports 128-bit blocks.

The AES algorithm

Like many real-world block ciphers, AES is an iterated cipher that iterates a simple round cipher
several times. The number of iterations depends on the size of the secret key:

cipher key-size block-size number of
name (bits) (bits) rounds

AES-128 128 128 10
AES-192 192 128 12
AES-256 256 128 14
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Figure 4.11: Schematic of the AES-128 block cipher

For example, the structure of the cipher AES-128 with its ten rounds is shown in Fig. 4.11. Here
⇧AES is a fixed permutation (a one-to-one function) on {0, 1}128 that does not depend on the key.
The last step of each round is to XOR the current round key with the output of ⇧AES. This is
repeated 9 times until in the last round a slightly modified permutation ⇧̂AES is used. Inverting
the AES algorithm is done by running the entire structure in the reverse direction. This is possible
because every step is easily invertible.

Ciphers that follow the structure shown in Fig. 4.11 are called alternating key ciphers.
They are also known as iterated Even-Mansour ciphers. They can be proven secure under
certain “ideal” assumptions about the permutation ⇧AES in each round. We present this analysis
in Theorem 4.14 later in this chapter.

To complete the description of AES it su�ces to describe the permutation ⇧AES, and the AES
key expansion PRG. We describe each in turn.

The AES round permutation. The permutation ⇧AES is made up of a sequence of three
invertible operations on the set {0, 1}128. The input 128-bits is organized as a 4⇥ 4 array of cells,
where each cell is eight bits. The following three invertible operations are then carried out in
sequence, one after the other, on this 4⇥ 4 array:

1. SubBytes: Let S : {0, 1}8 ! {0, 1}8 be a fixed permutation (a one-to-one function). This
permutation is applied to each of the 16 cells, one cell at a time. The permutation S is
specified in the AES standard as a hard-coded table of 256 entries. It is designed to have
no fixed points, namely S(x) 6= x for all x 2 {0, 1}8, and no inverse fixed points, namely
S(x) 6= x̄ where x̄ is the bit-wise complement of x. These requirements are needed to defeat
certain attacks discussed in Section 4.3.1.

2. ShiftRows: This step performs a cyclic shift on the four rows of the input 4 ⇥ 4 array: the
first row is unchanged, the second row is cyclically shifted one byte to the left, the third row is
cyclically shifted two bytes, and the fourth row is cyclically shifted three bytes. In a diagram,
this step performs the following transformation:
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@
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a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15
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A

(4.11)
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3. MixColumns: In this step the 4⇥ 4 array is treated as a matrix and this matrix is multiplied
by a fixed matrix where arithmetic is interpreted in the finite field GF(28). Elements in
the field GF(28) are represented as polynomials over GF(2) of degree less than eight where
multiplication is done modulo the irreducible polynomial x8 + x4 + x3 + x + 1. Specifically,
the MixColumns transformation does:

0

B

B

@

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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A

(4.12)

Here the scalars 01, 02, 03 are interpreted as elements of GF(28) using their binary represen-
tation (e.g., 03 represents the element x + 1 in GF(28)). This fixed matrix is invertible over
GF(28) so that the entire transformation is invertible.

The permutation ⇧AES used in the AES circuit of Fig. 4.11 is the sequential composition of the
three permutation SubBytes, ShiftRows, and MixColumns in that order. In the very last round
AES uses a slightly di↵erent function we call ⇧̂AES. This function is the same as ⇧AES except
that the MixColumns step is omitted. This omission is done so that the AES decryption circuit
looks somewhat similar to the AES encryption circuit. Security implications of this omission are
discussed in [34].

Because each step in ⇧AES is easily invertible, the entire permutation ⇧AES is easily invertible,
as required for decryption.

Implementing AES using pre-computed tables. The AES round function is built from
a permutation we called ⇧AES defined as a sequence of three steps: SubBytes, ShiftRows, and
MixColumns. The designers of AES did not intend for AES to be implemented that way on modern
processors. Instead, they proposed an implementation of ⇧AES the does all three steps at once using
four fixed lookup tables called T0, T1, T2, T3.

To explain how this works, recall that ⇧AES takes as input a 4⇥ 4 matrix A = (ai)i=0,...,15 and
outputs a matrix A0 := ⇧AES(A) of the same dimensions. Let us use S[a] to denote the result of
applying SubBytes to an input a 2 {0, 1}8. Similarly, recall that the MixColumns step multiplies
the current state by a fixed 4⇥ 4 matrix M . Let us use M [i] to denote column number i of M , and
A0[i] to denote column number i of A0.

Now, looking at (4.12), we can write the four columns of the output of ⇧AES(A) as:

A0[0] = M [0] · S[a0] + M [1] · S[a5] + M [2] · S[a10] + M [3] · S[a15]

A0[1] = M [0] · S[a1] + M [1] · S[a6] + M [2] · S[a11] + M [3] · S[a12]

A0[2] = M [0] · S[a2] + M [1] · S[a7] + M [2] · S[a8] + M [3] · S[a13]

A0[3] = M [0] · S[a3] + M [1] · S[a4] + M [2] · S[a9] + M [3] · S[a14]

(4.13)

where addition and multiplication is done in GF(28). Each column M [i], i = 0, 1, 2, 3, is a vector
of four bytes over GF(28), while the quantities S[ai] are 1-byte scalars in GF(28).

Every term in (4.13) can be evaluated quickly using a fixed pre-computed table. For i = 0, 1, 2, 3
let us define a table Ti with 256 entries as follows:

for a 2 {0, 1}8: Ti[a] := M [i] · S[a] 2 {0, 1}32 .
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Plugging these tables into (4.13) gives a fast way to evaluate ⇧AES(A):

A0[0] = T0[a0] + T1[a5] + T2[a10] + T3[a15]

A0[1] = T0[a1] + T1[a6] + T2[a11] + T3[a12]

A0[2] = T0[a2] + T1[a7] + T2[a8] + T3[a13]

A0[3] = T0[a3] + T1[a4] + T2[a9] + T3[a14]

The entire AES circuit written this way is a simple sequence of table lookups. Since each table Ti

contains 256 entries, four bytes each, the total size of all four tables is 4KB. The circular structure
of the matrix M makes it possible to compress the four tables to only 2KB with little impact on
performance.

The one exception to (4.13) is the very last round of AES where the MixColumns step is omitted.
To evaluate the last round we need a fifth 256-byte table S that only implements the SubBytes

operation.
This optimization of AES is optional. Implementations in constrained environments where

there is no room to store a 4KB table can choose to implement the three steps of ⇧AES in code,
which takes less than 4KB, but is not as fast. Thus AES can be adapted for both constrained and
unconstrained environments.

As a word of caution, we note that a simplistic implementation of AES using this table lookup
optimization is most likely vulnerable to cache timing attacks discussed in Section 4.3.2.

The AES-128 key expansion method. Looking back at Fig. 4.11 we see that key expansion
for AES-128 needs to generate 11 rounds keys k0, . . . , k10 where each round key is 128 bits. To do
so, the 128-bit AES key is partitioned into four 32-bit words w0,0, w0,1, w0,2, w0,3 and these form
the first round key k0. The remaining ten round keys are generated sequentially: for i = 1, . . . , 10,
the 128-bit round key ki = (wi,0, wi,1, wi,2, wi,3) is generated from the preceding round key ki�1 =
(wi�1,0, wi�1,1, wi�1,2, wi�1,3) as follows:

wi,0  wi�1,0 � gi(wi�1,3)
wi,1  wi�1,1 � wi,0

wi,2  wi�1,2 � wi,1

wi,3  wi�1,3 � wi,2 .

Here the function gi : {0, 1}32 ! {0, 1}32 is a fixed function specified in the AES standard. It
operates on its four byte input in three steps: (1) perform a one-byte left circular rotation on the
4-byte input, (2) apply SubBytes to each of the four bytes obtained, and (3) XOR the left most byte
with a fixed round constant ci. The round constants c1, . . . , c10 are specified in the AES standard:
round constant number i is the element xi�1 of the field GF(28) treated as an 8-bit string.

The key expansion procedures for AES-192 and AES-256 are similar to those of AES-128. For
AES-192 each iteration generates six 32-bit words (192 bits total) in a similar manner to AES-128,
but only the first four 32-bit words (128 bits total) are used as the AES round key. For AES-256
each iteration generates eight 32-bit words (256 bits total) in a similar manner to AES-128, but
only the first four 32-bit words (128 bits total) are used as the AES round key.

The AES key expansion method is intentionally designed to be invertible: given the last round
key, one can work backwards to recover the full AES secret key k. The reason for this is to ensure
that every AES-128 round key, on its own, has the same amount of entropy as the AES-128 secret
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key k. If AES-128 key expansion were not invertible then the last round key would not be uniform
in {0, 1}128. Unfortunately, invertability also aids attacks: it is used in related key attacks and in
side-channel attacks on AES, discussed next.

Security of AES. The AES algorithm withstood fairly sophisticated attempts at cryptanalysis
lobbed at it. At the time of this writing, the best known attacks are as follows:

• Key recovery: Key recovery attacks refer to an adversary who is given multiple plain-
text/ciphertext pairs and is able to recover the secret key from these pairs, as in an exhaustive
search attack. The best known key recovery attack on AES-128 takes 2126.1 evaluations of
AES [19]. This is about four times faster than exhaustive search and takes a prohibitively
long time. Therefore this attack has little impact on the security of AES-128.

The best known attack on AES-192 takes 2189.74 evaluation of AES which is again only about
four times faster than exhaustive search. The best known attack on AES-256 takes 2254.42

evaluation of AES which is about three times faster than exhaustive search. None of these
attacks impact the security of either AES variant.

• Related key attacks: In an `-way related key attack the adversary is given ` lists of
plaintext/ciphertext pairs: for i = 1, . . . , `, list number i is generated using key ki. The
point is that all ` keys k1, . . . , k` must satisfy some fixed relation chosen by the adversary.
The attacker’s goal is to recover one of the keys, say k1. In well-implemented cryptosystems,
keys are always generated independently at random and are unlikely to satisfy the required
relation. Therefore related key attacks do not typically a↵ect correct crypto implementations.

AES-256 is vulnerable to a related key attack that exploits its relatively simple key expansion
mechanism [14]. The attack requires four related keys k1, k2, k3, k4 where the relation is a
simple XOR relation: it requires that certain bits of the quantities k1�k2, k1�k3, and k2�k4
are set to specific values. Then given lists of plaintext/ciphertext pairs generated for each
of the four keys, the attacker can recover the four keys in time 299.5. This is far faster than
the time it would take to mount an exhaustive search on AES-256. While the attack is quite
interesting, it does not a↵ect the security of AES-256 in well-implemented systems.

Hardware implementation of AES. At the time AES was standardized as a federal encryption
standard most implementations were software based. The wide-spread adoption of AES in software
products prompted all major processor vendors to extend their instruction set to add support for
a hardware implementation of AES.

Intel, for example, added new instructions to its Xeon and Core families of processors called
AES-NI (AES new instructions) that speed-up and simplify the process of using AES in software.
The new instructions work as follows:

• AESKEYGENASSIST: runs the key expansion procedure to generate the AES round keys from
the AES key.

• AESENC: runs one round of the AES encryption algorithm. The instruction is called as:

AESENC xmm15, xmm1

where the xmm15 register holds the 128-bit data block and the xmm1 register holds the 128-
bit round key for that round. The resulting 128-bit data block is written to register xmm15.
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Running this instruction nine times with the appropriate round keys loaded into registers
xmm1, . . . , xmm9 executes the first nine rounds of AES encryption.

• AESENCLAST: invoked similar to AESENC to run last round of the AES algorithm. Recall that
the last round function is di↵erent from the others: it omits the MixColumns step.

• AESDEC and AESDECLAST: runs one round of the AES decryption algorithm, analogous to the
encryption instructions.

These AES-NI hardware instructions provide a significant speed-up over a heavily optimized soft-
ware implementations of AES. Experiments by Emilia Käsper in 2009 show that on Intel Core 2
processors AES using the AES-NI instructions takes 1.35 cycles/byte (pipelined) while an optimized
software implementation takes 7.59 cycles/byte.

In Intel’s Skylake processors introduced in 2015 the AESENC, AESDEC and AESENCLAST instruc-
tions each take four cycles to complete. These instructions are fully pipelined so that a new in-
struction can be dispatched every cycle. In other words, Intel partitioned the execution of AESENC
into a pipeline of four stages. Four AES blocks can be processed concurrently by di↵erent stages of
the pipeline. While processing a single AES-128 block takes (4 cycles) ⇥ (10 rounds) = 40 cycles
(or 2.5 cycles/byte), processing four blocks in a pipeline takes only 44 cycles (or 0.69 cycles/byte).
Hence, pipelining can speed up AES by almost a factor of four. As we will see in the next chapter,
this plays an important role in choosing the exact method we use to encrypt long messages: it is
best to choose an encryption method that can leverage the available parallelism to keep the pipeline
busy.

Beyond speed, the hardware implementation of AES o↵ers better security because it is resistant
to the side-channel attacks discussed in the next section.

4.3 Sophisticated attacks on block ciphers

Widely deployed block ciphers like AES go through a lengthy selection process before they are
standardized and continue to be subjected to cryptanalysis. In this section we survey some attack
techniques that have been developed over the years.

In Section 4.3.1, we begin with attacks on the design of the cipher that may result in key com-
promise from observing plaintext/ciphertext pairs. Unlike brute-force exhaustive search attacks,
these algorithmic attacks rely on clever analysis of the internal structure of a particular block
cipher.

In Section 4.3.2, we consider a very di↵erent class of attacks, called side-channel attacks. In
analyzing any cryptosystem, we consider scenarios in which an adversary interacts with the users
of a cryptosystem. During the course of these interactions, the adversary collects information that
may help it break the system. Throughout this book, we generally assume that this information
is limited to the input/output behavior of the users (for example, plaintext/ciphertext pairs).
However, this assumption ignores the fact that computation is a physical process. As we shall
see, in some scenarios it is possible for the adversary to break a cryptosystem by measuring physical
characteristics of the users’ computations, for example, running time or power consumption.

Another class of attacks on the physical implementation of a cryptosystem is a fault-injection
attack, which is discussed in Section 4.3.3. Finally, in Section 4.3.4, we consider another class of
algorithmic attacks, in which the adversary can harness the laws of quantum mechanics to speed
up its computations.
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These clever attacks make two very important points:

1. Casual users of cryptography should only ever use standardized algorithms like AES, and not
design their own block ciphers.

2. It is best to not implement algorithms on your own since, most likely the resulting imple-
mentations will be vulnerable to side-channel attacks; instead, it is better to use vetted
implementations in widely used crypto libraries.

To further emphasize these points we encourage anyone who first learns about the inner-workings
of AES to take the following entertaining pledge (originally due to Je↵ Moser):

I promise that once I see how simple AES really is, I will not implement it in production
code even though it will be really fun. This agreement will remain in e↵ect until I learn
all about side-channel attacks and countermeasures to the point where I lose all interest
in implementing AES myself.

4.3.1 Algorithmic attacks

Attacking the design of block ciphers is a vast field with many sophisticated techniques: linear
cryptanalysis, di↵erential cryptanalysis, slide attacks, boomerang attacks, and many others. We
refer to [99] for a survey of the many elegant ideas that have been developed. Here we briefly
describe a technique called linear cryptanalysis that has been used successfully against the DES
block cipher. This technique, due to Matsui [72, 71], illustrates why designing e�cient block-ciphers
is so challenging. This method has been shown to not work against AES.

Linear cryptanalysis. Let (E, D) be a block cipher where data blocks and keys are bit strings.
That is, M = C = {0, 1}n and K = {0, 1}h.

For a bit string m 2 {0, 1}n and a set of bit positions S ✓ {0, . . . , n� 1} we use m[S] to denote
the XOR of the bits in positions in S. That is, if S = {i1, . . . , i`} then m[S] := m[i1]� · · ·�m[i`].

We say that the block cipher (E, D) has a linear relation if there exist sets of bit positions
S0, S1 ✓ {0, . . . , n � 1} and S2 ✓ {0, . . . , h � 1}, such that for all keys k 2 K and for randomly
chosen m 2M, we have

Pr
h

m[S0]� E(k, m)[S1] = k[S2]
i

� 1

2
+ ✏ (4.14)

for some non-negligible ✏ called the bias. For an “ideal” cipher the plaintext and ciphertext behave
like independent strings so that the relation m[S0] � E(k, m)[S1] = k[S2] in (4.14) holds with
probability exactly 1/2, and therefore ✏ = 0. Surprisingly, the DES block cipher has a linear
relation with a small, but non-negligible bias.

Let us see how a linear relation leads to an attack. Consider a cipher (E, D) that has a linear
relation as in (4.14) for some non-negligible ✏ > 0. We assume the linear relation is explicit so that
the attacker knows the sets S0, S1 and S2 used in the relation. Suppose that for some unknown
secret key k 2 K the attacker obtains many plaintext/ciphertext pairs (mi, ci) for i = 1, . . . , t. We
assume that the messages m1, . . . , mt are sampled uniformly and independently from M and that
ci = E(k, mi) for i = 1, . . . , t. Using this information the attacker can learn one bit of information
about the secret key k, namely the bit k[S2] 2 {0, 1} assuming su�ciently many plaintext/ciphertext
pairs are given. The following lemma shows how.
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Lemma 4.3. Let (E, D) be a block cipher for which (4.14) holds. Let m1, . . . , mt be messages
sampled uniformly and independently from the message space M and let ci := E(k, mi) for i =
1, . . . , t. Then

Pr
h

k[S2] = Majorityt
i=1(mi[S0]� ci[S1])

i

� 1� e�t✏2/2 . (4.15)

Here, Majority takes a majority vote on the given bits; for example, on input (0, 0, 1), the
majority is 0, and on input (0, 1, 1), the majority is 1. The proof of the lemma is by a direct
application of the Cherno↵ bound (Theorem ??).

The bound in (4.15) shows that once the number of known plaintext/ciphertext pairs ex-
ceeds 4/✏2, the output of the majority function equals k[S2] with more than 86% probability.
Hence, the attacker can compute k[S2] from the given plaintext/ciphertext pairs and obtain one
bit of information about the secret key. While this single key bit may not seem like much, it is a
stepping stone towards a more powerful attack that can expose the entire key.

Linear cryptanalysis of DES. Matsui showed that 14-rounds of the DES block cipher has a
linear relation where the bias is at least ✏ � 2�21. In fact, two linear relations are obtained: one by
exploiting linearity in the DES encryption circuit and another from linearity in the DES decryption
circuit. For a 64-bit plaintext m let mL and mR be the left and right 32-bits of m respectively.
Similarly, for a 64-bit ciphertext c let cL and cR be the left and right 32-bits of c respectively. Then
two linear relations for 14-rounds of DES are:

mR[17, 18, 24]� cL[7, 18, 24, 29]� cR[15] = k[Se]

cR[17, 18, 24]�mL[7, 18, 24, 29]�mR[15] = k[Sd]
(4.16)

for some bit positions Se, Sd ✓ {0, . . . , 55} in the 56-bit key k. Both relations have a bias of ✏ � 2�21

when applied to 14-rounds of DES.
These relations are extended to the entire 16-round DES by incorporating the first and last

rounds of DES — rounds number 1 and 16 — into the relations. Let k1 be the first round key and
let k16 be the last round key. Then by definition of the DES round function we obtain from (4.16)
the following relations on the entire 16-round DES circuit:

⇣

mL � F (k1, mR)
⌘

[17, 18, 24]� cR[7, 18, 24, 29]�
⇣

cL � F (k16, cR)
⌘

[15] = k[S0
e] (4.17)

⇣

cL � F (k16, cR)
⌘

[17, 18, 24]�mR[7, 18, 24, 29]�
⇣

mL � F (k1, mR)
⌘

[15] = k[S0
d] (4.18)

for appropriate bit positions S0
e, S

0
d ✓ {0, . . . , 55} in the 56-bit key.

Let us first focus on relation (4.17). Bits 17,18,24 of F (k1, mR) are the result of a single S-box
and therefore they depend on only six bits of k1. Similarly F (k16, cR)[15] depends on six bits of k16.
Hence, the left hand side of (4.17) depends on only 12 bits of the secret key k. Let us denote these
12 bits by k(12). We know that when the 12 bits are set to their correct value, the left hand side
of (4.17), evaluated at a random plaintext/ciphertext pair, exhibits a bias of about 2�21 towards
the bit k[S0

e]. When the 12 key bits of the key are set incorrectly one assumes that the bias in (4.17)
is far less. As we will see, this has been verified experimentally.

This observation lets an attacker recover the 12 bits k(12) of the secret key k as follows. Given
a list L of t plaintext/ciphertext pairs (e.g., t = 243) do:
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• Step 1: for each of the 212 candidates for the key bits k(12) compute the bias in (4.17).
That is, evaluate the left hand side of (4.17) on all t plaintext/ciphertext pairs in L and
let t0 be the number of times that the expression evaluates to 0. The bias is computed as
✏ = |(t0/t) � (1/2)|. This produces a vector of 212 biases, one for each candidate 12 bits
for k(12).

• Step 2: sort the 212 candidates by their bias, from largest to smallest. If the list L of given
plaintext/ciphertext pairs is su�ciently large then the 12-bit candidate producing the highest
bias is the most likely to be equal to k(12). This recovers 12 bits of the key. Once k(12) is
known we can determine the bit k[S0

e] using Lemma 4.3, giving a total of 13 bits of k.

The relation (4.18) can be used to recover an additional 13 bits of the key k in exactly the same way.
This gives the attacker a total 26 bits of the key. The remaining 56 � 26 = 30 bits are recovered
by exhaustive search.

Naively computing the biases in Step 1 takes time 212 ⇥ t: for each candidate for k(12) one has
to evaluate (4.17) on all t plaintext/ciphertext pairs in L. The following insight reduces the work to
approximately time t. For a given pair (m, c), the left hand side of (4.17) can be computed from only
thirteen bits of (m, c): six bits of m are needed to compute F (k1, mR)[17, 18, 24], six bits of c are
needed to compute F (k16, cR)[15], and finally the single bit mL[17, 18, 24]� cR[7, 18, 24, 29]� cL[15]
is needed. These 13 bits are su�cient to evaluate the left hand side of (4.17) for any candidate
key. Two plaintext/ciphertext pairs that agree on these 13 bits will always result in the same value
for (4.17). We refer to these 13 bits as the type of the plaintext/ciphertext pair.

Before computing the biases in Step 1 we build a table of size 213 that counts the number
of plaintext/ciphertext pairs in L of each type. For b 2 {0, 1}13 table entry b is the number of
plaintext/ciphertext pairs of type b. Constructing this table takes time t, but once the table is
constructed computing all the biases in Step 1 can be done in time 212 ⇥ 213 = 225 which is much
less than t. Therefore, the bulk of the work in Step 1 is counting the number of plaintext/ciphertext
pairs of each type.

Matsui shows that given a list of 243 plaintext/ciphertext pairs this attack succeeds with proba-
bility 85% using about 243 evaluations of the DES circuit. Experimental results by Junod [61] show
that with 243 plaintext/ciphertext pairs, the correct 26 bits of the key are among the 2700 most
likely candidates from Step 1 on average. In other words, the exhaustive search for the remaining
30 bits is carried out on average 2700 ⇡ 211.4 times to recover the entire 56-bit key. Overall, the
attack is dominated by the time to evaluate the DES circuit 230⇥211.4 = 241.4 times on average [61].

Lesson. Linear cryptanalysis of DES is possible because the fifth S-box, S5, happens to be some-
what approximated by a linear function. The linearity of S5 introduced a linear relation on the
cipher that could be exploited to recover the secret key using 241 DES evaluations, far less than the
256 evaluations that would be needed in an exhaustive search. However, unlike exhaustive search,
this attack requires a large number of plaintext/ciphertext pairs: the required 243 pairs correspond
to 64 terabytes of plaintext data. Nevertheless, this is a good illustration of how di�cult it is to
design secure block ciphers and why one should only use standardized and well-studied ciphers.

Linear cryptanalysis has been generalized over the years to allow for more complex non-linear
relations among plaintext, ciphertext, and key bits. These generalizations have been used against
other block ciphers such as LOKI91 and Q.
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4.3.2 Side-channel attacks

Side-channel attacks do not attack the cryptosystem as a mathematical object. Instead, they
exploit information inadvertently leaked by its physical implementation.

Consider an attacker who observes a cryptosystem as it operates on secret data, such as a
secret key. The attacker can learn far more information than just the input/output behavior of the
system. Two important examples are:

• Timing side channel: In a vulnerable implementation, the time it takes to encrypt a block
of plaintext may depend on the value of the secret key. An attacker who measures encryption
time can learn information about the key, as shown below.

• Power side channel: In a vulnerable implementation, the amount of power used by the
hardware as it encrypts a block of plaintext can depend on the value of the secret key. An
attacker who wants to extract a secret key from a device like a smartcard can measure the
device’s power usage as it operates and learn information about the key.

Many other side channels have been used to attack implementations: electromagnetic radiation
emanating from a device as it encrypts, heat emanating from a device as it encrypts [79], and even
sound [44].

Timing attacks

Timing attacks are a significant threat to crypto implementations. Timing information can be
measured by a remote network attacker who interacts with a victim server and measures the
server’s response time to certain requests. For a vulnerable implementation, the response time can
leak information about a secret key. Timing information can also be obtained by a local attacker
on the same machine as the victim, for example, when a low-privilege process tries to extract a
secret key from a high-privilege process. In this case, the attacker obtains very accurate timing
measurements about its target. Timing attacks have been demonstrated in both the local and
remote settings.

In this section, we describe a timing attack on AES that exploits memory caching behavior
on the victim machine. We will assume that the adversary can accurately measure the victim’s
running time as it encrypts a block of plaintext with AES. The attack we present exploits timing
variations due to caching in the machine’s memory hierarchy.

Modern processors use a hierarchy of caches to speed up reads and writes to memory. The
fastest layer, called the L1 cache, is relatively small (e.g. 64KB). Data is loaded into the L1 cache
in blocks (called lines) of 64 bytes. Loading a line into L1 cache takes considerably more time than
reading a line already in cache.

This cache-induced di↵erence in timing leads to a devastating key recovery attack against the
fast table-based implementation of AES presented on page 116. An implementation that ignores
these caching e↵ects will be easily broken by a timing attack.

Recall that the table-based implementation of AES uses four tables T0, T1, T2, T3 for all but the
last round. The last round does not include the MixColumns step and evaluation of this last round
uses an explicit S table instead of the tables T0, T1, T2, T3. Suppose that when each execution of
AES begins, the S table is not in the L1 cache. The first time a table entry is read, that part of
the table will be loaded into L1 cache. Consequently, this first read will be slow, but subsequent
reads to the same entry will be much faster since the data is already cached. Since the S table is
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only used in the last round of AES no parts of the table will be loaded in cache prior to the last
round.

Letting A = (ai)i=0,...,15 denote the 4⇥4 input to the last round, and letting (wi)i=0,...,15 denote
the 4⇥ 4 last round key, the final AES output is computed as the 4⇥ 4 matrix:

C = (ci,j) =

0

B

B

@

S[a0] + w0 S[a1] + w1 S[a2] + w2 S[a3] + w3

S[a5] + w4 S[a6] + w5 S[a7] + w6 S[a4] + w7

S[a10] + w8 S[a11] + w9 S[a8] + w10 S[a9] + w11

S[a15] + w12 S[a12] + w13 S[a13] + w14 S[a14] + w15

1

C

C

A

(4.19)

The attacker is given this final output C.
To mount the attack, consider two consecutive entries in the output matrix C, say c0 = S[a0]+w0

and c1 = S[a1]+w1. Subtracting one equation from the other we see that when a0 = a1 the following
relation holds:

c0 � c1 = w0 � w1 .

Therefore, with � := w0�w1 we have that c0� c1 = � whenever a0 = a1. Moreover, when a0 6= a1
the structure of the S table ensures that c0 � c1 6= �.

The key insight is that whenever a0 = a1, reading S[a0] loads the a0 entry of S into the L1
cache so that the second access to this entry via S[a1] is much faster. However, when a0 6= a1 it
is possible that both reads miss the L1 cache so that both are slow. Therefore, when a0 = a1 the
expected running time of the entire AES cipher is slightly less than when a0 6= a1.

The attacker’s plan now is to run the victim AES implementation on many random input blocks
and measure the running time. For each value of � 2 {0, 1}8 the attacker creates a list L� of all
output ciphertexts where c0 � c1 = �. For each �-value it computes the average running time
among all ciphertexts in L�. Given enough samples, the lowest average running time is obtained
for the �-value satisfying � = w0�w1. Hence, timing information reveals one linear relation about
the last round key: w0 � w1 = �.

Suppose the implementation evaluates the terms of (4.19) in some sequential order. Repeating
the timing procedure above for di↵erent consecutive pairs ci and ci+1 in C reveals the di↵erence
in GF(28) between every two consecutive bytes of the last round key. Then if the first byte of
the last round key is known, all remaining bytes of the last round key can be computed from the
known di↵erences. Moreover, since key expansion in AES-128 is invertible, it is a simple matter to
reconstruct the AES-128 secret key from the last round key.

To complete the attack, the attacker simply tries all 256 possible values for the first byte of last
round key. For each candidate value the attacker obtains a candidate AES-128 key. This key can
be tested by trying it out on a few known plaintext/ciphertext pairs. Once a correct AES-128 key
is found, the attacker has obtained the desired key.

This attack, due to Bonneau and Mironov [23], works quite well in practice. Their experiments
on a Pentium IV Xeon successfully recovered the AES secret key using about 220 timing measure-
ments of the encryption algorithm. The attack only takes a few minutes to run. We note that the
Pentium IV Xeon uses 32-byte cache lines so that the S table is split across eight lines.

Mitigations. The simplest approach to defeat timing attacks on AES is to use the AES-NI
instructions that implement AES in hardware. These instructions are faster than a software im-
plementation and always take the same amount of time, independent of the key or input data.
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On processors that do not have built-in AES instructions one is forced to use a software imple-
mentation. One approach to mitigate cache-timing attacks is to use a table-free implementation of
AES. Several such implementations of AES using a technique called bit-slicing provide reasonable
performance in software and are supposedly resistant to timing attacks.

Another approach is to pre-load the tables T0, T1, T2, T3 and S into L1 cache before every
invocation of AES. This prevents the cache-based timing attack, but only if the tables are not evicted
from L1 cache while AES is executing. Ensuring that the tables stay in L1 cache is non-trivial on a
modern processor. Interrupts during AES execution can evict cache lines. Similarly, hyperthreading
allows for multiple threads to execute concurrently on the same core. While one thread pre-loads
the AES tables into L1 cache another thread executing concurrently can inadvertently evict them.

Yet another approach is to pad AES execution to the maximum possible time to prevent timing
attacks, but this has a non-negligible impact on performance.

To conclude, we emphasize that the following mitigation does not work: adding a random
number of instructions at the end of every AES execution to randomly pad the running time does
not prevent the attack. The attacker can overcome this by simply obtaining more samples and
averaging out the noise.

Power attacks on AES implementations

The amount of power consumed by a device as it operates can leak information about the inner-
workings of the device, including secret keys stored on the device. Let us see how an attacker can
use power measurements to quickly extract secret keys from a physical device.

As an example, consider a credit-card with an embedded chip where the chip contains a secret
AES key. To make a purchase the user plugs the credit-card into a point-of-sale terminal. The
terminal provides the card with the transaction details and the card authorizes the transaction
using the secret embedded AES key. We leave the exact details for how this works to a later
chapter.

Since the embedded chip must draw power from the terminal (it has no internal power source)
it is quite easy for the terminal to measure the amount of power consumed by the chip at any
given time. In particular, an attacker can measure the amount of power consumed as the AES
algorithm is evaluated. Fig. 4.12a shows a test device’s power consumption as it evaluates the
AES-128 algorithm four times (the x-axis is time and y-axis is power). Each hump is one run of
AES and within each hump the ten rounds of AES-128 are clearly visible.

Simple power analysis. Suppose an implementation contains a branch instruction that depends
on a bit of the secret key. Say, the branch is taken when the least significant bit of the key is ‘1’ and
not taken otherwise. Since taking a branch requires more power than not taking it, the power trace
will show a spike at the branch point when the key bit is one and no spike otherwise. An attacker
can simply look for a spike at the appropriate point in the power trace and learn that bit of the
key. With multiple key-dependent branch instructions the entire secret key can be extracted. This
works quite well against simple implementations of certain cryptosystems (such as RSA, which is
covered in a later chapter).

The attack of the previous paragraph, called simple power analysis (SPA), will not work
on AES: during encryption the secret AES round keys are simply XORed into the cipher state.
The power used by the XOR instruction only marginally depends on its operands and therefore
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Figure 4.12: AES di↵erential power analysis (source: Kocher et al. [64])

the power used by the XOR reveals no useful information about the secret key. This resistance to
simple power analysis was an attractive feature of AES.

Di↵erential power analysis. Despite AES’s resistance to SPA, a more sophisticated power
analysis attack successfully extracts the AES secret key from simple implementations. Choose an
AES key k at random and encrypt 4000 random plaintexts using the key k. For our test device the
resulting 4000 power traces look quite di↵erent from each other indicating that the power trace is
input dependent, the input being the random plaintext.

Next, consider the output of the first S-box in the first round. Call this output T . We hypothe-
size that the power consumed by the S-box lookup depends on the index being looked up. That is,
we guess that the value of T is correlated with the power consumed by the table lookup instruction.

To test the hypothesis, let us split the 4000 traces into two piles according to the least significant
bit of T : pile 1 contains traces where the LSB of T is 1 and pile 0 contains traces where the bit
is 0. Consider the power consumed by traces in each pile at the moment in time when the card
computes the output of the first S-box:

pile 1 (LSB = 1): mean power 116.9 units, standard deviation 10.7
pile 0 (LSB = 0): mean power 121.9 units, standard deviation 9.7

The two power distributions are shown in Fig. 4.12b. The distributions are close, but clearly
di↵erent. Hence, with enough independent samples we can distinguish one distribution from the
other.

To exploit this observation, consider Fig. 4.12c. The top line shows the power trace averaged
over all traces in pile 1. The second line shows the power trace averaged over all traces in pile 0.
The bottom line shows the di↵erence between the two top traces, magnified by a factor of 15. The
first spike in the bottom line is exactly at the time when the card computed the output of the first
S-box. The size of the spike corresponds exactly to the di↵erence in averages shown in Fig. 4.12b.
This bottom line is called the power di↵erential.
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To attack a target device the attacker must first experiment with a clean device: the attacker
loads a chosen secret key into the device and computes the power di↵erential curve for the device
as shown in Fig. 4.12c. Next, suppose the attacker obtains a device with an unknown embedded
key. It can extract the key as follows:

first, measure the power trace for 4000 random plaintexts
next, for each candidate first byte k 2 {0, 1}8 of the key do:

split the 4000 samples into two piles according to the first bit of T
(this is done using the current guess for k and the 4000 known plaintexts)

if the resulting power di↵erential curve matches the pre-computed curve:
output k as the first byte of the key and stop

Fig. 4.12d shows this attack in action. When using the correct value for the first byte of the
key (k = 103) we obtain the correct power di↵erential curve. When the wrong guess is used
(k = 101, 102, 104, 105) the power di↵erential does not match the expected curve.

Iterating this procedure for all 16 bytes of the AES-128 key recovers the entire key.

Mitigations. A common defense against power analysis uses hardware tweaks. Conceptually,
prior to executing AES the hardware draws a fixed amount of power to charge a capacitor and then
runs the entire AES algorithm using power in the capacitor. Once AES is done the excess power
left in the capacitor is discarded. The next application of AES again charges the capacitor and so
on. This conceptual design (which takes some e↵ort to implement correctly in practice) ensures
that the device’s power consumption is independent of secret keys embedded in the device.

Another mitigation approach concedes that some limited information about the secret key
leaks every time the decryption algorithm runs. The goal is to then preemptively re-randomize the
secret key after each invocation of the algorithm so that the attacker cannot combine the bits of
information he learns from each execution. This approach is studied in an area called leakage-
resilient cryptography.

4.3.3 Fault-injection attacks on AES

Another class of implementation attacks, called fault injection attacks, attempt to deliberately
cause the hardware to introduce errors while running the cryptosystem. An attacker can exploit
the malformed output to learn information about the secret key. Injecting faults can be done
by over-clocking the target hardware, by heating it using a laser, or by directing electromagnetic
interference at the target chip [60].

Fault injection attacks have been used to break vulnerable implementations of AES by causing
the AES engine to malfunction during encryption of a plaintext block. The resulting malformed
ciphertext can reveal information about the secret key [60]. Fault attacks are easiest to describe in
the context of public-key systems and we will come back and discuss them in detail in Section ??
where we show how they result in a complete break of some implementations of RSA.

One defense against fault injection attacks is to always check the result of the computation. For
example, an AES engine could check that the computed AES ciphertext correctly decrypts to the
given input plaintext. If the check fails, the hardware outputs an error and discards the computed
ciphertext. Unfortunately this slows down AES performance by a factor of two and is hardly done
in practice.
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4.3.4 Quantum exhaustive search attacks

All the attacks described so far work on classical computers available today. Our physical world,
however, is governed by the laws of quantum mechanics. In theory, computers can be built to use
these laws to solve problems in much less time than would be required on a classical computer.
Although no one has yet succeeded in building quantum computers, it could be just be a matter
of time before the first quantum computer is built.

Quantum computers have significant implications to cryptography because they can be used to
speed up certain attacks and even completely break some systems. Consider again a block cipher
(E, D) with key space K. Recall that in a classical exhaustive search the attacker is given a few
plaintext/ciphertext pairs created with some key k 2 K and the attacker tries all keys until he finds
a key that maps the given plaintexts to the given ciphertexts. On a classical computer this takes
time proportional to |K|.

Quantum exhaustive search. Surprisingly, on a quantum computer the same exhaustive search
problem can be solved in time proportional to only

p|K|. For block ciphers like AES-128 this means

that exhaustive search will only require about
p

2128 = 264 steps. Computations involving 264 steps
can already be done in a reasonable amount of time using classical computers and therefore one
would expect that once quantum computers are built they will also be capable of carrying out this
scale of computations. As a result, once quantum computers are built, AES-128 will be considered
insecure.

The above discussion suggests that for a block cipher to resist a quantum exhaustive search
attack its key space |K| must have at least 2256 keys, so that the time for quantum exhaustive
search is on the order of 2128. This threat of quantum computers is one reason why AES supports
256-bits keys. Of course, we have no guarantees that there is not a faster quantum algorithm for
breaking the AES-256 block cipher, but at least quantum exhaustive search is out of the question.

Grover’s algorithm. The algorithm for quantum exhaustive search is a special case of a more
general result in quantum computing due to Lov Grover [49]. The result says the following: suppose
we are given a function f : K! {0, 1} defined as follows

f(k) =

(

1 if k = k0

0 otherwise
(4.20)

for some k0 2 K. The goal is to find k0 given only “black-box” access to f , namely by only querying
f at di↵erent inputs. On a classical computer it is clear that the best algorithm is to try all possible
k 2 K and this takes |K| queries to f in the worse case.

Grover’s algorithm shows that k0 can be found on a quantum computer in only O
�

p|K|·time(f)
�

steps, where time(f) is the time to evaluate f(x). This is a very general result that holds for all
functions f of the form shown in (4.20). This can be used to speed-up general hard optimization
problems and is the “killer app” for quantum computers.

To break a block cipher like AES-128 given a few plaintext/ciphertext pairs we would define
the function:

fAES(k) =

(

1 if AES(k, m) = c

0 otherwise

128



where m = (m0, . . . , mQ) and c = (c0, . . . , cQ) are the given ciphertext blocks. Assuming enough
block are given, there is a unique key k0 2 K that satisfies AES(k, m) = c and this key can be
found in time proportional to

p|K| using Grover’s algorithm.

4.4 Pseudo-random functions: basic definitions and properties

While secure block ciphers are the building block of many cryptographic systems, a closely related
concept, called a pseudo-random function (or PRF), turns out to be the right tool in many appli-
cations. PRFs are conceptually simpler objects than block ciphers and, as we shall see, they have
a broad range of applications. PRFs and block ciphers are so closely related that we can use secure
block ciphers as a stand in for secure pseudo-random functions (under certain assumptions). This
is quite nice, because as we saw in the previous section, we have available to us a number of very
practical, and plausibly secure block ciphers.

4.4.1 Definitions

A pseudo-random function (PRF) F is a deterministic algorithm that has two inputs: a key k
and an input data block x; its output y := F (k, x) is called an output data block. As usual,
there are associated, finite spaces: the key space K, in which k lies, the input space X , in which x
lies, and the output space Y, in which y lies. We say that F is defined over (K, X , Y).

Intuitively, our notion of security for a pseudo-random function says that for a randomly chosen
key k, the function F (k, ·) should — for all practical purposes — “look like” a random function
from X to Y. To make this idea more precise, let us first introduce some notation:

Funs[X , Y]

denotes the set of all functions f : X ! Y. This is a very big set:

|Funs[X , Y]| = |Y||X |.

We also introduce an attack game:

Attack Game 4.2 (PRF). For a given PRF F , defined over (K, X , Y), and for a given adversary
A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger selects f 2 Funs[X , Y] as follows:

if b = 0: k  R K, f  F (k, ·);
if b = 1: f  R Funs[X , Y].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is an input data block xi 2 X .

The challenger computes yi  f(xi) 2 Y, and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.
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For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to F as

PRFadv[A, F ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. (4.21)

Finally, we say that A is a Q-query PRF adversary if A issues at most Q queries. 2

Definition 4.2 (secure PRF). A PRF F is secure if for all e�cient adversaries A, the value
PRFadv[A, F ] is negligible.

Again, we stress that the queries made by the challenger in Attack Game 4.2 are allowed to be
adaptive: the adversary is allowed to concoct each query in a way that depends on the previous
responses from the challenger (see Exercise 4.6).

As discussed in Section 2.3.5, Attack Game 4.2 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
PRFadv⇤[A, F ] as |Pr[b̂ = b] � 1/2|. The general result of Section 2.3.5 (namely, (2.13)) applies
here as well:

PRFadv[A, F ] = 2 · PRFadv⇤[A, F ]. (4.22)

Weakly secure PRFs. For certain constructions that use PRFs it su�ces that the PRF satisfy
a weaker security property than Definition 4.2. We say that a PRF is weakly secure if no e�cient
adversary can distinguish the PRF from a random function when its queries are severely restricted:
it can only query the function at random points in the domain. Restricting the adversary’s queries
to random inputs makes it potentially easier to build weakly secure PRFs. In Exercise 4.2 we
examine natural PRF constructions that are weakly secure, but not fully secure.

We define weakly secure PRFs by slightly modifying Attack Game 4.2. Let F be a PRF defined
over (K, X , Y). We modify the way in which an adversary A interacts with the challenger: whenever
the adversary queries the function, the challenger chooses a random x 2 X and sends both x and
f(x) to the adversary. In other words, the adversary sees evaluations of the function f at random
points in X and needs to decide whether the function is truly random or pseudorandom. We define
the adversary’s advantage in this game, denoted wPRFadv[A, F ], as in (4.21).

Definition 4.3 (weakly secure PRF). A PRF F is weakly secure if for all e�cient adver-
saries A, the value wPRFadv[A, F ] is negligible.

4.4.2 E�cient implementation of random functions

Just as in Section 4.1.2, we can implement the random function chosen from Funs[X , Y] used by
the challenger in Experiment 1 of Attack Game 4.2 by a faithful gnome. Just as in the block
cipher case, the challenger keeps track of input/output pairs (xi, yi). When the challenger receives
the ith query xi, he tests whether xi = xj for some j < i; if so, he sets yi  yj (this ensures that
the challenger implements of function); otherwise, he chooses yi at random from the set Y; finally,
he sends yi to the adversary. We can write the logic of this implementation of the challenger as
follows:

130



upon receiving the ith query xi 2 X from A do:
if xi = xj for some j < i

then yi  yj
else yi  R Y

send yi to A.

4.4.3 When is a secure block cipher a secure PRF?

In this section, we ask the question: when is a secure block cipher a secure PRF? In answering this
question, we introduce a proof technique that is used heavily throughout cryptography.

Let E = (E, D) be a block cipher defined over (K, X ), and let N := |X |. We may naturally
view E as a PRF, defined over (K, X , X ). Now suppose that E is a secure block cipher; that is,
no e�cient adversary can e↵ectively distinguish E from a random permutation. Does this imply
that E is also a secure PRF? That is, does this imply that no e�cient adversary can e↵ectively
distinguish E from a random function?

The answer to this question is “yes,” provided N is super-poly. Before arguing this, let us argue
that the answer is “no” when N is small.

Consider a PRF adversary playing Attack Game 4.2 with respect to E. Let f be the function
chosen by the challenger: in Experiment 0, f = E(k, ·) for random k 2 K, while in Experiment 1,
f is randomly chosen from Funs[X , X ]. Suppose that N is so small that an e�cient adversary can
a↵ord to obtain the value of f(x) for all x 2 X . Moreover, our adversary A outputs 1 if it sees that
f(x) = f(x0) for two distinct values x, x0 2 X , and outputs 0 otherwise. Clearly, in Experiment 0, A
outputs 1 with probability 0, since E(k, ·) is a permutation. However, in Experiment 1, A outputs
1 with probability 1�N !/NN � 1/2. Thus, PRFadv[A, E] � 1/2, and so E is not a secure PRF.

The above argument can be refined using the Birthday Paradox (see Section B.1). For any poly-
bounded Q, we can define an e�cient PRF adversary A that plays Attack Game 4.2 with respect
to E, as follows. Adversary A simply makes Q distinct queries to its challenger, and outputs 1 i↵
it sees that f(x) = f(x0) for two distinct values x, x0 2 X (from among the Q values given to the
challenger). Again, in Experiment 0, A outputs 1 with probability 0; however, by Theorem B.1, in
Experiment 1, A outputs 1 with probability at least min

�

Q(Q � 1)
�

4N, 0.63
 

. Thus, by making

just O(N1/2) queries, an adversary can easily see that a permutation does not behave like a random
function.

It turns out that the “birthday attack” is about the best that any adversary can do, and when
N is super-poly, this attack becomes infeasible:

Theorem 4.4 (PRF Switching Lemma). Let E = (E, D) be a block cipher defined over (K, X ),
and let N := |X |. Let A be an adversary that makes at most Q queries to its challenger. Then

�

�

�

BCadv[A, E ]� PRFadv[A, E]
�

�

�

 Q2/2N.

Before proving this theorem, we derive the following simple corollary:

Corollary 4.5. Let E = (E, D) be a block cipher defined over (K, X ), and assume that N := |X |
is super-poly. Then E is a secure block cipher if and only if E is a secure PRF.
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Proof. By definition, if A is an e�cient adversary, the maximum number of queries Q it makes to
its challenger is poly-bounded. Therefore, by Theorem 4.4, we have

�

�

�

BCadv[A, E ]� PRFadv[A, E]
�

�

�

 Q2/2N

Since N is super-poly and Q is poly-bounded, the value Q2/2N is negligible (see Fact 2.6). It
follows that BCadv[A, E ] is negligible if and only if PRFadv[A, E] is negligible. 2

Actually, the proof of Theorem 4.4 has nothing to do with block ciphers and PRFs — it is
really an argument concerning random permutations and random functions. Let us define a new
attack game that tests an adversary’s ability to distinguish a random permutation from a random
function.

Attack Game 4.3 (permutation vs. function). For a given finite set X , and for a given
adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• The challenger selects f 2 Funs[X , X ] as follows:

if b = 0: f  R Perms[X ];
if b = 1: f  R Funs[X , X ].

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is an input data block xi 2 X .

The challenger computes yi  f(xi) 2 Y, and gives yi to the adversary.

• The adversary computes and outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to X as

PFadv[A, X ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Theorem 4.6. Let X be a finite set of size N . Let A be an adversary that makes at most Q queries
to its challenger. Then

PFadv[A, X ]  Q2/2N.

We first show that the above theorem easily implies Theorem 4.4:

Proof of Theorem 4.4. Let E = (E, D) be a block cipher defined over (K, X ). Let A be an adversary
that makes at most Q queries to its challenger. We define Games 0, 1, and 2, played between A
and a challenger. For j = 0, 1, 2, we define pj to be the probability that A outputs 1 in Game j.
In each game, the challenger chooses a function f : X ! X according to a particular distribution,
and responds to each query x 2 X made by A with the value f(x).

Game 0: The challenger in this game chooses f := E(k, ·), where k 2 K is chosen at random.

Game 1: The challenger in this game chooses f 2 Perms[X ] at random.

Game 2: The challenger in this game chooses f 2 Funs[X , X ] at random.
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Observe that by definition,
|p1 � p0| = BCadv[A, E ],

|p2 � p0| = PRFadv[A, E],

and that by Theorem 4.6,
|p2 � p1| = PFadv[A, X ]  Q2/2N.

Putting these together, we get

�

�BCadv[A, E ]� PRFadv[A, E]
�

� =
�

�|p1 � p0|� |p2 � p0|
�

�  |p2 � p1|  Q2/2N,

which proves the theorem. 2

So it remains to prove Theorem 4.6. Before doing so, we state and prove a very simple, but
extremely useful fact:

Theorem 4.7 (Di↵erence Lemma). Let Z, W0, W1 be events defined over some probability space.
Suppose that W0 ^ Z̄ occurs if and only if W1 ^ Z̄ occurs. Then we have

|Pr[W0]� Pr[W1]|  Pr[Z].

Proof. This is a simple calculation. We have

|Pr[W0]� Pr[W1]| = |Pr[W0 ^ Z] + Pr[W0 ^ Z̄]� Pr[W1 ^ Z]� Pr[W1 ^ Z̄]|
= |Pr[W0 ^ Z]� Pr[W1 ^ Z]|
 Pr[Z].

The second equality follows from the assumption that W0 ^ Z̄ () W1 ^ Z̄, and so in particular,
Pr[W0 ^ Z̄] = Pr[W1 ^ Z̄]. The final inequality follows from the fact that both Pr[W0 ^ Z] and
Pr[W1 ^ Z] are numbers between 0 and Pr[Z]. 2

In most of our applications of the Di↵erence Lemma, W0 will represent the event that a given
adversary outputs 1 in some game against a certain challenger, while W1 will be the event that the
same adversary outputs 1 in a game played against a di↵erent challenger. To apply the Di↵erence
Lemma, we define these two games so that they both operate on the same underlying probability
space. This means that we view the random choices made by both the adversary and the challenger
as the same in both games — all that di↵ers between the two games is the rule used by the challenger
to compute its responses to the adversary’s queries.

Proof of Theorem 4.6. Consider an adversary A that plays Attack Game 4.3 with respect to
X , where N := |X |, and assume that A makes at most Q queries to the challenger. Consider
Experiment 0 of this attack game. Using the “faithful gnome” idea discussed in Section 4.4.2,
we can implement Experiment 0 by keeping track of input/output pairs (xi, yi); moreover, it will
be convenient to choose initial “default” values zi for yi, where the values z1, . . . , zQ are chosen
uniformly and independently at random from X ; these “default” values are over-ridden, if necessary,
to ensure the challenger defines a random permutation. Here are the details:
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z1, . . . , zQ  R X
upon receiving the ith query xi from A do:

if xi = xj for some j < i then
yi  yj

else
yi  zi

(⇤) if yi 2 {y1, . . . , yi�1} then yi  R X \ {y1, . . . , yi�1}
send yi to A.

The line marked (⇤) tests if the default value zi needs to be over-ridden to ensure that no output
is for two distinct inputs.

Let W0 be the event that A outputs 1 in this game, which we call Game 0.
We now obtain a di↵erent game by modifying the above implementation of the challenger:

z1, . . . , zQ  R X
upon receiving the ith query xi from A do:

if xi = xj for some j < i then
yi  yj

else
yi  zi

send yi to A.

All we have done is dropped line marked (⇤) in the original challenger: our “faithful gnome”
becomes a “forgetful gnome,” and simply forgets to make the output consistency check.

Let W1 be the event that A outputs 1 in the game played against this modified challenger,
which we call Game 1.

Observe that Game 1 is equivalent to Experiment 1 of Attack Game 4.3; in particular, Pr[W1]
is equal to the probability that A outputs 1 in Experiment 1 of Attack Game 4.3. Therefore, we
have

PFadv[A, X ] = |Pr[W0]� Pr[W1]|.
We now want to apply the Di↵erence Lemma. To do this, both games are understood to operate

on the same underlying probability space. All of the random choices made by the adversary and
challenger are the same in both games — all that di↵ers is the rule used by the challenger to
compute its responses. In particular, this means that the random choices made by A, as well as the
values z1, . . . , zQ chosen by the challenger, not only have identical distributions, but are literally
the same values in both games.

Define Z to be the event that zi = zj for some i 6= j. Now suppose we run Game 0 and
Game 1, and event Z does not occur. This means that the zi values are all distinct. Now, since
the adversary’s random choices are the same in both games, its first query in both games is the
same, and therefore the challenger’s response is the same in both games. The adversary’s second
query (which is a function of its random choices and the challenger’s first response) is the same in
both games. By the assumption that Z does not occur, the challenger’s response is the same in
both games. Continuing this argument, one sees that each of the adversary’s queries and each of
the challenger’s responses are the same in both games, and therefore the adversary’s output is the

134



same in both games. Thus, if Z does not occur and the adversary outputs 1 in Game 0, then the
adversary also outputs 1 in Game 1. Likewise, if Z does not occur and the adversary outputs 1 in
Game 1, then the adversary outputs 1 in Game 0. More succinctly, we have W0 ^ Z̄ occurs if and
only if W1 ^ Z̄ occurs. So the Di↵erence Lemma applies, and we obtain

|Pr[W0]� Pr[W1]|  Pr[Z].

It remains to bound Pr[Z]. However, this follows from the union bound: for each pair (i, j) of
distinct indices, Pr[zi = zj ] = 1/N , and as there are less than Q2/2 such pairs, we have

Pr[Z]  Q2/2N.

That proves the theorem. 2

While there are other strategies one might use to prove the previous theorem (see Exercise 4.24),
the forgetful gnome technique that we used in the above proof is very useful and we will see it
again many times in the sequel.

4.4.4 Constructing PRGs from PRFs

It is easy to construct a PRG from a PRF. Let F be a PRF defined over (K, X , Y), let ` � 1 be
a poly-bounded value, and let x1, . . . , x` be any fixed, distinct elements of X (this requires that
|X | � `). We define a PRG G with seed space K and output space Y`, as follows: for k 2 K,

G(k) := (F (k, x1), . . . , F (k, x`)).

Theorem 4.8. If F is a secure PRF, then the PRG G described above is a secure PRG.

In particular, for very PRG adversary A that plays Attack Game 3.1 with respect to G, there
is a PRF adversary B that plays Attack Game 4.2 with respect to F , where B is an elementary
wrapper around A, such that

PRGadv[A, G] = PRFadv[B, F ].

Proof. Let A be an e�cient PRG adversary that plays Attack Game 3.1 with respect to G. We
describe a corresponding PRF adversary B that plays Attack Game 4.2 with respect to F . Adversary
B works as follows:

B queries its challenger at x1, . . . , x`, obtaining responses y1, . . . , y`. Adversary B then
plays the role of challenger to A, giving A the value (y1, . . . , y`). Adversary B outputs
whatever A outputs.

It is obvious from the construction that for b = 0, 1, the probability that B outputs 1 in
Experiment b of Attack Game 4.2 with respect to F is precisely equal to the probability that
A outputs 1 in Experiment b of Attack Game 3.1 with respect to G. The theorem then follows
immediately. 2
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Deterministic counter mode

The above construction gives us another way to build a semantically secure cipher out of a secure
block cipher. Suppose E = (E, D) is a block cipher defined over (K, X ), where X = {0, 1}n. Let
N := |X | = 2n. Assume that N is super-poly and that E is a secure block cipher. Then by
Theorem 4.4, the encryption function E is a secure PRF (defined over (K, X , X )). We can then
apply Theorem 4.8 to E to obtain a secure PRG, and finally apply Theorem 3.1 to this PRG to
obtain a semantically secure stream cipher.

Let us consider this stream cipher in detail. This cipher E 0 = (E0, D0) has key space K, and
message and ciphertext space X`, where ` is a poly-bounded value, and in particular, `  N . We
can define x1, . . . , x` to be any convenient elements of X ; in particular, we can define xi to be the
n-bit binary encoding of i� 1, which we denote hi� 1in. Encryption and decryption for E 0 work as
follows.

• For k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
�

E(k, h0in)�m[0], . . . , E(k, hv � 1in)�m[v � 1]
�

.

• For k 2 K and c 2 X`, with v := |c|, we define

D0(k, c) :=
�

E(k, h0in)� c[0], . . . , E(k, hv � 1in)� c[v � 1]
�

.

This mode of operation of operation of a block cipher is called deterministic counter mode.
It is illustrated in Fig. 4.13. Notice that unlike ECB mode, the decryption algorithm D is never
used. Putting together Theorems 4.4, 4.8, and 3.1, we see that cipher E 0 is semantically secure; in
particular, for any e�cient SS adversary A, there exists an e�cient BC adversary B such that

SSadv[A, E 0]  2 · BCadv[B, E ] + `2/N. (4.23)

Clearly, deterministic counter mode has the advantage over ECB mode that it is semantically
secure without making any restrictions on the message space. The only disadvantage is that security
might degrade significantly for very long messages, because of the `2/N term in (4.23). Indeed,
it is essential that `2/2N is very small. Consider the following attack on E 0. Set m0 to be the
message consisting of ` zero blocks, and set m1 to be a message consisting of ` random blocks. If
the challenger in Attack Game 2.1 encrypts m0 using E0, then the ciphertext will not contain any
duplicate blocks. However, by the birthday paradox (see Theorem B.1), if the challenger encrypts
m1, the ciphertext will contain duplicate blocks with probability at least min

�

`(`�1)
�

4N, 0.63
 

. So
the adversary A that constructs m0 and m1 in this way, and outputs 1 if and only if the ciphertext
contains duplicate blocks, has an advantage that grows quadratically in `, and is non-negligible for
` ⇡ N1/2.

4.4.5 Mathematical details

As usual, we give a more mathematically precise definition of a PRF, using the terminology defined
in Section 2.4.

Definition 4.4 (pseudo-random function). A pseudo-random function consists of an algo-
rithm F , along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, X = {X�,⇤}�,⇤, and Y = {Y�,⇤}�,⇤,
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E(k, ·) E(k, ·)E(k, ·) · · ·

m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]

(a) encryption

(b) decryption

h0in h1in hv � 1in

� � �

E(k, ·) E(k, ·)E(k, ·) · · ·

m[0] m[1] m[v � 1]

c[v � 1]c[0] c[1]
h0in h1in hv � 1in

� � �

Figure 4.13: Encryption and decryption for deterministic counter mode
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such that

1. K, X, and Y are e�ciently recognizable.

2. K and Y are e�ciently sampleable.

3. Algorithm F is a deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)), k 2 K�,⇤,
and x 2 X�,⇤, runs in time bounded by a polynomial in �, and outputs an element of Y�,⇤.

As usual, in defining security, the attack game is parameterized by security and system param-
eters, and the advantage is a function of the security parameter.

4.5 Constructing block ciphers from PRFs

In this section, we show how to construct a secure block cipher from any secure PRF whose output
space and input space is {0, 1}n, where 2n is super-poly. The construction is called the Luby-Racko↵
construction (after its inventors). The result itself is mainly of theoretical interest, as block ciphers
that are used in practice have a more ad hoc design; however, the result is sometimes seen as a
justification for the design of some practical block ciphers as Feistel networks (see Section 4.2.1).

Let F be a PRF, defined over (K, X , X ), where X = {0, 1}n. We describe a block cipher
E = (E, D) whose key space is K3, and whose data block space is X 2.

Given a key (k1, k2, k3) 2 K3 and a data block (u, v) 2 X 2, the encryption algorithm E runs as
follows:

w  u� F (k1, v)
x v � F (k2, w)
y  w � F (k3, x)
output (x, y).

Given a key (k1, k2, k3) 2 K3 and an data block (x, y) 2 X 2, the decryption algorithm D runs as
follows:

w  y � F (k3, x)
v  x� F (k2, w)
u w � F (k1, v)
output (u, v).

See Fig. 4.14 for an illustration of E .
It is easy to see that E is a block cipher. It is useful to see algorithm E as consisting of 3

“rounds.” For k 2 K, let us define the “round function”

�k : X 2 ! X 2

(a, b) 7! (b, a� F (k, b)).

It is easy to see that for any fixed k, the function �k is a permutation on X 2; indeed, if �(a, b) :=
(b, a), then

��1
k = � � �k � �.

Moreover, we see that
E((k1, k2, k3), ·) = �k3 � �k2 � �k1

and
D((k1, k2, k3), ·) = ��1

k1
� ��1

k2
� ��1

k3
= � � �k1 � �k2 � �k3 � �.
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Figure 4.14: Encryption and decryption with Luby-Racko↵
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Theorem 4.9. If F is a secure PRF and N := |X | = 2n is super-poly, then the Luby-Racko↵
cipher E = (E, D) constructed from F is a secure block cipher.

In particular, for every Q-query BC adversary A that attacks E as in Attack Game 4.1, there
exists a PRF adversary B that plays Attack Game 4.2 with respect to F , where B is an elementary
wrapper around A, such that

BCadv[A, E ]  3 · PRFadv[B, F ] +
Q2

N
+

Q2

2N2
.

Proof idea. By Corollary 4.5, and the assumption that N is super-poly, it su�ces to show that E
is a secure PRF. So we want to show that if an adversary is playing in Experiment 0 of Attack
Game 4.2 with respect to E, the challenger’s responses e↵ectively “look like” completely random
bit strings. We may assume that the adversary never makes the same query twice. Moreover, as F
is a PRF, we can replace F (k1, ·), F (k2, ·), and F (k3, ·) by truly random functions, f1, f2, and f3,
and the adversary should hardly notice the di↵erence.

So now, given a query (ui, vi), the challenger computes its response (xi, yi) as follows:

wi  ui � f1(vi)
xi  vi � f2(wi)
yi  wi � f3(xi).

A rough, intuitive argument goes like this. Suppose that no two wi values are the same. Then
all of the outputs of f2 will be random and independent. From this, we can argue that the xi’s are
also random and independent. Then from this, it will follow that except with negligible probability,
the inputs to f3 will be distinct. From this, we can conclude that the yi’s are essentially random
and independent.

So we will be in good shape if we can show that all of the wi’s are distinct. But the wi’s are
obtained indirectly from the random function f1, and so with some care, one can indeed argue that
the wi will be distinct, except with negligible probability. 2

Proof. Let A be an e�cient BC adversary that plays Attack Game 4.1 with respect to E , and which
makes at most Q queries to its challenger. We want to show that BCadv[A, E ] is negligible. To do
this, we first show that PRFadv[A, E] is negligible, and the result will then follow from the PRF
Switching Lemma (i.e., Theorem 4.4) and the assumption that N is super-poly.

To simplify things a bit, we replace A with an adversary A0 with the following properties:

• A0 always makes exactly Q queries to its challenger;

• A0 never makes the same query more than once;

• A0 is just as e�cient as A (more precisely, A0 is an elementary wrapper around A);

• PRFadv[A0, E] = PRFadv[A, E].

Adversary A0 simply runs the same protocol as A; however, it keeps a table of query/response
pairs so as to avoid making duplicate queries; moreover, it “pads” the execution of A if necessary,
so as to make exactly Q queries.

The overall strategy of the proof is as follows. First, we define Game 0 to be the game played
between A0 and the challenger of Experiment 0 of Attack Game 4.2 with respect to E. We then
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define several more games: Game 1, Game 2, and Game 3. Each of these games is played between
A0 and a di↵erent challenger; moreover, the challenger in Game 3 is equivalent to the challenger
of Experiment 1 of Attack Game 4.2. Also, for j = 0, . . . , 3, we define Wj to be the event that
A0 outputs 1 in Game j. We will show that for j = 1, . . . , 3 that the value |Pr[Wj ]� Pr[Wj�1]| is
negligible, from which it will follow that

|Pr[W3]� Pr[W0]| = PRFadv[A0, E]

is also negligible.

Game 0. Let us begin by giving a detailed description of the challenger in Game 0 that is convenient
for our purposes:

k1, k2, k3  R K
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � F (k1, vi)
xi  vi � F (k2, wi)
yi  wi � F (k3, xi)
send (xi, yi) to the adversary.

Recall that the adversary A0 is guaranteed to always make Q distinct queries (u1, v1), . . . , (uQ, vQ);
that is, the (ui, vi) values are distinct as pairs, so that for i 6= j, we may have ui = uj or vi = vj ,
but not both.

Game 1. We next play the “PRF card,” replacing the three functions F (k1, ·), F (k2, ·), F (k3, ·) by
truly random functions f1, f2, f3. Intuitively, since F is a secure PRF, the adversary A0 should not
notice the di↵erence. Our challenger in Game 1 thus works as follows:

f1, f2, f3  R Funs[X , X ]

upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:
wi  ui � f1(vi)
xi  vi � f2(wi)
yi  wi � f3(xi)
send (xi, yi) to the adversary.

As discussed in Exercise 4.26, we can model the three PRFs F (k1, ·), F (k2, ·), F (k3, ·) as a single
PRF F 0, called the 3-wise parallel composition of F : the PRF F 0 is defined over (K3, {1, 2, 3} ⇥
X , X ), and F 0((k1, k2, k3), (s, x)) := F (ks, x). We can easily construct an adversary B0, just as
e�cient as A0, such that

|Pr[W1]� Pr[W0]| = PRFadv[B0, F 0]. (4.24)

Adversary B0 simply runs A0 and outputs whatever A0 outputs; when A0 queries its challenger
with a pair (ui, vi), adversary B0 computes the response (xi, yi) for A0 by computing

wi  ui � f 0(1, vi)
xi  vi � f 0(2, wi)
yi  wi � f 0(3, xi).

Here, the f 0 denotes the function chosen by B0’s challenger in Attack Game 4.2 with respect to F 0.
It is clear that B0 outputs 1 with probability Pr[W0] in Experiment 0 of that attack game, while it
outputs 1 with probability Pr[W1] in Experiment 1, from which (4.24) follows.
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By Exercise 4.26, there exists an adversary B, just as e�cient as B0, such that

PRFadv[B0, F 0] = 3 · PRFadv[B, F ]. (4.25)

Game 2. We next make a purely conceptual change: we implement the random functions f2 and
f3 using the “faithful gnome” idea discussed in Section 4.4.2. This is not done for e�ciency, but
rather, to set us up so as to be able to make (and easily analyze) a more substantive modification
later, in Game 3. Our challenger in this game works as follows:

f1  R Funs[X , X ]
X1, . . . , XQ  R X
Y1, . . . , YQ  R X
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � f1(vi)

x0
i  Xi; if wi = wj for some j < i then x0

i  x0
j ; xi  vi � x0

i

y0i  Yi; if xi = xj for some j < i then y0i  y0j ; yi  wi � y0i
send (xi, yi) to the adversary.

The idea is that the value x0
i represents f2(wi). By default, x0

i is equal to the random value Xi;
however, the boxed code over-rides this default value if wi is the same as wj for some j < i.
Similarly, the value y0i represents f3(xi). By default, y0i is equal to the random value Yi, and the
boxed code over-rides the default if necessary.

Since the challenger in Game 2 completely equivalent to that of Game 1, we have

Pr[W2] = Pr[W1]. (4.26)

Game 3. We now employ the “forgetful gnome” technique, which we already saw in the proof
of Theorem 4.6. The idea is to simply eliminate the consistency checks made by the challenger in
Game 2. Here is the logic of the challenger in Game 3:

f1  R Funs[X , X ]
X1, . . . , XQ  R X
Y1, . . . , YQ  R X
upon receiving the ith query (ui, vi) 2 X 2 (for i = 1, . . . , Q) do:

wi  ui � f1(vi)
x0
i  Xi; xi  vi � x0

i
y0i  Yi; yi  wi � y0i
send (xi, yi) to the adversary.

Note that this description is literally the same as the description of the challenger in Game 2,
except that we have simply erased the underlined code in the latter.

For the purposes of analysis, we view Games 2 and 3 as operating on the same underlying
probability space. This probability space is determined by

• the random choices made by the adversary, which we denote by Coins, and

• the random choices made by the challenger, namely, f1, X1, . . . , XQ, and Y1, . . . , YQ.

What di↵ers between the two games is the rule that the challenger uses to compute its responses
to the queries made by the adversary.
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Claim 1: in Game 3, the random variables Coins, f1, x1, y1, . . . , xQ, yQ are mutually independent.
To prove this claim, observe that by construction, the random variables

Coins , f1, X1, . . . , XQ, Y1, . . . , YQ

are mutually independent. Now condition on any fixed values of Coins and f1. The first query
(u1, v1) is now fixed, and hence so is w1; however, in this conditional probability space, X1 and Y1

are still uniformly and independently distributed over X , and so x1 and y1 are also uniformly and
independently distributed. One continues the argument, conditioning on fixed values of x1, y1 (in
addition to fixed values of Coins and f1), observing that now u2, v2, and w2 are also fixed, and that
x2 and y2 are uniformly and independently distributed. It should be clear how the claim follows
by induction.

Let Z1 be the event that wi = wj for some i 6= j in Game 3. Let Z2 be the event that xi = xj

for some i 6= j in Game 3. Let Z := Z1 _ Z2. Note that the event Z is defined in terms of the
variables wi and xi values in Game 3. Indeed, the variables wi and zi may not be computed in the
same way in Games 2 and 3, and so we have explicitly defined the event Z in terms of their values
in Game 3. Nevertheless, it is straightforward to see that Games 2 and 3 proceed identically if Z
does not occur. In particular:

Claim 2: the event W2 ^ Z̄ occurs if and only if the event W3 ^ Z̄ occurs. To prove this claim,
consider any fixed values of the variables

Coins , f1, X1, . . . , XQ, Y1, . . . , YQ

for which Z does not occur. It will su�ce to show that the output of A0 is the same in both
Games 2 and 3. Since the query (u1, v1) depends only on Coins , we see that the variables u1, v1,
and hence also w1, x1, y1 have the same values in both games. Since the query (u2, v2) depends
only on Coins and (x1, y1), it follows that the variables u2, v2 and hence w2 have the same values
in both games; since Z does not occur, we see w2 6= w1 and hence the variable x2 has the same
value in both games; again, since Z does not occur, it follows that x2 6= x1, and hence the variable
y2 has the same value in both games. Continuing this argument, we see that for i = 1, . . . , Q, the
variables ui, vi, wi, xi, yi have the same values in both games. Since the output of A0 is a function
of these variables and Coins , the output is the same in both games. That proves the claim.

Claim 2, together with the Di↵erence Lemma (i.e., Theorem 4.7) and the Union Bound, implies

|Pr[W3]� Pr[W2]|  Pr[Z]  Pr[Z1] + Pr[Z2]. (4.27)

By the fact that x1, . . . , xQ are mutually independent (see Claim 1), it is obvious that

Pr[Z2]  Q2

2
· 1

N
, (4.28)

since Z2 is the union of less than Q2/2 events, each of which occurs with probability 1/N .

Let us now analyze the event Z1. We claim that

Pr[Z1]  Q2

2
· 1

N
. (4.29)
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To prove this, it su�ces to prove it conditioned on any fixed values of Coins, x1, y1, . . . , xQ, yQ.
If these values are fixed, then so are u1, v1, . . . , uQ, vQ. However, by independence (see Claim 1),
the variable f1 is still uniformly distributed over Funs[X , X ] in this conditional probability space.
Now consider any fixed pair of indices i, j, with i 6= j. Suppose first that vi = vj . Then since A0

never makes the same query twice, we must have ui 6= uj , and it is easy to see that wi 6= wj for
any choice of f1. Next suppose that vi 6= vj . Then the values f1(vi) and f2(vj) are uniformly and
independently distributed over X in this conditional probability space, and

Pr[f1(vi)� f1(vj) = ui � uj ] =
1

N

in this conditional probability space.
Thus, we have shown that in Game 3, for all pairs i, j with i 6= j,

Pr[wi = wj ]  1

N

The inequality (4.29) follows from the Union Bound.

As another consequence of Claim 1, we observe that Game 3 is equivalent to Experiment 1 of
Attack Game 4.2 with respect to E. From this, together with (4.24), (4.25), (4.26), (4.27), (4.28),
and (4.29), we conclude that

PRFadv[A0, E]  3 · PRFadv[B, F ] +
Q2

N
.

Finally, applying Theorem 4.4 to the cipher E , whose data block space has size N2, we have

BCadv[A, E ]  3 · PRFadv[B, F ] +
Q2

N
+

Q2

2N2
.

That concludes the proof of the theorem. 2

4.6 The tree construction: from PRGs to PRFs

It turns out that given a suitable, secure PRG, one can construct a secure PRF with a technique
called the tree construction. Combining this result with the Luby-Racko↵ construction in Sec-
tion 4.5, we see that from any secure PRG, we can construct a secure block cipher. While this
result is of some theoretical interest, the construction is not very e�cient, and is not really used
in practice. However, we note that a simple generalization of this construction plays an important
role in practical schemes for message authentication; we shall discuss this in Section 6.4.2.

Our starting point is a PRG G defined over (S, S2); that is, the seed space is a set S, and the
output space is the set S2 of all seed pairs. For example, G might stretch n-bit strings to 2n-bit
strings.2 It will be convenient to write G(s) = (G0(s), G1(s)); that is, G0(s) 2 S denotes the first
component of G(s) and G1(s) denotes the second component of G(s). From G, we shall build a
PRF F with key space S, input space {0, 1}` (where ` is an arbitrary, poly-bounded value), and
output space S.

Let us first define the algorithm G⇤, that takes as input s 2 S and x = (a1, . . . , an) 2 {0, 1}⇤,
where ai 2 {0, 1} for i = 1, . . . , n, and outputs an element t 2 S, computed as follows:

2Indeed, we could even start with a PRG that stretches n bit strings to (n + 1)-bit strings, and then apply the
n-wise sequential construction analyzed in Theorem 3.3 to obtain a suitable G.
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Figure 4.15: Evaluation tree for ` = 3. The highlighted path corresponds to the input x = 101.
The root is shaded to indicate it is assigned a random label. All other nodes are assigned derived
labels.

t s
for i 1 to n do

t Ga
i

(t)
output t.

For s 2 S and x 2 {0, 1}`, we define

F (s, x) := G⇤(s, x).

We shall call the PRF F derived from G in this way the tree construction.
It is useful to envision the bits of an input x 2 {0, 1}` as tracing out a path through a complete

binary tree of height ` and with 2` leaves, which we call the evaluation tree: a bit value of 0
means branch left and a bit value of 1 means branch right. In this way, any node in the tree can
be uniquely addressed by a bit string of length at most `; strings of length j  ` address nodes
at level j in the tree: the empty string addresses the root (which is at level 0), strings of length 1
address the children of the root (which are at level 1), etc. The nodes in the evaluation tree are
labeled with elements of S, using the following rule:

• the root of the tree is labeled with s;

• the label of any other node is derived from the label t of its parent as follows: if the node is
a left child, its label is G0(t), and if the node is a right child, its label is G1(t).

The value of the F (s, x) is then the label on the leaf addressed by x. See Fig. 4.15.

Theorem 4.10. If G is a secure PRG, then the PRF F obtained from G using the tree construction
is a secure PRF.

In particular, for every PRF adversary A that plays Attack Game 4.2 with respect to F , and
which makes at most Q queries to its challenger, there exists a PRG adversary B that plays
Attack Game 3.1 with respect to G, where B is an elementary wrapper around A, such that

PRFadv[A, F ] = `Q · PRGadv[B, G].
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Figure 4.16: Evaluation tree for Hybrid 2 with ` = 4. The shaded nodes are assigned random
labels, while the unshaded nodes are assigned derived labels. The highlighted paths correspond to
inputs 0000, 0011, 1010, and 1111.

Proof idea. The basic idea of the proof is a hybrid argument. We build a sequence of games,
Hybrid 0, . . . , Hybrid `. Each of these games is played between a given PRF adversary, attacking
F , and a challenger whose behavior is slightly di↵erent in each game. In Hybrid j, the challenger
builds an evaluation tree whose nodes are labeled as follows:

• nodes at levels 0 through j are assigned random labels;

• the nodes at levels j + 1 through ` are assigned derived labels.

In response to a query x 2 {0, 1}` in Hybrid j, the challenger sends to the adversary the label of
the leaf addressed by x. See Fig. 4.16

Clearly, Hybrid 0 is equivalent to Experiment 0 of Attack Game 4.2, while Hybrid ` is equivalent
to Experiment 1. Intuitively, under the assumption that G is a secure PRG, the adversary should
not be able to tell the di↵erence between Hybrids j and j + 1 for j = 0, . . . , `� 1. In making this
intuition rigorous, we have to be a bit careful: the evaluation tree is huge, and to build an e�cient
PRG adversary that attacks G, we cannot a↵ord to write down the entire tree (or even one level
of the tree). Instead, we use the fact that if the PRF adversary makes at most Q queries to its
challenger (which is a poly-bounded value), then at any level j in the evaluation tree, the paths
traced out by these Q queries touch at most Q nodes at level j (in Fig. 4.16, these would be the
first, third, and fourth nodes at level 2 for the given inputs). The PRG adversary we construct
will use a variation of the faithful gnome idea to e↵ectively maintain the relevant random labels at
level j, as needed. 2

Proof. Let A be an e�cient adversary that plays Attack Game 4.2 with respect to F . Let us assume
that A makes at most a poly-bounded number Q of queries to the challenger.

As discussed above, we define `+1 hybrid games, Hybrid 0, . . . , Hybrid `, each played between
A and a challenger. In Hybrid j, the challenger works as follows:
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f  R Funs[{0, 1}j , S]

upon receiving a query x = (a1, . . . , a`) 2 {0, 1}` from A do:
u (a1, . . . , aj), v  (aj+1, . . . , `)
y  G⇤(f(u), v)
send y to A.

Intuitively, for u 2 {0, 1}j , f(u) represents the random label at the node at level j addressed by
u. Thus, each node at level j is assigned a random label, while nodes at levels j + 1 through `
are assigned derived labels. Note that in our description of this game, we do not explicitly assign
labels to nodes at levels 0 through j � 1, as these labels do not a↵ect any outputs.

For j = 0, . . . , `, let pj be the probability that A outputs 1 in Hybrid j. As Hybrid 0 is equivalent
to Experiment 0 of Attack Game 4.2, and Hybrid ` is equivalent to Experiment 1, we have:

PRFadv[A, F ] = |p` � p0|. (4.30)

Let G0 denote the Q-wise parallel composition of G, which we discussed in Section 3.4.1. G0

takes as input (s1, . . . , sQ) 2 SQ and outputs (G(s1), . . . , G(sQ)) 2 (S2)Q. By Theorem 3.2, if G is
a secure PRF, then so is G0.

We now build an e�cient PRG adversary B0 that attacks G0, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|. (4.31)

We first give an overview of how B0 works. In playing Attack Game 4.2 with respect to G0, the
challenger presents to B0 a vector

~r = ((r10, r11), . . . , (rQ0, rQ1)) 2 (S2)Q. (4.32)

In Experiment 0 of the attack game, ~r = G(~s) for random ~s 2 SQ, while in Experiment 1, ~r is
randomly chosen from (S2)Q. To distinguish these two experiments, B0 plays the role of challenger
to A by choosing ! 2 {1, . . . , `} at random, and uses the elements of ~r to label nodes at level ! of
the evaluation tree in a consistent fashion. To do this, B0 maintains a lookup table, which allows it
to associate with each prefix u 2 {0, 1}!�1 of some query x 2 {0, 1}` an index p, so that the children
of the node addressed by u are labeled by the seed pair (rp0, rp1). Finally, when A terminates and
outputs a bit, B0 outputs the same bit. As will be evident from the details of the construction of
B0, conditioned on ! = j for any fixed j = 1, . . . , `, the probability that B0 outputs 1 is:

• pj�1, if B0 is in Experiment 0 of its attack game, and

• pj , if B0 is in Experiment 1 of its attack game.

Then by the usual telescoping sum calculation, we get (4.31).
Now the details. We implement our lookup table as an associative array Map : {0, 1}⇤ ! Z>0.

Here is the logic for B0:

upon receiving ~r as in (4.32) from its challenger, B0 plays the role of challenger to A, as
follows:
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!  R {1, . . . , `}
initialize an empty associative array Map : {0, 1}⇤ ! Z>0

ctr  0
upon receiving a query x = (a1, . . . , a`) 2 {0, 1}` from A do:

u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , a`)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)
send y to A.

Finally, B0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B0 outputs 1 in Experiment b of Attack Game 4.2 with
respect to G0. We claim that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B0 labels nodes in the evaluation tree. On
the one hand, when B0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels
to nodes at level j, and the lookup table ensures that this is done consistently. On the other hand,
when B0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to nodes
at level j, which is the same as assigning random labels to the parents of these nodes at level j� 1,
and assigning derived labels at level j; again, the lookup table ensures a consistent labeling.

From the above claim, equation (4.31) now follows by a familiar, telescoping sum calculation:

PRGadv[B0, G0] = |Pr[W1]� Pr[W0]|
1

`
·
�

�

�

X̀

j=1

Pr[W1 | ! = j]�
X̀

j=1

Pr[W0 | ! = j]
�

�

�

=
1

`
·
�

�

�

X̀

j=1

pj �
X̀

j=1

pj�1

�

�

�

=
1

`
· |p` � p0|.

Finally, by Theorem 3.2, there exists an e�cient PRG adversary B such that

PRGadv[B0, G0] = Q · PRGadv[B, G]. (4.33)

The theorem now follows by combining equations (4.30), (4.31), and (4.33). 2

4.6.1 Variable length tree construction

It is natural to consider how the tree construction works on variable length inputs. Again, let G
be a PRG defined over (S, S2), and let G⇤ be as defined above. For any poly-bounded value ` we
define the PRF F̃ , with key space S, input space {0, 1}`, and output space S, as follows: for s 2 S
and x 2 {0, 1}`, we define

F̃ (s, x) = G⇤(s, x).
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Unfortunately, F̃ is not a secure PRF. The reason is that there is a trivial extension attack.
Suppose u, v 2 {0, 1}` such that u is a proper prefix of v; that is, v = u k w for some non-empty
string w. Then given u and v, along with y := F̃ (s, u), we can easily compute F (s, v) as G⇤(y, w).
Of course, for a truly random function, we could not predict its value at v, given its value at u,
and so it is easy to distinguish F̃ (s, ·) from a random function.

Even though F̃ is not a secure PRF, we can still say something interesting about it. We show
that F̃ is a PRF against restricted set of adversaries called prefix-free adversaries.

Definition 4.5. Let F be a PRF defined over (K, X`, Y). We say that a PRF adversary A playing
Attack Game 4.2 with respect to F is a prefix-free adversary if all of its queries are non-empty
strings over X of length at most `, no one of which is a proper prefix of another.3 We denote A’s
advantage in winning the game by PRFpf

adv[A, F ]. Further, let us say that F is a prefix-free
secure PRF if PRFpf

adv[A, F ] is negligible for all e�cient, prefix-free adversaries A.

For example, if a prefix-free adversary issues a query for the sequence (a1, a2, a3) then it cannot
issue queries for (a1) or for (a1, a2).

Theorem 4.11. If G is a secure PRG, then the variable length tree construction F̃ derived from
G is a prefix-free secure PRF.

In particular, for every prefix-free adversary A that plays Attack Game 4.2 with respect to F̃ ,
and which makes at most Q queries to its challenger, there exists a PRG adversary B that plays
Attack Game 3.1 with respect to G, where B is an elementary wrapper A, such that

PRFpf
adv[A, F̃ ] = `Q · PRGadv[B, G].

Proof. The basic idea of the proof is exactly the same as that of Theorem 4.10. We sketch here the
main ideas, highlighting the di↵erences from that proof.

Let A be an e�cient, prefix-free adversary that plays Attack Game 4.2 with respect to F̃ .
Assume that A makes at most Q queries to its challenger. Moreover, it will be convenient to
assume that A never makes the same query twice. Thus, we are assuming that A never makes two
queries, one of which is equal to, or is a prefix of, another. The challenger in Attack Game 4.2 will
not enforce this assumption — we simply assume that A is playing by the rules.

As before, we view the evaluation of F̃ (s, ·) in terms of an evaluation tree: the root is labeled
by s, and the labels on all other nodes are assigned derived labels. The only di↵erence now is that
inputs to F̃ (s, ·) may address internal nodes of the evaluation tree. However, the prefix-freeness
restriction means that no input can address a node that is an ancestor of a node addressed by a
di↵erent input.

We again define hybrid games, Hybrid 0, . . . , Hybrid `. In these games, the challenger uses an
evaluation tree labeled in exactly the same way as in the proof of Theorem 4.10: in Hybrid j, nodes
at levels 0 through j are assigned random labels, and nodes at other levels are assigned derived
labels. The challenger responds to a query x by returning the label of the node in the tree addressed
by x, which need not be a leaf. More formally, the challenger in Hybrid j works as follows:

3For sequences x = (a1 . . . as

) and y = (b1 . . . bt), if s  t and a
i

= b
i

for i = 1, . . . , s, then we say that x is a
prefix of y; moreover, if s < t, then we say x is a proper prefix of y.
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f  R Funs[{0, 1}j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}` from A do:
if n < j then

then y  f(x)
else u (a1, . . . , aj), v  (aj+1, . . . , an), y  G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpf
adv[A, F̃ ] = |p` � p0|.

Next, we define an e�cient PRG adversary B0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B0 runs as follows:

upon receiving ~r as in (4.32) from its challenger, B0 plays the role of challenger to A, as
follows:

!  R {1, . . . , `}
initialize an empty associative array Map : {0, 1}⇤ ! Z>0

ctr  0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}` from A do:

if n < ! then
(⇤) y  R S

else
u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)

send y to A.

Finally, B0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B0 outputs 1 in Experiment b of Attack Game 4.2 with
respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B0 labels nodes in the evaluation tree. At
the line marked (⇤), B0 assigns random labels to all nodes in the evaluation tree at levels 0 through
j � 1, and the assumption that A never makes the same query twice guarantees that these labels
are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level
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j � 1; the prefix-freeness assumption ensures that none of these parent nodes are inconsistently
assigned random labels at the line marked (⇤).

The rest of the proof goes through as in the proof of Theorem 4.10. 2

4.7 The ideal cipher model

Block ciphers are used in a variety of cryptographic constructions. Sometimes it is impossible
or di�cult to prove a security theorem for some of these constructions under standard security
assumptions. In these situations, a heuristic technique — called the ideal cipher model — is
sometimes employed. Roughly speaking, in this model, the security analysis is done by treating
the block cipher as if it were a family of random permutations. If E = (E, D) is a block cipher
defined over (K, X ), then the family of random permutations is {⇧k }k 2K, where each ⇧k is a truly
random permutation on X , and the ⇧k ’s collectively are mutually independent. These random
permutations are much too large to write down and cannot be used in a real construction. Rather,
they are used to model a construction based on a real block cipher, to obtain a heuristic security
argument for a given construction. We stress the heuristic nature of the ideal cipher model: while
a proof of security in this model is better than nothing, it does not rule out an attack by an
adversary that exploits the design of a particular block cipher, even one that is secure in the sense
of Definition 4.1.

4.7.1 Formal definitions

Suppose we have some type of cryptographic scheme S whose implementation makes use of a block
cipher E = (E, D) defined over (K, X ). Moreover, suppose the scheme S evaluates E at various
inputs (k , a) 2 K ⇥ X , and D at various inputs (k , b) 2 K ⇥ X , but does not look at the internal
implementation of E . In this case, we say that S uses E as an oracle.

We wish to analyze the security of S. Let us assume that whatever security property we are
interested in, say “property X,” is modeled (as usual) as a game between a challenger (specific
to property X) and an arbitrary adversary A. Presumably, in responding to certain queries, the
challenger computes various functions associated with the scheme S, and these functions may in
turn require the evaluation of E and/or D at certain points. This game defines an advantage
Xadv[A, S], and security with respect to property X means that this advantage should be negligible
for all e�cient adversaries A.

If we wish to analyze S in the ideal cipher model, then the attack game defining security is
modified so that E is e↵ectively replaced by a family of random permutations {⇧k }k 2K, as described
above, to which both the adversary and the challenger have oracle access. More precisely, the game
is modified as follows.

• At the beginning of the game, the challenger chooses ⇧k 2 Perms[K] at random, for each
k 2 K.

• In addition to its standard queries, the adversary A may submit ideal cipher queries. There
are two types of queries: ⇧-queries and ⇧�1-queries.

– For a ⇧-query, the adversary submits a pair (k , a) 2 K ⇥ X , to which the challenger
responds with ⇧k (a).
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– For a ⇧�1-query, the adversary submits a pair (k , b) 2 K ⇥ X , to which the challenger
responds with ⇧�1

k (b).

The adversary may make any number of ideal cipher queries, arbitrarily interleaved with
standard queries.

• In processing standard queries, the challenger performs its computations using ⇧k (a) in place
of E(k , a) and ⇧�1

k (b) in place of D(k , b).

The adversary’s advantage is defined using the same rule as before, but is denoted Xic
adv[A, S] to

emphasize that this is an advantage in the ideal cipher model. Security in the ideal cipher model
means that Xic

adv[A, S] should be negligible for all e�cient adversaries A.
It is important to understand the role of the ideal cipher queries. Essentially, they model the

ability of an adversary to make “o✏ine” evaluations of E and D.

Ideal permutation model. Some constructions, like Even-Mansour (discussed below), make
use of a permutation ⇡ : X ! X , rather than a block cipher. In the security analysis, one might
heuristically model ⇡ as a random permutation ⇧, to which all parties in the attack game have
oracle access to ⇧ and ⇧�1. We call this the ideal permutation model. One can view this as a
special case of the ideal cipher model by simply defining ⇧ = ⇧k 0

for some fixed, publicly available
key k 0 2 K.

4.7.2 Exhaustive search in the ideal cipher model

Let (E, D) be a block cipher defined over (K, X ) and let k be some random secret key in K. Suppose
an adversary is able to intercept a small number of input/output pairs (xi, yi) generated using k:

yi = E(k, xi) for all i = 1, . . . , Q.

The adversary can now recover k by trying all possible keys in k 2 K until a key k satisfying
yi = E(k , xi) for all i = 1, . . . , Q is found. For block ciphers used in practice it is likely that
this k is equal to the secret key k used to generate the given pairs. This exhaustive search
over the key space recovers the block-cipher secret-key in time O(|K|) using a small number of
input/output pairs. We analyze the number of input/output pairs needed to mount a successful
attack in Theorem 4.12 below.

Exhaustive search is the simplest example of a key-recovery attack. Since we will present a
number of key-recovery attacks, let us first define the key-recovery attack game in more detail. We
will primarily use the key-recovery game as means of presenting attacks.

Attack Game 4.4 (key-recovery). For a given block cipher E = (E, D), defined over (K, X ),
and for a given adversary A, define the following game:

• The challenger picks a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists of a
message xi 2M. The challenger, given xi, computes yi  R E(k, xi), and gives yi
to A.

• Eventually A outputs an candidate key k 2 K.
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We say that A wins the game if k = k. We let KRadv[A, E ] denote the probability that A wins the
game. 2

The key-recovery game extends naturally to the ideal cipher model, where E(k , a) = ⇧k (a) and
D(k , b) = ⇧�1

k (b), and {⇧k }k 2K is a family of independent random permutations. In this model,

we allow the adversary to make arbitrary ⇧- and ⇧�1-queries, in addition to its standard queries
to E(k, ·). We let KRic

adv[A, E ] denote the adversary’s key-recovery advantage when E is an ideal
cipher.

It is worth noting that security against key-recovery attacks does not imply security in the
sense of indistinguishability (Definition 4.1). The simplest example is the constant block cipher
E(k, x) = x for which key-recovery is not possible (the adversary obtains no information about k),
but the block cipher is easily distinguished from a random permutation.

Exhaustive search. The following theorem bounds the number of input/output pairs needed
for exhaustive search, assuming the cipher is an ideal cipher. For real-world parameters, taking
Q = 3 in the theorem is often su�cient to ensure success.

Theorem 4.12. Let E = (E, D) be a block cipher defined over (K, X ). Then there exists an
adversary AEX

that plays Attack Game 4.4 with respect to E, modeled as an ideal cipher, making
Q standard queries and Q|K| ideal cipher queries, such that

KRic
adv[AEX

, E ] � (1� ✏) where ✏ :=
|K|

(|X |�Q)Q
(4.34)

Proof. In the ideal cipher model, we are modeling the block cipher E = (E, D) as a family {⇧k }k 2K
of random permutations on X . In Attack Game 4.4, the challenger chooses k 2 K at random. An
adversary may make standard queries to obtain the value E(k, x) = ⇧k(x) at points x 2 X of his
choosing. An adversary may also make ideal cipher queries, obtaining the values ⇧k (a) and ⇧�1

k (b)

for points k 2 K and a, b 2 X of his choosing. These ideal cipher queries correspond to “o✏ine”
evaluations of E and D.

Our adversary AEX

works as follows:

let {x1, . . . , xQ} be an arbitrary set of distinct messages in X
for i = 1, . . . , Q do:

make a standard query to obtain yi := E(k, xi) = ⇧k(xi)
for each k 2 K do:

for i = 1, . . . , Q do:
make an ideal cipher query to obtain bi := ⇧k (xi)

if yi = bi for all i = 1, . . . , Q then
output k and terminate

Let k be the challenger’s secret-key. We show that AEX

outputs k with probability at least 1� ✏,
with ✏ defined as in (4.34). Since AEX

tries all keys, this amounts to showing that the probability
that there is more than one key consistent with the given (xi, yi) pairs is at most ✏. We shall show
that this holds for every possible choice of k, so for the remainder of the proof, we shall view k as
fixed. We shall also view x1, . . . , xQ as fixed, so all the probabilities are with respect to the random
permutations ⇧k for k 2 K.
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For each k 2 K, let Wk be the event that yi = ⇧k (xi) for all i = 1, . . . , Q. Note that by
definition, Wk occurs with probability 1. Let W be the event that Wk occurs for some k 6= k. We
want to show that Pr[W ]  ✏.

Fix k 6= k. Since the permutation ⇧k is chosen independently of the permutation ⇧k , we know
that

Pr[Wk ] =
1

|X | · 1

|X |� 1
· · · 1

|X |�Q + 1

✓

1

|X |�Q

◆Q

As this holds for all k 6= k, the result follows from the union bound. 2

Security of the 3E construction

The attack presented in Theorem 4.2 works equally well against the 3E construction. The size of
the key space is |K|3, but one obtains a “meet in the middle” key recovery algorithm that runs in
time O

�|K|2 ·Q�. For Triple-DES this algorithm requires more than 22·56 evaluations of Triple-DES,
which is far beyond our computing power.

One wonders whether better attacks against 3E exist. When E is an ideal cipher we can prove
a lower bound on the amount of work needed to distinguish 3E from a random permutation.

Theorem 4.13. Let E = (E, D) be an ideal block cipher defined over (K, X ), and consider an
attack against the 3E construction in the ideal cipher model. If A is an adversary that makes at
most Q queries (including both standard and ideal cipher queries) in the ideal cipher variant of
Attack Game 4.1, then

BCic
adv[A, 3E ]  C1L

Q2

|K|3 + C2
Q2/3

|K|2/3|X |1/3 + C3
1

|K| ,

where L := max(|K|/|X |, log2|X |), and C1, C2, C3 are constants (that do not depend on A or E).

The statement of the theorem is easier to understand if we assume that |K|  |X |, as is the case
with DES. In this case, the bound can be restated as

BCic
adv[A, 3E ]  C log2 |X | Q2

|K|3 ,

for a constant C. Ignoring the log X term, this says that an adversary must make roughly |K|1.5
queries to obtain a significant advantage (say, 1/4). Compare this to the meet-in-the-middle attack.
To achieve a significant advantage, that adversary must make roughly |K|2 queries. Thus, meet-in-
the-middle attack may not be the most powerful attack.

To conclude our discussion of Triple-DES, we note that the 3E construction does not always
strengthen the cipher. For example, if E = (E, D) is such that the set of |K| permutations
{E(k , ·) : k 2 K} is a group, then 3E would be no more secure than E . Indeed, in this case
⇡ := E3((k1, k2, k3), ·) is identical to E(k, ·) for some k 2 K. Consequently, distinguishing 3E from
a random permutation is no harder than doing so for E . Of course, block ciphers used in practice
are not groups (as far as we know).
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4.7.3 The Even-Mansour block cipher and the EX construction

Let X = {0, 1}n. Let ⇡ : X ! X be a permutation and let ⇡�1 be its inverse function. Even and
Mansour defined the following simple block cipher E

EM

= (E, D) defined over (X 2, X ):

E
�

(P1, P2), x
�

:= ⇡(x� P1)� P2 and D
�

(P1, P2), y
�

:= ⇡�1(y � P2)� P1 (4.35)

How do we analyze the security of this block cipher? Clearly for some ⇡’s this construction is
insecure, for example when ⇡ is the identity function. For what ⇡ is E

EM

a secure block cipher?
The only way we know to analyze security of E

EM

is by modeling ⇡ as a random permutation
⇧ on the set X (i.e., in the ideal cipher model using a fixed key). We show in Theorem 4.14 below
that in the ideal cipher model, for all adversaries A:

BCic
adv[E

EM

, A]  2QsQic

|X | (4.36)

where Qs is the number of queries A makes to E
EM

and Qic is the number of queries A makes to ⇧
and ⇧�1. Hence, the Even-Mansour block cipher is secure (in the ideal cipher model) whenever |X |
is su�ciently large. Exercise 4.21 shows that the bound (4.36) is tight.

The Even-Mansour security theorem (Theorem 4.14) does not require the keys P1 and P2 to
be independent. In fact, the bounds in (4.36) remain unchanged if we set P1 = P2 so that the key
for E

EM

is a single element of X . However, we note that if one leaves out either of P1 or P2, the
construction is completely insecure (see Exercise 4.20).

Iterated Even-Mansour and AES. Looking back at our description of AES (Fig. 4.11) one
observes that the Even-Mansour cipher looks a lot like one round of AES where the round function
⇧AES plays the role of ⇡. Of course one round of AES is not a secure block cipher: the bound
in (4.36) does not imply security because ⇧AES is not a random permutation.

Suppose one replaces each occurrence of ⇧AES in Fig. 4.11 by a di↵erent permutation: one
function for each round of AES. The resulting structure, called iterated Even-Mansour, can be
analyzed in the ideal cipher model and the resulting security bounds are better than those stated
in (4.36).

These results suggest a theoretical justification for the AES structure in the ideal cipher model.

The EX construction and DESX. If we apply the Even-Mansour construction to a full-fledged
block cipher E = (E, D) defined over (K, X ), we obtain a new block cipher called EX = (EX,DX)
where

EX
�

(k, P1, P2), x
�

:= E(k, x� P1)� P2 , DX
�

(k, P1, P2), y
�

:= D(k, y � P2)� P1. (4.37)

This new cipher EX has a key space K ⇥ X 2 which can be much larger than the key space for the
underlying cipher E .

Theorem 4.14 below shows that — in the ideal cipher model — this larger key space translates to
better security: the maximum advantage against EX is much smaller than the maximum advantage
against E , whenever |X | is su�ciently large.

Applying EX to the DES block cipher gives an e�cient method to immunize DES against
exhaustive search attacks. With P1 = P2 we obtain a block cipher called DESX whose key size
is 56 + 64 = 120 bits: enough to resist exhaustive search. Theorem 4.14 shows that attacks in the
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ideal cipher model on the resulting cipher are impractical. Since evaluating DESX requires only
one call to DES, the DESX block cipher is three times faster than the Triple-DES block cipher and
this makes it seem as if DESX is the preferred way to strengthen DES. However, non black-box
attacks like di↵erential and linear cryptanalysis still apply to DESX where as they are ine↵ective
against Triple-DES. Consequently, DESX should not be used in practice.

4.7.4 Proof of the Even-Mansour and EX theorems

We shall prove security of the Even-Mansour block cipher (4.35) in the ideal permutation model
and of the EX construction (4.37) in the ideal cipher model.

We prove their security in a single theorem below. Taking a single-key block cipher (i.e., |K| = 1)
proves security of Even-Mansour in the ideal permutation model. Taking a block cipher with a
larger key space proves security of EX. Note that the pads P1 and P2 need not be independent and
the theorem holds if we set P2 = P1.

Theorem 4.14. Let E = (E, D) be a block cipher defined over (K, X ). Let EX = (EX,DX) be
the block cipher derived from E as in construction (4.37), where P1 and P2 are each uniformly
distributed over a subset of X 0 of X . If we model E as an ideal cipher, and if A is an adversary in
Attack Game 4.1 for EX that makes at most Qs standard queries (i.e., EX-queries) and Qic ideal
cipher queries (i.e., ⇧- or ⇧�1-queries), then we have

BCic
adv[A, EX]  2QsQic

|K||X 0| . 2 (4.38)

To understand the security benefit of the EX construction consider the following: modeling E as
an ideal cipher gives BCic

adv[A, E ]  Qic/|K| for all A. Hence, Theorem 4.14 shows that, in the
ideal cipher model, applying EX to E shrinks the maximum advantage by a factor of 2Qs/|X 0|.

The bounds in Theorem 4.14 are tight: there is an adversary A that achieves the advantage
shown in (4.38); see Exercise 4.21. The advantage of this A is unchanged even when P1 and P2 are
chosen independently. Therefore, we might as well always choose P2 = P1.

We also note that it is actually no harder to prove that EX is a strongly secure block cipher (see
Section 4.1.3) in the ideal cipher model, with exactly the same security bounds as in Theorem 4.14.

Proof idea. The basic idea is to show that the ideal cipher queries and the standard queries do not
interact with each other, except with probability as bounded in (4.38). Indeed, to make the two
types of queries interact with each other, the adversary has to make

(k = k and a = x� P1) or (k = k and b = y � P2)

for some input/output pair (x, y) corresponding to a standard query and some input/output triple
(k , a, b) corresponding to an ideal cipher query. Essentially, the adversary will have to simultane-
ously guess the random key k as well as one of the random pads P1 or P2.

Assuming there are no such interactions, we can e↵ectively realize all of the standard queries
as ⇧(x�P1)�P2 using a random permutation ⇧ that is independent of the random permutations
used to realize the ideal cipher queries. But ⇧0(x) := ⇧(x�P1)�P2 is just a random permutation.

Before giving a rigorous proof of Theorem 4.14, we present a technical lemma, called the Do-
main Separation Lemma, that will greatly simplify the proof, and is useful in analyzing other
constructions.
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To motivate the lemma, consider the following two experiments. In the one experiment, called
the “split experiment”, an adversary has oracle access to two random permutations ⇧1, ⇧2 on a
set X . The adversary can make a series of queries, each of the form (µ, d, z), where µ 2 {1, 2}
specifies which of the two permutations to evaluate, d 2 {±1} specifies the direction to evaluate the
permutation, and z 2 X the input to the permutation. On such a query, the challenger responds
with z 0 := ⇧d

µ(z). Another experiment, called the “coalesced experiment”, is exactly the same as
the split experiment, except that there is only a single permutation ⇧, and the challenger answers
the query (µ, d, z) with z 0 := ⇧d(z), ignoring completely the index µ. The question is: under what
condition can the adversary distinguish between these two experiments?

Obviously, if the adversary can submit a query (1, +1, a) and a query (2, +1, a), then in the split
experiment, the results will almost certainly be di↵erent, while in the coalesced experiment, they
will surely be the same. Another type of attack is possible as well: the adversary could make a query
(1, +1, a) obtaining b, and then submit the query (2,�1, b), obtaining a 0. In the split experiment, a
and a 0 will almost certainly be di↵erent, while in the coalesced experiment, they will surely be the
same. Besides these two examples, one could get two more examples which reverse the direction of
all the queries. The Domain Separation Lemma will basically say that unless the adversary makes
queries of one of these four types, he cannot distinguish between these two experiments.

Of course, the Domain Separation Lemma is only useful in contexts where the adversary is
somehow constrained so that he cannot freely make queries of his choice. Indeed, we will only use
it inside of the proof of a security theorem where the “adversary” in the Domain Separation Lemma
comprises components of a challenger and an adversary in a more interesting attack game.

In the more general statement of the lemma, we replace ⇧1 and ⇧2 by a family of permutations
of permutations {⇧µ}µ2U , and we replace ⇧ by a family {⇧⌫}⌫2V . We also introduce a function
f : U ! V that specifies how several permutations in the split experiment are collapsed into
one permutation in the coalesced experiment: for each ⌫ 2 V , all the permutations ⇧µ in the
split experiment for which f(µ) = ⌫ are collapsed into the single permutation ⇧⌫ in the coalesced
experiment.

In the generalized version of the distinguishing game, if the adversary makes a query (µ, d, z),
then in the split experiment, the challenger responds with z 0 := ⇧d

µ(z), while in the coalesced

experiment, the challenger responds with z 0 := ⇧d
f(µ)(z). In the split experiment, we also keep

track of the subset of the domains and ranges of the permutations that correspond to actual

queries made by the adversary in the split experiment. That is, we build up sets Dom(d)
µ for each

µ 2 U and d 2 ±1, so that a 2 Dom(+1)
µ if and only if the adversary issues a query of the form

(µ, +1, a) or a query of the form (µ,�1, b) that yields a. Similarly, b 2 Dom(�1)
µ if and only if the

adversary issues a query of the form (µ,�1, b) or a query of the form (µ, +1, a) that yields b. We

call Dom(+1)
µ the sampled domain of ⇧µ and Dom(�1)

µ the sampled range of ⇧µ.

Attack Game 4.5 (domain separation). Let U, V, X be finite, nonempty sets, and let f :
U ! V be a function. For a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define:

Experiment b:

• For each µ 2 U , and each ⌫ 2 V the challenger sets ⇧µ  R Perms[X ] and ⇧⌫  R Perms[X ]

Also, for each µ 2 U and d 2 {±1} the challenger sets Dom(d)
µ  ;.

• The adversary submits a sequence of queries to the challenger.

157



For i = 1, 2, . . . , the ith query is (µi, di, zi) 2 U ⇥ {±1}⇥ X .

If b = 0: the challenger sets z 0
i  ⇧

d
i

f(µ
i

)(zi).

If b = 1: the challenger sets z 0
i  ⇧d

i

µ
i

(zi); the challenger also adds the value zi to the set

Dom(d
i

)
µ
i

, and adds the value z 0
i to the set Dom(�d

i

)
µ
i

.

In either case, the challenger then sends z 0
i to the adversary.

• Finally, the adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s do-
main separation distinguishing advantage as |Pr[W0]� Pr[W1]|. We also define the domain
separation failure event Z to be the event that in Experiment 1, at the end of the game we

have Dom(d)
µ \ Dom(d)

µ0 6= ; for some d 2 {±1} and some pair of distinct indices µ, µ0 2 U with
f(µ) = f(µ0). Finally, we define the domain separation failure probability to be Pr[Z]. 2

Experiment 1 is the above game is the split experiment and Experiment 0 is the coalesced
experiment.

Theorem 4.15 (Domain Separation Lemma). In Attack Game 4.5, an adversary’s domain
separation distinguishing advantage is bounded by the domain separation failure probability.

In the applying the Domain Separation Lemma, we will typically analyze some attack game in
which permutations start out as coalesced, and then force them to be separated. We can bound
the impact of this change on the outcome of the attack by analyzing the domain separation failure
probability in the attack game with the split permutations.

Before proving the Domain Separation Lemma, it is perhaps more instructive to see how it is
used in the proof of Theorem 4.14.

Proof of Theorem 4.14. Let A be an adversary as in the statement of the theorem. For b = 0, 1
let pb be the probability that A outputs 1 in Experiment b of the block cipher attack game in the
ideal cipher model (Attack Game 4.1). So by definition we have

BCic
adv[A, EX] = |p0 � p1|. (4.39)

We shall prove the theorem using a sequence of two games, applying the Domain Separation
Lemma.

Game 0. We begin by describing Game 0, which corresponds to Experiment 0 of the block cipher
attack game in the ideal cipher model. Recall that in this model, we have a family of random
permutations, and the encryption function is implemented in terms of this family. Also recall that
in addition to standard queries that probe the function Ek(·), the adversary may also probe the
random permutations.

Initialize:
for each k 2 K, set ⇧k  R Perms[X ]
k  R K, choose P1, P2
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standard EX-query x:
1. a  x� P1

2. b  ⇧k(a)
3. y  b � P2

4. return y

ideal cipher ⇧-query k , a:
1. b  ⇧k (a)
2. return b

ideal cipher ⇧�1-query k , b:
1. a  ⇧�1

k (b)

2. return a

Let W0 be the event that A outputs 1 at the end of Game 0. It should be clear from construction
that

Pr[W0] = p0. (4.40)

Game 1. In this game, we apply the Domain Separation Lemma. The basic idea is that we
will declare “by fiat” that the random permutations used in processing the standard queries are
independent of the random permutations used in processing ideal cipher queries. E↵ectively, each
permutation ⇧k gets split into two independent permutations: ⇧std,k , which is used by the chal-
lenger in responding to standard EX-queries, and ⇧ic,k , which is used in responding to ideal cipher
queries. In detail (changes from Game 0 are highlighted):

Initialize:

for each k 2 K, set ⇧std,k  R Perms[X ] and ⇧ic,k  R Perms[X ]

k  R K, choose P1, P2

standard EX-query x:
1. a  x� P1

2. b  ⇧std,k(a) // add a to sampled domain of ⇧std,k, add b to sampled range of ⇧std,k

3. y  b � P2

4. return y

ideal cipher ⇧-query k , a:

1. b  ⇧ic,k (a) // add a to sampled domain of ⇧ic,k , add b to sampled range of ⇧ic,k

2. return b

ideal cipher ⇧�1-query k , b:

1. a  ⇧�1
ic,k (b) // add a to sampled domain of ⇧ic,k , add b to sampled range of ⇧ic,k

2. return a

Let W1 be the event that A outputs 1 at the end of Game 1. Let Z be the event that in Game 1
there exists k 2 K, such that the sampled domains of ⇧ic,k and ⇧std,k overlap or the sampled ranges

159



of ⇧ic,k and ⇧std,k overlap. The Domain Separation Lemma says that

|Pr[W0]� Pr[W1]|  Pr[Z]. (4.41)

In applying the Domain Separation Lemma, the “coalescing function” f maps from {std, ic} ⇥ K
to K, sending the pair (·, k ) to k . Observe that the challenger only makes queries to ⇧k, where k
is the secret key, and so such an overlap can occur only at k = k. Also observe that in Game 1,
the random variables k, P1, and P2 are completely independent of the adversary’s view.

So the event Z occurs if and only if for some input/output triple (k , a, b) triple arising from a
⇧- or ⇧�1-query, and for some input/output pair (x, y) arising from an EX-query, we have

(k = k and a = x� P1) or (k = k and b = y � P2). (4.42)

Using the union bound, we can therefore bound Pr[Z] as a sum of probabilities of 2QsQic events,
each of the form k = k and a = x � P1, or of the form k = k and b = y � P2. By independence,
since k is uniformly distributed over a set of size |K|, and each of P1 and P2 is uniformly distributed
over a set of size |X 0|, each such event occurs with probability at most 1/(|K||X 0|). It follows that

Pr[Z]  2QsQic

|K||X 0| . (4.43)

Finally, observe that Game 1 is equivalent to Experiment 1 of the block cipher attack game in
the ideal cipher model: the EX-queries present to the adversary the random permutation ⇧0(x) :=
⇧std,k(x � P1) � P2 and this permutation is independent of the random permutations used in the
⇧- and ⇧�1-queries. Thus,

Pr[W1] = p1. (4.44)

The bound (4.38) now follows from (4.39), (4.40), (4.41), (4.43), and (4.44). This completes the
proof of the theorem. 2

Finally, we turn to the proof of the Domain Separation Lemma, which is a simple (if tedious)
application of the Di↵erence Lemma and the “forgetful gnome” technique.

Proof of Theorem 4.15. We define a sequence of games.

Game 0. This game will be equivalent to the coalesced experiment in Attack Game 4.5, but
designed in a way that will facilitate the analysis.

In this game, the challenger maintains various sets ⇧ of pairs (a, b). Each set ⇧ represents a
function that can be extended to a permutation on X that sends a to b for every (a, b) in ⇧. We
call such a set ⇧ a partial permutation on X . Define

Domain(⇧) = {a 2 X : (a, b) 2 ⇧ for some b 2 X} ,

Range(⇧) = {b 2 X : (a, b) 2 ⇧ for some a 2 X} .

Also, for a 2 Domain(⇧), define ⇧(a) to be the unique b such that (a, b) 2 ⇧. Likewise, for
b 2 Range(⇧), define ⇧�1(b) to be the unique a such that (a, b) 2 ⇧.

Here is the logic of the challenger in Game 0:

Initialize:
for each ⌫ 2 V , initialize the partial permutation ⇧⌫  ;
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Process query (µ, +1, a):
1. if a 2 Domain(⇧f(µ)) then b  ⇧f(µ)(a), return b
2. b  R X \ Range(⇧f(µ))
3. add (a, b) to ⇧f(µ)

4. return b

Process query (µ,�1, b):

1. if b 2 Range(⇧f(µ)) then a  ⇧
�1
f(µ)(b), return a

2. a  R X \ Domain(⇧f(µ))
3. add (a, b) to ⇧µ

4. return a

This game is clearly equivalent to the coalesced experiment in Attack Game 4.5. Let W0 be the
event that the adversary outputs 1 in this game.

Game 1. Now we modify this game to get an equivalent game, but it will facilitate the application
of the Di↵erence Lemma in moving to the next game. For µ, µ0 2 U , let us write µ ⇠ µ0 if
f(µ) = f(µ0). The is an equivalence relation on U , and we write [µ] for the equivalence class
containing µ.

Here is the logic of the challenger in Game 1:

Initialize:
for each µ 2 U , initialize the partial permutation ⇧µ  ;

Process query (µ, +1, a):
1a. if a 2 Domain(⇧µ) then b  ⇧µ(a), return b

⇤ 1b. if a 2 Domain(⇧µ0) for some µ0 2 [µ] then b  ⇧µ0(a), return b
2a. b  R X \ Range(⇧µ)

⇤ 2b. if b 2 Sµ02[µ] Range(⇧µ0) then b  R X \Sµ02[µ] Range(⇧µ0)

3. add (a, b) to ⇧µ

4. return b

Process query (µ,�1, b):
1a. if b 2 Range(⇧µ) then a  ⇧�1

µ (b), return a
⇤ 1b. if b 2 Range(⇧µ0) for some µ0 2 [µ] then a  ⇧�1

µ0 (b), return a
2a. a  R X \ Domain(⇧µ)

⇤ 2b. if a 2 Sµ02[µ] Domain(⇧µ0) then a  R X \Sµ02[µ] Domain(⇧µ0)

3. add (a, b) to ⇧µ

4. return a

Let W1 be the event that the adversary outputs 1 in this game.
It is not hard to see that the challenger’s behavior in this game is equivalent to that in Game 0,

and so Pr[W0] = Pr[W1]. The idea is that for every ⌫ 2 f(U) ✓ V , the partial permutation ⇧⌫ in
Game 0 is partitioned into a family of disjoint partial permutations {⇧µ}µ2f�1(⌫), so that

⇧⌫ =
[

µ2f�1(⌫)

⇧µ,
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and

Domain(⇧µ) \Domain(⇧µ0) = ; and Range(⇧µ) \ Range(⇧µ0) = ;
for all µ, µ0 2 f�1(⌫) with µ 6= µ0. (4.45)

Game 2. Now we simply delete the lines marked with a “⇤” in Game 1. Let W2 be the event that
the adversary outputs 1 in this game.

It is clear that this game is equivalent to the split experiment in Attack Game 4.5, and so
|Pr[W2] � Pr[W1]| is equal to the adversary’s advantage in Attack Game 4.5. We want to use the
Di↵erence Lemma to bound |Pr[W2] � Pr[W1]|. To make this entirely rigorous, one models both
games as operating on the same underlying probability space: we define a collection of random
variables representing the coins of the adversary, as well as the various random samples from
di↵erent subsets of X made by the challenger. These random variables completely describe both
Games 1 and 2: the only di↵erence between the two games are the deterministic computation rules
that determine the outcomes. Define Z be to be the event that at the end of Game 2, the condition
(4.45) does not hold. One can verify that Games 1 and 2 proceed identically unless Z holds, so
by the Di↵erence Lemma, we have |Pr[W2] � Pr[W1]|  Pr[Z]. Moreover, it is clear that Pr[Z] is
precisely the failure probability in Attack Game 4.5. 2

4.8 Fun application: comparing information without revealing it

In this section we describe an important application for PRFs called sub-key derivation. Alice
and Bob have a shared key k for a PRF. They wish to generate a sequence of shared keys k1, k2, . . .
so that key number i can be computed without having to compute all earlier keys. Naturally, they
set ki := F (k, i) where F is a secure PRF whose input space is {1, 2, . . . , B} for some bound B.
The generated sequence of keys is indistinguishable from random keys.

As a fun application of this, consider the following problem: Alice is on vacation at the Squaw
valley ski resort and wants to know if her friend Bob is also there. If he is they could ski together.
Alice could call Bob and ask him if he is on the slopes, but this would reveal to Bob where she is
and Alice would rather not do that. Similarly, Bob values his privacy and does not want to tell
Alice where he is, unless Alice happens to be close by.

Abstractly, this problem can be phrased as follows: Alice has a number a 2 Zp and Bob has
a number b 2 Zp for some prime p. These numbers indicate their approximate positions on earth.
Think of dividing the surface of the earth into p squares and the numbers a and b indicate what
square Alice and Bob are currently at. If Bob is at the resort then a = b, otherwise a 6= b.

Alice wants to learn if a = b; however, if a 6= b then Alice should learn nothing else about b.
Bob should learn nothing at all about a.

In a later chapter we will see how to solve this exact problem. Here, we make the problem
easier by allowing Alice and Bob to interact with a server, Sam, that will help Alice learn if a = b,
but will itself learn nothing at all. The only assumption about Sam is that it does not collude with
Alice or Bob, that is, it does not reveal private data that Alice or Bob send to it. Clearly, Alice
and Bob could send a and b to Sam and he will tell Alice if a = b, but then Sam would learn both
a and b. Our goal is that Sam learns nothing, not even if a = b.

To describe the basic protocol, suppose Alice and Bob have a shared secret key (k0, k1) 2 Z2
p.

Moreover, Alice and Bob each have a private channel to Sam. The protocol for comparing a and b
is shown in Fig. 4.17. It begins with Bob choosing a random r in Zp and sending (r, xb) to Sam.
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Alice Server Bob
input: a Sam input: b

r, xb  r(b + k0) + k1 ������������������������ r  R Zpxa  a + k0������������������������!

x + k1
?
= 0

x r xa � xb ������������������������

Figure 4.17: Comparing a and b without revealing them

Bob can do this whenever he wants, even before Alice initiates the protocol. When Alice wants to
test equality, she sends xa to Sam. Sam computes x r xa � xb and sends x back to Alice. Now,
observe that

x + k1 = r(a� b)

so that x + k1 = 0 when a = b and x + k1 is very likely to be non-zero otherwise (assuming p is
su�ciently large so that r 6= 0 with high probability). This lets Alice learn if a = b.

What is revealed by this protocol? Clearly Bob learns nothing. Alice learns r(a � b), but if
a 6= b this quantity is uniformly distributed in Zp. Therefore, when a 6= b Alice just obtains a
uniform element in Zp and this reveals nothing beyond the fact that a 6= b. Sam sees r, xa, xb, but
all three values are independent of a and b: xa and xb are one-time pad encryptions under keys
k0 and k1, respectively. Therefore, Sam learns nothing. Notice that the only privacy assumption
about Sam is that it does not reveal (r, xb) to Alice or xa to Bob.

The trouble, much like with the one-time pad, is that the shared key (k0, k1) can only be used
for a single equality test, otherwise the protocol becomes insecure. If (k0, k1) is used to test if a = b
and later the same key (k0, k1) is used to test if a0 = b0 then Alice and Sam learn information they
are not supposed to. For example, Sam learns a� a0. Moreover, Alice can deduce (a� b)/(a0 � b0)
which reveals information about b and b0 (e.g., if a = a0 = 0 then Alice learns the ratio of b and b0).

Sub-key derivation. What if Alice wants to repeatedly test proximity to Bob? The solution
is to generate a new independent key (k0, k1) for each invocation of the protocol. We do so by
deriving instance-specific sub-keys using a secure PRF.

Let F be a secure PRF defined over (K, {1, . . . , B}, Z2
p) and suppose that Alice and Bob share

a long term key k 2 K. Bob maintains a counter cntb that is initially set to 0. Every time Bob
sends his encrypted location (r, xb) to Sam he increments cntb and derives sub-keys (k0, k1) from
the long-term key k as:

(k0, k1) F (k, cntb). (4.46)

He sends (r, xb, cntb) to Sam. Bob can do this whenever he wants, say every few minutes, or every
time he moves to a new location.

Whenever Alice wants to test proximity to Bob she first asks Sam to send her the value of
the counter in the latest message from Bob. She makes sure the counter value is larger than the
previous value Sam sent her (to prevent a mischievous Sam or Bob from tricking Alice into re-using
an old counter value). Alice then computes (k0, k1) herself using (4.46) and carries out the protocol
with Sam in Fig. 4.17 using these keys.
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Because F is a secure PRF, the sequence of derived sub-keys is indistinguishable from random
independently sampled keys. This ensures that the repeated protocol reveals nothing about the
tested values beyond equality. By using a PRF, Alice is able to quickly compute (k0, k1) for the
latest value of cntb.

4.9 Notes

Citations to the literature to be added.

4.10 Exercises

4.1 (Exercising the definition of a secure PRF). Let F be a secure PRF defined over
(K, X , Y), where K = X = Y = {0, 1}n.

(a) Show that F1(k, x) = F (k, x) k 0 is not a secure PRF.

(b) Prove that F2
�

k, (x, y)
�

:= F (k, x)� F (k, y) is insecure.

(c) Prove that F3(k, x) := F (k, x)� x is a secure PRF.

(d) Prove that F4
�

(k1, k2), x
�

:= F (k1, x)� F (k2, x) is a secure PRF.

(e) Show that F5(k, x) := F (k, x) k F (k, x� 1n) is insecure.

(f) Prove that F6(k, x) := F (F (k, 0n), x) is a secure PRF.

(g) Show that F7(k, x) := F (F (k, 0n), x) k F (k, x) is insecure.

(h) Show that F8(k, x) := F (k, x) k F
�

k, F (k, x)
�

is insecure.

4.2 (Weak PRFs). Let F be a PRF defined over (K, X , Y) where Y := {0, 1}n and |X | is
super-poly. Define

F2
�

k, (x, y)
�

:= F (k, x)� F (k, y).

We showed in Exercise 4.1 part (b) that F2 is not a secure PRF.

(a) Show that F2 is a weakly secure PRF (as in Definition 4.3), assuming F is weakly secure. In
particular, for any Q-query weak PRF adversary A attacking F2 (i.e., an adversary that only
queries the function at random points in X ) there is a weak PRF adversary B attacking F ,
where B is an elementary wrapper around A, such that

wPRFadv[A, F2]  wPRFadv[B, F ] + (Q/|X |)4.

(b) Suppose F is a secure PRF. Show that F2 is weakly secure even if we modify the weak PRF
attack game and allow the adversary A to query F2 at one chosen point in addition to the Q
random points. A PRF that is secure in this sense is su�cient for a popular data integrity
mechanism discussed in Section 7.4.

(c) Show that F2 is no longer secure if we modify the weak PRF attack game and allow the
adversary A to query F2 at two chosen points in addition to the Q random points.
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4.3 (Format preserving encryption). Suppose we are given a block cipher (E, D) operating
on domain X . We want a block cipher (E0, D0) that operates on a smaller domain X 0 ✓ X . Define
(E0, D0) as follows:

E0(k, x) := y  E(k, x)
while y 62 X 0 do: y  E(k, y)
output y

D0(k, y) is defined analogously, applying D(k, ·) until the result falls in X 0. Clearly (E0, D0) are
defined on domain X 0.

(a) With t := |X |/|X 0|, how many evaluations of E are needed in expectation to evaluate E0(k, x)
as a function of t? You answer shows that when t is small (e.g., t  2) evaluating E0(k, x)
can be done e�ciently.

(b) Show that if (E, D) is a secure block cipher with domain X then (E0, D0) is a secure block
cipher with domain X 0. Try proving security by induction on |X |� |X 0|.

Discussion: This exercise is used in the context of encrypted 16-digit credit card numbers where
the ciphertext also must be a 16-digit number. This type of encryption, called format preserving
encryption, amounts to constructing a block cipher whose domain size is exactly 1016. This
exercise shows that it su�ces to construct a block cipher (E, D) with domain size 254 which is the
smallest power of 2 larger than 1016. The procedure in the exercise can then be used to shrink the
domain to size 1016.

4.4 (Truncating PRFs). Let F be a PRF whose range is Y = {0, 1}n. For some ` < n consider
the PRF F 0 with a range Y 0 = {0, 1}` defined as: F 0(k, x) = x[0 . . . `� 1]. That is, we truncate the
output of F (k, x) to the first ` bits. Show that if F is a secure PRF then so is F 0.

4.5 (Two-key Triple-DES). Consider the following variant of the 3E construction that uses
only two keys: for a block cipher (E, D) with key space K define 3E 0 as E((k1, k2), m) :=
E(k1, E(k2, E(k1, m))). Show that this block cipher can be defeated by a meet in the middle
attack using O(|K|) evaluation of E and D and using O(|K|) encryption queries to the block cipher
challenger. Further attacks on this method are discussed in [74, 68].

4.6 (adaptive vs non-adaptive security). This exercise develops an argument that shows that
a PRF may be secure against every adversary that makes its queries non-adaptively, (i.e., all at
once) but is insecure against adaptive adversaries (i.e., the kind allowed in Attack Game 4.2).

To be a bit more precise, we define the non-adaptive version of Attack Game 4.2 as follows. The ad-
versary submits all at once the query (x1, . . . , xQ) to the challenger, who responds with (y1, . . . , yQ),
where y := f(xi). The rest of the attack game is the same: in Experiment 0, k  R K and f  R F (k, ·),
while in Experiment 1, f  R Funs[X , Y]. Security against non-adaptive adversaries means that all
e�cient adversaries have only negligible advantage; advantage is defined as usual: |Pr[W0]�Pr[W1]|,
where Wb is the event that the adversary outputs 1 in Experiment b.

Suppose F is a secure PRF defined over (K, X , X ), where N := |X | is super-poly. We proceed
to “sabotage” F , constructing a new PRF F̃ as follows. Let x0 be some fixed element of X . For
x = F (k, x0) define F̃ (k, x) := x0, and for all other x define F̃ (k, x) := F (k, x).
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(a) Show that F̃ is not a secure PRF against adaptive adversaries.

(b) Show that F̃ is a secure PRF against non-adaptive adversaries.

(c) Show that a similar construction is possible for block ciphers: given a secure block cipher
(E, D) defined over (K, X ) where |X | is super-poly, construct a new, “sabotaged” block
cipher (Ẽ, D̃) that is secure against non-adaptive adversaries, but insecure against adaptive
adversaries.

4.7 (PRF security definition). This exercise develops an alternative characterization of PRF
security for a PRF F defined over (K, X , Y). As usual, we need to define an attack game between
an adversary A and a challenger. Initially, the challenger generates

b R {0, 1}, k  R K, y1  R Y
Then A makes a series of queries to the challenger. There are two types of queries:

Encryption: In an function query, A submits an x 2 X to the challenger, who responds with
y  F (k, x). The adversary may make any (poly-bounded) number of function queries.

Test: In a test query, A submits an x 2 X to the challenger, who computes y0  F (k, x) and
responds with yb. The adversary is allowed to make only a single test query (with any number
of function queries before and after the test query).

At the end of the game, A outputs a bit b̂ 2 {0, 1}. As usual, we define A’s advantage in the above
attack game to be |Pr[b̂ = b]�1/2|. We say that F is Alt-PRF secure if this advantage is negligible
for all e�cient adversaries. Show that F is a secure PRF if and only if F is Alt-PRF secure.

Discussion: This characterization shows that the value of a secure PRF at a point x0 in X looks
like a random element of Y, even after seeing the value of the PRF at many other points of X .

4.8 (Key malleable PRFs). Let F be a PRF defined over ({0, 1}n, {0, 1}n, Y).

(a) We say that F is XOR-malleable if F (k, x� c) = F (k, x)� c for all k, x, c in {0, 1}n.

(b) We say that F is key XOR-malleable if F (k � c, x) = F (k, x)� c for all k, x, c in {0, 1}n.

Clearly an XOR-malleable PRF cannot be secure: malleability lets an attacker distinguish the PRF
from a random function. Show that the same holds for a key XOR-malleable PRF.

Remark: In contrast, we note that there are secure PRFs where F (k1�k2, x) = F (k1, x)�F (k2, x).
See Exercise 11.1 for an example, where the xor on the left is replaced by addition, and the xor on
the right is replaced by multiplication.

4.9 (Strongly secure block ciphers). In Section 4.1.3 we sketched out the notion of a strongly
secure block cipher.

(a) Write out the complete definition of a strongly secure block cipher as a game between a
challenger and an adversary.

(b) Consider the following cipher E 0 = (E0, D0) built from a block cipher (E, D) defined over
(K, {0, 1}n):

E0(k, m) := D(k, t� E(k, m) ) and D0(k, c) := E(k, t�D(k, m) )
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where t 2 {0, 1}n is a fixed constant. For what values of t is this cipher E 0 semantically
secure? Prove semantic security assuming the underlying block cipher is strongly secure.

4.10 (Meet-in-the-middle attacks). Let us study the security of the 4E construction where
a block cipher (E, D) is iterated four times using four di↵erent keys: E4( (k1, k2, k3, k4), m) =
E
�

k4, E(k3, E(k2, E(k1, m)))
�

where (E, D) is a block cipher with key space K.

(a) Show that there is a meet in the middle attack on 4E that recovers the secret key in time |K|2
and memory space |K|2.

(b) Show that there is a meet in the middle attack on 4E that recovers the secret key in time
|K|2, but only uses memory space |K|. If you get stuck see [32].

4.11 (Tweakable block ciphers). A tweakable block cipher is a block cipher whose encryption
and decryption algorithm take an additional input t, called a “tweak”, which is drawn from a
“tweak space” T . As usual, keys come from a key space K, and data blocks from a data block
space X . The encryption and decryption functions operate as follows: for k 2 K, x 2 X , t 2 T ,
we have y = E(k, x, t) 2 X and x = D(k, y, t). So for each k 2 K and t 2 T , E(k, ·, t) defines a
permutation on X and D(k, ·, t) defines the inverse permutation. Unlike keys, tweaks are typically
publicly known, and may even be adversarially chosen.

Security is defined by a game with two experiments. In both experiments, the challenger defines
a family of permutations {⇧t}t2T , where each ⇧t is a permutation on X . In Experiment 0, the
challenger sets k  R K, and

⇧t := E(k, ·, t) for all t 2 T .

In Experiment 1, the challenger sets

⇧t  R Perms[X ] for all t 2 T .

Both experiments then proceed identically. The adversary issues a series of queries. Each query is
one of two types:

forward query: the adversary sends (x, t) 2 X ⇥T , and the challenger responds with y := ⇧t(x);

inverse queries: the adversary sends (y, t) 2 X ⇥ T , and the challenger responds with x :=
⇧�1

t (y).

At the end of the game, the adversary outputs a bit. If pb is the probability that the adversary
outputs 1 in Experiment b, the adversary’s advantage is defined to be |p0�p1|. We say that (E, D)
is a secure tweakable block cipher if every e�cient adversary has negligible advantage.

This definition of security generalizes the notion of a strongly secure block cipher (see Section 4.1.3
and Exercise 4.9). In applications of tweakable block ciphers, this strong security notion is more
appropriate (e.g., see Exercise 9.17).

(a) Prove security of the construction Ẽ(k, m, t) := E(E(k, t), m) where (E, D) is a strongly
secure block cipher defined over (K, K).

(b) Show that there is an attack on the construction from part (a) that achieves advantage � 1/2
and which makes Q ⇡p|K| queries.

Hint: In addition to the ⇡p|K| queries, your adversary should make an additional ⇡p|K|
“o✏ine” evaluations of the cipher (E, D).
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(c) Prove security of the construction

E0�(k0, k1), m, t
�

:=
�

p F (k0, t); output p� E(k1, m� p)
 

,

where (E, D) is a strongly secure block cipher and F is a secure PRF. In Exercise 7.10 we
will see a more e�cient variant of this construction.

Hint: Use the assumption that (E, D) is a strongly secure block cipher to replace E(k1, ·) in
the challenger by a truly random permutation e⇧; then, use the Domain Separation Lemma
(see Theorem 4.15) to replace e⇧ by a family of independent permutations {e⇧t}t2T , and
analyze the corresponding domain separation failure probability.

Discussion: Tweakable block ciphers are used in disk sector encryption where encryption must
not expand the data: the ciphertext size is required to have the same size as the input. The sector
number is used as the tweak to ensure that even if two sectors contain the same data, the resulting
encrypted sectors are di↵erent. The construction in part (c) is usually more e�cient than that in
part (a), as the latter uses a di↵erent block cipher key with every evaluation, which can incur extra
costs. See further discussion in Exercise 7.10.

4.12 (PRF combiners). We want to build a PRF F using two PRFs F1 and F2, so that if at
some future time one of F1 or F2 is broken (but not both) then F is still secure. Put another way,
we want to construct F from F1 and F2 such that F is secure if either F1 or F2 is secure.

Suppose F1 and F2 both have output spaces {0, 1}n, and both have a common input space. Define

F ( (k1, k2), x) := F1(k1, x)� F2(k2, x).

Show that F is secure if either F1 or F2 is secure.

4.13 (Block cipher combiners). Continuing with Exercise 4.12, we want to build a block cipher
E = (E, D) from two block ciphers E1 = (E1, D1) and E2 = (E2, D2) so that if at some future time
one of E1 or E2 is broken (but not both) then E is still secure. Suppose both E1 and E2 are defined
over (K, X ). Define E as:

E( (k1, k2), x) := E1
�

k1, E2(k2, x)
�

and D( (k1, k2), y) := D2
�

k2, D1(k1, y)
�

.

(a) Show that E is secure if either E1 or E2 is secure.

(b) Show that this is not a secure combiner for PRFs. That is, F ( (k1, k2), x) := F1
�

k1, F2(k2, x)
�

need not be a secure PRF even if one of F1 or F2 is.

4.14 (Key leakage). Let F be a secure PRF defined over (K, X , Y), where K = X = Y = {0, 1}n.

(a) Let K1 = {0, 1}n+1. Construct a new PRF F1, defined over (K1, X , Y), with the following
property: the PRF F1 is secure; however, if the adversary learns the last bit of the key then
the PRF is no longer secure. This shows that leaking even a single bit of the secret key can
completely destroy the PRF security property.

Hint: Let k1 = k k b where k 2 {0, 1}n and b 2 {0, 1}. Set F1(k1, x) to be the same as
F (k, x) for all x 6= 0n. Define F1(k1, 0n) so that F1 is a secure PRF, but becomes easily
distinguishable from a random function if the last bit of the secret key k1 is known to the
adversary.
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(b) Construct a new PRF F2, defined over (K ⇥ K, X , Y), that remains secure if the attacker
learns any single bit of the key. Your function F2 may only call F once.

4.15 (Variants of Luby-Racko↵). Let F be a secure PRF defined over (K, X , X ).

(a) Show that two-round Luby-Racko↵ is not a secure block cipher.

(b) Show that three-round Luby-Racko↵ is not a strongly secure block cipher.

4.16 (Insecure tree construction). In the tree construction for building a PRF from a PRG
(Section 4.6), the secret key is used at the root of the tree and the input is used to trace a path
through the tree. Show that a construction that does the opposite is not a secure PRF. That is,
using the input as the root and using the key to trace through the tree is not a secure PRF.

4.17 (Truncated tree construction). Suppose we cut o↵ the tree construction from Section 4.6
after only three levels of the tree, so that there are only eight leaves, as in Fig. 4.15. Give a direct
proof, using a sequence of seven hybrids, that outputting the values at all eight leaves gives a secure
PRG defined over (S, S8), assuming the underlying PRG is secure.

4.18 (Augmented tree construction). Suppose we are given a PRG G defined over (K⇥S, S2).
Write G(k, s) = (G0(k, s), G1(k, s)). Let us define the PRF G⇤ with key space Kn ⇥ S and input
space {0, 1}n as follows:

G⇤�(k0, . . . , kn�1, s), x 2 {0, 1}n� :=
t s
for i 0 to n� 1 do

b x[i]
t Gb(ki, t)

output t.

(a) Given an example secure PRG G for which G⇤ is insecure as a PRF.

(b) Show that G⇤ is a secure PRF if for every poly-bounded Q the following PRG is secure:

G0(k, s0, . . . , sQ�1) := (G(k, s0), . . . , G(k, sQ�1)) .

4.19 (Synthesizers and parallel PRFs). For a secure PRG G defined over (S, R) we showed
that Gn(s1, . . . , sn) :=

�

G(s1), . . . , G(sn)
�

is a secure PRG over (Sn, Rn). The proof requires that
the components s1, . . . , sn of the seed be chosen uniformly and independently over Sn. A secure
synthesizer is a PRG for which this holds even if s1, . . . , sn are not independent of one another.
Specifically, a synthesizer is an e�cient function S : X 2 ! X . The synthesizer is said to be n-way
secure if

Sn(x1, y1, . . . , xn, yn) :=
�

S(xi, yj)
�

i,j=1,...,n
2 X (n2)

is a secure PRG defined over (X 2n, X (n2)). Here S is being evaluated at n2 inputs that are not
independent of one another and yet Sn is a secure PRG.

(a) Not every secure PRG is a secure synthesizer. Let G be a secure PRG over (S, R). Show
that S(x, y) :=

�

G(x), y
�

is a secure PRG defined over (S2, R⇥ S), but is an insecure 2-way
synthesizer.
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Figure 4.18: A PRF built from a synthesizer S. The PRF input in {0, 1}n is used to select n
components from the key k̄ 2 X 2n. The selected components, shown as shaded squares, are used
as shown in the figure.

(b) A secure synthesizer lets us build a large domain PRF that can be evaluated quickly on
a parallel computer. Show that if S : X 2 ! X is a Q-way secure synthesizer, for poly-
bounded Q, then the PRF in Fig. 4.18 is a secure PRF defined over (X 2n, {0, 1}n, X ). For
simplicity, assume that n is a power of 2. Observe that the PRF can be evaluated in only
log2 n steps on a parallel computer.

4.20 (Insecure variants of Even-Mansour). In Section 4.7.3 we discussed the Even-Mansour
block cipher (E, D) built from a permutation ⇡ : X ! X where X = {0, 1}n. Recall that
E
�

(P0, P1), m
�

:= ⇡(m� P0)� P1.

(a) Show that E1(P0, m) := ⇡(m� P0) is not a secure block cipher.

(b) Show that E2(P1, m) := ⇡(m)� P1 is not a secure block cipher.

4.21 (Birthday attack on Even-Mansour). Let’s show that the bounds in the Even-Mansour
security theorem (Theorem 4.14) are tight. For X := {0, 1}n, recall that the Even-Mansour block
cipher (E, D), built from a permutation ⇡ : X ! X , is defined as: E

�

(k0, k1), m
�

:= ⇡(m�k0)�k1.

We show how to break this block cipher in time approximately 2n/2.

(a) Show that for all a, m, � 2 X and k̄ := (k0, k1) 2 X 2, whenever a = m� k0, we have

E
�

k̄, m
�� E

�

k̄, m��
�

= ⇡(a)� ⇡(a��)

(b) Use part (a) to construct an adversary A that wins the block cipher security game against
(E, D) with advantage close to 1, in the ideal cipher model. With q := 2n/2 and some non-zero
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� 2 X , the adversary A queries the cipher at 2q random points mi, mi�� 2 X and queries
the permutation ⇡ at 2q random points ai, ai �� 2 X , for i = 1, . . . , q.

4.22 (A variant of the Even-Mansour cipher). Let M := {0, 1}m, K := {0, 1}n, and X :=
{0, 1}n+m. Consider the following cipher (E, D) defined over (K, M, X ) built from a permutation
⇡ : X ! X :

E(k, x) := (k k 0m)� ⇡(k k x) (4.47)

D(k, c) is defined analogously. Show that if we model ⇡ as an ideal permutation ⇧, then for every
block cipher adversary A attacking (E, D) we have

BCic
adv[A, E]  2Qic

|K| . (4.48)

Here Qic is the number of queries A makes to ⇧- and ⇧�1-oracles.

4.23 (Analysis of Salsa and ChaCha). In this exercise we analyze the Salsa and ChaCha
stream ciphers from Section 3.6 in the ideal permutation model. Let ⇡ : X ! X be a permutation,
where X = {0, 1}n+m. Let K := {0, 1}n and define the PRF F , which is defined over (K, {0, 1}m, X ),
as

F (k, x) := (k k x)� ⇡(k k x) . (4.49)

This PRF is an abstraction of the PRF underlying the Salsa and ChaCha stream ciphers. Use
Exercise 4.22 to show that if we model ⇡ as an ideal permutation ⇧, then for every PRF adversary
A attacking F we have

PRFic
adv[A, F ]  2Qic

|K| +
Q2

F

2|X | (4.50)

where QF is the number of queries that A makes to an F (k, ·) oracle and Qic is the number of

queries A makes to ⇧- and ⇧�1-oracles. In Salsa and ChaCha, QF is at most |X |1/4 so that
Q2

F
2|X | is

“negligible.”

Discussion: The specific permutation ⇡ used in the Salsa and ChaCha stream ciphers is not quite
an ideal permutation. For example, ⇡(0n+m) = 0n+m. Hence, your analysis applies to the general
framework, but not specifically to Salsa and ChaCha.

4.24 (Alternative proof of Theorem 4.6). Let X and Y be random variables as defined in
Exercise 3.13. Consider an adversary A in Attack Game 4.3 that makes at most Q queries to its
challenger. Show that PFadv[A, X ]  �[X,Y]  Q2/2N .

4.25 (A one-sided switching lemma). Following up on the previous exercise, one can use
part (b) of Exercise 3.13 to get a “one sided” version of Theorem 4.6, which can be useful in
some settings. Consider an adversary A in Attack Game 4.3 that makes at most Q queries to its
challenger. Let W0 and W1 be as defined in that game: W0 is the event that A outputs 1 when
probing a random permutation, and W1 is the event that A outputs 1 when probing a random
function. Assume Q2 < N . Show that Pr[W0]  ⇢[X,Y] · Pr[W1]  2 Pr[W1].

4.26 (Parallel composition of PRFs). Just as we can compose PRGs in parallel, while main-
taining security (see Section 3.4.1), we can also compose PRFs in parallel, while maintaining secu-
rity.
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Suppose we have a PRF F , defined over (K, X , Y). We want to model the situation where
an adversary is given n black boxes (where n � 1 is poly-bounded): the boxes either contain
F (k1, ·), . . . , F (kn, ·), where the ki are random (and independent) keys, or they contain f1, . . . , fn,
where the fi are random elements of Funs[X , Y], and the adversary should not be able to tell the
di↵erence.

A convenient way to model this situation is to consider the n-wise parallel composition of F ,
which is a PRF F 0 whose key space is Kn, whose input space is {1, . . . , n}⇥ X , and whose output
space is Y. Given a key k0 = (k1, . . . , kn), and an input x0 = (s, x), with s 2 {1, . . . , n} and x 2 X ,
we define F 0(k0, x0) := F (ks, x).

Show that if F is a secure PRF, then so is F 0. In particular, show that for every PRF adver-
sary A, then exist a PRF adversary B, where B is an elementary wrapper around A, such that
PRFadv[A, F 0] = n · PRFadv[B, F ].

4.27 (Universal attacker on PRFs). Let F be a PRF defined over (K, X , Y) where |K| < |X |.
Let Q < |K|. Show that there is a PRF adversary A that runs in time proportional to Q, makes
one query to the PRF challenger, and has advantage

PRFadv[A, F ] �
�

�

�

�

Q

|K| �
Q

|X |
�

�

�

�

.

4.28 (Distributed PRFs). Let F be a secure PRF defined over (K, X , Y) where Y := {0, 1}n.
In Exercise 4.1 part (d) we showed that if F is secure then so is

F 0�(k1, k2), x) := F (k1, x)� F (k2, x).

This F 0 has a useful property: the PRF key (k1, k2) can be split into two shares, k1 and k2. If
Alice is given one share and Bob the other share, then both Alice and Bob are needed to evaluate
the PRF, and neither can evaluate the PRF on its own. Moreover, the PRF can be evaluated
distributively, that is, without re-constituting the key (k1, k2): to evaluate the PRF at a point x0,
Alice simply sends F (k1, x0) to Bob.

(a) To show that Alice cannot evaluate F 0 by herself, show that F 0 is a secure PRF even if the
adversary is given k1. Argue that the same holds for k2.

(b) Construct a PRF where the key can be split into three shares s1, s2, s3 so that any two shares
can be used evaluate the PRF distributively, but no single share is su�cient to evaluate the
PRF on its own.

Hint: Consider the PRF F 00�(k1, k2, k3), x) := F (k1, x)� F (k2, x)� F (k3, x) and show how
to construct the shares s1, s2, s3 from the keys k1, k2, k3. Make sure to prove that the F 00 is
a secure PRF when the adversary is given a single share, namely si for some i 2 {1, 2, 3}.

(c) Generalize the construction from part (b) to construct a PRF F 000 supporting three-out-of-five
sharing of the key: any three shares can be used to evaluate the PRF distributively, but no
two shares can.

Hint: The key space for F 000 is K10.
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Chapter 5

Chosen Plaintext Attack

This chapter focuses on the problem of securely encrypting several messages in the presence of an
adversary who eavesdrops, and who may even may influence the choice of some messages in order
to glean information about other messages. This leads us to the notion of semantic security against
a chosen plaintext attack.

5.1 Introduction

In Chapter 2, we focused on the problem of encrypting a single message. Now we consider the
problem of encrypting several messages. To make things more concrete, suppose Alice wants to use
a cipher to encrypt her files on some file server, while keeping her secret keys for the cipher stored
securely on her USB memory stick.

One possible approach is for Alice to encrypt each individual file using a di↵erent key. This
entails that for each file, she stores an encryption of that file on the file server, as well as a
corresponding secret key on her memory stick. As we will explore in detail in Section 5.2, this
approach will provide Alice with reasonable security, provided she uses a semantically secure cipher.
Now, although a file may be several megabytes long, a key for any practical cipher is just a few bytes
long. However, if Alice has many thousands of files to encrypt, she must store many thousands of
keys on her memory stick, which may not have su�cient storage for all these keys.

As we see, the above approach, while secure, is not very space e�cient, as it requires one key per
file. Faced with this problem, Alice may simply decide to encrypt all her files with the same key.
While more e�cient, this approach may be insecure. Indeed, if Alice uses a cipher that provides only
semantic security (as in Definition 2.3), this may not provide Alice with any meaningful security
guarantee, and may very well expose her to a realistic attack.

For example, suppose Alice uses the stream cipher E discussed in Section 3.2. Here, Alice’s key
is a seed s for a PRG G, and viewing a file m as a bit string, Alice encrypts m by computing the
ciphertext c := m��, where � consists of the first |m| bits of the “key stream” G(s). But if Alice
uses this same seed s to encrypt many files, an adversary can easily mount an attack. For example,
if an adversary knows some of the bits of one file, he can directly compute the corresponding bits
of the key stream, and hence obtain the corresponding bits of any file. How might an adversary
know some bits of a given file? Well, certain files, like email messages, contain standard header
information (see Example 2.6), and so if the adversary knows that a given ciphertext is an encryption
of an email, he can get the bits of the key stream that correspond to the location of the bits in this
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standard header. To mount an even more devastating attack, the adversary may try something even
more devious: he could simply send Alice a large email, say one megabyte in length; assuming that
Alice’s software automatically stores an encryption of this email on her server, when the adversary
snoops her file server, he can recover a corresponding one megabyte chunk of the key stream, and
now he decrypt any one megabyte file stored on Alice’s server! This email may even be caught in
Alice’s spam filter, and never actually seen by Alice, although her encryption software may very
well diligently encrypt this email along with everything else. This type of an attack is called a
chosen plaintext attack, because the adversary forces Alice to give him the encryption of one or
more plaintexts of his choice during his attack on the system.

Clearly, the stream cipher above is inadequate for the job. In fact, the stream cipher, as well
as any other deterministic cipher, should not be used to encrypt multiple files with the same key.
Why? Any deterministic cipher that is used to encrypt several files with the same key will su↵er
from an inherent weakness: an adversary will always be able to tell when two files are identical
or not. Indeed, with a deterministic cipher, if the same key is used to encrypt the same message,
the resulting ciphertext will always be the same (and conversely, for any cipher, if the same key
is used to encrypt two di↵erent messages, the resulting ciphertexts must be di↵erent). While this
type of attack is certainly not as dramatic as those discussed above, in which the adversary can
read Alice’s files almost at will, it is still a serious vulnerability. For example, while the discussion
in Section 4.1.4 about ECB mode was technically about encrypting a single message consisting of
many data blocks, it applies equally well to the problem of encrypting many single-block messages
under the same key.

In fact, it is possible for Alice to use a cipher to securely encrypt all of her files under a single,
short key, but she will need to use a cipher that is better suited to this task. In particular, because of
the above inherent weakness of any deterministic cipher, she will have to use a probabilistic cipher,
that is, a cipher that uses a probabilistic encryption algorithm, so that di↵erent encryptions of the
same plaintext under the same key will (generally) produce di↵erent encryptions. For her task, she
will want a cipher that achieves a level of security stronger than semantic security. The appropriate
notion of security is called semantic security against chosen plaintext attack. In Section 5.3 and the
sections following, we formally define this concept, look at some constructions based on semantically
secure ciphers, PRFs, and block ciphers, and look at a few case studies of “real world” systems.

While the above discussion motivated the topics in this chapter using the example of the “file
encryption” problem, one can also motivate these topics by considering the “secure network com-
munication” problem. In this setting, one considers the situation where Alice and Bob share a
secret key (or keys), and Alice wants to secretly transmit several of messages to Bob over an inse-
cure network. Now, if Alice can conveniently concatenate all of her messages into one long message,
then she can just use a stream cipher to encrypt the whole lot, and be done with it. However, for
a variety of technical reasons, this may not be feasible: if she wants to be able to transmit the
messages in an arbitrary order and at arbitrary times, then she is faced with a problem very similar
to that of the “file encryption” problem. Again, if Alice and Bob want to use a single, short key,
the right tool for the job is a cipher semantically secure against chosen plaintext attack.

We stress again that just like in Chapter 2, the techniques covered in this chapter do not provide
any data integrity, nor do they address the problem of how two parties come to share a secret key
to begin with. These issues are dealt with in coming chapters.
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5.2 Security against multi-key attacks

Consider again the “file encryption” problem discussed in the introduction to this chapter. Suppose
Alice chooses to encrypt each of her files under di↵erent, independently generated keys using a
semantically secure cipher. Does semantic security imply a corresponding security property in this
“multi-key” setting?

The answer to this question is “yes.” We begin by stating the natural security property corre-
sponding to semantic security in the multi-key setting.

Attack Game 5.1 (multi-key semantic security). For a given cipher E = (E, D), defined over
(K, M, C), and for a given adversary A, we define two experiments, Experiment 0 and Experiment 1.
For b = 0, 1, we define

Experiment b:

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ki  R K, ci  R E(ki, mib), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

MSSadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

We stress that in the above attack game, the adversary’s queries are adaptively chosen, in the
sense that for each i = 1, 2, . . . , the message pair (mi0, mi1) may be computed by the adversary in
some way that depends somehow on the previous encryptions c1, . . . , ci�1 output by the challenger.

Definition 5.1 (Multi-key semantic security). A cipher E is called multi-key semantically
secure if for all e�cient adversaries A, the value MSSadv[A, E ] is negligible.

As discussed in Section 2.3.5, Attack Game 5.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
MSSadv⇤[A, E ] as |Pr[b̂ = b]� 1/2|, and as usual (by (2.13)), we have

MSSadv[A, E ] = 2 · MSSadv⇤[A, E ]. (5.1)

As the next theorem shows, semantic security implies multi-key semantic security.

Theorem 5.1. If a cipher E is semantically secure, it is also multi-key semantically secure.

In particular, for every MSS adversary A that attacks E as in Attack Game 5.1, and which
makes at most Q queries to its challenger, there exists an SS adversary B that attacks E as in
Attack Game 2.1, where B is an elementary wrapper around A, such that

MSSadv[A, E ] = Q · SSadv[B, E ].
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Proof idea. The proof is a straightforward hybrid argument, which is a proof technique we intro-
duced in the proofs of Theorem 3.2 and 3.3 (the reader is advised to review those proofs, if neces-
sary). In Experiment 0 of the MSS attack game, the challenger is encrypting m10, m20, . . . , mQ0.
Intuitively, since the key k1 is only used to encrypt the first message, and E is semantically secure,
if we modify the challenger so that it encrypts m11 instead of m10, the adversary should not behave
significantly di↵erently. Similarly, we may modify the challenger so that it encrypts m21 instead
of m20, and the adversary should not notice the di↵erence. If we continue in this way, making a
total of Q modifications to the challenger, we end up in Experiment 1 of the MSS game, and the
adversary should not notice the di↵erence. 2

Proof. Suppose E = (E, D) is defined over (K, X , Y). Let A be an MSS adversary that plays Attack
Game 5.1 with respect to E , and which makes at most Q queries to its challenger in that game.

First, we introduce Q + 1 hybrid games, Hybrid 0, . . . , Hybrid Q, played between a challenger
and A. For j = 0, 1, . . . , Q, when A makes its ith query (mi0, mi1), the challenger in Hybrid j
computes its response ci as follows:

ki  R K
if i > j then ci  R E(ki, mi0) else ci  R E(ki, mi1).

Put another way, the challenger in Hybrid j encrypts

m11, . . . , mj1, m(j+1)0, . . . , mQ0,

generating di↵erent keys for each of these encryptions.
For j = 0, 1, . . . , Q, let pj denote the probability that A outputs 1 in Hybrid j. Observe that

p0 is equal to the probability that A outputs 1 in Experiment 0 of Attack Game 5.1 with respect
to E , while pQ is equal to the probability that A outputs 1 in Experiment 1 of Attack Game 5.1
with respect to E . Therefore, we have

MSSadv[A, E ] = |pQ � p0|. (5.2)

We next devise an SS adversary B that plays Attack Game 2.1 with respect to E , as follows:

First, B chooses ! 2 {1, . . . , Q} at random.

Then, B plays the role of challenger to A — when A makes its ith query (mi0, mi1), B
computes its response ci as follows:

if i > ! then
ki  R K, ci  R E(ki, mi0)

else if i = ! then
B submits (mi0, mi1) to its own challenger
ci is set to the challenger’s response

else // i < !
ki  R K, ci  R E(ki, mi1).

Finally, B outputs whatever A outputs.

Put another way, adversary B encrypts

m11, . . . , m(!�1)1,
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generating its own keys for this purpose, submits (m!0, m!1) to its own encryption oracle, and
encrypts

m(!+1)0, . . . , mQ0,

again, generating its own keys.
We claim that

MSSadv[A, E ] = Q · SSadv[B, E ]. (5.3)

To prove this claim, for b = 0, 1, let Wb be the event that B outputs 1 in Experiment b of its
attack game. If ! denotes the random number chosen by B, then the key observation is that for
j = 1, . . . , Q, we have:

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Equation (5.3) now follows from this observation, together with (5.2), via the usual telescoping sum
calculation:

SSadv[B, E ] = |Pr[W1]� Pr[W0]|

=
1

Q
·
�

�

�

�

Q
X

j=1

Pr[W1 | ! = j]�
Q
X

j=1

Pr[W0 | ! = j]

�

�

�

�

=
1

Q
· |pQ � p0|

=
1

Q
· MSSadv[A, E ],

and the claim, and hence the theorem, is proved. 2

Let us return now to the “file encryption” problem discussed in the introduction to this chapter.
What this theorem says is that if Alice uses independent keys to encrypt each of her files with a
semantically secure cipher, then an adversary who sees the ciphertexts stored on the file server will
e↵ectively learn nothing about Alice’s files (except possibly some information about their lengths).
Notice that this holds even if the adversary plays an active role in determining the contents of some
of the files (e.g., by sending Alice an email, as discussed in the introduction).

5.3 Semantic security against chosen plaintext attack

Now we consider the problem that Alice faced in introduction of this chapter, where she wants
to encrypt all of her files on her system using a single, and hopefully short, secret key. The right
notion of security for this task is semantic security against chosen plaintext attack, or CPA
security for short.

Attack Game 5.2 (CPA security). For a given cipher E = (E, D), defined over (K, M, C), and
for a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1,
we define

Experiment b:

• The challenger selects k  R K.
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• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ci  R E(k, mib), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

CPAadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

The only di↵erence between the CPA attack game and the MSS Attack Game 5.1 is that in the
CPA game, the same key is used for all encryptions, whereas in the MSS attack game, a di↵erent
key is chosen for each encryption. In particular, the adversary’s queries may adaptively chosen in
the CPA game, just as in the MSS game.

Definition 5.2 (CPA security). A cipher E is called semantically secure against chosen
plaintext attack, or simply CPA secure, if for all e�cient adversaries A, the value CPAadv[A, E ]
is negligible.

As in Section 2.3.5, Attack Game 5.2 can be recast as a “bit guessing” game, where instead
of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then runs
Experiment b against the adversary A; we define A’s bit-guessing advantage as CPAadv

⇤[A, E ] :=
|Pr[b̂ = b]� 1/2|, and as usual (by (2.13)), we have

CPAadv[A, E ] = 2 · CPAadv

⇤[A, E ]. (5.4)

Again, we return to the “file encryption” problem discussed in the introduction to this chapter.
What this definition says is that if Alice uses just a single key to encrypt each of her files with
a CPA secure cipher, then an adversary who sees the ciphertexts stored on the file server will
e↵ectively learn nothing about Alice’s files (except possibly some information about their lengths).
Again, notice that this holds even if the adversary plays an active role in determining the contents
of some of the files.

Example 5.1. Just to exercise the definition a bit, let us show that no deterministic cipher can
possibly satisfy the definition of CPA security. Suppose that E = (E, D) is a deterministic cipher.
We construct a CPA adversary A as follows. Let m, m0 be any two, distinct messages in the
message space of E . The adversary A makes two queries to its challenger: the first is (m, m0),
and the second is (m, m). Suppose c1 is the challenger’s response to the first query and c2 is the
challenger’s response to the second query. Adversary A outputs 1 if c1 = c2, and 0 otherwise.

Let us calculate CPAadv[A, E ]. On then one hand, in Experiment 0 of Attack Game 5.2,
the challenger encrypts m in responding to both queries, and so c1 = c2; hence, A outputs 1
with probability 1 in this experiment (this is precisely where we use the assumption that E is
deterministic). On the other hand, in Experiment 1, the challenger encrypts m0 and m, and so
c1 6= c2; hence, A outputs 1 with probability 0 in this experiment. It follows that CPAadv[A, E ] = 1.

The attack in this example can be generalized to show that not only must a CPA-secure cipher
be probabilistic, but it must be very unlikely that two encryptions of the same message yield the
same ciphertext — see Exercise 5.11. 2

Remark 5.1. Analogous to Theorem 5.1, it is straightforward to show that if a cipher is CPA-
secure, it is also CPA-secure in the multi-key setting. See Exercise 5.2. 2
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5.4 Building CPA secure ciphers

In this section, we describe a number of ways of building ciphers that are semantically secure
against chosen plaintext attack. As we have already discussed in Example 5.1, any such cipher
must be probabilistic. We begin in Section 5.4.1 with a generic construction that combines any
semantically secure cipher with a pseudo-random function (PRF). The PRF is used to generate
“one time” keys. Next, in Section 5.4.2, we develop a probabilistic variant of the counter mode
cipher discussed in Section 4.4.4. While this scheme can be based on any PRF, in practice, the
PRF is usually instantiated with a block cipher. Finally, in Section 5.4.3, we present a cipher that
is constructed from a block cipher using a method called cipher block chaining (CBC) mode.

These last two constructions, counter mode and CBC mode, are called modes of operation of a
block cipher. Another mode of operation we have already seen in Section 4.1.4 is electronic codebook
(ECB) mode. However, because of the lack of security provided by this mode of operation, its is
seldom used. There are other modes of operations that provide CPA security, which we develop in
the exercises.

5.4.1 A generic hybrid construction

In this section, we show how to turn any semantically secure cipher E = (E, D) into a CPA secure
cipher E 0 using an appropriate PRF F .

The basic idea is this. A key for E 0 is a key k0 for F . To encrypt a single message m, a random
input x for F is chosen, and a key k for E is derived by computing k  F (k0, x). Then m is
encrypted using this key k: c  R E(k, m). The ciphertext is c0 := (x, c). Note that we need to
include x as part of c0 so that we can decrypt: the decryption algorithm first derives the key k by
computing k  F (k0, x), and then recovers m by computing m D(k, c).

For all of this to work, the output space of F must match the key space of E . Also, the input
space of F must be super-poly, so that the chances of accidentally generating the same x value
twice is negligible.

Now the details. Let E = (E, D) be a cipher, defined over (K, M, C). Let F be a PRF defined
over (K0, X , K); that is, the output space of F should be equal to the key space of E . We define a
new cipher E 0 = (E0, D0), defined over (K0, M, X ⇥ C), as follows:

• for k0 2 K0 and m 2M, we define

E0(k0, m) := x R X , k  F (k0, x), c R E(k, m)
output (x, c);

• for k0 2 K0 and c0 = (x, c) 2 X ⇥ C, we define

D0(k0, c0) := k  F (k0, x), m D(k, c)
output m.

It is easy to verify that E 0 is indeed a cipher, and is our first example of a probabilistic cipher.

Example 5.2. Before proving CPA security of E 0 let us first see the construction in action. Suppose
E is the one-time pad, namely E(k, m) := k�m where K = M = C = {0, 1}L. Applying the generic
hybrid construction above to the one-time pad results in the following popular cipher E0 = (E0, D0):

• for k0 2 K0 and m 2M, define
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E0(k0, m) := x R X , output (x, F (k0, x)�m)

• for k0 2 K0 and c0 = (x, c) 2 X ⇥ C, define

D0(k0, c0) := output F (k0, x)� c

CPA security of this cipher follows from the CPA security of the generic hybrid construction E 0

which is proved in Theorem 5.2 below. 2

Theorem 5.2. If F is a secure PRF, E is a semantically secure cipher, and N := |X | is super-poly,
then the cipher E 0 described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.2, and which makes at most Q queries to its challenger, there exists a PRF adversary
BF that attacks F as in Attack Game 4.2, and an SS adversary BE that attacks E as in the bit-
guessing version of Attack Game 2.1, where both BF and BE are elementary wrappers around
A, such that

CPAadv[A, E 0]  Q2

N
+ 2 · PRFadv[BF , F ] + Q · SSadv[BE , E ]. (5.5)

Proof idea. First, using the assumption that F is a PRF, we can e↵ectively replace F by a truly
random function. Second, using the assumption that N is super-poly, we argue that except with
negligible probability, no two x-values are ever the same. But in this scenario, the challenger’s keys
are now all independently generated, and so the challenger is really playing the same role as the
challenger in the Attack Game 5.1. The result then follows from Theorem 5.1. 2

Proof. Let A be an e�cient CPA adversary that attacks E 0 as in Attack Game 5.2. Assume that
A makes at most Q queries to its challenger. Our goal is to show that CPAadv[A, E 0] is negligible,
assuming that F is a secure PRF, that N is super-poly, and that E is semantically secure.

It is convenient to use the bit-guessing versions of the CPA and semantic security attack games.
We prove:

CPAadv

⇤[A, E 0]  Q2

2N
+ PRFadv[BF , F ] + Q · SSadv⇤[BE , E ] (5.6)

for e�cient adversaries BF and BE . Then (5.5) follows from (5.4) and Theorem 2.10.
The basic strategy of the proof is as follows. First, we define Game 0 to be the game played

between A and the challenger in the bit-guessing version of Attack Game 5.2 with respect to E 0.
We then define several more games: Game 1, Game 2, and Game 3. Each of these games is played
between A and a di↵erent challenger; moreover, as we shall see, Game 3 is equivalent to the bit-
guessing version of Attack Game 5.1 with respect to E . In each of these games, b denotes the
random bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3,
we define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ] � Pr[Wj�1]| is negligible; moreover, from the assumption that E is semantically secure,
and from Theorem 5.1, it will follow that |Pr[W3] � 1/2| is negligible; from this, it follows that
CPAadv

⇤[A, E 0] := |Pr[W0]� 1/2| is negligible.

Game 0. Let us begin by giving a detailed description of the challenger in Game 0 that is convenient
for our purposes:
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b R {0, 1}
k0  R K0

for i 1 to Q do
xi  R X
ki  F (k0, xi)

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

By construction, we have

CPAadv

⇤[A, E 0] =
�

�Pr[W0]� 1/2
�

�, (5.7)

Game 1. Next, we play our “PRF card,” replacing F (k0, ·) by a truly random function f 2
Funs[X , K]. The challenger in this game looks like this:

b R {0, 1}
f  R Funs[X , K]
for i 1 to Q do

xi  R X
ki  f(xi)

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

We claim that
�

�Pr[W1]� Pr[W0]
�

� = PRFadv[BF , F ], (5.8)

where BF is an e�cient PRF adversary; moreover, since we are assuming that F is a secure PRF,
it must be the case that PRFadv[BF , F ] is negligible.

The design of BF is naturally suggested by the syntax of Games 0 and 1. If f 2 Funs[X , K]
denotes the function chosen by its challenger in Attack Game 4.2 with respect to F , adversary BF

runs as follows:

First, BF makes the following computations:

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R f(xi).

Here, BF obtains the value f(xi) by querying its own challenger with xi.

Next, adversary BF plays the role of challenger to A; specifically, when A makes its ith
query (mi0, mi1), adversary BF computes

ci  R E(ki, mib)

and sends (xi, ci) to A.
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PRF Challenger

ki

b
R {0, 1}

mi0,mi1

ci
R E(ki,mib)

b̂

�(b̂, b)

xi
R X

xi, ci

BF

A

Figure 5.1: Adversary BF in the proof of Theorem 5.2

Eventually, A halts and outputs a bit b̂, at which time adversary BF halts and outputs
1 if b̂ = b, and outputs 0 otherwise.

See Fig. 5.1 for a picture of adversary BF . As usual, �(x, y) is defined to be 1 if x = y, and 0
otherwise.

Game 2. Next, we use our “faithful gnome” idea (see Section 4.4.2) to implement the random
function f . Our “gnome” has to keep track of the inputs to f , and detect if the same input is used
twice. In the following logic, our gnome uses a truly random key as the “default” value for ki, but
over-rides this default value if necessary, as indicated in the line marked (⇤):

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R K

(⇤) if xi = xj for some j < i then ki  kj

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

As this is a faithful implementation of the random function f , we have

Pr[W2] = Pr[W1]. (5.9)
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Game 3. Next, we make our gnome “forgetful,” simply dropping the line marked (⇤) in the
previous game:

b R {0, 1}
for i 1 to Q do

xi  R X
ki  R K

upon receiving the ith query (mi0, mi1) 2M2:
ci  R E(ki, mib)
send (xi, ci) to the adversary.

To analyze the quantity |Pr[W3]�Pr[W2]|, we use the Di↵erence Lemma (Theorem 4.7). To this
end, we view Games 2 and 3 as operating on the same underlying probability space: the random
choices made by the adversary and the challenger are identical in both games — all that di↵ers is
the rule used by the challenger to compute its responses. In particular, the variables xi are identical
in both games. Define Z to be the event that xi = xj for some i 6= j. Clearly, Games 2 and 3
proceed identically unless Z occurs; in particular, W2 ^ Z̄ occurs if and only if W3 ^ Z̄ occurs.
Applying the Di↵erence Lemma, we therefore have

�

�Pr[W3]� Pr[W2]
�

�  Pr[Z]. (5.10)

Moreover, it is easy to see that

Pr[Z]  Q2

2N
, (5.11)

since Z is the union of less that Q2/2 events, each of which occurs with probability 1/N .

Observe that in Game 3, independent encryption keys ki are used to encrypt each message. So
next, we play our “semantic security card,” claiming that

|Pr[W3]� 1/2| = MSSadv⇤[B̄E , E ], (5.12)

where B̄E is an e�cient adversary that plays the bit-guessing version of Attack Game 5.1 with
respect to E , making at most Q queries to its challenger in that game.

The design of B̄E is naturally suggested by the syntactic form of Game 3. It works as follows:

Playing the role of challenger to A, upon receiving the ith query (mi0, mi1) from A,
adversary B̄E submits (mi0, mi1) to its own challenger, obtaining a ciphertext ci 2 C;
then B̄E selects xi at random from X , and sends (xi, ci) to A in response to the latter’s
query.

When A finally outputs a bit b̂, B̄E outputs this same bit.

See Fig. 5.2 for a picture of adversary B̄E .
It is evident from the construction (and (2.13)) that (5.12) holds. Moreover, by Theorem 5.1

and (5.1), we have
MSSadv⇤[B̄E , E ] = Q · SSadv⇤[BE , E ], (5.13)

where BE is an e�cient adversary playing the bit-guessing version of Attack Game 2.1 with respect
to E .
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xi
R X

xi, ci

A

B̄E

Figure 5.2: Adversary B̄E in the proof of Theorem 5.2

Putting together (5.7) through (5.13), we obtain (5.6). Also, one can check that the running
times of both BF and BE are roughly the same as that of A; indeed, they are elementary wrappers
around A, and (5.5) holds regardless of whether A is e�cient. 2

While the above proof was a bit long, we hope the reader agrees that it was in fact quite natural,
and that all of the steps were fairly easy to follow. Also, this proof illustrates how one typically
employs more than one security assumption in devising a security proof as a sequence of games.

Remark 5.2. We briefly mention that the hybrid construction E 0 in Theorem 5.2 is CPA secure
even if the PRF F used in the construction is only weakly secure (as in Definition 4.3). To prove
Theorem 5.2 under this weaker assumption observe that in both Games 0 and 1 the challenger only
evaluates the PRF at random points in X . Therefore, the adversary’s advantage in distinguishing
Games 0 and 1 is negligible even if F is only weakly secure. 2

5.4.2 Randomized counter mode

We can build a CPA secure cipher directly out of a secure PRF, as follows. Suppose F is a PRF
defined over (K, X , Y). We shall assume that X = {0, . . . , N � 1}, and that Y = {0, 1}n.

For any poly-bounded ` � 1, we define a cipher E = (E, D), with key space K, message space
Y`, and ciphertext space X ⇥ Y`, as follows:

• for k 2 K and m 2 Y`, with v := |m|, we define
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E(k, m) :=
x R X
compute c 2 Yv as follows:

for j  0 to v � 1 do
c[j] F (k, x + j mod N)�m[j]

output (x, c);

• for k 2 K and c0 = (x, c) 2 X ⇥ Y`, with v := |c|, we define

D(k, c0) :=
compute m 2 Yv as follows:

for j  0 to v � 1 do
m[j] F (k, x + j mod N)� c[j]

output m.

This cipher is much like the stream cipher one would get by building a PRG out of F using
the construction in Section 4.4.4. The di↵erence is that instead of using a fixed sequence of inputs
to F to derive a key stream, we use a random starting point, which we then increment to obtain
successive inputs to F . The x component of the ciphertext is typically called an initial value, or
IV for short.

In practice, F is typically implemented using the encryption function of a block cipher, and
X = Y = {0, 1}n, where we naturally view n-bit strings as numbers in the range 0, . . . , 2n � 1. As
it happens, the decryption function of the block cipher is not needed at all in this construction.
See Fig. 5.3 for an illustration of this mode.

It is easy to verify that E is indeed a (probabilistic) cipher. Also, note that the message space
of E is variable length, and that for the purposes of defining CPA security using Attack Game 5.2,
the length of a message m 2 Y` is its natural length |m|.
Theorem 5.3. If F is a secure PRF and N is super-poly, then for any poly-bounded ` � 1, the
cipher E described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E as in Attack Game 5.2, and which
makes at most Q queries to its challenger, there exists a PRF adversary B that attacks F as in
Attack Game 4.2, where B is an elementary wrapper around A, such that

CPAadv[A, E ]  4Q2`

N
+ 2 · PRFadv[B, F ]. (5.14)

Proof idea. Suppose we start with an adversary that plays the CPA attack game with respect to
E . First, using the assumption that F is a PRF, we can e↵ectively replace F by a truly random
function f . Second, using the assumption that N is super-poly, and the fact that each IV is chosen
at random, we can argue that except with negligible probability, the challenger never evaluates f
at the same point twice. But in this case, the challenger is e↵ectively encrypting each message
using an independent one-time pad, and so we can conclude that the adversary’s advantage in the
original CPA attack game is negligible. 2

Proof. Let A be an e�cient adversary that plays Attack Game 5.2 with respect to E , and which
makes at most Q queries to its challenger in that game. We want to show that CPAadv[A, E ] is
negligible, assuming that F is a secure PRF and that N is super-poly.
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Figure 5.3: Randomizd counter mode (v = 3)
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It is convenient to use the bit-guessing version of the CPA attack game, We prove:

CPAadv

⇤[A, E ]  2Q2`

N
+ PRFadv[B, F ] (5.15)

for an e�cient adversary B. Then (5.14) follows from (5.4).
The basic strategy of the proof is as follows. First, we define Game 0 to be the game played

between A and the challenger in the bit-guessing version of Attack Game 5.2 with respect to
E . We then define several more games: Game 1, Game 2, and Game 3. Each of these games
is played between A and a di↵erent challenger. In each of these games, b denotes the random
bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3, we
define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ]�Pr[Wj�1]| is negligible; moreover, it will be evident that Pr[W3] = 1/2, from which it will
follow that CPAadv

⇤[A, E ] := |Pr[W0]� 1/2| is negligible.

Game 0. We may describe the challenger in Game 0 as follows:

b R {0, 1}
k  R K
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  F (k, x0
ij)

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 Yv

i as follows:
for j  0 to vi � 1 do: ci[j] yij �mib[j]

send (xi, ci) to the adversary.

By construction, we have we have

CPAadv

⇤[A, E ] =
�

�Pr[W0]� 1/2
�

�. (5.16)

Game 1. Next, we play our “PRF card,” replacing F (k, ·) by a truly random function f 2
Funs[X , Y]. The challenger in this game looks like this:

b R {0, 1}
f  R Funs[X , Y]
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  f(x0
ij)

· · ·
We have left out part of the code for the challenger, as it will not change in any of our games.

We claim that
�

�Pr[W1]� Pr[W0]
�

� = PRFadv[B, F ], (5.17)

where B is an e�cient adversary; moreover, since we are assuming that F is a secure PRF, it must
be the case that PRFadv[B, F ] is negligible. This is hopefully (by now) a routine argument, and
we leave the details of this to the reader.
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Game 2. Next, we use our “faithful gnome” idea to implement the random function f . In
describing the logic of our challenger in this game, we use the standard lexicographic ordering on
pairs of indices (i, j); that is, (i0, j0) < (i, j) if and only if

i0 < i or i0 = i and j0 < j.

In the following logic, our “gnome” uses a truly random value as the “default” value for each yij ,
but over-rides this default value if necessary, as indicated in the line marked (⇤):

b R {0, 1}
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  R Y
(⇤) if x0

ij = x0
i0j0 for some (i0, j0) < (i, j) then yij  yi0j0

· · ·
As this is a faithful implementation of the random function f , we have

Pr[W2] = Pr[W1]. (5.18)

Game 3. Now we make our gnome “forgetful,” dropping the line marked (⇤) in the previous game:

b R {0, 1}
for i 1 to Q do

xi  R X
for j  0 to `� 1 do

x0
ij  xi + j mod N

yij  R Y
· · ·

To analyze the quantity |Pr[W3]�Pr[W2]|, we use the Di↵erence Lemma (Theorem 4.7). To this
end, we view Games 2 and 3 as operating on the same underlying probability space: the random
choices made by the adversary and the challenger are identical in both games — all that di↵ers
is the rule used by the challenger to compute its responses. In particular, the variables x0

ij are
identical in both games. Define Z to be the event that x0

ij = x0
i0j0 for some (i, j) 6= (i0, j0). Clearly,

Games 2 and 3 proceed identically unless Z occurs; in particular, W2 ^ Z̄ occurs if and only if
W3 ^ Z̄ occurs. Applying the Di↵erence Lemma, we therefore have

�

�Pr[W3]� Pr[W2]
�

�  Pr[Z]. (5.19)

We claim that

Pr[Z]  2Q2`

N
. (5.20)

To prove this claim, we may assume that N � 2` (this should anyway generally hold, since we are
assuming that ` is poly-bounded and N is super-poly). Observe that Z occurs if and only if

{xi, . . . , xi + `� 1} \ {xi0 , . . . , xi0 + `� 1} 6= ;
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for some pair of indices i and i0 with i 6= i0 (and arithmetic is done mod N). Consider any fixed
such pair of indices. Conditioned on any fixed value of xi, the value xi0 is uniformly distributed
over {0, . . . , N � 1}, and the intervals overlap if and only if

xi0 2 {xi + j : �` + 1  j  `� 1},

which happens with probability (2`� 1)/N . The inequality (5.20) now follows.

Finally, observe that in Game 3 the yij values are uniformly and independently distributed over
Y, and thus the challenger is essentially using independent one-time pads to encrypt. In particular,
it is easy to see that the adversary’s output in this game is independent of b. Therefore,

Pr[W3] = 1/2. (5.21)

Putting together (5.16) through (5.21), we obtain (5.15), and the theorem follows. 2

Remark 5.3. One can also view randomized counter mode as a special case of the generic hybrid
construction in Section 5.4.1. See Exercise 5.5. 2

Case study: AES counter mode

The IPsec protocol uses a particular variants of AES counter mode, as specified in RFC 3686.
Recall that AES uses a 128 bit block. Rather than picking a random 128-bit IV for every message,
RFC 3686 picks the IV as follows:

• The most significant 32 bits are chosen at random at the time that the secret key is generated
and are fixed for the life of the key. The same 32 bit value is used for all messages encrypted
using this key.

• The next 64 bits are chosen at random in {0, 1}64.
• The least significant 32 bits are set to the number 1.

This resulting 128-bit IV is used as the initial value of the counter. When encryption a message
the least significant 32 bits are incremented by one for every block of the message. Consequently,
the maximum message length that can be encrypted is 232 AES blocks or 236 bytes.

With this choice of IV the decryptor knows the 32 most significant bits of the IV as well as
the 32 least significant bits. Hence, only 64 bits of the IV need to be sent with the ciphertext.

The proof of Theorem 5.3 can be adapted to show that this method of choosing IVs is secure.
The slight advantage of this method over picking a random 128-bit IV is that the resulting ciphertext
is a little shorter. A random IV forces the encryptor to include all 128 bits in the ciphertext. With
the method of RFC 3686 only 64 bits are needed, thus shrinking the ciphertext by 8 bytes.

5.4.3 CBC mode

An historically important encryption method is to use a block cipher in cipher block chaining (CBC)
mode. This method is used in older versions of the TLS protocol (e.g., TLS 1.0). It is inferior to
counter mode encryption as discussed in the next section.

Suppose E = (E, D) is a block cipher defined over (K, X ), where X = {0, 1}n. Let N := |X | =
2n. For any poly-bounded ` � 1, we define a cipher E 0 = (E0, D0), with key space K, message
space X`, and ciphertext space X`+1 \ X 0; that is, the ciphertext space consists of all nonempty
sequences of at most ` + 1 data blocks. Encryption and decryption are defined as follows:
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• for k 2 K and m 2 X`, with v := |m|, we define

E0(k, m) :=
compute c 2 X v+1 as follows:

c[0] R X
for j  0 to v � 1 do

c[j + 1] E(k, c[j]�m[j])
output c;

• for k 2 K and c 2 X`+1 \ X 0, with v := |c|� 1, we define

D0(k, c) :=
compute m 2 X v as follows:

for j  0 to v � 1 do
m[j] D(k, c[j + 1])� c[j]

output m.

See Fig. 5.4 for an illustration of the encryption and decryption algorithm in the case |m| = 3.
Here, the first component c[0] of the ciphertext is also called an initial value, or IV. Note that
unlike the counter mode construction in Section 5.4.2, in CBC mode, we must use a block cipher,
as we actually need to use the decryption algorithm of the block cipher.

It is easy to verify that E 0 is indeed a (probabilistic) cipher. Also, note that the message space
of E is variable length, and that for the purposes of defining CPA security using Attack Game 5.2,
the length of a message m 2 X` is its natural length |m|.
Theorem 5.4. If E = (E, D) is a secure block cipher defined over (K, X ), and N := |X | is
super-poly, then for any poly-bounded ` � 1, the cipher E 0 described above is a CPA secure cipher.

In particular, for every CPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.2, and which makes at most Q queries to its challenger, there exists BC adversary B
that attacks E as in Attack Game 4.1, where B is an elementary wrapper around A, such that

CPAadv[A, E 0]  2Q2`2

N
+ 2 · BCadv[B, E ]. (5.22)

Proof idea. The basic idea of the proof is very similar to that of Theorem 5.3. We start with an
adversary that plays the CPA attack game with respect to E 0. We then replace E by a truly random
function f . Then we argue that except with negligible probability, the challenger never evaluates f
at the same point twice. But then what the adversary sees is nothing but a bunch of random bits,
and so learns nothing at all about the message being encrypted. 2

Proof. Let A be an e�cient CPA adversary that attacks E 0 as in Attack Game 5.2. Assume that
A makes at most Q queries to its challenger in that game. We want to show that CPAadv

⇤[A, E 0]
is negligible, assuming that E is a secure block cipher and that N is super-poly. Under these
assumptions, by Corollary 4.5, the encryption function E is a secure PRF, defined over (K, X , X ).

It is convenient to use the bit-guessing version of the CPA attack game, We prove:

CPAadv

⇤[A, E 0]  Q2`2

N
+ BCadv[B, E ] (5.23)

for an e�cient adversary B. Then (5.22) follows from (5.4).
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� ��

m[0] m[1] m[2]

c[1] c[2] c[3]c[0]

E(k, ·) E(k, ·) E(k, ·)

(a) encryption

� ��

m[0] m[1] m[2]

c[1] c[2] c[3]c[0]

D(k, ·) D(k, ·) D(k, ·)

(b) decryption

Figure 5.4: Encryption and decryption for CBC mode with ` = 3
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As usual, we define a sequence of games: Game 0, Game 1, Game 2, Game 3. Each of these
games is played between A and a challenger. The challenger in Game 0 is the one from the bit-
guessing version of Attack Game 5.2 with respect to E 0. In each of these games, b denotes the
random bit chosen by the challenger, while b̂ denotes the bit output by A. Also, for j = 0, . . . , 3,
we define Wj to be the event that b̂ = b in Game j. We will show that for j = 1, . . . , 3, the value
|Pr[Wj ]�Pr[Wj�1]| is negligible; moreover, it will be evident that Pr[W3] = 1/2, from which it will
follow that |Pr[W0]� 1/2| is negligible.

Here we go!

Game 0. We may describe the challenger in Game 0 as follows:

b R {0, 1}, k  R K
upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:

compute ci 2 X v
i

+1 as follows:
ci[0] R X
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] E(k, xij)

send ci to the adversary.

By construction, we have

CPAadv

⇤[A, E 0] =
�

�Pr[W0]� 1/2
�

�. (5.24)

Game 1. We now play the “PRF card,” replacing E(k, ·) by a truly random function f 2
Funs[X , X ]. Our challenger in this game looks like this:

b R {0, 1}, f  R Funs[X , X ]

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X v

i

+1 as follows:
ci[0] R X
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] f(xij)

send ci to the adversary.

We claim that
�

�Pr[W1]� Pr[W0]
�

� = PRFadv[B, E], (5.25)

where B is an e�cient adversary; moreover, since we are assuming that E is a secure block cipher,
and that N is super-poly, it must be the case that PRFadv[B, E] is negligible. This is hopefully
(by now) a routine argument, and we leave the details of this to the reader.

Game 2. The next step in this dance should by now be familiar: we implement f using a faithful
gnome. We do so by introducing random variables yij which represent the “default” values for ci[j],
which get over-ridden if necessary in the line marked (⇤) below:
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b R {0, 1}
set yij  R X for i = 1, . . . , Q and j = 0, . . . , `

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X v

i

+1 as follows:
ci[0] yi0
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] yi(j+1)

(⇤) if xij = xi0j0 for some (i0, j0) < (i, j) then ci[j + 1] ci0 [j0 + 1]
send ci to the adversary.

We clearly have
Pr[W2] = Pr[W1]. (5.26)

Game 3. Now we make gnome forgetful, removing the check in the line marked (⇤):
b R {0, 1}
set yij  R X for i = 1, . . . , Q and j = 0, . . . , `

upon receiving the ith query (mi0, mi1), with vi := |mi0| = |mi1|:
compute ci 2 X v

i

+1 as follows:
ci[0] yi0
for j  0 to vi � 1 do

xij  ci[j]�mib[j]
ci[j + 1] R yi(j+1)

send ci to the adversary.

To analyze the quantity |Pr[W3]�Pr[W2]|, we use the Di↵erence Lemma (Theorem 4.7). To this
end, we view Games 2 and 3 as operating on the same underlying probability space: the random
choices made by the adversary and the challenger are identical in both games — all that di↵ers is
the rule used by the challenger to compute its responses.

We define Z to be the event that xij = xi0j0 in Game 3. Note that the event Z is defined in
terms of the xij values in Game 3. Indeed, the xij values may not be computed in the same way in
Games 2 and 3, and so we have explicitly defined the event Z in terms of their values in Game 3.
Nevertheless, it is clear that Games 2 and 3 proceed identically unless Z occurs; in particular,
W2 ^ Z̄ occurs if and only if W3 ^ Z̄ occurs. Applying the Di↵erence Lemma, we therefore have

�

�Pr[W3]� Pr[W2]
�

�  Pr[Z]. (5.27)

We claim that

Pr[Z]  Q2`2

2N
. (5.28)

To prove this, let Coins denote the random choices made by A. Observe that in Game 3, the values

Coins , b, yij (i = 1, . . . Q, j = 0, . . . , `)

are independently distributed.
Consider any fixed index i = 1, . . . , Q. Let us condition on any fixed values of Coins, b, and

yi0j for i0 = 1, . . . , i � 1 and j = 0, . . . , `. In this conditional probability space, the values of
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mi0, mi1, and vi are completely determined, as are the values vi0 and xi0j for i0 = 1, . . . , i� 1 and
j = 0, . . . , vi0�1; however, the values of yi0, . . . , yi` are still uniformly and independently distributed
over X . Moreover, as xij = yij �mib[j] for j = 0, . . . , vi� 1, it follows that these xij values are also
uniformly and independently distributed over X . Thus, for any fixed index j = 0, . . . , vi � 1, and
any fixed indices i0 and j0, with (i0, j0) < (i, j), the probability that xij = xi0j0 in this conditional
probability space is 1/N . The bound (5.28) now follows from an easy calculation.

Finally, we claim that
Pr[W3] = 1/2. (5.29)

This follows from the fact that

Coins , b, yij (i = 1, . . . Q, j = 0, . . . , `)

are independently distributed, and the fact that the adversary’s output b̂ is a function of

Coins, yij (i = 1, . . . Q, j = 0, . . . , `).

From this, we see that b̂ and b are independent, and so (5.29) follows immediately.
Putting together (5.24) through (5.29), we have

CPAadv

⇤[A, E 0]  Q2`2

2N
+ PRFadv[B, E].

By Theorem 4.4, we have

�

�BCadv[B, E ]� PRFadv[B, E]
�

�  Q2`2

2N
,

and (5.23) follows, which proves the theorem. 2

5.4.4 Case study: CBC padding in TLS 1.0

Let E = (E, D) be a block cipher with domain X . Our description of CBC mode encryption using E
assumes that messages to be encrypted are elements of X`. When the domain is X = {0, 1}128,
as in the case of AES, this implies that the length of messages to be encrypted must be a multiple
of 16 bytes. Since the length of messages in practice need not be a multiple of 16 we need a way
augment CBC to handle messages whose length is not necessarily a multiple of the block size.

Suppose we wish to encrypt a v-byte message m using AES in CBC mode when v is not
necessarily a multiple of 16. The first thing that comes to mind is to somehow pad the message m
so that its length in bytes is a multiple of 16. Clearly the padding function needs to be invertible
so that during decryption the padding can be removed.

The TLS 1.0 protocol defines the following padding function for encrypting a v-byte message
with AES in CBC mode: let p := 16 � (v mod 16), then append p bytes to the message m where
the content of each byte is value p� 1. For example, consider the following two cases:

• if m is 29 bytes long then p = 3 and the pad consists of the three bytes “222” so that the
padded message is 32 bytes long which is exactly two AES blocks.

• if the length of m is a multiple of the block size, say 32 bytes, then p = 16 and the pad
consists of 16 bytes. The padded message is then 48 bytes long which is three AES blocks.
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It may seem odd that when the message is a multiple of the block size we add a full dummy block at
the end. This is necessary so that the decryption procedure can properly remove the pad. Indeed,
it should be clear that this padding method is invertible for all input message lengths.

It is an easy fact to prove that every invertible padding scheme for CBC mode encryption built
from a secure block cipher gives a CPA secure cipher for messages of arbitrary length.

Padding in CBC mode can be avoided using a method called ciphertext stealing as long as
the plaintext is longer than a single block. The ciphertext stealing variant of CBC is the topic
of Exercise 5.16. When encrypting messages whose length is less than a block, say single byte
messages, there is still a need to pad.

5.4.5 Concrete parameters and a comparison of counter and CBC modes

We conclude this section with a comparison of the counter and CBC mode constructions. We
assume that counter mode is implemented with a PRF F that maps n-bit blocks to n-bit blocks,
and that CBC is implemented with an n-bit block cipher. In each case, the message space consists
of sequences of at most ` n-bit data blocks. With the security theorems proved in this section, we
have the following bounds:

CPAadv[A, Ectr]  4Q2`

2n
+ 2 · PRFadv[BF , F ],

CPAadv[A, Ecbc]  2Q2`2

2n
+ 2 · BCadv[BE , E ].

Here, A is any CPA adversary making at most Q queries to its challenger, ` is the maximum length
(in data blocks) of any one message. For the purposes of this discussion, let us simply ignore the
terms PRFadv[BF , F ] and BCadv[BE , E ].

One can immediately see that counter mode has a quantitative security advantage. To make
things more concrete, suppose the block size is n = 128, and that each message is 1MB (223 bits)
so that ` = 216 blocks. If we want to keep the adversary’s advantage below 2�32, then for counter
mode, we can encrypt up to Q = 239.5 messages, while for CBC we can encrypt only up to 232

messages. Once Q message are encrypted with a given key, a fresh key must be generated and
used for subsequent messages. Therefore, with counter mode a single key can be used to securely
encrypt many more messages as compared with CBC.

Counter mode has several other advantages over CBC:

• Parallelism and pipelining. Encryption and decryption for counter mode is trivial to paral-
lelize, whereas encryption in CBC mode is inherently sequential (decryption in CBC mode
is parallelizable). Modes that support parallelism greatly improve performance when the un-
derlying hardware can execute many instructions in parallel as is often the case in modern
processors. More importantly, consider a hardware implementation of a single block cipher
round that supports pipelining, as in Intel’s implementation of AES-128 (page 118). Pipelin-
ing enables multiple encryption instructions to execute at the same time. A parallel mode
such as counter mode keeps the pipeline busy, where as in CBC encryption the pipeline is
mostly unused due to the sequential nature of this mode. As a result, counter mode encryp-
tion on Intel’s Haswell processors is about seven times faster than CBC mode encryption,
assuming the plaintext data is already loaded into L1 cache.
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• Shorter ciphertext length. For very short messages, counter mode ciphertexts are significantly
shorter than CBC mode ciphertexts. Consider, for example, a one-byte plaintext (which arises
naturally when encrypting individual key strokes as in SSH). A counter mode ciphertext need
only be one block plus one byte: one block for the random IV plus one byte for the encrypted
plaintext. In contrast, a CBC ciphertext is two full blocks. This results in 15 redundant bytes
per CBC ciphertext assuming 128-bit blocks.

• Encryption only. CBC mode uses both algorithms E and D of the block cipher where as
counter mode uses only algorithm E. This can reduce an implementation code size.

Remark 5.4. Both randomized counter mode and CBC require a random IV. Some crypto libraries
actually leave it to the higher-level application to supply the IV. This can lead to problems if the
higher-level applications do not take pains to ensure the IVs are su�ciently random. For example,
for counter mode, it is necessary that the IVs are su�ciently spread out, so that the corresponding
intervals do not overlap. In fact, this property is su�cient as well. In contrast, for CBC mode,
more is required: it is essential that IVs be unpredictable — see Exercise 5.12.

Leaving it to the higher-level application to supply the IV is actually an example of nonce-based
encryption, which we will explore in detail next, in Section 5.5. 2

5.5 Nonce-based encryption

All of the CPA-secure encryption schemes we have seen so far su↵er from ciphertext expansion:
ciphertexts are longer than plaintexts. For example, the generic hybrid construction in Section 5.4.1
generates ciphertexts (x, c), where x belongs to the input space of some PRF and c encrypts
the actual message; the counter mode construction in Section 5.4.2 generates ciphertexts of the
essentially same form (x, c); similarly, the CBC mode construction in Section 5.4.3 includes the IV
as a part of the ciphertext.

For very long messages, the expansion is not too bad. For example, with AES and counter
mode or CBC mode, a 1MB message results is a ciphertext that is just 16 bytes longer, which may
be a perfectly acceptable expansion rate. However, for messages of 16 bytes or less, ciphertexts are
at least twice as long as plaintexts.

The bad news is, some amount of ciphertext expansion is inevitable for any CPA-secure encryp-
tion scheme (see Exercise 5.10). The good news is, in certain settings, one can get by without any
ciphertext expansion. For example, suppose Alice and Bob are fully synchronized, so that Alice first
sends an encryption m1, then an encryption m2, and so on, while Bob first decrypts the encryption
of m1, and then decrypts the encryption of m2, and so on. For concreteness, assume Alice and Bob
are using the generic hybrid construction of Section 5.4.1. Recall that the encryption of message
mi is (xi, ci), where ci := E(ki, mi) and ki := F (xi). The essential property of the xi’s needed
to ensure security was simply that they are distinct. When Alice and Bob are fully synchronized
(i.e., ciphertexts sent by Alice reach Bob in-order), they simply have to agree on a fixed sequence
x1, x2, . . . , of distinct elements in the input space of the PRF F . For example, xi might simply be
the binary encoding of i.

This mode of operation of an encryption scheme does not really fit into our definitional frame-
work. Historically, there are two ways to modify the framework to allow for this type of operation.
One approach is to allow for stateful encryption schemes, where both the encryption and decryption
algorithms maintain some internal state that evolves with each application of the algorithm. In the
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example of the previous paragraph, the state would just consist of a counter that is incremented
with each application of the algorithm. This approach requires encryptor and decryptor to be fully
synchronized, which limits its applicability, and we shall not discuss it further.

The second, and more popular, approach is called nonce-based encryption. Instead of main-
taining internal states, both the encryption and decryption algorithms take an additional input N ,
called a nonce. The syntax for nonce-based encryption becomes

c = E(k, m, N ),

where c 2 C is the ciphertext, k 2 K is the key, m 2M is the message, and N 2 N is the nonce.
Moreover, the encryption algorithm E is required to be deterministic. Likewise, the decryption
syntax becomes

m = D(k, c, N ).

The intention is that a message encrypted with a particular nonce should be decrypted with the
same nonce — it is up to the application using the encryption scheme to enforce this. More formally,
the correctness requirement is that

D(k, E(k, m, N ), N ) = m

for all k 2 K, m 2M, and N 2 N . We say that such a nonce-based cipher E = (E, D) is defined
over (K, M, C, N ).

Intuitively, a nonce-based encryption scheme is CPA secure if it does not leak any useful in-
formation to an eavesdropper, assuming that no nonce is used more than once in the encryption
process — again, it is up to the application using the scheme to enforce this. Note that this require-
ment on how nonces are used is very weak, much weaker than requiring that they are unpredictable,
let alone randomly chosen.

We can readily formalize this notion of security by slightly tweaking our original definition of
CPA security.

Attack Game 5.3 (nonce-based CPA security). For a given cipher E = (E, D), defined
over (K, M, C, N ), and for a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define

Experiment b:

• The challenger selects k  R K.

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length, and
a nonce N i 2 N \ {N 1, . . . , N i�1}.

The challenger computes ci  E(k, mib, N i), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to E as

nCPAadv[A, E ] := |Pr[W0]� Pr[W1]|. 2
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Note that in the above game, the nonces are completely under the adversary’s control, subject
only to the constraint that they are unique.

Definition 5.3 (nonce-based CPA security). A nonce-based cipher E is called semantically
secure against chosen plaintext attack, or simply CPA secure, if for all e�cient adversaries
A, the value nCPAadv[A, E ] is negligible.

As usual, as in Section 2.3.5, Attack Game 5.3 can be recast as a “bit guessing” game, and we
have

nCPAadv[A, E ] = 2 · nCPAadv

⇤[A, E ], (5.30)

where nCPAadv

⇤[A, E ] := |Pr[b̂ = b] � 1/2| in a version of Attack Game 5.3 where the challenger
just chooses b at random.

5.5.1 Nonce-based generic hybrid encryption

Let us recast the generic hybrid construction in Section 5.4.1 as a nonce-based encryption scheme.
As in that section, E is a cipher, which we shall now insist is deterministic, defined over (K, M, C),
and F is a PRF defined over (K0, X , K). We define the nonce-based cipher E 0, which is defined over
(K0, M, C, X ), as follows:

• for k0 2 K0, m 2M, and x 2 X , we define E0(k0, m, x) := E(k, m), where k := F (k0, x);

• for k0 2 K0, c 2 C, x 2 X , we define D0(k0, c) := D(k, c), where k := F (k0, x).

All we have done is to treat the value x 2 X as a nonce; otherwise, the scheme is exactly the same
as that defined in Section 5.4.1.

One can easily verify the correctness requirement for E 0. Moreover, one can easily adapt the
proof of Theorem 5.2 to prove that the following:

Theorem 5.5. If F is a secure PRF and E is a semantically secure cipher, then the cipher E 0

described above is a CPA secure cipher.

In particular, for every nCPA adversary A that attacks E 0 as in the bit-guessing version of
Attack Game 5.3, and which makes at most Q queries to its challenger, there exists a PRF
adversary BF that attacks F as in Attack Game 4.2, and an SS adversary BE that attacks E as
in the bit-guessing version of Attack Game 2.1, where both BF and BE are elementary wrappers
around A, such that

nCPAadv[A, E 0]  2 · PRFadv[BF , F ] + Q · SSadv[BE , E ]. (5.31)

We leave the proof as an exercise for the reader. Note that the term Q2

N in (5.5), which represent
the probability of a collision on the input to F , is missing from (5.31), simply because by definition,
no collisions can occur.

5.5.2 Nonce-based Counter mode

Next, we recast the counter-mode cipher from Section 5.4.2 to the nonce-based encryption setting.
Let us make a first attempt, by simply treating the value x 2 X in that construction as a nonce.

Unfortunately, this scheme cannot satisfy the definition of nonce-based CPA security. The
problem is, an attacker could choose two distinct nonces x1, x2 2 X , such that the intervals
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{x1, . . . , x1 + ` � 1} and {x2, . . . , x2 + ` � 1} overlap (again, arithmetic is done mod N). In this
case, the security proof will break down; indeed, it is easy to mount a quite devastating attack, as
discussed in Section 5.1, since that attacker can essentially force the encryptor to re-use some of
the same bits of the “key stream”.

Fortunately, the fix is easy. Let us assume that ` divides N (in practice, both ` and N will be
powers of 2, so this is not an issue). Then we use as the nonce space {0, . . . , N/`�1}, and translate
the nonce N to the PRF input x := N `. It is easy to see that for any two distinct nonces N 1 and
N 2, for x1 := N 1` and x2 := N 2`, the intervals {x1, . . . , x1 + `� 1} and {x2, . . . , x2 + `� 1} do not
overlap.

With E modified in this way, we can easily adapt the proof of Theorem 5.3 to prove the following:

Theorem 5.6. If F is a secure PRF, then the nonce-based cipher E described above is CPA secure.

In particular, for every nCPA adversary A that attacks E as in Attack Game 5.3, there exists
a PRF adversary B that attacks F as in Attack Game 4.2, where B is an elementary wrapper
around A, such that

nCPAadv[A, E ]  2 · PRFadv[B, F ]. (5.32)

We again leave the proof as an exercise for the reader.

5.5.3 Nonce-based CBC mode

Finally, we consider how to recast the CBC-mode encryption scheme in Section 5.4.3 as a nonce-
based encryption scheme. As a first attempt, one might simply try to view the IV c[0] as a nonce.
Unfortunately, this does not yield a CPA secure nonce-based encryption scheme. In the nCPA
attack game, the adversary could make two queries:

(m10, m11, N 1),
(m20, m21, N 2),

where
m10 = N 1 6= N 2 = m20, m11 = m21.

Here, all messages are one-block messages. In Experiment 0 of the attack game, the resulting
ciphertexts will be the same, whereas in Experiment 1, they will be di↵erent. Thus, we can
perfectly distinguish between the two experiments.

Again, the fix is fairly straightforward. The idea is to map nonces to pseudo-random IV’s by
passing them through a PRF. So let us assume that we have a PRF F defined over (K0, N , X ).
Here, the key space K0 and input space N of F may be arbitrary sets, but the output space X of
F must match the block space of the underlying block cipher E = (E, D), which is defined over
(K, X ). In the nonce-based CBC scheme E 0, the key space is K ⇥ K0, and in the encryption and
decryption algorithms, the IV is computed from the nonce N and key k0 as c[0] := F (k0, N ).

With these modifications, we can now prove the following variant of Theorem 5.4:

Theorem 5.7. If E = (E, D) is a secure block cipher defined over (K, X ), and N := |X | is
super-poly, and F is a secure PRF defined over (K0, N , X ), then for any poly-bounded ` � 1, the
nonce-based cipher E 0 described above is CPA secure.
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In particular, for every nCPA adversary A that attacks E 0 as in the bit-guessing version of Attack
Game 5.3, and which makes at most Q queries to its challenger, there exists BC adversary B
that attacks E as in Attack Game 4.1, and a PRF adversary BF that attacks F as in Attack
Game 4.2, where B and BF are elementary wrappers around A, such that

nCPAadv[A, E 0]  2Q2`2

N
+ 2 · PRFadv[BF , F ] + 2 · BCadv[B, E ]. (5.33)

Again, we leave the proof as an exercise for the reader. Note that in the above construction,
we may use the underlying block cipher E for the PRF F ; however, it is essential that independent
keys k and k0 are used (see Exercise 5.14).

5.6 A fun application: revocable broadcast encryption

Movie studios spend a lot of e↵ort making blockbuster movies, and then sell the movies (on DVDs)
to millions of customers who purchase them to watch at home. A customer should be able to watch
movies on a stateless standalone movie player, that has no network connection.

The studios are worried about piracy, and do not want to send copyrighted digital content in the
clear to millions of users. A simple solution could work as follows. Every authorized manufacturer
is given a device key kd 2 K, and it embeds this key in every device that it sells. If there are a

hundred authorized device manufacturers, then there are a hundred device keys k(1)
d , . . . , k(100)

d . A
movie m is encrypted as:

cm :=

8

>

>

<

>

>

:

k  R K
for i = 1, . . . , 100 : ci  R E(k(i)

d , k)
c R E0(k, m)
output (c1, . . . , c100, c)

9

>

>

=

>

>

;

where (E, D) is a CPA secure cipher, and (E0, D0) is semantically secure with key space K. We
analyze this construction in Exercise 5.4, where we show that it is CPA secure. We refer to
(c1, . . . , c100) as the ciphertext header, and refer to c is the body.

Now, every authorized device can decrypt the movie using its embedded device key. First,
decrypt the appropriate ciphertext in the header, and then use the obtained key k to decrypt
the body. This mechanism forms the basis of the content scrambling system (CSS) used to
encrypted DVDs. We previously encountered CSS in Section 3.8.

The trouble with this scheme is that once a single device is comprised, and its device key kd is
extracted and published, then anyone can use this kd to decrypt every movie ever published. There
is no way to revoke kd without breaking many consumer devices in the field. In fact, this is exactly
how CSS was broken: the device key was extracted from an authorized player, and then used in a
system called DeCSS to decrypt encrypted DVDs.

The lesson from CSS is that global unrevocable device keys are a bad idea. Once a single key
is leaked, all security is lost. When the DVD format was updated to a new format called Blu-ray,
the industry got a second chance to design the encryption scheme. In the new scheme, called the
Advanced Access Content System (AACS), every device gets a random device key unique to
that device. The system is designed to support billions of devices, each with its own key.

The goals of the system are twofold. First, every authorized device should be able to decrypt
every Blu-ray disk. Second, whenever a device key is extracted and published, it should be possible
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Figure 5.5: The tree of keys for n = 8 devices; shaded nodes are the keys embedded in device 3.

to revoke that key, so that this device key cannot be used to decrypt future Blu-ray disks, but
without impacting any other devices in the field.

A revocable broadcast system. Suppose there are n devices in the system, where for simplicity,
let us assume n is a power of two. We treat these n devices as the leaves of a complete binary tree,
as shown in Fig. 5.5. Every internal node in the tree is assigned a random key in the key space K.
The keys embedded in device number i 2 {1, . . . , n} is the set of keys on the path from leaf number
i to the root. This way, every device is given exactly log2 n keys in K.

When the system is first launched, and no device keys are yet revoked, all content is encrypted
using the key at the root (key number 15 in Fig. 5.5). More precisely, we encrypt a movie m as:

cm :=
�

k  R K, c1  R E(kroot, k), c R E0(k, m), output (c1, c)
 

Because all devices have the root key kroot, all devices can decrypt.

Revoking devices. Now, suppose device number i is attacked, and all the keys stored on it are
published. Then all future content will be encrypted using the keys associated with the siblings of
the log2 n nodes on the path from leaf i to the root. For example, when device number 3 in Fig. 5.5
is revoked, all future content is encrypted using the three keys k4, k9, k14 as

cm :=

8

>

>

<

>

>

:

k  R K
c1  R E(k4, k), c2  R E(k9, k), c3  R E(k14, k)
c R E0(k, m)
output (c1, c2, c3, c)

9

>

>

=

>

>

;

(5.34)

Again, (c1, c2, c3) is the ciphertext header, and c is the ciphertext body. Observe that device
number 3 cannot decrypt cm, because it cannot decrypt any of the ciphertexts in the header.
However, every other device can easily decrypt using one of the keys at its disposal. For example
device number 6 can use k14 to decrypt c3. In e↵ect, changing the encryption scheme to encrypt
as in (5.35) revokes device number 3, without impacting any other device. The cost to this is that
the ciphertext header now contains log2 n blocks, as opposed to a single block before the device
was revoked.

More generally, suppose r devices have been compromised and need to be revoked. Let S ✓
{1, . . . , n} be the set of non-compromised devices, so that that |S| = n � r. New content will be
encrypted using keys in the tree so that devices in S can decrypt, but all devices outside of S
cannot. The set of keys that makes this possible is characterized by the following definition:
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Definition 5.4. Let T be a complete binary tree with n leaves, where n is a power of two. Let
S ✓ {1, . . . , n} be a set of leaves. We say that a set of nodes W ✓ {1, . . . , 2n � 1} covers the set
S if every leaf in S is a descendant of some node in W , and leaves outside of S are not. We use
cover(S) to denote the smallest set of nodes that covers S.

Fig. 5.6 gives an example of a cover of the set of leaves {1, 2, 4, 5, 6}. The figure captures a
settings where devices number 3, 7, and 8 are revoked. It should be clear that if we use keys in
cover(S) to encrypt a movie m, then devices in S can decrypt, but devices outside of S cannot. In
particular, we encrypt m as follows:

cm :=

8

>

>

<

>

>

:

k  R K
for u 2 cover(S) : cu  R E(ku, k)
c R E0(k, m)
output ({cu}u2cover(S), c)

9

>

>

=

>

>

;

. (5.35)

The more devices are revoked, the larger the header of cm becomes. The following theorem shows
how big the header gets in the worst case. The proof is an induction argument that also suggests
an e�cient recursive algorithm to compute an optimal cover.

Theorem 5.8. Let T be a complete binary tree with n leaves, where n is a power of two. For every
1  r  n, and every set S of n� r leaves, we have

|cover(S)|  r · log2(n/r)

Proof. We prove the theorem by induction on log2 n. For n = 1 the theorem is trivial. Now, assume
the theorem holds for a tree with n/2 leaves, and let us prove it for a tree T with n leaves. The
tree T is made up of a root node, and two disjoint sub-trees, T1 and T2, each with n/2 leaves. Let
us split the set S ✓ {1, . . . , n} in two: S = S1 [ S2, where S1 is contained in {1, . . . , n/2}, and S2

is contained in {n/2+ 1, . . . , n}. That is, S1 are the elements of S that are leaves in T1, and S2 are
the elements of S that are leaves in T2. Let r1 := (n/2)� |S1| and r2 := (n/2)� |S2|. Then clearly
r = r1 + r2.

First, suppose both r1 and r2 are greater than zero. By the induction hypothesis, we know that
for i = 1, 2 we have |cover(Si)|  ri log2(n/2ri). Therefore,

|cover(S)| = |cover(S1)| + |cover(S2)|  r1 log2(n/2r1) + r2 log2(n/2r2)

= r log2(n/r) +
�

r log2 r � r1 log2(2r1)� r2 log2(2r2)
�  r log2(n/r),

which is what we had to prove in the induction step. The last inequality follows from a simple fact
about logarithms, namely that for all numbers r1 � 1 and r2 � 1, we have

(r1 + r2) log2(r1 + r2)  r1 log2(2r1) + r2 log2(2r2).

Second, if r1 = 0 then r2 = r � 1, and the induction step follows from:

|cover(S)| = 1 + |cover(S2)|  1 + r log2(n/2r) = 1 + r log2(n/r)� r  r log2(n/r),

as required. The case r2 = 0 follows similarly. This completes the induction step, and the proof. 2

Theorem 5.8 shows that r devices can be revoked at the cost of increasing the ciphertext header
size to O(r log n) blocks. For moderate values of r this is not too big. Nevertheless, this general

202



k1k1 k2k2 k3 k4k4 k5k5 k6k6 k7 k8

k9 k10 k11 k12

k13 k14

k15

Figure 5.6: The three shaded nodes are the minimal cover for {1, 2, 4, 5, 6}.

approach can be improved [82, 51, 48]. The best system using this approach embeds O(log n) keys
in every device, same as here, but the header size is only O(r) blocks. The AACS system uses the
subset-tree di↵erence method [82], which has a worst case header of size 2r � 1 blocks, but stores
1
2 log2 n keys per device.

While AACS is a far better designed than CSS, it too has been attacked. In particular, the
process of a revoking an AACS key is fairly involved and can take several months. For a while, it
seemed that hackers could extract new device keys from unrevoked players faster than the industry
could revoke them.

5.7 Notes

Citations to the literature to be added.

5.8 Exercises

5.1 (Double encryption). Let E = (E, D) be a cipher. Consider the cipher E2 = (E2, D2), where
E2(k, m) = E(k, E(k, m)). One would expect that if encrypting a message once with E is secure
then encrypting it twice as in E2 should be no less secure. However, that is not always true.

(a) Show that there is a semantically secure cipher E such that E2 is not semantically secure.

(b) Prove that for every CPA secure ciphers E , the cipher E2 is also CPA secure. That is, show
that for every CPA adversary A attacking E2 there is a CPA adversary B attacking E with
about the same advantage and running time.

5.2 (Multi-key CPA security). Generalize the definition of CPA security to the multi-key
setting, analogous to Definition 5.1. In this attack game, the adversary gets to obtain encryptions
of many messages under many keys. The game begins with the adversary outputting a number Q
indicating the number of keys it wants to attack. The challenger chooses Q random keys. In
every subsequent encryption query, the adversary submits a pair of messages and specifies under
which of the Q keys it wants to encrypt; the challenger responds with an encryption of either the
first or second message under the specified key (depending on whether the challenger is running
Experiment 0 or 1). Flesh out all the details of this attack game, and prove, using a hybrid
argument, that (single-key) CPA security implies multi-key CPA security. You should show that
security degrades linearly in Q. That is, the advantage of any adversary A in breaking the multi-key
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CPA security of a scheme is at most Q · ✏, where ✏ is the advantage of an adversary B (which is an
elementary wrapper around A) in attacking the scheme’s (single-key) CPA security.

5.3 (An alternate definition of CPA security). This exercise develops an alternative char-
acterization of CPA security for a cipher E = (E, D), defined over (K, M, C). As usual, we need to
define an attack game between an adversary A and a challenger. Initially, the challenger generates

b R {0, 1}, k  R K.

Then A makes a series of queries to the challenger. There are two types of queries:

Encryption: In an encryption query, A submits a message m 2M to the challenger, who responds
with a ciphertext c  R E(k, m). The adversary may make any (poly-bounded) number of
encryption queries.

Test: In a test query, A submits a pair of messages m0, m1 2M to the challenger, who responds
with a ciphertext c  R E(k, mb). The adversary is allowed to make only a single test query
(with any number of encryption queries before and after the test query).

At the end of the game, A outputs a bit b̂ 2 {0, 1}.

As usual, we define A’s advantage in the above attack game to be |Pr[b̂ = b] � 1/2|. We say that
E is Alt-CPA secure if this advantage is negligible for all e�cient adversaries.

Show that E is CPA secure if and only if E is Alt-CPA secure.

5.4 (Hybrid CPA construction). Let (E0, D0) be a semantically secure cipher defined over
(K0, M, C0), and let (E1, D1) be a CPA secure cipher defined over (K, K0, C1).

(a) Define the following hybrid cipher (E, D) as:

E(k, m) :=
�

k0  R K0, c1  R E1(k, k0), c0  R E0(k0, m), output (c1, c0)
 

D
�

k, (c1, c0)
�

:=
�

k0  D1(k, c1), m D0(k0, c0), output m
 

Here c1 is called the ciphertext header, and c0 is called the ciphertext body. Prove that (E, D)
is CPA secure.

(b) Suppose m is some large copyrighted content. A nice feature of (E, D) is that the content
owner can make the long ciphertext body c0 public for anyone to download at their leisure.
Suppose both Alice and Bob take the time to download c0. When later Alice, who has key ka,
pays for access to the content, the content owner can quickly grant her access by sending her
the short ciphertext header ca  R E1(ka, k0). Similarly, when Bob, who has key kb, pays for
access, the content owner grants him access by sending him the short header cb  R E1(kb, k0).
Now, an eavesdropper gets to see

E0�(ka, kb), m
�

:= (ca, cb, c0)

Generalize your proof from part (a) to show that this cipher is also CPA secure.

5.5 (A simple proof of randomized counter mode security). As mentioned in Remark 5.3,
we can view randomized counter mode as a special case of the generic hybrid construction in
Section 5.4.1. To this end, let F be a PRF defined over (K, X , Y), where X = {0, . . . , N � 1} and
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Y = {0, 1}n, where N is super-poly. For poly-bounded ` � 1, consider the PRF F 0 defined over
(K, X , Y`) as follows:

F 0(k, x) :=
⇣

F (k, x), F (k, x + 1 mod N), . . . , F (k, x + `� 1 mod N)
⌘

.

(a) Show that F 0 is a weakly secure PRF, as in Definition 4.3.

(b) Using part (a) and Remark 5.2, give a short proof that randomized counter mode is CPA
secure.

5.6 (CPA security from a block cipher). Let E = (E, D) be a block cipher defined over
(K, M⇥R). Consider the cipher E 0 = (E0, D0), where

E0(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output c
 

D0(k, c) :=
�

(m, r0) D(k, c), output m
 

This cipher is defined over (K, M, M ⇥R). Show that if E is a secure block cipher, and 1/|R| is
negligible, then E 0 is CPA secure.

5.7 (pseudo-random ciphertext security). In Exercise 3.4, we developed a notion of security
called pseudo-random ciphertext security. This notion naturally extends to multiple ciphertexts.
For a cipher E = (E, D) defined over (K, M, C), we define two experiments: in Experiment 0
the challenger first picks a random key k  R K and then the adversary submits a sequence of
queries, where the ith query is a message mi 2M, to which the challenger responds with E(k, mi).
Experiment 1 is the same as Experiment 0 except that the challenger responds to the adversary’s
queries with random, independent elements of C. We say that E is psuedo-random multi-ciphertext
secure if no e�cient adversary can distinguish between these two experiments with a non-negligible
advantage.

(a) Consider the counter-mode construction in Section 5.4.2, based on a PRF F defined over
(K, X , Y), but with a fixed-length plaintext space Y` and a corresponding fixed-length ci-
phertext space X ⇥ Y`. Under the assumptions that F is a secure PRF, |X | is super-poly,
and ` is poly-bounded, show that this cipher is psuedo-random multi-ciphertext secure.

(b) Consider the CBC construction Section 5.4.3, based on a block cipher E = (E, D) defined over
(K, X ), but with a fixed-length plaintext space X ` and corresponding fixed-length ciphertext
space X `+1. Under the assumptions that E is a secure block cipher, |X | is super-poly, and `
is poly-bounded, show that this cipher is psuedo-random multi-ciphertext secure.

(c) Show that a psuedo-random multi-ciphertext secure cipher is also CPA secure.

(d) Give an example of a CPA secure cipher that is not psuedo-random multi-ciphertext secure.

5.8 (Deterministic CPA and SIV). We have seen that any cipher that is CPA secure must
be probabilistic, since for a deterministic cipher, an adversary can always see if the same message
is encrypted twice. We may define a relaxed notion of CPA security that says that this is the only
thing the adversary can see. This is easily done by placing the following restriction on the adversary
in Attack Game 5.2: for all indices i, j, we insist that mi0 = mj0 if and only if mi1 = mj1. We say
that a cipher is deterministic CPA secure if every e�cient adversary has negligible advantage
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in this restricted CPA attack game. In this exercise, we develop a general approach for building
deterministic ciphers that are deterministic CPA secure.

Let E = (E, D) be a CPA-secure cipher defined over (K, M, C). We let E(k, m; r) denote running
algorithm E(k, m) with randomness r  R R (for example, if E implements counter mode or CBC
encryption then r is the random IV used by algorithm E). Let F be a secure PRF defined over
(K0, M, R). Define the deterministic cipher E 0 = (E0, D0), defined over (K ⇥K0, M, C) as follows:

E0�(k, k0), m
�

:= E(k, m; F (k0, m)),
D0�(k, k0), c

�

:= D(k, c) .

Show that E 0 is deterministic CPA secure. This construction is known as the Synthetic IV (or
SIV) construction.

5.9 (Generic nonce-based encryption and nonce re-use resilience). In the previous exer-
cise, we saw how we could generically convert a probabilistic CPA-secure cipher into a deterministic
cipher that satisfies a somewhat weaker notion of security called deterministic CPA security.

(a) Show how to modify that construction so that we can convert any CPA-secure probabilistic
cipher into a nonce-based CPA-secure cipher.

(b) Show how to combine the two approaches to get a cipher that is nonce-based CPA secure,
but also satisfies the definition of deterministic CPA security if we drop the uniqueness re-
quirement on nonces.

Discussion: This is an instance of a more general security property called nonce re-use
resilience: the scheme provides full security if nonces are unique, and even if they are not,
a weaker and still useful security guarantee is provided.

5.10 (Ciphertext expansion vs. security). Let E = (E, D) be an encryption scheme messages
and ciphertexts are bit strings.

(a) Suppose that for all keys and all messages m, the encryption of m is the exact same length
as m. Show that (E, D) cannot be semantically secure under a chosen plaintext attack.

(b) Suppose that for all keys and all messages m, the encryption of m is exactly ` bits longer
than the length of m. Show an attacker that can win the CPA security game using ⇡ 2`/2

queries and advantage ⇡ 1/2. You may assume the message space contains more than ⇡ 2`/2

messages.

5.11 (Repeating ciphertexts). Let E = (E, D) be a cipher defined over (K, M, C). Assume that
there are at least two messages in M, that all messages have the same length, and that we can
e�ciently generate messages in M uniformly at random. Show that if E is CPA secure, then it is
infeasible for an adversary to make an encryptor generate the same ciphertext twice. The precise
attack game is as follows. The challenger chooses k 2 K at random and the adversary make a series
of queries; the ith query is a message mi, to which the challenger’ responds with ci  R E(k, mi).
The adversary wins the game if any two ci’s are the same. Show that if E is CPA secure, then
every e�cient adversary wins this game with negligible probability. In particular, show that the
advantage of any adversary A in winning the repeated-ciphertext attack game is at most 2✏, where
✏ is the advantage of an adversary B (which is an elementary wrapper around A) that breaks the
scheme’s CPA security.
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5.12 (Predictable IVs). Let us see why in CBC mode an unpredictable IV is necessary for CPA
security. Suppose a defective implementation of CBC encrypts a sequence of messages by always
using the last ciphertext block of the ith message as the IV for the (i+1)-st message. The TLS 1.0
protocol, used to protect Web tra�c, implements CBC encryption this way. Construct an e�cient
adversary that wins the CPA game against this implementation with advantage close to 1. We note
that the Web-based BEAST attack [35] exploits this defect to completely break CBC encryption
in TLS 1.0.

5.13 (CBC encryption with small blocks is insecure). Suppose the block cipher used for
CBC encryption has a block size of n bits. Construct an attacker that wins the CPA game against
CBC that makes ⇡ 2n/2 queries to its challenger and gains an advantage ⇡ 1/2. Your answer
explains why CBC cannot be used with a block cipher that has a small block size (e.g. n = 64
bits). This is one reason why AES has a block size of 128 bits.

Discussion: This attack was used to show that 3DES is no longer secure for Internet use, due to
its 64-bit block size [11].

5.14 (An insecure nonce-based CBC mode). Consider the nonce-based CBC scheme E 0 de-
scribed in Section 5.5.3. Suppose that the nonce space N is equal to block space X of the underlying
block cipher E = (E, D), and the PRF F is just the encryption algorithm E. If the two keys k and
k0 in the construction are chosen independently, the scheme is secure. Your task is to show that if
only one key k is chosen, and other key k0 is just set to k, then the scheme is insecure.

5.15 (Output feedback mode). Suppose F is a PRF defined over (K, X ), and ` � 1 is poly-
bounded.

(a) Consider the following PRG G : K ! X `. Let x0 be an arbitrary, fixed element of X . For
k 2 K, let G(k) := (x1, . . . , x`), where xi := F (k, xi�1) for i = 1, . . . , `. Show that G is a
secure PRG, assuming F is a secure PRF and that |X | is super-poly.

(b) Next, assume that X = {0, 1}n. We define a cipher E = (E, D), defined over (K, X `, X `+1),
as follows. Given a key k 2 K and a message (m1, . . . , m`) 2 X `, the encryption algorithm E
generates the ciphertext (c0, c1, . . . , c`) 2 X `+1 as follows: it chooses x0 2 X at random, and
sets c0 = x0; it then computes xi = F (k, xi�1) and ci = mi � xi for i = 1, . . . , `. Describe
the corresponding decryption algorithm D, and show that E is CPA secure, assuming F is a
secure PRF and that |X | is super-poly.

Note: This construction is called output feedback mode (or OFB).

5.16 (CBC ciphertext stealing). One problem with CBC encryption is that messages need to
be padded to a multiple of the block length and sometimes a dummy block needs to be added. The
following figure describes a variant of CBC that eliminates the need to pad:
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The method pads the last block with zeros if needed (a dummy block is never added), but the
output ciphertext contains only the shaded parts of C1, C2, C3, C4. Note that, ignoring the IV, the
ciphertext is the same length as the plaintext. This technique is called ciphertext stealing.

(a) Explain how decryption works.

(b) Can this method be used if the plaintext contains only one block?

5.17 (Single ciphertext block corruption in CBC mode). Let c be an ` block CBC-encrypted
ciphertext, for some ` > 3. Suppose that exactly one block of c is corrupted, and the result is
decrypted using the CBC decryption algorithm. How many blocks of the decrypted plaintext are
corrupted?

5.18 (The malleability of CBC mode). Let c be the CBC encryption of some message m 2 X `,
where X := {0, 1}n. You do not know m. Let � 2 X . Show how to modify the ciphertext c to
obtain a new ciphertext c0 that decrypts to m0, where m0[0] = m[0] � �, and m0[i] = m[i] for
i = 1, . . . , `� 1. That is, by modifying c appropriately, you can flip bits of your choice in the first
block of the decryption of c, without a↵ecting any the other blocks.

5.19 (Online ciphers). In practice there is a strong desire to encrypt one block of plaintext at
a time, outputting the corresponding block of ciphertext right away. This lets the system transmit
ciphertext blocks as soon as they are ready without having to wait until the entire message is
processed by the encryption algorithm.

(a) Define a CPA-like security game that captures this method of encryption. Instead of forcing
the adversary to submit a complete pair of messages in every encryption query, the adversary
should be allowed to issue a query indicating the beginning of a message, then repeatedly
issue more queries containing message blocks, and finally issue a query indicating the end of a
message. Responses to these queries will include all ciphertext blocks that can be computed
given the information given.

(b) Show that randomized CBC encryption is not CPA secure in this model.

(c) Show that randomized counter mode is online CPA secure.

5.20 (Redundant bits do not harm CPA security). Let E = (E, D) be a CPA-secure cipher
defined over (K, M, C). Show that appending to a ciphertext additional data that is computed
from the ciphertext does not damage CPA security. Specifically, let g : C ! Y be some e�ciently
computable function. Show that the following modified cipher E 0 = (E0, D0) is CPA-secure:

E0(k, m) :=
�

c E(k, m), t g(c), output (c, t)
 

D0�k, (c, t)
�

:= D(k, c)
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Chapter 6

Message integrity

In previous chapters we focused on security against an eavesdropping adversary. The adversary
had the ability to eavesdrop on transmitted messages, but could not change messages en-route.
We showed that chosen plaintext security is the natural security property needed to defend against
such attacks.

In this chapter we turn our attention to active adversaries. We start with the basic question
of message integrity: Bob receives a message m from Alice and wants to convince himself that the
message was not modified en-route. We will design a mechanism that lets Alice compute a short
message integrity tag t for the message m and send the pair (m, t) to Bob, as shown in Fig. 6.1.
Upon receipt, Bob checks the tag t and rejects the message if the tag fails to verify. If the tag
verifies then Bob is assured that the message was not modified in transmission.

We emphasize that in this chapter the message itself need not be secret. Unlike previous
chapters, our goal here is not to conceal the message. Instead, we only focus on message integrity.
In Chapter 9 we will discuss the more general question of simultaneously providing message secrecy
and message integrity. There are many applications where message integrity is needed, but message
secrecy is not. We give two examples.

Example 6.1. Consider the problem of delivering financial news or stock quotes over the Internet.
Although the news items themselves are public information, it is vital that no third party modify
the data on its way to the user. Here message secrecy is irrelevant, but message integrity is critical.
Our constructions will ensure that if user Bob rejects all messages with an invalid message integrity
tag then an attacker cannot inject modified content that will look legitimate. One caveat is that
an attacker can still change the order in which news reports reach Bob. For example, Bob might
see report number 2 before seeing report number 1. In some settings this may cause the user to
take an incorrect action. To defend against this, the news service may wish to include a sequence
number with each report so that the user’s machine can bu↵er reports and ensure that the user
always sees news items in the correct order. 2

In this chapter we are only concerned with attacks that attempt to modify data. We do not
consider Denial of Service (DoS) attacks, where the attacker delays or prevents news items from
reaching the user. DoS attacks are often handled by ensuring that the network contains redundant
paths from the sender to the receiver so that an attacker cannot block all paths. We will not discuss
these issues here.

Example 6.2. Consider an application program — such as a word processor or mail client —
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Alice Bob

m t

Generate tag t

t S(k, m)

Verify message-tag pair (m, t)

V (k, m, t)
?
= accept

m m

Figure 6.1: Short message integrity tag added to messages

stored on disk. Although the application code is not secret (it might even be in the public domain),
its integrity is important. Before running the program the user wants to ensure that a virus did not
modify the code stored on disk. To do so, when the program is first installed, the user computes a
message integrity tag for the code and stores the tag on disk alongside the program. Then, every
time, before starting the application the user can validate this message integrity tag. If the tag is
valid, the user is assured that the code has not been modified since the tag was initially generated.
Clearly a virus can overwrite both the application code and the integrity tag. Nevertheless, our
constructions will ensure that no virus can fool the user into running unauthenticated code. As
in our first example, the attacker can swap two authenticated programs — when the user starts
application A he will instead be running application B. If both applications have a valid tag the
system will not detect the swap. The standard defense against this is to include the program name
in the executable file. That way, when an application is started the system can display to the user
an authenticated application name. 2

The question, then, is how to design a secure message integrity mechanism. We first argue the
following basic principle:

Providing message integrity between two communicating parties requires that the send-
ing party has a secret key unknown to the adversary.

Without a secret key, ensuring message integrity is not possible: the adversary has enough infor-
mation to compute tags for arbitrary messages of its choice — it knows how the message integrity
algorithm works and needs no other information to compute tags. For this reason all cryptographic
message integrity mechanisms require a secret key unknown to the adversary. In this chapter,
we will assume that both sender and receiver will share the secret key; later in the book, this
assumption will be relaxed.

We note that communication protocols not designed for security often use keyless integrity
mechanisms. For example, the Ethernet protocol uses CRC32 as its message integrity algorithm.
This algorithm, which is publicly available, outputs 32-bit tags embedded in every Ethernet frame.
The TCP protocol uses a keyless 16-bit checksum which is embedded in every packet. We emphasize
that these keyless integrity mechanisms are designed to detect random transmission errors, not
malicious errors. The argument in the previous paragraph shows that an adversary can easily defeat
these mechanisms and generate legitimate-looking tra�c. For example, in the case of Ethernet, the
adversary knows exactly how the CRC32 algorithm works and this lets him compute valid tags for
arbitrary messages. He can then tamper with Ethernet tra�c without being detected.
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6.1 Definition of a message authentication code

We begin by defining what is a message integrity system based on a shared secret key between the
sender and receiver. For historical reasons such systems are called Message Authentication Codes
or MACs for short.

Definition 6.1. A MAC system I = (S, V ) is a pair of e�cient algorithms, S and V , where S
is called a signing algorithm and V is called a verification algorithm. Algorithm S is used to
generate tags and algorithm V is used to verify tags.

• S is a probabilistic algorithm that is invoked as t R S(k, m), where k is a key, m is a message,
and the output t is called a tag.

• V is a deterministic algorithm that is invoked as r  V (k, m, t), where k is a key, m is a
message, t is a tag, and the output r us either accept or reject.

• We require that tags generated by S are always accepted by V ; that is, the MAC must satisfy
the following correctness property: for all keys k and all messages m,

Pr[V (k, m, S(k, m) ) = accept] = 1.

As usual, we say that keys lie in some finite key space K, messages lie in a finite message space
M, and tags lie in some finite tag space T . We say that I = (S, V ) is defined over (K, M, T ).

Fig. 6.1 illustrates how algorithms S and V are used for protecting network communications
between two parties. Whenever algorithm V outputs accept for some message-tag pair (m, t), we
say that t is a valid tag for m under key k, or that (m, t) is a valid pair under k. Naturally, we
want MAC systems where tags are as short as possible so that the overhead of transmitting the
tag is minimal.

We will explore a variety of MAC systems. The simplest type of system is one in which the
signing algorithm S is deterministic, and the verification algorithm is defined as

V (k, m, t) =

(

accept if S(k, m) = t,

reject otherwise.

We shall call such a MAC system a deterministic MAC system. One property of a deterministic
MAC system is that it has unique tags: for a given key k, and a given message m, there is a
unique valid tag for m under k. Not all MAC systems we explore will have such a simple design:
some have a randomized signing algorithm, so that for a given key k and message m, the output of
S(k, m) may be one of many possible valid tags, and the verification algorithm works some other
way. As we shall see, such randomized MAC systems are not necessary to achieve security, but
they can yield better e�ciency/security trade-o↵s.

Secure MACs. Next, we turn to describing what it means for a MAC to be secure. To construct
MACs that remain secure in a variety of applications we will insist on security in a very hostile
environment. Since most real-world systems that use MACs operate in less hostile settings, our
conservative security definitions will imply security for all these systems.

We first intuitively explain the definition and then motivate why this conservative definition
makes sense. Suppose an adversary is attacking a MAC system I = (S, V ). Let k be some
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MAC Challenger Adversary A
k  R K

mi

ti  S(k, mi)

(m, t)

Figure 6.2: MAC attack game (Attack Game 6.1)

randomly chosen MAC key, which is unknown to the attacker. We allow the attacker to request
tags t := S(k, m) for arbitrary messages m of its choice. This attack, called a chosen message
attack, enables the attacker to collect millions of valid message-tag pairs. Clearly we are giving
the attacker considerable power — it is hard to imagine that a user would be foolish enough to sign
arbitrary messages supplied by an attacker. Nevertheless, we will see that chosen message attacks
come up in real world settings. We refer to message-tag pairs (m, t) that the adversary obtains
using the chosen message attack as signed pairs.

Using the chosen message attack we ask the attacker to come up with an existential MAC
forgery. That is, the attacker need only come up with some new valid message-tag pair (m, t).
By “new”, we mean a message-tag pair that is di↵erent from all of the signed pairs. The attacker
is free to choose m arbitrarily; indeed, m need not have any special format or meaning and can be
complete gibberish.

We say that a MAC system is secure if even an adversary who can mount a chosen message
attack cannot create an existential forgery. This definition gives the adversary more power than it
typically has in the real world and yet we ask it to do something that will normally be harmless;
forging the MAC for a meaningless message seems to be of little use. Nevertheless, as we will
see, this conservative definition is very natural and enables us to use MACs for lots of di↵erent
applications.

More precisely, we define secure MACs using an attack game between a challenger and an
adversary A. The game is described below and in Fig. 6.2.

Attack Game 6.1 (MAC security). For a given MAC system I = (S, V ), defined over
(K, M, T ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith signing query is
a message mi 2M. Given mi, the challenger computes a tag ti  R S(k, mi), and
then gives ti to A.

• Eventually A outputs a candidate forgery pair (m, t) 2M⇥ T that is not among
the signed pairs, i.e.,

(m, t) 62 �(m1, t1), (m2, t2), . . .
 

.

We say that A wins the above game if (m, t) is a valid pair under k (i.e., V (k, m, t) = accept).
We define A’s advantage with respect to I, denoted MACadv[A, I], as the probability that A wins
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the game. Finally, we say that A is a Q-query MAC adversary if A issues at most Q signing
queries. 2

Definition 6.2. We say that a MAC system I is secure if for all e�cient adversaries A, the value
MACadv[A, I] is negligible.

In case the adversary wins Attack Game 6.1, the pair (m, t) it sends the challenger is called
an existential forgery. MAC systems that satisfy Definition 6.2 are said to be existentially
unforgeable under a chosen message attack.

In the case of a deterministic MAC system, the only way for A to win Attack Game 6.1 is to
produce a valid message-tag pair (m, t) for some new message m /2 {m1, m2, . . .}. Indeed, security
in this case just means that S is unpredictable, in the sense described in Section 4.1.1; that is, given
S(k, m1), S(k, m2), . . . , it is hard to predict S(k, m) for any m /2 {m1, m2, . . .}.

In the case of a randomized MAC system, our security definition captures a stronger property.
There may be many valid tags for a given message. Let m be some message and suppose the
adversary requests one or more valid tags t1, t2, . . . for m. Can the adversary produce a new valid
tag t0 for m? (i.e. a tag satisfying t0 /2 {t1, t2, . . .}). Our definition says that a valid pair (m, t0),
where t0 is new, is a valid existential forgery. Therefore, for a MAC to be secure it must be di�cult
for an adversary to produce a new valid tag t0 for a previously signed message m. This may seem like
an odd thing to require of a MAC. If the adversary already has valid tags for m, why should we care
if it can produce another one? As we will see in Chapter 9, our security definition, which prevents
the adversary from producing new tags on signed messages, is necessary for the applications we
have in mind.

Going back to the examples in the introduction, observe that existential unforgeability implies
that an attacker cannot create a fake news report with a valid tag. Similarly, the attacker cannot
tamper with a program on disk without invalidating the tag for the program. Note, however, that
when using MACs to protect application code, users must provide their secret MAC key every time
they want to run the application. This will quickly annoy most users. In Chapter 8 we will discuss
a keyless method to protect public application code.

To exercise the definition of secure MACs let us first see a few consequences of it. Let I = (S, V )
be a MAC defined over (K, M, T ), and let k be a random key in K.

Example 6.3. Suppose m1 and m2 are almost identical messages. Say m1 is a money transfer
order for $100 and m2 is a transfer order for $101. Clearly, an adversary who intercepts a valid
tag for m1 should not be able to deduce from it a valid tag for m2. A MAC system that satisfies
Definition 6.2 ensures this. To see why, suppose an adversary A can forge the tag for m2 given the
tag for m1. Then A can win Attack Game 6.1: it uses the chosen message attack to request a tag
for m1, deduces a forged tag t2 for m2, and outputs (m2, t2) as a valid existential forgery. Clearly
A wins Attack Game 6.1. Hence, existential unforgeability captures the fact that a tag for one
message m1 gives no useful information for producing a tag for another message m2, even when m2

is almost identical to m1. 2

Example 6.4. Our definition of secure MACs gives the adversary the ability to obtain the tag for
arbitrary messages. This may seem like giving the adversary too much power. In practice, however,
there are many scenarios where chosen message attacks are feasible. The reason is that the MAC
signer often does not know the source of the data being signed. For example, consider a backup
system that dumps the contents of disk to backup tapes. Since backup integrity is important, the
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system computes an integrity tag on every disk block that it writes to tape. The tag is stored on
tape along with the data block. Now, suppose an attacker writes data to a low security part of disk.
The attacker’s data will be backed up and the system will compute a tag over it. By examining
the resulting backup tape the attacker obtains a tag on his chosen message. If the MAC system is
secure against a chosen message attack then this does not help the attacker break the system. 2

Remark 6.1. Just as we did for other security primitives, one can generalize the notion of a secure
MAC to the multi-key setting, and prove that a secure MAC is also secure in the multi-key setting.
See Exercise 6.3. 2

6.1.1 Mathematical details

As usual, we give a more mathematically precise definition of a MAC, using the terminology defined
in Section 2.4. This section may be safely skipped on first reading.

Definition 6.3 (MAC). A MAC system is a pair of e�cient algorithms, S and V , along with
three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

As usual, � 2 Z�1 is a security parameter and ⇤ 2 Supp(P (�)) is a domain parameter. We require
that

1. K, M, and T are e�ciently recognizable.

2. K is e�ciently sampleable.

3. Algorithm S is an e�cient probabilistic algorithm that on input �, ⇤, k, m, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, and m 2M�,⇤, outputs an element of T�,⇤.

4. Algorithm V is an e�cient deterministic algorithm that on input �, ⇤, k, m, t, where � 2 Z�1,
⇤ 2 Supp(P (�)), k 2 K�,⇤, m 2M�,⇤, and t 2 T�,⇤, outputs either accept or reject.

In defining security, we parameterize Attack Game 6.1 by the security parameter �, which is
given to both the adversary and the challenger. The advantage MACadv[A, I] is then a function
of �. Definition 6.2 should be read as saying that MACadv[A, I](�) is a negligible function.

6.2 MAC verification queries do not help the attacker

In our definition of secure MACs (Attack Game 6.1) the adversary has no way of testing whether a
given message-tag pair is valid. In fact, the adversary cannot even tell if it wins the game, since only
the challenger has the secret key needed to run the verification algorithm. In real life, an attacker
capable of mounting a chosen message attack can probably also test whether a given message-tag
pair is valid. For example, the attacker could build a packet containing the message-tag pair in
question and send this packet to the victim’s machine. Then, by examining the machine’s behavior
the attacker can tell whether the packet was accepted or dropped, indicating whether the tag was
valid or not.

Consequently, it makes sense to extend Attack Game 6.1 by giving the adversary the extra
power to verify message-tag pairs. Of course, we continue to allow the adversary to request tags
for arbitrary messages of his choice.
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Attack Game 6.2 (MAC security with verification queries). For a given MAC system
I = (S, V ), defined over (K, M, T ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. Each query can be one of two types:

– Signing query: for i = 1, 2, . . . , the ith signing query consists of a message
mi 2M. The challenger computes a tag ti  R S(k, mi), and gives ti to A.

– Verification query: for j = 1, 2, . . . , the jth verification query consists of a
message-tag pair (m̂j , t̂j) 2 M ⇥ T that is not among the previously signed
pairs, i.e.,

(m̂j , t̂j) 62
�

(m1, t1), (m2, t2), . . .
 

.

The challenger responds to A with V (k, m̂j , t̂j).

We say that A wins the above game if the challenger ever responds to a verification query with
accept. We define A’s advantage with respect to I, denoted MACvq

adv[A, I], as the probability
that A wins the game. 2

The two definitions are equivalent. Attack Game 6.2 is essentially the same as the original
Attack Game 6.1, except that A can issue MAC verification queries. We prove that this extra
power does not help the adversary.

Theorem 6.1. If I is a secure MAC system, then it is also secure in the presence of verification
queries.

In particular, for every MAC adversary A that attacks I as in Attack Game 6.2, and which
makes at most Qv verification queries and at most Qs signing queries, there exists a Qs-query
MAC adversary B that attacks I as in Attack Game 6.1, where B is an elementary wrapper
around A, such that

MACvq
adv[A, I]  MACadv[B, I] · Qv.

Proof idea. Let A be a MAC adversary that attacks I as in Attack Game 6.2, and which makes
at most Qv verification queries and at most Qs signing queries. From adversary A, we build an
adversary B that attacks I as in Attack Game 6.1 and makes at most Qs signing queries. Adversary
B can easily answer A’s signing queries by forwarding them to B’s challenger and relaying the
resulting tags back to A.

The question is how to respond to A’s verification queries. Note that A by definition, A only
submits verification queries on message pairs that are not among the previously signed pairs. So
B adopts a simple strategy: it responds with reject to all verification queries from A. If B answers
incorrectly, it has a forgery which would let it win Attack Game 6.1. Unfortunately, B does not
know which of these verification queries is a forgery, so it simply guesses, choosing one at random.
Since A makes at most Qv verification queries, B will guess correctly with probability at least 1/Qv.
This is the source of the Qv factor in the error term. 2

Proof. In more detail, adversary B plays the role of challenger to A in Attack Game 6.2, while
at the same time, it plays the role of adversary in Attack Game 6.1, interacting with the MAC
challenger in that game. The logic is as follows:
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initialization:
!  R {1, . . . , Qv}

upon receiving a signing query mi 2M from A do:
forward mi to the MAC challenger, obtaining the tag ti
send ti to A

upon receiving a verification query (m̂j , t̂j) 2M⇥ T from A do:
if j = !

then output (m̂j , t̂j) as a candidate forgery pair and halt
else send reject to A

To rigorously justify the construction of adversary B, we analyze the the behavior of A in three
closely related games.

Game 0. This is the original attack game, as played between the challenger in Attack Game 6.2
and adversary A. Here is the logic of the challenger in this game:

initialization:
k  R K

upon receiving a signing query mi 2M from A do:
ti  R S(k, mi)
send ti to A

upon receiving a verification query (m̂j , t̂j) 2M⇥ T from A do:
rj  V (k, m̂j , t̂j)

(⇤) send rj to A
Let W0 be the event that in Game 0, rj = accept for some j. Evidently,

Pr[W0] = MACvq
adv[A, I]. (6.1)

Game 1. This is the same as Game 1, except that the line marked (⇤) above is changed to:

send reject to A
That is, when responding to a verification query, the challenger always responds to A with reject.
We also define W1 to be the event that in Game 1, rj = accept for some j. Even though the
challenger does not notify A that W1 occurs, both Games 0 and 1 proceed identically until this
event happens, and so events W0 and W1 are really the same; therefore,

Pr[W1] = Pr[W0]. (6.2)

Also note that in Game 1, although the rj values are used to define the winning condition, they
are not used for any other purpose, and so do not influence the attack in any way.

Game 2. This is the same as Game 1, except that at the beginning of the game, the challenger
chooses !  R {1, . . . , Qv}. We define W2 to be the event that in Game 2, r! = accept. Since the
choice of ! is independent of the attack itself, we have

Pr[W2] � Pr[W1]/Qv. (6.3)
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Evidently, by construction, we have

Pr[W2] = MACadv[B, I]. (6.4)

The theorem now follows from (6.1)–(6.3). 2

In summary, we showed that Attack Game 6.2, which gives the adversary more power, is
equivalent to Attack Game 6.1 used in defining secure MACs. The reduction introduces a factor of
Qv in the error term. Throughout the book we will make use of both attack games:

• When constructing secure MACs it easier to use Attack Game 6.1 which restricts the adversary
to signing queries only. This makes it easier to prove security since we only have to worry
about one type of query. We will use this attack game throughout the chapter.

• When using secure MACs to build higher level systems (such as authenticated encryption) it
is more convenient to assume that the MAC is secure with respect to the stronger adversary
described in Attack Game 6.2.

We also point out that if we had used a weaker notion of security, in which the adversary only
wins by presenting a valid tag on a new message (rather than new valid message-tag pair), then
the analogs of Attack Game 6.1 and Attack Game 6.2 are not equivalent (see Exercise 6.7).

6.3 Constructing MACs from PRFs

We now turn to constructing secure MACs using the tools at our disposal. In previous chapters we
used pseudo random functions (PRFs) to build various encryption systems. We gave examples of
practical PRFs such as AES (while AES is a block cipher it can be viewed as a PRF thanks to the
PRF switching lemma, Theorem 4.4). Here we show that any secure PRF can be directly used to
build a secure MAC.

Recall that a PRF is an algorithm F that takes two inputs, a key k and an input data block
x, and outputs a value y := F (k, x). As usual, we say that F is defined over (K, X , Y), where keys
are in K, inputs are in X , and outputs are in Y. For a PRF F we define the deterministic MAC
system I = (S, V ) derived from F as:

S(k, m) := F (k, m);

V (k, m, t) :=

(

accept if F (k, m) = t,

reject otherwise.

As already discussed, any PRF with a large (i.e., super-poly) output space is unpredictable (see
Section 4.1.1), and therefore, as discussed in Section 6.1, the above construction yields a secure
MAC. For completeness, we state this as a theorem:

Theorem 6.2. Let F be a secure PRF defined over (K, X , Y), where |Y| is super-poly. Then the
deterministic MAC system I derived from F is a secure MAC.

In particular, for every Q-query MAC adversary A that attacks I as in Attack Game 6.1, there
exists a (Q + 1)-query PRF adversary B that attacks F as in Attack Game 4.2, where B is an
elementary wrapper around A, such that

MACadv[A, I]  PRFadv[B, F ] + 1/|Y|
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Proof idea. Let A be an e�cient MAC adversary. We derive an upper bound on MACadv[A, I]
by bounding A’s ability to generate forged message-tag pairs. As usual, replacing the underlying
secure PRF F with a truly random function f in Funs[X , Y] does not change A’s advantage much.
But now that the adversary A is interacting with a truly random function it is faced with a hopeless
task: using the chosen message attack it obtains the value of f at a few points of his choice. He then
needs to guess the value of f(m) 2 Y at some new point m. But since f is a truly random function,
A has no information about f(m), and therefore has little chance of guessing f(m) correctly. 2

Proof. We make this intuition rigorous by letting A interact with two closely related challengers.

Game 0. As usual, we begin by reviewing the challenger in the MAC Attack Game 6.1 as it applies
to I. We implement the challenger in this game as follows:

(⇤) k  R K, f  F (k, ·)
upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:

ti  f(mi)
send ti to the adversary

At the end of the game, the adversary outputs a message-tag pair (m, t). We define W0 to be the
event that the condition

t = f(m) and m 62 {m1, m2, . . .} (6.5)

holds in Game 0. Clearly, Pr[W0] = MACadv[A, I].

Game 1. We next play the usual “PRF card,” replacing the function F (k, ·) by a truly random
function f in Funs[X , Y]. Intuitively, since F is a secure PRF, the adversary A should not notice
the di↵erence. Our challenger in Game 1 is the same as in Game 0 except that we change line (*)
as follows:

(⇤) f  R Funs[X , Y]

We define W1 to be the event that condition (6.5) holds in Game 1. It should be clear how to
design the corresponding PRF adversary B such that:

|Pr[W1]� Pr[W0]| = PRFadv[B, F ].

Next, we directly bound Pr[W1]. The adversary A sees the values of f at various points
m1, m2, . . . and is then required to guess the value of f at some new point m. But since f is a
truly random function, the value f(m) is independent of its value at all other points. Hence, since
m 62 {m1, m2, . . .}, adversary A will guess f(m) with probability 1/|Y|. Therefore, Pr[W1]  1/|Y|.
Putting it all together, we obtain

MACadv[A, I] = Pr[W0]  |Pr[W0]� Pr[W1]| + Pr[W1]  PRFadv[B, F ] +
1

|Y|
as required. 2

Concrete tag lengths. The theorem shows that to ensure MACadv[A, I] < 2�128 we need a
PRF whose output space Y satisfies |Y| > 2128. If the output space Y is {0, 1}n for some n, then
the resulting tags must be at least 128 bits long.
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6.4 Prefix-free PRFs for long messages

In the previous section we saw that any secure PRF is also a secure MAC. However, the concrete
examples of PRFs from Chapter 4 only take short inputs and can therefore only be used to provide
integrity for very short messages. For example, viewing AES as a PRF gives a MAC for 128-bit
messages. Clearly, we want to build MACs for much longer messages.

All the MAC constructions in this chapter follow the same paradigm: they start from a PRF
for short inputs (like AES) and produce a PRF, and therefore a MAC, for much longer inputs.
Hence, our goal for the remainder of the chapter is the following:

given a secure PRF on short inputs construct a secure PRF on long inputs.

We solve this problem in three steps:

• First, in this section we construct prefix-free secure PRFs for long inputs. More precisely,
given a secure PRF that operates on single-block (e.g., 128-bit) inputs, we construct a prefix-
free secure PRF that operates on variable-length sequences of blocks. Recall that a prefix-free
secure PRF (Definition 4.5) is only secure in a limited sense: we only require that prefix-free
adversaries cannot distinguish the PRF from a random function. A prefix-free PRF adversary
issues queries that are non-empty sequences of blocks, and no query can be a proper prefix
of another.

• Second, in the next few sections we show how to convert prefix-free secure PRFs for long
inputs into fully secure PRFs for long inputs. Thus, by the end of these sections we will have
several secure PRFs, and therefore secure MACs, that operate on long inputs.

• Third, in Section 6.8 we show how to convert a PRF that operates on messages that are
strings of blocks into a PRF that operates on strings of bits.

Prefix-free PRFs. We begin with two classic constructions for prefix-free secure PRFs. The
CBC construction is shown in Fig. 6.3a. The cascade construction is shown in Fig. 6.3b. We
show that when the underlying F is a secure PRF, both CBC and cascade are prefix-free secure
PRFs.

6.4.1 The CBC prefix-free secure PRF

Let F be a PRF that maps n-bit inputs to n-bit outputs. In symbols, F is defined over (K, X , X )
where X = {0, 1}n. For any poly-bounded value `, we build a new PRF, denoted FCBC, that maps
messages in X` to outputs in X . The function FCBC, described in Fig. 6.3a, works as follows:

input: k 2 K and m = (a1, . . . , av) 2 X` for some v 2 {0, . . . , `}
output: a tag in X

t 0n

for i 1 to v do:
t F (k, ai � t )

output t
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(b) The cascade construction F ⇤(k, m)

Figure 6.3: Two prefix-free secure PRFs

FCBC is similar to CBC mode encryption from Fig. 5.4, but with two important di↵erences. First,
FCBC does not output any intermediate values along the CBC chain. Second, FCBC uses a fixed IV,
namely 0n, where as CBC mode encryption uses a random IV per message.

The following theorem shows that FCBC is a prefix-free secure PRF defined over (K, X`, X ).

Theorem 6.3. Let F be a secure PRF defined over (K, X , X ) where X = {0, 1}n and |X | = 2n

is super-poly. Then for any poly-bounded value `, we have that FCBC is a prefix-free secure PRF
defined over (K, X`, X ).

In particular, for every prefix-free PRF adversary A that attacks FCBC as in Attack Game 4.2,
and issues at most Q queries, there exists a PRF adversary B that attacks F as in Attack
Game 4.2, where B is an elementary wrapper around A, such that

PRFpf
adv[A, FCBC]  PRFadv[B, F ] +

(Q`)2

2|X | . (6.6)

Exercise 6.6 develops an attack on fixed-length FCBC that demonstrates that security degrades
quadratically in Q. This shows that the quadratic dependence on Q in (6.6) is necessary. A more
di�cult proof of security shows that security only degrades linearly in ` (see Section 6.13). In
particular, the error term in (6.6) can be reduced to an expression dominated by O(Q2`/|X |)
Proof idea. We represent the adversary’s queries in a rooted tree, where edges in the tree are labeled
by message blocks (i.e., elements of X ). A query for FCBC(k, m), where m = (a1, . . . , av) 2 X v and
1  v  `, defines a path in the tree, starting at the root, as follows:

root
a1�! p1

a2�! p2
a3�! · · · a

v�! pv. (6.7)
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Thus, two messages m and m0 correspond to paths in the tree which both start at the root; these
two paths may share a common initial subpath corresponding to the longest common prefix of m
and m0.

With each node p in this tree, we associate a value �p 2 X which represents the computed value
in the CBC chain. More precisely, we define �

root

:= 0n, and for any non-root node q with parent
p, if the corresponding edge in the tree is p

a�! q, then �q := F (k, �p � a). With these conventions,
we see that if a message m traces out a path as in (6.7), then �p

v

= FCBC(k, m).
The crux of the proof is to argue that if F behaves like a random function, then for every

pair of distinct edges in the tree, say p
a�! q and p0 a0�! q0, we have �p � a 6= �p0 � a0 with

overwhelming probability. To prove that there are no collisions of this type, the prefix-freeness
restriction is critical, as it guarantees that the adversary never sees �p and �p0 , and hence a and
a0 are independent of these values. Once we have established that there are no collisions of these
types, it will follow that all values associated with non-root nodes are random and independent,
and this holds in particular for the values associated with the leaves, which represent the outputs
of FCBC seen by the adversary. Therefore, the adversary cannot distinguish FCBC from a random
function. 2

Proof. We make this intuition rigorous by letting A interact with three closely related challengers
in three games. For j = 0, 1, 2, 3, we let Wj be the event that A outputs 1 at the end of Game j.

Game 0. This is Experiment 0 of Attack Game 4.2.

Game 1. We next play the usual “PRF card,” replacing the function F (k, ·) by a truly random
function f in Funs[X , X ]. Clearly, we have

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[B, F ] (6.8)

for an e�cient adversary B.

Game 2. We now make a purely conceptual change, implementing the random function f as a
“faithful gnome” (as in Section 4.4.2). However, it will be convenient for us to do this is a particular
way, using the “query tree” discussed above.

To this end, first let B := Q`, which represents an upper bound on how many points at which
f will evaluated. Our challenger first prepares random values

�i  R X (i = 1, . . . , B).

These will be the only random values used by our challenger.
As the adversary makes queries, our challenger will dynamically build up the query tree. Ini-

tially, the tree contains only the root. Whenever the adversary makes a query, the challenger traces
out the corresponding path in the existing query tree; at some point, this path will extend beyond
the existing query tree, and our challenger adds the necessary nodes and edges so that the query
tree grows to include the new path.

Our challenger must also compute the values �p associated with each node. Initially, �
root

= 0n.

When adding a new edge p
a�! q to the tree, if this is the ith edge being added (for i = 1, . . . , B),

our challenger does the following:

�q  �i

(⇤) if 9 another edge p0 a0�! q0 with �p0 � a0 = �p � a then �q  �q0
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The idea is that we use the next unused value in our prepared list �1, . . . , �B as the “default”
value for �q. The line marked (⇤) performs the necessary consistency check, which ensures that our
gnome is indeed faithful.

Because this change is purely conceptual, we have

Pr[W2] = Pr[W1]. (6.9)

Game 3. Next, we make our gnome forgetful, by removing the consistency check marked (⇤) in
the logic in Game 2.

To analyze the e↵ect of this change, let Z be the event that in Game 3, for some distinct pair

of edges p
a�! q and p0 a0�! q0, we have �p0 � a0 = �p � a.

Now, the only randomly chosen values in Games 2 and 3 are the random choices of the ad-
versary, Coins , and the list of values �1, . . . , �B. Observe that for any fixed choice of values
Coins , �1, . . . , �B, if Z does not occur, then in fact Games 2 and 3 proceed identically. Therefore,
we may apply the Di↵erence Lemma (Theorem 4.7), obtaining

�

�Pr[W3]� Pr[W2]
�

�  Pr[Z]. (6.10)

We next bound Pr[Z]. Consider two distinct edges p
a�! q and p0 a0�! q0. We want to bound the

probability that �p0 � a0 = �p � a, which is equivalent to

�p0 � �p = a0 � a. (6.11)

There are two cases to consider.
Case 1: p = p0. Since the edges are distinct, we must have a0 6= a, and hence (6.11) holds with

probability 0.
Case 2: p 6= p0. The requirement that the adversary’s queries are prefix free implies that in

Game 3, the adversary never sees — or learns anything about — the values �p and �p0 . One of p or
p0 could be the root, but not both. It follows that the value �p � �p0 is uniformly distributed over
X and is independent of a� a0. From this, it follows that (6.11) holds with probability 1/|X |.

By the union bound, it follows that

Pr[Z]  B2

2|X | . (6.12)

Combining (6.8), (6.9), (6.10), and (6.12), we obtain

PRFpf
adv[A, FCBC] =

�

�Pr[W3]� Pr[W0]
�

�  PRFadv[B, F ] +
B2

2|X | . (6.13)

Moreover, Game 3 corresponds exactly to Experiment 1 of Attack Game 4.2, from which the
theorem follows. 2

6.4.2 The cascade prefix-free secure PRF

Let F be a PRF that takes keys in K and produces outputs in K. In symbols, F is defined over
(K, X , K). For any poly-bounded value `, we build a new PRF F ⇤, called the cascade of F , that
maps messages in X` to outputs in K. The function F ⇤, illustrated in Fig. 6.3b, works as follows:
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input: k 2 K and m = (a1, . . . , av) 2 X` for some v 2 {0, . . . , `}
output: a tag in K

t k
for i 1 to v do:

t F (t, ai)
output t

The following theorem shows that F ⇤ is a prefix-free secure PRF.

Theorem 6.4. Let F be a secure PRF defined over (K, X , K). Then for any poly-bounded value `,
the cascade F ⇤ of F is a prefix-free secure PRF defined over (K, X`, K).

In particular, for every prefix-free PRF adversary A that attacks F ⇤ as in Attack Game 4.2, and
issues at most Q queries, there exists a PRF adversary B that attacks F as in Attack Game 4.2,
where B is an elementary wrapper around A, such that

PRFpf
adv[A, F ⇤]  Q` · PRFadv[B, F ]. (6.14)

Exercise 6.6 develops an attack on fixed-length F ⇤ that demonstrates that security degrades
quadratically in Q. This is disturbing as it appears to contradict the linear dependence on Q in
(6.14). However, rest assured there is no contradiction here. The adversary A from Exercise 6.6,
which uses ` = 3, has advantage about 1/2 when Q is about

p|K|. Plugging A into the proof of
Theorem 6.4 we obtain a PRF adversary B that attacks the PRF F making about Q queries to
gain an advantage about 1/Q. Note that 1/Q ⇡ Q/|K| when Q is close to

p|K|. There is nothing
surprising about this adversary B: it is essentially the universal PRF attacker from Exercise 4.27.
Hence, (6.14) is consistent with the attack from Exercise 6.6. Another way to view this is that
the quadratic dependence on Q is already present in (6.14) because there is an implicit factor of Q
hiding in the quantity PRFadv[B, F ].

The proof of Theorem 6.4 is similar to the proof that the variable-length tree construction in
Section 4.6 is a prefix-free secure PRF (Theorem 4.11). Let us briefly explain how to extend the
proof of Theorem 4.11 to prove Theorem 6.4.

Relation to the tree construction. The cascade construction is a generalization of the variable-
length tree construction of Section 4.6. Recall that the tree construction builds a secure PRF from
a secure PRG that maps a seed to a pair of seeds. It is easy to see that when F is a PRF defined
over (K, {0, 1}, K) then Theorem 6.4 is an immediate corollary of Theorem 4.11: simply define the
PRG G mapping k 2 K to G(k) := (F (k, 0), F (k, 1)) 2 K2, and observe that cascade applied to F
is the same as the variable-length tree construction applied to G.

The proof of Theorem 4.11 generalizes easily to prove Theorem 6.4 for any PRF. For example,
suppose that F is defined over (K, {0, 1, 2}, K). This corresponds to a PRG G mapping k 2 K to
G(k) := (F (k, 0), F (k, 1), F (k, 2)) 2 K3. The cascade construction construction applied to F can
be viewed as a ternary tree, instead of a binary tree, and the proof of Theorem 4.11 carries over
with no essential changes.

But why stop at width three? We can make the tree as wide as we wish. The cascade construc-
tion using a PRF F defined over (K, X , K) corresponds to a tree of width |X |. Again, the proof
of Theorem 4.11 carries over with no essential changes. We leave the details as an exercise for the
interested reader (Exercise 4.26 may be convenient here).

223



Comparing the CBC and cascade PRFs. Note that CBC uses a fixed key k for all applications
of F while cascade uses a di↵erent key in each round. Since block ciphers are typically optimized
to encrypt many blocks using the same key, the constant re-keying in cascade may result in worse
performance than CBC. Hence, CBC is the more natural choice when using an o↵ the shelf block
cipher like AES.

An advantage of cascade is that there is no additive error term in Theorem 6.4. Consequently,
the cascade construction remains secure even if the underlying PRF has a small domain X . CBC,
in contrast, is secure only when X is large. As a result, cascade can be used to convert a PRG into
a PRF for large inputs while CBC cannot.

6.4.3 Extension attacks: CBC and cascade are insecure MACs

We show that the MACs derived from CBC and cascade are insecure. This will imply that CBC
and cascade are not secure PRFs. All we showed in the previous section is that CBC and cascade
are prefix-free secure PRFs.

Extension attack on cascade. Given F ⇤(k, m) for some message m in X`, anyone can compute

t0 := F ⇤(k, m k m0) (6.15)

for any m0 2 X ⇤, without knowledge of k. Once F ⇤(k, m) is known, anyone can continue evaluating
the chain using blocks of the message m0 and obtain t0. We refer to this as the extension property
of cascade.

The extension property immediately implies that the MAC derived from F ⇤ is terribly insecure.
The forger can request the MAC on message m and then deduce the MAC on m k m0 for any m0

of his choice. It follows, by Theorem 6.2, that F ⇤ is not a secure PRF.

An attack on CBC. We describe a simple MAC forger on the MAC derived from CBC. The
forger works as follows:

1. pick an arbitrary a1 2 X ;
2. request the tag t on the one-block message (a1);
3. define a2 := a1 � t and output t as a MAC forgery for the two-block message (a1, a2) 2 X 2.

Observe that t = F (k, a1) and a1 = F (k, a1)� a2. By definition of CBC we have:

FCBC

�

k, (a1, a2)
�

= F
�

k, F (k, a1)� a2
�

= F (k, a1
�

= t.

Hence,
�

(a1, a2), t
�

is an existential forgery for the MAC derived from CBC. Consequently, FCBC

cannot be a secure PRF. Note that the attack on the cascade MAC is far more devastating than
on the CBC MAC. But in any case, these attacks show that neither CBC nor cascade should be
used directly as MACs.

6.5 From prefix-free secure PRF to fully secure PRF (method 1):
encrypted PRF

We show how to convert the prefix-free secure PRFs FCBC and F ⇤ into secure PRFs, which will give
us secure MACs for variable length inputs. More generally, we show how to convert a prefix-free
secure PRF PF to a secure PRF. We present three methods:
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Figure 6.4: The encrypted PRF construction EF (k, m)

• Encrypted PRF: encrypt the short output of PF with another PRF.

• Prefix-free encoding: encode the input to PF so that no input is a prefix of another.

• CMAC: a more e�cient prefix-free encoding using randomization.

In this section we discuss the encrypted PRF method. The construction is straightforward. Let
PF be a PRF mapping X` to Y and let F be a PRF mapping Y to T . Define

EF
�

(k1, k2), m
�

:= F
�

k2, PF (k1, m)
�

(6.16)

The construction is shown in Fig. 6.4.
We claim that when PF is either CBC or cascade then EF is a secure PRF. More generally, we

show that EF is secure whenever PF is an extendable PRF, defined as follows:

Definition 6.4. Let PF be a PRF defined over (K, X`, Y). We say that PF is an extendable
PRF if for all k 2 K, x, y 2 X`�1, and a 2 X we have:

if PF (k, x) = PF (k, y) then PF (k, x k a) = PF (k, y k a).

It is easy to see that both CBC and cascade are extendable PRFs. The next theorem shows
that when PF is an extendable, prefix-free secure PRF then EF is a secure PRF.

Theorem 6.5. Let PF be an extendable and prefix-free secure PRF defined over (K1, X`+1, Y),
where |Y| is super-poly and ` is poly-bounded. Let F be a secure PRF defined over (K2, Y, T ). Then
EF, as defined in (6.16), is a secure PRF defined over (K1 ⇥K2, X`, T ).

In particular, for every PRF adversary A that attacks EF as in Attack Game 4.2, and issues
at most Q queries, there exist a PRF adversary B1 attacking F as in Attack Game 4.2, and
a prefix-free PRF adversary B2 attacking PF as in Attack Game 4.2, where B1 and B2 are
elementary wrappers around A, such that

PRFadv[A,EF ]  PRFadv[B1, F ] + PRFpf
adv[B2,PF ] +

Q2

2|Y| . (6.17)

We prove Theorem 6.5 in the next chapter (Section 7.3.1) after we develop the necessary tools.
Note that to make EF a secure PRF on inputs of length up to `, this theorem requires that PF is
prefix-free secure on inputs of length ` + 1.
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Figure 6.5: Secure PRF constructions for variable length inputs

The bound in (6.17) is tight. Although not entirely necessary, let us assume that Y = T ,
that F is a block cipher, and that |X | is not too small. These assumptions will greatly simplify the
argument. We exhibit an attack that breaks EF with constant probability after Q ⇡p|Y| queries.
Our attack will, in fact, break EF as a MAC. The adversary picks Q random inputs x1, . . . , xQ 2 X 2

and queries its MAC challenger at all Q inputs to obtain t1, . . . , tQ 2 T . By the birthday paradox
(Corollary B.2), for any fixed key k1, with constant probability there will be distinct indices i, j
such that xi 6= xj and PF (k1, xi) = PF (k1, xj). On the one hand, if such a collision occurs, we will
detect it, because ti = tj for such a pair of indices. On the other hand, if ti = tj for some pair of
indices i, j, then our assumption that F is a block cipher guarantees that PF (k1, xi) = PF (k1, xj).
Now, assuming that xi 6= xj and PF (k1, xi) = PF (k1, xj), and since PF is extendable, we know
that for all a 2 X , we have PF

�

k1, (xi k a)
�

= PF
�

k1, (xj k a)
�

. Therefore, our adversary can
obtain the MAC tag t for xi k a, and this tag t will also be a valid tag for xj k a. This attack easily
generalizes to show the necessity of the term Q2/(2|Y|) in (6.17).

6.5.1 ECBC and NMAC: MACs for variable length inputs

Figures 6.5a and 6.5b show the result of applying the EF construction (6.16) to CBC and cascade.
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The Encrypted-CBC PRF

Applying EF to CBC results in a classic PRF (and hence a MAC) called encrypted-CBC or
ECBC for short. This MAC is standardized by ANSI (see Section 6.9) and is used in the banking
industry. The ECBC PRF uses the same underlying PRF F for both CBC and the final encryption.
Consequently, ECBC is defined over (K2, X`, X ).

Theorem 6.6 (ECBC security). Let F be a secure PRF defined over (K, X , X ). Suppose X is
super-poly, and let ` be a poly-bounded length parameter. Then ECBC is a secure PRF defined over
(K2, X`, X ).

In particular, for every PRF adversary A that attacks ECBC as in Attack Game 4.2, and issues
at most Q queries, there exist PRF adversaries B1, B2 that attack F as in Attack Game 4.2,
and which are elementary wrappers around A, such that

PRFadv[A, ECBC]  PRFadv[B1, F ] + PRFadv[B2, F ] +
(Q(` + 1))2 + Q2

2|X | . (6.18)

Proof. CBC is clearly extendable and is a prefix-free secure PRF by Theorem 6.3. Hence, if the
underlying PRF F is secure, then ECBC is a secure PRF by Theorem 6.5. 2

The argument given after Theorem 6.5 shows that there is an attacker that after Q ⇡ p|X |
queries breaks this PRF with constant advantage. Recall that for 3DES we have X = {0, 1}64.
Hence, after about a billion queries (or more precisely, 232 queries) an attacker can break the
ECBC-3DES MAC with constant probability.

The NMAC PRF

Applying EF to cascade results in a PRF (and hence a MAC) called Nested MAC or NMAC
for short. A variant of this MAC is standardized by the IETF (see Section 8.7.2) and is widely
used in Internet protocols.

We wish to use the same underlying PRF F for the cascade construction and for the final
encryption. Unfortunately, the output of cascade is in K while the message input to F is in X . To
solve this problem we need to embed the output of cascade into X . More precisely, we assume that
|K|  |X | and that there is an e�ciently computable one-to-one function g that maps K into X .
For example, suppose K := {0, 1} and X := {0, 1}n where   n. Define g(t) := t k fpad where
fpad is a fixed pad of length n �  bits. This fpad can be as simple as a string of 0s. With this
translation, all of NMAC can be built from a single secure PRF F , as shown in Fig. 6.5b.

Theorem 6.7 (NMAC security). Let F be a secure PRF defined over (K, X , K), where K can
be embedded into X . Then NMAC is a secure PRF defined over (K2, X`, K).

In particular, for every PRF adversary A that attacks NMAC as in Attack Game 4.2, and issues
at most Q queries, there exist PRF adversaries B1, B2 that attack F as in Attack Game 4.2,
and which are elementary wrappers around A, such that

PRFadv[A, NMAC]  (Q(` + 1)) · PRFadv[B1, F ] + PRFadv[B2, F ] +
Q2

2|K| . (6.19)

Proof. NMAC is clearly extendable and is a prefix-free secure PRF by Theorem 6.4. Hence, if the
underlying PRF F is secure, then NMAC is a secure PRF by Theorem 6.5. 2
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ECBC and NMAC are streaming MACs. Both ECBC and NMAC can be used to authenticate
variable size messages in X`. Moreover, there is no need for the message length to be known ahead
of time. A MAC that has this property is said to be a streaming MAC. This property enables
applications to feed message blocks to the MAC one block at a time and at some arbitrary point
decide that the message is complete. This is important for applications like streaming video, where
the message length may not be known ahead of time.

In contrast, some MAC systems require that the message length be prepended to the message
body (see Section 6.6). Such MACs are harder to use in practice since they require applications to
determine the message length before starting the MAC calculations.

6.6 From prefix-free secure PRF to fully secure PRF (method 2):
prefix-free encodings

Another approach to converting a prefix-free secure PRF into a secure PRF is to encode the input
to the PRF so that no encoded input is a prefix of another. We use the following terminology:

• We say that a set S ✓ X` is a prefix-free set if no element in S is a proper prefix of any
other. For example, if (x1, x2, x3) belongs to a prefix-free set S, then neither x1 nor (x1, x2)
are in S.

• Let X`

>0
denote the set of all non-empty strings over X of length at most `. We say that a

function pf : M! X`

>0
is a prefix-free encoding if pf is injective (i.e., one-to-one) and the

image of pf in is a prefix-free set.

Let PF be a prefix-free secure PRF defined over (K, X`, Y) and pf : M! X`

>0
be a prefix-free

encoding. Define the derived PRF F as

F (k, m) := PF (k, pf (m)).

Then F is defined over (K, M, Y). We obtain the following trivial theorem.

Theorem 6.8. If PF is a prefix-free secure PRF and pf is a prefix-free encoding then F is a secure
PRF.

6.6.1 Prefix free encodings

To construct PRFs using Theorem 6.8 we describe two prefix-free encodings pf : M ! X`. We
assume that X = {0, 1}n for some n.

Method 1: prepend length. Set M := X`�1 and let m = (a1, . . . , av) 2M. Define

pf (m) := (hvi, a1, . . . , av) 2 X`

>0

where hvi 2 X is the binary representation of v, the length of m. We assume that ` < 2n so that
the message length can be encoded as an n-bit binary string.

We argue that pf is a prefix-free encoding. Clearly pf is injective. To see that the image of
pf is a prefix-free set let pf (x) and pf (y) be two elements in the image of pf . If pf (x) and pf (y)
contain the same number of blocks, then neither is a proper prefix of the other. Otherwise, pf (x)
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and pf (y) contain a di↵erent number of blocks and must therefore di↵er in the first block. But
then, again, neither is a proper prefix of the other. Hence, pf is a prefix-free encoding.

This prefix-free encoding is not often used in practice since the resulting MAC is not a streaming
MAC: an application using this MAC must commit to the length of the message to MAC ahead of
time. This is undesirable for streaming applications such as streaming video where the length of
packets may not be known ahead of time.

Method 2: stop bits. Let X̄ := {0, 1}n�1 and let M = X̄`

>0
. For m = (a1, . . . , av) 2M, define

pf (m) :=
�

(a1 k 0), (a2 k 0), . . . , (av�1 k 0), (av k 1)
� 2 X`

>0

Clearly pf is injective. To see that the image of pf is a prefix-free set let pf (x) and pf (y) be two
elements in the image of pf . Let v be the number of blocks in pf (x). If pf (y) contains v or fewer
blocks then pf (x) is not a proper prefix of pf (y). If pf (y) contains more than v blocks then block
number v in pf (y) ends in 0, but block number v in pf (x) ends in 1. Hence, pf (x) and pf (y) di↵er
in block v and therefore pf (x) is not a proper prefix of pf (y).

The MAC resulting from this prefix-free encoding is a streaming MAC. This encoding, however,
increases the length of the message to MAC by v bits. When computing the MAC on a long message
using either CBC or cascade, this encoding will result in additional evaluations of the underlying
PRF (e.g. AES). In contrast, the encrypted PRF method of Section 6.5 only adds one additional
application of the underlying PRF. For example, to MAC a megabyte message (220 bytes) using
ECBC-AES and pf one would need an additional 511 evaluations of AES beyond what is needed
for the encrypted PRF method. In practice, things are even worse. Since computers prefer byte-
aligned data, one would most likely need to append an entire byte to every block, rather than just
a bit. Then to MAC a megabyte message using ECBC-AES and pf would result in 4096 additional
evaluations of AES over the encrypted PRF method — an overhead of about 6%.

6.7 From prefix-free secure PRF to fully secure PRF (method 3):
CMAC

Both prefix free encoding methods from the previous section are problematic. The first resulted in
a non-streaming MAC. The second required more evaluations of the underlying PRF for long mes-
sages. We can do better by randomizing the prefix free encoding. We build a streaming secure PRF
that introduces no overhead beyond the underlying prefix-free secure PRF. The resulting MACs,
shown in Fig. 6.6, are superior to those obtained from encrypted PRFs and deterministic encodings.
This approach is used in a NIST MAC standard called CMAC and described in Section 6.10.

First, we introduce some convenient notation:

Definition 6.5. For two strings x, y 2 X`, let us write x ⇠ y if x is a prefix of y or y is a prefix
of x.

Definition 6.6. Let ✏ be a real number, with 0  ✏  1. A randomized ✏-prefix-free encoding
is a function rpf : K ⇥M! X`

>0
such that for all m0, m1 2M with m0 6= m1, we have

Pr
⇥

rpf (k, m0) ⇠ rpf (k, m1)
⇤  ✏,

where the probability is over the random choice of k in K.
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Note that the image of rpf (k, ·) need not be a prefix-free set. However, without knowledge of k it
is di�cult to find messages m0, m1 2M such that rpf (k, m0) is a proper prefix of rpf (k, m1) (or
vice versa). The function rpf (k, ·) need not even be injective.

A simple rpf . Let K := X and M := X`

>0
. Define

rpf (k, (a1, . . . , av)) :=
�

a1, . . . , av�1, (av � k)
� 2 X`

>0

It is easy to see that rpf is a randomized (1/|X |)-prefix-free encoding. Let m0, m1 2 M with
m0 6= m1. Suppose that |m0| = |m1|. Then it is clear that for all choices of k, rpf (k, m0) and
rpf (k, m1) are distinct strings of the same length, and so neither is a prefix of the other. Next,
suppose that |m0| < |m1|. If v := |rpf (k, m0)|, then clearly rpf (k, m0) is a proper prefix of
rpf (k, m1) if and only if

m0[v � 1]� k = m1[v � 1].

But this holds with probability 1/|X | over the random choice of k, as required. Finally, the case
|m0| > |m1| is handled by a symmetric argument.

Using rpf . Let PF be a prefix-free secure PRF defined over (K, X`, Y) and rpf : K1⇥M! X`

>0

be a randomized prefix-free encoding. Define the derived PRF F as

F
�

(k, k1), m) := PF
�

k, rpf (k1, m)
�

. (6.20)

Then F is defined over (K ⇥ K1, M, Y). We obtain the following theorem, which is analogous to
Theorem 6.8.

Theorem 6.9. If PF is a prefix-free secure PRF, ✏ is negligible, and rpf a randomized ✏-prefix-free
encoding, then F defined in (6.20) is a secure PRF.

In particular, for every PRF adversary A that attacks F as in Attack Game 4.2, and issues at
most Q queries, there exist prefix-free PRF adversaries B1 and B2 that attack PF as in Attack
Game 4.2, where B1 and B2 are elementary wrappers around A, such that

PRFadv[A, F ]  PRFpf
adv[B1,PF ] + PRFpf

adv[B2,PF ] + Q2✏/2. (6.21)

Proof idea. If the adversary’s set of inputs to F give rise to a prefix-free set of inputs to PF , then
the adversary sees just some random looking outputs. Moreover, if the adversary sees random
outputs, it obtains no information about the rpf key k1, which ensures that the set of inputs to
PF is indeed prefix free (with overwhelming probability). Unfortunately, this argument is circular.
However, we will see in the detailed proof how to break this circularity. 2

Proof. Without loss of generality, we assume that A never issues the same query twice. We structure
the proof as a sequence of three games. For j = 0, 1, 2, we let Wj be the event that A outputs 1 at
the end of Game j.

Game 0. The challenger in Experiment 0 of the PRF Attack Game 4.2 with respect to F works
as follows.
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k  R K, k1  R K1

upon receiving a signing query mi 2M (for i = 1, 2, . . .) do:
xi  rpf (k1, mi) 2 X`

>0

yi  PF (k, xi)
send yi to A

Game 1. We change the challenger in Game 0 to ensure that all queries to PF are prefix free.
Recall the notation x ⇠ y, which means that x is a prefix of y or y is a prefix of x.

k  R K, k1  R K1, r1, . . . , rQ  R Y

upon receiving a signing query mi 2M (for i = 1, 2, . . .) do:
xi  rpf (k1, mi) 2 X`

>0

(1) if xi ⇠ xj for some j < i
then yi  ri

(2) else yi  PF (k, xi)
send yi to A

Let Z1 be the event that the condition on line (1) holds at some point during Game 1. Clearly,
Games 1 and 2 proceed identically until event Z1 occurs; in particular, W0 ^ Z̄1 occurs if and only
if W1 ^ Z̄1 occurs. Applying the Di↵erence Lemma (Theorem 4.7), we obtain

�

�Pr[W1]� Pr[W0]
�

�  Pr[Z1]. (6.22)

Unfortunately, we are not quite in a position to bound Pr[Z1] at this point. At this stage in the
analysis, we cannot say that the evaluations of PF at line (2) do not leak some information about
k1 that could help A make Z1 happen. This is the circularity problem we alluded to above. To
overcome this problem, we will delay the analysis of Z1 to the next game.

Game 2. Now we play the usual “PRF card,” replacing the function PF (k, ·) by a truly random
function. This is justified, since by construction, in Game 1, the set of inputs to PF (k, ·) is prefix-
free. To implement this change, we may simply replace the line marked (2) by

(2) else yi  ri

After making this change, we see that yi gets assigned the random value ri, regardless of whether
the condition on line (1) holds or not.

Now, let Z2 be the event that the condition on line (1) holds at some point during Game 2. It
is not hard to see that

|Pr[Z1]� Pr[Z2]|  PRFpf
adv[B1, F ] (6.23)

and
|Pr[W1]� Pr[W2]|  PRFpf

adv[B2, F ] (6.24)

for e�cient prefix-free PRF adversaries B1 and B2. These two adversaries are basically the same,
except that B1 outputs 1 if the condition on line (1) holds, while B2 ouputs whatever A outputs.

Moreover, in Game 2, the value of k1 is clearly independent of A’s queries, and so by making
use of the ✏-prefix-free property of rpf , and the union bound we have

Pr[Z2]  Q2✏/2 (6.25)
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Figure 6.6: Secure PRFs using random prefix-free encodings

Finally, Game 2 perfectly emulates for A a random function in Funs[M, Y]. Game 2 is therefore
identical to Experiment 1 of the PRF Attack Game 4.2 with respect to F , and hence

|Pr[W0]� Pr[W2]| = PRFadv[A, F ]. (6.26)

Now combining (6.22)–(6.26) proves the theorem. 2

6.8 Converting a block-wise PRF to bit-wise PRF

So far we constructed a number of PRFs for variable length inputs in X`. Typically X = {0, 1}n
where n is the block size of the underlying PRF from which CBC or cascade are built (e.g., n = 128
for AES). All our MACs so far are designed to authenticate messages whose length is a multiple of
n bits.

In this section we show how to convert these PRFs into PRFs for messages of arbitrary bit
length. That is, given a PRF for messages in X` we construct a PRF for messages in {0, 1}n`.

Let F be a PRF taking inputs in X`+1. Let inj : {0, 1}n` ! X`+1 be an injective (i.e.,
one-to-one) function. Define the derived PRF Fbit as

Fbit(k, x) := F (k, inj (x)).

Then we obtain the following trivial theorem.

Theorem 6.10. If F is a secure PRF defined over (K, X`+1, Y) then Fbit is a secure PRF defined
over (K, {0, 1}n`, Y).
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a1 a2

a1 a2 �!
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a1 a2 1000000

case 1:

case 2:

Figure 6.7: An injective function inj : {0, 1}n` ! X`+1

An injective function. For X := {0, 1}n, a standard example of an injective inj from {0, 1}n`

to X`+1 works as follows. If the input message length is not a multiple of n then inj appends
100 . . . 00 to pad the message so its length is the next multiple of n. If the given message length
is a multiple of n then inj appends an entire n-bit block (1 k 0n�1). Fig. 6.7 describes this in a
picture. More precisely, the function works as follows:

input: m 2 {0, 1}n`

u |m| mod n, m0  m k 1 k 0n�u�1

output m0 as a sequence of n-bit message blocks

To see that inj is injective we show that it is invertible. Given y  inj (m) scan y from right to
left and remove all the 0s until and including the first 1. The remaining string is m.

A common mistake is to pad the given message to a multiple of a block size using an all-0 pad.
This pad is not injective and results in an insecure MAC: for any message m whose length is not
a multiple of the block length, the MAC on m is also a valid MAC for m k 0. Consequently, the
MAC is vulnerable to existential forgery.

Injective functions must expand. When we feed an n-bit single block message into inj , the
function adds a “dummy” block and outputs a two-block message. This is unfortunate for appli-
cations that MAC many single block messages. When using CBC or cascade, the dummy block
forces the signer and verifier to evaluate the underlying PRF twice for each message, even though all
messages are one block long. Consequently, inj forces all parties to work twice as hard as necessary.

It is natural to look for injective functions from {0, 1}n` to X` that never add dummy blocks.
Unfortunately, there are no such functions simply because the set {0, 1}n` is larger than the set
X`. Hence, all injective functions must occasionally add a “dummy” block to the output.

The CMAC construction described in Section 6.10 provides an elegant solution to this problem.
CMAC avoids adding dummy blocks by using a randomized injective function.

6.9 Case study: ANSI CBC-MAC

When building a MAC from a PRF, implementors often shorten the final tag by only outputting
the w most significant bits of the PRF output. Exercise 4.4 shows that truncating a secure PRF
has no e↵ect on its security as a PRF. Truncation, however, a↵ects the derived MAC. Theorem 6.2
shows that the smaller w is the less secure the MAC becomes. In particular, the theorem adds a
1/2w error in the concrete security bounds.

Two ANSI standards (ANSI X9.9 and ANSI X9.19) and two ISO standards (ISO 8731-1 and
ISO/IEC 9797) specify variants of ECBC for message authentication using DES as the underlying
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PRF. These standards truncate the final 64-bit output of the ECBC-DES and use only the leftmost
w bits of the output, where w = 32, 48, or 64 bits. This reduces the tag length at the cost of reduced
security.

Both ANSI CBC-MAC standards specify a padding scheme to be used for messages whose
length is not a multiple of the DES or AES block size. The padding scheme is identical to the
function inj described in Section 6.8. The same padding scheme is used when signing a message
and when verifying a message-tag pair.

6.10 Case study: CMAC

Cipher-based MAC — CMAC — is a variant of ECBC adopted by the National Institute of Stan-
dards (NIST) in 2005. It is based on a proposal due to Black and Rogaway and an extension due to
Iwata and Kurosawa. CMAC improves over ECBC used in the ANSI standard in two ways. First,
CMAC uses a randomized prefix-free encoding to convert a prefix-free secure PRF to a secure PRF.
This saves the final encryption used in ECBC. Second, CMAC uses a “two key” method to avoid
appending a dummy message block when the input message length is a multiple of the underlying
PRF block size.

CMAC is the best approach to building a bit-wise secure PRF from the CBC prefix-free secure
PRF. It should be used in place of the ANSI method. In Exercise 6.14 we show that the CMAC
construction applies equally well to cascade.

The CMAC bit-wise PRF. The CMAC algorithm consists of two steps. First, a sub-key
generation algorithm is used to derive three keys k0, k1, k2 from the MAC key k. Then the three
keys k0, k1, k2 are used to compute the MAC.

Let F be a PRF defined over (K, X , X ) where X = {0, 1}n. The NIST standard uses AES as
the PRF F . The CMAC signing algorithm is given in Table 6.1 and is illustrated in Fig. 6.8. The
figure on the left is used when the message length is a multiple of the block size n. The figure on
the right is used otherwise. The standard allows for truncating the final output to w bits by only
outputting the w most significant bits of the final value t.

Security. The CMAC algorithm described in Fig. 6.8 can be analyzed using the randomized
prefix-free encoding paradigm. In e↵ect, CMAC converts the CBC prefix-free secure PRF directly
into a bit-wise secure PRF using a randomized prefix-free encoding rpf : K ⇥M ! X`

>0
where

K := X 2 and M := {0, 1}n`. The encoding rpf is defined as follows:

input: m 2M and (k1, k2) 2 X 2

if |m| is not a positive multiple of n then
u |m| mod n

partition m into a sequence of bit strings a1, . . . , av 2 X ,
so that m = a1 k · · · k av and a1, . . . , av�1 are n-bit strings

if |m| is a positive multiple of n
then output

�

a1, . . . , av�1, (av � k1)
�

else output
�

a1, . . . , av�1, ((av k 1 k 0n�u�1)� k2)
�

The argument that rpf is a randomized 2�n-prefix-free encoding is similar to the one is Section 6.7.
Hence, CMAC fits the randomized prefix-free encoding paradigm and its security follows from
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input: Key k 2 K and m 2 {0, 1}⇤
output: tag t 2 {0, 1}w for some w  n

Setup:
Run a sub-key generation algorithm

to generate keys k0, k1, k2 2 X from k 2 K
` length(m)
u max(1, d`/ne)
Break m into consecutive n-bit blocks so that

m = a1 k a2 k · · · k au�1 k a⇤u where a1, . . . , au�1 2 {0, 1}n.
(⇤) If length(a⇤u) = n

then au = k1 � a⇤u
else au = k2 � (a⇤u k 1 k 0j) where j = nu� `� 1

CBC:
t 0n

for i 1 to u do:
t F (k0, t� ai)

Output t[0 . . . w � 1] // Output w most significant bits of t.

Table 6.1: CMAC signing algorithm

a1

F (k, ·)

a2

F (k, ·)

L

au

F (k, ·)

L

· · ·

k1

tag

a1

F (k, ·)

a2

F (k, ·)

L

auk100

F (k, ·)

L

· · ·

k2

tag

(a) when length(m) is a positive multiple of n (b) otherwise

Figure 6.8: CMAC signing algorithm

235



Theorem 6.9. The keys k1, k2 are used to resolve collisions between a message whose length is a
positive multiple of n and a message that has been padded to make it a positive multiple of n. This
is essential for the analysis of the CMAC rpf .

Sub-key generation. The sub-key generation algorithm generates the keys (k0, k1, k2) from k.
It uses a fixed mask string Rn that depends on the block size of F . For example, for a 128-bit
block size, the standard specifies R128 := 012010000111. For a bit string X we denote by X << 1
the bit string that results from discarding the leftmost bit X and appending a 0-bit on the right.
The sub-key generation algorithm works as follows:

input: key k 2 K
output: keys k0, k1, k2 2 X

k0  k
L F (k, 0n)

(1) if msb(L) = 0 then k1  (L << 1) else k1  (L << 1)�Rn

(2) if msb(k1) = 0 then k2  (k1 << 1) else k2  (k1 << 1)�Rn

output k0, k1, k2.

where msb(L) refers to the most significant bit of L. The lines marked (1) and (2) may look a bit
mysterious, but in e↵ect, they simply multiply L by x and by x2 (respectively) in the finite field
GF(2n). For a 128-bit block size the defining polynomial for GF(2128) corresponding to R128 is
g(X) := X128 + X7 + X2 + X + 1. Exercise 6.16 explores insecure variants of sub-key generation.

The three keys (k0, k1, k2) output by the sub-key generation algorithm can be used for authen-
ticating multiple messages. Hence, its running time is amortized across many messages.

Clearly the keys k0, k1, and k2 are not independent. If they were, or if they were derived as,
say, ki := F (k, ↵i) for constants ↵0, ↵1, ↵2, the security of CMAC would follow directly from the
arguments made here and our general framework. Nevertheless, a more intricate analysis allows
one to prove that CMAC is indeed secure [58].

6.11 PMAC: a parallel MAC

The MACs we developed so far, ECBC, CMAC, and NMAC, are inherently sequential: block
number i cannot be processed before block number i�1 is finished. This makes it di�cult to exploit
hardware parallelism or pipelining to speed up MAC generation and verification. In this section
we construct a secure MAC that is well suited for a parallel architecture. The best construction is
called PMAC. We present PMAC0 which is a little easier to describe.

Let F1 be a PRF defined over (K1,Zp, Y), where p is a prime and Y := {0, 1}n. Let F2 be a
PRF defined over (K2, Y, Z).

We build a new PRF, called PMAC0, which takes as input a key and a message in Z`
p for

some `. It outputs a value in Z. A key for PMAC0 consists of k 2 Zp, k1 2 K2, and k2 2 K2. The
PMAC0 construction works as follows:
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Figure 6.9: PMAC0 construction

input: m = (a1, . . . , av) 2 Zv
p for some 0  v  `, and

key ~k = (k, k1, k2) where k 2 Zp, k1 2 K1, and k2 2 K2

output: tag in Z
PMAC0(~k, m):

t 0n 2 Y, mask 0 2 Zp

for i 1 to v do:
mask mask + k // mask = i · k 2 Zp

r  ai + mask // r = ai + i · k 2 Zp

t t� F1
�

k1, r)
output F2(k2, t)

The main loop adds the masks k, 2k, 3k, . . . to message blocks prior to evaluating the PRF F1. On
a sequential machine this requires two additions modulo p per iteration. On a parallel machine
each processor can independently compute ai + ik and then apply F1. See Fig. 6.9.

PMAC0 is a secure PRF and hence gives a secure MAC for large messages. The proof will
follow easily from Theorem 7.7 developed in the next chapter. For now we state the theorem and
delay its proof to Section 7.3.3.

Theorem 6.11. If F1 and F2 are secure PRFs, and |Y| and the prime p are super-poly, then
PMAC0 is a secure PRF for any poly-bounded `.

In particular, for every PRF adversary A that attacks PMAC0 as in Attack Game 4.2, and
issues at most Q queries, there exist PRF adversaries B1 and B2, which are elementary wrappers
around A, such that

PRFadv[A, PMAC0]  PRFadv[B1, F1] + PRFadv[B2, F2] +
Q2

2|Y| +
Q2`2

2p
. (6.27)
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When using PMAC0, the input message must be partitioned into blocks, where each block is an
element of Zp. In practice, that is inconvenient. It is much easier to break the message into blocks,
where each block is an n-bit string in {0, 1}n, for some n. A better parallel MAC construction,
presented next, does exactly that by using the finite field GF(2n) instead of Zp. This is a good
illustration for why GF(2n) is so useful in cryptography. We often need to work in a field for
security reasons, but a prime finite field like Zp is inconvenient to use in practice. Instead, we use
GF(2n) where arithmetic operations are much faster. GF(2n) also lets us naturally operate on n-bit
blocks.

PMAC: better than PMAC0. Although PMAC0 is well suited for a parallel architecture, there
is room for improvement. Better implementations of the PMAC0 approach are available. Examples
include PMAC [16] and XECB [47], both of which are parallelizable. PMAC, for example, provides
the following improvements over PMAC0:

• PMAC uses arithmetic in the finite field GF(2n) instead of in Zp. Elements of GF(2n) can be
represented as n-bit strings, and addition in GF(2n) is just a bit-wise XOR. Because of this,
PMAC just uses F1 = F2 = F , where F is a PRF defined over (K, Y, Y), and the input space
of PMAC consists of sequences of elements of Y = {0, 1}n, rather than elements of Zp.

• The PMAC mask for block i is defined as �i ·k where �1, �2, . . . are fixed constants in GF(2n)
and multiplication is defined in GF(2n). The �i’s are specially chosen so that computing
�i+1 · k from �i · k is very cheap.

• PMAC derives the key k as k  F (k1, 0n) and sets k2  k1. Hence PMAC uses a shorter
secret key than PMAC0.

• PMAC uses a trick to save one application of F .

• PMAC uses a variant of the CMAC rpf to provide a bit-wise PRF.

The end result is that PMAC is as e�cient as ECBC and NMAC on a sequential machine, but
has much better performance on a parallel or pipelined architecture. PMAC is the best PRF
construction in this chapter; it works well on a variety of computer architectures and is e�cient for
both long and short messages.

PMAC0 is incremental. Suppose Bob computes the tag t for some long message m. Some time
later he changes one block in m and wants to recompute the tag of this new message m0. When
using CBC-MAC the tag t is of no help — Bob must recompute the tag for m0 from scratch. With
PMAC0 we can do much better. Suppose the PRF F2 used in the construction of PMAC0 is the
encryption algorithm of a block cipher such as AES, and let D be the corresponding decryption
algorithm. Let m0 be the result of changing block number i of m from ai to a0i. Then the tag
t0 := PMAC0(k, m0) for m0 can be easily derived from the tag t := PMAC0(k, m) for m as follows:

t1  D(k2, t)
t2  t1 � F1(k1, ai + ik) � F1(k1, a0i + ik)
t0  F2(k2, t2)

Hence, given the tag on some long message m (as well as the MAC secret key) it is easy to derive
tags for local edits of m. MACs that have this property are said to be incremental. We just
showed that the PMAC0, implemented using a block cipher, is incremental.
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6.12 A fun application: searching on encrypted data

To be written.

6.13 Notes

Citations to the literature to be added.

6.14 Exercises

6.1 (The 802.11b insecure MAC). Consider the following MAC (a variant of this was used for
WiFi encryption in 802.11b WEP). Let F be a PRF defined over (K, R, X ) where X := {0, 1}32. Let
CRC32 be a simple and popular error-detecting code meant to detect random errors; CRC32(m)
takes inputs m 2 {0, 1}` and always outputs a 32-bit string. For this exercise, the only fact you
need to know is that CRC32(m1) � CRC32(m2) = CRC32(m1 �m2). Define the following MAC
system (S, V ):

S(k, m) :=
�

r  R R, t F (k, r)� CRC32(m), output (r, t)
 

V (k, m, (r, t)) :={ accept if t = F (k, r)� CRC32(m) and reject otherwise}
Show that this MAC system is insecure.

6.2 (Tighter bounds with verification queries). Let F be a PRF defined over (K, X , Y), and
let I be the MAC system derived from F , as discussed in Section 6.3. Let A be an adversary
that attacks I as in Attack Game 6.2, and which makes at most Qv verification queries and
at most Qs signing queries. Theorem 6.1 says that there exists a Qs-query MAC adversary B
that attacks I as in Attack Game 6.1, where B is an elementary wrapper around A, such that
MACvq

adv[A, I]  MACadv[B, I] · Qv. Theorem 6.2 says that there exists a (Qs + 1)-query PRF
adversary B0 that attacks F as in Attack Game 4.2, where B0 is an elementary wrapper around B,
such that MACadv[B, I]  PRFadv[B0, F ] + 1/|Y|. Putting these two statements together, we get

MACvq
adv[A, I]  (PRFadv[B0, F ] + 1/|Y|) · Qv

This bound is not the best possible. Give a direct analysis that shows that there exists a (Qs+Qv)-
query PRF adversary B00, where B00 is an elementary wrapper around A, such that

MACvq
adv[A, I]  PRFadv[B00, F ] + Qv/|Y|.

6.3 (Multi-key MAC security). Just as we did for semantically secure encryption in Exer-
cise 5.2, we can extend the definition of a secure MAC from the single-key setting to the multi-key
setting. In this exercise, you will show that security in the single-key setting implies security in the
multi-key setting.

(a) Show how to generalize Attack Game 6.2 so that an attacker can submit both signing queries
and verification queries with respect to several MAC keys k1, . . . , kQ. At the beginning of the
game the adversary outputs a number Q indicating the number of keys it wants to attack
and the challenger chooses Q random keys k1, . . . , kQ. Subsequently, every query from the
attacker includes an index j 2 {1, . . . , Q}. The challenger uses the key kj to respond to the
query.
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(b) Show that every e�cient adversary A that wins your multi-key MAC attack game with
probability ✏ can be transformed into an e�cient adversary B that wins Attack Game 6.2
with probability ✏/Q.

Hint: This is not done using a hybrid argument, but rather a “guessing” argument, somewhat
analogous to that used in the proof of Theorem 6.1. Adversary B plays the role of challenger
to adversary A. Once A outputs a number Q, B chooses Q random keys k1, . . . , kQ and a
random index ! 2 {1, . . . , Q}. When A issues a query for key number j 6= !, adversary B
uses its key kj to answer the query. When A issues a query for the key k!, adversary B
answers the query by querying its MAC challenger. If A outputs a forgery under key k! then
B wins the MAC forgery game. Show that B wins Attack Game 6.2 with probability ✏/Q.
We call this style of argument “plug-and-pray:” B “plugs” the key he is challenged on at a
random index ! and “prays” that A uses the key at index ! to form his existential forgery.

6.4 (Multicast MACs). Consider a scenario in which Alice wants to broadcast the same message
to n users, U1, . . . , Un. She wants the users to be able to authenticate that the message came from
her, but she is not concerned about message secrecy. More generally, Alice may wish to broadcast
a series of messages, but for this exercise, let us focus on just a single message.

(a) In the most trivial solution, Alice shares a MAC key ki with each user Ui. When she broadcasts
a message m, she appends tags t1, . . . , tn to the message, where ti is a valid tag for m under
key ki. Using its shared key ki, every user Ui can verify m’s authenticity by verifying that ti
is a valid tag for m under ki.

Assuming the MAC is secure, show that this broadcast authentication scheme is secure even
if users collude. For example, users U1, . . . , Un�1 may collude, sharing their keys k1, . . . , kn�1

among each other, to try to make user Un accept a message that is not authentic.

(b) While the above broadcast authentication scheme is secure, even in the presence of collisions,
it is not very e�cient; the number of keys and tags grows linearly in n.

Here is a more e�cient scheme, but with a weaker security guarantee. We illustrate it with
n = 6. The goal is to get by with ` < 6 keys and tags. We will use just ` = 4 keys, k1, . . . , k4.
Alice stores all four of these keys. There are 6 =

�4
2

�

subsets of {1, . . . , 4} of size 2. Let us
number these subsets J1, . . . , J6. For each user Ui, if Ji = {v, w}, then this user stores keys
kv and kw.

When Alice broadcasts a message m, she appends tags t1, . . . , t4, corresponding to keys
k1, . . . , k4. Each user Ui verifies tags tu and tv, using its keys ku, kv, where Ji = {v, w}
as above.

Assuming the MAC is secure, show that this broadcast authentication scheme is secure pro-
vided no two users collude. For example, using the keys that he has, user U1 may attempt
to trick user U6 into accepting an inauthentic message, but users U1 and U2 may not collude
and share their keys in such an attempt.

(c) Show that the scheme presented in part (b) is completely insecure if two users are allowed to
collude.

6.5 (MAC combiners). We want to build a MAC system I using two MAC systems I1 = (S1, V1)
and I2 = (S2, V2), so that if at some time one of I1 or I2 is broken (but not both) then I is still
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secure. Put another way, we want to construct I from I1 and I2 such that I is secure if either I1

or I2 is secure.

(a) Define I = (S, V ), where

S( (k1, k2), m) := ( S1(k1, m), S2(k2, m) ),

and V is defined in the obvious way: on input (k, m, (t1, t2)), V accepts i↵ both V1(k1, m, t1)
and V2(k2, m, t2) accept. Show that I is secure if either I1 or I2 is secure.

(b) Suppose that I1 and I2 are deterministic MAC systems (see the definition on page 211), and
that both have tag space {0, 1}n. Define the deterministic MAC system I = (S, V ), where

S( (k1, k2), m) := S1(k1, m)� S2(k2, m).

Show that I is secure if either I1 or I2 is secure.

6.6 (Concrete attacks on CBC and cascade). We develop attacks on FCBC and F ⇤ as prefix-
free PRFs to show that for both security degrades quadratically with number of queries Q that the
attacker makes. For simplicity, let us develop the attack when inputs are exactly three blocks long.

(a) Let F be a PRF defined over (K, X , X ) where X = {0, 1}n, where |X | is super-poly. Consider
the FCBC prefix-free PRF with input space X 3. Suppose an adversary queries the challenger
at points (x1, y1, z), (x2, y2, z), . . . (xQ, yQ, z), where the xi’s, the yi’s, and z are chosen
randomly from X . Show that if Q ⇡ p|X |, the adversary can predict the PRF at a new
point in X 3 with probability at least 1/2.

(b) Show that a similar attack applies to the three-block cascade F ⇤ prefix-free PRF built from a
PRF defined over (K, X , K). Assume X = K and |K| is super-poly. After making Q ⇡p|K|
queries in X 3, your adversary should be able to predict the PRF at a new point in X 3 with
probability at least 1/2.

6.7 (Weakly secure MACs). It is natural to define a weaker notion of security for a MAC
in which we make it harder for the adversary to win; specifically, in order to win, the adversary
must submit a valid tag on a new message. One can modify the winning condition in Attack
Games 6.1 and 6.2 to reflect this weaker security notion. In Attack Game 6.1, this means that to
win, in addition to being a valid pair, the adversary’s candidate forgery pair (m, t) must satisfy
the constraint that m is not among the signing queries. In Attack Game 6.2, this means that the
adversary wins if the challenger ever responds to a verification query (m̂j , t̂j) with accept, where m̂j

is not among the signing queries made prior to this verification query. These two modified attack
games correspond to notions of security that we call weak security without verification queries and
weak security with verification queries. Unfortunately, the analog of Theorem 6.1 does not hold
relative to these weak security notions. In this exercise, you are to show this by giving an explicit
counter-example. Assume the existence of a secure PRF (defined over any convenient input, output,
and key spaces, of your choosing). Show how to “sabotage” this PRF to obtain a MAC that is
weakly secure without verification queries but is not weakly secure with verification queries.

6.8 (Fixing CBC: a bad idea). We showed that CBC is a prefix-free secure PRF but not a
secure PRF. We showed that prepending the length of the message makes CBC a secure PRF. Show
that appending the length of the message prior to applying CBC does not make CBC a secure PRF.
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6.9 (Fixing CBC: a really bad idea). To avoid extension attacks on CBC, one might be tempted
to define a CBC-MAC with a randomized IV. This is a MAC with a probabilistic signing algorithm
that on input k 2 K and (x1, . . . , xv) 2 X`, works as follows: choose IV 2 X at random; output
(IV , t), where t := FCBC(x1 � IV , x2, . . . , xv). On input (k, (x1, . . . , xv), (IV , t)), the verification
algorithms tests if t = FCBC(x1 � IV , x2, . . . , xv). Show that this MAC is completely insecure, and
is not even a prefix-free secure PRF.

6.10 (Truncated CBC). Prove that truncating the output of CBC gives a secure PRF for variable
length messages. More specifically, if CBC is instantiated with a block cipher that operates on n-bit
blocks, and we truncate the output of CBC to w < n bits, then this truncated version is a secure
PRF on variable length inputs, provided 1/2n�w is negligible.

Hint: Adapt the proof of Theorem 6.3.

6.11 (Truncated cascade). In the previous exercise, we saw that truncating the output of the
CBC construction yields a secure PRF. In this exercise, you are to show that the same does not
hold for the cascade construction, by giving an explicit counter-example. For your counter-example,
you may assume a secure PRF F 0 (defined over any convenient input, output, and key spaces, of
your choosing). Using F 0, construct another PRF F , such that (a) F is a secure PRF, but (b) the
corresponding truncated version of F ⇤ is not a secure PRF.

6.12 (Truncated cascade in the ideal cipher model). In the previous exercise, we saw that
the truncated cascade may not be secure when instantiated with certain PRFs. However, in your
counter-example, that PRF was constructed precisely to make cascade fail — intuitively, for “typ-
ical” PRFs, one would not expect this to happen. To substantiate this intuition, this exercise asks
you prove that in the ideal cipher model (see Section 4.7), the cascade construction is a secure PRF.
More precisely, if we model F as the encryption function of an ideal cipher, then the truncated
version of F ⇤ is a secure PRF. Here, you may assume that F operates on n-bit blocks and n-bit
keys, and that the output of F ⇤ is truncated to w bits, where 1/2n�w is negligible.

6.13 (Non-adaptive attacks on CBC and cascade). This exercise examines whether variable
length CBC and cascade are secure PRFs against non-adaptive adversaries, i.e., adversaries that
make their queries all at once (see Exercise 4.6).

(a) Show that CBC is a secure PRF against non-adaptive adversaries, assuming the underlying
function F is a PRF.

Hint: Adapt the proof of Theorem 6.3.

(b) Give a non-adaptive attack that breaks the security of cascade as a PRF, regardless of the
choice of F .

6.14 (Generalized CMAC).

(a) Show that the CMAC rpf (Section 6.10) is a randomized 2�n-prefix-free encoding.

(b) Use the CMAC rpf to convert cascade into a bit-wise secure PRF.

6.15 (A simple randomized prefix-free encoding). Show that appending a random message
block gives a randomized prefix-free encoding. That is, the following function

rpf (k, m) = m k k
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is a randomized 1/|X |-prefix-free encoding. Here, m 2 X` and k 2 X .

6.16 (An insecure variant of CMAC). Show that CMAC is insecure as a PRF if the sub-key
generation algorithm outputs k0 and k2 as in the current algorithm, but sets k1  L.

6.17 (Domain extension). This exercise explores some simple ideas for extending the domain
of a MAC system that do not work. Let I = (S, V ) be a deterministic MAC (see the definition
on page 211), defined over (K, M, {0, 1}n). Each of the following are signing algorithms for de-
terministic MACs with message space M2. You are to show that each of the resulting MACs are
insecure.

(a) S1(k, (a1, a2)) = S(k, a1) k S(k, a2),

(b) S2(k, (a1, a2)) = S(k, a1)� S(k, a2),

(c) S3((k1, k2), (a1, a2)) = S(k1, a1) k S(k2, a2),

(d) S4((k1, k2), (a1, a2)) = S(k1, a1)� S(k2, a2).

6.18 (Integrity for database records). Let (S, V ) be a secure MAC defined over (K, M, T ).
Consider a database containing records m1, . . . , mn 2 M. To provide integrity for the data the
data owner generates a random secret key k 2 K and stores ti  S(k, mi) alongside record mi for
every i = 1, . . . , n. This does not ensure integrity because an attacker can remove a record from
the database or duplicate an old record without being detected. To prevent addition or removal of
records the data owner generates another secret key k0 2 K and computes t  S

�

k0, (t1, . . . , tn)
�

(we are assuming that T n ✓M). She stores (k, k0, t) on her own machine, away from the database.

(a) Show that updating a single record in the database can be done e�ciently. That is, explain
what needs to be done to recompute the tag t when a single record mj in the database is
replaced by an updated record m0

j .

(b) Does this approach ensure database integrity? Suppose the MAC (S, V ) is built from a secure
PRF F defined over (K, M, T ) where |T | is super-poly. Show that the following PRF Fn is
a secure PRF on message space Mn

Fn
�

(k, k0), (m1, . . . , mn)
�

:= F
�

k0,
�

F (k, m1), . . . , F (k, mn)
��

.

6.19 (Timing attacks). Let (S, V ) be a deterministic MAC system where tags T are n-bytes
long. The verification algorithm V (k, m, t) is implemented as follows: it first computes t0  S(k, m)
and then does:

for i 0 to n� 1 do:
if t[i] 6= t0[i] output reject and exit

output accept

(a) Show that this implementation is vulnerable to a timing attack. An attacker who can submit
arbitrary queries to algorithm V and accurately measure V ’s response time can forge a valid
tag on every message m of its choice with at most 256 · n queries to V .

(b) How would you implement V to prevent the timing attack from part (a)?
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Chapter 7

Message integrity from universal
hashing

In the previous chapter we showed how to build secure MACs from secure PRFs. In particular,
we discussed the ECBC, NMAC, and PMAC constructions. We stated security theorems for these
MACs, but delayed their proofs to this chapter.

In this chapter we describe a general paradigm for constructing MACs using hash functions.
By a hash function we generally mean a function H that maps inputs in some large set M to
short outputs in T . Elements in T are often called message digests or just digests. Keyed hash
functions, used throughout this chapter, also take as input a key k.

At a high level, MACs constructed from hash functions work in two steps. First, we use the
hash function to hash the message m to a short digest t. Second, we apply a PRF to the digest t,
as shown in Fig. 7.1.

As we will see, ECBC, NMAC, and PMAC0 are instances of this “hash-then-PRF” paradigm.
For example, for ECBC (described in Fig. 6.5a), the CBC function acts as a hash function that
hashes long input messages into short digests. The final application of the PRF using the key k2
is the final PRF step. The hash-then-PRF paradigm will enable us to directly and quite easily
deduce the security of ECBC, NMAC, and PMAC0.

The hash-then-PRF paradigm is very general and enables us to build new MACs out of a wide
variety of hash functions. Some of these hash functions are very fast, and yield MACs that are
more e�cient than those discussed in the previous chapter.

Hash PRF
t

k2

tag

k1

m

Figure 7.1: The hash-then-PRF paradigm
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7.1 Universal hash functions (UHFs)

We begin our discussion by defining a keyed hash function — a widely used tool in cryptography.
A keyed hash function H takes two inputs: a key k and a message m. It outputs a short digest
t := H(k, m). The key k can be thought of as a hash function selector: for every k we obtain a
specific function H(k, ·) from messages to digests. More precisely, keyed hash functions are defined
as follows:

Definition 7.1 (Keyed hash functions). A keyed hash function H is a deterministic algo-
rithm that takes two inputs, a key k and a message m; its output t := H(k, x) is called a digest.
As usual, there are associated spaces: the keyspace K, in which k lies, a message space M, in
which m lies, and the digest space T , in which t lies. We say that the hash function H is defined
over (K, M, T ).

We note that the output digest t 2 T can be much shorter than the input message m. Typically
digests will have some fixed size, say 128 or 256 bits, independent of the input message length. A
hash function H(k, ·) can map gigabyte long messages into just 256-bit digests.

We say that two messages m0, m1 2M form a collision for H under key k 2 K if

H(k, m0) = H(k, m1) and m0 6= m1.

Since the digest space T is typically much smaller than the message space M, many such collisions
exist. However, a general property we shall desire in a hash function is that it is hard to actually
find a collision. As we shall eventually see, there are a number of ways to formulate this “collision
resistance” property. These formulations di↵er in subtle ways in how much information about
the key an adversary gets in trying to find a collision. In this chapter, we focus on the weakest
formulation of this collision resistance property, in which the adversary must find a collision with no
information about the key at all. On the one hand, this property is weak enough that we can actually
build very e�cient hash functions that satisfy this property without making any assumptions at all
on the computational power of the adversary. On the other hand, this property is strong enough
to ensure that the hash-then-PRF paradigm yields a secure MAC.

Hash functions that satisfy this very weak collision resistance property are called universal
hash functions, or UHFs. Universal hash functions are used in various branches of computer
science, most notably for the construction of e�cient hash tables. UHFs are also widely used in
cryptography. Before we can analyze the security of the hash-then-PRF paradigm, we first give a
more formal definition of UHFs. As usual, to make this intuitive notion more precise, we define an
attack game.

Attack Game 7.1 (universal hash function). For a keyed hash function H defined over
(K, M, T ), and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs two distinct messages m0, m1 2M.

We say that A wins the above game if H(k, m0) = H(k, m1). We define A’s advantage with respect
to H, denoted UHFadv[A, H], as the probability that A wins the game. 2

We now define several di↵erent notions of UHF, which depend on the power of the adversary
and its advantage in the above attack game.
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Definition 7.2. Let H be a keyed hash function defined over (K, M, T ),

• We say that H is an ✏-bounded universal hash function, or ✏-UHF, if UHFadv[A, H]  ✏
for all adversaries A (even ine�cient ones).

• We say that H is a statistical UHF if it is an ✏-UHF for some negligible ✏.

• We say that H is a computational UHF if UHFadv[A, H] is negligible for all e�cient
adversaries A.

Statistical UHFs are secure against all adversaries, e�cient or not: no adversary can win Attack
Game 7.1 against a statistical UHF with non-negligible advantage. The main reason that we
consider computationally unbounded adversaries is that we can: unlike most other security notions
we discuss in this text, good UHFs are something we know how to build without any computational
restrictions on the adversary. Note that every statistical UHF is also a computational UHF, but
the converse is not true.

If H is a keyed hash function defined over (K, M, T ), an alternative characterization of the
✏-UHF property is the following (see Exercise 7.3):

for every pair of distinct messages m0, m1 2M we have Pr[H(k, m0) = H(k, m1)]  ✏,
where the probability is over the random choice of k 2 K.

(7.1)

7.1.1 Multi-query UHFs

It will be convenient to consider a generalization of a computational UHF. Here the adversary wins
if he can output a list of distinct messages so that some pair of messages in the list is a collision
for H(k, ·). The point is that although the adversary may not know exactly which pair of messages
in his list cause the collision, he still wins the game. In more detail, a multi-query UHF is defined
using the following game:

Attack Game 7.2 (multi-query UHF). For a keyed hash function H over (K, M, T ), and a
given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs distinct messages m1, . . . , ms 2M.

We say that A wins the above game if there are indices i 6= j such that H(k, mi) = H(k, mj). We
define A’s advantage with respect to H, denoted MUHFadv[A, H], as the probability that A wins
the game. We call A a Q-query UHF adversary if it always outputs a list of size s  Q. 2

Definition 7.3. We say that a hash function H over (K, M, T ) is a multi-query UHF if for all
e�cient adversaries A, the quantity MUHFadv[A, H] is negligible.

Lemma 7.1 below shows that any UHF is also a multi-query UHF. However, for particular
constructions, we can sometimes get better security bounds.

Lemma 7.1. If H is a computational UHF, then it is also a multi-query UHF.

In particular, for every Q-query UHF adversary A, there exists a UHF adversary B, which is
an elementary wrapper around A, such that

MUHFadv[A, H]  (Q2/2) · UHFadv[B, H]. (7.2)
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Proof. The UHF adversary B runs A and obtains s  Q distinct messages m1, . . . , ms. It randomly
picks a random pair of distinct indices i and j from {1, . . . , s}, and outputs mi and mj . The list
generated by A contains a collision for H(k, ·) with probability MUHFadv[A, H] and B will choose
a colliding pair with probability at least 2/Q2. Hence, UHFadv[B, H] is at least MUHFadv[A, H] ·
(2/Q2), as required. 2

7.1.2 Mathematical details

As usual, we give a more mathematically precise definition of a UHF using the terminology defined
in Section 2.4.

Definition 7.4 (Keyed hash functions). A keyed hash function is an e�cient algorithm H,
along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

such that

1. K, M, and T are e�ciently recognizable.

2. K and T are e�ciently sampleable.

3. Algorithm H is an e�cient deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)),
k 2 K�,⇤, and m 2M�,⇤, outputs an element of T�,⇤.

In defining UHFs we parameterize Attack Game 7.1 by the security parameter �. The advantage
UHFadv[A, H] is then a function of �.

The information-theoretic property (7.1) is the more traditional approach in the literature
in defining ✏-UHFs for individual hash functions with no security or system parameters; in our
asymptotic setting, if property (7.1) holds for each setting of the security and system parameters,
then our definition of an ✏-UHF will certainly be satisfied.

7.2 Constructing UHFs

The challenge in constructing good universal hash functions (UHFs) is to construct a function that
achieves a small collision probability using a short key. Preferably, the size of the key should not
depend on the length of the message being hashed. We give three constructions. The first is an
elegant construction of a statistical UHF using modular arithmetic and polynomials. Our second
construction is based on the CBC and cascade functions defined in Section 6.4. We show that both
are computational UHFs. The third construction is based on PMAC0 from Section 6.11.

7.2.1 Construction 1: UHFs using polynomials

We start with a UHF construction using polynomials modulo a prime. Let ` be a (poly-bounded)
length parameter and let p be a prime. We define a hash function Hpoly that hashes a message
m 2 Z`

p to a single element t 2 Zp. The key space is K := Zp.

Let m be a message, so m = (a1, a2, . . . , av) 2 Z`
p for some 0  v  `. Let k 2 Zp be a key.

The hash function Hpoly(k, m) is defined as follows:

Hpoly

�

k, (a1, . . . , av)
�

:= kv + a1k
v�1 + a2k

v�2 + · · · + av�1k + av 2 Zp (7.3)

247



That is, we use (1, a1, a2, . . . , av) as the vector of coe�cients of a polynomial f(X) of degree v and
then evaluate f(X) at a secret point k.

A very useful feature of this hash function is that it can be evaluated without knowing the
length of the message ahead of time. One can feed message blocks into the hash as they become
available. When the message ends we obtain the final hash. We do so using Horner’s method for
polynomial evaluation:

Input: m = (a1, a2, . . . , av) 2 Z`
p and key k 2 Zp

Output: t := Hpoly(k, m)
1. Set t 1
2. For i 1 to v:
3. t t · k + ai 2 Zp

4. Output t

It is not di�cult to show that this algorithm produces the same value as defined in (7.3). Observe
that a long message can be processed one block at a time using little additional space. Every
iteration takes one multiplication and one addition.

On a machine that has several multiplication units, say four units, we can use a 4-way parallel
version of Horner’s method to utilize all the available units and speed up the evaluation of Hpoly.
Assuming the length of m is a multiple of 4, simply replace lines (2) and (3) above with the following

2. For i 1 to v incrementing i by 4 at every iteration:
3. t t · k4 + ai · k3 + ai+1 · k2 + ai+2 · k + ai+3 2 Zp

One can precompute the values k2, k3, k4 in Zp. Then at every iteration we process four blocks of
the message using four multiplications that can all be done in parallel.

Security as a UHF. Next we show that Hpoly is an (`/p)-UHF. If p is super-poly, this implies
that `/p is negligible, which means that Hpoly is a statistical UHF.

Lemma 7.2. The function Hpoly over (Zp, (Zp)`, Zp) defined in (7.3) is an (`/p)-UHF.

Proof. Consider two distinct messages m0 = (a1, . . . , au) and m1 = (b1, . . . , bv) in (Zp)`. We show
that Pr[Hpoly(k, m0) = Hpoly(k, m1)]  `/p, where the probability is over the random choice of
key k in Zp. Define the two polynomials:

f(X) := Xu + a1X
u�1 + a2X

u�2 + · · · + au�1X + au

g(X) := Xv + b1X
v�1 + b2X

v�2 + · · · + bv�1X + bv
(7.4)

in Zp[X]. Then, by definition of Hpoly we need to show that

Pr[f(k) = g(k)]  `/p

where k is uniform in Zp. In other words, we need to bound the number of points k 2 Zp for which
f(k)�g(k) = 0. Since the messages m0 and m1 are distinct we know that f(X)�g(X) is a nonzero
polynomial. Furthermore, its degree is at most ` and therefore it has at most ` roots in Zp. It
follows that there are at most ` values of k 2 Zp for which f(k) = g(k) and therefore, for a random
k 2 Zp we have Pr[f(k) = g(k)]  `/p as required. 2
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Why the leading term kv in Hpoly(k, m)? The definition of Hpoly(k, m) in (7.3) includes a
leading term kv. This term ensures that the function is a statistical UHF for variable size inputs.
If instead we defined Hfpoly(k, m) without this term, namely

Hfpoly

�

k, (a1, . . . , av)
�

:= a1k
v�1 + a2k

v�2 + · · · + av�1k + av 2 Zp, (7.5)

then the result would not be a UHF for variable size inputs. For example, the two messages
m0 = (a1, a2) 2 Z2

p and m1 = (0, a1, a2) 2 Z3
p are a collision for Hfpoly under all keys k 2 Zp.

Nevertheless, in Exercise 7.16 we show that Hfpoly is a statistical UHF if we restrict its input space
to messages of fixed length, i.e., M := Z`

p for some `. Specifically, Hfpoly is an (` � 1)/p-UHF. In

contrast, the function Hpoly defined in (7.3) is a statistical UHF for the input space Z`
p containing

messages of varying lengths.

Remark 7.1. The function Hpoly takes inputs in Z`
p and outputs values in Zp. This can be

di�cult to work with: we prefer to work with functions that operate on blocks of n-bits for some n.
We can adapt the definition of Hpoly in (7.3) so that instead of working in Zp, arithmetic is done
in the finite field GF(2n). This version of Hpoly is an `/2n-UHF using the exact same analysis as
in Lemma 7.2. It outputs values in GF(2n). In Exercise 7.1 we show that simply defining Hpoly

modulo 2n (i.e., working in Z2n) is a completely insecure UHF. 2

Caution in using UHFs. UHFs can be brittle — an adversary who learns the value of the
function at a few points can completely recover the secret key. For example, the value of Hpoly(k, ·)
at a single point completely exposes the secret key k 2 Zp. Indeed, if m = (a1), since Hpoly(k, m) =
k + a1 an adversary who has both m and Hpoly(k, m) immediately obtains k 2 Zp. Consequently,
in all our applications of UHFs we will always hide values of the UHF from the adversary, either
by encrypting them or by other means.

Mathematical details. The definition of Hpoly requires a prime p. So far we simply assumed
that p is a public value picked at the beginning of time and fixed forever. In the formal UHF
framework (Section 7.1.2) the prime p is a system parameter, denoted by ⇤. It is generated by a
system parameter generation algorithm P that takes the security parameter � as input and outputs
some prime p.

More precisely, let L : Z ! Z be some function that maps the security parameter to the
desired bit length of the prime. Then the formal description of Hpoly includes a description of an
algorithm P that takes the security parameter � as input and outputs a prime p of length L(�)
bits. Specifically, ⇤ := p and

K�,p = Zp, M�,p = Z`(�)
p , and T�,p = Zp,

where ` : Z! Z�0 is poly-bounded. By Lemma 7.2 we know that

UHFadv[A, Hpoly](�)  `(�)/2L(�)

which is a negligible function of � provided 2L(�) is super-poly.
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7.2.2 Construction 2: CBC and cascade are computational UHFs

Next we show that the CBC and cascade constructions defined in Section 6.4 are computational
UHFs. More generally, we show that any prefix-free secure PRF that is also extendable is a
computational UHF. Recall that a PRF F over (K, X`, Y) is extendable if for all k 2 K, x, y 2
X`�1, and a 2 X we have:

if F (k, x) = F (k, y) then F (k, x k a) = F (k, y k a).

In the previous chapter we showed that both CBC and cascade are prefix-free secure PRFs and
that both are extendable.

Theorem 7.3. Let PF be an extendable and prefix-free secure PRF defined over (K, X`+1, Y)
where |Y| is super-poly and |X | > 1. Then PF is a computational UHF defined over (K, X`, Y).

In particular, for every UHF adversary A that plays Attack Game 7.1 with respect to PF, there
exists a prefix-free PRF adversary B, which is an elementary wrapper around A, such that

UHFadv[A,PF ]  PRFpf
adv[B,PF ] +

1

|Y| . (7.6)

Moreover, B makes only two queries to PF.

Proof. Let A be a UHF adversary attacking PF . We build a prefix-free PRF adversary B attack-
ing PF . B plays the adversary in the PRF Attack Game 4.2. Its goal is to distinguish between
Experiment 0 where it queries a function f  PF (k, ·) for a random k 2 K, and Experiment 1
where it queries a random function f  R Funs[X`+1, Y].

We first give some intuition as to how B works. B starts by running the UHF adversary A to
obtain two distinct messages m0, m1 2 X`. By the definition of A, we know that in Experiment 0
we have

Pr
⇥

f(m0) = f(m1)
⇤

= UHFadv[A,PF ]

while in Experiment 1, since f is a random function and m0 6= m1, we have

Pr
⇥

f(m0) = f(m1)
⇤

= 1/|Y|.

Hence, if B could query f at m0 and m1 it could distinguish between the two experiments with
advantage

�

�UHFadv[A,PF ]� 1/|Y|��, which would prove the theorem.
Unfortunately, this design for B does not quite work: m0 might be a proper prefix of m1, in

which case B is not allowed to query f at both m0 and m1, since B is supposed to be a prefix-
free adversary. However, the extendability property provides a simple solution: we extend both
m0 and m1 by a single block a 2 X so that m0 k a is no longer a proper prefix of m1 k a. If
m0 = (a1, . . . , au) and m1 = (b1, . . . , bv), then any a 6= bu+1 will do the trick. Moreover, by the
extension property we know that

PF (k, m0) = PF (k, m1) =) PF (k, m0 k a) = PF (k, m1 k a).

Since m0 k a is no longer a proper prefix of m1 k a, our B is free to query f at both inputs and
obtain the desired advantage in distinguishing Experiment 0 from Experiment 1.

In more detail, adversary B works as follows:
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run A to obtain two distinct messages m0, m1 in X`, where
m0 = (a1, . . . , au) and m1 = (b1, . . . , bv)

assume u  v (otherwise, swap the two messages)
if m0 is a proper prefix of m1

choose some a 2 X such that a 6= au+1

m0
0  m0 k a and m0

1  m1 k a
else

m0
0  m0 and m0

1  m1

// At this point we know that m0
0 is not a proper prefix of m0

1 nor vice versa.

query f at m0
0 and m0

1 and obtain t0 := f(m0
0) and t1 := f(m0

1)

if t0 = t1 output 1; otherwise output 0

Observe that B is a prefix-free PRF adversary that only makes two queries to f , as required.
Now, for b = 0, 1 let pb be the probability that B outputs 1 in Experiment b. Then in Experiment 0,
we know that

p0 := Pr
⇥

f(m0
0) = f(m0

1)
⇤ � Pr

⇥

f(m0) = f(m1)
⇤

= UHFadv[A,PF ]. (7.7)

In Experiment 1, we know that

p1 := Pr
⇥

f(m0
0) = f(m0

1)
⇤

= 1/|Y|. (7.8)

Therefore, by (7.7) and (7.8):

PRFpf
adv[B,PF ] = |p0 � p1| � p0 � p1 � UHFadv[A,PF ]� 1/|Y|,

from which (7.6) follows. 2

PF as a multi-query UHF. Lemma 7.1 shows that PF is also a multi-query UHF. However, a
direct proof of this fact gives a better security bound.

Theorem 7.4. Let PF be an extendable and prefix-free secure PRF defined over (K, X`+1, Y),
where |X | and |Y| are super-poly and ` is poly-bounded. Then PF is a multi-query UHF defined
over (K, X`, Y).

In particular, if |X | > `Q, then for every Q-query UHF adversary A, there exists a Q-query
prefix-free PRF adversary B, which is an elementary wrapper around A, such that

MUHFadv[A,PF ]  PRFpf
adv[B,PF ] +

Q2

2|Y| . (7.9)

Proof. The proof is similar to the proof of Theorem 7.3. Adversary B begins by running the Q-
query UHF adversary A to obtain distinct messages m1, . . . , ms in X`, where s  Q. Next, B
finds an a 2 X such that a is not equal to any of the message blocks in m1, . . . , ms. Since |X | is
super-poly, we may assume it is larger than `Q, and therefore this a must exist. Let m0

i := mi k a
for i = 1, . . . , s. Then, by definition of a, the set {m0

1, . . . , m
0
s} is a prefix-free set. The prefix-

free adversary B now queries the challenger at m0
1, . . . , m

0
s and obtains t1, . . . , ts in response. B

outputs 1 if there exist i 6= j such that tj = tj and outputs 0 otherwise.
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To analyze the advantage of B we let pb be the probability that B outputs 1 in PRF Experi-
ment b, for b = 0, 1. As in (7.7), the extension property implies that

p0 � MUHFadv[A,PF ].

In Experiment 1 the union bound implies that

p1  Q(Q� 1)

2|Y| .

Therefore,

PRFpf
adv[B,PF ] = |p0 � p1| � p0 � p1 � MUHFadv[A,PF ]� Q2

2|Y|
from which (7.9) follows. 2

Applications of Theorems 7.3 and 7.4. Applying Theorem 7.4 to CBC and cascade proves
that both are computational UHFs. We state the resulting error bounds in the following corol-
lary, which follows from the bounds in the CBC theorem (Theorem 6.3) and the cascade theorem
(Theorem 6.4).1

Corollary 7.5. Let F be a secure PRF defined over (K, X , Y). Then the CBC construction FCBC

(assuming Y = X is super-poly size) and the cascade construction F ⇤ (assuming Y = K), which
take inputs in X`, for poly-bounded ` are computational UHFs.

In particular, for every Q-query UHF adversary A, there exist prefix-free PRF adversaries
B1, B2, which are elementary wrappers around A, such that

MUHFadv[A, FCBC]  PRFpf
adv[B1, F ] +

Q2(` + 1)2 + Q2

2|Y| and (7.10)

MUHFadv[A, F ⇤]  Q(` + 1) · PRFpf
adv[B2, F ] +

Q2

2|Y| . (7.11)

Setting Q := 2 in (7.10)–(7.11) gives the error bounds on FCBC and F ⇤ as UHFs.

7.2.3 Construction 3: a parallel UHF from a small PRF

The CBC and cascade constructions yield e�cient UHFs from small domain PRFs, but they are
inherently sequential: they cannot take advantage of hardware parallelism. Fortunately, construct-
ing a UHF from a small domain PRF that is suitable for a parallel architecture is not di�cult. An
example called XOR-hash, denoted F�, is shown in Fig. 7.2. XOR-hash is defined over (K, X`, Y),
where Y = {0, 1}n, and is built from a PRF F defined over (K, X ⇥ {1, . . . , `}, Y). The XOR-hash
works as follows:

input: k 2 K and m = (a1, . . . , av) 2 X` for some 0  v  `
output: a tag in Y

t 0n

for i = 1 to v do:
t t� F (k, (ai, i) )

output t

1Note that Theorem 7.4 compels us to apply Theorems 6.3 and 6.4 using `+ 1 in place of `.
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(a1, 1)

F (k, ·)

(a2, 2)

F (k, ·)

(a3, 3)

F (k, ·)

(av, v)

F (k, ·)

· · ·

· · ·

L

F�(k, m)

Figure 7.2: A parallel UHF from a small PRF

Evaluating F� can easily be done in parallel. The following theorem shows that F� is a compu-
tational UHF. Note that unlike our previous UHF constructions, security does not depend on the
length of the input message. In the next section we will use F� to construct a secure MAC suitable
for parallel architectures.

Theorem 7.6. Let F be a secure PRF and assume |Y| is super-poly. Then F� is a computational
UHF.

In particular, for every UHF adversary A, there exists a PRF adversary B, which is an elemen-
tary wrapper around A, such that

UHFadv[A, F�]  PRFadv[B, F ] +
1

|Y| . (7.12)

Proof. The proof is a sequence of two games.

Game 0. The challenger in this game computes:

k  R K, f  F (k, ·)
The adversary A outputs two distinct messages U, V in X`. Let u := |U | and v := |V |. We define
W0 to be the event that the condition

u�1
M

i=0

f(U [i], i) =
v�1
M

j=0

f(V [j], j) (7.13)

holds in Game 0. Clearly, we have

Pr[W0] = UHFadv[A, F�]. (7.14)

Game 1. We play the “PRF card” and replace the challenger’s computation by

f  R Funs[X ⇥ {1, . . . , `}, Y]
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We define W1 to be the event that the condition (7.13) holds in Game 1.
As usual, there is a PRF adversary B such that

�

�Pr[W0]� Pr[W1]
�

�  PRFadv[B, F ] (7.15)

The crux of the proof is in bounding Pr[W1], namely bounding the probability that (7.13) holds for
the messages U, V . Assume u � v, swapping U and V if necessary. It is easy to see that since U
and V are distinct, there must be an index i⇤ such that the pair (U [i⇤], i⇤) on the left side of (7.13)
does not appear among the pairs (V [j], j) on the right side of (7.13): if u > v then i⇤ = u� 1 does
the job; otherwise, if u = v, then there must exist some i⇤ such that U [i⇤] 6= V [i⇤], and this i⇤ does
the job.

We can re-write (7.13) as

f(U [i⇤], i⇤) =
M

i 6=i⇤

f(U [i], i) �
M

j

f(V [j], j). (7.16)

Since the left and right sides of (7.16) are independent, and the left side is uniformly distributed
over Y, equality holds with probability 1/|Y|. It follows that

Pr[W1] = 1/|Y| (7.17)

The proof of the theorem follows from (7.14), (7.15), and (7.17). 2

In Exercise 7.27 we generalize Theorem 7.6 to derive bounds for F� as a multi-query UHF.

7.3 PRF(UHF) composition: constructing MACs using UHFs

We now proceed to show that the hash-then-PRF paradigm yields a secure PRF provided the
hash is a computational UHF. ECBC, NMAC, and PMAC0 can all be viewed as instances of
this construction and their security follows quite easily from the security of the hash-then-PRF
paradigm.

Let H be a keyed hash function defined over (KH , M, X ) and let F be a PRF defined over
(KF , X , T ). As usual, we assume M contains much longer messages than X , so that H hashes long
inputs to short digests. We build a new PRF, denoted F 0, by composing the hash function H with
the PRF F , as shown in Fig. 7.3. More precisely, F 0 is defined as follows:

F 0�(k1, k2), m
�

:= F (k2, H(k1, m) ) (7.18)

We refer to F 0 as the composition of F and H. It takes inputs in M and outputs values in
T using a key (k1, k2) in KH ⇥ KF . Thus, we obtain a PRF with the same output space as the
underlying F , but taking much longer inputs. The following theorem shows that F 0 is a secure
PRF.

Theorem 7.7 (PRF(UHF) composition). Suppose H is a computational UHF and F is a
secure PRF. Then F 0 defined in (7.18) is a secure PRF.

In particular, suppose A is a PRF adversary that plays Attack Game 4.2 with respect to F 0 and
issues at most Q queries. Then there exist a PRF adversary BF and a UHF adversary BH ,
which are elementary wrappers around A, such that

PRFadv[A, F 0]  PRFadv[BF , F ] + (Q2/2) · UHFadv[BH , H]. (7.19)
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H(k1, ·) F (k2, ·)m t

Figure 7.3: PRF(UHF) composition: MAC signing

More generally, there exists a Q-query UHF adversary B0
H , which is an elementary wrapper

around A such that

PRFadv[A, F 0]  PRFadv[BF , F ] + MUHFadv[B0
H , H]. (7.20)

To understand why H needs to be a UHF let us suppose for a minute that it is not. In
particular, suppose it was easy to find distinct m0, m1 2 M such that H(k1, m0) = H(k1, m1),
without knowledge of k1. This collision on H implies that F 0((k1, k2), m0) = F 0((k1, k2), m1).
But then F 0 is clearly not a secure PRF: the adversary could ask for t0 := F 0((k1, k2), m0) and
t1 := F 0((k1, k2), m1) and then output 1 only if t0 = t1. When interacting with F 0 the adversary
would always output 1, but for a random function he would most often output 0. Thus, the
adversary successfully distinguishes F 0 from a random function. This argument shows that for F 0

to be a PRF it must be di�cult to find collisions for H without knowledge of k1. In other words,
for F 0 to be a PRF the hash function H must be a UHF. Theorem 7.7 shows that this condition is
su�cient.

Remark 7.2. The bound in Theorem 7.7 is tight. Consider the UHF Hpoly discussed in Sec-
tion 7.2.1. For concreteness, let us assume that ` = 2, so the message space for Hpoly is Z2

p, the
output space is Zp, and the collision probability is ✏ = 1/p. In Exercise 7.26, you are asked to
show that for any fixed hash key k1, among

p
p random inputs to Hpoly(k1, ·), the probability of a

collision is bounded from below by a constant; moreover, for any such collision, one can e�ciently
recover the key k1. Now consider the MAC obtained from PRF(UHF) composition using Hpoly. If
the adversary ever finds two messages m0, m1 that cause an internal collision (i.e., a collision on
Hpoly) he can recover the secret Hpoly key and then break the MAC. This shows that the term
(Q2/2)✏ that appears in (7.19) cannot be substantially improved upon. 2

Proof of Theorem 7.7. We now prove that the composition of F and H is a secure PRF.

Proof idea. Let A be an e�cient PRF adversary that plays Attack Game 4.2 with respect to F 0.
We derive an upper bound on PRFadv[A, F 0]. That is, we bound A’s ability to distinguish F 0 from
a truly random function in Funs[M, X ]. As usual, we first observe that replacing the underlying
secure PRF F with a truly random function f does not change A’s advantage much. Next, we will
show that, since f is a random function, the only way A can distinguish F 0 := f(H(k1, m)) from a
truly random function is if he can find two inputs m0, m1 such that H(k1, m0) = H(k1, m1). But
since H is a computational UHF, A cannot find collisions for H(k1, ·). Consequently, F 0 cannot be
distinguished from a random function. 2

Proof. We prove the bound in (7.20). Equation (7.19) follows from (7.20) by Lemma 7.1. We let
A interact with closely related challengers in three games. For j = 0, 1, 2, we define Wj to be the
event that A outputs 1 at the end of Game j.
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Game 0. The Game 0 challenger is identical to the challenger in Experiment 0 of the PRF Attack
Game 4.2 with respect to F 0. Without loss of generality we assume that A’s queries to F 0 are all
distinct. The challenger works as follows:

k1  R KH , k2  R KF

upon receiving the ith query mi 2M (for i = 1, 2, . . .) do:
xi  H(k1, mi)
ti  F (k2, xi)
send ti to the adversary

Note that since A is guaranteed to make distinct queries, all the mi values are distinct.

Game 1. Now we play the usual “PRF card,” replacing the function F (k2, ·) by a truly random
function f in Funs[X , T ], which we implement as a faithful gnome (as in Section 4.4.2). The Game 1
challenger works as follows:

k1  R KH , t01, . . . , t0Q  R T
upon receiving the ith query mi 2M (for i = 1, 2, . . .) do:

xi  H(k1, mi)
ti  t0i

(⇤) if xi = xj for some j < i then ti  tj
send ti to the adversary

For i = 1, . . . , Q, the value t0i is chosen in advance to be the default, random value for ti = f(xi).
Although the messages are distinct, their hash values might not be. The line marked with a (⇤)
ensures that the challenger emulates a function in Funs[X , T ] — if two hash values collide, the
challenger’s response to both queries is the same. As usual, one can easily show that there is a
PRF adversary BF whose running time is about the same as that of A such that:

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[BF , F ] (7.21)

Game 2. Next, we make our gnome forgetful, by removing the line marked (⇤).
We show that A cannot distinguish Games 1 and 2 using the fact that A cannot find collisions for

H. Formally, we analyze the quantity |Pr[W2]�Pr[W1]| using the Di↵erence Lemma (Theorem 4.7).
Let Z be the event that in Game 2 we have xi = xj for some i 6= j. Event Z is essentially the winning
condition in the multi-query UHF game (Attack Game 7.2) with respect to H. In particular, there
is a Q-query UHF adversary B0

H that wins Attack Game 7.2 with probability equal to Pr[Z].
Adversary B0

H simply emulates the challenger in Game 2 until A terminates and then outputs the
queries m1, m2, . . . from A as its final list. This works, because in Game 2, the challenger does not
really need the hash key k1: it simply responds to each query with a random element of T . Thus,
adversary B0

H can easily emulate the challenger in Game 2 without knowledge of k1. By definition
of Z, we have MUHFadv[B0

H , H] = Pr[Z].
Clearly, Games 1 and 2 proceed identically unless event Z occurs; in particular, W2 ^ Z̄ occurs

if and only if W1 ^ Z̄ occurs. Applying the Di↵erence Lemma, we obtain

�

�Pr[W2]� Pr[W1]
�

�  Pr[Z] = MUHFadv[B0
H , H]. (7.22)

Finishing the proof. The Game 2 challenger emulates for A a random function in Funs[M, T ]
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and is therefore identical to an Experiment 1 PRF challenger with respect to F 0. We obtain

PRFadv[A, F 0] =
�

�Pr[W2]� Pr[W0]
�

� 
�

�Pr[W2]� Pr[W1]
�

�+
�

�Pr[W1]� Pr[W0]
�

� =

PRFadv[BF , F ] + MUHFadv[B0
H , H]

which proves (7.20), as required. 2

7.3.1 Using PRF(UHF) composition: ECBC and NMAC security

Using Theorem 7.7 we can quickly prove security of many MAC constructions. It su�ces to show
that the MAC signing algorithm can be described as the composition of a PRF with a UHF. We
begin by showing that ECBC and NMAC can be described this way and give more examples in the
next two sub-sections.

Security of ECBC and NMAC follows directly from PRF(UHF) composition. The proof for
both schemes runs as follows:

• First, we proved that CBC and cascade are prefix-free secure PRFs (Theorems 6.3 and 6.4).
We observed that both are extendable.

• Next, we showed that any extendable prefix-free secure PRF is also a computational UHF
(Theorem 7.3). In particular, CBC and cascade are computational UHFs.

• Finally, we proved that the composition of a computational UHF and a PRF is a secure PRF
(Theorem 7.7). Hence, ECBC and NMAC are secure PRFs.

More generally, the encrypted PRF construction (Theorem 6.5) is an instance of PRF(UHF) com-
position and hence its proof follows from Theorem 7.7. The concrete bounds in the ECBC and
NMAC theorems (Theorems 6.6 and 6.7) are obtained by plugging (7.10) and (7.11), respectively,
into (7.20).

One can simplify the proof of ECBC and NMAC security by directly proving that CBC and
cascade are computational UHFs. We proved that they are prefix-free secure PRFs, which is more
than we need. However, this stronger result enabled us to construct other secure MACs such as
CMAC (see Section 6.7).

7.3.2 Using PRF(UHF) composition with polynomial UHFs

Of course, one can use the PRF(UHF) construction with a polynomial-based UHF, such as Hpoly.
Depending on the underlying hardware, this construction can be much faster than either ECBC,
NMAC, or PMAC0 especially for very long messages.

Recall that Hpoly hashes messages in Z`
p to digests in Zp, where p is a prime. Now, we may

very well want to use for our PRF a block cipher, like AES, that takes as input an n-bit block.
To make this work, we have to somehow make an adjustment so that the digest space of the

hash is equal to input space of the PRF. One way to do this is to choose the prime p so that it
is just a little bit smaller that 2n, so that we can encode hash digests as inputs to the PRF. This
approach works; however, it has the drawback that we have to view the input to the hash as a
sequence of elements of Zp. So, for example, with n = 128 as in AES, we could choose a 128-bit
prime, but then the input to the hash would have to be broken up into, say, 120-bit (i.e., 15 byte)
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blocks. It would be even more convenient if we could also process the input to the hash directly
as a sequence of n-bit blocks. Part (d) of Exercise 7.23 shows how this can be done, using a prime
that is just a little bit bigger than 2n. Yet another approach is that instead of basing the hash
on arithmetic modulo a prime p, we instead base it on arithmetic in the finite field GF(2n), as
discussed in Remark 7.1.

7.3.3 Using PRF(UHF) composition: PMAC0 security

Next we show that the PMAC0 construction discussed in Section 6.11 is an instance of PRF(UHF)
composition. Recall that PMAC0 is built out of two PRFs, F1, which is defined over (K1,Zp, Y),
and F2, which is defined over (K2, Y, Z), where Y := {0, 1}n.

The reader should review the PMAC0 construction, especially Fig. 6.9. One can see that PMAC0

is the composition of the PRF F2 with a certain keyed hash function bH, which is everything else
in Fig. 6.9.

The goal now is to show that bH is a computational UHF. To do this, we observe that bH can
be viewed as an instance of the XOR-hash construction in Section 7.2.3, applied to the PRF F 0

defined over (Zp ⇥K1,Zp ⇥ {1, . . . , `}, Y) as follows:

F 0((k, k1), (a, i)) := F1(k1, a + i · k).

So it su�ces to show that F 0 is a secure PRF. But it turns out we can view F 0 itself as an
instance of PRF(UHF) composition. Namely, it is the composition of the PRF F1 with the keyed
hash function H defined over (Zp,Zp⇥ {1, . . . , `},Zp) as H(k, (a, i)) := a+ i ·k. However, H is just
a special case of case of Hfpoly (see Section 7.2.1). In particular, by the result of Exercise 7.16, H
is a 1/p-UHF.

The security of PMAC0 follows from the above observations. The concrete security bound
(6.27) in Theorem 6.11 follows from the concrete security bound (7.20) in Theorem 7.7 and the
more refined analysis of XOR-hash in Exercise 7.27.

In the design of PMAC0, we assumed the input space of F1 was equal to Zp. While this simplifies
the analysis, it makes it harder to work with in practice. Just as in Section 7.3.2 above, we would
prefer to work with a PRF defined in terms of a block cipher, like AES, which takes as input an
n-bit block. One can apply the same techniques discussed Section 7.3.2 to get a variant of PMAC0

whose input space consists of sequences of n-bit blocks, rather than sequences of elements of Zp.
For example, see Exercise 7.25.

7.4 The Carter-Wegman MAC

In this section we present a di↵erent paradigm for constructing secure MAC systems that o↵ers
di↵erent tradeo↵s compared to PRF(UHF) composition.

Recall that in PRF(UHF) composition the adversary’s advantage in breaking the MAC after
seeing Q signed messages grows as ✏ · Q2/2 when using an ✏-UHF. Therefore to ensure security
when many messages need to be signed the ✏-UHF must have a su�ciently small ✏ so that ✏ · Q2/2
is small. This can hurt the performance of an ✏-UHF like Hpoly where the smaller ✏ the slower
the hash function. As an example, suppose that after signing Q := 232 messages the adversary’s
advantage in breaking the MAC should be no more than 2�64 then ✏ must be at most 1/2127.

Our second MAC paradigm, called a Carter-Wegman MAC, maintains the same level of security
as PRF(UHF) composition, but does so with a much larger value of ✏. With the parameters in the
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Figure 7.4: Carter-Wegman MAC signing algorithm

example above, ✏ need only be 1/264 and this can improve the speed of the hash function, especially
for long messages. The downside is that the resulting tags are longer than those generated by
a PRF(UHF) composition MAC of comparable security. In Exercise 7.5 we explore a di↵erent
randomized MAC construction that achieves the same security as Carter-Wegman with the same
✏, but with shorter tags.

The Carter-Wegman MAC is our first example of a randomized MAC system. The signing
algorithm is randomized and there are many valid tags for every message.

To describe the Carter-Wegman MAC first fix some large integer N and set T := ZN , the group
of size N where addition is defined “modulo N .” We use a hash function H and a PRF F that
output values in ZN :

• H is a keyed hash function defined over (KH , M, T ),
• F is a PRF defined over (KF , R, T ).

The Carter-Wegman MAC, denoted ICW, takes inputs in M and outputs tags in R ⇥ T . It uses
keys in KH ⇥ KF . The Carter-Wegman MAC derived from F and H works as follows (see
also Fig. 7.4):

• For key (k1, k2) and message m we define

S
�

(k1, k2), m
�

:=
r  R R
v  H(k1, m) + F (k2, r) 2 ZN // addition modulo N
output (r, v)

• For key (k1, k2), message m, and tag (r, v) we define

V
�

(k1, k2), m, (r, v)
�

:=
v⇤  H(k1, m) + F (k2, r) 2 ZN // addition modulo N
if v = v⇤ output accept; otherwise output reject

The Carter-Wegman signing algorithm uses a randomizer r 2 R. As we will see, the set R needs
to be su�ciently large so that the probability that two tags use the same randomizer is negligible.

An encrypted UHF MAC. The Carter-Wegman MAC can be described as an encryption of
the output of a hash function. Indeed, let E = (E, D) be the cipher

E(k, m) :=
�

r  R R, output (r, m + F
�

k, r)
� 

and D
�

k, (r, c)
�

:= c� F (k, r)
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where F is a PRF defined over (KF , R, T ). This cipher is CPA secure when F is a secure PRF as
shown in Example 5.2. Then the Carter-Wegman MAC can be written as:

S
�

(k1, k2), m
�

:= E(k2, H(k1, m)
�

V
�

(k1, k2), m, t
�

:=

(

accept if D(k2, t) = H(k1, m),

reject otherwise.

which we call the encrypted UHF MAC system derived from E and H.
Why encrypt the output of a hash function? Recall that in the PRF(UHF) composition MAC,

if the adversary finds two messages m1, m2 that collide on the hash function (i.e., H(k1, m1) =
H(k1, m2)) then the MAC for m1 is the same as the MAC for m2. Therefore, by requesting the
tags for many messages the adversary can identify messages m1 and m2 that collide on the hash
function (assuming collisions on the PRF are unlikely). A collision m1, m2 on the UHF can reveal
information about the hash function key k1 that may completely break the MAC. To prevent this we
must use an ✏-UHF with a su�ciently small ✏ to ensure that with high probability the adversary will
never find a hash function collision. In contrast, by encrypting the output of the hash function with
a CPA secure cipher we prevent the adversary from learning when a hash function collision occurred:
the tags for m1 and m2 are di↵erent, with high probability, even if H(k1, m1) = H(k1, m2). This
lets us maintain security with a much smaller ✏.

The trouble is that the encrypted UHF MAC is not generally secure even when (E, D) is
CPA secure and H is an ✏-UHF. For example, we show in Remark 7.5 below that the Carter-
Wegman MAC is insecure when the hash function H is instantiated with Hpoly. To obtain a secure
Carter-Wegman MAC we strengthen the hash function H and require that it satisfy a stronger
property called di↵erence unpredictability defined below. Exercise 9.16 explores other aspects of
the encrypted UHF MAC.

Security of the Carter-Wegman MAC. To prove security of ICW we need the hash function
H to satisfy a stronger property than universality (UHF). We refer to this stronger property as
di↵erence unpredictability. Roughly speaking, it means that for any two distinct messages, it
is hard to predict the di↵erence (in ZN ) of their hashes. As usual, a game:

Attack Game 7.3 (di↵erence unpredicability). For a keyed hash function H defined over
(K, M, T ), where T = ZN , and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A outputs two distinct messages m0, m1 2M and a value � 2 T .

We say that A wins the game if H(k, m1) �H(k, m0) = �. We define A’s advantage with respect
to H, denoted DUFadv[A, H], as the probability that A wins the game. 2

Definition 7.5. Let H be a keyed hash function defined over (K, M, T ),

• We say that H is an ✏-bounded di↵erence unpredictable function, or ✏-DUF, if
DUFadv[A, H]  ✏ for all adversaries A (even ine�cient ones).

• We say that H is a statistical DUF if it is an ✏-DUF for some negligible ✏.

• We say that H is a computational DUF if DUFadv[A, H] is negligible for all e�cient
adversaries A.
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Remark 7.3. Note that as we have defined a DUF, the digest space T must be of the form ZN

for some integer N . We did this to keep things simple. More generally, one can define a notion
of di↵erence unpredictability for a keyed hash function whose digest space comes equipped with
an appropriate di↵erence operator (in the language of abstract algebra, T should be an abelian
group). Besides ZN , another popular digest space is the set of all n-bit strings, {0, 1}n, with the
XOR used as the di↵erence operator. In this setting, we use the terms ✏-XOR-DUF and statis-
tical/computational XOR-DUF to correspond to the terms ✏-DUF and statistical/computational
DUF. 2

When H is a keyed hash function defined over (K, M, T ), an alternative characterization of the
✏-DUF property is the following:

for every pair of distinct messages m0, m1 2 M, and every � 2 T , the following inequality
holds: Pr[H(k, m1) �H(k, m0) = �]  ✏. Here, the probability is over the random choice of
k 2 K.

Clearly if H is an ✏-DUF then H is also an ✏-UHF: a UHF adversary can be converted into a
DUF adversary that wins with the same probability (just set � = 0).

We give a simple example of a statistical DUF that is very similar to the hash function Hpoly

defined in equation (7.3). Recall that Hpoly is a UHF defined over (Zp, (Zp)`, Zp). It is clearly
not a DUF: for a 2 Zp set m0 := (a) and m1 := (a + 1) so that both m0 and m1 are tuples over Zp

of length 1. Then for every key k, we have

Hpoly(k, m1)�Hpoly(k, m0) = (k + a + 1)� (k + a) = 1

which lets the attacker win the DUF game.
A simple modification to Hpoly yields a good DUF. For a message m = (a1, a2, . . . , av) 2 Z`

p

and key k 2 Zp define a new hash function Hxpoly(k, m) as:

Hxpoly(k, m) := k · Hpoly(k, m) = kv+1 + a1k
v + a2k

v�1 + · · · + avk 2 Zp. (7.23)

Lemma 7.8. The function Hxpoly over (Zp, (Zp)`, Zp) defined in (7.23) is an (` + 1)/p-DUF.

Proof. Consider two distinct messages m0 = (a1, . . . , au) and m1 = (b1, . . . , bv) in (Zp)` and an
arbitrary value � 2 Zp. We want to show that Pr[Hxpoly(k, m1) �Hxpoly(k, m0) = �]  (` + 1)/p,
where the probability is over the random choice of key k in Zp. Just as in the proof of Lemma 7.2,
the inputs m0 and m1 define two polynomials f(X) and g(X) in Zp[X], as in (7.4). However,
Hxpoly(k, m1)�Hxpoly(k, m0) = � holds if and only if k is root of the polynomial X(g(X)�f(X))��,
which is a nonzero polynomial of degree at most ` + 1, and so has at most ` + 1 roots in Zp. Thus,
the chances of choosing such a k is at most (` + 1)/p. 2

Remark 7.4. We can modify Hxpoly to operate on n-bit blocks by doing all arithmetic in the finite
field GF(2n) instead of Zp. The exact same analysis as in Lemma 7.8 shows that the resulting hash
function is an (` + 1)/2n-XOR-DUF. 2

We now turn to the security analysis of the Carter-Wegman construction.
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Theorem 7.9 (Carter-Wegman security). Let F be a secure PRF defined over (KF , R, T )
where |R| is super-poly. Let H be an computational DUF defined over (KH , M, T ). Then the
Carter-Wegman MAC ICW derived from F and H is a secure MAC.

In particular, for every MAC adversary A that attacks ICW as in Attack Game 6.1, there exist
a PRF adversary BF and a DUF adversary BH , which are elementary wrappers around A, such
that

MACadv[A, ICW]  PRFadv[BF , F ] + DUFadv[BH , H] +
Q2

2|R| +
1

|T | . (7.24)

Remark 7.5. To understand why H needs to be a DUF, let us suppose for a minute that it
is not. In particular, suppose it was easy to find distinct m0, m1 2 M and � 2 T such that
H(k1, m1) = H(k1, m0) + �, without knowledge of k1. The adversary could then ask for the tag on
the message m0 and obtain (r, v) where v = H(k1, m0) + F (k2, r). Since

v = H(k1, m0) + F (k2, r) =) v + � = H(k1, m1) + F (k2, r),

the tag (r, v + �) is a valid tag for m1. Therefore,
�

m1, (r, v + �)
�

is an existential forgery on
ICW. This shows that the Carter-Wegman MAC is easily broken when the hash function H is
instantiated with Hpoly. 2

Remark 7.6. We also note that the term Q2/2|R| in (7.24) corresponds to the probability that two
signing queries generate the same randomizer. In fact, if such a collision occurs, Carter-Wegman
may be completely broken for certain DUFs (including Hxpoly) — see Exercises 7.13 and 7.14. 2

Proof idea. Let A be an e�cient MAC adversary that plays Attack Game 6.1 with respect to
ICW. We derive an upper bound on MACadv[A, ICW]. As usual, we first replace the underlying
secure PRF F with a truly random function f 2 Funs[R, T ] and argue that this doesn’t change
the adversary’s advantage much. We then show that only three things can happen that enable the
adversary to generate a forged message-tag pair and that the probability for each of those is small:

1. The challenger might get unlucky and choose the same randomizer r 2 R to respond to two
separate signing queries. This happens with probability at most Q2/(2|R|).

2. The adversary might output a MAC forgery
�

m, (r, v)
�

where r 2 R is a fresh randomizer
that was never used to respond to A’s signing queries. Then f(r) is independent of A’s view
and therefore the equality v = H(k1, m) + f(r) will hold with probability at most 1/|T |.

3. Finally, the adversary could output a MAC forgery
�

m, (r, v)
�

where r = rj for some uniquely
determined signed message-tag pair (mj , (rj , vj)). But then

vj = H(k1, mj) + f(rj) and v = H(k1, m) + f(rj).

By subtracting the right equality from the left, the f(rj) term cancels, and we obtain

vj � v = H(k1, mj)�H(k1, m).

But since H is an computational DUF, the adversary can find such a relation with only
negligible probability.
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2

Proof. We make the intuitive argument above rigorous by considering A’s behavior in three closely
related games. For j = 0, 1, 2, we define Wj to be the event that A wins Game j. Game 0 will be
identical to the original MAC attack game with respect to I. We then slightly modify each game in
turn and argue that the attacker will not detect these modifications. Finally, we argue that Pr[W3]
is negligible, which will prove that Pr[W0] is negligible, as required.

Game 0. We begin by reviewing the challenger in the MAC Attack Game 6.1 with respect to ICW.
We implement the challenger in this game as follows:

Initialization:
k1  R KH , k2  R KF

r1, . . . , rQ  R R // prepare randomizers needed for the game

upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:
vi  H(k1, mi) + F (k2, ri) 2 T
send (ri, vi) to the adversary

At the end of the game, A outputs a message-tag pair (m, (r, v)) that is not among the signed
message-tag pairs produced by the challenger. The winning condition in this game is defined to be
the result of the following subroutine:

if v = H(k1, m) + F (k2, r)
then return win

else return lose

Then, by construction
MACadv[A, ICW] = Pr[W0]. (7.25)

Game 1. We next play the usual “PRF card,” replacing the function F (k2, ·) by a truly random
function f in Funs[R, T ], which we implement as a faithful gnome (as in Section 4.4.2). Our
challenger in Game 1 thus works as follows:

Initialization:
k1  R KH

r1, . . . , rQ  R R // prepare randomizers needed for the game
u0
0, u

0
1, . . . , u

0
Q  R T // prepare default f outputs

upon receiving the ith signing query mi 2M (for i = 1, 2, . . .) do:
ui  u0

i
(1) if ri = rj for some j < i then ui  uj

vi  H(k1, mi) + ui 2 T
send (ri, vi) to the adversary

Suppose A makes exactly s  Q signing queries before outputting its forgery attempt (m, (r, v)).
The subroutine for the winning condition becomes:
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(2) if r = rj for some j = 1, . . . , s
then u uj

else u u0
0

if v = H(k1, m) + u
then return win

else return lose.

For i = 1, . . . , Q, the value u0
i is chosen in advance to be the default, random value for ui = f(ri).

The tests at the lines marked (1) and (2) ensure that our gnome is faithful, i.e., that we emulate a
function in Funs[R, T ]. At (2), if the value u = f(r) has already been defined, we use that value;
otherwise, we use the fresh random value u0

0 for u.
As usual, one can show that there is a PRF adversary BF , just as e�cient as A, such that:

�

�Pr[W1]� Pr[W0]
�

� = PRFadv[BF , F ] (7.26)

Game 2. We make our gnome forgetful. We do this by deleting the line marked (1) in the
challenger. In addition, we insert the following special test before the line marked (2) in the
winning subroutine:

if ri = rj for some 1  i < j  s then return lose

Let Z to be the event that ri = rj for some 1  i < j  Q. By the union bound we know that
Pr[Z]  Q2/(2|R|). Moreover, if Z does not happen, then Games 1 and 2 proceed identically.
Therefore, by the Di↵erence Lemma (Theorem 4.7), we obtain

�

�Pr[W2]� Pr[W1]
�

�  Pr[Z]  Q2/(2|R|) (7.27)

To bound Pr[W2], we decompose W2 into two events:

• W 0
2: A wins in Game 2 and r = rj for some j = 1, . . . , s;

• W 00
2 : A wins in Game 2 and r 6= rj for all j = 1, . . . , s.

Thus, we have W2 = W 0
2 [W 00

2 , and it su�ces to analyze these events separately, since

Pr[W2]  Pr[W 0
2] + Pr[W 00

2 ]. (7.28)

Consider W 00
2 first. If this happens, then u = u0

0 and v = u+H(k1, m); that is, u0
0 = v�H(k1, m).

But since u0
0 and v �H(k1, m) are independent, this happens with probability 1/|T |. So we have

Pr[W 00
2 ]  1/|T |. (7.29)

Next, consider W 0
2. Our goal here is to show that

Pr[W 0
2]  DUFadv[BH , H] (7.30)

for a DUF adversary BH that is just as e�cient as A. To this end, consider what happens if A wins
in Game 2 and r = rj for some j = 1, . . . , s. Since A wins, and because of the special test that we
added above the line marked (2), the values r1, . . . , rs are distinct, and so there can be only one
such index j, and u = uj . Therefore, we have the following two equalities:

vj = H(k1, mj) + uj and v = H(k1, m) + uj ;
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subtracting, we obtain
vj � v = H(k1, mj)�H(k1, m). (7.31)

We claim that m 6= mj . Indeed, if m = mj , then (7.31) would imply v = vj , which would imply
(m, (r, v)) = (mj , (rj , vj)); however, this is impossible, since we require that A does not submit a
previously signed pair as a forgery attempt.

So, if W 0
2 occurs, we have m 6= mj and the equality (7.31) holds. But observe that in Game 2,

the challenger’s responses are completely independent of k1, and so we can easily convert A into a
DUF adversary BH that succeeds with probability at least Pr[W 0

2] in Attack Game 7.3. Adversary
BH works as follows: it interacts with A, simulating the challenger in Game 2 by simply responding
to each signing query with a random pair (ri, vi) 2 R ⇥ T ; when A outputs its forgery attempt
(m, (r, v)), BH determines if r = rj and m 6= mj for some j = 1, . . . , s; if so, BH outputs the triple
(mj , m, vj � v). The bound (7.30) is now clear.

The theorem follows from (7.25)–(7.30). 2

7.4.1 Using Carter-Wegman with polynomial UHFs

If we want to use the Carter-Wegman construction with a polynomial-based DUF, such as Hxpoly,
then we have make an adjustment so that the digest space of the hash function is equal to the
output space of the PRF. Again, the issue is that our example Hxpoly has outputs in Zp, while for
typical implementations, the PRF will have outputs that are n-bit blocks.

Similarly to what we did in Section 7.3.2, we can choose p to be a prime that is just a little
bit bigger than 2n. This also allows us to view the inputs to the hash as n-bit blocks. Part (b) of
Exercise 7.23 shows how this can be done. One can also use a prime p that is a bit smaller than 2n

(see part (a) of Exercise 7.22), although this is less convenient, because inputs to the hash will have
to broken up into blocks of size less than n. Alternatively, we can use a variant of Hxpoly where all
arithmetic is done in the finite field GF(2n), as discussed in Remark 7.4.

7.5 Nonce-based MACs

In the Carter-Wegman construction in Section 7.4, the only essential property we need for these
randomizers are that they are distinct. Similar to what we did in Section 5.5, we can study nonce-
based MACs: not only can this approach reduce the size of the tag, it can also improve security.

A nonce-based MAC is similar to an ordinary MAC and consists of a pair of deterministic
algorithms S and V for signing and verifying tags. However, these algorithms take an additional
input N called a nonce that lies in a nonce-space N . Algorithms S and V work as follows:

• S takes as input a key k 2 K, a message m 2M, and a nonce N 2 N . It outputs a tag t 2 T .

• V takes as input four values k, m, t, N , where k is a key, m is a message, t is a tag, and N is
a nonce. It outputs either accept or reject.

We say that the nonce-based MAC is defined over (K, M, T , N ). As usual, we require that tags
generated by S are always accepted by V , as long as both are given the same nonce. The MAC
must satisfy the following correctness property: for all keys k, all messages m, and all nonces
N 2 N :

Pr
⇥

V (k, m, S(k, m, N ), N ) = accept

⇤

= 1.
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Just as in Section 5.5, in order to guarantee security, the sender should avoid using the same
nonce twice (on the same key). If the sender can maintain state then a nonce can be implemented
using a simple counter. Alternatively, nonces can be chosen at random, so long as the nonce space
is large enough to ensure that the probability of generating the same nonce twice is negligible.

7.5.1 Secure nonce-based MACs

Nonce-based MACs must be existentially unforgeable under a chosen message attack when the
adversary chooses the nonces. The adversary, however, must never request a tag using a previously
used nonce. This captures the idea that nonces can be chosen arbitrarily, as long as they are never
reused. Nonce-based MAC security is defined using the following game.

Attack Game 7.4 (nonce-based MAC security). For a given nonce-based MAC system I =
(S, V ), defined over (K, M, T , N ), and a given adversary A, the attack game runs as follows:

• The challenger picks a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith signing query consists of
a pair (mi, N i) where mi 2 M and N i 2 N . We require that N i 6= N j for all j < i. The
challenger computes ti  R S(k, mi, N i), and gives ti to A.

• Eventually A sends outputs a candidate forgery triple (m, t, N ) 2M⇥ T ⇥N , where

(m, t, N ) /2 {(m1, t1, N 1), (m2, t1, N 2), . . .}.

We say that A wins the game if V (k, m, t, N ) = accept. We define A’s advantage with respect to I,
denoted nMACadv[A, I], as the probability that A wins the game. 2

Definition 7.6. We say that a nonce-based MAC system I is secure if for all e�cient adver-
saries A, the value nMACadv[A, I] is negligible.

Nonce-based Carter-Wegman MAC. The Carter-Wegman MAC (Section 7.4) can be recast
as a nonce-based MAC: We simply view the randomizer r 2 R as a nonce, supplied as an input to
the signing algorithm, rather than a randomly generated value that is a part of the tag. Using the
notation of Section 7.4, the MAC system is then

S
�

(k1, k2), m, N
�

:=H(k1, m) + F (k2, N )

V
�

(k1, k2), m, t, N
�

:=

(

accept if t = S
�

(k1, k2), m, N
�

reject otherwise

We obtain the following security theorem, which is the nonce-based analogue of Theorem 7.9. The
proof is essentially the same as the proof of Theorem 7.9.

Theorem 7.10. With the notation of Theorem 7.9 we obtain the following bounds

nMACadv[A, ICW]  PRFadv[BF , F ] + DUFadv[BH , H] +
1

|T | .
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This bound is much tighter than (7.24): the Q2-term is gone. Of course, it is gone because
we insist that the same nonce is never used twice. If nonces are, in fact, generated by the signer
at random, then the Q2-term returns; however, if the signer implements the nonce as a counter,
then we avoid the Q2-term — the only requirement is that the signer does not sign more than |R|
values. See also Exercise 7.12 for a subtle point regarding the implementation of F .

Analogous to the discussion in Remark 7.6, when using nonce-based Carter-Wegman it is vital
that the nonce is never re-used for di↵erent messages. If this happens, Carter-Wegman may be
completely broken — see Exercises 7.13 and 7.14.

7.6 Unconditionally secure one-time MACs

In Chapter 2 we saw that the one-time pad gives unconditional security as long as the key is only
used to encrypt a single message. Even algorithms that run in exponential time cannot break the
semantic security of the one-time pad. Unfortunately, security is lost entirely if the key is used
more than once.

In this section we ask the analogous question for MACs: can we build a “one-time MAC” that
is unconditionally secure if the key is only used to provide integrity for a single message?

We can model one-time MACs using the standard MAC Attack Game 6.1 used to define MAC
security. To capture the one-time nature of the MAC we allow the adversary to issue only one
signing query. We denote the adversary’s advantage in this restricted game by MAC1adv[A, I].
This game captures the fact that the adversary sees only one message-tag pair and then tries to
create an existential forgery using this pair.

Unconditional security means that MAC1adv[A, I] is negligible for all adversaries A, even com-
putationally unbounded ones. In this section, we show how to implement e�cient and uncondi-
tionally secure one-time MACs using hash functions.

7.6.1 Pairwise unpredictable functions

Let H be a keyed hash function defined over (K, M, T ). Intuitively, H is a pairwise unpre-
dictable function if the following holds for a randomly chosen key k 2 K: given the value
H(k, m0), it is hard to predict H(k, m1) for any m1 6= m0. As usual, we make this definition
rigorous using an attack game.

Attack Game 7.5 (pairwise unpredicability). For a keyed hash function H defined over
(K, M, T ), and a given adversary A, the attack game runs as follows.

• The challenger picks a random k  R K and keeps k to itself.

• A sends a message m0 2M to the challenger, who responds with t0 = H(k, m0).

• A outputs (m1, t1) 2M⇥ T , where m1 6= m0.

We say that A wins the game if t1 = H(k, m1). We define A’s advantage with respect to H, denoted
PUFadv[A, H], as the probability that A wins the game. 2

Definition 7.7. We say that H is an ✏-bounded pairwise unpredictable function, or ✏-PUF
for short, if PUFadv[A, H]  ✏ for all adversaries A (even ine�cient ones).

It should be clear that if H is an ✏-PUF, then H is also an ✏-UHF; if, in addition, T is of the
form ZN (or is an abelian group as in Remark 7.3), then H is an ✏-DUF.
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7.6.2 Building unpredictable functions

So far we know that any ✏-PUF is also an ✏-DUF. The converse is not true (see Exercise 7.28).
Nevertheless, we show that any ✏-DUF can be tweaked so that it becomes an ✏-PUF. This tweak
increases the key size.

Let H be a keyed hash function defined over (K, M, T ), where T = ZN for some N . We build a
new hash function H 0 derived from H with the same input and output space as H. The key space,
however, is K ⇥ T . The function H 0 is defined as follows:

H 0�(k1, k2), m
�

= H(k1, m) + k2 2 T (7.32)

Lemma 7.11. If H is an ✏-DUF, then H 0 is an ✏-PUF.

Proof. Let A attack H 0 as a PUF. In response to its query m0, adversary A receives t0 :=
H(k1, m0) + k2. Observe that t0 is uniformly distributed over T , and is independent of k1. More-
over, if A’s prediction t1 of H(k1, m1) + k2 is correct, then t1 � t0 correctly predicts the di↵erence
H(k1, m1)�H(k1, m0).

So we can define a DUF adversary B as follows: it runs A, and when A submits its query m0,
B responds with a random t0 2 T ; when A outputs (m1, t1), adversary B outputs (m0, m1, t1� t0).
It is clear that

PUFadv[A, H]  DUFadv[B, H]  ✏. 2

In particular, Lemma 7.11 shows how to convert the function Hxpoly, defined in (7.23), into a an
(` + 1)/p-PUF. We obtain the following keyed hash function defined over (Z2

p,Z`
p ,Zp):

H 0
xpoly((k1, k2), (a1, . . . , av)) := kv+1

1 + a1k
v
1 + · · · + avk1 + k2. (7.33)

7.6.3 From PUFs to unconditionally secure one-time MACs

We now return to the problem of building unconditionally secure one-time MACs. In fact, PUFs
are just the right tool for the job.

Let H be a keyed hash function defined over (K, M, T ). We can use H to define the MAC
system I = (S, V ) derived from H:

S(k, m) := H(k, m);

V (k, m, t) :=

(

accept if H(k, m) = t,

reject otherwise.

The following theorem shows that PUFs are the MAC analogue of the one-time pad, since both
provide unconditional security for one time use. The proof is immediate from the definitions.

Theorem 7.12. Let H be an ✏-PUF and let I be the MAC system derived from H. Then for all
adversaries A (even ine�cient ones), we have MAC1adv[A, I]  ✏.

The PUF construction in Section 7.6.2 is very similar to the Carter-Wegman MAC. The only
di↵erence is that the PRF is replaced by a truly random pad k2. Hence, Theorem 7.12 shows that
the Carter-Wegman MAC with a truly random pad is an unconditionally secure one-time MAC.
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Figure 7.5: Randomized PRF(UHF) composition: MAC signing

7.7 A fun application: timing attacks

To be written.

7.8 Notes

Citations to the literature to be added.

7.9 Exercises

7.1 (Using Hpoly with power-of-2 modulus). We can adapt the definition of Hpoly in (7.3)
so that instead of working in Zp we work in Z2n (i.e., work modulo 2n). Show that this version
of Hpoly is not a good UHF, and in particular an attacker can find two messages m0, m1 each of
length two blocks that are guaranteed to collide.

7.2 (Non-adaptively secure PRFs are computational UHFs). Show that if F is a secure
PRF against non-adaptive adversaries (see Exercise 4.6), and the size of the output space of F is
super-poly, then F is a computational UHF.

Note: Using the result of Exercise 6.13, this gives another proof that CBC is a computational
UHF.

7.3 (On the alternative characterization of the ✏-UHF property). Let H be a keyed hash
function defined over (K, M, T ). Suppose that for some pair of distinct messages m0 and m1, we
have Pr[H(k, m0) = H(k, m1)] > ✏, where the probability is over the random choice of k 2 K. Give
an adversary A that wins Attack Game 7.1 with probability greater than ✏. Your adversary is not
allowed to just have the values m0 and m1 “hardwired” into its code, but it may be very ine�cient.

7.4 (MAC(UHF) composition is insecure). The PRF(UHF) composition shows that a UHF
can extend the input domain of a specific type of MAC, namely a MAC that is itself a PRF. Show
that this construction cannot be extended to arbitrary MACs. That is, exhibit a secure MAC
I = (S, V ) and a computational UHF H for which the MAC(UHF) composition I 0 = (S0, V 0)
where S0((k1, k2), m) = S(k2, H(k1, m)) is insecure. In your design, you may assume the existence
of a secure PRF defined over any convenient spaces. Then show how to “sabotage” this PRF so
that it remains a secure MAC, but the MAC(UHF) composition becomes insecure.

269



7.5 (Randomized PRF(UHF) composition). In this exercise we develop a randomized variant
of PRF(UHF) composition that provides better security with little impact on the running time. Let
H be a keyed hash function defined over (KH , M, X ) and let F be a PRF defined over (KF , R⇥
X , T ). Define the randomized PRF(UHF) system I = (S, V ) as follows: for key (k1, k2) and
message m 2M define

S
�

(k1, k2), m
�

:=
�

r  R R, x H(k1, m), v  F
�

k2, (r, x)
�

, output (r, v)
 

(see Fig. 7.5)

V
�

(k1, k2), m, (r, v)
�

:=

(

accept if x H(k1, m), v = F
�

k2, (r, x)
�

reject otherwise.

This MAC is defined over (KF⇥KH , M, R⇥T ). The tag size is a little larger than in deterministic
PRF(UHF) composition, but signing and verification time is about the same.

(a) Suppose A is a MAC adversary that plays Attack Game 6.1 with respect to I and issues
at most Q queries. Show that there exists a PRF adversary BF and UHF adversaries BH

and B0
H , which are elementary wrappers around A, such that

MACadv[A, I]  PRFadv[BF , F ] + UHFadv[BH , H] +
Q2

2|R|UHFadv[B0
H , H]

+
Q2

2|R||T | +
1

|T | .
(7.34)

Discussion: When H is an ✏-UHF let us set ✏ = 1/|T | and |R| = Q2/2 so that the right
most four terms in (7.34) are all equal. Then (7.34) becomes simply

MACadv[A, I]  PRFadv[BF , F ] + 4✏. (7.35)

Comparing to deterministic PRF(UHF) composition, the error term ✏ · Q2/2 in (7.19) is
far worse than in (7.35). This means that for the same parameters, randomized PRF(UHF)
composition security is preserved for far many more queries than for deterministic PRF(UHF)
composition.

In the Carter-Wegman MAC to get an error bound as in (7.35) we must set |R| to |Q|2/✏ in
(7.24). In randomized PRF(UHF) composition we only need |R| = |Q|2 and therefore tags
in randomized PRF(UHF) are shorter than in Carter-Wegman for the same security and the
same ✏.

(b) Rephrase the MAC system I as a nonce-based MAC system (as in Section 7.5). What are
the concrete security bounds for this system?

Observe that if the nonce is accidentally re-used, or even always set to the same value, then the
MAC system I still provides some security: security degrades to the security of deterministic
PRF(UHF) composition. We refer to this as nonce re-use resistance.

7.6 (One-key PRF(UHF) composition). This exercise analyzes a one-key variant of the
PRF(UHF) construction. Let F be a PRF defined over (K, X , Y) and let H be a keyed hash
function defined over (Y, M, X ); in particular, the output space of F is equal to the key space of
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H, and the output space of H is equal to the input space of F . Let x0 2 X be a public constant.
Consider the PRF F 0 defined over (K, M, Y) as follows:

F 0(k, m) := F (k, H(k0, m)), where k0 := F (k, x0).

This is the same as the usual PRF(UHF) composition, except that we use a single key k and use
F to derive the key k0 for H.

(a) Show that F 0 is a secure PRF assuming that F is a PRF, that H is a computational UHF,
and that H satisfies a certain preimage resistance property, defined by the following game.

In this game, the adversary computes a message M and the challenger (independently) chooses
a random hash key k0 2 K. The adversary wins the game if H(k0, M) = x0, where x0 2 X
is a constant, as above. We say that H is preimage resistant if every e�cient adversary wins
this game with only negligible probability.

Hint: Modify the proof of Theorem 7.7.

(b) Show that the cascade construction is preimage resistant, assuming the underlying PRF is a
secure PRF.

Hint: This follows almost immediately from the fact that the cascade is a prefix-free PRF.

7.7 (XOR-DUFs). In Remark 7.3 we adapted the definition of DUF to a hash function whose
digest space T is the set of all n-bit strings, {0, 1}n, with the XOR used as the di↵erence operator.

(a) Show that the XOR-hash F� defined in Section 7.2.3 is a computational XOR-DUF.

(b) Show that the CBC construction FCBC defined in Section 6.4.1 is a computational XOR-DUF.

Hint: Use the fact that FCBC is a prefix-free secure PRF (or, alternatively, the result of
Exercise 6.13).

7.8 (Luby-Racko↵ with an XOR-DUF). Show that the Luby-Racko↵ construction (see Sec-
tion 4.5) remains secure if the first round function F (k1, ·) is replaced by a computational XOR-
DUF.

7.9 (Nonce-based CBC cipher with an XOR-DUF). Show that in the nonce-based CBC
cipher (Section 5.5.3) the PRF that is applied to the nonce can be replaced by an XOR-DUF.

7.10 (Tweakable block ciphers). Continuing with Exercise 4.11, show that in the construc-
tion from part (c) the PRF can be replaced by an XOR-DUF. That is, prove that the following
construction is a strongly secure tweakable block cipher:

E0�(k0, k1), m, t
�

:=
�

p h(k0, t); output p� E(k1, m� p)
 

D0�(k0, k1), c, t
�

:=
�

p h(k0, t); output p�D(k1, c� p)
 

Here (E, D) is a strongly secure block cipher defined over (K0, X ) and h is an XOR-DUF defined
over (K1, T , X ) where X := {0, 1}n.

Discussion: XTS mode, used in disk encryption systems, is based on this tweakable block cipher.
The tweak in XTS is a combination of i, the disk sector number, and j, the position of the block
within the sector. The XOR-DUF used in XTS is defined as h

�

k0, (i, j)
�

:= E(k0, i) · ↵j 2 GF(2n)
where ↵ is a fixed primitive element of GF(2n). XTS uses ciphertext stealing (Exercise 5.16) to
handle sectors whose bit length is not a multiple of n.
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7.11 (Carter-Wegman with verification queries: concrete security). Consider the security
of the Carter-Wegman construction (Section 7.4) in an attack with verification queries (Section 6.2).
Show that following concrete security result: for every MAC adversary A that attacks ICW as in
Attack Game 6.2, and which makes at most Qv verification queries and at most Qs signing queries,
there exist a PRF adversary BF and a DUF adversary BH , which are elementary wrappers around
A, such that

MACvq
adv[A, ICW]  PRFadv[BF , F ] + Qv · DUFadv[BH , H] +

Q2
s

2|R| +
Qv

|T | .

7.12 (Nonce-based Carter-Wegman: improved security bounds). In Section 7.5, we studied
a nonce-based version of the Carter-Wegman MAC. In particular, in Theorem 7.10, we derived the
security bound

nMACadv[A, ICW]  PRFadv[BF , F ] + DUFadv[BH , H] +
1

|T | ,

and rejoiced in the fact that there were no Q2-terms in this bound, where Q is a bound on the
number of signing queries. Unfortunately, a common implementation of F is to use the encryption
function of a block cipher E defined over (K, X ), so R = X = T = ZN . A straightforward
application of the PRF switching lemma (see Theorem 4.4) gives us the security bound

nMACadv[A, ICW]  BCadv[BE , E ] +
Q2

2N
+ DUFadv[BH , H] +

1

N
,

and a Q2-term has returned! In particular, when Q2 ⇡ N , this bound is entirely useless. However,
one can obtain a better bound. Using the result of Exercise 4.25, show that assuming Q2 < N , we
have the following security bound:

nMACadv[A, ICW]  BCadv[BE , E ] + 2 ·
✓

DUFadv[BH , H] +
1

N

◆

.

7.13 (Carter-Wegman MAC falls apart under nonce re-use). Suppose that when using a
nonce-based MAC, an implementation error causes the system to re-use a nonce more than once.
Let us show that the nonce-based Carter-Wegman MAC falls apart if this ever happens.

(a) Consider the nonce-based Carter-Wegman MAC built from the hash function Hxpoly. Show
that if the adversary obtains the tag on some one-block message m1 using nonce N and the tag
on a di↵erent one-block message m2 using the same nonce N , then the MAC system becomes
insecure: the adversary can forge the MAC an any message of his choice with non-negligible
probability.

(b) Consider the nonce-based Carter-Wegman MAC with an arbitrary hash function. Suppose
that an adversary is free to re-use nonces at will. Show how to create an existential forgery.

Note: These attacks also apply to the randomized version of Carter-Wegman, if the signer is
unlucky enough to generate the same randomizer r 2 R more than once. Also, the attack in part
(a) can be extended to work even if the messages are not single-block messages by using e�cient
algorithms for finding roots of polynomials over finite fields.
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7.14 (Encrypted Carter-Wegman). Continuing with the previous exercise, we show how to
make Carter-Wegman resistant to nonce re-use by encrypting the tag. To make things more con-
crete, suppose that H is an ✏-DUF defined over (KH , M, X ), where X = ZN , and E = (E, D) is a
secure block cipher defined over (KE , X ). The encrypted Carter-Wegman nonce-based MAC system
I = (S, V ) has key space KH ⇥K2

E , message space M, tag space X , nonce space X , and is defined
as follows:

• For key (k1, k2, k3), message m, and nonce N , we define

S((k1, k2, k3), m, N ) := E(k3, H(k1, m) + E(k2, N ) )

• For key (k1, k2, k3), message m, tag v, and nonce N , we define

V ((k1, k2, k3), m, v, N ) :=
v⇤  E(k3, H(k1, m) + E(k2, N ) )
if v = v⇤ output accept; otherwise output reject

(a) Show that assuming no nonces get re-used, this scheme is just as secure as Carter-Wegman.
In particular, using the result of Exercise 7.12, show that for every adversary A that makes
at most Q signing queries, where Q2 < N , the probability that A produces an existential
forgery is at most BCadv[B, E ] + 2(✏ + 1/N), where B is an elementary wrapper around A.

(b) Now suppose an adversary can re-use nonces at will. Show that for every such adversary
A that makes at most Q signing queries, where Q2 < N , the probability that A produces
an existential forgery is at most BCadv[B, E ] + (Q + 1)2✏ + 2/N , where B is an elementary
wrapper around A. Thus, while nonce re-use degrades security, it is not catastrophic.

Hint: Theorem 7.7 and Exercises 4.25 and 7.21 may be helpful.

7.15 (Composing UHFs). Let H1 be a keyed hash function defined over (K1, X , Y). Let H2

be a keyed hash function defined over (K2, Y, Z). Let H be the keyed hash function defined over
(K1 ⇥K2, X , Z) as H((k1, k2), x) := H2(k2, H(k1, x)).

(a) Show that if H1 is an ✏1-UHF and H2 is an ✏2-UHF, then H is an (✏1 + ✏2)-UHF.

(b) Show that if H1 is an ✏1-UHF and H2 is an ✏2-DUF, then H is an (✏1 + ✏2)-DUF.

7.16 (Variations on Hpoly). Show that if p is prime and the input space is Z`
p for some fixed

(poly-bounded) value `, then

(a) the function Hfpoly defined in (7.5) is an (`� 1)/p-UHF.

(b) the function Hfxpoly defined as

Hfxpoly(k, (a1, . . . , a`)) := k · Hfpoly(k, (a1, . . . , a`)) = a1k
` + a2k

v�1 + · · · + a`k 2 Zp

is an (`/p)-DUF.

7.17 (A DUF from an ideal permutation). Let ⇡ : X ! X be an permutation where X :=
{0, 1}n. Define H : X ⇥ X` ! X as the following keyed hash function:

H(k, (a1, . . . , av)) := h k
for i 1 to v do: h ⇡(ai � h)
output h
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Assuming 2n is super-poly, show that H is a computational XOR-DUF (see Remark 7.3) in the
ideal permutation model, where we model ⇡ as a random permutation ⇧ (see Section 4.7).

We outline here one possible proof approach. The first idea is to use the same strategy that was used
in the analysis of CBC in the proof of Theorem 6.3; indeed, one can see that the two constructions
process message blocks in a very similar way. The second idea is to use the Domain Separation
Lemma (Theorem 4.15) to streamline the proof.

Consider two games:

0. The original attack game: adversary makes a series of ideal permutation queries, which
evaluate ⇧ and ⇧�1 on points of the adversary’s choice. Then the adversary submits two
distinct messages m0, m1 to the challenger, along with a value �, and hopes that H(k, m0)�
H(k, m1) = �.

1. Use the Domain Separation Lemma to split ⇧ into many independent permutations. One
is ⇧ip, which is used to evaluate the ideal permutation queries. The others are of the form
⇧std,↵ for ↵ 2 X`

>0
. These are used to perform the evaluations H(k, m0), H(k, m1): in the

evaluation of H(k, (a1, . . . , as)), in the ith loop iteration in the hash algorithm, we use the
permutation ⇧std,↵, where ↵ = (a1, . . . , ai). Now one just has to analyze the probability of
separation failure.

Note that H is certainly not a secure PRF, even if we restrict ourselves to non-adaptive or prefix-free
adversaries: given H(k, m) for any message m, we can e�ciently compute the key k.

7.18 (Optimal collision probability with shorter hash keys). For positive integer d, let
Id := {0, . . . , d� 1} and I⇤d := {1, . . . , d� 1}.

(a) Let N be a positive integer and p be a prime. Consider the keyed hash function H defined
over (Ip ⇥ I⇤p , Ip, IN ) as follows: H((k0, k1), a) := ((k0 + ak1) mod p) mod N . Show that H is
a 1/N -UHF.

(b) While the construction in part (a) gives a UHF with “optimal” collision probability, the key
space is unfortunately larger than the message space. Using the result of part (a), along with
part (a) of Exercise 7.15 and the result of Exercise 7.16, you are to design a hash function
with “nearly optimal” collision probability, but with much smaller keys.

Let N and ` be positive integers. Let ↵ be a number with 0 < ↵ < 1. Design a (1 +
↵)/N -UHF with message space {0, 1}` and output space IN , where keys bit strings of length
O(log(N`/↵)).

7.19 (Inner product hash). Let p be a prime.

(a) Consider the keyed hash function H defined over (Z`
p,Z`

p,Zp) as follows:

H((k1, . . . , k`), (a1, . . . , a`)) := a1k1 + · · · + a`k`.

Show that H is a 1/p-DUF.

(b) Since multiplications can be much more expensive than additions, the following variant of the
hash function in part (a) is sometimes preferable. Assume ` is even, and consider the keyed
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hash function H 0 defined over (Z`
p,Z`

p,Zp) as follows:

H 0((k1, . . . , k`), (a1, . . . , a`)) :=

`/2
X

i=1

(a2i�1 + k2i�1)(a2i + k2i).

Show that H 0 is also a 1/p-DUF.

(c) Although both H and H 0 are ✏-DUFs with “optimal” ✏ values, the keys are unfortunately very
large. Using a similar approach to part (b) of the previous exercise, design a (1 + ↵)/p-DUF
with message space {0, 1}` and output space Zp, where keys bit strings of length O(log(p`/↵)).

7.20 (Division-free hash). This exercise develops a hash function that does not require and
division or mod operations, which can be expensive. It can be implemented just using shifts and
adds. For positive integer d, let Id := {0, . . . , d� 1}. Let n be a positive integer and set N := 2n.

(a) Consider the keyed hash function H defined over (I`N2 , I`N ,ZN ) as follows:

H((k1, . . . , k`), (a1, . . . , a`)) := [t]N 2 ZN , where t :=
⌅� �

X

i

aiki
�

mod N2
� �

N
⇧

.

Show that H is a 2/N -DUF. Below in Exercise 7.30 we will see a minor variant of H that
satisfies a stronger property, and in particular, is a 1/N -DUF.

(b) Analogous to part (b) in the previous exercise, assume ` is even, and consider the keyed hash
function H defined over (I`N2 , I`N ,ZN ) as follows:

H 0((k1, . . . , k`), (a1, . . . , a`)) := [t]N 2 ZN ,

where

t :=
⌅� �

`/2
X

i=1

(a2i�1 + k2i�1)(a2i + k2i)
�

mod N2
� �

N
⇧

.

Show that H 0 is a 2/N -DUF.

7.21 (DUF to UHF conversion). Let H be a keyed hash function defined over (K, M,ZN ). We
construct a new keyed hash function H 0, defined over (K, M⇥ZN ,ZN ) as follows: H 0(k, (m, x)) :=
H(k, m) + x. Show that if H is an ✏-DUF, then H 0 is an ✏-UHF.

7.22 (DUF modulus switching). We will be working with DUFs with digest spaces Zm for
various m, and so to make things clearer, we will work with digest spaces that are plain old sets of
integers, and state explicitly the modulus m, as in “an ✏-DUF modulo m”. For positive integer d,
let Id := {0, . . . , d� 1}.

Let p and N be integers greater than 1. Let H be a keyed hash function defined over (K, M, Ip).
Let H 0 be the keyed hash function defined over (K, M, IN ) as follows: H 0(k, m) := H(k, m) mod N .

(a) Show that if p  N/2 and H is an ✏-DUF modulo p, then H 0 is an ✏-DUF modulo N .

(b) Suppose that p � N and H is an ✏-DUF modulo p. Show that H 0 is an ✏0-DUF modulo N
for ✏0 = 2(p/N + 1)✏. In particular, if ✏ = ↵/p, we can take ✏0 = 4↵/N .
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7.23 (More flexible output spaces). As in the previous exercise, we work with DUFs whose
digest spaces are plain old sets of integers, but we explicitly state the modulus m. Again, for
positive integer d, we let Id := {0, . . . , d� 1}.

Let 1 < N  p, where p is prime.

(a) H⇤
fxpoly is the keyed hash function defined over (Ip, I`N , IN ) as follows:

H⇤
fxpoly(k, (a1, . . . , a`)) :=

✓

(a1k
` + · · · + a`k

�

mod p

◆

mod N.

Show that H⇤
fxpoly is a 4`/N -DUF modulo N .

(b) H⇤
xpoly is the keyed hash function defined over (Ip, I

`
N , IN ) as follows:

H⇤
xpoly(k, (a1, . . . , av)) :=

✓

(kv+1 + a1k
v + · · · + avk

�

mod p

◆

mod N.

Show that H⇤
xpoly is a 4(` + 1)/N -DUF modulo N .

(c) H⇤
fpoly is the keyed hash function defined over (Ip, I`N , IN ) as follows:

H⇤
fpoly(k, (a1, . . . , a`)) :=

✓

�

(a1k
`�1 + · · · + a`�1k

�

mod p

◆

+ a`

◆

mod N.

Show that H⇤
fpoly is a 4(`� 1)/N -UHF.

(d) H⇤
poly is the keyed hash function is defined over (Ip, I

`
N , IN ) as follows:

H⇤
poly(k, (a1, . . . , av)) :=

✓

�

(kv + a1k
v�1 + · · · + av�1k

�

mod p

◆

+ av

◆

mod N.

for v > 0, and for zero-length messages, it is defined to be the constant 1. Show that H⇤
poly

is a 4`/N -UHF.

Hint: All of these results follow easily from the previous two exercises, except that the analysis in
part (d) requires that zero-length messages are treated separately.

7.24 (Be careful: reducing at the wrong time can be dangerous). With notation as in
the previous exercise, show that if (3/2)N  p < 2N , the keyed hash function H defined over
(Ip, I2N , IN ) as

H(k, (a, b)) := ((ak + b) mod p) mod N

is not a (1/3)-UHF. Contrast this function with that in part (c) of the previous exercise with ` = 2.

7.25 (A PMAC0 alternative). Again, for positive integer d, let Id := {0, . . . , d� 1}. Let N = 2n

and let p be a prime with N/4 < p < N/2. Let H be the hash function defined over (IN/4, IN ⇥
IN/4, IN ) as follows:

H(k, (a, i)) := (((i · k) mod p) + a) mod N.

(a) Show that H is a 4/N -UHF.

Hint: Use Exercise 7.21 and part (a) of Exercise 7.22.
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(b) Show how to use H to modify PMAC0 so that the message space is Y` (where Y = {0, 1}n
and ` < N/4), and the PRF F1 is defined over (K1, Y, Y). Analyze the security of your
construction, giving a concrete security bound.

7.26 (Collision lower-bounds for Hpoly). Consider the function Hpoly(k, m) defined in (7.3)
using a prime p and assume ` = 2.

(a) Show that for all su�ciently large p, the following holds: for any fixed k 2 Zp, among
bppc random inputs to Hpoly(k, ·), the probability of a collision is bounded from below by a
constant.

Hint: Use the birthday paradox (Appendix B.1).

(b) Show that given any collision for Hpoly under key k, we can e�ciently compute k. That is,

give an e�cient algorithm that takes two inputs m, m0 2 Z2
p, and that outputs k̂ 2 Zp, and

satisfies the following property: for every k 2 Zp, if H(k, m) = H(k, m0), then k̂ = k.

7.27 (XOR-hash analysis). Generalize Theorem 7.6 to show that for every Q-query UHF ad-
versary A, there exists a PRF adversary B, which is an elementary wrapper around A, such that

MUHFadv[A, F�]  PRFadv[B, F ] +
Q2

2|Y| .

Moreover, B makes at most Q` queries to F .

7.28 (Hxpoly is not a good PUF). Show that Hxpoly defined in (7.23) is not a good PUF by
exhibiting an adversary that wins Attack Game 7.5 with probability 1.

7.29 (Converting a one-time MAC to a MAC). Suppose I = (S, V ) is a (possibly random-
ized) MAC defined over (K1, M, T ), where T = {0, 1}n, that is one-time secure (see Section 7.6).
Further suppose that F is a secure PRF defined over (K2, R, T ), where |R| is super-poly. Consider
the MAC I 0 = (S0, V 0) defined over (K1 ⇥K2, M, R⇥ T ) as follows:

S0((k1, k2), m) :=
�

r  R R; t R S(k1, m); t0  F (k2, r)� t; output (r, t0)
 

V 0((k1, k2), m, (r, t0)) :=
�

t F (k2, r)� t0; output V (k1, m, t)
 

Show that I 0 is a secure (many time) MAC.

7.30 (Pairwise independent functions). In this exercise, we develop the notion of a PRF that
is unconditionally secure, provided the adversary can make at most two queries. We say that a
PRF F defined over (K, X , Y) is an ✏-almost pairwise independent function, or ✏-APIF, if the
following holds: for all adversaries A (even ine�cient ones) that make at most 2 queries in Attack
Game 4.2, we have PRFadv[A, F ]  ✏. If ✏ = 0, we call F a pairwise independent function, or
PIF.

(a) Suppose that |X | > 1 and that for all x0, x1 2 X with x0 6= x1, and all y0, y1 2 Y, we have

Pr[F (k, x0) = y0 ^ F (k, x1) = y1] =
1

|Y |2 ,

where the probability is over the random choice of k 2 K. Show that F is a PIF.
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(b) Consider the function H 0 built from H in (7.32). Show that if H is a 1/N -DUF, then H 0 is
a PIF.

(c) For positive integer d, let Id := {0, . . . , d � 1}. Let n be a positive integer and set N := 2n.
Consider the keyed hash function H defined over (I`+1

N2 , I`N , IN ) as follows:

H((k0, k1, . . . , k`), (a1, . . . , a`)) :=
⌅� �

k0 +
X

i

aiki
�

mod N2
� �

N
⇧

.

Show that H is a PIF. Note: on a typical computer, if n is not too large, this can be
implemented very easily with just integer multiplications, additions, and shifts.

(d) Show that in the PRF(UHF) composition, if H is an ✏1-UHF and F is an ✏2-APIF, then the
composition F 0 is an (✏1 + ✏2)-APIF.

(e) Show that any ✏-APIF is an (✏ + 1/|Y|)-PUF.

(f) Using an appropriate APIF, show how to construct a probabilistic cipher that is uncondition-
ally CPA secure provided the adversary can make at most two queries in Attack Game 5.2.
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Chapter 8

Message integrity from collision
resistant hashing

In the previous chapter we discussed universal hash functions (UHFs) and showed how they can be
used to construct MACs. Recall that UHFs are keyed hash functions for which finding collisions is
di�cult, as long as the key is kept secret.

In this chapter we study keyless hash functions for which finding collisions is di�cult. Informally,
a keyless function is an e�ciently computable function whose description is fully public. There are
no secret keys and anyone can evaluate the function. Let H be a keyless hash function from some
large message space M into a small digest space T . As in the previous chapter, we say that two
messages m0, m1 2M are a collision for the function H if

H(m0) = H(m1) and m0 6= m1.

Informally, we say that the function H is collision resistant if finding a collision for H is di�cult.
Since the digest space T is much smaller than M, we know that many such collisions exist. Nev-
ertheless, if H is collision resistant, actually finding a pair m0, m1 that collide should be di�cult.
We give a precise definition in the next section.

In this chapter we will construct collision resistant functions and present several applications.
To give an example of a collision resistant function we mention a US federal standard called the
Secure Hash Algorithm Standard or SHA for short. The SHA standard describes a number of hash
functions that o↵er varying degrees of collision resistance. For example, SHA256 is a function
that hashes long messages into 256-bit digests. It is believed that finding collisions for SHA256 is
di�cult.

Collision resistant hash functions have many applications. We briefly mention two such appli-
cations here and give the details later on in the chapter. Many other applications are described
throughout the book.

Extending cryptographic primitives. An important application for collision resistance is its
ability to extend primitives built for short inputs to primitives for much longer inputs. We give
a MAC construction as an example. Suppose we are given a MAC system I = (S, V ) that only
authenticates short messages, say messages that are 256 bits long. We want to extend the domain
of the MAC so that it can authenticate much longer inputs. Collision resistant hashing gives a very
simple solution. To compute a MAC for some long message m we first hash m and then apply S to
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Figure 8.1: Hash-then-MAC construction

the resulting short digest, as described in Fig. 8.1. In other words, we define a new MAC system
I = (S0, V 0) where S0(k, m) := S(k, H(m)). MAC verification works analogously by first hashing
the message and then verifying the tag of the digest.

Clearly this hash-then-MAC construction would be insecure if it were easy to find collisions
for H. If an adversary could find two long messages m0 and m1 such that H(m0) = H(m1) then
he could forge tags using a chosen message attack. Suppose m0 is an innocuous message while m1

is evil, say a virus infected program. The adversary would ask for the tag on the message m0 and
obtain a tag t in response. Then the pair (m0, t) is a valid message-tag pair, but so is the pair
(m1, t). Hence, the adversary is able to forge a tag for m1, which breaks the MAC. Even worse,
the valid tag may fool a user into running the virus. This argument shows that collision resistance
is necessary for this hash-then-MAC construction to be secure. Later on in the chapter we prove
that collision resistance is, in fact, su�cient to prove security.

The hash-then-MAC construction looks similar to the PRF(UHF) composition discussed in the
previous chapter (Section 7.3). These two methods build similar looking MACs from very di↵erent
building blocks. The main di↵erence is that a collision resistant hash can extend the input domain
of any MAC. On the other hand, a UHF can only extend the domain of a very specific type of MAC,
namely a PRF. This is illustrated further in Exercise 7.4. Another di↵erence is that the secret key
in the hash-then-MAC method is exactly the same as in the underlying MAC. The PRF(UHF)
method, in contrast, extends the secret key of the underlying PRF by adding a UHF secret key.

The hash-then-MAC construction performs better than PRF(UHF) when we wish to compute
the tag for a single message m under multiple keys k1, . . . , kn. That is, we wish to compute S0(ki, m)
for all i = 1, . . . , n. This comes up, for example, when providing integrity for a file on disk that is
readable by multiple users. The file header contains one integrity tag per user so that each user
can verify integrity using its own MAC key. With the hash-then-MAC construction it su�ces to
compute H(m) once and then quickly derive the n tags from this single hash. With a PRF(UHF)
MAC, the UHF depends on the key ki and consequently we will need to rehash the entire message
n times, once for each user. See also Exercise 6.4 for more on this problem.

File integrity. Another application for collision resistance is file integrity also discussed in the
introduction of Chapter 6. Consider a set of n critical files that change infrequently, such as
certain operating system files. We want a method to verify that these files are not modified by
some malicious code or malware. To do so we need a small amount of read-only memory, namely
memory that the malware can read, but cannot modify. Read-only memory can be implemented,
for example, using a small USB disk that has a physical switch flipped to the “read-only” position.
We place a hash of each of the n critical files in the read-only memory so that this storage area only
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Figure 8.2: File integrity using small read-only memory

contains n short hashes. We can then check integrity of a file F by rehashing F and comparing the
resulting hash to the one stored in read-only memory. If a mismatch is found, the system declares
that file F is corrupt. The TripWire malware protection system [63] uses this mechanism to protect
critical system files.

What property should the hash function H satisfy for this integrity mechanism to be secure?
Let F be a file protected by this system. Since the malware cannot alter the contents of the read-
only storage, its only avenue for modifying F without being detected is to find another file F 0 such
that H(F ) = H(F 0). Replacing F by F 0 would not be caught by this hashing system. However,
finding such an F 0 will be di�cult if H is collision resistant. Collision resistance, thus, implies that
the malware cannot change F without being detected by the hash.

This system stores all file hashes in read-only memory. When there are many files to protect
the amount of read-only memory needed could become large. We can greatly reduce the size of
read-only memory by viewing the entire set of file hashes as just another file stored on disk and
denoted FH . We store the hash of FH in read-only memory, as described in Fig. 8.2. Then read-
only memory contains a single hash value. To verify file integrity of some file F we first verify
integrity of the file FH by hashing the contents of FH and comparing the result to the value in
read-only memory. Then we verify integrity of F by hashing F and comparing the result with the
corresponding hash stored in FH . We describe a more e�cient solution using authentication trees
in Section 8.9.

In the introduction to Chapter 6 we proposed a MAC-based file integrity system. The system
stored a tag of every file along with the file. We also needed a small amount of secret storage to store
the user’s secret MAC key. This key was used every time file integrity was verified. In comparison,
when using collision resistant hashing there are no secrets and there is no need for secret storage.
Instead, we need a small amount of read-only storage for storing file hashes. Generally speaking,
read-only storage is much easier to build than secret storage. Hence, collision resistance seems more
appropriate for this particular application. In Chapter 13 we will develop an even better solution to
this problem, using digital signatures, that does not need read-only storage or online secret storage.

Security without collision resistance. By extending the input to the hash function with a few
random bits we can prove security for both applications above using a weaker notion of collision
resistance called target collision resistance or TCR for short. We show in Section 8.11.2 how to
use TCR for both file integrity and for extending cryptographic primitives. The downside is that the
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resulting tags are longer than the ones obtained from collision resistant hashing. Hence, although
in principle it is often possible to avoid relying on collision resistance, the resulting systems are not
as e�cient.

8.1 Definition of collision resistant hashing

A (keyless) hash function H : M ! T is an e�ciently computable function from some (large)
message space M into a (small) digest space T . We say that H is defined over (M, T ). We define
collision resistance of H using the following (degenerate) game:

Attack Game 8.1 (Collision Resistance). For a given hash function H over (M, T ) and
adversary A, the adversary takes no input and outputs two messages m0 and m1 in M.

We say that A wins the game if the pair m0, m1 is a collision for H, namely m0 6= m1 and
H(m0) = H(m1). We define A’s advantage with respect to H, denoted CRadv[A, H], as the
probability that A wins the game. Adversary A is called a collision finder. 2

Definition 8.1. We say that a hash function H over (M, T ) is collision resistant if for all
e�cient adversaries A, the quantity CRadv[A, H] is negligible.

At first glance, it may seem that collision resistant functions cannot exist. The problem is this:
since |M| > |T | there must exist inputs m0 and m1 in M that collide, namely H(m0) = H(m1).
An adversary A that simply prints m0 and m1 and exits is an e�cient adversary that breaks the
collision resistance of H. We may not be able to write the explicit program code for A (since we do
not know m0, m1), but this A certainly exists. Consequently, for any hash function H defined over
(M, T ) there exists some e�cient adversary AH that breaks the collision resistance of H. Hence,
it appears that no function H can satisfy Definition 8.1.

The way out of this is that, formally speaking, our hash functions are parameterized by a
system parameter: each choice of a system parameter describes a di↵erent function H, and so we
cannot simply “hardwire” a fixed collision into an adversary: an e↵ective adversary must be able
to e�ciently compute a collision as a function of the system parameter. This is discussed in more
depth in the Mathematical details section below.1

8.1.1 Mathematical details

As usual, we give a more mathematically precise definition of a collision resistant hash function
using the terminology defined in Section 2.4.

Definition 8.2 (Keyless hash functions). A (keyless) hash function is an e�cient algorithm
H, along with two families of spaces with system parameterization P :

M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

such that

1. M, and T are e�ciently recognizable.

1Some authors deal with this issue by have H take as input a randomly chosen key k, and giving k to the adversary
at the beginning of this attack game. By viewing k as a system parameter, this approach is really the same as ours.
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Figure 8.3: Asymptotic version of Attack Game 8.1

2. Algorithm H is an e�cient deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)),
and m 2M�,⇤, outputs an element of T�,⇤.

In defining collision resistance we parameterize Attack Game 8.1 by the security parameter �.
The asymptotic game is shown in Fig. 8.3. The advantage CRadv[A, H] is then a function of �.
Definition 8.1 should be read as saying that CRadv[A, H](�) is a negligible function.

It should be noted that the security and system parameters are artifacts of the formal framework
that are needed to make sense of Definition 8.1. In the real world, however, these parameters are
picked when the hash function is designed, and are ignored from that point onward. SHA256, for
example, does not take either a security parameter or a system parameter as input.

8.2 Building a MAC for large messages

To exercise the definition of collision resistance, we begin with an easy application described in
the introduction — extending the message space of a MAC. Suppose we are given a secure MAC
I = (S, V ) for short messages. Our goal is to build a new secure MAC I 0 for much longer messages.
We do so using a collision resistant hash function: I 0 computes a tag for a long message m by first
hashing m to a short digest and then applying I to the digest, as shown in Fig. 8.1.

More precisely, let H be a hash function that hashes long messages in M to short digests in TH .
Suppose I is defined over (K, TH , T ). Define I 0 = (S0, V 0) for long messages as follows:

S0(k, m) := S(k, H(m) ) and V 0(k, m) := V (k, H(m) ) (8.1)

Then I 0 authenticates long messages in M. The following easy theorem shows that I 0 is secure,
assuming H is collision resistant.

Theorem 8.1. Suppose the MAC system I is a secure MAC and the hash function H is collision
resistant. Then the derived MAC system I 0 = (S0, V 0) defined in (8.1) is a secure MAC.

In particular, suppose A is a MAC adversary attacking I 0 (as in Attack Game 6.1). Then there
exist a MAC adversary BI and an e�cient collision finder BH , which are elementary wrappers
around A, such that

MACadv[A, I 0]  MACadv[BI , I] + CRadv[BH , H].
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It is clear that collision resistance of H is essential for the security of I 0. Indeed, if an adversary
can find a collision m0, m1 on H, then he can win the MAC attack game as follows: submit m0 to the
MAC challenger for signing, obtaining a tag t0 := S(k, H(m0)), and then output the message-tag
pair (m1, t0). Since H(m0) = H(m1), the tag t0 must be a valid tag on the message m1.

Proof idea. Our goal is to show that no e�cient adversary can win the MAC Attack Game 6.1 for
our new MAC system I 0. An adversary A in this game asks the challenger to MAC a few long
messages m1, m2, . . . 2M and then tries to invent a new valid message-MAC pair (m, t). If A is
able to produce a valid forgery (m, t) then one of two things must happen:

1. either m collides with some query mi from A, so that H(m) = H(mi) and m 6= mi;

2. or m does not collide under H with any of A’s queries m1, m2, . . . 2M.

It should be intuitively clear that if A produces forgeries of the first type then A can be used to
break the collision resistance of H since m and mi are a valid collision for H. On the other hand, if
A produces forgeries of the second type then A can be used to break the MAC system I: the pair
(H(m), t) is a valid MAC forgery for I. Thus, if A wins the MAC attack game for I 0 we break
one of our assumptions. 2

Proof. We make this intuition rigorous. Let m1, m2, . . . 2M be A’s queries during the MAC attack
game and let (m, t) 2M⇥ T be the adversary’s output, which we assume is not among the signed
pairs. We define three events:

• Let X be the event that adversary A wins the MAC Attack Game 6.1 with respect to I 0.

• Let Y denote the event that some mi collides with m under H, that is, for some i we have
H(m) = H(mi) and m 6= mi.

• Let Z denote the event that A wins Attack Game 6.1 on I 0 and event Y did not occur.

Using events Y and Z we can rewrite A’s advantage in winning Attack Game 6.1 as follows:

MACadv[A, I 0] = Pr[X]  Pr[X ^ ¬Y ] + Pr[Y ] = Pr[Z] + Pr[Y ] (8.2)

To prove the theorem we construct a collision finder BH and a MAC adversary BI such that

Pr[Y ] = CRadv[BH , H] and Pr[Z] = MACadv[BI , I].

Both adversaries are straight-forward.
Adversary BH plays the role of challenger to A in the MAC attack game, as follows:

Initialization:
k  R K

Upon receiving a signing query mi 2M from A do:
ti  R S(k, H(mi) )
Send ti to A

Upon receiving the final message-tag pair (m, t) from A do:
if H(m) = H(mi) and m 6= mi for some i

then output the pair (m, mi)
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Figure 8.4: Adversary BI in the proof of Theorem 8.1

Algorithm BH responds to A’s signature queries exactly as in a real MAC attack game. Therefore,
event Y happens during the interaction with BH with the same probability that it happens in a
real MAC attack game. Clearly when event Y happens, AH succeeds in finding a collision for H.
Hence, CRadv[BH , H] = Pr[Y ] as required.

MAC adversary BI is just as simple and is shown in Fig. 8.4. When A outputs the final
message-tag pair (m, t) adversary BI outputs (H(m), t). When event Z happens we know that
V 0(k, m, t) outputs accept and the pair (m, t) is not equal to any of (m1, t1), (m2, t2), . . . 2M⇥T .
Furthermore, since event Y does not happen, we know that (H(m), t) is not equal to any of
(H(m1), t1), (H(m2), t2), . . . 2 TH ⇥ T . It follows that (H(m), t) is a valid existential forgery for
I. Hence, BI succeeds in creating an existential forgery with the same probability that event Z
happens. In other words, MACadv[BI , I] = Pr[Z], as required. The proof now follows from (8.2).
2

8.3 Birthday attacks on collision resistant hash functions

Cryptographic hash functions are most useful when the output digest size is small. The challenge
is to design hash functions whose output is as short as possible and yet finding collisions is di�cult.
It should be intuitively clear that the shorter the digest, the easier it is for an attacker to find
collisions. To illustrate this, consider a hash function H that outputs `-bit digests for some small `.
Clearly, by hashing 2` + 1 distinct messages the attacker will find two messages that hash to the
same digest and will thus break collision resistance of H. This brute-force attack will break the
collision resistance of any hash function. Hence, for instance, hash functions that output 16-bit
digests cannot be collision resistant — a collision can always be found using only 216 + 1 = 65537
evaluations of the hash.

Birthday attacks. A far more devastating attack can be built using the birthday paradox dis-
cussed in Section B.1 in the appendix. Let H be a hash function defined over (M, T ) and set
N := |T |. For standard hash functions N is quite large, for example N = 2256 for SHA256.
Throughout this section we will assume that the size of M is at least 100N . This basically means
that messages being hashed are slightly longer than the output digest. We describe a general colli-
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sion finder that finds collisions for H after an expected O(
p

N) evaluations of H. For comparison,
the brute-force attack above took O(N) evaluations. This more e�cient collision finder forces us
to use much larger digests.

The birthday collision finder for H works as follows: it chooses s ⇡ pN random and independent
messages, m1, . . . , ms  R M, and looks for a collision among these s messages. We will show that
the birthday paradox implies that a collision is likely to exist among these messages. More precisely,
the birthday collision finder works as follows:
Algorithm BirthdayAttack:

1. Set s d2pN e+ 1
2. Generate s uniform random messages m1, . . . , ms in M
3. Compute xi  H(mi) for all i = 1, . . . , s
4. Look for distinct i, j 2 {1, . . . , s} such that H(mi) = H(mj)
5. If such i, j exist and mi 6= mj then
6. output the pair (mi, mj)

We argue that when the adversary picks s :=
l

2
p

N
m

+ 1 random messages in M, then with

probability at least 1/2, there will exist distinct i, j such that H(mi) = H(mj) and mi 6= mj . This
means that the algorithm will output a collision with probability at least 1/2.

Lemma 8.2. Let m1, . . . , ms be the random messages sampled in Step 2. Assume |M| � 100N .
Then with probability at least 1/2 there exists i, j in {1, . . . , s} such that H(mi) = H(mj) and
mi 6= mj.

Proof. For i = 1, . . . , s let xi := H(mi). First, we argue that two of the xi values will collide
with probability at least 3/4. If the xi were uniformly distributed in T then this would follow
immediately from part (i) of Theorem B.1. Indeed, if the xi were independent and uniform in T a
collision among the xi will occur with probability at least 1� e�s(s�1)/2N � 1� e�2 � 3/4.

However, in reality, the function H(·) might bias the output distribution. Even though the mi

are sampled uniformly from M, the resulting xi may not be uniform in T . As a simple example,
consider a hash function H(·) that only outputs digests in a certain small subset of T . The resulting
xi would certainly not be uniform in T . Fortunately (for the attacker) Corollary B.2 shows that non-
uniform xi only increase the probability of collision. Since the xi are independent and identically
distributed the corollary implies that a collision among the xi will occur with probability at least
1� e�s(s�1)/2N � 3/4 as required.

Next, we argue that a collision among the xi is very likely to lead to a collision on H(·). Suppose
xi = xj for some distinct i, j in {1, . . . , s}. Since xi = H(mi) and xj = H(mj), the pair mi, mj is a
candidate for a collision on H(·). We just need to argue that mi 6= mj . We do so by arguing that
all the m1, . . . , ms are distinct with probability at least 4/5. This follows directly from part (ii) of
Theorem B.1. Recall that M is greater than 100N . Since m1, m2, . . . are uniform and independent
in M, and s < |M|/2, part (ii) of Theorem B.1 implies that the probability of collision among
these mi is at most 1 � e�s(s�1)/100N  1/5. Therefore, the probability that no collision occurs is
at least 4/5.

In summary, for the algorithm to discover a collision for H(·) it is su�cient that both a collision
occurs on the xi values and no collision occurs on the mi values. This happens with probability at
least 3/4� 1/5 > 1/2, as required. 2
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Variations. Algorithm BirthdayAttack requires O(
p

N) memory space, which can be quite
large: larger than the size of commercially available disk farms. However, a modified birthday
collision finder, described in Exercise 8.7, will find a collision with an expected 4

p
N evaluations of

the hash function and constant memory space.
The birthday attack is likely to fail if one makes fewer than

p
N queries to H(·). Suppose we

only make s = ✏
p

N queries to H(·), for some small ✏ 2 [0, 1]. For simplicity we assume that
H(·) outputs digests distributed uniformly in T . Then part (ii) of Theorem B.1 shows that the
probability of finding a collision degrades exponentially to approximately 1� e�(✏2) ⇡ ✏2.

Put di↵erently, if after evaluating the hash function s times an adversary should obtain a
collision with probability at most �, then we need the digest space T to satisfy |T | � s2/�. For
example, if after 280 evaluations of H a collision should be found with probability at most 2�80 then
the digest size must be at least 240 bits. Cryptographic hash functions such as SHA256 output a
256-bit digest. Other hash functions, such as SHA384 and SHA512, output even longer digests,
namely, 384 and 512 bits respectively.

8.4 The Merkle-Damg̊ard paradigm

We now turn to constructing collision resistant hash functions. Many practical constructions follow
the Merkle-Damg̊ard paradigm: start from a collision resistant hash function that hashes short
messages and build from it a collision resistant hash function that hashes much longer messages.
This paradigm reduces the problem of constructing collision resistant hashing to the problem of
constructing collision resistance for short messages, which we address in the next section.

Let h : X ⇥ Y ! X be a hash function. We shall assume that Y is of the form {0, 1}` for some
`. While it is not necessary, typically X is of the form {0, 1}n for some n. The Merkle-Damg̊ard
function derived from h, denoted HMD and shown in Fig. 8.5, is a hash function defined over
({0, 1}L, X ) that works as follows (the pad PB is defined below):

input: M 2 {0, 1}L

output: a tag in X
M̂  M k PB // pad with PB to ensure that the length of M is a multiple of ` bits
partition M̂ into consecutive `-bit blocks so that

M̂ = m1 k m2 k · · · k ms where m1, . . . , ms 2 {0, 1}`
t0  IV 2 X
for i = 1 to s do:

ti  h(ti�1, mi)

output ts

The function SHA256 is a Merkle-Damg̊ard function where ` = 512 and n = 256.
Before proving collision resistance of HMD let us first introduce some terminology for the various

elements in Fig. 8.5:

• The hash function h is called the compression function of H.

• The constant IV is called the initial value and is fixed to some pre-specified value. One could
take IV = 0n, but usually the IV is set to some complicated string. For example, SHA256
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m1

ht0 := IV

m2

ht1

ms

h ts := H(M)

PB· · ·

ts�1t2

Figure 8.5: The Merkle-Damg̊ard iterated hash function

uses a 256-bit IV whose value in hex is

IV := 6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19.

• The variables m1, . . . , ms are called message blocks.

• The variables t0, t1, . . . , ts 2 X are called chaining variables.

• The string PB is called the padding block. It is appended to the message to ensure that
the message length is a multiple of ` bits.

The padding block PB must contain an encoding of the input message length. We will use this
in the proof of security below. A standard format for PB is as follows:

PB := 100 . . . 00 k hsi

where hsi is a fixed-length bit string that encodes, in binary, the number of `-bit blocks in M .
Typically this field is 64-bits which means that messages to be hashed are less than 264 blocks
long. The ‘100 . . . 00’ string is a variable length pad used to ensure that the total message length,
including PB, is a multiple of `. The variable length string ‘100 . . . 00’ starts with a ‘1’ to identify
the position where the pad ends and the message begins. If the message length is such that there
is no space for PB in the last block (for example, if the message length happens to be a multiple
of `), then an additional block is added just for the padding block.

Security of Merkle-Damg̊ard. Next we prove that the Merkle-Damg̊ard function is collision
resistant, assuming the compression function is.

Theorem 8.3 (Merkle-Damg̊ard). Let L be a poly-bounded length parameter and let h be a
collision resistant hash function defined over (X ⇥Y, X ). Then the Merkle-Damg̊ard hash function
HMD derived from h, defined over ({0, 1}L, X ), is collision resistant.

In particular, for every collision finder A attacking HMD (as in Attack Game 8.1) there exists a
collision finder B attacking h, where B is an elementary wrapper around A, such that

CRadv[A, HMD] = CRadv[B, h].

Proof. The collision finder B for finding h-collisions works as follows: it first runs A to obtain two
distinct messages M and M 0 in {0, 1}L such that HMD(M) = HMD(M 0). We show that B can use
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M and M 0 to find an h-collision. To do so, B scans M and M 0 starting from the last block and
works its way backwards. To simplify the notation, we assume that M and M 0 already contain the
appropriate padding block PB in their last block.

Let M = m1m2 . . . mu be the u blocks of M and let M 0 = m0
1m

0
2 . . . m0

v be the v blocks of M 0.
We let t0, t1, . . . , tu 2 X be the chaining values for M and t00, t01, . . . , t0s 2 X be the chaining values
for M 0. The very last application of h gives the final output digest and since HMD(M) = HMD(M 0)
we know that

h(tu�1, mu) = h(t0v�1, m
0
v).

If either tu�1 6= t0v�1 or mu 6= m0
v then the pair of inputs (tu�1, mu) and (t0v�1, m

0
v) is an h-collision.

B outputs this collision and terminates.
Otherwise, tu�1 = t0v�1 and mu = m0

v. Recall that the padding blocks are contained in mu and
m0

v and these padding blocks contain an encoding of u and v. Therefore, since mu = m0
v we deduce

that u = v so that M and M 0 must contain the same number of blocks.
At this point we know that u = v, mu = m0

u, and tu�1 = t0u�1. We now consider the second-
to-last block. Since tu�1 = t0u�1 we know that

h(tu�2, mu�1) = h(t0u�2, m
0
u�1).

As before, if either tu�2 6= t0u�2 or mu�1 6= m0
u�1 then B just found an h-collision. It outputs this

collision and terminates.
Otherwise, we know that tu�2 = t0u�2 and mu�1 = m0

u�1 and mu = m0
u. We now consider the

third block from the end. As before, we either find an h-collision or deduce that mu�2 = m0
u�2

and tu�3 = t0u�3. We keep iterating this process moving from right to left one block at a time. At
the ith block one of two things happens. Either the pair of messages (ti�1, mi) and (t0i�1, m

0
i) is an

h-collision, in which case B outputs this collision and terminates. Or we deduce that ti�1 = t0i�1
and mj = m0

j for all j = i, i + 1, . . . , u.
Suppose this process continues all the way to the first block and we still did not find an h-

collision. Then at this point we know that mi = m0
i for i = 1, . . . , u. But this implies that M = M 0

contradicting the fact that M and M 0 were a collision for HMD. Hence, since M 6= M 0, the process
of scanning blocks of M and M 0 from right to left must produce an h-collision. We conclude that
B breaks the collision resistance of h as required.

In summary, we showed that whenever A outputs an HMD-collision, B outputs an h-collision.
Hence, CRadv[A, HMD] = CRadv[B, h] as required. 2

Variations. Note that the Merkle-Damg̊ard construction is inherently sequential — the ith block
cannot be hashed before hashing all previous blocks. This makes it di�cult to take advantage of
hardware parallelism when available. In Exercise 8.8 we investigate a di↵erent hash construction
that is better suited for a multi-processor machine.

The Merkle-Damg̊ard theorem (Theorem 8.3) shows that collision resistance of the compression
function is su�cient to ensure collision resistance of the iterated function. This condition, however,
is not necessary. Black, Rogaway, and Shrimpton [17] give several examples of compression functions
that are clearly not collision resistant, and yet the resulting iterated Merkle-Damg̊ard functions are
collision resistant.
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8.4.1 Joux’s attack

We briefly describe a cute attack that applies specifically to Merkle-Damg̊ard hash functions. Let
H1 and H2 be Merkle-Damg̊ard hash functions that output tags in X := {0, 1}n. Define H12(M) :=
H1(M) k H2(M) 2 {0, 1}2n. One would expect that finding a collision for H12 should take time at
least ⌦(2n). Indeed, this would be the case if H1 and H2 were independent random functions.

We show that when H1 and H2 are Merkle-Damg̊ard functions we can find collisions for H in
time approximately n2n/2 which is far less than 2n. This attack illustrates that our intuition about
random functions may lead to incorrect conclusions when applied to a Merkle-Damg̊ard function.

We say that an s-collision for a hash function H is a set of messages M1, . . . , Ms 2M such that
H(M1) = . . . = H(Ms). Joux showed how to find an s-collision for a Merkle-Damg̊ard function in
time O((log2 s)|X |1/2). Using Joux’s method we can find a 2n/2-collision M1, . . . , M2n/2 for H1 in
time O(n2n/2). Then, by the birthday paradox it is likely that two of these messages, say Mi, Mj ,
are also a collision for H2. This pair Mi, Mj is a collision for both H1 and H2 and therefore a
collision for H12. It was found in time O(n2n/2), as promised.

Finding s-collisions. To find an s-collision, let H be a Merkle-Damg̊ard function over (M, X )
built from a compression function h. We find an s-collision M1, . . . , Ms 2M where each message
Mi contains log2 s blocks. For simplicity, assume that s is a power of 2 so that log2 s is an integer.
As usual, we let t0 denote the Initial Value (IV) used in the Merkle-Damg̊ard construction.

The plan is to use the birthday attack log2 s times on the compression function h. We first
spend time 2n/2 to find two distinct blocks m0, m0

0 such that (t0, m0) and (t0, m0
0) collide under h.

Let t1 := h(t0, m0). Next we spend another 2n/2 time to find two distinct blocks m1, m0
1 such that

(t1, m1) and (t1, m0
1) collide under h. Again, we let t2 := h(t1, m1) and repeat. We iterate this

process b := log2 s times until we have b pairs of blocks:

(mi, m
0
i) for i = 0, 1, . . . b� 1 that satisfy h(ti, mi) = h(ti, m

0
i).

Now, consider the message M = m0m1 . . . mb�1. The main point is that replacing any block mi in
this message by m0

i will not change the chaining value ti+1 and therefore the value of H(M) will
not change. Consequently, we can replace any subset of m0, . . . , mb�1 by the corresponding blocks
in m0

0, . . . , m
0
b�1 without changing H(M). As a result we obtain s = 2b messages

m0m1 . . . mb�1

m0
0m1 . . . mb�1

m0m0
1 . . . mb�1

m0
0m

0
1 . . . mb�1

...
m0

0m
0
1 . . . m0

b�1

that all hash to same value under H. In summary, we found a 2b-collision in time O(b2n/2). As
explained above, this lets us find collisions for H(M) := H1(M) k H2(M) in time O(n2n/2).

8.5 Building Compression Functions

The Merkle-Damg̊ard paradigm shows that to construct a collision resistant hash function for long
messages it su�ces to construct a collision resistant compression function h for short blocks. In
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E
L

y := mi 2 K

x := ti�1

ti := E(mi, ti�1)� ti�1 2 X

Figure 8.6: The Davies-Meyer compression function

this section we describe a few candidate compression functions. These constructions fall into two
categories:

• Compression functions built from a block cipher. The most widely used method is called
Davies-Meyer. The SHA family of cryptographic hash functions all use Davies-Meyer.

• Compression functions using number theoretic primitives. These are elegant constructions
with clean proofs of security. Unfortunately, they are generally far less e�cient than the first
method.

8.5.1 A simple but ine�cient compression function

We start with a compression function built using modular arithmetic. Let p be a large prime such
that q := (p � 1)/2 is also prime. Let x and y be suitably chosen integers in the range [1, q].
Consider the following simple compression function that takes as input two integers in [1, q] and
outputs an integer in [1, q]:

H(a, b) = abs(xayb mod p), where abs(z) :=

(

z if z  q,

p� z if z > q.
(8.3)

We will show later in Exercise 10.18 that this function is collision resistant assuming a certain
standard number theoretic problem is hard. Applying the Merkle-Damg̊ard paradigm to this func-
tion gives a collision resistant hash function for arbitrary size inputs. Although this is an elegant
collision resistant hash with a clean security proof, it is far less e�cient than functions derived from
the Davies-Meyer construction and, as a result, is hardly ever used in practice.

8.5.2 Davies-Meyer compression functions

In Chapter 4 we spent the e↵ort to build secure block ciphers like AES. It is natural to ask whether
we can leverage these constructions to build fast compression functions. The Davies-Meyer method
enables us to do just that, but security can only be shown in the ideal cipher model.

Let E = (E, D) be a block cipher over (K, X ) where X = {0, 1}n. The Davies-Meyer com-
pression function derived from E maps inputs in X ⇥ K to outputs in X . The function is
defined as follows:

hDM(x, y) := E(y, x)� x

and is illustrated in Fig. 8.6. In symbols, hDM is defined over (X ⇥K, X ).
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Matyas-Meyer-Oseas Miyaguchi-Preneel

Eg
L

y := mi 2 X

x := ti�1
ti 2 X Eg

L

y := mi 2 X

x := ti�1
ti 2 X

Figure 8.7: Other block cipher compression functions

When plugging this compression function into the Merkle-Damg̊ard paradigm the inputs are a
chaining variable x := ti�1 2 X and a message block y := mi 2 K. The output is the next chaining
variable ti := E(mi, ti�1)� ti�1 2 X . Note that the message block is used as the block cipher key
which seems a bit odd since the adversary has full control over the message. Nevertheless, we will
show that hDM is collision resistant and therefore the resulting Merkle-Damg̊ard function is collision
resistant.

When using hDM in Merkle-Damg̊ard the block cipher key (mi) changes from one message block
to the next, which is an unusual way of using a block cipher. Common block ciphers are optimized
to encrypt long messages with a fixed key; changing the block cipher key on every block can slow
down the cipher. Consequently, using Davies-Meyer with an o↵-the-shelf block cipher such as AES
will result in a relatively slow hash function. Instead, one uses a custom block cipher specifically
designed for rapid key changes.

Another reason to not use an o↵-the-shelf block cipher in Davies-Meyer is that the block size
may be too short, for example 128 bits for AES. An AES-based compression function would produce
a 128-bit output which is much too short for collision resistance: a collision could be found with
only 264 evaluations of the function. In addition, o↵-the-shelf block ciphers use relatively short
keys, say 128 bits long. This would result in Merkle-Damg̊ard processing only 128 message bits per
round. Typical ciphers used in Merkle-Damg̊ard hash functions use longer keys (typically, 512-bits
or even 1024-bits long) so that many more message bits are processed in every round.

Davies-Meyer variants. The Davies-Meyer construction is not unique. Many other similar
methods can convert a block cipher into a collision resistant compression function. For example,
one could use

Matyas-Meyer-Oseas: h1(x, y) := E(x, y)� y
Miyaguchi-Preneel: h2(x, y) := E(x, y)� y � x
Or even: h3(x, y) := E(x� y, y)� y

or many other such variants. Preneel et al. [89] give twelve di↵erent variants that can be shown to
be collision resistant.

The Matyas-Meyer-Oseas function h1 is similar to Davies-Meyer, but reverses the roles of the
chaining variable and the message block — in h1 the chaining variable is used as the block cipher
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key. The function h1 maps elements in (K ⇥ X ) to X . Therefore, to use h1 in Merkle-Damg̊ard
we need an auxiliary encoding function g : X ! K that maps the chaining variable ti�1 2 X to
an element in K, as shown in Fig. 8.7. The same is true for the Miyaguchi-Preneel function h2.
The Davies-Meyer function does not need such an encoding function. We note that the Miyaguchi-
Preneel function has a minor security advantage over Davies-Meyer, as discussed in Exercise 8.14.

Many other natural variants of Davies-Meyer are totally insecure. For example, for the following
functions

h4(x, y) := E(y, x)� y

h5(x, y) := E(x, x� y)� x

we can find collisions in constant time (see Exercise 8.10).

8.5.3 Collision resistance of Davies-Meyer

We cannot prove that Davies-Meyer is collision resistant by assuming a standard complexity as-
sumption about the block cipher. Simply assuming that E = (E, D) is a secure block cipher is
insu�cient for proving that hDM is collision resistant. Instead, we have to model the block cipher
as an ideal cipher.

We introduced the ideal cipher model back in Section 4.7. Recall that this is a heuristic technique
in which we treat the block cipher as if it were a family of random permutations. If E = (E, D) is
a block cipher with key space K and data block space X , then the family of random permutations
is {⇧k }k 2K, where each ⇧k is a truly random permutation on X , and the ⇧k ’s collectively are
mutually independent.

Attack Game 8.1 can be adapted to the ideal cipher model, so that before the adversary outputs
a collision, it may make a series of ⇧-queries and ⇧�1-queries to its challenger.

• For a ⇧-query, the adversary submits a pair (k , a) 2 K⇥X , to which the challenger responds
with b := ⇧k (a).

• For a ⇧�1-query, the adversary submits a pair (k , b) 2 K⇥X , to which the challenger responds
with a := ⇧�1

k (b).

After making these queries, the adversary attempts to output a collision, which in the case of
Davies-Meyer, means (x, y) 6= (x0, y0) such that

⇧y(x)� x = ⇧y0(x
0)� x0.

The adversary A’s advantage in finding a collision for hDM in the ideal cipher model is denoted
CRic

adv[A, hDM], and security in the ideal cipher model means that this advantage is negligible for
all e�cient adversaries A.

Theorem 8.4 (Davies-Meyer). Let hDM be the Davies-Meyer hash function derived from a block
cipher E = (E, D) defined over (K, X ), where |X | is large. Then hDM is collision resistant in the
ideal cipher model.

In particular, every collision finding adversary A that issues at most q ideal-cipher queries will
satisfy

CRic
adv[A, hDM]  (q + 1)(q + 2)/|X |.
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The theorem shows that Davies-Meyer is an optimal compression function: the adversary must
issue q = ⌦(

p|X |) queries (and hence must run for at least that amount of time) if he is to find a
collision for hDM with constant probability. No compression function can have higher security due
to the birthday attack.

Proof. Let A be a collision finder for hDM that makes at most a total of q ideal cipher queries.
We shall assume that A is “reasonable”: before A outputs its collision attempt (x, y), (x0, y0), it
makes corresponding ideal cipher queries: for (x, y), either a ⇧-query on (y, x) or a ⇧�1-query on
(y, ·) that yields x, and similarly for (x0, y0). If A is not already reasonable, we can make it so by
increasing total number of queries to at most q0 := q + 2. So we will assume A is reasonable and
makes at most q0 ideal cipher queries from now on.

For i = 1, . . . , q0, the ith ideal cipher query defines a triple (k i, ai, bi): for a ⇧-query (k i, ai), we
set bi := ⇧k

i

(ai), and for a ⇧�1-query (k i, bi), we set ai := ⇧�1
k
i

(bi). We assume that A makes no

extraneous queries, so that no triples repeat.
If the adversary outputs a collision, then by our reasonableness assumption, for some distinct

pair of indices i, j = 1, . . . , q0, we have ai � bi = aj � bj . Let us call this event Z. So we have

CRic
adv[A, hDM]  Pr[Z].

Our goal is to show

Pr[Z]  q0(q0 � 1)

2n
, (8.4)

where |X | = 2n.
Consider any fixed indices i < j. Conditioned on any fixed values of the adversary’s coins and

the first j � 1 triples, one of aj and bj is completely fixed, while the other is uniformly distributed
over a set of size at least |X |� j + 1. Therefore,

Pr[ai � bi = aj � bj ]  1

2n � j + 1
.

So by the union bound, we have

Pr[Z] 
q0
X

j=1

j�1
X

i=1

Pr[ai � bi = aj � bj ] 
q0
X

j=1

j � 1

2n � j + 1


q0
X

j=1

j � 1

2n � q0
=

q0(q0 � 1)

2(2n � q0)
. (8.5)

For q0  2n�1 this bound simplifies to Pr[Z]  q0(q0�1)/2n. For q0 > 2n�1 the bound holds trivially.
Therefore, (8.4) holds for all q0. 2

8.6 Case study: SHA256

The Secure Hash Algorithm (SHA) was published by NIST in 1993 [FIPS 180] as part of the design
specification of the Digital Signature Standard (DSS). This hash function, often called SHA-0,
outputs 160-bit digests. Two years later, in 1995, NIST updated the standard [FIPS 180-1] by
adding one extra instruction to the compression function. The resulting function is called SHA-1.
NIST gave no explanation for this change, but it was later found that this extra instruction is
crucial for collision resistance. SHA-1 became the de-facto standard for collision resistant hashing
and is very widely deployed.
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digest message Speed2 best known
Name year size block size MB/sec attack time
SHA-0 1993 160 512 239

SHA-1 1995 160 512 153 263

SHA224 2004 224 512
SHA256 2002 256 512 111
SHA384 2002 384 1024
SHA512 2002 512 1024 99
MD4 1990 128 512 21

MD5 1992 128 512 255 230

Whirpool 2000 512 512 57

Table 8.1: Merkle-Damg̊ard collision resistant hash functions

The birthday attack can find collisions for SHA-1 using an expected 280 evaluations of the
function. In 2002 NIST added [FIPS 180-2] two new hash functions to the SHA family: SHA256
and SHA512. They output larger digests (256 and 512-bit digests respectively) and therefore
provide better protection against the birthday attack. NIST also approved SHA224 and SHA384
which are obtained from SHA256 and SHA512 respectively by truncating the output to 224 and
384 bits. These and a few other proposed hash functions are summarized in Table 8.1.

The years 2004–5 were bad years for collision resistant hash functions. A number of new
attacks showed how to find collisions for a variety of hash functions. In particular, Wang, Yao,
and Yao [103] presented a collision finder for SHA-1 that uses 263 evaluations of the function — far
less than the birthday attack. As a result SHA-1 is no longer considered collision resistant. The
current recommended practice is to use SHA256 which we describe here.

The SHA256 function. SHA256 is a Merkle-Damg̊ard hash function using a Davies-Meyer
compression function h. This h takes as input a 256-bit chaining variable t and a 512-bit message
block m. It outputs a 256-bit chaining variable.

We first describe the SHA256 Merkle-Damg̊ard chain. Recall that the padding block PB in our
description of Merkle-Damg̊ard contained a 64-bit encoding of the number of blocks in the message
being hashed. The same is true for SHA256 with the minor di↵erence that PB encodes the number
of bits in the message. Hence, SHA256 can hash messages that are at most 264 � 1 bits long. The
Merkle-Damg̊ard Initial Value (IV) in SHA256 is set to:

IV := 6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19 2 {0, 1}256

written in base 16.
Clearly the output of SHA256 can be truncated to obtain shorter digests at the cost of reduced

security. This is, in fact, how the SHA224 hash function works — it is identical to SHA256 with
two exceptions: (1) SHA224 uses a di↵erent initialization vector IV, and (2) SHA224 truncates the
output of SHA256 to its left most 224 bits.

2Performance numbers were provided by Wei Dai using the Crypto++ 5.6.0 benchmarks running on a 1.83 GhZ
Intel Core 2 processor. Higher numbers are better.
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Next, we describe the SHA256 Davies-Meyer compression function h. It is built from a block
cipher which we denote by ESHA256. However, instead of using XOR as in Davies-Meyer, SHA256
uses addition modulo 232. That is, let

x0, x1, . . . , x7 2 {0, 1}32 and y0, y1, . . . , y7 2 {0, 1}32

and set
x := x0 k · · · k x7 2 {0, 1}256 and y := y0 k · · · k y7 2 {0, 1}256.

Define: x � y := (x0 + y0) k · · · k (x7 + y7) 2 {0, 1}256 where all additions are modulo 232.
Then the SHA256 compression function h is defined as:

h(t, m) := ESHA256(m, t) � t 2 {0, 1}256.
Our ideal cipher analysis of Davies-Meyer (Theorem 8.4) applies equally well to this modified
function.

The SHA256 block cipher. To complete the description of SHA256 it remains to describe the
block cipher ESHA256. The algorithm makes use of a few auxiliary functions defined in Table 8.2.
Here, SHR and ROTR denote the standard shift-right and rotate-right functions.

The cipher ESHA256 takes as input a 512-bit key k and a 256-bit message t. We first break both
the key and the message into 32-bit words. That is, write:

k := k0 k k1 k · · · k k15 2 {0, 1}512
t := t0 k t1 k · · · k t7 2 {0, 1}256

where each ki and ti is in {0, 1}32.
The code for ESHA256 is shown in Table 8.3. It iterates the same round function 64 times. In

each round the cipher uses a round key Wi 2 {0, 1}32 defined recursively during the key setup step.
One cipher round, shown in Fig. 8.8, looks like two adjoined Feistel rounds. The cipher uses 64
fixed constants K0, K1, . . . , K63 2 {0, 1}32 whose values are specified in the SHA256 standard. For
example, K0 := 428A2F98 and K1 := 71374491, written base 16.

Interestingly, NIST never gave the block cipher ESHA256 an o�cial name. The cipher was given
the uno�cial name SHACAL-2 by Handschuh and Naccache (submission to NESSIE, 2000).
Similarly, the block cipher underlying SHA-1 is called SHACAL-1. The SHACAL-2 block cipher is
identical to ESHA256 with the only di↵erence that it can encrypt using keys shorter than 512 bits.
Given a key k 2 {0, 1}512 the SHACAL-2 cipher appends zeros to the key to get a 512-bit key.
It then applies ESHA256 to the given 256-bit message block. Decryption in SHACAL-2 is similar to
encryption. This cipher is well suited for applications where SHA256 is already implemented, thus
reducing the overall size of the crypto code.

8.6.1 Other Merkle-Damg̊ard hash functions

MD4 and MD5. Two cryptographic hash functions designed by Rivest in 1990–1 [90, 91]. Both
are Merkle-Damg̊ard hash functions that output a 128-bit digest. They are quite similar, although
MD5 uses a stronger compression function than MD4. Collisions for both hash functions can be
found e�ciently as described in Table 8.1. Consequently, these hash functions should no longer be
used.
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For x, y, z in {0, 1}32 define:

SHRn(x) := (x >> n) (Shift Right)
ROTRn(x) := (x >> n) _ (x << 32� n) (Rotate Right)

Ch(x, y, z) := (x ^ y)� (¬x ^ z)
Maj(x, y, z) := (x ^ y)� (x ^ z)� (y ^ z)

⌃0(x) := ROTR2(x)� ROTR13(x)� ROTR22(x)
⌃1(x) := ROTR6(x)� ROTR11(x)� ROTR25(x)
�0(x) := ROTR7(x)� ROTR18(x)� SHR3(x)
�1(x) := ROTR17(x)� ROTR19(x)� SHR10(x)

Table 8.2: Functions used in the SHA256 block cipher

Input: plaintext t = t0 k · · · k t7 2 {0, 1}256 and
key k = k0 k k1 k · · · k k15 2 {0, 1}512

Output: ciphertext in {0, 1}256.
// Here all additions are modulo 232.
// The algorithm uses constants K0, K1, . . . , K63 2 {0, 1}32

Key setup: Construct 64 round keys W0, . . . , W63 2 {0, 1}32:
(

for i = 0, 1, . . . , 15 set Wi  ki,

for i = 16, 17, . . . , 63 set Wi  �1(Wi�2) + Wi�7 + �0(Wi�15) + Wi�16

64 Rounds:
�

a0, b0, c0, d0, e0, f0, g0, h0
�  �

t0, t1, t2, t3, t4, t5, t6, t7
�

for i = 0 to 63 do:
T1  hi + ⌃1(ei) + Ch(ei, fi, gi) + Ki + Wi

T2  ⌃0(ai) + Maj(ai, bi, ci)
�

ai+1, bi+1, ci+1, di+1, ei+1, fi+1, gi+1, hi+1
�  

�

T1 + T2, ai, bi, ci, di + T1, ei, fi, gi
�

Output: a64 k b64 k c64 k d64 k e64 k f64 k g64 k h64 2 {0, 1}256

Table 8.3: The SHA256 block cipher
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ai bi ci di eifigihi

ai+1 bi+1 ci+1 di+1 ei+1fi+1gi+1hi+1

L L

F1(ai, bi, ci, ei, fi, gi) F2(ei, fi, gi, hi)

F1(a, b, c, e, f, g) := ⌃1(e) + Ch(e, f, g) + ⌃0(a) + Maj(a, b, c) + Ki + Wi

F2(e, f, g, h) := h + ⌃1(e) + Ch(e, f, g) + Ki + Wi

Figure 8.8: One round of the SHA256 block cipher

Whirpool. Whirlpool was designed by Barreto and Rijmen in 2000 and was adopted as an
ISO/IEC standard in 2004. Whirpool is a Merkle-Damg̊ard hash function. Its compression function
uses the Miyaguchi-Preneel method (Fig. 8.7) with a block cipher called W . This block cipher is
very similar to AES, but has a 512-bit block size. The resulting hash output is 512-bits.

Others. Many other Merkle-Damg̊ard hash functions were proposed in the literature. Some
examples include Tiger/192 [12] and RIPEMD-160 to name a few.

8.7 Case study: HMAC

In this section, we return to our problem of building a secure MAC that works on long messages.
Merkle-Damg̊ard hash functions such as SHA1 and SHA256 are very widely deployed. Most Crypto
libraries include an implementation of multiple Merkle-Damg̊ard functions. Furthermore, these
implementations are very fast: one can typically hash a very long message with SHA256 much
faster than one can apply, say, CBC-MAC with AES to the same message.

Of course, one might use the hash-then-MAC construction analyzed in Section 8.2. Recall that
in this construction, we combine a secure MAC system I = (S, V ) and a collision resistant hash
function H, so that the resulting signing algorithm signs a message m by first hashing m using H
to get a short digest H(m), and then signs H(m) using S to obtain the MAC tag t = S(k, H(m)).
As we saw in Theorem 8.1 the resulting construction is secure. However, this construction is not
very widely deployed. Why?

First of all, as discussed after the statement of Theorem 8.1, if one can find collisions in H,
then the hash-then-MAC construction is completely broken. A collision-finding attack, such as a
birthday attack (Section 8.3), or a more sophisticated attack, can be carried out entirely o✏ine,
that is, without the need to interact with any users of the system. In contrast, online attacks
require many interactions between the adversary and honest users of the system. In general, o✏ine
attacks are considered especially dangerous since an adversary can invest huge computing resources
over an extended period of time: in an attack on hash-then-MAC, an attacker could spend months
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quietly computing on many machines to find a collision on H, without arousing any suspicions.
Another reason not to use the hash-then-MAC construction directly is that we need both a hash

function H and a MAC system I. So an implementation might need software and/or hardware to
execute both, say, SHA256 for the hash and CBC-MAC with AES for the MAC. All other things
being equal, it would be nice to simply use one algorithm as the basis for a MAC.

This leads us to the following problem: how to take a keyless Merkle-Damg̊ard hash function,
such as SHA256, and use it somehow to implement a keyed function that is a secure MAC, or even
better, a secure PRF. Moreover, we would like to be able to prove the security of this construction
under an assumption that is (qualitatively, at least) weaker than collision resistance; in particular,
the construction should not be susceptible to an o✏ine collision-finding attack on the underlying
compression function.

Assume that H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n ⇥
{0, 1}` ! {0, 1}n. A few simple approaches come to mind.

Prepend the key: Fpre(k, M) := H(k kM). This is completely insecure, because of the following
extension attack: given Fpre(k, M), one can easily compute Fpre(k, M k PB k M 0) for any
M 0. Here, PB is the Merkle-Damg̊ard padding block for the message k kM . Aside from this
extension attack, the construction is secure, under reasonable assumptions (see Exercise 8.17).

Append the key: Fpost(k, M) := H(M k k). This is somewhat similar to the hash-then-MAC
construction, and relies on the collision resistance of h. Indeed, it is vulnerable to an o✏ine
collision-finding attack: assuming we find two distinct `-bit strings M0 and M1 such that
h(IV, M0) = h(IV, M1), then we have Fpost(k, M0) = Fpost(k, M1). For these reasons, this
construction does not solve our problem. However, under the right assumptions (including
the collision resistance of h, of course), we can still get a security proof (see Exercise 8.18).

Envelope method: Fenv(k, M) := H(k k M k k). Under reasonable pseudorandomness assump-
tions on h, and certain formatting assumptions (that k is an `-bit string and M is padded
out to a bit string whose length is a multiple of `), this can be proven to be a secure PRF.
See Exercise 8.16.

Two-key nest: Fnest((k1, k2), M) := H(k2 k H(k1 k M)). Under reasonable pseudorandomness
assumptions on h, and certain formatting assumptions (that k1 and k2 are `-bit strings), this
can also be proven to be a secure PRF.

The two-key nest is very closely related to a classic MAC construction known as HMAC.
HMAC is the most widely deployed MAC on the Internet. It is used in SSL, TLS, IPsec, SSH, and
a host of other security protocols. TLS and IPsec also use HMAC as a means for deriving session
keys during session setup. We will give a security analysis of the two-key nest, and then discuss its
relation to HMAC.

8.7.1 Security of two-key nest

We will now show that the two-key nest is indeed a secure PRF, under appropriate psuedorandom-
ness assumptions on h. Let us start by “opening up” the definition of Fnest((k1, k2), M), using the
fact that H is a Merkle-Damg̊ard hash built from h. See Fig. 8.9. The reader should study this
figure carefully. We are assuming that the keys k1 and k2 are `-bit strings, so they each occupy
one full message block. The input to the inner evaluation of H is the padded string k1 kM k PBi,
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hIV k0
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· · ·
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hIV k0
2

t k PBo

h

Figure 8.9: The two-key nest

which is broken into `-bit blocks as shown. The output of the inner evaluation of H is the n-bit
string t. The input to the outer evaluation of H is the padded string k2 k t k PBo. We shall assume
that n is significantly smaller than `, so that t k PBo is a single `-bit block, as shown in the figure.

We now state the pseudorandomness assumptions we need. We define the following two PRFs
hbot and htop derived from h:

hbot(k, m) := h(k, m) and htop(k, m) := h(m, k). (8.6)

For the PRF hbot, the PRF key k is viewed as the first input to h, i.e., the n-bit chaining variable
input, which is the bottom input to the h-boxes in Fig. 8.9. For the PRF htop, the PRF key k
is viewed as the second input to h, i.e., the `-bit message block input, which is the top input to
the h-boxes in the figure. To make the figure easier to understand, we have decorated the h-box
inputs with a > symbol, which indicates which input is to be viewed as a PRF key. Indeed, the
reader will observe that we will treat the two evaluations of h that appear within the dotted boxes
as evaluations of the PRF htop, so that the values labeled k0

1 and k0
2 in the figure are computed

as k0
1  htop(k1, IV) and k0

2  htop(k2, IV). All of the other evaluations of h in the figure will be
treated as evaluations of hbot.

Our assumption will be that hbot and htop are both secure PRFs. Later, we will use the ideal ci-
pher model to justify this assumption for the Davies-Meyer compression function (see Section 8.7.3).

We will now sketch a proof of the following result:

If hbot and htop are secure PRFs, then so is the two-key nest.

The first observation is that the keys k1 and k2 are only used to derive k0
1 and k0

2 as k0
1 =

htop(k1, IV) and k0
2 = htop(k2, IV). The assumption that htop is a secure PRF means that in the

PRF attack game, we can e↵ectively replace k0
1 and k0

2 by truly random n-bit strings. The resulting
construction drawn in Fig. 8.10. All we have done here is to throw away all of the elements in
Fig. 8.9 that are within the dotted boxes. The function in this new construction takes as input
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Figure 8.10: A bit-wise version of NMAC

the two keys k0
1 and k0

2 and a message M . By the above observations, it su�ces to prove that the
construction in Fig. 8.10 is a secure PRF.

Hopefully (without reading the caption), the reader will recognize the construction in Fig. 8.10
as none other than NMAC applied to hbot, which we introduced in Section 6.5.1 (in particular,
take a look at Fig. 6.5b). Actually, the construction in Fig. 8.10 is a bit-wise version of NMAC,
obtained from the block-wise version via padding (as discussed in Section 6.8). Thus, security for
the two-key nest now follows directly from the NMAC security theorem (Theorem 6.7) and the
assumption that hbot is a secure PRF.

8.7.2 The HMAC standard

The HMAC standard is exactly the same as the two-key nest (Fig. 8.9), but with one important
di↵erence: the keys k1 and k2 are not independent, but rather, are derived in a somewhat ad hoc
way from a single key k.

To describe this in more detail, we first observe that HMAC itself is somewhat byte oriented, so
all strings are byte strings. Message blocks for the underlying Merkle-Damg̊ard hash are assumed
to be B bytes (rather than ` bits). A key k for HMAC is a byte string of arbitrary length. To
derive the keys k1 and k2, which are byte strings of length B, we first make k exactly B bytes long:
if the length of k is less than or equal to B, we pad it out with zero bytes; otherwise, we replace it
with H(k) padded with zero bytes. Then we compute

k1  k � ipad and k2  k � opad,

where ipad and opad (“i” and “o” stand for “inner” and “outer”) are B-byte constant strings,
defined as follows:

ipad = the byte 0x36 repeated B times
opad = the byte 0x5C repeated B times

HMAC implemented using a hash function H is denoted HMAC-H. The most common HMACs
used in practice are HMAC-SHA1 and HMAC-SHA256. The HMAC standard also allows the output
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of HMAC to be truncated. For example, when truncating the output of SHA1 to 80 bits, the HMAC
function is denoted HMAC-SHA1-80. Implementations of TLS 1.0, for example, are required to
support HMAC-SHA1-96.

Security of HMAC. Since the keys k0
1, k

0
2 are related — their XOR is equal to opad � ipad —

the security proof we gave for the two-key nest no longer applies: under the stated assumptions,
we cannot justify the claim that the derived keys k0

1, k
0
2 are indistinguishable from random. One

solution is to make a stronger assumption about the compression function h – one needs to assume
that htop remains a PRF under a related key attack (as defined by Bellare and Kohno [6]). If h is
itself a Davies-Meyer compression function, then this stronger assumption can be justified in the
ideal cipher model.

8.7.3 Davies-Meyer is a secure PRF in the ideal cipher model

It remains to justify our assumption that the PRFs hbot and htop derived from h in (8.6) are secure.
Suppose the compression function h is a Davies-Meyer function, that is h(x, y) := E(y, x)� x for
some block cipher E = (E, D). Then

• hbot(k, m) := h(k, m) = E(m, k)� k is a PRF defined over(X , K, X ), and

• htop(k, m) := h(m, k) = E(k, m)�m is a PRF defined over(K, X , X )

When E is a secure block cipher, the fact that htop is a secure PRF is trivial (see Exercise 4.1
part (c)). The fact that hbot is a secure PRF is a bit surprising — the message m given as input
to hbot is used as the key for E. But m is chosen by the adversary and hence E is evaluated with
a key that is completely under the control of the adversary. As a result, even though E is a secure
block cipher, there is no security guarantee for hbot. Nevertheless, we can prove that hbot is a
secure PRF, but this requires the ideal cipher model. Just assuming that E is a secure block cipher
is insu�cient.

If necessary, the reader should review the basic concepts regarding the ideal cipher model,
which was introduced in Section 4.7. We also used the ideal cipher model earlier in this chapter
(see Section 8.5.3).

In the ideal cipher model, we heuristically model a block cipher E = (E, D) defined over (K, X )
as a family of random permutations {⇧k }k 2K. We adapt the PRF Attack Game 4.2 to work in
the ideal cipher model. The challenger, in addition to answering standard queries, also answers ⇧-
queries and ⇧�1-queries: a ⇧-query is a pair (k , a) to which the challenger responds with b := ⇧k (a);
a ⇧�1-query is a pair (k , b) to which is the challenger responds with a := ⇧�1

k (b). For a standard

query m, the challenger responds with v := f(m): in Experiment 0 of the attack game, f is F (k, ·),
where F is a PRF and k is a randomly chosen key; in Experiment 1, f is a truly random function.
Moreover, in Experiment 0, F is evaluated using the random permutations in the role of E and D
used in the construction of F . For our PRF hbot(k, m) = E(m, k)� k = ⇧m(k)� k.

For an adversary A, we define PRFic
adv[A, F ] to be the advantage in the modified PRF attack

game, and security in the ideal cipher model means that this advantage is negligible for all e�cient
adversaries.

Theorem 8.5 (Security of hbot). Let E = (E, D) be a block cipher over (K, X ), where |X | is
large. Then hbot(k, m) := E(m, k)� k is a secure PRF in the ideal cipher model.
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In particular, for every PRF adversary A attacking hbot and making at most a total of Qic ideal
cipher queries, we have

PRFic
adv[A, hbot]  2Qic

|X | .

The bound in the theorem is fairly tight, as brute-force key search gets very close to this bound.

Proof. The proof will mirror the analysis of the Evan-Mansour/EX constructions (see Theorem 4.14
in Section 4.7.4), and in particular, will make use of the Domain Separation Lemma (see Theo-
rem 4.15, also in Section 4.7.4).

Let A be an adversary as in the statement of the theorem. Let pb be the probability that A
outputs 1 in Experiment b of Attack Game 4.2, for b = 0, 1. So by definition we have

PRFic
adv[A, hbot] = |p0 � p1|. (8.7)

We shall prove the theorem using a sequence of two games, applying the Domain Separation
Lemma.

Game 0. The game will correspond to Experiment 0 of the PRF attack game in the idea cipher
model. We can write the logic of the challenger as follows:

Initialize:
for each k 2 K, set ⇧k  R Perms[X ]
k  R X

standard hbot-query m:
1. c ⇧m(k)
2. v  c� k
3. return v

The challenger in Game 0 processes ideal cipher queries exactly as in Game 0 of the proof of
Theorem 4.14:

ideal cipher ⇧-query k , a:
1. b  ⇧k (a)
2. return b

ideal cipher ⇧�1-query k , b:
1. a  ⇧�1

k (b)

2. return a

Let W0 be the event that A outputs 1 at the end of Game 0. It should be clear from construction
that

Pr[W0] = p0. (8.8)

Game 1. Just as in the proof of Theorem 4.14, we declare “by fiat” that standard queries and
ideal cipher queries are processed using independent random permutations. In detail (changed from
Game 0 are highlighted):
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Initialize:

for each k 2 K, set ⇧std,k  R Perms[X ] and ⇧ic,k  R Perms[X ]

k  R X
standard hbot-query m:

1. c ⇧std,m(k) // add k to sampled domain of ⇧std,m, add c to sampled range of ⇧std,m

2. v  c� k
3. return v

The challenger in Game 1 processes ideal cipher queries exactly as in Game 1 of the proof of
Theorem 4.14:

ideal cipher ⇧-query k , a:

1. b  ⇧ic,k (a) // add a to sampled domain of ⇧ic,k , add b to sampled range of ⇧ic,k

2. return b

ideal cipher ⇧�1-query k , b:

1. a  ⇧�1
ic,k (b) // add a to sampled domain of ⇧ic,k , add b to sampled range of ⇧ic,k

2. return a

Let W1 be the event that A outputs 1 at the end of Game 1. Consider an input/output pair
(m, v) for a standard query in Game 2. Observe that k is the only item ever added to the sampled
domain of ⇧std,m(k), and c = v � k is the only item ever added to the sampled range of ⇧std,m(k).
In particular, c is generated at random and k remains perfectly hidden (i.e., is independent of the
adversary’s view).

Thus, from the adversary’s point of view, the standard queries behave identically to a random
function, and the ideal cipher queries behave like ideal cipher queries for an independent ideal
cipher. In particular, we have

Pr[W1] = p1. (8.9)

Finally, we use the Domain Separation Lemma to analyze |Pr[W0] � Pr[W1]|. The domain
separation failure event Z is the event that in Game 1, the sampled domain of one of the ⇧std,m’s
overlaps with the sampled domain of one of the ⇧ic,k ’s, or the sampled range of one of the ⇧std,m’s
overlaps with the sampled range of one of the ⇧ic,k ’s. The Domain Separation Lemma tells us that

|Pr[W0]� Pr[W1]|  Pr[Z]. (8.10)

If Z occurs, then for some input/output triple (k , a, b) corresponding to an ideal cipher query,
k = m was the input to a standard query with output v, and either

(i) a = k, or

(ii) b = v � k.

For any fixed triple (k , a, b), by the independence of k, conditions (i) and (ii) each hold with
probability 1/|X |, and so by the union bound

Pr[Z]  2Qic

|X | . (8.11)

The theorem now follows from (8.7)–(8.11). 2
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8.8 The Sponge Construction and SHA3

For many years, essentially all collision resistant hash functions were based on the Merkle-Damg̊ard
paradigm. Recently, however, an alternative paradigm has emerged, called the sponge construc-
tion. Like Merkle-Damg̊ard, it is a simple iterative construction built from a more primitive
function; however, instead of a compression function h : {0, 1}n+` ! {0, 1}n, a permutation
⇡ : {0, 1}n ! {0, 1}n is used. We stress that unlike a block cipher, the function ⇡ has no key.
There are two other high-level di↵erences between the sponge and Merkle-Damg̊ard that we should
point out:

• On the negative side, it is not known how to reduce the collision resistance of the sponge
to a concrete security property of ⇡. The only known analysis of the sponge is in the ideal
permutation model, where we (heuristically) model ⇡ as a truly random permutation ⇧.

• On the positive side, the sponge is designed to be used flexibly and securely in a variety of
applications where collision resistance is not the main property we need. For example, in
Section 8.7, we looked at several possible ways to convert a hash function H into a PRF
F . We saw, in particular, that the intuitive idea of simply prepending the key, defining
Fpre(k, M) := H(k k M), does not work when H instantiated with a Merkle-Damg̊ard hash.
The sponge avoids these problems: it allows one to hash variable length inputs to variable
length outputs, and if we model ⇡ as a random permutation, then one can argue that for all
intents and purposes, the sponge is a random function (we will discuss this in more detail in
Section 8.10). In particular, the construction Fpre is secure when H is instantiated with a
sponge hash.

A new hash standard, called SHA3, is based on the sponge construction. After giving a de-
scription and analysis of the general sponge construction, we discuss some of the particulars of
SHA3.

8.8.1 The sponge construction

We now describe the sponge construction. In addition specifying a permutation ⇡ : {0, 1}n !
{0, 1}n, we need to specify two positive integers numbers r and c such that n = r + c. The number
r is called the rate of the sponge: larger rate values lead to faster evaluation. The number c is
called the capacity of the sponge: larger capacity values lead to better security bounds. Thus,
di↵erent choices of r and c lead to di↵erent speed/security trade-o↵s.

The sponge allows variable length inputs. To hash a long message M 2 {0, 1}L, we first append
a padding string to M to make its length a multiple of r, and then break the padded M into a
sequence of r-bit blocks m1, . . . , ms. The requirements of the padding procedure are minimal: it
just needs to be injective. Just adding a string of the form 10⇤ su�ces, although in SHA3 a pad of
the form 10⇤1 is used: this latter padding has the e↵ect of encoding the rate in the last block and
helps to analyze security in applications that use the same sponge with di↵erent rates; however, we
will not explore these use cases here. Note that an entire dummy block may need to be added if
the length of M is already at or near a multiple of r.

The sponge allows variable length outputs. So in addition to a message M 2 {0, 1}L as above,
it takes as input a positive integer v, which specifies the number of output bits.

Here is how the sponge works:
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Figure 8.11: The sponge construction

Input: M 2 {0, 1}L and ` > 0
Output: a tag h 2 {0, 1}v

// Absorbing stage
Pad M and break into r-bit blocks m1, . . . , ms

h 0n

for i 1 to s do
m0

i  mi k 0c 2 {0, 1}n
h ⇡(h�m0

i)

// Squeezing stage
z  h[0 . . r � 1]
for i 1 to dv/re do

h ⇡(h)
z  z k (h[0 . . r � 1])

output z[0 . . v � 1]

The diagram in Fig. 8.11 may help to clarify the algorithm. The sponge runs in two stages:
the “absorbing stage” where the message blocks get “mixed in” to a chaining variable h, and a
“squeezing stage” where the output is “pulled out” of the chaining variable. Note that input blocks
and output blocks are r-bit strings, so that the remaining c bits of the chaining variable cannot be
directly tampered with or seen by an attacker. This is what gives the sponge its security, and is
the reason why c must be large. Indeed, if the sponge has small capacity, it is easy to find collisions
(see Exercise 8.20).

In the SHA3 standard, the sponge construction is intended to be used as a collision resistant
hash, and the output length is fixed to a value v  r, and so the squeezing stage simply outputs the
first v bits of the output h of the absorbing stage. We will now prove that this version of the sponge
is collision resistant in the ideal permutation model, assuming 2c and 2v are both super-poly.

Theorem 8.6. Let H be the hash function obtained from a permutation ⇡ : {0, 1}n ! {0, 1}n, with
capacity c, rate r (so n = r + c), and output length v  r. In the ideal permutation model, where
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⇡ is modeled as a random permutation ⇧, the hash function H is collision resistant, assuming 2v

and 2c are super-poly.

In particular, for every collision finding adversary A, if the number of ideal-permutation queries
plus the number of r-bit blocks in the output messages of A is bounded by q, then

CRic
adv[A, H]  q(q � 1)

2v
+

q(q + 1)

2c
.

Proof. As in the proof of Theorem 8.4, we assume our collision-finding adversary is “reasonable”,
in the sense that it makes ideal permutation queries corresponding to its output. We can easily
convert an arbitrary adversary into a reasonable one by forcing the adversary evaluate the hash
function on its output messages if it has not done so already. As we have defined it, q will be an
upper bound on the total number of ideal permutation queries made by our reasonable adversary.
So from now on, we assume a reasonable adversary A that makes at most q queries, and we bound
the probability that such A finds anything during its queries that can be “assembled” into a collision
(we make this more precise below).

We also assume that no queries are redundant. This means that if the adversary makes a ⇧-
query on a yielding b = ⇧(a), then the adversary never makes a ⇧�1-query on b, and never makes
another ⇧-query on a; similarly, if the adversary makes a ⇧�1-query on b yielding a = ⇧�1(b), then
the adversary never makes a ⇧-query on a, and never makes another ⇧�1-query on b. Of course,
there is no need for the adversary to make such redundant queries, which is why we exclude them;
moreover, doing so greatly simplifies the “bookkeeping” in the proof.

It helps to visualize the adversary’s attack as building up a directed graph G. The nodes in G
consist of the set of all 2n bit strings of length n. The graph G starts out with no edges, and every
query that A makes adds an edge to the graph: an edge a ! b is added if A makes a ⇧-query
on a that yields b or a ⇧�1-query on b that yields a. Notice that if we have an edge a ! b, then
⇧(a) = b, regardless of whether that edge was added via a ⇧-query or a ⇧�1-query. We say that
an edge added via a ⇧-query is a forward edge, and one added via a ⇧�1-query is a back edge.

Note that the assumption that the adversary makes no redundant queries means that an edge
gets added only once to the graph, and its classification is uniquely determined by the type of query
that added the edge.

We next define a notion of special type of path in the graph that corresponds to sponge evalu-
ation. For an n-bit string z, let R(z) be the first r bits of z and C(z) be the last c bits of z. We
refer to R(z) as the R-part of z and C(z) as the C-part of z. For s � 1, a C-path of length s
is a sequence of 2s nodes

a0, b1, a1, b2, a2, . . . , bs�1, as�1, bs,

where

• C(a0) = 0c and for i = 1, . . . , s� 1, we have C(bi) = C(ai), and

• G contains edges ai�1 ! bi for i = 1, . . . , s.

For such a path p, the message of p is defined as (m0, . . . , ms�1), where

m0 := R(a0) and mi := R(bi)�R(ai) for i = 1, . . . , s� 1.
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and the result of p is defined to be ms := R(bs). Such a C-path p corresponds to evaluating the
sponge at the message (m0, . . . , ms�1) and obtaining the (untruncated) output ms. Let us write
such a path as

m0|a0 �! b1|m1|a1 �! · · · �! bs�2|ms�2|as�2 �! bs�1|ms�1|as�1 �! bs|ms. (8.12)

The following diagram illustrates a C-path of length 3.

a0 ������! b1

m0 = R(a0) a1 ������! b2

0c = C(a0) m1 = R(b1) � R(a1) a2 ������! b3

C(b1) = C(a1) m2 = R(b2) � R(a2) m3 = R(b3)

C(b2) = C(a2)

The path has message (m0, m1, m2) and result m3. Using the notation in (8.12), we write this path
as

m0|a0 �! b1|m1|a1 �! b2|m2|a2 �! b3|m3.

We can now state what a collision looks like in terms of the graph G. It is a pair of C-paths
on di↵erent messages but whose results agree on their first v bits (recall v  r). Let us call such a
pair of paths colliding.

To analyze the probability of finding a pair of colliding paths, it will be convenient to define
another notion. Let p and p0 be two C-paths on di↵erent messages whose final edges are as�1 ! bs

and a 0t�1 ! b 0
t. Let us call such a pair of paths problematic if

(i) as�1 = a 0t�1, or

(ii) one of the edges in p or p0 are back edges.

Let W be the event that A finds a pair of colliding paths. Let Z be the event that A finds a
pair of problematic paths. Then we have

Pr[W ]  Pr[Z] + Pr[W and not Z]. (8.13)

First, we bound Pr[W and not Z]. For an n-bit string z, let V (z) be the first v bits of z, and
we refer to V (z) as the V -part of z. Suppose A is able to find a pair of colliding paths that is not
problematic. By definition, the final edges on these two paths correspond to ⇧-queries on distinct
inputs that yield outputs whose V -parts agree. That is, if W and not Z occurs, then it must be
the case that at some point A issued two ⇧-queries on distinct inputs a and a 0, yielding outputs b
and b 0 such that V (b) = V (b 0). We can use the union bound: for each pair of indices i < j, let Xij

be the event that the ith query is a ⇧-query on some value, say a, yielding b = ⇧(a), and the j-th
query is also a ⇧-query on some other value a 0 6= a, yielding b 0 = ⇧(a 0) such that V (b) = V (b 0). If
we fix i and j, fix the coins of A, and fix the outputs of all queries made prior to the jth query,
then the values a, b, and a 0 are all fixed, but the value b 0 is uniformly distributed over a set of size
at least 2n � j + 1. To get V (b) = V (b 0), the value of b 0 must be equal to one of the 2n�v strings
whose first v bits agree with that of b, and so we have

Pr[Xij ]  2n�v

2n � j + 1
.
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A simple calculation like that done in (8.5) in the proof of Theorem 8.4 yields

Pr[W and not Z]  q(q � 1)

2v
. (8.14)

Second, we bound Pr[Z], the probability that A finds a pair of problematic paths. The technical
heart of the of the analysis is the following:

Main Claim: If Z occurs, then one of the following occurs:

(E1) some query yields an output whose C-part is 0c, or

(E2) two di↵erent queries yield outputs whose C-parts are equal.

Just to be clear, (E1) means A made a query of the form:

(i) a ⇧�1 query on some value b such that C(⇧�1(b)) = 0c, or (ii) a ⇧ query on some
value a such that C(⇧(a)) = 0c,

and (E2) means A made pair of queries of the form:

(i) a ⇧-query on some value a and a ⇧�1 query on some value b, such that C(⇧(a)) =
C(⇧�1(b)), or (ii) ⇧-queries on two distinct values a and a 0 such that C(⇧(a)) =
C(⇧(a 0)).

First, suppose A is able to find a problematic pair of paths, and one of the paths contain a back
edge. So at the end of the execution, there exists a C-path containing one or more back edges. Let
p be such a path of shortest length, and write it as in (8.12). We observe that the last edge in p is
a back edge, and all other edges (if any) in p are forward edges. Indeed, if this is not the case, then
we can delete this edge from p, obtaining a shorter C-path containing a back edge, contradicting
the assumption that p is a shortest path of this type. From this observation, we see that either:

• s = 1 and (E1) occurs with the ⇧�1 query on b1, or

• s > 1 and (E2) occurs with the ⇧�1 query on bs and the ⇧-query on as�2.

Second, suppose A is able to find a problematic pair of paths, neither of which contains any
back edges. Let us call these paths p and p0. The argument in this case somewhat resembles the
“backwards walk” in the Merkle-Damg̊ard analysis. Write p as in (8.12) and write p0 as

m0
0|a 00 �! b 0

1|m0
1|a 01 �! · · · �! b 0

t�2|m0
t�2|a 0t�2 �! b 0

t�1|m0
t�1|a 0t�1 �! b 0

t|m0
t.

We are assuming that (m0, . . . , ms�1) 6= (m0
0, . . . , m

0
t�1) but as�1 = a 0t�1, and that none of these

edges are back edges. Let us also assume that we choose the paths so that they are shortest, in the
sense that s+ t is minimal among all C-paths of this type. Also, let us assume that s  t (swapping
if necessary). There are a few cases:

1. s = 1 and t = 1. This case is impossible, since in this case the paths are just m0|a0 ! b1|m1

and m0
0|a 00 ! b 0

1|m0
1, and we cannot have both m0 6= m0

0 and a0 = a 00.

2. s = 1 and t � 2. In this case, we have a0 = b 0
t�1, and so (E1) occurs on the ⇧-query on a 0t�2.
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3. s � 2 and t � 2. Consider the penultimate edges, which are forward edges:

as�2 ! bs�1|ms�1|as�1

and
a 0t�2 ! b 0

t�1|m0
t�1|a 0t�1.

We are assuming as�1 = a 0t�1. Therefore, the C-parts of bs�1 and b 0
t�1 are equal and their

R-parts di↵er by ms�1 �m0
t�1. There are two subcases:

(a) ms�1 = m0
t�1. We argue that this case is impossible. Indeed, in this case, we have

bs�1 = b 0
t�1, and therefore as�2 = a 0t�2, while the truncated messages (m0, . . . , ms�2)

and (m0
1, . . . , m

0
t�2) di↵er. Thus, we can simply throw away the last edge in each of the

two paths, obtaining a shorter pair of paths that contradicts the minimality of s + t.

(b) ms�1 6= m0
t�1. In this case, we know: the C-parts of bs�1 and b 0

t�1 are the same, but
their R-parts di↵er, and therefore, as�1 6= a 0t�2. Thus, (E2) occurs on the ⇧-queries on
as�2 and a 0t�2.

That proves the Main Claim. We can now turn to the problem of bounding the probability
that either (E1) or (E2) occurs. This is really just the same type of calculation we did at least
twice already, once above in obtaining (8.13), and earlier in the proof of Theorem 8.4. The only
di↵erence from (8.13) is that we are now counting collisions on the C-parts, and we have a new
type of “collision” to count, namely, “hitting 0c” as in (E1). We leave it to the reader to verify:

Pr[Z]  q(q + 1)

2c
. (8.15)

The theorem now follows from (8.13)–(8.15). 2

8.8.2 Case study: SHA3, SHAKE256, and SHAKE512

The NIST standard for SHA3 specifies a family of sponge-based hash functions. At the heart
of these hash functions is a permutation called Keccak, which maps 1600-bit strings to 1600-bit
strings. We denote by Keccak[c] the sponge derived from Keccak with capacity c, and using the
10⇤1 padding rule. This is a function that takes two inputs: a message m and output length v.
Here, the input m is an arbitrary bit string and the output of Keccak[c](m, v) is a v-bit string.

We will not describe the internal workings of the Keccak permutation; they can be found in
the SHA3 standard. We just describe the di↵erent parameter choices that are standardized. The
standard specifies four hash functions whose output lengths are fixed, and two hash functions with
variable length outputs.

Here are the four fixed-length output hash functions:

• SHA3-224(m) = Keccak[448](m k 01, 224);

• SHA3-256(m) = Keccak[512](m k 01, 256);

• SHA3-384(m) = Keccak[768](m k 01, 384);

• SHA3-512(m) = Keccak[1024](m k 01, 512).
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Note the two extra padding bits that are appended to the message. Note that in each case, the
capacity c is equal to twice the output length v. Thus, as the output length grows, the security
provided by the capacity grows as well, and the rate — and, therefore, the hashing speed —
decreases.

Here are the two variable-length output hash functions:

• SHAKE128(m, v) = Keccak[256](m k 1111, v);

• SHAKE256(m, v) = Keccak[512](m k 1111, v).

Note the four extra padding bits that are appended to the message. The only di↵erence between
these two is the capacity size, which a↵ects the speed and security. The various padding bits and
the 10⇤1 padding rule ensure that these six functions behave independently.

8.9 Merkle trees: using collision resistance to prove database
membership

To be written.

8.10 Key derivation and the random oracle model

Although hash functions like SHA256 were initially designed to provide collision resistance, we have
already seen in Section 8.7 that practitioners are often tempted to use them to solve other problems.
Intuitively, hash functions like SHA256 are designed to “thoroughly scramble” their inputs, and
so this approach seems to make some sense. Indeed, in Section 8.7, we looked at the problem of
taking an unkeyed hash function and turning it into a keyed function that is a secure PRF, and
found that it was indeed possible to give a security analysis under reasonable assumptions.

In this section, we study another problem, called key derivation. Roughly speaking, the
problem is this: we start with some secret data, and we want to convert it into an n-bit string that
we can use as the key to some cryptographic primitive, like AES. Now, the secret data may be
random in some sense — at the very least, somewhat hard to guess — but it may not look anything
at all like a uniformly distributed, random, n-bit string. So how do we get from such a secret s
to a cryptographic key t? Hashing, of course. In practice, one takes a hash function H, such as
SHA256 (or, as we will ultimately recommend, some function built out of SHA256), and computes
t H(s).

Along the way, we will also introduce the random oracle model, which is a heuristic tool that is
useful not only for analyzing the key derivation problem, but a host of other problems as well.

8.10.1 The key derivation problem

Let us look at the key derivation problem in more detail. Again, at a high level, the problem is to
convert some discreet data that is hard to guess into an n-bit string we can use directly as a key
to some standard cryptographic primitive, such as AES. The solution in all cases will be to hash
the secret to obtain the key. We begin with some motivating examples.

• The secret might be a password. While such a password might be somewhat hard to guess, it
could be dangerous to use such a password directly as an AES key. Even if the password were
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uniformly distributed over a large dictionary (already a suspect assumption), the distribution
of its encoding as a bit string is certainly not. It could very well that a significant fraction
of passwords correspond to “weak keys” for AES that make it vulnerable to attack. Recall
that AES was designed to be used with a random bit string as the key, so how it behaves on
passwords is another matter entirely.

• The secret could be the log of various types of system events on a running computer (e.g., the
time of various interrupts such as those caused by key presses or mouse movements). Again,
it might be di�cult for an attacker who is outside the computer system to accurately predict
the contents of such a log. However, using the log directly as an AES key is problematic: it
is likely far too long, and far from uniformly distributed.

• The secret could be a cryptographic key which as been partially compromised. Imagine that
a user has a 128-bit key, but that 64 of the bits have been leaked to the adversary. The key
is still fairly di�cult to guess, but it is still not uniformly distributed from the adversary’s
point of view, and so should not be used directly as an AES key.

• Later, we will see examples of number-theoretic transformations that are widely used in
public-key cryptography. Looking ahead a bit, we will see that for a large, composite modulus
N , if x is chosen at random modulo N , and an adversary is given y := x3 mod N , it is
hard to compute x. We can view x as the secret, and similarly to the previous example,
we can view y as information that is leaked to the adversary. Even though the value of y
completely determines x in an information-theoretic sense, it is still widely believed to be
hard to compute. Therefore, we might want to treat x as secret data in exactly the same
way as in the previous examples. Many of the same issues arise here, not the least of which
is that x is typically much longer (typically, thousands of bits long) than an AES key.

As already mentioned, the solution that is adopted in practice is simply to hash the secret s
using a hash function H to obtain the key t H(s).

Let us now give a formal definition of the security property we are after.
We assume the secret s is sampled according to some fixed (and publicly known) probability

distribution P . We assume any such secret data can be encoded as an element of some finite set S.
Further, we model the fact that some partial information about s could be leaked by introducing
a function I, so that an adversary trying to guess s knows the side information I(s).

Attack Game 8.2 (Guessing advantage). Let P be a probability distribution defined on a
finite set S and let I be a function defined in S. For a given adversary A, the attack game runs as
follows:

• the challenger chooses s at random according to P and sends I(s) to A;

• the adversary outputs a guess ŝ for s, and wins the game if ŝ = s.

The probability that A wins this game is called its guessing advantage, and is denoted
Guessadv[A, P, I]. 2

In the first example above, we might simplistically model s as being a password that is uni-
formly distributed over (the encodings of) some dictionary D of words. In this case, there is no
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side information given to the adversary, and the guessing advantage is 1/|D|, regardless of the
computational power of the adversary.

In the second example above, it seems very hard to give a meaningful and reliable estimate of
the guessing advantage.

In the third example above, s is uniformly distributed over {0, 1}128, and I(s) is (say) the first
64-bits of s. Clearly, any adversary, no matter how powerful, has guessing advantage no greater
than 2�64.

In the fourth example above, s is the number x and I(s) is the number y. Since y completely
determines x, it is possible to recover s from I(s) by brute-force search. There are smarter and
faster algorithms as well, but there is no known e�cient algorithm to do this. So for all e�cient
adversaries, the guessing advantage appears to be negligible.

Now suppose we use a hash function H : S ! T to derive the key t from s. Intuitively, we
want t to “look random”. To formalize this intuitive notion, we use the concept of computational
indistinguishability from Section 3.11. So formally, the property that we want is that if s is sampled
according to P and t is chosen at random from T , the two distributions (I(s), H(s)) and (I(s), t) are
computationally indistinguishable. For an adversary A, let Distadv[A, P, I, H] be the adversary’s
advantage in Attack Game 3.3 for these two distributions.

The type of theorem we would like to be able to prove would say, roughly speaking, if H satisfies
some specific property, and perhaps some constraints are placed on P and I, then Distadv[A, P, I, H]
is not too much larger than Guessadv[A, P, I]. In fact, in certain situations it is possible prove such
a theorem. We will discuss this result later, in Section 8.10.4 — for now, we will simply say that this
rigorous approach is not widely used in practice, for a number of reasons. Instead, we will examine
in greater detail the heuristic approach of using an “o↵ the shelf” hash function like SHA256 to
derive keys.

Sub-key derivation. Before moving on, we consider the following, related problem: what to do
with the key t derived from s. In some applications, we might use t directly as, say, and AES key.
In other applications, however, we might need several keys: for example, an encryption key and
a MAC key, or two di↵erent encryption keys for bi-directional secure communications (so Alice
has one key for sending encrypting messages to Bob, and Bob uses a di↵erent key for sending
encrypted messages to Alice). So once we have derived a single key t that “for all intents and
purposes” behaves like a random bit string, we wish to derive several sub-keys. We call this the
sub-key derivation problem to distinguish it from the key derivation problem. For the sub-key
derivation problem, we assume that we start with a truly random key t — it is not, but when t is
computationally indistinguishable from a truly random key, this assumption is justified.

Fortunately, for sub-key derivation, we already have all the tools we need at our disposal.
Indeed, we can derive sub-keys from t using either a PRG or a PRF. For example, in the above
example, if Alice and Bob have a shared key t, derived from a secret s, they can use a PRF F as
follows:

• derive a MAC key kmac  R F (t, "MAC-KEY");

• derive an Alice-to-Bob encryption key kAB  R F (t, "AB-KEY");

• derive a Bob-to-Alice encryption key kBA  R F (t, "BA-KEY").

Assuming F is a secure PRF, then the keys kmac, kAB, and kBA behave, for all intents and purposes,
as independent random keys. To implement F , we can even use a hash-based PRF, like HMAC, so
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we can do everything we need — key derivation and sub-key derivation — using a single “o↵ the
shelf” hash function like SHA256.

So once we have solved the key derivation problem, we can use well-established tools to solve
the sub-key derivation problem. Unfortunately, the practice of using “o↵ the shelf” hash functions
for key derivation is not very well understood or analyzed. Nevertheless, there are some useful
heuristic models to explore.

8.10.2 Random oracles: a useful heuristic

We now introduce a heuristic that we can use to model the use of hash functions in a variety of
applications, including key derivation. As we will see later in the text, this has become a popular
heuristic that is used to justify numerous cryptographic constructions.

The idea is that we simply model a hash function H as if it were a truly random function
O. If H maps M to T , then O is chosen uniformly at random from the set Funs[M, T ]. We
can translate any attack game into its random oracle version: the challenger uses O in place of
H for all its computations, and in addition, the adversary is allowed to obtain the value of O at
arbitrary input points of his choosing. The function O is called a random oracle and security in
this setting is said to hold in the random oracle model. The function O is too large to write
down and cannot be used in a real construction. Instead, we only use O as a means for carrying
out a heuristic security analysis of the proposed system that actually uses H.

This approach to analyzing constructions using hash function is analogous to the ideal cipher
model introduced in Section 4.7, where we replace a block cipher E = (E, D) defined over (K, X )
by a family of random permutations {⇧k }k 2K.

As we said, the random oracle model is used quite a bit in modern cryptography, and it would
be nice to be able to use an “o↵ the shelf” hash function H, and model it as a random oracle.
However, if we want a truly general purpose tool, we have to be a bit careful, especially if we want
to model H as a random oracle taking variable length inputs. The basic rule of thumb is that
Merkle-Damg̊ard hashes should not be used directly as general purpose random oracles. We will
discuss in Section 8.10.3 how to safely (but again, heuristically) use Merkle-Damg̊ard hashes as
general purpose random oracles, and we will also see that the sponge construction (see Section 8.8)
can be used directly “as is”.

We stress that even though security results in the random oracle are rigorous, mathematical
theorems, they are still only heuristic results that do not guarantee any security for systems built
with any specific hash function. They do, however, rule out “generic attacks” on systems that would
work if the hash function were a random oracle. So, while such results do not rule out all attacks,
they do rule out generic attacks, which is better than saying nothing at all about the security of
the system. Indeed, in the real world, given a choice between two systems, S1 and S2, where S1

comes with a security proof in the random oracle model, and S2 comes with a real security proof
but is twice as slow as S1, most practitioners would (quite reasonably) choose S1 over S2.

Defining security in the random oracle model. Suppose we have some type of cryptographic
scheme S whose implementation makes use of a subroutine for computing a hash function H
defined over (M, T ). The scheme S evaluates H at arbitrary points of its choice, but does not
look at the internal implementation of H. We say that S uses H as an oracle. For example,
Fpre(k, x) := H(k k x), which we briefly considered in Section 8.7, is a PRF that uses the hash
function H as an oracle.
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We wish to analyze the security of S. Let us assume that whatever security property we are
interested in, say “property X,” is modeled (as usual) as a game between a challenger (specific
to property X) and an arbitrary adversary A. Presumably, in responding to certain queries, the
challenger computes various functions associated with the scheme S, and these functions may in
turn require the evaluation of H at certain points. This game defines an advantage Xadv[A, S], and
security with respect to property X means that this advantage should be negligible for all e�cient
adversaries A.

If we wish to analyze S in the random oracle model, then the attack game defining security is
modified so that H is e↵ectively replaced by a random function O 2 Funs[M, T ], to which both the
adversary and the challenger have oracle access. More precisely, the game is modified as follows.

• At the beginning of the game, the challenger chooses O 2 Funs[M, T ] at random.

• In addition to its standard queries, the adversary A may submit random oracle queries: it
gives m 2M to the challenger, who responds with t = O(m). The adversary may make any
number of random oracle queries, arbitrarily interleaved with standard queries.

• In processing standard queries, the challenger performs its computations using O in place of
H.

The adversary’s advantage is defined using the same rule as before, but is denoted Xro
adv[A, S] to

emphasize that this is an advantage in the random oracle model. Security in the random oracle
model means that Xro

adv[A, S] should be negligible for all e�cient adversaries A.

A simple example: PRFs in the random oracle model. We illustrate how to apply the
random oracle framework to construct secure PRFs. In particular, we will show that Fpre is a
secure PRF in the random oracle model. We first adapt the standard PRF security game to obtain
a PRF security game in the random oracle model. To make things a bit clearer, if we have a PRF
F that uses a hash function H as an oracle, we denote by FO the function that uses the random
oracle O in place of H.

Attack Game 8.3 (PRF in the random oracle model). Let F be a PRF defined over (K, X , Y)
that uses a hash function H defined over (M, T ) as an oracle. For a given adversary A, we define
two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

• O  R Funs[M, T ].

• The challenger selects f 2 Funs[X , Y] as follows:

if b = 0: k  R K, f  FO(k, ·);
if b = 1: f  R Funs[X , Y].

• The adversary submits a sequence of queries to the challenger.

– F -query: respond to a query x 2 X with y = f(x) 2 Y.

– O-query: respond to a query m 2M with t = O(m) 2 T .

• The adversary computes and outputs a bit b̂ 2 {0, 1}.
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For b = 0, 1, let Wb be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to F as

PRFro
adv[A, F ] :=

�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 8.3. We say that a PRF F is secure in the random oracle model if for all e�cient
adversaries A, the value PRFro

adv[A, F ] is negligible.

Consider again the PRF Fpre(k, x) := H(k k x). Let us assume that Fpre is defined over
(K, X , T ), where K = {0, 1} and X = {0, 1}L, and that H is defined over (M, T ), where M
includes all bit strings of length at most  + L.

We will show that this is a secure PRF in the random oracle model. But wait! We already argued
in Section 8.7 that Fpre is completely insecure when H is a Merkle-Damg̊ard hash. This seems to be
a contradiction. The problem is that, as already mentioned, it is not safe to use a Merkle-Damg̊ard
hash directly as a random oracle. We will see how to fix this problem in Section 8.10.3.

Theorem 8.7. If K is large then Fpre is a secure PRF when H is modeled as a random oracle.

In particular, if A is a random oracle PRF adversary, as in Attack Game 8.3, that makes at
most Qro oracle queries, then

PRFro
adv[A, Fpre]  Qro/|K|

Note that Theorem 8.7 is unconditional, in the sense that the only constraint on A is on the
number of oracle queries: it does not depend on any complexity assumptions.

Proof idea. Once H is replaced with O, the adversary has to distinguish O(k k ·) from a random
function in Funs[X , T ], without the key k. Since O(k k ·) is a random function in Funs[X , T ], the
only hope the adversary has is to somehow use the information returned from queries to O. We
say that an O-query k0 k x0 is relevant if k0 = k. It should be clear that queries to O that are not
relevant cannot help distinguish O(k k ·) from random since the returned values are independent
of the function O(k k ·). Moreover, the probability that after Qro queries the adversary succeeds
in issuing a relevant query is at most Qro/|K|. 2

Proof. To make this proof idea rigorous we let A interact with two PRF challengers. For j = 0, 1,
let Wj to be the event that A outputs 1 in Game j.

Game 0. We write the challenger in Game 0 so that it is equivalent to Experiment 0 of Attack
Game 8.3, but will be more convenient for us to analyze. We assume the adversary never makes the
same Fpre-query twice. Also, we use an associative array Map : M ! T to build up the random
oracle on the fly, using the “faithful gnome” idea we have used so often. Here is our challenger:
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Initialization:
initialize the empty associative array Map : M! T
k  R K

Upon receiving an Fpre-query on x 2 {0, 1}L do:
t R T

(1) if (k k x) 2 Domain(Map) then t Map[k k x]
(2) Map[k k x] t

send t to A
Upon receiving an O-query m 2M do:

t R T
if m 2 Domain(Map) then t Map[m]
Map[m] t
send t to A

It should be clear that this challenger is equivalent to that in Experiment 0 of Attack Game 8.3. In
Game 0, whenever the challenger needs to sample the random oracle at some input (in processing
either an Fpre-query or an O-query), it generates a random “default output”, overriding that default
if it turns out the oracle has already been sampled at that input; in either case, the associative
array records the input/output pair.

Game 1. We make our gnome “forgetful”: we modify Game 0 by deleting the lines marked (1) and
(2) in that game. Observe now that in Game 1, the challenger does not use Map or k in responding
to Fpre-queries: it just returns a random value. So it is clear (by the assumption that A never
makes the same Fpre-query twice) that Game 1 is equivalent to Experiment 1 of Attack Game 8.3,
and hence

PRFro
adv[A, Fpre] = |Pr[W1]� Pr[W0]|.

Let Z be the event that in Game 1, the adversary makes an O-query at a point m = (k k x̂). It is
clear that both games result in the same outcome unless Z occurs, so by the by Di↵erence Lemma,
we have

|Pr[W1]� Pr[W0]|  Pr[Z].

Since the key k is completely independent of A’s view in Game 1, each O-query hits the key with
probability 1/|K|, and so a simple application of the union bound yields

Pr[Z]  Qro/|K|.

That completes the proof. 2

Key derivation in the random oracle model. Let us now return to the key derivation problem
introduced in Section 8.10.1. Again, we have a secret s sampled from some distribution P , and
information I(s) is leaked to the adversary. We want to argue that if H is modeled as a random
oracle, then the adversary’s advantage in distinguishing (I(s), H(s)) from (I(s), t), where t is truly
random, is not too much more than the adversary’s advantage in guessing the secret s with only
I(s) (and not H(s)).

To model H as a random oracle O, we convert the computational indistinguishability At-
tack Game 3.3 to the random oracle model, so that the attacker is now trying to distinguish

317



(I(s), O(s)) from (I(s), t), given oracle access to O. The corresponding advantage is denoted
Distroadv[A, P, I, H].

Before stating our security theorem, it is convenient to generalize Attack Game 8.2 to allow the
adversary to output a list of guesses ŝ1, . . . , ŝQ, where and the adversary is said to win the game
if ŝi = s for some i = 1, . . . , Q. An adversary A’s probability of winning in this game is called his
list guessing advantage, denoted ListGuessadv[A, P, I].

Clearly, if an adversary A can win the above list guessing game with probability ✏, we can
convert him into an adversary that wins the singleton guessing game with probability ✏/Q: we
simply run A to obtain a list ŝ1, . . . , ŝQ, choose i = 1, . . . , Q at random, and output ŝi. However,
sometimes we can do better than this: using the partial information I(s) may allow us to rule out
some of the ŝi’s, and in some situations, we may be able to identify the correct ŝi uniquely. This
depends on the application.

Theorem 8.8. If H is modeled as a random oracle, then for every distinguishing adversary A
that makes at most Qro random oracle queries, there exists a list guessing adversary B, which is an
elementary wrapper around A, such that

Distroadv[A, P, I, H]  ListGuessadv[B, P, I]

and B outputs a list of size at most Qro. In particular, there exists a guessing adversary B0, which
is an elementary wrapper around A, such that

Distroadv[A, P, I, H]  Qro · Guessadv[B0, P, I].

Proof. The proof is almost identical to that of Theorem 8.7. We define two games, and for j = 0, 1,
let Wj to be the event that A outputs 1 in Game j.

Game 0. We write the challenger in Game 0 so that it is equivalent to Experiment 0 of the
(I(s), H(s)) vs (H(s), t) distinguishing game. We build up the random oracle on the fly with an
associative array Map : S ! T . Here is our challenger:

Initialization:
initialize the empty associative array Map : S ! T
generate s according to P
t R T

(⇤) Map[s] t
send (I(s), t) to A

Upon receiving an O-query ŝ 2 S do:
t̂ R T
if ŝ 2 Domain(Map) then t̂ Map[ŝ]
Map[ŝ] t̂
send t̂ to A

Game 1. We delete the line marked (⇤). This game is equivalent to Experiment 1 of this dis-
tinguishing game, as the value t is now truly independent of the random oracle. Moreover, both
games result in the same outcome unless the adversary A in Game 1 makes an O-query at the
point s. So our list guessing adversary B simply takes the value I(s) that it receives from its own
challenger, and plays the role of challenger to A as in Game 1. At the end of the game, B simply
outputs Domain(Map) — the list of points at which A made O-queries. The essential points are:
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our B can play this role with no knowledge of s besides I(s), and it records all of the O-queries
made by A. So by the Di↵erence Lemma, we have

Distroadv[A] = |Pr[W0]� Pr[W1]|  ListGuessadv[B]. 2

8.10.3 Random oracles: safe modes of operation

We have already seen that Fpre(k, x) := H(k k x) is secure in the random oracle model, and yet
we know that it is completely insecure if H is a Merkle-Damg̊ard hash. The problem is that a
Merkle-Damg̊ard construction has a very simple, iterative structure which exposes it to “extension
attacks”. While this structure is not a problem from the point of view of collision resistance, it
shows that grabbing a hash function “o↵ the shelf” and using it as if it were a random oracle is a
dangerous move.

In this section, we discuss how to safely use a Merkle-Damg̊ard hash as a random oracle. We
will also see that the sponge construction (see Section 8.8) is already safe to use “as is”; in fact, the
sponge was designed exactly for this purpose: to provide a variable-length input and variable-length
output hash function that could be used directly as a random oracle.

Suppose H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n⇥ {0, 1}` !
{0, 1}n. One recommended mode of operation is to safe HMAC with a zero key:

HMAC0(m) := HMAC(0`, m) = H(opad k H(ipad k m)).

While this construction foils the obvious extension attacks, why should we have any confidence at
all that HMAC0 is safe to use as a general purpose random oracle? We can only give heuristic
evidence. Essentially, what we want to argue is that there are no inherent structural weaknesses
in HMAC0 that give rise to a generic attack that treats the underlying compression function itself
as a random oracle — or perhaps, more realistically, as a Davies-Meyer construction based on an
ideal cipher.

So basically, we want to show that using certain modes of operation, we can build a “big” random
oracle out of a “small” random oracle — or out of an ideal cipher or even ideal permutation. This
is undoubtedly a rather quixotic task — using heuristics to justify heuristics — but we shall sketch
the basic ideas.

The mathematical tool used to carry out such a task is called indi↵erentiability. We shall
present a somewhat simplified version of this notion here. Suppose we are trying to build a “big”
random oracle O out of a smaller primitive ⇢, where ⇢ could be a random oracle on a small domain,
or an ideal cipher, or an ideal permutation. Let us denote by F [⇢] a particular construction for a
random oracle based on the ideal primitive ⇢.

Now consider a generic attack game defined by some challenger C and adversary A. Let us
write the interaction between C and A as hC, Ai. We assume that the interaction results in an
output bit. All of our security definitions are modeled in terms of games of this form.

In the random oracle version of the attack game, with the big random oracle O, we would
give both the challenger and adversary oracle access to the random function O, and we denote the
interaction hCO, AOi. However, if we are using the construction F [⇢] to implement the big random
oracle, then while the challenger accesses ⇢ only via the construction F , the adversary is allowed
to directly query ⇢. We denote this interaction as hCF [⇢], A⇢i.

For example, in the HMAC0 construction, the compression function h is modeled as a random
oracle ⇢, or if h itself is built via Davies-Meyer, then the underlying block cipher is modeled as
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an ideal cipher ⇢. In either case, F [⇢] corresponds to the HMAC0 construction itself. Note the
asymmetry: in any attack game, the challenger only accesses ⇢ indirectly via F [⇢] (HMAC0 in this
case), while the adversary can access ⇢ itself (the compression function h or the underlying block
cipher).

We say that F [⇢] is indi↵erentiable from O if the following holds:

for every e�cient challenger C and e�cient adversary A, there exists an e�cient ad-
versary B, which is an elementary wrapper around A, such that

�

�Pr[hCF [⇢], A⇢i outputs 1]� Pr[hCO, BOi outputs 1]
�

�

is negligible.

It should be clear from the definition that if we prove security of any cryptographic scheme in
the random oracle model for the big random oracle O, the scheme remains secure if we implement
O using F [⇢]: if an adversary A could break the scheme with F [⇢], then the adversary B above
would break the scheme with O.

Some safe modes. The HMAC0 construction can be proven to be indi↵erentiable from a random
oracle on variable length inputs, if we either model the compression function h itself as a random
oracle, or if h is built via Davies-Meyer and we model the underlying block cipher as an ideal cipher.

One problem with using HMAC0 as a random oracle is that its output is fairly short. Fortunately,
it is fairly easy to use HMAC0 to get a random oracle with longer outputs. Here is how. Suppose
HMAC0 has an n-bit output, and we need a random oracle with, say, N > n bits of output. Set
q := dN/ne. Let e0, e1, . . . , eq be fixed-length encodings of the integers 0, 1, . . . , q. Our new hash
function H 0 works as follows. On input m, we compute t HMAC0(e0 k m). Then, for i = 1, . . . , q,
we compute ti  HMAC0(ei k t). Finally, we output the first N bits of t1 k t2 k · · · k tq. One
can show that H 0 is indi↵erentiable from a random oracle with N -bit outputs. This result holds if
we replace HMAC0 with any hash function that is itself indi↵erentiable from a random oracle with
n-bit outputs. Also note that when applied to long inputs, H 0 is quite e�cient: it only needs to
evaluate HMAC0 once on a long input.

The sponge construction has been proven to be indi↵erentiable from a random oracle on variable
length inputs, if we model the underlying permutation as an ideal permutation (assuming 2c, where
c is the capacity is super-poly.) This includes the standardized implementations SHA3 (for fixed
length outputs) and the SHAKE variants (for variable length outputs), discussed in Section 8.8.2.
The special padding rules used in the SHA3 and SHAKE specifications ensure that all of the variants
act as independent random oracles.

Sometimes, we need random oracles whose output should be uniformly distributed over some
specialized set. For example, we may want the output to be uniformly distributed over the set
S = {0, . . . , d � 1} for some positive integer d. To realize this, we can use a hash function H
with an n-bit output, which we can view as an n-bit binary encoding of a number, and define
H 0(m) := H(m) mod d. If H is indi↵erentiable from a random oracle with n-bit outputs, and 2n/d
is super-poly, then the hash function H 0 is indi↵erentiable from a random oracle with outputs in S.

8.10.4 The leftover hash lemma

We now return to the key derivation problem. Under the right circumstances, we can solve the key
derivation problem with no heuristics and no computational assumptions whatsoever. Moreover,
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the solution is a surprising and elegant application of universal hash functions (see Section 7.1).
The result, known as the leftover hash lemma, says that if we use an ✏-UHF to hash a secret
that can be guessed with probability at most �, then provided ✏ and � are su�ciently small, the
output of the hash is statistically indistinguishable from a truly random value. Recall that a UHF
has a key, which we normally think of as a secret key; however, in this result, the key may be made
public — indeed, it could be viewed as a public, system parameter that is generated once and for
all, and used over and over again.

Our goal here is to simply state the result, and to indicate when and where it can (and cannot)
be used. To state the result, we will need to use the notion of the statistical distance between two
random variables, which we introduced in Section 3.11. Also, if s is a random variable taking values
in a set S, we define the guessing probability of s to be maxx2S Pr[s = x].

Theorem 8.9 (Leftover Hash Lemma). Let H be a keyed hash function defined over (K, S, T ).
Assume that H is a (1 + ↵)/N -UHF, where N := |T |. Let k, s1, . . . , sm be mutually independent
random variables, where k is uniformly distributed over K, and each si has guessing probability at
most �. Let � be the statistical di↵erence between

(k, H(k, s1), . . . , H(k, sm))

and the uniform distribution on K ⇥ T m. Then we have

�  1

2
m
p

N� + ↵.

Let us look at what the lemma says when m = 1. We have a secret s that can be guessed
with probability at most �, given whatever side information I(s) is known about s. To apply the
lemma, the bound � on the guessing probability must hold for all adversaries, even computationally
unbounded ones. We then hash s using a random hash key k. It is essential that s (given I(s)) and
k are independent — although we have not discussed the possibility here, there are potential use
cases where the distribution of s or the function I can be somehow biased by an adversary in a way
that depends on k, which is assumed public and known to the adversary. Therefore, to apply the
lemma, we must ensure that s (given I(s)) and k are truly independent. If all of these conditions
are met, then the lemma says that for any adversary A, even a computationally unbounded one,
its advantage in distinguishing (k, I(s), H(k, s)) from (k, I(s), t), where t is a truly random element
of T , is bounded by �, as in the lemma.

Now let us plug in some realistic numbers. If we want the output to be used as an AES key, we
need N = 2128. We know how to build (1/N)-UHFs, so we can take ↵ = 0 (see Exercise 7.18 —
with ↵ non-zero, but still quite small, one can get by with significantly shorter hash keys). If we
want �  2�64, we will need the guessing probability � to be about 2�256.

So in addition to all the conditions listed above, we really need an extremely small guessing
probability for the lemma to be applicable. None of the examples discussed in Section 8.10.1
meet these requirements: the guessing probabilities are either not small enough, or do not hold
unconditionally against unbounded adversaries, or can only be heuristically estimated. So the
practical applicability to the Leftover Hash Lemma is limited — but when it does apply, it can
be a very powerful tool. Also, we remark that by using the lemma with m > 1, under the right
conditions, we can model the situation where the same hash key is used to derive many keys from
many independent secrets with small guessing probability. The distinguishing probability grows
linearly with the number of derivations, which is not surprising.
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Because of these practical limitations, it is more typical to use cryptographic hash functions,
modeled as random oracles, for key derivation, rather than UHFs. Indeed, if one uses a UHF
and any of the assumptions discussed above turns out to be wrong, this could easily lead to a
catastrophic security breach. Using cryptographic hash functions, while only heuristically secure
for key derivation, are also more forgiving.

8.10.5 Case study: HKDF

HKDF is a key derivation function specified in RFC 5869, and is deployed in many standards.
HKDF is specified in terms of the HMAC construction (see Section 8.7). So it uses the function

HMAC(k, m), where k and m are variable length byte strings, which itself is implemented in terms
of a Merkle-Damg̊ard hash H, such as SHA256.

The input to HKDF consists of a secret s, an optional salt value salt (discussed below), an
optional info field (also discussed below), and an output length parameter L. The parameters s,
salt , and info are variable length byte strings.

The execution of HKDF consists of two stages, called extract (which corresponds to what we
called key derivation), and expand (which corresponds to what we called sub-key derivation).

In the extract stage, HKDF uses salt and s to compute

t HMAC(salt , s).

Using the intermediate key t, along with info, the expand (or sub-key derivation) stage computes
L bytes of output data, as follows:

q  dL/HashLene // HashLen is the output length (in bytes) of H
initialize z0 to the empty string
for i 1 to q do:

zi  HMAC(t, zi�1 k info k Octet(i)) // Octet(i) is a single byte whose value is i
output the first L octets of z1 k . . . k zq

When salt is empty, the extract stage of HKDF is the same as what we called HMAC0 in
Section 8.10.3. As discussed there, HMAC0 can heuristically be viewed as a random oracle, and so
we can use the analysis in Section 8.10.2 to show that this is a secure key derivation procedure in
the random oracle model. This, if s is hard to guess, then t is indistinguishable from random.

Users of HKDF have the option of providing non-zero salt. The salt plays a role akin to the
random hash key used in the Leftover Hash Lemma (see Section 8.10.4); in particular, it need not
be secret, and may be reused. However, it is important that the salt value is independent of the
secret s and cannot be manipulated by an adversary. The idea is that under these circumstances,
the output of the extract stage of HKDF seems more likely to be indistinguishable from random,
without relying on the full power of the random oracle model. Unfortunately, the known security
proofs apply to limited settings, so in the general case, this is still somewhat heuristic.

The expand stage is just a simple application of HMAC as a PRF to derive sub-keys, as we
discussed at the end of Section 8.10.1. The info parameter may be used to “name” the derived
sub-keys, ensuring the independence of keys used for di↵erent purposes. Since the output length of
the underlying hash is fixed, a simple iterative scheme is used to generate longer outputs. This stage
can be analyzed rigorously under the assumption that the intermediate key t is indistinguishable
from random, and that HMAC is a secure PRF — and we already know that HMAC is a secure
PRF, under reasonable assumptions about the compression function of H.
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8.11 Security without collision resistance

Theorem 8.1 shows how to extend the domain of a MAC using a collision resistant hash. It is
natural to ask whether MAC domain extension is possible without relying on collision resistant
functions. In this section we show that a weaker property called second preimage resistance is
su�cient.

8.11.1 Second preimage resistance

We start by defining two classic security properties for non-keyed hash functions. Let H be a hash
function defined over (M, T ).

• We say that H is one-way if given t := H(m) as input, for a random m 2M, it is di�cult
to find an m0 2M such that H(m0) = t. Such an m0 is called an inverse of t. In other words,
H is one-way if it is easy to compute but di�cult to invert.

• We say that H is 2nd-preimage resistant if given a random m 2M as input, it is di�cult
to find a di↵erent m0 2M such that H(m) = H(m0). In other words, it is di�cult to find an
m0 that collides with a given m.

• For completeness, recall that a hash function is collision resistant if it is di�cult to find two
distinct messages m, m0 2M such that H(m) = H(m0).

Definition 8.4. Let H be a hash function defined over (M, T ). We define the advantage
OWadv[A, H] of an adversary A in defeating the one-wayness of H as the probability of winning
the following game:

• the challenger chooses m 2M at random and sends t := H(m) to A;

• the adversary A outputs m0 2M, and wins if H(m0) = t.

H is one-way if OWadv[A, H] is negligible for every e�cient adversary A.
Similarly, we define the advantage SPRadv[A, H] of an adversary A in defeating the 2nd-

preimage resistance of H as the probability of winning the following game:

• the challenger chooses m 2M at random and sends m to A;

• the adversary A outputs m0 2M, and wins if H(m0) = H(m) and m0 6= m.

H is 2nd-preimage resistant if SPRadv[A, H] is negligible for every e�cient adversary A.

We mention some trivial relations between these notions when M is at least twice the size of T .
Under this condition we have the following implications:

H is collision resistant ) H is 2nd-preimage resistant ) H is one-way

as shown in Exercise 8.22. The converse is not true. A hash function can be 2nd-preimage resistant,
but not collision resistant. For example, SHA-1 is believed to be 2nd-preimage resistant even though
SHA-1 is not collision resistant. Similarly, a hash function can be one-way, but not be 2nd-preimage
resistant. For example, the function h(x) := x2 mod N for a large odd composite N is believed to
be one-way. In other words, it is believed that given x2 mod N it is di�cult to find x (as long as the
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factorization of N is unknown). However, this function H is trivially not 2nd-preimage resistant:
given x 2 {1, . . . , N} as input, the value �x is a second preimage since x2 mod N = (�x)2 mod N .

Our goal for this section is to show that 2nd-preimage resistance is su�cient for extending the
domain of a MAC and for providing file integrity. To give some intuition, consider the file integrity
problem (which we discussed at the very beginning of this chapter). Our goal is to ensure that
malware cannot modify a file without being detected. Recall that we hash all critical files on disk
using a hash function H and store the resulting hashes in read-only memory. For a file F it should
be di�cult for the malware to find an F 0 such that H(F 0) = H(F ). Clearly, if H is collision
resistant then finding such an F 0 is di�cult. It would seem, however, that 2nd-preimage resistance
of H is su�cient. To see why, consider malware trying to modify a specific file F without being
detected. The malware is given F as input and must come up with a 2nd-preimage of F , namely
an F 0 such that H(F 0) = H(F ). If H is 2nd-preimage resistant the malware cannot find such an
F 0 and it would seem that 2nd-preimage resistance is su�cient for file integrity. Unfortunately,
this argument doesn’t quite work. Our definition of 2nd-preimage resistance says that finding a
2nd-preimage for a random F in M is di�cult. But files on disk are not random bit strings —
it may be di�cult to find a 2nd-preimage for a random file, but it may be quite easy to find a
2nd-preimage for a specific file on disk.

The solution is to randomize the data before hashing it. To do so we first convert the hash
function to a keyed hash function. We then require that the resulting keyed function satisfy a
property called target collision resistance which we now define.

8.11.2 Randomized hash functions: target collision resistance

At the beginning of the chapter we mentioned two applications for collision resistance: extending
the domain of a MAC and protecting file integrity. In this section we describe solutions to these
problems that rely on a weaker security property than collision resistance. The resulting systems,
although more likely to be secure, are not as e�cient as the ones obtained from collision resistance.

Target collision resistance. Let H be a keyed hash function. We define what it means for H
to be target collision resistant, or TCR for short, using the following attack game, also shown
in Fig. 8.12.

Attack Game 8.4 (Target collision resistance). For a given keyed hash function H over
(K, M, T ) and adversary A, the attack game runs as follows:

• A sends a message m0 2M to the challenger.

• The challenger picks a random k  R K and sends k to A.

• A sends a second message m1 2M to the challenger.

The adversary is said to win the game if m0 6= m1 and H(k, m0) = H(k, m1). We define A’s
advantage with respect to H, denoted TCRadv[A, H], as the probability that A wins the game.
2

Definition 8.5. We say that a keyed hash function H over (K, M, T ) is target collision resistant
if TCRadv[A, H] is negligible.

Casting the definition in our formal mathematical framework is done exactly as for universal
hash functions (Section 7.1.2).
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Figure 8.12: TCR Attack Game

We note that one can view a collision resistant hash H over (M, T ) as a TCR function with
an empty key. More precisely, let K be a set of size one containing only the empty word. We can
define a keyed hash function H 0 over (K, M, T ) as H 0(k, m) := H(m). It is not di�cult to see that
if H is collision resistant then H 0 is TCR. Thus, a collision resistant function can be viewed as the
ultimate TCR hash — its key is the shortest possible.

8.11.3 TCR from 2nd-preimage resistance

We show how to build a keyed TCR hash function from a keyless 2nd-preimage resistant function
such as SHA-1. Let H, defined over (M, T ), be a 2nd-preimage resistant function. We construct
a keyed TCR function Htcr defined over (M, M, T ) as follows:

Htcr(k, m) = H(k �m) (8.16)

Note that the length of the key k is equal to the length of the message being hashed. This is a
problem for the applications we have in mind. As a result, we will only use this construction as a
TCR hash for short messages. First we prove that the construction is secure.

Theorem 8.10. Suppose H is 2nd-preimage resistant then H
tcr

is TCR.

In particular, for every TCR adversary A attacking Htcr as in Attack Game 8.4, there exists a
2nd-preimage finder B, which is an elementary wrapper around A, such that

TCRadv[A, Htcr]  SPRadv[B, H].

Proof. The proof is a simple direct reduction. Adversary B emulates the challenger in Attack
Game 8.4 and works as follows:

Input: Random m 2M
Output: m0 2M such that m 6= m0 and H(m) = H(m0)

1. Run A and obtain an m0 2M from A
2. k  m�m0

3. Send k as the hash key to A
4. A responds with an m1 2M
5. Output m0 := m1 � k

We show that SPRadv[B, H] = TCRadv[A, Htcr]. First, denote by W the event that in step (4) the
messages m0, m1 output by A are distinct and Htcr(k, m0) = Htcr(k, m1).
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The input m given to B is uniformly distributed in M. Therefore, the key k given to A in
step (2) is uniformly distributed in M and independent of A’s current view, as required in Attack
Game 8.4. It follows that B perfectly emulates the challenger in Attack Game 8.4 and consequently
Pr[W ] = TCRadv[A, Htcr].

By definition of Htcr, we also have the following:

Htcr(k, m0) = H((m�m0)�m0) = H(m) (8.17)

Htcr(k, m1) = H(m1 � k) = H(m0)

Now, suppose event W happens. Then Htcr(k, m0) = Htcr(k, m1) and therefore, by (8.17), we
know that H(m) = H(m0). Second, we deduce that m 6= m0 which follows since m0 6= m1 and
m0 = m� (m1�m0). Hence, when event W occurs, B outputs a 2nd-preimage of m. It now follows
that:

SPRadv[B, H] � Pr[W ] = TCRadv[A, Htcr]

as required. 2

Target collision resistance for long inputs. The function Htcr in (8.16) shows that a 2nd-
preimage resistant function directly gives a TCR function. If we assume that the SHA256 compres-
sion function h is 2nd-preimage resistant (a weaker assumption than assuming that h is collision
resistant) then, by Theorem 8.10 we obtain a TCR hash for inputs of length 512 + 265 = 768 bits.
The length of the required key is also 768 bits.

We will often need TCR functions for much longer inputs. Using the SHA256 compression
function we already know how to build a TCR hash for short inputs using a short key. Thus, let
us assume that we have a TCR function h defined over (K, T ⇥M, T ) where M := {0, 1}` for
some small `, say ` = 512. We build a new TCR hash for much larger inputs. Let L 2 Z>0 be a
power of 2. We build a derived TCR hash H that hashes messages in {0, 1}`L using keys in
(K⇥ T 1+log2 L). Note that the length of the keys is logarithmic in the length of the message, which
is much better than (8.16).

To describe the function H we need an auxiliary function ⌫ : Z>0 ! Z>0 defined as:

⌫(x) := largest n 2 Z>0 such that 2n divides x.

Thus, ⌫(x) counts the number of least significant bits of x that are zero. For example, ⌫(x) = 0 if
x is odd and ⌫(x) = n if x = 2n. Note that ⌫(x)  7 for more than 99% of the integers.

The derived TCR hash H is similar to Merkle-Damg̊ard. It uses the same padding block PB
as in Merkle-Damg̊ard and a fixed initial value IV. The derived TCR hash H is defined as follows
(see Fig. 8.13):
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Figure 8.13: Extending the domain of a TCR hash

Input: Message M 2 {0, 1}`L and key (k1, k2) 2 K ⇥ T 1+log2 L

Output: t 2 T
M  M k PB
Break M into consecutive `-bit blocks so that

M = m1 k m2 k · · · k ms where m1, . . . , ms 2 {0, 1}`
t0  IV
for i = 1 to s do:

u k2[⌫(i)]� ti�1 2 T
ti  h(k1, (u, mi) ) 2 T

Output ts

We note that directly using Merkle-Damg̊ard to extend the domain of a TCR hash does not
work. Plugging h(k1, ·) directly into Merkle-Damg̊ard can fail to give a TCR hash.

Security of the derived hash. The following theorem shows that the derived hash H is TCR
assuming the underlying hash h is. We refer to [96, 76] for the proof of this theorem.

Theorem 8.11. Suppose h is a TCR hash function that hashes messages in (T ⇥ {0, 1}`). Then,
for any bounded L, the derived function H is a TCR hash for messages in {0, 1}`L.

In particular, suppose A is a TCR adversary attacking H (as in Attack Game 8.4). Then there
exists a TCR adversary B (whose running times are about the same as that of A) such that

TCRadv[A, H]  L · TCRadv[B, h].

As in Merkle-Damg̊ard this construction is inherently sequential. A tree-based construction
similar to Exercise 8.8 gives a TCR hash using logarithmic size keys that is more suitable for a
parallel machine. We refer to [7] for the details.

8.11.4 Using target collision resistance

We now know how to build a TCR function for large inputs from a small 2nd-preimage resistant
function. We show how to use such TCR functions to extend the domain for a MAC and to ensure
file integrity. We start with file integrity.
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File integrity

Let H be a TCR hash defined over (K, M, T ). We use H to protect integrity of files F1, F2, . . . 2M
using a small amount of read-only memory. The idea is to pick a random key ri in K for every file
Fi and then store the pair (ri, H(ri, Fi) ) in read-only memory. Note that we are using a little
more read-only memory than in the system based on collision resistance. To verify integrity of file
Fi we simply recompute H(ri, Fi) and compare to the hash stored in read-only memory.

Why is this mechanism secure? Consider malware targeting a specific file F . We store in read-
only memory the key r and t := H(r, F ). To modify F without being detected the malware must
come up with a new file F 0 such that t = H(r, F 0). In other words, the malware is given as input
the file F along with a random key r 2 K and must produce a new F 0 such that H(r, F ) = H(r, F 0).
The adversary (the malware writer in this case) chooses which file F to attack. But this is precisely
the TCR Attack Game 8.4 — the adversary chooses an F , gets a random key r, and must output
a new F 0 that collides with F under r. Hence, if H is TCR the malware cannot modify F without
being detected.

In summary, we can provide file integrity using a small amount of read-only memory and by
relying only on 2nd-preimage resistance. The cost, in comparison to the system based on collision
resistance, is that we need a little more read-only memory to store the key r. In particular, using the
TCR construction from the previous section, the amount of additional read-only memory needed is
logarithmic in the size of the files being protected. Using a recursive construction (see Exercise 8.24)
we can reduce the additional read-only memory used to a small constant, but still non-zero.

Extending the domain of a MAC

Let H be a TCR hash defined over (KH , M, T ). Let I = (S, V ) be a MAC for authenticating short
messages in KH ⇥ T using keys in K. We assume that M is much larger than T . We build a new
MAC I 0 = (S0, V 0) for authenticating messages in M using keys in K as follows:

S0(k, m) := V 0�k, m, (t, r)
�

:=

r  R KH h H(r, m) (8.18)

h H(r, m) Output V (k, (r, h), t)

t S
�

k, (r, h)
�

Output (t, r)

Note the MAC signing is randomized — we pick a random TCR key r, include r in the input to
the signing algorithm S, and output r as part of the final tag. As a result, tags produced by this
MAC are longer than tags produced from extending MACs using a collision resistance hash (as in
Section 8.2). Using the construction from the previous section, the length of r is logarithmic in the
size of the message being authenticated. This extra logarithmic size key is included in every tag.
On the plus side, this construction only relies on H being TCR which is a much weaker property
than collision resistance and hence much more likely to hold for H.

The following theorem proves security of the construction in (8.18) above. The theorem is the
analog of Theorem 8.1 and its proof is similar. Note however, that the error bounds are not as
tight as the bounds in Theorem 8.1.

Theorem 8.12. Suppose the MAC system I is a secure MAC and the hash function H is TCR.
Then the derived MAC system I 0 = (S0, V 0) defined in (8.18) is a secure MAC.
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In particular, for every MAC adversary A attacking I 0 (as in Attack Game 6.1) that issues
at most Q signing queries, there exist an e�cient MAC adversary BI and an e�cient TCR
adversary BH , which are elementary wrappers around A, such that

MACadv[A, I 0]  MACadv[BI , I] + Q · TCRadv[BH , H].

Proof idea. Our goal is to show that no e�cient MAC adversary can successfully attack I 0. Such
an adversary A asks the challenger to sign a few long messages m1, m2, . . . 2M and gets back tags
(ti, ri) for i = 1, 2, . . . . It then tries to invent a new valid message-MAC pair (m, (t, r)). If A is
able to produce a valid forgery (m, (t, r)) then one of two things must happen:

1. either (r, H(r, m)) is equal to (ri, H(ri, mi)) for some i;

2. or not.

It is not di�cult to see that forgeries of the second type can be used to attack the underlying
MAC I. We show that forgeries of the first type can be used to break the target collision resistance
of H. Indeed, if (r, H(r, m)) = (ri, H(ri, mi)) then r = ri and therefore H(r, m) = H(r, mi). Thus
mi and m collide under the random key r. We will show that this lets us build an adversary BH

that wins the TCR game when attacking H. Unfortunately, BH must guess ahead of time which
of A’s queries to use as mi. Since there are Q queries to choose from, BH will guess correctly with
probability 1/Q. This is the reason for the extra factor of Q in the error term. 2

Proof. Let X be the event that adversary A wins the MAC Attack Game 6.1 with respect to I 0.
Let m1, m2, . . . 2M be A’s queries during the game and let (t1, r1), (t2, r2), . . . be the challenger’s
responses. Furthermore, let (m, (t, r)) be the adversary’s final output. We define two additional
events:

• Let Y denote the event that for some i = 1, 2, . . . we have that (r, H(r, m)) = (ri, H(r, mi))
and m 6= mi.

• Let Z denote the event that A wins Attack Game 6.1 on I 0 and event Y did not occur.

Then

MACadv[A, I 0] = Pr[X]  Pr[X ^ ¬Y ] + Pr[Y ] = Pr[Z] + Pr[Y ] (8.19)

To prove the theorem we construct a TCR adversary BH and a MAC adversary BI such that

Pr[Y ]  Q · TCRadv[BH , H] and Pr[Z] = MACadv[BI , I].

Adversary BI is essentially the same as in the proof of Theorem 8.1. Here we only describe the
TCR adversary BH , which emulates a MAC challenger for A as follows:
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k  R K
u R {1, 2, . . . , Q}
Run algorithm A
Upon receiving the ith signing query mi 2M from A do:

If i 6= u then
ri  R KH

Else // i = u: for query number u get ri from the TCR challenger
BH sends m̂0 := mi to its TCR challenger
Bh receives a random key r̂ 2 K from its challenger
ri  r̂

h H(ri, mi)
t S(k, (ri, h) )
Send (t, r) to A

Upon receiving the final message-tag pair (m, (t, r) ) from A do:
BH sends m̂1 := m to its challenger

Algorithm BH responds to A’s signature queries exactly as in a real MAC attack game. Therefore,
event Y happens during the interaction with BH with the same probability that it happens in
a real MAC attack game. Now, when event Y happens there exists a j 2 {1, 2, . . .} such that
(r, H(r, m)) = (rj , H(rj , mj)) and m 6= mj . Suppose that furthermore j = u. Then r = rj = r̂
and therefore H(r̂, m) = H(r̂, mu). Hence, if event Y happens and j = u then BH wins the TCR
attack game. In symbols,

TCRadv[BH , H] = Pr[Y ^ (j = u)].

Notice that u is independent of A’s view — it is only used for choosing which random key ri is
from BH ’s challenger, but no matter what u is, the key ri given to A is always uniformly random.
Hence, event Y is independent of the event j = u. For the same reason, if the adversary makes a
total of w queries then Pr[j = u] = 1/w � 1/Q. In summary,

TCRadv[BH , H] = Pr[Y ^ (j = u)] = Pr[Y ] · Pr[j = u] � Pr[Y ]/Q

as required. 2

8.12 A fun application: an e�cient commitment scheme

To be written.

8.13 Another fun application: proofs of work

To be written.

8.14 Notes

Citations to the literature to be added.
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8.15 Exercises

8.1 (Truncating a CRHF is dangerous). Let H be a collision resistant hash function defined
over (M, {0, 1}n). Use H to construct a hash function H 0 over (M, {0, 1}n) that is also collision
resistant, but if one truncates the output of H 0 by one bit then H 0 is no longer collision resistant.
That is, H 0 is collision resistant, but H 00(x) := H 0(x)[0 . . n� 2] is not.

8.2 (CRHF combiners). We want to build a CRHF H using two CRHFs H1 and H2, so that if
at some future time one of H1 or H2 is broken (but not both) then H is still secure.

(a) Suppose H1 and H2 are defined over (M, T ). Let H(m) :=
�

H1(m), H2(m)
�

. Show that H
is a secure CRHF if either H1 or H2 is secure.

(b) Show that H 0(x) = H1(H2(x)) need not be a secure CRHF even if one of H1 or H2 is secure.

8.3 (Extending the domain of a PRF with a CRHF). Suppose F is a secure PRF defined over
(K, X , Y) and H is a collision resistant hash defined over (M, X ). Show that F 0(k, m) = F (k, H(m))
is a secure PRF. This shows that H can be used to extend the domain of a PRF.

8.4 (Hash-then-encrypt MAC). Let H be a collision resistant hash defined over (M, X ) and
let E = (E, D) be a secure block cipher defined over (K, X ). Show that the encrypted-hash MAC
system (S, V ) defined by S(k, m) := E(k, H(m)) is a secure MAC.

Hint: Use Theorem 8.1.

8.5 (Finding many collisions). Let H be a hash function defined over (M, T ) where N := |T |
and |M| � N . We showed that O(

p
N) evaluations of H are su�cient to find a collision for

H with probability 1/2. Show that O
⇣p

sN
⌘

evaluations of H are su�cient to find s collisions

(x(1)
0 , x(1)

1 ), . . . , (x(s)
0 , x(s)

1 ) for H with probability at least 1/2. Therefore, finding a million collisions
is only about a thousand times harder than finding a single collision.

8.6 (Finding multi-collisions). Continuing with Exercise 8.5, we say that an s-collision for H
is a set of s distinct points x1, . . . , xs in M such that H(x1) = · · · = H(xs). Show that for each
constant value of s, O

�

N (s�1)/s
�

evaluations of H are su�cient to find an s-collision for H, with
probability at least 1/2.

8.7 (Collision finding in constant space). Let H be a hash function defined over (M, T )
where N := |M|. In Section 8.3 we developed a method to find an H collision with constant
probability using O(

p
N) evaluations of H. However, the method required O(

p
N) memory space.

In this exercise we develop a constant-memory collision finding method that runs in about the
same time. More precisely, the method only needs memory to store two hash values in T . You may
assume that H : M! T is a random function chosen uniformly from Funs[M, T ] and T ✓M. A
collision should be produced with probability at least 1/2.

(a) Let x0  R M and define H(i)(x0) to be the ith iterate of H starting at x0. For example,
H(3)(x0) = H(H(H(x0))).

(i) Let i be the smallest positive integer satisfying H(i)(x0) = H(2i)(x0).

(ii) Let j be the smallest positive integer satisfying H(j)(x0) = H(j+i)(x0). Notice that j  i.

Show that H(j�1)(x0) and H(j+i�1)(x0) are an H collision with probability at least 3/4.
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Figure 8.14: Tree-based Merkle-Damg̊ard

(b) Show that i from part (a) satisfies i = O(
p

N) with probability at least 3/4 and that it can
be found using O(

p
N) evaluations of H. Once i is found, finding j takes another O(

p
N)

evaluations, as required. The entire process only needs to store two elements in T at any
given time.

8.8 (A parallel Merkle-Damg̊ard). The Merkle-Damg̊ard construction in Section 8.4 gives a
sequential method for extending the domain of a secure CRHF. The tree construction in Fig. 8.14 is
a parallelizable approach. Prove that the resulting hash function is collision resistant, assuming h
is collision resistant. Here h is a compression function h : X 2 ! X , and we assume the message
length can be encoded as an element of X .

8.9 (Secure variants of Davies-Meyer). Prove that the h1, h2, and h3 variants of Davies-Meyer
defined on page 292 are collision resistant in the ideal cipher model.

8.10 (Insecure variants of Davies-Meyer). Show that the h4 and h5 variants of Davies-Meyer
defined on page 293 are not collision resistant.

8.11 (An insecure instantiation of Davies-Meyer). Let’s show that Davies-Meyer may not
be collision resistant when instantiated with a real-world block cipher. Let (E, D) be a block cipher
defined over (K, X ) where K = X = {0, 1}n. For y 2 X let y denote the bit-wise complement of y.

(a) Suppose that E(k, x) = E(k, x) for all keys k 2 K and all x 2 X . The DES block cipher has
precisely this property. Show that the Davies-Meyer construction, h(k, x) := E(k, x) � x, is
not collision resistant when instantiated with algorithm E.

(b) Suppose (E, D) is an Even-Mansour cipher, E(k, x) := ⇡(x � k) � k, where ⇡ : X ! X
is a fixed public permutation. Show that the Davies-Meyer construction instantiated with
algorithm E is not collision resistant.

Hint: Show that this Even-Mansour cipher satisfies the property from part (a).

8.12 (Merkle-Damg̊ard without length encoding). Suppose that in the Merkle-Damg̊ard
construction, we drop the requirement that the padding block encodes the message length. Let h
be the compression function, let H be the resulting hash function, and let IV be the prescribed
initial value.
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(a) Show that H is collision resistant, assuming h is collision resistant and that it is hard to find
a preimage of IV under h.

(b) Show that if h is a Davies-Meyer compression function, and we model the underlying block
cipher as an ideal cipher, then for any fixed IV, it is hard to find a preimage of IV under h.

8.13 (2nd-preimage resistance of Merkle-Damg̊ard). Let H be a Merkle-Damg̊ard hash
built out of a Davies-Meyer compression function h : {0, 1}n ⇥ {0, 1}` ! {0, 1}n. Consider the
attack game characterizing 2nd-preimage resistance in Definition 8.4. Let us assume that the
initial, random message in that attack game consists of s blocks. We shall model the underlying
block cipher used in the Davies-Meyer construction as an ideal cipher, and adapt the attack game to
work in the ideal cipher model. Show that for every adversary A that makes at most Q ideal-cipher
queries, we have

SPRic
adv[A, H]  (Q + s)s

2n�1
.

Discussion: This bound for finding second preimages is significantly better than the bound for
finding arbitrary collisions. Unfortunately, we have to resort to the ideal cipher model to prove it.

8.14 (Fixed points). We consider the Davies-Meyer and Miyaguchi-Preneel compression functions
defined in Section 8.5.2.

(a) Show that for a Davies-Meyer compression function it is easy to find a pair (t, m) such that
hDM(t, m) = t. Such a pair is called a fixed point for hDM.

(b) Show that in the ideal cipher model it is di�cult to find fixed points for the Miyaguchi-Preneel
compression function.

The next exercise gives an application for fixed points.

8.15 (Finding second preimages in Merkle-Damg̊ard). In this exercise, we develop a second
preimage attack on Merkle-Damg̊ard that roughly matches the security bounds in Exercise 8.13.
Let HMD be a Merkle-Damg̊ard hash built out of a Davies-Meyer compression function h : {0, 1}n⇥
{0, 1}` ! {0, 1}n. Recall that HMD pads a given message with a padding block that encodes the
message length. We will also consider the hash function H, which is the same as HMD, but which
uses a padding block that does not encode the message length. Throughout this exercise, we model
the underlying block cipher in the Davies-Meyer construction as an ideal cipher. For concreteness,
assume ` = 2n.

(a) Let s ⇡ 2n/2. You are given a message M that consists of s random `-bit blocks. Show that
by making O(s) ideal cipher queries, with probability 1/2 you can find a message M 0 6= M
such that H(M 0) = H(M). Here, the probability is over the random choice of M , the random
permutations defining the ideal cipher, and the random choices made by your attack.

Hint: Repeatedly choose random blocks x in {0, 1}` until h(IV, x) is the same as one of
the s chaining variables obtained when computing H(M). Use this x to construct the second
preimage M 0.

(b) Repeat part (a) for HMD.

Hint: The attack in part (a) will likely find a second preimage M 0 that is shorter than M ;
because of length encoding, this will not be a second preimage under HMD; nevertheless, show
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how to use fixed points (see previous exercise) to modify M 0 so that it has the same length
as M .

Discussion: Let H be a hash function with an n-bit output. If H is a random function then
breaking second preimage resistance takes about 2n time. This exercise shows that for Merkle-
Damg̊ard functions, breaking second preimage resistance can be done much faster, taking only
about 2n/2 time.

8.16 (The envelope method is a secure PRF). Consider the envelope method for building a
PRF from a hash function discussed in Section 8.7: Fenv(k, M) := H(k kM k k). Here, we assume
that H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n⇥{0, 1}` ! {0, 1}n.
Assume that the keys for Fenv are `-bit strings. Furthermore, assume that the message M a bit
string whose length is an even multiple of ` (we can always pad the message, if necessary). Under
the assumption that both htop and hbot are secure PRFs, show that Fenv is a secure PRF.

Hint: Use the result of Exercise 7.6; also, first consider a simplified setting where H does not
append the usual Merkle-Damg̊ard padding block to the inputs k kM k k (this padding block does
not really help in this setting, but it does not hurt either — it just complicates the analysis).

8.17 (The key-prepending method revisited). Consider the key-prepending method for build-
ing a PRF from a hash function discussed in Section 8.7: Fpre(k, M) := H(k kM). Here, we assume
that H is a Merkle-Damg̊ard hash built from a compression function h : {0, 1}n⇥{0, 1}` ! {0, 1}n.
Assume that the keys for Fpre are `-bit strings. Under the assumption that both htop and hbot are
secure PRFs, show that Fpre is a prefix-free secure PRF.

8.18 (The key-appending method revisted). Consider the following variant of the key-
appending method for building a PRF from a hash function discussed in Section 8.7: F 0

post(k, M) :=
H(M k PB k k). Here, we assume that H is a Merkle-Damg̊ard hash built from a compression
function h : {0, 1}n ⇥ {0, 1}` ! {0, 1}n. Also, PB is the standard Merkle-Damg̊ard padding for
M , which encodes the length of M . Assume that the keys for F 0

post are `-bit strings. Under the
assumption that h is collision resistant and htop is a secure PRF, show that F 0

post is a secure PRF.

8.19 (Dual PRFs). The security analysis of HMAC assumes that the underlying compression
function is a secure PRF when either input is used as the key. A PRF with this property is said to
be a dual PRF. Let F be a secure PRF defined over (K, X , Y) where Y = {0, 1}n for some n. We
wish to build a new PRF F̂ that is a dual PRF. This F̂ can be used as a building block for HMAC.

(a) Suppose K = X . Show that the most natural construction F̂ (x, y) := F (x, y) � F (y, x) is
insecure: there exists a secure PRF F for which F̂ is not a dual PRF.

Hint: Start from a secure PRF F 0 and the “sabotage” it to get the required F .

(b) Let G be a PRG defined over (S, K ⇥ X ). Let G0 : S ! K be the left output of G and let
G1 : S ! X be the right output of G. Let F̂ be the following PRF defined over (S, S, Y):

F̂ (x, y) := F
⇣

G0(x), G1(y)
⌘

� F
⇣

G0(y), G1(x)
⌘

.

Prove that F̂ is a dual PRF assuming G is a secure PRG and that G1 is collision resistant.

8.20 (Sponge with low capacity is insecure). Let H be a sponge hash with rate r and
capacity c, built from a permutation ⇡ : {0, 1}n ! {0, 1}n, where n = r + c (see Section 8.8).
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Assume r � 2c. Show how to find a collision for H with probability at least 1/2 in time O(2c/2).
The colliding messages can be 2r bits each.

8.21 (Sponge as a PRF). Let H be a sponge hash with rate r and capacity c, built from a
permutation ⇡ : {0, 1}n ! {0, 1}n, where n = r + c (see Section 8.8). Consider again the PRF built
from H by pre-pending the key: Fpre(k, M) := H(k k M). Assume that the key is r bits and the
output of Fpre is also r bits. Prove that in the ideal permutation model, where ⇡ is replaced by a
random permutation ⇧, this construction yields a secure PRF, assuming 2r and 2c are super-poly.

Note: This follows immediately from the fact that H is indi↵erentiable from a random oracle (see
Section 8.10.3) and Theorem 8.7. However, you are to give a direct proof of this fact.

Hint: Use the same domain splitting strategy as outlined in Exercise 7.17.

8.22 (Relations among definitions). Let H be a hash function over (M, T ) where |M| � 2|T |.
We say that an element m 2M has a second preimage if there exists a di↵erent m0 2M such that
H(m) = H(m0).

(a) Show that at least half the elements of M have a second preimage.

(b) Use part (a) to show that a 2nd-preimage hash must be one-way.

(c) Show that a collision resistant hash must be 2nd-preimage resistant.

8.23 (From TCR to 2nd-preimage resistance). Let H be a TCR hash defined over (K, M, T ).
Choose a random r 2 M. Prove that f(x) := H(r, x) k r is 2nd-preimage resistant, where r is
treated as a system parameter.

8.24 (File integrity: reducing read-only memory). The file integrity construction in Sec-
tion 8.11.4 uses additional read-only memory proportional to log |F | where |F | is the size of the file
F being protected.

(a) By first hashing the file F and then hashing the key r, show how to reduce the amount of ad-
ditional read-only memory used to O(log log |F |). This requires storing additional O(log |F |)
bits on disk.

(b) Generalize your solution from part (a) to show how to reduce read-only overhead to constant
size independent of |F |. The extra information stored on disk is still of size O(log |F |).

8.25 (Strong 2nd-preimage resistance). Let H be a hash function defined over (X ⇥ Y, T )
where X := {0, 1}n. We say that H is strong 2nd-preimage resistant, or simply strong-
SPR, if no e�cient adversary, given a random x in X as input, can output y, x0, y0 such that
H(x, y) = H(x0, y0) with non-negligible probability.

(a) Let H be a strong-SPR. Use H to construct a collision resistant hash function H 0 defined
over (X ⇥ Y, T ).

(b) Let us show that a function H can be a strong-SPR, but not collision resistant. For example,
consider the hash function:

H 00(0, 0) := H 00(0, 1) := 0 and H 00(x, y) := H(x, y) for all other inputs.

Prove that if |X | is super-poly and H is a strong-SPR then so is H 00. However, H 00 is clearly
not collision resistant.
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(c) Show that HTCR

(k, (x, y)) := H((k � x), y) is a TCR hash function assuming H is a strong-
SPR hash function.

8.26 (Enhanced TCR). Let H be a keyed hash function defined over (K, M, T ). We say that
H is an enhanced-TCR if no e�cient adversary can win the following game with non-negligible
advantage: the adversary outputs m 2M, is given random k 2 K and outputs (k0, m0) such that
H(k, m) = H(k0, m0).

(a) Let H be a strong-SPR hash function over (X ⇥ Y, T ), as defined in Exercise 8.25, where
X := {0, 1}n. Show that H 0(k, (x, y)) := H((k � x), y) is an enhanced-TCR hash function.

(b) Show how to use an enhanced-TCR to extend the domain of a MAC. Let H be a enhanced-
TCR defined over (KH , M, X ) and let (S, V ) be a secure MAC defined over (K, X , T ). Show
that the following is a secure MAC:

S0(k, m) := { r  R KH , t S(k, H(r, m)), output (r, t)}
V 0�k, m, (r, t)

�

:= { accept if t = V (k, H(r, m))}
8.27 (Weak collision resistance). Let H be a keyed hash function defined over (K, M, T ). We
say that H is a weak collision resistant (WCR) if no e�cient adversary can win the following
game with non-negligible advantage: the challenger chooses a random key k 2 K and lets the
adversary query the function H(k, ·) at any input of its choice. The adversary wins if it outputs a
collision m0, m1 for H(k, ·).

(a) Show that WCR is a weaker notion than a secure MAC: (1) show that every deterministic
secure MAC is WCR, (2) give an example of a secure WCR that is not a secure MAC.

(b) MAC domain extension with a WCR: let (S, V ) be a secure MAC and let H be a WCR. Show
that the MAC system (S0, V 0) defined by S0�(k0, k1), m

�

:= S
�

k1, H(k0, m)
�

is secure.

(c) Show that Merkle-Damg̊ard expands a compressing fixed-input length WCR to a variable
input length WCR. In particular, let h be a WCR defined over (K, X ⇥ Y, X ), where X :=
{0, 1}n and Y := {0, 1}`. Define H as a keyed hash function over (K, {0, 1}L, X ) as follows:

H
�

(k1, k2), M
�

:=
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pad and break M into `-bit blocks: m1, . . . , ms

t0  0n 2 X
for i = 1 to s do:

ti  h
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k1, (ti�1, mi)
�
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;

Show that H is a WCR if h is.

8.28 (The trouble with random oracles). Let H be a hash function defined over (K⇥X , Y).
We showed that H(k, x) is a secure PRF when H is modeled as a random oracle. In this exercise
we show that this PRF can be tweaked into a new PRF F that uses H as a black-box, and that is
a secure PRF when H is modeled as a random model. However, for every concrete instantiation of
the hash function H, the PRF F becomes insecure.
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For simplicity, assume that K and Y consist of bit strings of length n and that X consists of bit
strings of length at most L for some poly-bounded n and L. Assume also that the program for H
parses its input as a bit string of the form k k x, where k 2 K and x 2 X .

Consider a program Exec(P, v, t) that takes as input three bit strings P, v, t. When Exec(P, v, t)
runs, it attempts to interpret P as a program written in some programming language (take your
pick); it runs P on input v, but stops the execution after |t| steps (if necessary), where |t| is the
bit-length of t. The output of Exec(P, v, t) is whatever P outputs on input v, or some special default
value if the time bound is exceeded. For simplicity, assume that Exec(P, v, t) always outputs an n-
bit string (padding or truncating as necessary). Even though P on input v may run in exponential
time (or even fall into an infinite loop), Exec(P, v, t) always runs in time bounded by a polynomial
in its input length.

Finally, let T be some arbitrary polynomial, and define

F (k, x) := H(k, x)� Exec(x, k k x, 0T (|k|+|x|)).

(a) Show that if H is any hash function that can be implemented by a program PH whose length
is at most L and whose running time on input k k x is at most T (|k|+ |x|), then the concrete
instantiation of F using this H runs in polynomial time and is not a secure PRF.

Hint: Find a value of x that makes the PRF output 0n, for all keys k 2 K.

(b) Show that F is a secure PRF if H is modeled as a random oracle.

Discussion: Although this is a contrived example, it shakes our confidence in the random oracle
model. Nevertheless, the reason why the random oracle model has been so successful in practice is
that typically real-world attacks treat the hash function as a black box. The attack on F clearly
does not. See also the discussion in [24], which removes the strict time bound restriction on H.
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Chapter 9

Authenticated Encryption

Our discussion of encryption in Chapters 2 to 8 leads up to this point. In this chapter we, construct
systems that ensure both data secrecy (confidentiality) and data integrity, even against very aggres-
sive attackers that can interact with the sender and receiver quite maliciously and arbitrarily. Such
systems are said to provide authenticated encryption or are simply said to be AE-secure. This
chapter concludes our discussion of symmetric encryption. It is the culmination of our symmetric
encryption story.

Recall that in our discussion of CPA security in Chapter 5 we stressed that CPA security does
not provide any integrity. An attacker can tamper with the output of a CPA-secure cipher without
being detected by the decryptor. We will present many real-world settings where undetected
ciphertext tampering comprises both message secrecy and message integrity. Consequently, CPA
security by itself is insu�cient for almost all applications. Instead, applications should almost
always use authenticated encryption to ensure both message secrecy and integrity. We stress that
even if secrecy is the only requirement, CPA security is insu�cient.

In this chapter we develop the notion of authenticated encryption and construct several AE
systems. There are two general paradigms for construction AE systems. The first, called generic
composition, is to combine a CPA-secure cipher with a secure MAC. There are many ways to
combine these two primitives and not all combinations are secure. We briefly consider two examples.

Let (E, D) be a cipher and (S, V ) be a MAC. Let kenc be a cipher key and kmac be a MAC key.
Two options for combining encryption and integrity immediately come to mind, which are shown
in Fig. 9.1 and work as follows:

Encrypt-then-MAC Encrypt the message, c  R E(kenc, m), then MAC the ciphertext, tag  R
S(kmac, c); the result is the ciphertext-tag pair (c, tag). This method is supported in the
TLS 1.2 protocol and later versions as well as in the IPsec protocol and in a widely-used
NIST standard called GCM (see Section 9.7).

MAC-then-encrypt MAC the message, tag  R S(kmac, m), then encrypt the message-tag pair,
c  R E

�

kenc, (m, t)
�

; the result is the ciphertext c. This method is used in older versions
of TLS (e.g., SSL 3.0 and its successor called TLS 1.0) and in the 802.11i WiFi encryption
protocol.

As it turns out, only the first method is secure for every combination of CPA-secure cipher and
secure MAC. The intuition is that the MAC on the ciphertext prevents any tampering with the
ciphertext. We will show that the second method can be insecure — the MAC and cipher can
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m

c E(kenc, m )

c tag

c E(kenc, m )

c

tag S(kmac, c)

m

m tag

c E(kenc, (m, tag) )c E(kenc, (m, tag) )

tag S(kmac, m)

encrypt-then-mac mac-then-encrypt

Figure 9.1: Two methods to combine encryption and MAC

interact badly and cause the resulting system to not be AE-secure. This has lead to many attacks
on widely deployed systems.

The second paradigm for building authenticated encryption is to build them directly from a
block cipher or a PRF without first constructing either a standalone cipher or MAC. These are
sometimes called integrated schemes. The OCB encryption mode is the primary example in this
category (see Exercise 9.17). Other examples include IAPM, XCBC, CCFB, and others.

Authenticated encryption standards. Cryptographic libraries such as OpenSSL often provide
an interface for CPA-secure encryption (such as counter mode with a random IV) and a separate
interface for computing MACs on messages. In the past, it was up to developers to correctly
combine these two primitives to provide authenticated encryption. Every system did it di↵erently
and not all incarnations used in practice were secure.

More recently, several standards have emerged for secure authenticated encryption. A popular
method called Galois Counter Mode (GCM) uses encrypt-then-MAC to combine random counter
mode encryption with a Carter-Wegman MAC (see Section 9.7). We will examine the details
of this construction and its security later on in the chapter. Developers are encouraged to use
an authenticated encryption mode provided by the underlying cryptographic library and to not
implement it themselves.

9.1 Authenticated encryption: definitions

We start by defining what it means for a cipher E to provide authenticated encryption. It must
satisfy two properties. First, E must be CPA-secure. Second, E must provide ciphertext integrity,
as defined below. Ciphertext integrity is a new property that captures the fact that E should
have properties similar to a MAC. Let E = (E, D) be a cipher defined over (K, M, C). We define
ciphertext integrity using the following attack game, shown in Fig. 9.2. The game is analogous to
the MAC Attack Game 6.1.

Attack Game 9.1 (ciphertext integrity). For a given cipher E = (E, D) defined over (K, M, C),
and a given adversary A, the attack game runs as follows:

• The challenger chooses a random k  R K.
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Challenger Adversary A
k  R K mi

ci  E(k, mi)

c

Figure 9.2: Ciphertext integrity game (Attack Game 9.1)

• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists of a
message mi 2M. The challenger computes ci  R E(k, mi), and gives ci to A.

• Eventually A outputs a candidate ciphertext c 2 C that is not among the cipher-
texts it was given, i.e.,

c 62 {c1, c2, . . .}.

We say that A wins the game if c is a valid ciphertext under k, that is, D(k, c) 6= reject. We define
A’s advantage with respect to E , denoted CIadv[A, E ], as the probability that A wins the game.
Finally, we say that A is a Q-query adversary if A issues at most Q encryption queries. 2

Definition 9.1. We say that a E = (E, D) provides ciphertext integrity, or CI for short, if for
every e�cient adversary A, the value CIadv[A, E ] is negligible.

CPA security and ciphertext integrity are the properties needed for authenticated encryption.
This is captured in the following definition.

Definition 9.2. We say that a cipher E = (E, D) provides authenticated encryption, or is
simply AE-secure, if E is (1) semantically secure under a chosen plaintext attack, and (2) provides
ciphertext integrity.

Why is Definition 9.2 the right definition? In particular, why are we requiring ciphertext in-
tegrity, rather than some notion of plaintext integrity (which might seem more natural)? In Sec-
tion 9.2, we will describe a very insidious class of attacks called chosen ciphertext attacks, and we
will see that our definition of AE-security is su�cient (and, indeed, necessary) to prevent such
attacks. In Section 9.3, we give a more high-level justification for the definition.

One-time authenticated encryption

In practice, one often uses a symmetric key to encrypt a single message. The key is never used
again. For example, when sending encrypted email one often picks an ephemeral key and encrypts
the email body under this ephemeral key. The ephemeral key is then encrypted and transmitted
in the email header. A new ephemeral key is generated for every email.

In these settings one can use a one-time encryption scheme such as a stream cipher. The
cipher must be semantically secure, but need not be CPA-secure. Similarly, it su�ces that the
cipher provide one-time ciphertext integrity, which is a weaker notion than ciphertext-integrity. In
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particular, we change Attack Game 9.1 so that the adversary can only obtain the encryption of a
single message m.

Definition 9.3. We say that E = (E, D) provides one-time ciphertext integrity if for every
e�cient single-query adversary A, the value CIadv[A, E ] is negligible.

Definition 9.4. We say that E = (E, D) provides one-time authenticated encryption, or is
1AE-secure for short, if E is semantically secure and provides one-time ciphertext integrity.

In applications that only use a symmetric key once, 1AE-security su�ces. We will show that
the encrypt-then-MAC construction of Fig. 9.1 using a semantically secure cipher and a one-time
MAC, provides one-time authenticated encryption. Replacing the MAC by a one-time MAC can
lead to e�ciency improvements.

9.2 Implications of authenticated encryption

Before constructing AE-secure systems, let us first play with Definition 9.1 a bit to see what it
implies. Consider a sender, Alice, and a receiver, Bob, who have a shared secret key k. Alice sends
a sequence of messages to Bob over a public network. Each message is encrypted with an AE-secure
cipher E = (E, D) using the key k.

For starters, consider an eavesdropping adversary A. Since E is CPA-secure this does not help
A learn any new information about messages sent from Alice to Bob.

Now consider a more aggressive adversary A that attempts to make Bob receive a message that
was not sent by Alice. We claim this cannot happen. To see why, consider the following single-
message example: Alice encrypts to Bob a message m and the resulting ciphertext c is intercepted
by A. The adversary’s goal is to create some ĉ such that m̂ := D(k, ĉ) 6= reject and m̂ 6= m.
This ĉ would fool Bob into thinking that Alice sent m̂ rather than m. But then A could also win
Attack Game 9.1 with respect to E , contradicting E ’s ciphertext integrity. Consequently, A cannot
modify c without being detected. More generally, applying the argument to multiple messages
shows that A cannot cause Bob to receive any messages that were not sent by Alice. The more
general conclusion here is that ciphertext integrity implies message integrity.

9.2.1 Chosen ciphertext attacks: a motivating example

We now consider an even more aggressive type of attack, called a chosen ciphertext attack for
short. As we will see, an AE-secure cipher provides message secrecy and message integrity even
against such a powerful attack.

To motivate chosen ciphertext attacks suppose Alice sends an email message to Bob. For
simplicity let us assume that every email starts with the letters To: followed by the recipient’s
email address. So, an email to Bob starts with To:bob@mail.com and an email to Mel begins with
To:mel@mail.com. The mail server decrypts every incoming email and writes it into the recipient’s
inbox: emails that start with To:bob@mail.com are written to Bob’s inbox and emails that start
with To:mel@mail.com are written to Mel’s inbox.

Mel, the attacker in this story, wants to read the email that Alice sent to Bob. Unfortunately
for Mel, Alice was careful and encrypted the email using a key known only to Alice and to the mail
server. When the ciphertext c is received at the mail server it will be decrypted and the resulting
message is placed into Bob’s inbox. Mel will be unable to read it.
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Nevertheless, let us show that if Alice encrypts the email with a CPA-secure cipher such as
randomized counter mode or randomized CBC mode then Mel can quite easily obtain the email
contents. Here is how: Mel will intercept the ciphertext c en-route to the mail server and modify it
to obtain a ciphertext ĉ so that the decryption of ĉ starts with To:mel@mail.com, but is otherwise
the same as the original message. Mel then forwards ĉ to the mail server. When the mail server
receives ĉ it will decrypt it and (incorrectly) place the plaintext into Mel’s inbox where Mel can
easily read it.

To successfully carry out this attack, Mel must first solve the following problem: given an encryp-
tion c of some message (u k m) where u is a fixed known prefix (in our case u := To:bob@mail.com),
compute a ciphertext ĉ that will decrypt to the message (v k m), where v is some other prefix (in
our case v := To:mel@mail.com).

Let us show that Mel can easily solve this problem, assuming the encryption scheme is either
randomized counter mode or randomized CBC. For simplicity, we also assume that u and v are
binary strings whose length is the same as the block size of the underlying block cipher. As usual
c[0] and c[1] are the first and second blocks of c where c[0] is the random IV. Mel constructs ĉ as
follows:

• randomized counter mode: define ĉ to be the same as c except that ĉ[1] := c[1]� u� v.

• randomized CBC mode: define ĉ to be the same as c except that ĉ[0] := c[0]� u� v.

It is not di�cult to see that in either case the decryption of ĉ starts with the prefix v (see Sec-
tion 3.3.2). Mel is now able to obtain the decryption of ĉ and read the secret message m in the
clear.

What just happened? We proved that both encryption modes are CPA secure, and yet we just
showed how to break them. This attack is an example of a chosen ciphertext attack — by querying
for the decryption of ĉ, Mel was able to deduce the decryption of c. This attack is also another
demonstration of how attackers can exploit the malleability of a cipher — we saw another attack
based on malleability back in Section 3.3.2.

As we just saw, a CPA-secure system can become completely insecure when an attacker can
decrypt certain ciphertexts, even if he cannot directly decrypt a ciphertext that interests him. Put
another way, the lack of ciphertext integrity can completely compromise secrecy — even if plaintext
integrity is not an explicit security requirement.

We informally argue that if Alice used an AE-secure cipher E = (E, D) then it would be
impossible to mount the attack we just described. Suppose Mel intercepts a ciphertext c := E(k, m).
He tries to create another ciphertext ĉ such that (1) m̂ := D(k, ĉ) starts with prefix v, and (2)
the adversary can recover m from m̂, in particular m̂ 6= reject. Ciphertext integrity, and therefore
AE-security, implies that the attacker cannot create this ĉ. In fact, the attacker cannot create any
new valid ciphertexts and therefore an AE-secure cipher foils the attack.

In the next section, we formally define the notion of a chosen ciphertext attack, and show that
if a cipher is AE-secure then it is secure even against this type of attack.

9.2.2 Chosen ciphertext attacks: definition

In this section, we formally define the notion of a chosen ciphertext attack. In such an attack,
the adversary has all the power of an attacker in a chosen plaintext attack, but in addition, the
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adversary may obtain decryptions of ciphertexts of its choosing — subject to a restriction. Recall
that in a chosen plaintext attack, the adversary obtains a number of ciphertexts from its challenger,
in response to encryption queries. The restriction we impose is that the adversary may not ask
for the decryptions of any of these ciphertexts. While such a restriction is necessary to make the
attack game at all meaningful, it may also seem a bit unintuitive: if the adversary can decrypt
ciphertexts of choosing, why would it not decrypt the most important ones? We will explain later
(in Section 9.3) more of the intuition behind this definition. We will show below (in Section 9.2.3)
that if a cipher is AE-secure then it is secure against chosen ciphertext attack.

Here is the formal attack game:

Attack Game 9.2 (CCA security). For a given cipher E = (E, D) defined over (K, M, C), and
for a given adversary A, we define two experiments. For b = 0, 1, we define

Experiment b:

• The challenger selects k  R K.

• A then makes a series of queries to the challenger. Each query can be one of two types:

– Encryption query: for i = 1, 2, . . . , the ith encryption query consists of a pair of messages
(mi0, mi1) 2M2. The challenger computes ci  R E(k, mib) and sends ci to A.

– Decryption query: for j = 1, 2, . . . , the jth decryption query consists of a ciphertext
ĉj 2 C that is not among the responses to the previous encryption queries, i.e.,

ĉj /2 {c1, c2, . . .}.

The challenger computes m̂j  D(k, ĉj), and sends m̂j to A.

• At the end of the game, the adversary outputs a bit b̂ 2 {0, 1}.

Let Wb is the event that A outputs 1 in Experiment b and define A’s advantage with respect
to E as

CCAadv[A, E ] :=
�

�Pr[W0]� Pr[W1]
�

�. 2

We stress that in the above attack game, the encryption and decryption queries may be arbi-
trarily interleaved with one another.

Definition 9.5 (CCA security). A cipher E is called semantically secure against chosen ci-
phertext attack, or simply CCA-secure, if for all e�cient adversaries A, the value CCAadv[A, E ]
is negligible.

In some settings, a new key is generated for every message so that a particular key k is only
used to encrypt a single message. The system needs to be secure against chosen ciphertext attacks
where the attacker fools the user into decrypting multiple ciphertexts using k. For these settings
we define security against an adversary that can only issue a single encryption query, but many
decryption queries.

Definition 9.6 (1CCA security). In Attack Game 9.2, if the adversary A is restricted to making
a single encryption query, we denote its advantage by 1CCAadv[A, E ]. A cipher E is one-time
semantically secure against chosen ciphertext attack, or simply, 1CCA-secure, if for all
e�cient adversaries A, the value 1CCAadv[A, E ] is negligible.
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As discussed in Section 2.3.5, Attack Game 9.2 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
CCAadv

⇤[A, E ] (and 1CCAadv

⇤[A, E ]) as |Pr[b̂ = b] � 1/2|. The general result of Section 2.3.5
(namely, (2.13)) applies here as well:

CCAadv[A, E ] = 2 · CCAadv

⇤[A, E ]. (9.1)

And similarly, for adversaries restricted to a single encryption query, we have:

1CCAadv[A, E ] = 2 · 1CCAadv

⇤[A, E ]. (9.2)

9.2.3 Authenticated encryption implies chosen ciphertext security

We now show that every AE-secure system is also CCA-secure. Similarly, every 1AE-secure system
is 1CCA-secure.

Theorem 9.1. Let E = (E, D) be a cipher. If E is AE-secure, then it is CCA-secure. If E is
1AE-secure, then it is 1CCA-secure.

In particular, suppose A is a CCA-adversary for E that makes at most Qe encryption queries
and Qd decryption queries. Then there exist a CPA-adversary Bcpa and a CI-adversary Bci,
where Bcpa and Bci are elementary wrappers around A, such that

CCAadv[A, E ]  CPAadv[Bcpa, E ] + 2Qd · CIadv[Bci, E ]. (9.3)

Moreover, Bcpa and Bci both make at most Qe encryption queries.

Before proving this theorem, we point out a converse of sorts: if a cipher is CCA-secure and
provides plaintext integrity, then it must be AE-secure. You are asked to prove this in Exercise 9.15.
These two results together provide strong support for the claim that AE-security is the right notion
of security for general purpose communication over an insecure network. We also note that it is
possible to build a CCA-secure cipher that does not provide ciphertext (or plaintext) integrity —
see Exercise 9.12 for an example.

Proof idea. A CCA-adversary A issues encryption and allowed decryption queries. We first argue
that the response to all these decryption queries must be reject. To see why, observe that if the
adversary ever issues a valid decryption query ci whose decryption is not reject, then this ci can be
used to win the ciphertext integrity game. Hence, since all of A’s decryption queries are rejected,
the adversary learns nothing by issuing decryption queries and they may as well be discarded. After
removing decryption queries we end up with a standard CPA game. The adversary cannot win this
game because E is CPA-secure. We conclude that A has negligible advantage in winning the CCA
game. 2

Proof. Let A be an e�cient CCA-adversary attacking E as in Attack Game 9.2, and which makes
at most Qe encryption queries and Qd decryption queries. We want to show that CCAadv[A, E ]
is negligible, assuming that E is AE-secure. We will use the bit-guessing versions of the CCA and
CPA attack games, and show that

CCAadv

⇤[A, E ]  CPAadv

⇤[Bcpa, E ] + Qd · CIadv[Bci, E ]. (9.4)
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for e�cient adversaries Bcpa and Bci. Then (9.3) follows from (9.4), along with (9.1) and (5.4).
Moreover, as we shall see, the adversary Bcpa makes at most Qe encryption queries; therefore, if E
is 1AE-secure, it is also 1CCA-secure.

Let us define Game 0 to be the bit-guessing version of Attack Game 9.2. The challenger in this
game, called Game 0, works as follows:

b R {0, 1} // A will try to guess b
k  R K
upon receiving the ith encryption query (mi0, mi1) from A do:

send ci  R E(k, mb) to A
upon receiving the jth decryption query ĉj from A do:

(1) send D(k, ĉj) to A
Eventually the adversary outputs a guess b̂ 2 {0, 1}. We say that A wins the game if b = b̂ and we
denote this event by W0. By definition, the bit-guessing advantage is

CCAadv

⇤[A, E ] = |Pr[W0]� 1/2|. (9.5)

Game 1. We now modify line (1) in the challenger as follows:

(1) send reject to A
We argue that A cannot distinguish this challenger from the original. Let Z be the event that in
Game 1, A issues a decryption query ĉj such that D(k, ĉj) 6= reject. Clearly, Games 0 and 1 proceed
identically as long as Z does not happen. Hence, by the Di↵erence Lemma (i.e., Theorem 4.7) it
follows that |Pr[W0]� Pr[W1]|  Pr[Z].

Using a “guessing strategy” similar to that used in the proof of Theorem 6.1, we can use A to
build a CI-adversary Bci that wins the CI attack game with probability at least Pr[Z]/Qd. Note
that in Game 1, the decryption algorithm is not used at all. Adversary Bci’s strategy is simply to
guess a random number ! 2 {1, . . . , Qd}, and then to play the role of challenger to A:

• when A makes an encryption query, Bci forwards this to its own challenger, and returns the
response to A;

• when A makes a decryption query ĉj , Bci simply sends reject to A, except that if j = !, Bci

outputs ĉj and halts.

It is not hard to see that CIadv[Bci, E ] � Pr[Z]/Qd, and so

|Pr[W0]� Pr[W1]|  Pr[Z]  Qd · CIadv[Bci, E ]. (9.6)

Final reduction. Since all decryption queries are rejected in Game 1, this is essentially a CPA
attack game. More precisely, we can construct a CPA adversary Bcpa that plays the role of challenger
to A as follows:

• when A makes an encryption query, Bcpa forwards this to its own challenger, and returns the
response to A;

• when A makes a decryption query, Bcpa simply sends reject to A.

At the end of the game, Bcpa simply outputs the bit b̂ that A outputs. Clearly,

|Pr[W1]� 1/2| = CPAadv

⇤[Bcpa, E ] (9.7)

Putting equations (9.5)–(9.7) together gives us (9.4), which proves the theorem. 2
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9.3 Encryption as an abstract interface

To further motivate the definition of authenticated encryption we show that it precisely captures
an intuitive notion of secure encryption as an abstract interface. AE-security implies that the real
implementation of this interface may be replaced by an idealized implementation in which messages
literally jump from sender to receiver, without going over the network at all (even in encrypted
form). We now develop this idea more fully.

Suppose a sender S and receiver R are using some arbitrary Internet-based system (e.g, gam-
bling, auctions, banking — whatever). Also, we assume that S and R have already established
a shared, random encryption key k. During the protocol, S will send encryptions of messages
m1, m2, . . . to R. The messages mi are determined by the logic of the protocol S is using, whatever
that happens to be. We can imagine S placing a message mi in his “out-box”, the precise details
of how the out-box works being of no concern to S. Of course, inside S’s out-box, we know what
happens: an encryption ci of mi under k is computed, and this is sent out over the wire to R.

On the receiving end, when a ciphertext ĉ is received at R’s end of the wire, it is decrypted
using k, and if the decryption is a message m̂ 6= reject, the message m̂ is placed in R’s “in-box”.
Whenever a message appears in his in-box, R can retrieve it and processes it according to the logic
of his protocol, without worrying about how the message got there.

An attacker may try to subvert communication between S and R in a number of ways.

• First, the attacker may drop, re-order, or duplicate the ciphertexts sent by S.

• Second, the attacker may modify ciphertexts sent by S, or inject ciphertexts created out of
“whole cloth”.

• Third, the attacker may have partial knowledge of some of the messages sent by S, or may
even be able to influence the choice of some of these messages.

• Fourth, by observing R’s behavior, the attacker may be able to glean partial knowledge of
some of the messages processed by R. Even the knowledge of whether or not a ciphertext
delivered to R was rejected could be useful.

Having described an abstract encryption interface and its implementation, we now describe an
ideal implementation of this interface that captures in an intuitive way the guarantees ensured by
authenticated encryption. When S drops mi in its out-box, instead of encrypting mi, the ideal
implementation creates a ciphertext ci by encrypting a dummy message dummy i, that has nothing
to do with mi (except that it should be of the same length). Thus, ci serves as a “handle” for mi,
but does not contain any information about mi (other than its length). When ci arrives at R, the
corresponding message mi is magically copied from S’s out-box to R’s in-box. If a ciphertext arrives
at R that is not among the previously generated ci’s, the ideal implementation simply discards it.

This ideal implementation is just a thought experiment. It obviously cannot be physically
realized in any e�cient way (without first inventing teleportation). As we shall argue, however, if
the underlying cipher E provides authenticated encryption, the ideal implementation is — for all
practical purposes — equivalent to the real implementation. Therefore, a protocol designer need
not worry about any of the details of the real implementation or the nuances of cryptographic
definitions: he can simply pretend he is using the abstract encryption interface with its ideal
implementation, in which ciphertexts are just handles and messages magically jump from S to R.

346



Hopefully, analyzing the security properties of the higher-level protocol will be much easier in this
setting.

Note that even in the ideal implementation, the attacker may still drop, re-order, or duplicate
ciphertexts, and these will cause the corresponding messages to be dropped, re-ordered, or dupli-
cated. Using sequence numbers and bu↵ers, it is not hard to deal with these possibilities, but that
is left to the higher-level protocol.

We now argue informally that when E provides authenticated encryption, the real world im-
plementation is indistinguishable from the ideal implementation. The argument proceeds in three
steps. We start with the real implementation, and in each step, we make a slight modification.

• First, we modify the real implementation of R’s in-box, as follows. When a ciphertext ĉ
arrives on R’s end, the list of ciphertexts c1, c2, . . . previously generated by S is scanned, and
if ĉ = ci, then the corresponding message mi is magically copied from S’s out-box into R’s
in-box, without actually running the decryption algorithm.

The correctness property of E ensures that this modification behaves exactly the same as the
real implementation.

• Second, we modify the implementation on R’s in-box again, so that if a ciphertext ĉ arrives
on R’s end that is not among the ciphertexts generated by S, the implementation simply
discards ĉ.

The only way the adversary could distinguish this modification from the first is if he could
create a ciphertext that would not be rejected and was not generated by S. But this is not
possible, since E has ciphertext integrity.

• Third, we modify the implementation of S’s out-box, replacing the encryption of mi with
the encryption of dummy i. The implementation of R’s in-box remains as in the second
modification. Note that the decryption algorithm is never used in either the second or third
modifications. Therefore, an adversary who can distinguish this modification from the second
can be used to directly break the CPA-security of E . Hence, since E is CPA-secure, the two
modifications are indistinguishable.

Since the third modification is identical to the ideal implementation, we see that the real and ideal
implementations are indistinguishable from the adversary’s point of view.

A technical point we have not considered is the possibility that the ci’s generated by S are not
unique. Certainly, if we are going to view the ci’s as handles in the ideal implementation, uniqueness
would seem to be an essential property. In fact, CPA-security implies that the ci’s generated in the
ideal implementation are unique with overwhelming probability — see Exercise 5.11.

9.4 Authenticated encryption ciphers from generic composition

We now turn to constructing authenticated encryption by combining a CPA-secure cipher and a
secure MAC. We show that encrypt-then-MAC is always AE-secure, but MAC-then-encrypt is not.
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9.4.1 Encrypt-then-MAC

Let E = (E, D) be a cipher defined over (Ke, M, C) and let I = (S, V ) be a MAC defined over
(Km, C, T ). The encrypt-then-MAC system EEtM = (EEtM, DEtM), or EtM for short, is defined
as follows:

EEtM( (ke, km), m) := c R E(ke, m), t R S(km, c)
Output (c, t)

DEtM((ke, km), (c, t) ) := if V (km, c, t) = reject then output reject

otherwise, output D(ke, c)

The EtM system is defined over (Ke ⇥ Km, M, C ⇥ T ). The following theorem shows that EEtM
provides authenticated encryption.

Theorem 9.2. Let E = (E, D) be a cipher and let I = (S, V ) be a MAC system. Then EEtM is
AE-secure assuming E is CPA-secure and I is a secure MAC system. Also, EEtM is 1AE-secure
assuming E is semantically secure and I is a one-time secure MAC system.

In particular, for every ciphertext integrity adversary Aci that attacks EEtM as in Attack
Game 9.1 there exists a MAC adversary Bmac that attacks I as in Attack Game 6.1, where
Bmac is an elementary wrapper around Aci, and which makes no more signing queries than Aci

makes encryption queries, such that

CIadv[Aci, EEtM] = MACadv[Bmac, I].

For every CPA adversary Acpa that attacks EEtM as in Attack Game 5.2 there exists a CPA
adversary Bcpa that attacks E as in Attack Game 5.2, where Bcpa is an elementary wrapper
around Acpa, and which makes no more encryption queries than does Acpa, such that

CPAadv[Acpa, EEtM] = CPAadv[Bcpa, E ].

Proof. Let us first show that EEtM provides ciphertext integrity. The proof is by a straight forward
reduction. Suppose Aci is a ciphertext integrity adversary attacking EEtM. We construct a MAC
adversary Bmac attacking I.

Adversary Bmac plays the role of adversary in a MAC attack game for I. It interacts with
a MAC challenger Cmac that starts by picking a random km  R Km. Adversary Bmac works by
emulating a EEtM ciphertext integrity challenger for Aci, as follows:

ke  R Ke

upon receiving a query mi 2M from Aci do:
ci  R E(ke, mi)
Query Cmac on ci and obtain ti  R S(km, ci) in response
Send (ci, ti) to Aci // then (ci, ti) = EEtM( (ke, km), mi)

eventually Aci outputs a ciphertext (c, t) 2 C ⇥ T
output the message-tag pair (c, t)

It should be clear that Bmac responds to Aci’s queries as in a real ciphertext integrity attack game.
Therefore, with probability CIadv[Aci, EEtM] adversary Aci outputs a ciphertext (c, t) that makes
it win Attack Game 9.1 so that (c, t) 62 {(c1, t1), . . .} and V (km, c, t) = accept. It follows that (c, t)
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is a message-tag pair that lets Bmac win the MAC attack game and therefore CIadv[Aci, EEtM] =
MACadv[Bmac, I], as required.

It remains to show that if E is CPA-secure then so is EEtM. This simply says that the tag included
in the ciphertext, which is computed using the key km (and does not involve the encryption key ke
at all), does not help the attacker break CPA security of EEtM. This is straightforward and is left
as an easy exercise (see Exercise 5.20). 2

Recall that our definition of a secure MAC from Chapter 6 requires that given a message-tag
pair (c, t) the attacker cannot come up with a new tag t0 6= t such that (c, t0) is a valid message-tag
pair. At the time it seemed odd to require this: if the attacker already has a valid tag for c, why
do we care if he finds another tag for c? Here we see that if the attacker could come with a new
valid tag t0 for c then he could break ciphertext integrity for EtM. From an EtM ciphertext (c, t)
the attacker could construct a new valid ciphertext (c, t0) and win the ciphertext integrity game.
Our definition of secure MAC ensures that the attacker cannot modify an EtM ciphertext without
being detected.

Common mistakes in implementing encrypt-then-MAC

A common mistake when implementing encrypt-then-MAC is to use the same key for the cipher and
the MAC, i.e., setting ke = km. The resulting system need not provide authenticated encryption
and can be insecure, as shown in Exercise 9.8. In the proof of Theorem 9.2 we relied on the fact
that the two keys ke and km are chosen independently.

Another common mistake is to apply the MAC signing algorithm to only part of the ciphertext.
We look at an example. Suppose the underlying CPA-secure cipher E = (E, D) is randomized CBC
mode (Section 5.4.3) so that the encryption of a message m is (r, c) R E(k, c) where r is a random
IV. When implementing encrypt-then-MAC EEtM = (EEtM, DEtM) the encryption algorithm is
incorrectly defined as

EEtM
�

(ke, km), m
�

:=
�

(r, c) R E(ke, m), t R S(km, c), output (r, c, t)
 

.

Here, E(ke, m) outputs the ciphertext (r, c), but the MAC signing algorithm is only applied to
c; the IV is not protected by the MAC. This mistake completely destroys ciphertext integrity:
given a ciphertext (r, c, t) an attacker can create a new valid ciphertext (r0, c, t) for some r0 6= r.
The decryption algorithm will not detect this modification of the IV and will not output reject.
Instead, the decryption algorithm will output D

�

ke, (r0, c)
�

. Since (r0, c, t) is a valid ciphertext
the adversary wins the ciphertext integrity game. Even worse, if (r, c, t) is the encryption of a
message m then changing (r, c, t) to (r ��, c, t) for any � causes the CBC decryption algorithm
to output a message m0 where m0[0] = m[0]��. This means that the attacker can change header
information in the first block of m to any value of the attacker’s choosing. An early edition of the
ISO 19772 standard for authenticated encryption made precisely this mistake [81]. Similarly, in
2013 it was discovered that the RNCryptor facility in Apple’s iOS, built for data encryption, used
a faulty encrypt-then-MAC where the HMAC was not applied to the encryption IV [84].

Another pitfall to watch out for in an implementation is that no plaintext data should be output
before the integrity tag over the entire message is verified. See Section 9.9 for an example of this.
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9.4.2 MAC-then-encrypt is not generally secure: padding oracle attacks on SSL

Next, we consider the MAC-then-encrypt generic composition of a CPA secure cipher and a secure
MAC. We show that this construction need not be AE-secure and can lead to many real-world
problems.

To define MAC-then-encrypt precisely, let I = (S, V ) be a MAC defined over (Km, M, T ) and
let E = (E, D) be a cipher defined over (Ke, M ⇥ T , C). The MAC-then-encrypt system
EMtE = (EMtE, DMtE), or MtE for short, is defined as follows:

EMtE( (ke, km), m) := t R S(km, m), c R E(kc, (m, t) )
Output c

DEtM((ke, km), c ) := (m, t) D(ke, c)
if V (km, m, t) = reject then output reject

otherwise, output m

The MtE system is defined over (Ke ⇥Km, M, C).

A badly broken MtE cipher. We show that MtE is not guaranteed to be AE-secure even if E
is a CPA-secure cipher and I is a secure MAC. In fact, MtE can fail to be secure for widely-used
ciphers and MACs and this has lead to many significant attacks on deployed systems.

Consider the SSL 3.0 protocol used to protect WWW tra�c for over two decades (the protocol
is disabled in modern browsers). SSL 3.0 uses MtE to combine randomized CBC mode encryption
and a secure MAC. We showed in Chapter 5 that randomized CBC mode encryption is CPA-secure,
yet this combination is badly broken: an attacker can e↵ectively decrypt all tra�c using a chosen
ciphertext attack. This leads to a devastating attack on SSL 3.0 called POODLE [18].

Let us assume that the underlying block cipher used in CBC operates on 16 byte blocks, as
in AES. Recall that CBC mode encryption pads its input to a multiple of the block length and
SSL 3.0 does so as follows: if a pad of length p > 0 bytes is needed, the scheme pads the message
with p�1 arbitrary bytes and adds one additional byte whose value is set to (p�1). If the message
length is already a multiple of the block length (16 bytes) then SSL 3.0 adds a dummy block of 16
bytes where the last byte is set to 15 and the first 15 bytes are arbitrary. During decryption the
pad is removed by reading the last byte and removing that many more bytes.

Concretely, the cipher EMtE = (EMtE, DMtE) obtained from applying MtE to randomized CBC
mode encryption and a secure MAC works as follows:

• EMtE( (ke, km), m): First use the MAC signing algorithm to compute a fixed-length tag
t  R S(km, m) for m. Next, encrypt m k t with randomized CBC encryption: pad the
message and then encrypt in CBC mode using key ke and a random IV. Thus, the following
data is encrypted to generate the ciphertext c:

message m tag t pad p (9.8)

Notice that the tag t does not protect the integrity of the pad. We will exploit this to break
CPA security using a chosen ciphertext attack.

• DMtE( (ke, km), c): Run CBC decryption to obtain the plaintext data in (9.8). Next, remove
the pad p by reading the last byte in (9.8) and removing that many more bytes from the data
(i.e., if the last byte is 3 then that byte is removed plus 3 additional bytes). Next, verify the
MAC tag and if valid return the remaining bytes as the message. Otherwise, output reject.
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Both SSL 3.0 and TLS 1.0 use a defective variant of randomized CBC encryption, discussed in
Exercise 5.12, but this is not relevant to our discussion here. Here we will assume that a correct
implementation of randomized CBC encryption is used.

The chosen ciphertext attack. We show a chosen ciphertext attack on the system EMtE that
lets the adversary decrypt any ciphertext of its choice. It follows that EMtE need not be AE-secure,
even though the underlying cipher is CPA-secure. Throughout this section we let (E, D) denote
the block cipher used in CBC mode encryption. It operates on 16-byte blocks.

Suppose the adversary intercepts a valid ciphertext c := EMtE( (ke, km), m) for some unknown
message m. The length of m is such that after a MAC tag t is appended to m the length of (m k t)
is a multiple of 16 bytes. This means that a full padding block of 16 bytes is appended during CBC
encryption and the last byte of this pad is 15. Then the ciphertext c looks as follows:

c = c[0]
| {z }

IV

c[1] · · ·
| {z }

encryption of m

c[`� 1]
| {z }

encrypted tag

c[`]
| {z }

encrypted pad

Lets us first show that the adversary can learn something about m[0] (the first 16-byte block
of m). This will break semantic security of EMtE. The attacker prepares a chosen ciphertext query ĉ
by replacing the last block of c with c[1]. That is,

ĉ := c[0] c[1] · · · c[`� 1] c[1]
| {z }

encrypted pad?

(9.9)

By definition of CBC decryption, decrypting the last block of ĉ yields the 16-byte plaintext block

v := D
�

ke, c[1]
�� c[`� 1] = m[0]� c[0]� c[`� 1].

If the last byte of v is 15 then during decryption the entire last block will be treated as a padding
block and removed. The remaining string is a valid message-tag pair and will decrypt properly. If
the last byte of v is not 15 then most likely the response to the decryption query will be reject.

Put another way, if the response to a decryption query for ĉ is not reject then the attacker
learns that the last byte of m[0] is equal to the last byte of u := 15� c[0]� c[`� 1]. Otherwise, the
attacker learns that the last byte of m[0] is not equal to the last byte of u. This directly breaks
semantic security of the EMtE: the attacker learned something about the plaintext m.

We leave it as an instructive exercise to recast this attack in terms of an adversary in a chosen
ciphertext attack game (as in Attack Game 9.2). With a single plaintext query followed by a single
ciphertext query the adversary has advantage 1/256 in winning the game. This already proves that
EMtE is insecure.

Now, suppose the attacker obtains another encryption of m, call it c0, using a di↵erent IV.
The attacker can use the ciphertexts c and c0 to form four useful chosen ciphertext queries: it can
replace the last block of either c or c0 with either of c[1] or c0[1]. By issuing these four ciphertext
queries the attacker learns if the last byte of m[0] is equal to the last byte of one of

15� c[0]� c[`� 1], 15� c[0]� c0[`� 1], 15� c0[0]� c[`� 1], 15� c0[0]� c0[`� 1].

If these four values are distinct they give the attacker four chances to learn the last byte of m[0].
Repeating this multiple times with more fresh encryptions of the message m will quickly reveal the
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last byte of m[0]. Each chosen ciphertext query reveals that byte with probability 1/256. Therefore,
on average, with 256 chosen ciphertext queries the attacker learns the exact value of the last byte
of m[0]. So, not only can the attacker break semantic security, the attacker can actually recover one
byte of the plaintext. Next, suppose the adversary could request an encryption of m shifted one
byte to the right to obtain a ciphertext c1. Plugging c1[1] into the last block of the ciphertexts from
the previous phase (i.e., encryptions of the unshifted m) and issuing the resulting chosen ciphertext
queries reveals the second to last byte of m[0]. Repeating this for every byte of m eventually reveals
all of m. We show next that this gives a real attack on SSL 3.0.

A complete break of SSL 3.0. Chosen ciphertext attacks may seem theoretical, but they
frequently translate to devastating real-world attacks. Consider a Web browser and a victim Web
server called bank.com. The two exchange information encrypted using SSL 3.0. The browser and
server have a shared secret called a cookie and the browser embeds this cookie in every request
that it sends to bank.com. That is, abstractly, requests from the browser to bank.com look like:

GET path cookie: cookie

where path identifies the name of a resource being requested from bank.com. The browser only
inserts the cookie into requests it sends to bank.com

The attacker’s goal is to recover the secret cookie. First it makes the browser visit attacker.com
where it sends a Javascript program to the browser. This Javascript program makes the browser
issue a request for resource “/AA” at bank.com. The reason for this particular path is to ensure
that the length of the message and MAC is a multiple of the block size (16 bytes), as needed for
the attack. Consequently, the browser sends the following request to bank.com

GET /AA cookie: cookie (9.10)

encrypted using SSL 3.0. The attacker can intercept this encrypted request c and mounts the
chosen ciphertext attack on MtE to learn one byte of the cookie. That is, the attacker prepares ĉ
as in (9.9), sends ĉ to bank.com and looks to see if bank.com responds with an SSL error message.
If no error message is generated then the attacker learns one byte of the cookie. The Javascript can
cause the browser to repeatedly issue the request (9.10) giving the adversary the fresh encryptions
needed to eventually learn one byte of the cookie.

Once the adversary learns one byte of the cookie it can shift the cookie one byte to the right
by making the Javascript program issue a request to bank.com for

GET /AAA cookie: cookie

This gives the attacker a block of ciphertext, call it c1[2], where the cookie is shifted one byte to the
right. Resending the requests from the previous phase to the server, but now with the last block
replaced by c1[2], eventually reveals the second byte of the cookie. Iterating this process for every
byte of the cookie eventually reveals the entire cookie.

In e↵ect, Javascript in the browser provides the attacker with the means to mount the desired
chosen plaintext attack. Intercepting packets in the network, modifying them and observing the
server’s response, gives the attacker the means to mount the desired chosen ciphertext attack. The
combination of these two completely breaks MtE encryption in SSL 3.0.
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One minor detail is that whenever bank.com responds with an SSL error message the SSL
session shuts down. This does not pose a problem: every request that the Javascript running in
the browser makes to bank.com initiates a new SSL session. Hence, every chosen ciphertext query
is encrypted under a di↵erent session key, but that makes no di↵erence to the attack: every query
tests if one byte of the cookie is equal to one known random byte. With enough queries the attacker
learns the entire cookie.

9.4.3 More padding oracle attacks.

TLS 1.0 is an updated version of SSL 3.0. It defends against the attack of the previous section by
adding structure to the pad as explained in Section 5.4.4: when padding with p bytes, all bytes
of the pad are set to p � 1. Moreover, during decryption, the decryptor is required to check that
all padding bytes have the correct value and reject the ciphertext if not. This makes it harder to
mount the attack of the previous section. Of course our goal was merely to show that MtE is not
generally secure and SSL 3.0 made that abundantly clear.

A padding oracle timing attack. Despite the defenses in TLS 1.0 a naive implementation of
MtE decryption may still be vulnerable. Suppose the implementation works as follows: first it
applies CBC decryption to the received ciphertext; next it checks that the pad structure is valid
and if not it rejects the ciphertext; if the pad is valid it checks the integrity tag and if valid it returns
the plaintext. In this implementations the integrity tag is checked only if the pad structure is valid.
This means that a ciphertext with an invalid pad structure is rejected faster than a ciphertext with
a valid pad structure, but an invalid tag. An attacker can measure the time that the server takes
to respond to a chosen ciphertext query and if a TLS error message is generated quickly it learns
that the pad structure was invalid. Otherwise, it learns that the pad structure was valid.

This timing channel is called a padding oracle side-channel. It is a good exercise to devise a
chosen ciphertext attack based on this behavior to completely decrypt a secret cookie, as we did for
SSL 3.0. To see how this might work, suppose an attacker intercepts an encrypted TLS 1.0 record
c. Let m be the decryption of c. Say the attacker wishes to test if the last byte of m[2] is equal
to some fixed byte value b. Let B be an arbitrary 16-byte block whose last byte is b. The attacker
creates a new ciphertext block ĉ[1] := c[1] � B and sends the 3-block record ĉ = (c[0], ĉ[1], c[2]) to
the server. After CBC decryption of ĉ, the last plaintext block will be

m̂[2] := ĉ[1]�D(k, c[2]) = m[2]�B.

If the last byte of m[2] is equal to b then m̂[2] ends in zero which is a valid pad. The server will
attempt to verify the integrity tag resulting in a slow response. If the last byte of m[2] is not equal
to b then m̂[2] will not end in 0 and will likely end in an invalid pad, resulting in a fast response.
By measuring the response time the attacker learns if the last byte of m[2] is equal to b. Repeating
this with many chosen ciphertext queries, as we did for SSL 3.0, reveals the entire secret cookie.

An even more sophisticated padding oracle timing attack on MtE, as used in TLS 1.0, is called
Lucky13 [3]. It is quite challenging to implement TLS 1.0 decryption in way that hides the timing
information exploited by the Lucky13 attack.

Informative error messages. To make matters worse, the TLS 1.0 specification [31] states
that the server should send one type of error message (called bad record mac) when a received
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ciphertext is rejected because of a MAC verification error and another type of error message
(decryption failed) when the ciphertext is rejected because of an invalid padding block. In
principle, this tells the attacker if a ciphertext was rejected because of an invalid padding block or
because of a bad integrity tag. This could have enabled the chosen ciphertext attack of the previous
paragraph without needing to resort to timing measurements. Fortunately, the error messages are
encrypted and the attacker cannot see the error code.

Nevertheless, there is an important lesson to be learned here: when decryption fails, the system
should never explain why. A generic ‘decryption failed’ code should be sent without o↵ering any
other information. This issue was recognized and addressed in TLS 1.1. Moreover, upon decryption
failure, a correct implementation should always take the same amount of time to respond, no matter
the failure reason.

9.4.4 Secure instances of MAC-then-encrypt

Although MtE is not generally secure when applied to a CPA-secure cipher, it can be shown to
be secure for specific CPA ciphers discussed in Chapter 5. We show in Theorem 9.3 below that if
E happens to implement randomized counter mode, then MtE is secure. In Exercise 9.9 we show
that the same holds for randomized CBC, assuming there is no message padding.

Theorem 9.3 shows that MAC-then-encrypt with randomized counter mode is AE-secure even
if the MAC is only one-time secure. That is, it su�ces to use a weak MAC that is only secure
against an adversary that makes a single chosen message query. Intuitively, the reason we can
prove security using such a weak MAC is that the MAC value is encrypted, and consequently it is
harder for the adversary to attack the MAC. Since one-time MACs are a little shorter and faster
than many-time MACs, MAC-then-encrypt with randomized counter mode has a small advantage
over encrypt-then-MAC. Nevertheless, the attacks on MAC-then-encrypt presented in the previous
section suggest that it is di�cult to implement correctly, and should not be used.

Our starting point is a randomized counter-mode cipher E = (E, D), as discussed in Sec-
tion 5.4.2. We will assume that E has the general structure as presented in the case study on AES
counter mode at the end of Section 5.4.2 (page 189). Namely, we use a counter-mode variant where
the cipher E is built from a secure PRF F defined over (Ke, X ⇥Z`, Y), where Y := {0, 1}n. More
precisely, for a message m 2 Y` algorithm E works as follows:

E(ke, m) :=

8

>

>

>

<

>

>

>

:

x R X
for j = 0 to |m|� 1:

u[j] F
�

ke, (x, j)
��m[j]

output c := (x, u) 2 X ⇥ Y |m|

9

>

>

>

=

>

>

>

;

Algorithm D(ke, c) is defined similarly. Let I = (S, V ) be a secure one-time MAC defined over
(Km, M, T ) where M := Y`m and T := Y`t , and where `m + `t < `.

The MAC-then-encrypt cipher EMtE = (EMtE, DMtE), built from F and I and taking messages
in M, is defined as follows:

EMtE
�

(ke, km), m
�

:=
�

t R S(km, m), c R E
�

ke, (m k t)
�

, output c
 

DMtE
�

(ke, km), c
�

:=

8

>

<

>

:

(m k t) D(ke, c)

if V (km, m, t) = reject then output reject

otherwise, output m

9

>

=

>

;

(9.11)
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As we discussed at the end of Section 9.4.1, and in Exercise 9.8, the two keys ke and km must be
chosen independently. Setting ke = km will invalidate the following security theorem.

Theorem 9.3. The cipher EMtE = (EMtE, DMtE) in (9.11) built from the PRF F and MAC I
provides authenticated encryption assuming I is a secure one-time MAC and F is a secure PRF
where 1/|X | is negligible.

In particular, for every Q-query ciphertext integrity adversary Aci that attacks EMtE as in Attack
Game 9.1 there exists two MAC adversaries Bmac and B0

mac that attack I as in Attack Game 6.1,
and a PRF adversary Bprf that attacks F as in Attack Game 4.2, each of which is an elementary
wrapper around Aci, such that

CIadv[Aci, EMtE]  PRFadv[Bprf, F ] +

Q · MAC1adv[Bmac, I] + MAC1adv[B0
mac, I] +

Q2

2|X | .
(9.12)

For every CPA adversary Acpa that attacks EEtM as in Attack Game 5.2 there exists a CPA
adversary Bcpa that attacks E as in Attack Game 5.2, which is an elementary wrapper around
Acpa, such that

CPAadv[Acpa, EMtE] = CPAadv[Bcpa, E ]

Proof idea. CPA security of the system follows immediately from CPA security of randomized
counter mode. The challenge is to prove ciphertext integrity for EMtE. So let Aci be a ciphertext
integrity adversary. This adversary makes a series of queries, m1, . . . , mQ. For each mi, the CI
challenger gives to Aci a ciphertext ci = (xi, ui), where xi is a random IV, and ui is a one-time
pad encryption of the pair mi k ti using a pseudo-random pad ri derived from xi using the PRF
F . Here, ti is a MAC tag computed on mi. At the end of the attack game, adversary Aci outputs
a ciphertext c = (x, u), which is not among the ci’s, and wins if c is a valid ciphertext. This means
that u decrypts to m k t using a pseudo-random pad r derived from x, and t is a valid tag on m.

Now, using the PRF security property and the fact that the xi’s are unlikely to repeat, we can
e↵ectively replace the pseudo-random ri’s (and r) with truly random pads, without a↵ecting Aci’s
advantage significantly. This is where the terms PRFadv[Bprf, F ] and Q2/2|X | in (9.12) come from.
Note that after making this modification, the ti’s are perfectly hidden from the adversary.

We then consider two di↵erent ways in which Aci can win in this modified attack game.

• In the first way, the value x output by Aci is not among the xi’s. But in this case, the only
way for Aci to win is to hope that a random tag on a random message is valid. This is where
the term MAC1adv[B0

mac, I] in (9.12) comes from.

• In the second way, the value x is equal to xj for some j = 1, . . . , Q. In this case, to win, the
value u must decrypt under the pad rj to m k t where t is a valid tag on m. Moreover, since
c 6= cj , we have (m, t) 6= (mj , tj). To turn Aci into a one-time MAC adversary, we have to
guess the index j in advance: for all indices i di↵erent from the guessed index, we can replace
the tag ti by a dummy tag. This guessing strategy is where the term Q · MAC1adv[Bmac, I]
in (9.12) comes from. 2

Proof. To prove ciphertext integrity, we let Aci interact with a number of closely related challengers.
For j = 0, 1, 2, 3, 4 we define Wj to be the event that the adversary wins in Game j.

Game 0. As usual, we begin by letting Aci interact with the standard ciphertext integrity chal-
lenger in Attack Game 9.1 as it applies to EMtE, so that Pr[W0] = CIadv[Aci, EMtE].
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Game 1. Now, we replace the pseudo-random pads in the counter-mode cipher by truly indepen-
dent one-time pads. Since F is a secure PRF and 1/|X | is negligible, the adversary will not notice
the di↵erence. The resulting CI challenger for EMtE works as follows.

km  R Km // Choose random MAC key
!  R {1, . . . , Q} // this ! will be used in Game 3
upon receiving the ith query mi 2 Y`m for i = 1, 2, . . . do:

(1) ti  S(km, mi) 2 T // compute the tag for mi

(2) xi  R X // Choose a random IV

ri  R Y |m
i

|+`t // Choose a su�ciently long truly random one-time pad
ui  (mi k ti)� ri, ci  (xi, ui) // build ciphertext
send ci to the adversary

At the end of the game, Aci outputs c = (x, u), which is not among c1, . . . , cQ, and the winning
condition is evaluated as follows:

// decrypt ciphertext c
(3) if x = xj for some j then (m k t) u� rj
(4) otherwise, r  R Y |u| and (m k t) u� r

Aci wins if V (km, m, t) = accept // check resulting message-tag pair

Note that for specificity, in line (3) if there is more than one j for which x = xj , we can take
the smallest such j.

A standard argument shows that there exists an e�cient PRF adversary Bprf such that:

|Pr[W1]� Pr[W0]|  PRFadv[Bprf, F ] +
Q2

2|X | . (9.13)

Note that if we wanted to be a bit more careful, we would break this argument up into two steps.
In the first step, we would play our “PRF card” to replace F (ke, ·) be a truly random function f .
This introduces the term PRFadv[Bprf, F ] in (9.13). In the second step, we would use the “forgetful
gnome” technique to make all the outputs of f independent. Using the Di↵erence Lemma applied
to the event that all of the xi’s are distinct introduces the term Q2/2|X | in (9.13).

Game 2. Now we restrict the adversary’s winning condition to require that the IV used in the
final ciphertext c is the same as one of the IVs given to Aci during the game. In particular, we
replace line (4) with

(4) otherwise, the adversary loses in Game 2.

Let Z2 be the event that in Game 2, the final ciphertext c = (x, u) from Aci is valid despite using
a previously unused x 2 X . We know that the two games proceed identically, unless event Z2

happens. When event Z2 happens in Game 2 then the resulting pair (m, t) is uniformly random
in Y |u|�`t ⇥ Y`t . Such a pair is unlikely to form a valid message-tag pair. Not only that, the
challenger in Game 2 e↵ectively encrypts all of the tags ti generated in line (1) with a one-time
pad, so these tags could be replaced by dummy tags, without a↵ecting the probability that Z2

occurs. Based on these observations, we can easily construct an e�cient MAC adversary B0
mac such

that Pr[Z2]  MAC1adv[B0
mac, I]. Adversary B0

mac runs as follows. It plays the role of challenger to
Aci as in Game 2, except that in line (1) above, it computes ti  0`t . When Aci outputs c = (x, u),
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adversary B0
mac generates outputs a random pair in Y |u|�`t ⇥ Y`t . Hence, by the di↵erence lemma,

we have

|Pr[W2]� Pr[W1]|  MAC1adv[B0
mac, I]. (9.14)

Game 3. We further constrain the adversary’s winning condition by requiring that the ciphertext
forgery use the IV from ciphertext number ! given to Aci. Here ! is a random number in {1, . . . , Q}
chosen by the challenger. The only change to the winning condition of Game 2 is that line (3) now
becomes:

(3) if x = x! then (m k t) u� r!
(4) otherwise, the adversary loses in Game 2.

Since ! is independent of Aci’s view, we know that

Pr[W3] � (1/Q) · Pr[W2] (9.15)

Game 4. Finally, we change the challenger so that it only computes a valid tag for query number !
issued by Aci. For all other queries the challenger just makes up an arbitrary (invalid) tag. Since
the tags are encrypted using one-time pads the adversary cannot tell that he is given encryptions
of invalid tags. In particular, the only di↵erence from Game 3 is that we replace line (1) by the
following two lines:

(1) ti  (0n)`t 2 T
if i = ! then ti  S(km, mi) 2 T // only compute correct tag for m!

Since the adversary’s view in this game is identical to its view in Game 3 we have

Pr[W4] = Pr[W3] (9.16)

Final reduction. We claim that there is an e�cient one-time MAC forger Bmac so that

Pr[W4] = MAC1adv[Bmac, I] (9.17)

Adversary Bmac interacts with a MAC challenger C and works as follows:

!  R {1, . . . , Q}
upon receiving the ith query mi 2 {0, 1}`m for i = 1, 2, . . . do:

ti  (0n)`t 2 T
if i = ! then query C for the tag on mi and let ti 2 T be the response
xi  R X // Choose a random IV
ri  R Y |m|+`t // Choose a su�ciently long random one-time pad
ui  (mi k ti)� ri, ci  (xi, ui)
send ci to the adversary

when Aci outputs c = (x, u) from Aci do:
if x = x! then

(m k t) u� r!
output (m, t) as the message-tag forgery

Since c 6= c! we know that (m, t) 6= (m!, t!). Hence, whenever Aci wins Game 4 we know that
Bmac does not abort, and outputs a pair (m, t) that lets it win the one-time MAC attack game. It
follows that Pr[W4] = MAC1adv[Bmac, I] as required. In summary, putting equations (9.13)–(9.17)
together proves the theorem. 2
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9.4.5 Encrypt-then-MAC or MAC-then-encrypt?

So far we proved the following facts about the MtE and EtM modes:

• EtM provides authenticated encryption whenever the cipher is CPA-secure and the MAC is
secure. The MAC on the ciphertext prevents any tampering with the ciphertext.

• MtE is not generally secure — there are examples of CPA-secure ciphers for which the MtE
system does is not AE-secure. Moreover, MtE is di�cult to implement correctly due to a
potential timing side-channel that leads to serious chosen ciphertext attacks. However, for
specific ciphers, such as randomized counter mode and randomized CBC, the MtE mode is
AE-secure even if the MAC is only one-time secure.

• A third mode, called encrypt-and-MAC (EaM), is discussed in Exercise 9.10. The exercise
shows that EaM is secure when using randomized counter-mode cipher as long as the MAC
is a secure PRF. EaM is inferior to EtM in every respect and should not be used.

These facts, and the example attacks on MtE, suggest that EtM is the better mode to use.
Of course, it is critically important that the underlying cipher be CPA-secure and the underlying
MAC be a secure MAC. Otherwise, EtM may provide no security at all.

Given all the past mistakes in implementing these modes it is advisable that developers not
implement EtM themselves. Instead, it is best to use an encryption standard, like GCM (see
Section 9.7), that uses EtM to provide authenticated encryption out of the box.

9.5 Nonce-based authenticated encryption with associated data

In this section we extend the syntax of authenticated encryption to match the way in which it is
commonly used. First, as we did for encryption and for MACs, we define nonce-based authenticated
encryption where we make the encryption and decryption algorithms deterministic, but let them
take as input a unique nonce. This approach can reduce ciphertext size and also improve security.

Second, we extend the encryption algorithm by giving it an additional input message, called
associated data, whose integrity is protected by the ciphertext, but its secrecy is not. The need
for associated data comes up in a number of settings. For example, when encrypting packets in
a networking protocol, authenticated encryption protects the packet body, but the header must
be transmitted in the clear so that the network can route the packet to its intended destination.
Nevertheless, we want to ensure header integrity. The header is provided as the associated data
input to the encryption algorithm.

A cipher that supports associated data is called an AD cipher. The syntax for a nonce-based
AD cipher E = (E, D) is as follows:

c = E(k, m, d, N ),

where c 2 C is the ciphertext, k 2 K is the key, m 2M is the message, d 2 D is the associated data,
and N 2 N is the nonce. Moreover, the encryption algorithm E is required to be deterministic.
Likewise, the decryption syntax becomes

D(k, c, d, N )

which outputs a message m or reject. We say that the nonce-based AD cipher is defined over
(K, M, D, C, N ). As usual, we require that ciphertexts generated by E are correctly decrypted
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by D, as long as both are given the same nonce and associated data. That is, for all keys k, all
messages m, all associated data d, and all nonces N 2 N :

D
�

k, E(k, m, d, N ), d, N
�

= m.

If the message m given as input to the encryption algorithm is the empty message then cipher
(E, D) essentially becomes a MAC system for the associated data d.

CPA security. A nonce-based AD cipher is CPA-secure if it does not leak any useful information
to an eavesdropper assuming that no nonce is used more than once in the encryption process. CPA
security for a nonce-based AD cipher is defined as CPA security for a standard nonce-based cipher
(Section 5.5). The only di↵erence is in the encryption queries. Encryption queries in Experiment b,
for b = 0, 1, are processed as follows:

The ith encryption query is a pair of messages, mi0, mi1 2 M, of the same length,
associated data di 2 D, and a unique nonce N i 2 N \ {N 1, . . . , N i�1}.

The challenger computes ci  E(k, mib, di, N i), and sends ci to the adversary.

Nothing else changes from the definition in Section 5.5. Note that the associated data di is under
the adversary’s control, as are the nonces N i, subject to the nonces being unique. For b = 0, 1, let
Wb be the event that A outputs 1 in Experiment b. We define A’s advantage with respect to E as

nCPAadadv[A, E ] := |Pr[W0]� Pr[W1]|. 2

Definition 9.7 (CPA security). A nonce-based AD cipher is called semantically secure
against chosen plaintext attack, or simply CPA-secure, if for all e�cient adversaries A,
the quantity nCPAadadv[A, E ] is negligible.

Ciphertext integrity. A nonce-based AD cipher provides ciphertext integrity if an attacker who
can request encryptions under key k for messages, associated data, and nonces of his choice cannot
output a new triple (c, d, N ) that is accepted by the decryption algorithm. The adversary, however,
must never issue an encryption query using a previously used nonce.

More precisely, we modify the ciphertext integrity game (Attack Game 9.1) as follows:

Attack Game 9.3 (ciphertext integrity). For a given AD cipher E = (E, D) defined over
(K, M, D, C, N ), and a given adversary A, the attack game runs as follows:

• The challenger chooses a random k  R K.

• A queries the challenger several times. For i = 1, 2, . . . , the ith query consists
of a message mi 2 M, associated data di 2 D, and a previously unused nonce
N i 2 N \ {N 1, . . . , N i�1}. The challenger computes ci  R E(k, mi, di, N i), and gives
ci to A.

• Eventually A outputs a candidate triple (c, d, N ) where c 2 C, d 2 D, and N 2 N
that is not among the triples it was given, i.e.,

(c, d, N ) 62 {(c1, d1, N 1), (c2, d2, N 2), . . .}.
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We say that A wins the game if D(k, c, d, N ) 6= reject. We define A’s advantage with respect to E ,
denoted nCIadadv[A, E ], as the probability that A wins the game. 2

Definition 9.8. We say that a nonce-based AD cipher E = (E, D) has ciphertext integrity if
for all e�cient adversaries A, the value nCIadadv[A, E ] is negligible.

Authenticated encryption. We can now define nonce-based authenticated encryption for an
AD cipher. We refer to this notion as a nonce-based AEAD cipher which is shorthand for
authenticated encryption with associated data.

Definition 9.9. We say that a nonce-based AD cipher E = (E, D) provides authenticated encryp-
tion, or is simply a nonce-based AEAD cipher, if E is CPA-secure and has ciphertext integrity.

Generic encrypt-then-MAC composition. We construct a nonce-based AEAD cipher E =
(EEtM, DEtM) by combining a nonce-based CPA-secure cipher (E, D) (as in Section 5.5) with a
nonce-based secure MAC (S, V ) (as in Section 7.5) as follows:

EEtM( (ke, km), m, d, N ) := c E(ke, m, N ), t S(km, (c, d), N )
Output (c, t)

DEtM((ke, km), (c, t), d, N ) := if V (km, (c, d), t, N ) = reject then output reject

otherwise, output D(ke, c, d, N )

The EtM system is defined over (Ke ⇥ Km, M, D, C ⇥ T , N ). The following theorem shows that
EEtM is a secure AEAD cipher.

Theorem 9.4. Let E = (E, D) be a nonce-based cipher and let I = (S, V ) be a nonce-based MAC
system. Then EEtM is a nonce-based AEAD cipher assuming E is CPA-secure and I is a secure
MAC system.

The proof of Theorem 9.4 is essentially the same as the proof of Theorem 9.2.

9.6 One more variation: CCA-secure ciphers with associated data

In Section 9.5, we introduced two new features to our ciphers: nonces and associated data. There
are two variations we could consider: ciphers with nonces but without associated data, and ciphers
with associated data but without nonces. We could also consider all of these variations with respect
to other security notions, such as CCA security. Considering all of these variations in detail would
be quite tedious. However, we consider one variation that will be important later in the text,
namely CCA-secure ciphers with associated data (but without nonces).

To define this notion, we begin by defining the syntax for a cipher with associated data, or
AD cipher, without nonces. For such a cipher E = (E, D), the encryption algorithm may be
probabilistic and works as follows:

c R E(k, m, d),

where c 2 C is the ciphertext, k 2 K is the key, m 2M is the message, and d 2 D is the associated
data. The decryption syntax is

D(k, c, d),
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which outputs a message m or reject. We say that the AD cipher is defined over (K, M, D, C). As
usual, we require that ciphertexts generated by E are correctly decrypted by D, as long as both
are given the same associated data. That is,

Pr
⇥

D
�

k, E(k, m, d), d
�

= m
⇤

= 1.

Definition 9.10 (CCA and 1CCA security with associated data). The definition of CCA
security for ordinary ciphers carries over naturally to AD ciphers. Attack Game 9.2 is modified
as follows. For encryption queries, in addition to a pair of messages (mi0, mi1), the adversary
also submits associated data di, and the challenger computes ci  R E(k, mib, di). For decryption
queries, in addition to a ciphertext ĉj, the adversary submits associated data d̂j, and the challenger

computes m̂j  D(k, ĉj , d̂j). The restriction is that the pair (ĉj , d̂j) may not be among the pairs
(c1, d1), (c2, d2), . . . corresponding to previous encryption queries. An adversary A’s advantage in
this game is denoted CCAadadv[A, E ], and the cipher is said to be CCA secure if this advantage is
negligible for all e�cient adversaries A. If we restrict the adversary to a single encryption query,
as in Definition 9.6, the advantage is denoted 1CCAadadv[A, E ], and the cipher is said to be 1CCA
secure if this advantage is negligible for all e�cient adversaries A.

Generic encrypt-then-MAC composition. In later applications, the notion that we will use
is 1CCA security, so for simplicity we focus on that notion for now. We construct a 1CCA-secure
AD cipher E = (EEtM, DEtM) by combining a semantically secure cipher (E, D) with a one-time
MAC (S, V ) as follows:

EEtM( (ke, km), m, d) := c R E(ke, m), t R S(km, (c, d))
Output (c, t)

DEtM((ke, km), (c, t), d) := if V (km, (c, d), t) = reject then output reject

otherwise, output D(ke, c, d)

The EtM system is defined over (Ke ⇥Km, M, D, C ⇥ T ).

Theorem 9.5. Let E = (E, D) be a semantically secure cipher and let I = (S, V ) be a one-time
secure MAC system. Then EEtM is a 1CCA-secure AD cipher.

The proof of Theorem 9.5 is straightforward, and we leave it as an exercise to the reader.
We observe that in most common implementations of the semantically secure cipher E = (E, D),

the encryption algorithm E is deterministic. Likewise, in the most common implementations of the
one-time secure MAC I = (S, V ), the signing algorithm is deterministic. So for such implementa-
tions, the resulting 1CCA-secure AD cipher will have a deterministic encryption algorithm.

9.7 Case study: Galois counter mode (GCM)

Galois counter mode (GCM) is a popular nonce-based AEAD cipher standardized by NIST in 2007.
GCM is an encrypt-then-MAC cipher combining a CPA-secure cipher and a secure MAC. The
CPA secure cipher is nonce-based counter mode, usually using AES. The secure MAC is a Carter-
Wegman MAC built from a keyed hash function called GHASH, a variant of the function Hxpoly

from Section 7.4. When encrypting the empty message the cipher becomes a MAC system called
GMAC providing integrity for the associated data.
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GCM uses an underlying block cipher E = (E, D) such as AES defined over (K, X ) where
X := {0, 1}128. The block cipher is used for both counter mode encryption and the Carter-Wegman
MAC. The GHASH function is defined over (X , X`, X ) for ` := 232 � 1.

GCM can take variable size nonces, but let us first describe GCM using a 96-bit nonce N which
is the simplest case. The GCM encryption algorithm operates as follows:

input: key k 2 K, message m, associated data d, and nonce N 2 {0, 1}96
km  E(k, 0128) // first, generate the key for GHASH (a variant of Hxpoly)

Compute the initial value of the counter in counter mode encryption:
x (N k 0311) 2 {0, 1}128
x0  x + 1 // initial value of counter

c {encryption of m using counter mode starting the counter at x0}
d0  {pad d with zeros to closest multiple of 128 bits}
c0  {pad c with zeros to closest multiple of 128 bits}
Compute the Carter-Wegman MAC:

(⇤) h GHASH
⇣

km,
�

d0 k c0 k length(d) k length(c)
�

⌘

2 {0, 1}128
t h� E(k, x) 2 {0, 1}128

output (c, t) // encrypt-then-MAC ciphertext

Each of the length fields on line (⇤) is a 64-bit value indicating the length in bytes of the
respective field. If the input nonce N is not 96-bits long, then N is padded to the closest multiple
of 128 bits, yielding the padded string N 0, and the initial counter value x is computed as x  
GHASH

�

km, (N 0 k length(N ))
�

which is a value in {0, 1}128.
As usual, the integrity tag t can be truncated to whatever length is desired. The shorter the

tag t the more vulnerable the system becomes to ciphertext integrity attacks.
Messages to be encrypted must be less than 232 blocks each (i.e., messages must be in X v for

some v < 232). Recommendations in the standard suggest that a single key k should not be used
to encrypt more than 232 messages.

The GCM decryption algorithm takes as input a key k 2 K, a ciphertext (c, t), associate data d
and a nonce N . It operates as in encrypt-then-MAC: it first derives km  E(k, 0n) and checks the
Carter-Wegman integrity tag t. If valid it outputs the counter mode decryption of c. We emphasize
that decryption must be atomic: no plaintext data is output before the integrity tag is verified over
the entire message.

GHASH. It remains to describe the keyed hash function GHASH defined over (X , X`, X ). This
hash function is used in a Carter-Wegman MAC and therefore, for security, must be a DUF. In
Section 7.4 we showed that the function Hxpoly is a DUF and GHASH is essentially the same
thing. Recall that Hxpoly(k, z) works by evaluating a polynomial derived from z at the point k. We
described Hxpoly using arithmetic modulo a prime p so that both blocks of z and the output are
elements in Zp.

The hash function GHASH is almost the same as Hxpoly, except that the input message blocks
and the output are elements of {0, 1}128. Also, the DUF property holds with respect to the XOR
operator �, rather than subtraction modulo some number. As discussed in Remark 7.4, to build
an XOR-DUF we use polynomials defined over the finite field GF(2128). This is a field of 2128
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elements called a Galois field, which is where GCM gets its name. This field is defined by the
irreducible polynomial g(X) := X128 + X7 + X2 + X + 1. Elements of GF(2128) are polynomials
over GF(2) of degree less than 128, with arithmetic done modulo g(X). While that sounds fancy,
an element of GF(2128) can be conveniently represented as a string of 128 bits (each bit encodes
one of the coe�cients of the polynomial). Addition in the field is just XOR, while multiplication
is a bit more complicated, but still not too di�cult (see below — many modern computers provide
direct hardware support).

With this notation, for k 2 GF(2128) and z 2 �GF(2128)
�v

the function GHASH(k, z) is simply
polynomial evaluation in GF(2128):

GHASH(k, z) := z[0]kv + z[1]kv�1 + . . . + z[v � 1]k 2 GF(2128) (9.18)

That’s it. Appending the two length fields to the GHASH input on line (⇤) ensures that the
XOR-DUF property is maintained even for messages of di↵erent lengths.

Security. The AEAD security of GCM is similar to the analysis we did for generic composition
of encrypt-then-MAC (Theorem 9.4), and follows from the security of the underlying block cipher
as a PRF. The main di↵erence between GCM and our generic composition is that GCM “cuts a
few corners” when it comes to keys: it uses just a single key k and uses E(k, 0n) as the GHASH
key, and E(k, x) as the pad that is used to mask the output of GHASH, which is similar to, but not
exactly the sames as, what is done in Carter-Wegman. Importantly, the counter mode encryption
begins with the counter value x0 := x + 1, so that the inputs to the PRF that are used to encrypt
the message are guaranteed to be distinct from the inputs used to derive the GHASH key and pad.
The above discussion focused on the case where the nonce is 96 bits. The other case, where GHASH
is applied to the nonce to compute x, requires a more involved analysis — see Exercise 9.14.

GCM has no nonce re-use resistance. If a nonce is accidentally re-used on two di↵erent messages
then all secrecy for those message is lost. Even worse, the GHASH secret key km is exposed
(Exercise 7.13) and this can be used to break ciphertext integrity. Hence, it is vital that nonces
not be re-used in GCM.

Optimizations and performance. There are many ways to optimize the implementation of
GCM and GHASH. In practice, the polynomial in (9.18) is evaluated using Horner’s method so that
processing each block of plaintext requires only one addition and one multiplication in GF(2128).

Intel recently added a special instruction (called PCLMULQDQ) to their instruction set to
quickly carry out binary polynomial multiplication. This instruction cannot be used directly to im-
plement GHASH because of incompatibility with how the standard represents elements in GF(2128).
Fortunately, work of Gueron shows how to overcome these di�culties and use the PCLMULQDQ
instruction to speed-up GHASH on Intel platforms.

Since GHASH needs only one addition and one multiplication in GF(2128) per block one would
expect that the bulk of the time during GCM encryption and decryption is spent on AES in counter
mode. However, due to improvements in hardware implementations of AES, especially pipelining
of the AES-NI instructions, this is not always the case. On Intel’s Haswell processors (introduced
in 2013) GCM is about three times slower than pure counter mode due to the extra overhead of
GHASH. However, upcoming improvements in the implementation of PCLMULQDQ will likely
make GCM just slightly more expensive than pure counter mode, which is the best one can hope
for.
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We should point out that it already is possible to implement secure authenticated encryption
at a cost that is not much more than the cost of AES counter mode — this can be achieved using
an integrated scheme such as OCB (see Exercise 9.17).

9.8 Case study: the TLS 1.3 record protocol

The Transport Layer Security (TLS) protocol is by far the most widely deployed security protocol.
Virtually every online purchase is protected by TLS. Although TLS is primarily used to protect
Web tra�c, it is a general protocol that can protect many types of tra�c: email, messaging, and
many others.

The original version of TLS was designed at Netscape where it was called the Secure Socket
Layer protocol or SSL. SSL 2.0 was designed in 1994 to protect Web e-commerce tra�c. SSL 3.0,
designed in 1995, corrected several significant security problems in SSLv2. For example, SSL 2.0
uses the same key for both the cipher and the MAC. While this is bad practice — it invalidates
the proofs of security for MtE and EtM — it also implies that if one uses a weak cipher key, say
do to export restrictions, then the MAC key must also be weak. SSL 2.0 supported only a small
number of algorithms and, in particular, only supported MD5-based MACs.

The Internet Engineering Task Force (IETF) created the Transport Layer Security (TLS) work-
ing group to standardize an SSL-like protocol. The working group produced a specification for the
TLS 1.0 protocol in 1999 [31]. TLS 1.0 is a minor variation of SSL 3.0 and is often referred to as
SSL version 3.1. TLS is supported by most major browsers and web servers and TLS 1.3 is the
recommended protocol to use. We will mostly focus on TLS 1.3 here.

The TLS 1.3 record protocol. Abstractly, TLS consists of two components. The first, called
TLS session setup, negotiates the cipher suite that will be used to encrypt the session and then
sets up a shared secret between the browser and server. The second, called the TLS record
protocol uses this shared secret to securely transmit data between the two sides. TLS session
setup uses public-key techniques and will be discussed later in Chapter 20. Here we focus on the
TLS record protocol.

In TLS terminology, the shared secret generated during session setup is called a master-secret.
This high entropy master secret is used to derive two keys kb!s and ks!b. The key kb!s encrypts
messages from the browser to the server while ks!b encrypts messages in the reverse direction. TLS
derives the two keys by using the master secret and other randomness as a seed for a key derivation
function called HKDF (Section 8.10.5) to derive enough pseudo-random bits for the two keys. This
step is carried out by both the browser and server so that both sides have the keys kb!s and ks!b.

The TLS record protocol sends data in records whose size is at most 214 bytes. If one side needs
to transmit more than 214 bytes, the record protocol fragments the data into multiple records each
of size at most 214. Each party maintains a 64-bit write sequence number that is initialized to
zero and is incremented by one for every record sent by that party.

TLS 1.3 uses a nonce-based AEAD cipher (E, D) to encrypt a record. Which nonce-based
AEAD cipher is used is determined by negotiation during TLS session setup. The AEAD encryption
algorithm is given the following arguments:

• secret key: kb!s or ks!b depending on whether the browser or server is encrypting.

• plaintext data: up to 214 bytes.
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• associated data: a concatenation of three fields: the encrypting party’s 64-bit write sequence
number, a 1-byte record type (a value of 23 means application data), and a 2-byte protocol
version (set to 3.1 in TLS 3.1).

• nonce (8 bytes or longer): the nonce is computed by (1) padding the encrypting party’s
64-bit write sequence number on the left with zeroes to the expected nonce length and (2)
XORing this padded sequence number with a random string (called client write iv or
server write iv, depending on who is encrypting) that was derived from the master secret
during session setup and is fixed for the life of the session. TLS 1.3 could have used an
equivalent and slightly easier to comprehend method: choose the initial nonce value at random
and then increment it sequentially for each record. The method used by TLS 1.3 is a little
easier to implement.

The AEAD cipher outputs a ciphertext c which is then formatted into an encrypted TLS record
as follows:

type version length ciphertext c

where type is a 1-byte record type (handshake record or application data record), version is a
2-byte protocol version set to 3.1 for TLS 3.1, length is a 2-byte field indicating the length of c,
and c is the ciphertext. The type, version, and length fields are all sent in the clear. Notice that
the nonce is not part of the encrypted TLS record. The recipient computes the nonce by itself.

Why is the initial nonce value chosen at random? Why not simply set it to zero? In networking
protocols the first message block sent over TLS is usually a fixed public value. If the nonce were
set to zero then the first ciphertext would be computed as c0  E(k, m0, d, 0) where the adversary
knows m0 and associate data d. This opens up the system to an exhaustive search attack for the
key k using a time-space tradeo↵ discussed in Chapter 18. The attack shows that with a large
amount of pre-computation and su�cient storage, an attacker can quickly recover k from c0 with
non-negligible advantage — for 128-bit keys, such attacks may be feasible in the not-too-distant
future. Randomizing the initial nonce “future proofs” TLS against such attacks.

When a record is received, the receiving party runs the AEAD decryption algorithm to decrypt c.
If decryption results in reject then the party sends a fatal bad record mac alert to its peer and
shuts down the TLS session.

The length field. In TLS 1.3, as in earlier versions of TLS, the record length is sent in the clear.
Several attacks based on tra�c analysis exploit record lengths to deduce information about the
record contents. For example, if an encrypted TLS record contains one of two images of di↵erent
size then the length will reveal to an eavesdropper which image was encrypted. Chen et al. [25]
show that the lengths of encrypted records can reveal considerable information about private data
that a user supplies to a cloud application. They use an online tax filing system as their example.
Other works show attacks of this type on many other systems. Since there is no complete solution
to this problem, it is often ignored.

When encrypting a TLS record the length field is not part of the associated data and conse-
quently has no integrity protection. The reason is that due to variable length padding, the length
of c may not be known before the encryption algorithm terminates. Therefore, the length cannot
be given as input to the encryption algorithm. This does not compromise security: a secure AEAD
cipher will reject a ciphertext that is a result of tampering with the length field.
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Replay prevention. An attacker may attempt to replay a previous record to cause the wrong
action at the recipient. For example, the attacker could attempt to make the same purchase order be
processed twice, by simply replaying the record containing the purchase order. TLS uses the 64-bit
sequence number to discard such replicated packets. TLS assumes in-order record delivery so that
the recipient already knows what sequence number to expect without any additional information
in the record. A replicated record will be discarded because the AEAD decryption algorithm will
be given the wrong nonce as input.

9.9 Case study: an attack on non-atomic decryption in SSH

SSH (secure shell) is a popular command line tool for securely exchanging information with a
remote host. SSH is designed to replace (insecure) UNIX tools such as telnet, rlogin, rsh, and rcp.
Here we describe a fascinating vulnerability in an older cipher suite used in SSH. This vulnerability
is an example of what can go wrong when decryption is not atomic, that is, when the decryption
algorithm releases fragments of a decrypted record before verifying integrity of the entire record.

First, a bit of history. The first version of SSH, called SSHv1, was made available in 1995. It
was quickly pointed out that SSHv1 su↵ers from serious design flaws.

• Most notably, SSHv1 provides data integrity by computing a Cyclic Redundancy Check
(CRC) of the plaintext and appending the resulting checksum to the ciphertext in the clear.
CRC is a simple keyless, linear function — so not only does this directly leak information
about the plaintext, it is also not too hard to break integrity either.

• Another issue is the incorrect use of CBC mode encryption. SSHv1 always sets the CBC
initial value (IV) to 0. Consequently, an attacker can tell when two SSHv1 packets contain
the same prefix. Recall that for CPA security one must choose the IV at random.

• Yet another problem, the same encryption key was used for both directions (user to server
and server to user).

To correct these issues, a revised and incompatible protocol called SSHv2 was published in 1996.
Session setup results in two keys ku!s, used to encrypt data from the user to the server, and ks!u,
used to encrypt data in the reverse direction. Here we focus only how these keys are used for
message transport in SSHv2.

SSHv2 encryption. Let us examine an older cipher suite used in SSHv2. SSHv2 combines a
CPA-secure cipher with a secure MAC using encrypt-and-MAC (Exercise 9.10) in an attempt to
construct a secure AEAD cipher. Specifically, SSHv2 encryption works as follows (Fig. 9.3):

1. Pad. Pad the plaintext with random bytes so that the total length of

plaintext := packet-length k pad-length k message k pad
is a multiple of the cipher block length (16 bytes for AES). The pad length can be anywhere
from 4 bytes to 255 bytes. The packet length field measures the length of the packet in bytes,
not including the integrity tag or the packet-length field itself.

2. Encrypt. Encrypt the gray area in Fig. 9.3 using AES in randomized CBC mode with
either ku!s or ks!u, depending on the encrypting party. SSHv2 uses a defective version of
randomized CBC mode encryption described in Exercise 5.12.
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Gray area is encrypted; Boxed area is authenticated by integrity tag

packet len

pad len

message

pad

integrity tag

32 bits

Figure 9.3: An SSHv2 packet

3. MAC. A MAC is computed over a sequence-number and the plaintext data in the thick
box in Fig. 9.3. Here sequence-number is a 32-bit sequence number that is initialized to zero
for the first packet, and is incremented by one after every packet. SSHv2 can use one of a
number of MAC algorithms, but HMAC-SHA1-160 must be supported.

When an encrypted packet is received the decryption algorithm works as follows: first it decrypts
the packet-length field using either ku!s or ks!u. Next, it reads that many more packets from
the network plus as many additional bytes as needed for the integrity tag. Next it decrypts the rest
of the ciphertext and verifies validity of the integrity tag. If valid, it removes the pad and returns
the plaintext message.

Although SSH uses encrypt-and-MAC, which is not generally secure, we show in Exercise 9.10
that for certain combinations of cipher and MAC, including the required ones in SSHv2, encrypt-
and-MAC provides authenticated encryption.

SSH boundary hiding via length encryption. An interesting aspect of SSHv2 is that the
encryption algorithm encrypts the packet length field, as shown in Fig. 9.3. The motivation for
this is to ensure that if a sequence of encrypted SSH packets are sent over an insecure network as a
stream of bytes, then an eavesdropper should be unable to determine the number of packets sent or
their lengths. This is intended to frustrate certain tra�c analysis attacks that deduce information
about the plaintext from its size.

Hiding message boundaries between consecutive encrypted messages is outside the requirements
addressed by authenticated encryption. In fact, many secure AEAD modes do not provide this level
of secrecy. TLS 1.0, for example, sends the length of the every record in the clear making it easy
to detect boundaries between consecutive encrypted records. Enhancing authenticated encryption
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to ensure boundary hiding has been formalized by Boldyreva, Degabriele, Paterson, and Stam [20],
proposing a number of constructions satisfying the definitions.

An attack on non-atomic decryption. Notice that CBC decryption is done in two steps: first
the 32-bit packet-length field is decrypted and used to decide how many more bytes to read from
the network. Next, the rest of the CBC ciphertext is decrypted.

Generally speaking, AEAD ciphers are not designed to be used this way: plaintext data should
not be used until the entire ciphertext decryption process is finished; however, in SSHv2 the de-
crypted length field is used before its integrity has been verified.

Can this be used to attack SSHv2? A beautiful attack [1] shows how this non-atomic decryption
can completely compromise secrecy. Here we only describe the high-level idea, ignoring many
details. Suppose an attacker intercepts a 16-byte ciphertext block c and it wants to learn the first
four bytes of the decryption of c. It does so by abusing the decryption process as follows: first, it
sends the ciphertext block c to the server as if it were the first block of a new encrypted packet.
The server decrypts c and interprets the first four bytes as a length field `. The server now expects
to read ` bytes of data from the network before checking the integrity tag. The attacker can slowly
send to the server arbitrary bytes, one byte at a time, waiting after each byte to see if the server
responds. Once the server reads ` bytes it attempts to verify the integrity tag on the bytes it
received and this most likely fails causing the server to send back an error message. Thus, once `
bytes are read the attacker receives an error message. This tells the attacker the value of ` which
is what it wanted.

In practice, there are many complications in mounting an attack like this. Nevertheless, it shows
the danger of using decrypted data — the length field in this case — before its integrity has been
verified. As mentioned above, we refer to [20] for encryption methods that securely hide packet
lengths.

A clever tra�c analysis attack on SSH. SSHv2 operates by sending one network packet
for every user keystroke. This gives rise to an interesting tra�c analysis attack reported in [98].
Suppose a network eavesdropper knows that the user is entering a password at his or her keyboard.
By measuring timing di↵erences between consecutive packets, the eavesdropper obtains timing
information between consecutive keystrokes. This exposes information about the user’s password:
a large timing gap between consecutive keystrokes reveals information about the keyboard position
of the relevant keys. The authors show that this information can significantly speed up an o✏ine
password dictionary attack. To make matters worse, password packets are easily identified since
applications typically turn o↵ echo during password entry so that password packets do not generate
an echo packet from the server.

Some SSH implementations defend against this problem by injecting randomly timed “dummy”
messages to make tra�c analysis more di�cult. Dummy messages are identified by setting the
first message byte to SSH MSG IGNORE and are ignored by the receiver. The eavesdropper cannot
distinguish dummy records from real ones thanks to encryption.

9.10 Case study: 802.11b WEP, a badly broken system

The IEEE 802.11b standard ratified in 1999 defines a protocol for short range wireless communica-
tion (WiFi). Security is provided by a Wired Equivalent Privacy (WEP) encapsulation of 802.11b
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Figure 9.4: WEP Encryption

data frames. The design goal of WEP is to provide data privacy at the level of a wired network.
WEP, however, completely fails on this front and gives us an excellent case study illustrating how
a weak design can lead to disastrous results.

When WEP is enabled, all members of the wireless network share a long term secret key k. The
standard supports either 40-bit keys or 128-bit keys. The 40-bit version complies with US export
restrictions that were in e↵ect at the time the standard was drafted. We will use the following
notation to describe WEP:

• WEP encryption uses the RC4 stream cipher. We let RC4(s) denote the pseudo random
sequence generated by RC4 given the seed s.

• We let CRC(m) denote the 32-bit CRC checksum of a message m 2 {0, 1}⇤. The details of
CRC are irrelevant for our discussion and it su�ces to view CRC as some fixed function from
bit strings to {0, 1}32.

Let m be an 802.11b cleartext frame. The first few bits of m encode the length of m. To encrypt
an 802.11b frame m the sender picks a 24-bit IV and computes:

c �

m k CRC(m)
� � RC4(IV k k)

cfull  (IV, c)

The WEP encryption process is shown in Fig. 9.4. The receiver decrypts by first computing
c�RC4(IV k k) to obtain a pair (m, s). The receiver accepts the frame if s = CRC(m) and rejects
it otherwise.

Attack 1: IV collisions. The designers of WEP understood that a stream cipher key should
never be reused. Consequently, they used the 24-bit IV to derive a per-frame key kf := IV k k.
The standard, however, does not specify how to choose the IVs and many implementations do so
poorly. We say that an IV collision occurs whenever a wireless station happens to send two frames,
say frame number i and frame number j, encrypted using the same IV. Since IVs are sent in the
clear, an eavesdropper can easily detect IV collisions. Moreover, once an IV collision occurs the
attacker can use the two-time pad attack discussed in Section 3.3.1 to decrypt both frames i and j.

So, how likely is an IV collision? By the birthday paradox, an implementation that chooses
a random IV for each frame will cause an IV collision after only an expected

p
224 = 212 = 4096

frames. Since each frame body is at most 1156 bytes, a collision will occur after transmitting about
4MB on average.
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Alternatively, an implementation could generate the IV using a counter. The implementation
will exhaust the entire IV space after 224 frames are sent, which will take about a day for a wireless
access point working at full capacity. Even worse, several wireless cards that use the counter method
reset the counter to 0 during power-up. As a result, these cards will frequently reuse low value IVs,
making the tra�c highly vulnerable to a two-time pad attack.

Attack 2: related keys. A far more devastating attack on WEP encryption results from the
use of related RC4 keys. In Chapter 3 we explained that a new and random stream cipher key must
be chosen for every encrypted message. WEP, however, uses keys 1 k k, 2 k k, . . . which are all
closely related — they all have the same su�x k. RC4 was never designed for such use, and indeed,
is completely insecure in these settings. Fluhrer, Mantin, and Shamir [38] showed that after about
a million WEP frames are sent, an eavesdropper can recover the entire long term secret key k.
The attack was implemented by Stubblefield, Ioannidis, and Rubin [101] and is now available in a
variety of hacking tools such as WepCrack and AirSnort.

Generating per frame keys should have been done using a PRF, for example, setting the key for
frame i to ki := F (k, IV) — the resulting keys would be indistinguishable from random, independent
keys. Of course, while this approach would have prevented the related keys problem, it would not
solve the IV collision problem discussed above, or the malleability problem discussed next.

Attack 3: malleability. Recall that WEP attempts to provide authenticated encryption by
using a CRC checksum for integrity. In a sense, WEP uses the MAC-then-encrypt method, but it
uses CRC instead of a MAC. We show that despite the encryption step, this construction utterly
fails to provide ciphertext integrity.

The attack uses the linearity of CRC. That is, given CRC(m) for some message m, it is easy to
compute CRC(m��) for any �. More precisely, there is a public function L such that for any m
and � 2 {0, 1}` we have that

CRC(m��) = CRC(m)� L(�)

This property enables an attacker to make arbitrary modifications to a WEP ciphertext without
ever being detected by the receiver. Let c be a WEP ciphertext, namely

c =
�

m, CRC(m)
� � RC4(IV k k)

For any � 2 {0, 1}`, an attacker can create a new ciphertext c0  c� �

�, L(�)
�

, which satisfies

c0 = RC4(IV k k) � �

m, CRC(m)
� � �

�, L(�)
�

=

RC4(IV k k) � �

m��, CRC(m)� L(�)
�

=

RC4(IV k k) � �

m��, CRC(m��)
�

Hence, c0 decrypts without errors to m ��. We see that given the encryption of m, an attacker
can create a valid encryption of m�� for any � of his choice. We explained in Section 3.3.2 that
this can lead to serious attacks.

Attack 4: Chosen ciphertext attack. The protocol is vulnerable to a chosen ciphertext attack
called chop-chop that lets the attacker decrypt an encrypted frame of its choice. We describe a
simple version of this attack in Exercise 9.5.
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Figure 9.5: A virtual private network (VPN) between east and west o�ce branches

Attack 5: Denial of Service. We briefly mention that 802.11b su↵ers from a number of serious
Denial of Service (DoS) attacks. For example, in 802.11b a wireless client sends a “disassociate”
message to the wireless station once the client is done using the network. This allows the station
to free memory resources allocates to that client. Unfortunately, the “disassociate” message is
unauthenticated, allowing anyone to send a disassociate message on behalf of someone else. Once
disassociated, the victim will take a few seconds to re-establish the connection to the base station.
As a result, by sending a single “disassociate” message every few seconds, an attacker can prevent
a computer of their choice from connecting to the wireless network. These attacks are implemented
in 802.11b tools such as Void11.

802.11i. Following the failures of the 802.11b WEP protocol, a new standard called 802.11i was
ratified in 2004. 802.11i provides authenticated encryption using a MAC-then-encrypt mode called
CCM. In particular, CCM uses (raw) CBC-MAC for the MAC and counter mode for encryption.
Both are implemented in 802.11i using AES as the underlying PRF. CCM was adopted by NIST
as a federal standard [86].

9.11 Case study: IPsec

The IPsec protocol provides confidentiality and integrity for Internet IP packets. The protocol was
first published in 1998 and was subsequently updated in 2005. The IPsec protocol consists of many
sub-protocols that are not relevant for our discussion here. In this section we will focus on the most
commonly used IPsec protocol called encapsulated security payload (ESP) in tunnel mode.

Virtual private networks (VPNs) are an important application for IPsec. A VPN enables two
o�ce branches to communicate securely over a public Internet channel, as shown in Fig. 9.5.
Here, packets from machines 1,2,3 are encrypted at the west gateway using IPsec and transmitted
over the public channel. The east gateway decrypts each received packet and forwards it to its
destination inside the east branch, namely, one of 4,5,6. We note that all packets sent from west
to east are encrypted using the same cryptographic key kw!e. Packets sent from east to west are
processed similarly, but encrypted using a di↵erent key, ke!w. We will use this VPN example as
our motivating example for IPsec.

To understand IPsec one first needs a basic understanding of the IP protocol. Here we focus on
IP version 4 (IPv4), which is currently widely deployed. The left side of Fig. 9.6 shows a (cleartext)
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Figure 9.6: Cleartext IPv4 packet and an IPsec ESP packet
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IPv4 packet. The packet consists of a packet header and a packet payload. The header contains a
bunch of fields, but only a few are relevant to our discussion:

• The first four bits indicate the version number which is set to 4 for IPv4.

• The 2-byte packet length field contains the length in bytes of the entire packet including
the header.

• The 1-byte protocol field describes the packet payload For example, protocol = 6 indicates
a TCP payload.

• the 2-byte header checksum contains a checksum of all header bytes (excluding the check-
sum field). The checksum is used to detect random transmission errors in the header. Packets
with an invalid checksum are dropped at the recipient. The checksum can be computed by
anyone and consequently provides no integrity against an attacker. In fact, Internet routers
regularly change fields in the packet header as the packet moves from router to router and
recompute the checksum.

• The source and destination IP indicate the source and destination addresses for the packet.

• The payload contains the packet contents and is variable length.

IPsec encapsulated security payload (ESP). The right side of Fig. 9.6 shows the result of
encrypting a packet with ESP in tunnel mode. We first describe the fields in the encrypted packet
and then describe the encryption process.

IPsec key management — the SPI field. Every ESP endpoint maintains a security associa-
tion database (SAD). A record in the SAD is called a security association (SA) and is identified
by a 32 bit identifier called a security parameters index (SPI). A SAD record (an SA) contains
many connection-specific parameters, such as the ESP encryption algorithm (e.g. 3DES-CBC or
AES-CBC), the ESP secret key (e.g. kw!e or ke!w), the source and destination IP addresses, the
SPI, and various key-exchange parameters.

When the east branch gateway sends out a packet, it uses the packet’s destination IP address
and other parameters to choose a security association (SA) in its security association database
(SAD). The gateway embeds the 32-bit SPI of the chosen SA in the packet header and encrypts
the packet using the secret key specified in the SA. When the packet arrives at its destination, the
recipient locates an appropriate SA in its own SAD using the following algorithm:

1. First, look for an SA matching the received (SPI, dest address, source address);
2. If no match is found, the recipient looks for a match based on the (SPI, dest address) pair;
3. Otherwise, it looks for a match based on the SPI only.

If no SA exists for the received packet, the packet is discarded. Otherwise, the gateway decrypts the
packet using the secret key specified in the chosen SA. Most often an SA is used for transmitting
packets in one direction, e.g., from east to west. A bi-directional TCP connection between east and
west uses two separate SAs — one for packets from east to west and one for packets from west to
east. Generally, an ESP endpoint maintains two SAD records for each peer.

The SAD at a particular host is managed semi-manually. Some parameters are managed man-
ually while others are negotiated between the communicating hosts. In particular, an SA secret

373



key can be set manually at both endpoints or it can be negotiated using an IPsec key exchange
protocol called IKE [62]. We will not discuss SAD management here.

ESP anti-replay — the sequence number field. The sequence number enables the recipient
to detect and discard duplicate packets. Duplication can result from a network error or can be
caused by an attacker who is deliberately replaying old packets. Every ESP end point maintains a
sequence number for each security association. By default the sequence number is 64 bits long
(called an extended sequence number), although older versions of ESP use a shorter 32 bit sequence
number. The sequence number is initialized to zero when the security association is created and
is incremented by one for each packet sent using the SA. The entire 64 bits are included in the
MAC calculation. However, only the 32 least significant bits (LSB) are included in the ESP packet
header. In other words, ESP endpoints maintain 64-bit counters, of which the 32 MSBs are implicit
while the 32 LSBs are explicit in the packet header.

For our discussion of sequence numbers, we assume that there is at most a single host sending
packets for each security association (SA). Hence, for a particular SA there is no danger of two hosts
sending a packet with the same sequence number. Note that multiple hosts can receive packets for
a particular SA, as in the case of multicast. We only disallow multiple hosts from sending packets
using a single SA.

For a particular SA, the recipient must discard any packet that contains a 32-bit sequence
number that was previously contained in an earlier packet. Since packets can arrive out of order,
verifying sequence number unicity at the recipient takes some e↵ort. RFC 4303 recommends that
the recipient maintain a window (e.g. bit vector) of size 32. The “right” edge of the window
represents the highest, validated sequence number value received on this SA. Packets that contain
sequence numbers lower than the “left” edge of the window are discarded. Received packets falling
within the window are checked against the list of received packets within the window, and are
discarded if their sequence number was already seen. The window shifts whenever a valid packet
with a sequence number on the “right” of the current window is received. Consequently, the receiver
recovers gracefully from a long sequence of lost packets

If more than 232 consecutive packets are lost, then the 64-bit sequence numbers at the sender
and receiver will go out of sync — the 32 MSBs implicitly maintained by the two will di↵er. As
a result, all further packets will be rejected due to MAC validation failure. This explains why the
designers of ESP chose to include 32 bits in the packet header — a loss of 232 packets in unlikely.
Including fewer bits (e.g. 16 bits) would have greatly increased the chance of communication failure.

Padding and the next header field. ESP first appends a pad to ensure that the length of the
data to encrypt is a multiple of the block length of the chosen encryption algorithm (e.g. a multiple
of 16 bytes for AES-CBC). It also ensures that the resulting ciphertext length is a multiple of four
bytes. The pad length is anywhere from 0 to 255 bytes. An additional pad-length byte is appended
to indicate the number of padding bytes preceding it. Finally, a next header (next-hdr) byte, is
appended to indicate the payload type. Most often the payload type is an IPv4 packet in which
case next-hdr=4.

ESP supports an optional tra�c flow confidentiality (TFC) service where the sender at-
tempts to hide the length of the plaintext packet. To do so, the sender appends dummy (unspeci-
fied) bytes to the payload before padding takes place. The length of the TFC pad is arbitrary. The
packet length field in the plaintext IP header indicates the beginning of the TFC pad. The TFC
pad is removed after decryption.

ESP also supports “dummy” packets to defeat tra�c analysis. The goal is to prevent an observer
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from telling when the sender transmits data. For example, one can instruct the sender to transmit a
packet every millisecond, whether it has data to send or not. When no data is available, the sender
transmits a “dummy” packet which is indicated by setting next-hdr=59. Since the next-hdr field
is encrypted an observer cannot tell dummy packets from real packets. However, at the destination,
all dummy packets are discarded immediately after decryption.

The encryption process. ESP implements the encrypt-then-MAC method in four steps. We
discuss each step in turn.

1. Pad. The pad, including the optional TFC pad and next header field, are appended to the
plaintext IP packet.

2. Encrypt. The gray area in Fig. 9.6 is encrypted with the algorithm and key specified by the
SA. ESP supports a variety of encryption algorithms, but is required to support 3DES-CBC,
AES-CBC, and AES counter mode. For CBC modes the IV is prepended to the encrypted
payload and is sent in the clear. The encryption algorithm can be set to NULL in which case
no encryption takes place. This is used when ESP provides integrity but no confidentiality.

3. MAC. An integrity tag is computed using an algorithm and key specified in the SA. The tag
is computed over the following data

SPI k 64-bit sequence number k ciphertext

where ciphertext is the result of Step 2. Note that the tag is computed over the 64 bit
sequence number even though only 32 bits are embedded in the packet. The resulting tag
is placed in the integrity tag field following the ciphertext. ESP supports a variety of MAC
algorithms, but is required to support HMAC-SHA1-96, HMAC-MD5-96, and AES-XCBC-
MAC-96 (XCBC-MAC is a variant of CMAC). The integrity tag field is optional and is
omitted if the encryption algorithm already provides authenticated encryption, as in the case
of GCM.

4. Encapsulate. Finally, an IPv4 packet header is prepended to obtain an ESP packet as shown
on the right side of Fig. 9.6. The protocol field in the IPv4 header is set to 50 indicating an
ESP payload.

Decryption follows a similar process. The recipient first checks the 32-bit sequence number. If
the value is repeated or outside the allowed window, the packet is dropped. Next, the recipient
checks the tag field, and rejects the packet if MAC verification fails. The packet is then decrypted
and the padding removed. If the packet is a dummy packet (i.e. the next header field is equal to
59), the packet is discarded. Finally, the original cleartext packet is reconstructed and sent to the
destination. Note that in principle, the sequence number field could have been encrypted. The
designers of ESP chose to send the field in the clear so as to reduce the time until a duplicate packet
is rejected.

Security. IP packets can arrive at any order, be duplicated, and even modified. By relying on
encrypt-then-MAC and on the sequence number, ESP ensures that the recipient sees a data stream
identical to the one transmitted by the sender. One issue that haunts ESP is a setting that provides
CPA-secure encryption without an integrity check. RFC 4303 states that
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ESP allows encryption-only SAs because this may o↵er considerably better performance
and still provide adequate security, e.g., when higher-layer authentication/integrity pro-
tection is o↵ered independently.

Relying on a higher application layer for integrity is highly risky. On the sender side the application
layer processes data before passing it to the IP layer. Hence, this implements MAC-then-encrypt
which from a theoretical point view we know can be insecure. More importantly, in practice it
is dangerous to assume that the higher layer will protect the entire IP packet. For example, a
higher layer such as SSL may provide integrity without encryption. Combining encryption-only
ESP and integrity-only SSL will be insecure since the SSL layer will not provide integrity for the
encrypted packet header. As a result, an attacker can tamper with the destination IP field in the
encrypted packet. The recipient’s IPsec gateway will decrypt the packet and forward the result to
an unintended destination, thus causing a serious privacy breach. This and other dangers of the
ESP encryption-only mode are discussed in [8, 87].

We note, however, that when the cipher used provides authenticated encryption (such as GCM
mode) it is perfectly fine to use encryption without an integrity check, since the cipher already
provides authenticated encryption.

9.12 A fun application: private information retrieval

To be written.

9.13 Notes

Citations to the literature to be added.

9.14 Exercises

9.1 (AE-security: simple examples). Let (E, D) be an AE-secure cipher. Consider the fol-
lowing derived ciphers:

(a) E1(k, m) :=
�

E(k, m), E(k, m)
�

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if D(k, c1) = D(k, c2)

reject otherwise

(b) E2(k, m) :=
�

c E(k, m), output (c, c)
 

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if c1 = c2

reject otherwise

Show that part (b) is AE-secure, but part (a) is not.

9.2 (AE-security: some insecure constructions). Let (E, D) be a CPA-secure cipher defined
over (K, M, C) and let H1 : M ! T and H2 : C ! T be collision resistant hash functions. Define
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the following two ciphers:

E1(k, m) :=
�

E(k, m), H1(m)
�

; D1
�

k, (c1, c2)
�

:=

(

D(k, c1) if H1(D(k, c1)) = c2

reject otherwise

E2(k, m) :=
�

E(k, m), H2(c)
�

; D2
�

k, (c1, c2)
�

:=

(

D(k, c1) if H2(c1) = c2

reject otherwise

Show that both ciphers are not AE-secure.

9.3 (An Android Keystore Attack). Let (E, D) be a secure block cipher defined over (K, X ) and
let (Ecbc, Dcbc) be the cipher derived from (E, D) using randomized CBC mode, as in Section 5.4.3.
Let H : M! X be a collision resistant hash function. Consider the following attempt at building
an AE-secure cipher:

E1(k, m) := Ecbc

�

k, (H(m), m)
�

; D1(k, c) :=

⇢

(t, m) Dcbc(k, c)
if t = H(m) output m, otherwise reject

�

Show that (E1, D1) is not AE-secure by giving a chosen-ciphertext attack on it. You may assume
m 2 X for simplicity. This construction was used to protect secret keys in the Android KeyStore.
The chosen-ciphertext attack resulted in a compromise of the key store [93].

9.4 (Redundant message encoding does not give AE). The attack in the previous exercise
can be generalized if instead of using CBC encryption as the underlying cipher, we use randomized
counter mode, as in Section 5.4.2. Let (Ectr, Dctr) be such a counter-mode cipher, and assume
that its message space is {0, 1}`0 . Let f : {0, 1}` ! {0, 1}`0 be a one-to-one function, and let
g : {0, 1}`0 ! {0, 1}` [ {?} be its inverse, in the sense that g(m0) = m whenever m0 = f(m) for
some m, and g(m0) = ? if m0 is not in the image of f . Intuitively, f represents an “error detecting
code”: a message m 2 {0, 1}` is “encoded” as m0 = f(m). If m0 gets modified into a value m̃0, this
modification will be detected if g(m̃0) = ?. Now define a new cipher (E2, D2) with message space
{0, 1}` as follows:

E2(k, m) := Ectr
�

k, f(m)
�

; D1(k, c) :=

⇢

m0  Dctr(k, c)
if g(m0) 6= ? output g(m0), otherwise reject

�

Show that (E2, D2) is not AE-secure by giving a chosen-ciphertext attack on it.

9.5 (Chop-chop attack). The parity bit b for a message m 2 {0, 1}⇤ is just the XOR of all the
bits in m. After appending the parity bit, the message m0 = m k b has the property that the XOR
of all the bits is zero. Parity bits are sometimes used as a very simple form of error detection. They
are meant to provide a little protection against low-probability, random errors: if a single bit of m0

gets flipped, this can be detected, since the XOR of the bits of the corrupted m0 will now be one.

Consider a cipher where encryption is done using randomized counter mode without any padding.
Messages are variable length bit strings and ciphertexts are bit strings of the same length as
plaintext. No MAC is used, but before the plaintext is encrypted, the sender appends a parity bit
to the end of the plaintext. After the receiver decrypts, he checks the parity bit and returns either
the plaintext (with the parity bit removed) or reject.

Design a chosen-ciphertext attack that recovers the complete plaintext of every encrypted message.
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Hint: Use the fact that the system encrypts variable length messages.

Remark: A variant of this attack, called chopchop, was used successfully against encryption in
the 802.11b protocol. The name is a hint for how the attack works. Note that the previous exercise
already tells us that this scheme is not CCA-secure, but the attack in this exercise is much more
devastating.

9.6 (Nested encryption). Let (E, D) be an AE-secure cipher. Consider the following derived
cipher (E0, D0):

E0�(k1, k2), m
�

:= E
�

k2, E(k1, m)
�

; D0�(k1, k2), c
�

:=

(

D
�

k1, D(k2, c)
�

if D(k2, c) 6= reject

reject otherwise

(a) Show that (E0, D0) is AE-secure even if the adversary knows k1, but not k2.

(b) Show that (E0, D0) is not AE-secure if the adversary knows k2 but not k1.

(c) Design a cipher built from (E, D) where keys are pairs (k1, k2) 2 K2 and the cipher remains
AE-secure even if the adversary knows one of the keys, but not the other.

9.7 (A format oracle attack). Let E be an arbitrary CPA-secure cipher, and assume that the
key space for E is {0, 1}n. Show how to “sabotage” E to obtain another cipher E 0 such that E 0 is
still CPA secure, but E 0 is insecure against chosen ciphertext attack, in the following sense. In the
attack, the adversary is allowed to make several decryption queries, such that in each query, the
adversary only learns whether the result of the decryption was reject or not. Design an adversary
that makes a series of decryption queries as above, and then outputs the secret key in its entirety.

.

9.8 (Choose independent keys). Let us see an example of a CPA-secure cipher and a secure
MAC that are insecure when used in encrypt-then-MAC when the same secret key k is used for
both the cipher and the MAC. Let (E, D) be a block cipher defined over (K, X ) where X = {0, 1}n
and |X | is super-poly. Consider randomized CBC mode encryption built from (E, D) as the CPA-
secure cipher for single block messages: an encryption of m 2 X is the pair c := (r, E(k, r �m))
where r is the random IV. Use RawCBC built from (E, D) as the secure MAC. This MAC is secure
in this context because it is only being applied fixed length messages (messages in X 2): the tag on
a ciphertext c 2 X 2 is t := E

�

k, E(k, c[0]) � c[1]
�

. Show that using the same key k for both the
cipher and the MAC in encrypt-then-MAC results in a cipher that is not CPA secure.

9.9 (MAC-then-encrypt). Prove that MAC-then-encrypt provides authenticated encryption
when the underlying cipher is randomized CBC mode encryption and the MAC is a secure MAC.
For concreteness, if the underlying cipher works on blocks of a fixed size, a message m is a sequence
of full blocks, and the tag t for the MAC is one full block, so the message that is CBC-encrypted
is the block sequence m k t.

9.10 (An AEAD from encrypt-and-MAC). Let (E, D) be randomized counter mode encryp-
tion defined over (K, M, C) where the underlying secure PRF has domain X . We let E(k, m; r)
denote the encryption of message m with key k using r 2 X as the IV. Let F be a secure PRF
defined over (K, (M⇥D⇥N ), X ). Show that the following cipher (E1, D1) is a secure nonce-based
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AEAD cipher assuming |X | is super-poly.

E1
�

(ke, km), m, d, N
�

:=
�

t F
�

km, (m, d, N )
�

, c R E(kc, m; t), output (c, t)
 

D1
�

(ke, km), (c, t), d, N )
�

:=

⇢

m D(ke, c; t)
if F

�

km, (m, d, N )
� 6= t output reject, otherwise output m

�

This method is loosely called encrypt-and-MAC because the message m is both encrypted by the
cipher and is the input to the MAC signing algorithm, which here is a PRF.

Discussion: This construction is related to the authenticated SIV cipher (Exercise 9.11) and
o↵ers similar nonce re-use resistance. One down-side of this system is that the tag t cannot be
truncated as one often does with a PRF-based MAC.

9.11 (Authenticated SIV). We discuss a modification of the SIV construction, introduced in
Exercise 5.8, that provides ciphertext integrity without enlarging the ciphertext any further. We
call this the authenticated SIV construction. With E = (E, D), F , and E 0 = (E0, D0) as in
Exercise 5.8, we define E 00 = (E0, D00), where

D00�(k, k0), c
�

:=

⇢

m D(k, c)
if E0((k, k0), m) = c output m, otherwise output reject

�

Assume that |R| is super-poly and that for very fixed key k 2 K and m 2 M, the function
E(k, m; ·) : R ! C is one to one (which holds for counter and CBC mode encryption). Show that
E 00 provides ciphertext integrity.

Note: Since the encryption algorithm of E 00 is the same as that of E 0 we know that E 00 is determin-
istic CPA-secure, assuming that E is CPA-secure (as was shown in Exercise 5.8).

9.12 (Constructions based on strongly secure block ciphers). Let (E, D) be a block cipher
defined over (K, M⇥R).

(a) As in Exercise 5.6, let (E0, D0) be defined as

E0(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output c
 

D0(k, c) :=
�

(m, r0) D(k, c), output m
 

Show that (E0, D0) is CCA-secure provided (E, D) is a strongly secure block cipher and 1/|R| is
negligible. This is an example of a CCA-secure cipher that clearly does not provide ciphertext
integrity.

(b) Let (E00, D00) be defined as

E00(k, m) :=
�

r  R R, c R E
�

k, (m, r)
�

, output (c, r)
 

D00�k, (c, r)
�

:=

⇢

(m, r0) D(k, c)
if r = r0 output m, otherwise output reject

�

This cipher is defined over
�K, M, (M⇥R)⇥R�

. Show that (E00, D00) is AE-secure provided
(E, D) is a strongly secure block cipher and 1/|R| is negligible.
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(c) Suppose that 0 2 R and we modify algorithms E00 and D00 to work as follows:

Ẽ00(k, m) :=
�

r  0, c R E
�

k, (m, r)
�

, output c
 

D̃00�k, c
�

:=

⇢

(m, r0) D(k, c)
if r0 = 0 output m, otherwise output reject

�

Show that (Ẽ00, D̃00) is one-time AE-secure provided (E, D) is a strongly secure block cipher,
and 1/|R| is negligible.

9.13 (MAC from encryption). Let (E, D) be a cipher defined over (K, M, C). Define the
following MAC system (S, V ) also defined over (K, M, C):

S(k, m) := E(k, m); V (k, m, t) :=

(

accept if D(k, t) = m

reject otherwise

Show that if (E, D) has ciphertext integrity then (S, V ) is a secure MAC system.

9.14 (GCM analysis). Give a complete security analysis of GCM (see Section 9.7). Show that
it is nonce-based AEAD secure assuming the security of the underlying block cipher as a PRF
and that GHASH is an XOR-DUF. Start out with the easy case when the nonce is 96-bits. Then
proceed to the more general case where GHASH may be applied to the nonce to compute x.

9.15 (Plaintext integrity). Consider a weaker notion of integrity called plaintext integrity,
or simply PI. The PI game is identical to the CI game except that the winning condition is relaxed
to:

• D(k, c) 6= reject, and
• D(k, c) 62 {m1, m2, . . .}

Prove that the following holds:

(a) Show that MAC-then-Encrypt is both CPA and PI secure.

Note: The MAC-then-Encrypt counter-example (Section 9.4.2) shows that a system that is
CPA and PI secure is not CCA-secure (and, therefore, not AE-secure).

(b) Prove that a system that is CCA- and PI-secure is also AE-secure. The proof only needs a
weak version of CCA, namely where the adversary issues a single decryption query and is
told whether the ciphertext is accepted or rejected. Also, you may assume a super-poly-sized
message space.

9.16 (Encrypted UHF MAC). Let H be a hash function defined over (KH , M, X ) and (E, D)
be a cipher defined over (KE , X , C). Define the encrypted UHF MAC system I = (S, V ) as
follows: for key (k1, k2) and message m 2M define

S
�

(k1, k2), m
�

:= E
�

k1, H(k2, m)
�

V
�

(k1, k2), m, c
�

:=

(

accept if H(k2, m) = D(k1, c),

reject otherwise.
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Show that I is a secure MAC system assuming H is a computational UHF and (E, D) provides
authenticated encryption. Recall from Section 7.4 that CPA security of (E, D) is insu�cient for
this MAC system to be secure.

9.17 (Simplified OCB mode). OCB is an elegant and e�cient AE cipher built from a tweakable
block cipher (as defined in Exercise 4.11). Let (E, D) be a tweakable block cipher defined over
(K, X , T ) where X := {0, 1}n and the tweak set is T := N ⇥ {�`, . . . , `}. Consider the following
nonce-based cipher (E0, D0) with key space K, message space X`, ciphertext space X `+1, and
nonce space N . For simplicity, the cipher does not support associated data.

E0(k, m, N ) :=
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

create (uninitialized) c 2 X |m|

checksum 0n

for i = 0, . . . , |m|� 1 :
c[i] E

�

k, m[i], (N , i + 1)
�

checksum checksum�m[i]

t E
�

k, checksum, (N ,�|m|)�
output (c, t)

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

D0(k, (c, t), N ) :=
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

create (uninitialized) m 2 X |c|

checksum 0n

for i = 0, . . . , |c|� 1 :
m[i] D

�

k, c[i], (N , i + 1)
�

checksum checksum�m[i]

t0  E
�

k, checksum, (N ,�|c|)�
if t = t0 output m, else reject

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(a) Prove that (E0, D0) is a nonce-based AE-secure cipher assuming (E, D) is a strongly secure
tweakable block cipher and |X | is super-poly.

(b) Show that if t were computed as t  E
�

k, checksum, (N , 0)
�

then the scheme would be
insecure: it would have no ciphertext integrity.

9.18 (Non-committing encryption). Let (E, D) be a cipher. We say that the cipher is non-
committing if an adversary can find a ciphertext c and two keys k0, k1 such that c decrypts
successfully under both k0 and k1 and the resulting plaintexts are di↵erent. The non-committing
property means that the adversary can transmit c, but if he or she are later required to reveal the
decryption key, say for an internal audit, the adversary can “open” the ciphertext in two di↵erent
ways.

(a) Let (E, D) be an encrypt-then-MAC AE-secure cipher where the underlying encryption is
randomized counter mode built using a secure PRF. Show that (E, D) is non-committing.

(b) Show that GCM mode encryption is non-committing.

(c) Describe a simple way in which the ciphers from parts (a) and (b) can be made committing.

9.19 (Middlebox encryption). In this exercise we develop a mode of encryption that lets a
middlebox placed between the sender and recipient inspect all tra�c in the clear, but prevents
the middlebox for modifying tra�c en-route. This is often needed in enterprise settings where a
middlebox ensures that no sensitive information is accidentally sent out. Towards this goal let us
define a middlebox cipher as a tuple of four algorithms (E, D, D0, K) where E(k, m) and D(k, c)
are the usual encryption and decryption algorithms used by the end-points, K is an algorithm
that derives a sub-key k0 from the primary key k (i.e., k0  R K(k)), and D0(k0, c) is the decryption
algorithm used by the middlebox with the sub-key k0. We require the usual correctness properties:
D(k, c) and D0(k0, c) output m whenever c R E(k, m) and k0  R K(k).
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(a) Security for a middlebox cipher (E, D, D0, K) captures our desired confidentiality and integrity
requirements. In particular, we say that a middlebox cipher is secure if the following three
properties hold:

(i) the cipher is secure against a chosen plaintext attack (CPA security) when the adversary
knows nothing about k,

(ii) the cipher provides ciphertext integrity with respect to the decryption algorithm D0(k0, ·),
and the adversary knows nothing about k, and

(iii) the cipher provides ciphertext integrity with respect to the decryption algorithm D(k, ·),
and the adversary is given a sub-key k0  R K(k), but again knows nothing about k.

The second requirement says that the middlebox will only decrypt authentic ciphertexts. The
third requirement says that the receiving end-point will only decrypt authentic ciphertexts,
even if the middlebox is corrupt.

Formalize these requirements as attack games.

(b) Give a construction that satisfies your definition from part (a). You can use an AE secure
cipher and a secure MAC as building blocks.
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Part II

Public key cryptography
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In the second part of the book we study how parties who don’t share a secret key can com-
municate over a public network. We start o↵ by introducing the basic tools used in public key
cryptography — the RSA and Di�e-Hellman functions. We then show how one party, Alice, can
send messages to another party, Bob, given Bob’s public key. We then discuss digital signatures
and given several constructions. Some constructions are based entirely on tools tools from Part I
while other constructions are based on public key tools. The last two chapters in part II explain
how to establish a secure session using identification and key exchange.
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Chapter 10

Public key tools

We begin our discussion of public-key cryptography by introducing several basic tools that will be
used in the remainder of the book. The main applications for these tools will emerge in the next
few chapters where we use them for public-key encryption, digital signatures, and key exchange.
Since we use some basic algebra and number theory in this chapter, the reader is advised to first
briefly scan through Appendix A.

We start with a simple toy problem: generating a shared secret key between two parties so that
a passive eavesdropping adversary cannot feasibly guess their shared key. The adversary can listen
in on network tra�c, but cannot modify messages en-route or inject his own messages. In a later
chapter we develop the full machinery needed for key exchange in the presence of an active attacker
who may tamper with network tra�c.

At the onset we emphasize that security against eavesdropping is typically not su�cient for
real world-applications, since an attacker capable of listening to network tra�c is often also able
to tamper with it; nevertheless, this toy eavesdropping model is a good way to introduce the new
public-key tools.

10.1 A toy problem: anonymous key exchange

Two users, Alice and Bob, who never met before talk on the phone. They are worried that an
eavesdropper is listening to their conversation and hence they wish to encrypt the session. Since
Alice and Bob never met before they have no shared secret key with which to encrypt the session.
Thus, their initial goal is to generate a shared secret unknown to the adversary. They may later use
this secret as a session-key for secure communication. To do so, Alice and Bob execute a protocol
where they take turns in sending messages to each other. The eavesdropping adversary can hear
all these messages, but cannot change them or inject his own messages. At the end of the protocol
Alice and Bob should have a secret that is unknown to the adversary. The protocol itself provides
no assurance to Alice that she is really talking to Bob, and no assurance to Bob that he is talking
to Alice — in this sense, the protocol is “anonymous.”

More precisely, we model Alice and Bob as communicating machines. A key exchange proto-
col P is a pair of probabilistic machines (A, B) that take turns in sending messages to each other.
At the end of the protocol, when both machines terminate, they both obtain the same value k. A
protocol transcript TP is the sequence of messages exchanged between the parties in one exe-
cution of the protocol. Since A and B are probabilistic machines, we obtain a di↵erent transcript
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every time we run the protocol. Formally, the transcript TP of protocol P is a random variable,
which is a function of the random bits generated by A and B. The eavesdropping adversary A
sees the entire transcript TP and its goal is to figure out the secret k. We define security of a key
exchange protocol using the following game.

Attack Game 10.1 (Anonymous key exchange). For a key exchange protocol P = (A, B)
and a given adversary A, the attack game runs as follows.

• The challenger runs the protocol between A and B to generate a shared key k and
transcript TP . It gives TP to A.

• A outputs a guess k̂ for k.

We define A’s advantage, denoted AnonKEadv[A, P ], as the probability that k̂ = k. 2

Definition 10.1. We say that an anonymous key exchange protocol P is secure against an eaves-
dropper if for all e�cient adversaries A, the quantity AnonKEadv[A, P ] is negligible.

This definition of security is extremely weak, for three reasons. First, we assume the adversary
is unable to tamper with messages. Second, we only guarantee that the adversary cannot guess
k in its entirety. This does not rule out the possibility that the adversary can guess, say, half
the bits of k. If we are to use k as a secret session key, the property we would really like is
that k is indistinguishable from a truly random key. Third, the protocol provides no assurance
of the identities of the participants. We will strengthen Definition 10.1 to meet these stronger
requirements in Chapter 20.

Given all the tools we developed in Part 1, it is natural to ask if anonymous key exchange can
be done using an arbitrary secure symmetric cipher. The answer is yes, it can be done as we show
in Section 10.8, but the resulting protocol is highly ine�cient. To develop e�cient protocols we
must first introduce a few new tools.

10.2 One-way trapdoor functions

In this section, we introduce a tool that will allow us to build an e�cient and secure key exchange
protocol. In Section 8.11, we introduced the notion of a one-way function. This is a function
F : X ! Y that is easy to compute, but hard to invert. As we saw in Section 8.11, there are a
number of very e�cient functions that are plausibly one-way. One-way functions, however, are not
su�cient for our purposes. We need one-way functions with a special feature, called a trapdoor.
A trapdoor is a secret that allows one to e�ciently invert the function; however, without knowledge
of the trapdoor, the function remains hard to invert.

Let us make this notion more precise.

Definition 10.2 (Trapdoor function scheme). Let X and Y be finite sets. A trapdoor func-
tion scheme T , defined over (X , Y), is a triple of algorithms (G, F, I), where

• G is a probabilistic key generation algorithm that is invoked as (pk , sk)  R G(), where pk is
called a public key and sk is called a secret key.

• F is a deterministic algorithm that is invoked as y  F (pk , x), where pk is a public key (as
output by G) and x lies in X . The output y is an element of Y.
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• I is a deterministic algorithm that is invoked as x  I(sk , y), where sk is a secret key (as
output by G) and y lies in Y. The output x is an element of X .

Moreover, the following correctness property should be satisfied: for all possible outputs (pk , sk)
of G(), and for all x 2 X , we have I(sk , F (pk , x) ) = x.

Observe that for every pk , the function F (pk , ·) is a function from X to Y. The correctness
property says that sk is the trapdoor for inverting this function; note that this property also implies
that the function F (pk , ·) is one-to-one. Note that we do not insist that F (pk , ·) maps X onto Y.
That is, there may be elements y 2 Y that do not have any preimage under F (pk , ·). For such y,
we make no requirements on algorithm I — it can return some arbitrary element x 2 X (one might
consider returning a special reject symbol in this case, but it simplifies things a bit not to do this).

In the special case where X = Y, then F (pk , ·) is not only one-to-one, but onto. That is, F (pk , ·)
is a permutation on the set X . In this case, we may refer to (G, F, I) as a trapdoor permutation
scheme defined over X .

The basic security property we want from a trapdoor permutation scheme is a one-wayness
property, which basically says that given pk and F (pk , x) for random x 2 X , it is hard to compute
x without knowledge of the trapdoor sk . This is formalized in the following game.

Attack Game 10.2 (One-way trapdoor function scheme). For a given trapdoor function
scheme T = (G, F, I), defined over (X , Y), and a given adversary A, the attack game runs as
follows:

• The challenger computes

(pk , sk) R G(), x R X , y  F (pk , x)

and sends (pk , y) to the adversary.

• The adversary outputs x̂ 2 X .

We define the adversary’s advantage in inverting T , denoted OWadv[A, T ], to be the probability
that x̂ = x. 2

Definition 10.3. We say that a trapdoor function scheme T is one way if for all e�cient adver-
saries A, the quantity OWadv[A, T ] is negligible.

Note that in Attack Game 10.2, since the value x is uniformly distributed over X and F (pk , ·)
is one-to-one, it follows that the value y := F (pk , x) is uniformly distributed over the image of
F (pk , ·). In the case of a trapdoor permutation scheme, where X = Y, the value of y is uniformly
distributed over X .

10.2.1 Key exchange using a one-way trapdoor function scheme

We now show how to use a one-way trapdoor function scheme T = (G, F, I), defined over (X , Y),
to build a secure anonymous key exchange protocol. The protocol runs as follows, as shown in
Fig. 10.1:

• Alice computes (pk , sk) R G(), and sends pk to Bob.

• Upon receiving pk from Alice, Bob computes x R X , y  F (pk , x), and sends y to Alice.
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Alice Bob

(pk , sk) R G()
pk x R X

y  R F (pk , x)

x I(pk , y) x

Figure 10.1: Key exchange using a trapdoor function scheme

• Upon receiving y from Bob, Alice computes x I(sk , y).

The correctness property of the trapdoor function scheme guarantees that at the end of the protocol,
Alice and Bob have the same value x — this is their shared, secret key. Now consider the security of
this protocol, in the sense of Definition 10.1. In Attack Game 10.1, the adversary sees the transcript
consisting of the two messages pk and y. If the adversary could compute the secret x from this
transcript with some advantage, then this very same adversary could be used directly to break the
trapdoor function scheme, as in Attack Game 10.2, with exactly the same advantage.

10.2.2 Mathematical details

We give a more mathematically precise definition of a trapdoor function scheme, using the termi-
nology defined in Section 2.4.

Definition 10.4 (Trapdoor function scheme). A trapdoor function scheme is a triple of
e�cient algorithms (G, F, I) along with families of spaces with system parameterization P :

X = {X�,⇤}�,⇤,Y = {Y�,⇤}�,⇤.

As usual, � 2 Z�1 is a security parameter and ⇤ 2 Supp(P (�)) is a domain parameter. We require
that

1. X is e�ciently recognizable and sampleable.

2. Y is e�ciently recognizable.

3. G is an e�cient probabilistic algorithm that on input �, ⇤, where � 2 Z�1, ⇤ 2 Supp(P (�)),
outputs a pair (pk , sk), where pk and sk are bit strings whose lengths are always bounded by
a polynomial in �.

4. F is an e�cient deterministic algorithm that on input �, ⇤, pk , x, where � 2 Z�1, ⇤ 2
Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some sk, and x 2 X�,⇤, outputs an element of
Y�,⇤.
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5. I is an e�cient deterministic algorithm that on input �, ⇤, sk , y, where � 2 Z�1, ⇤ 2
Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some pk, and y 2 Y�,⇤, outputs an element of
X�,⇤.

6. For all � 2 Z�1, ⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)), and x 2 X�,⇤, we have
I(�, ⇤; sk , F (�, ⇤; pk , x)) = x.

As usual, in defining the one-wayness security property, we parameterize Attack Game 10.2 by
the security parameter �, and the advantage OWadv[A, T ] is actually a function of �. Definition 10.3
should be read as saying that OWadv[A, T ](�) is a negligible function.

10.3 A trapdoor permutation scheme based on RSA

We now describe a trapdoor permutation scheme that is plausibly one-way. It is called RSA
after its inventors, Rivest, Shamir, and Adleman. Recall that a trapdoor permutation is a special
case of a trapdoor function, where the domain and range are the same set. This means that for
every public-key, the function is a permutation of its domain, which is why we call it a trapdoor
permutation. Despite many years of study, RSA is essentially the only known reasonable candidate
trapdoor permutation scheme (there are a few others, but they are all very closely related to the
RSA scheme).

Here is how RSA works. First, we describe a probabilistic algorithm RSAGen that takes as
input an integer ` > 2, and an odd integer e > 2.

RSAGen(`, e) :=
generate a random `-bit prime p such that gcd(e, p� 1) = 1
generate a random `-bit prime q such that gcd(e, q � 1) = 1 and q 6= p
n pq
d e�1 mod (p� 1)(q � 1)
output (n, d).

To e�ciently implement the above algorithm, we need an e�cient algorithm to generate random
`-bit primes. This is discussed in ??. Also, we use the extended Euclidean algorithm (see ??) to
compute e�1 mod (p � 1)(q � 1). Note that since gcd(e, p � 1) = gcd(e, q � 1) = 1, it follows that
gcd(e, (p� 1)(q � 1)) = 1, and hence e has a multiplicative inverse modulo (p� 1)(q � 1).

Now we describe the RSA trapdoor permutation scheme TRSA = (G, F, I). It is parameterized
by fixed values of ` and e.

• Key generation runs as follows:

G() := (n, d) R RSAGen(`, e), pk  (n, e), sk  (n, d)
output (pk , sk).

• For a given public key pk = (n, e), and x 2 Zn, we define F (pk , x) := xe 2 Zn.

• For a given secret key sk = (n, d), and y 2 Zn, we define I(sk , y) := yd 2 Zn.

Note that although the encryption exponent e is considered to be a fixed system parameter, we
also include it as part of the public key pk .
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A technicality. For each fixed pk = (n, e), the function F (pk , ·) maps Zn into Zn; thus, the
domain and range of this function actually vary with pk . However, in our definition of a trapdoor
permutation scheme, the domain and range of the function are not allowed to vary with the public
key. So in fact, this scheme does not quite satisfy the formal syntactic requirements of a trapdoor
permutation scheme. One could easily generalize the definition of a trapdoor permutation scheme,
to allow for this. However, we shall not do this; rather, we shall state and analyze various schemes
based on a trapdoor permutation scheme as we have defined it, and then show how to instantiate
these schemes using RSA. Exercise 10.23 explores an idea that builds a proper trapdoor permutation
scheme based on RSA.

Ignoring this technical issue for the moment, let us first verify that TRSA satisfies the correctness
requirement of a trapdoor permutation scheme. This is implied by the following:

Theorem 10.1. Let n = pq where p and q are distinct primes. Let e and d be integers such that
ed ⌘ 1 (mod (p� 1)(q � 1)). Then for all x 2 Z, we have xed ⌘ x (mod n).

Proof. The hypothesis that ed ⌘ 1 (mod (p� 1)(q � 1)) just means that ed = 1 + k(p� 1)(q � 1)
for some integer k. Certainly, if x ⌘ 0 (mod p), then xed ⌘ 0 ⌘ x (mod p); otherwise, if x 6⌘ 0
(mod p), then by Fermat’s little theorem (see ??), we have

xp�1 ⌘ 1 (mod p),

and so
xed ⌘ x1+k(p�1)(q�1) ⌘ x · �x(p�1)

�k(q�1) ⌘ x · 1k(q�1) ⌘ x (mod p).

Therefore,
xed ⌘ x (mod p).

By a symmetric argument, we have

xed ⌘ x (mod q).

Thus, xed � x is divisible by the distinct primes p and q, and must therefore be divisible by their
product n, which means

xed ⌘ x (mod n). 2

So now we know that TRSA satisfies the correctness property of a trapdoor permutation scheme.
However, it is not clear that it is one-way. For TRSA, one-wayness means that there is no e�cient
algorithm that given n and xe, where x 2 Zn is chosen at random, can e↵ectively compute x. It is
clear that if TRSA is one-way, then it must be hard to factor n; indeed, if it were easy to factor n,
then one could compute d in exactly the same way as is done in algorithm RSAGen, and then use
d to compute x = yd.

It is widely believed that factoring n is hard, provided ` is su�ciently large — typically, `
is chosen to be between 1000 and 1500. Moreover, the only known e�cient algorithm to invert
TRSA is to first factor n and then compute d as above. However, there is no known proof that the
assumption that factoring n is hard implies that TRSA is one-way. Nevertheless, based on current
evidence, it seems reasonable to conjecture that TRSA is indeed one-way. We state this conjecture
now as an explicit assumption. As usual, this is done using an attack game.

Attack Game 10.3 (RSA). For given integers ` > 2 and odd e > 2, and a given adversary A,
the attack game runs as follows:
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• The challenger computes

(n, d) R RSAGen(`, e), x R Zn, y  xe 2 Zn

and gives the input (n, y) to the adversary.

• The adversary outputs x̂ 2 Zn.

We define the adversary’s advantage in breaking RSA, denoted RSAadv[A, `, e], as the probability
that x̂ = x. 2

Definition 10.5 (RSA assumption). We say that the RSA assumption holds for (`, e) if for all
e�cient adversaries A, the quantity RSAadv[A, `, e] is negligible.

We analyze the RSA assumption and present several known attacks on it later on in Chapter 15.
We next introduce some terminology that will be useful later. Suppose (n, d) is an output of

RSAGen(`, e), and suppose that x 2 Zn and let y := xe. The number n is called an RSA modulus,
the number e is called an encryption exponent, and the number d is called a decryption
exponent. We call (n, y) an instance of the RSA problem, and we call x a solution to this
instance of the RSA problem. The RSA assumption asserts that there is no e�cient algorithm that
can e↵ectively solve the RSA problem.

10.3.1 Key exchange based on the RSA assumption

Consider now what happens when we instantiate the key exchange protocol in Section 10.2.1 with
TRSA. The protocol runs as follows:

• Alice computes (n, d) R RSAGen(`, e), and sends (n, e) to Bob.

• Upon receiving (n, e) from Alice, Bob computes x R Zn, y  xe, and sends y to Alice.

• Upon receiving y from Bob, Alice computes x yd.

The secret shared by Alice and Bob is x. The message flow is the same as in Fig. 10.1. Under the
RSA assumption, this is a secure anonymous key exchange protocol.

10.3.2 Mathematical details

We give a more mathematically precise definition of the RSA assumption, using the terminology
defined in Section 2.4.

In Attack Game 10.3, the parameters ` and e are actually poly-bounded and e�ciently com-
putable functions of a security parameter �. Likewise, RSAadv[A, `, e] is a function of �. As usual,
Definition 10.5 should be read as saying that RSAadv[A, `, e](�) is a negligible function.

There are a couple of further wrinkles we should point out. First, as already mentioned above,
the RSA scheme does not quite fit our definition of a trapdoor permutation scheme, as the definition
of the latter does not allow the set X to vary with the public key. It would not be too di�cult
to modify our definition of a trapdoor permutation scheme to accommodate this generalization.
Second, the specification of RSAGen requires that we generate random prime numbers of a given
bit length. In theory, it is possible to do this in (expected) polynomial time; however, the most
practical algorithms (see Section ??) may — with negligible probability — output a number that is
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not a prime. If that should happen, then it may be the case that the basic correctness requirement
— namely, that I(sk , F (pk , x)) = x for all pk , sk , x — is no longer satisfied. It would also not be too
di�cult to modify our definition of a trapdoor permutation scheme to accommodate this type of
generalization as well. For example, we could recast this requirement as an attack game (in which
any e�cient adversary wins with negligible probability): in this game, the challenger generates
(pk , sk)  R G() and sends (pk , sk) to the adversary; the adversary wins the game if he can output
x 2 X such that I(sk , F (pk , x)) 6= x. While this would be a perfectly reasonable definition, using
it would require us to modify security definitions for higher-level constructs. For example, if we
used this relaxed correctness requirement in the context of key exchange, we would have to allow
for the possibility that the two parties end up with di↵erent keys with some negligible probability.

10.4 Di�e-Hellman key exchange

In this section, we explore another approach to constructing secure key exchange protocols, which
was invented by Di�e and Hellman. Just as with the protocol based on RSA, this protocol will
require a bit of algebra and number theory. However, before getting in to the details, we provide
a bit of motivation and intuition.

Consider the following “generic” key exchange protocol the makes use of two functions E and
F . Alice chooses a random secret ↵, computes E(↵), and sends E(↵) to Bob over an insecure
channel. Likewise, Bob chooses a random secret �, computes E(�), and sends E(�) to Alice over
an insecure channel. Alice and Bob both somehow compute a shared key F (↵, �). In this high-level
description, E and F are some functions that should satisfy the following properties:

1. E should be easy to compute;

2. given ↵ and E(�), it should be easy to compute F (↵, �);

3. given E(↵) and �, it should be easy to compute F (↵, �);

4. given E(↵) and E(�), it should be hard to compute F (↵, �).

Properties 1–3 ensure that Alice and Bob can e�ciently implement the protocol: Alice computes
the shared key F (↵, �) using the algorithm from Property 2 and her given data ↵ and E(�). Bob
computes the same key F (↵, �) using the algorithm from Property 3 and his given data E(↵) and
�. Property 4 ensures that the protocol is secure: an eavesdropper who sees E(↵) and E(�) should
not be able to compute the shared key F (↵, �).

Note that properties 1–4 together imply that E is hard to invert; indeed, if we could compute
e�ciently ↵ from E(↵), then by Property 2, we could e�ciently compute F (↵, �) from E(↵), E(�),
which would contradict Property 4.

To make this generic approach work, we have to come up with appropriate functions E and F .
To a first approximation, the basic idea is to implement E in terms of exponentiation to some fixed
base g, defining E(↵) := g↵ and F (↵, �) := g↵� . Notice then that

E(↵)� = (g↵)� = F (↵, �) = (g�)↵ = E(�)↵.

Hence, provided exponentiation is e�cient, Properties 1–3 are satisfied. Moreover, if Property 4 is
to be satisfied, then at the very least, we require that taking logarithms (i.e., inverting E) is hard.
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To turn this into a practical and plausibly secure scheme, we cannot simply perform exponen-
tiation on ordinary integers since the numbers would become too large. Instead, we have to work
in an appropriate finite algebraic domain, which we introduce next.

10.4.1 The key exchange protocol

Suppose p is a large prime and that q is a large prime dividing p� 1 (think of p as being very large
random prime, say 2048 bits long, and think of q as being about 256 bits long).

We will be doing arithmetic mod p, that is, working in Zp. Recall that Z⇤
p is the set of nonzero

elements of Zp. An essential fact is that since q divides p � 1, Z⇤
p has an element g of order q

(see Section ??). This means that gq = 1 and that all of the powers ga, for a = 0, . . . , q � 1, are
distinct. Let G := {ga : a = 0, . . . , q � 1}, so that G is a subset of Z⇤

p of cardinality q. It is not
hard to see that G is closed under multiplication and inversion; that is, for all u, v 2 G, we have
uv 2 G and u�1 2 G. Indeed, ga · gb = ga+b = gc with c := (a + b) mod q, and (ga)�1 = gd with
d := (�a) mod q. In the language of algebra, G is called a subgroup of the group Z⇤

p.

For every u 2 G and integers a and b, it is easy to see that ua = ub if a ⌘ b mod q. Thus, the
value of ua depends only on the residue class of a modulo q. Therefore, if ↵ = [a]q 2 Zq is the
residue class of a modulo q, we can define u↵ := ua and this definition is unambiguous. From here
on we will frequently use elements of Zq as exponents applied to elements of G.

So now we have everything we need to describe the Di�e-Hellman key exchange protocol. We
assume that the description of G, including g 2 G and q, is a system parameter that is generated
once and for all at system setup time and shared by all parties involved. The protocol runs as
follows, as shown in Fig. 10.2:

1. Alice computes ↵ R Zq, u g↵, and sends u to Bob.

2. Bob computes �  R Zq, v  g� and sends v to Alice.

3. Upon receiving v from Bob, Alice computes w  v↵

4. Upon receiving u from Alice, Bob computes w  u�

The secret shared by Alice and Bob is

w = v↵ = g↵� = u� .

10.4.2 Security of Di�e-Hellman key exchange

For a fixed element g 2 G, di↵erent from 1, the function from Zq to G that sends ↵ 2 Zq to g↵ 2 G
is called the discrete exponentiation function. This function is one-to-one and onto, and its
inverse function is called the discrete logarithm function, and is usually denoted Dlogg; thus,
for u 2 G, Dlogg(u) is the unique ↵ 2 Zq such that u = g↵. The value g is called the base of the
discrete logarithm.

If the Di�e-Hellman protocol has any hope of being secure, it must be hard to compute ↵ from
g↵ for a random ↵; in other words, it must be hard to compute the discrete logarithm function.
There are a number of candidate group families G where the discrete logarithm function is believed
to be hard to compute. For example, when p and q are su�ciently large, suitably chosen primes,
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Alice Bob

G, g, q G, g, q

↵ R Zq u g↵ �  R Zq

v  g�

w  v↵ = gxy
w  u� = gxy

Figure 10.2: Di�e-Hellman key exchange

the discrete logarithm function in the order q subgroup of Z⇤
p is believed to be hard to compute

(p should be at least 2048-bits, and q should be at least 256-bits). This assumption is called the
discrete logarithm assumption and is defined in the next section.

Unfortunately, the discrete logarithm assumption by itself is not enough to ensure that the
Di�e-Hellman protocol is secure. Observe that the protocol is secure if and only if the following
holds:

given g↵, g� 2 G, where ↵ R Zq and �  R Zq, it is hard to compute g↵� 2 G.

This security property is called the computational Di�e-Hellman assumption. Although the
computational Di�e-Hellman assumption is stronger than the discrete logarithm assumption, all
evidence still suggests that this is a reasonable assumption in groups where the discrete logarithm
assumption holds.

10.5 Discrete logarithm and related assumptions

In this section, we state the discrete logarithm and related assumptions more precisely and in
somewhat more generality, and explore in greater detail relationships among them.

The subset G of Z⇤
p that we defined above in Section 10.4 is a specific instance of a general type

of mathematical object known as a cyclic group. There are in fact other cyclic groups that are
very useful in cryptography, most notably, groups based on elliptic curves — we shall study elliptic
curve cryptography in Chapter 16. From now on, we shall state assumptions and algorithms in
terms of an abstract cyclic group G of prime order q generated by g 2 G. In general, such groups
may be selected by a randomized process, and again, the description of G, including g 2 G and q,
is a system parameter that is generated once and for all at system setup time and shared by all
parties involved.

We shall use just a bit of terminology from group theory. The reader who is unfamiliar with
the concept of a group may wish to refer to ??; alternatively, for the time being, the reader may
simply ignore this abstraction entirely:

• Whenever we refer to a “cyclic group,” the reader may safely assume that this means the
specific set G defined above as a subgroup of Z⇤

p.
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• The “order of G” is just a fancy name for the size of the set G, which is q.

• A “generator of G” is an element g 2 G with the property that every element of G can be
expressed as a power of g.

We begin with a formal statement of the discrete logarithm assumption, stated in our more
general language. As usual, we need an attack game.

Attack Game 10.4 (Discrete logarithm). Let G be a cyclic group of prime order q generated
by g 2 G. For a given adversary A, define the following attack game:

• The challenger computes
↵ R Zq, u g↵,

and gives the value u to the adversary.

• The adversary outputs some ↵̂ 2 Zq.

We define A’s advantage in solving the discrete logarithm problem for G, denoted
DLadv[A,G], as the probability that ↵̂ = ↵. 2

Definition 10.6 (Discrete logarithm assumption). We say that the discrete logarithm
(DL) assumption holds for G if for all e�cient adversaries A the quantity DLadv[A,G] is neg-
ligible.

We say that g↵ is an instance of the discrete logarithm (DL) problem (for G), and that ↵
is a solution to this problem instance. By convention, we assume that the description of G includes
its order q and a generator g. The DL assumption asserts that there is no e�cient algorithm that
can e↵ectively solve the DL problem.

Note that the DL assumption is defined in terms of a group G and generator g 2 G. As already
mentioned, the group G and generator g are chosen and fixed at system setup time via a process
that may be randomized. Also note that all elements of G\{1} are in fact generators for G, but we
do not insist that g is chosen uniformly among these (but see Exercise 10.16). Di↵erent methods
for selecting groups and generators give rise to di↵erent DL assumptions (and the same applies to
the CDH and DDH assumptions, defined below).

Now we state the computational Di�e-Hellman assumption.

Attack Game 10.5 (Computational Di�e-Hellman). Let G be a cyclic group of prime order
q generated by g 2 G. For a given adversary A, the attack game runs as follows.

• The challenger computes

↵, �  R Zq, u g↵, v  g� , w  g↵�

and gives the pair (u, v) to the adversary.

• The adversary outputs some ŵ 2 G.

We define A’s advantage in solving the computational Di�e-Hellman problem for G,
denoted CDHadv[A,G], as the probability that ŵ = w. 2

Definition 10.7 (Computational Di�e-Hellman assumption). We say that the compu-
tational Di�e-Hellman (CDH) assumption holds for G if for all e�cient adversaries A the
quantity CDHadv[A,G] is negligible.
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We say that (g↵, g�) is an instance of the computational Di�e-Hellman (CDH) problem,
and that g↵� is a solution to this problem instance. Again, by convention, we assume that the
description of G includes its order q and a generator g. The CDH assumption asserts that there is
no e�cient algorithm that can e↵ectively solve the CDH problem.

An interesting property of the CDH problem is that there is no general and e�cient algorithm
to even recognize correct solutions to the CDH problem, that is, given an instance (u, v) of the CDH
problem, and a group element ŵ, to determine if ŵ is a solution to the given problem instance.
This is in contrast to the RSA problem: given an instance (n, e, y) of the RSA problem, and an
element x̂ of Z⇤

n, we can e�ciently test if x̂ is a solution to the given problem instance simply
by testing if x̂e = y. In certain cryptographic applications, this lack of an e�cient algorithm to
recognize solutions to the CDH problem can lead to technical di�culties. However, this apparent
limitation is also an opportunity: if we assume not only that solving the CDH problem is hard,
but also that recognizing solutions to CDH problem is hard, then we can sometimes prove stronger
security properties for certain cryptographic schemes.

We shall now formalize the assumption that recognizing solutions to the CDH problem is hard.
In fact, we shall state a stronger assumption, namely, that even distinguishing solutions from
random group elements is hard. It turns out that this stronger assumption is equivalent to the
weaker one (see Exercise 10.9).

Attack Game 10.6 (Decisional Di�e-Hellman). Let G be a cyclic group of prime order q
generated by g 2 G. For a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes

↵, �, �  R Zq, u g↵, v  g� , w0  g↵� , w1  g� ,

and gives the triple (u, v, wb) to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, we define A’s advantage in solving the
decisional Di�e-Hellman problem for G as

DDHadv[A,G] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 10.8 (Decisional Di�e-Hellman assumption). We say that the decisional
Di�e-Hellman (DDH) assumption holds for G if for all e�cient adversaries A the quantity
DDHadv[A,G] is negligible.

For ↵, �, � 2 Zq, we call (g↵, g� , g�) a DH-triple if � = ↵�; otherwise, we call it a non-
DH-triple. The DDH assumption says that there is no e�cient algorithm that can e↵ectively
distinguish between random DH-triples and random triples. More precisely, in the language of
Section 3.11, the DDH assumptions says that the uniform distribution over DH-triples and the
uniform distribution over G3 are computationally indistinguishable. It is not hard to show the the
DDH assumption implies that it is hard to distinguish between random DH-triples and random
non-DH-triples (see Exercise 10.6).
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Clearly, the DDH assumption implies the CDH assumption: if we could e↵ectively solve the
CDH problem, then we could easily determine if a given triple (u, v, ŵ) is a DH-triple by first
computing a correct solution w to the instance (u, v) of the CDH problem, and then testing if
w = ŵ.

In defining the DL, CDH, and DDH assumptions, we have restricted our attention to prime
order groups. This is convenient for a number of technical reasons. See, for example, Exercise 10.20,
where you are asked to show that the DDH assumption for groups of even order is simply false.

10.5.1 Random self-reducibility

An important property of the discrete-log function in a group G is that it is either hard almost
everywhere in G or easy everywhere in G. A middle ground where discrete-log is easy for some
inputs and hard for others is not possible. We prove this by showing that the discrete-log function
has a random self reduction.

Consider a specific cyclic group G of prime order q generated by g 2 G. Suppose A is an e�cient
algorithm with the following property: if u 2 G is chosen at random, then Pr[A(u) = Dlogg(u)] = ✏.
That is, on a random input u, algorithm A computes the discrete logarithm of u with probability
✏. Here, the probability is over the random choice of u, as well as any random choices made by A
itself.1 Suppose ✏ = 0.1. Then the group G is of little use in cryptography since an eavesdropper
can use A to break 10% of all Di�e-Hellman key exchanges. However, this does not mean that A
is able to compute Dlogg(u) with non-zero probability for all u 2 G. It could be the case that for
10% of the inputs u 2 G, algorithm A always computes Dlogg(u), while for the remaining 90%, it
never computes Dlogg(u).

We show how to convert A into an e�cient algorithm B with the following property: for all
u 2 G, algorithm B on input u successfully computes Dlogg(u) with probability ✏. Here, the
probability is only over the random choices made by B. We so do using a reduction that maps a
given discrete-log instance to a random discrete-log instance. Such a reduction is called a random
self reduction.

Theorem 10.2. Consider a specific cyclic group G of prime order q generated by g 2 G. Suppose A
is an e�cient algorithm with the following property: if u 2 G is chosen at random, then Pr[A(u) =
Dlogg(u)] = ✏, with the probability is over the random choice of u and the random choices made by
A. Then there is an e�cient algorithm B with the following property: for all u 2 G, algorithm B
either outputs fail or Dlogg(u), and it outputs the latter with probability ✏, where now the probability
is only over the random choices made by B.

Theorem 10.2 implements the transformation shown in Fig. 10.3. The point is that, unlike A,
algorithm B works for all inputs. To compute discrete-log of a particular u 2 G one can iterate
B on the same input u several times, say nd1/✏e times for some n. Using the handy inequality
1 + x  exp(x) (which holds for all x), this iteration will produce the discrete-log with probability
1� (1�✏)nd1/✏e � 1�exp(�n). In particular, if 1/✏ is poly-bounded, we can e�ciently compute the
discrete logarithm of any group element with negligible failure probability. In contrast, iterating A
on the same input u many times may never produce a correct answer. Consequently, if discrete-log
is easy for a non-negligible fraction of instances, then it will be easy for all instances.

1Technical note: the probability ✏ is not quite the same as DLadv[A,G], as the latter is also with respect to the
random choice of group/generator made at system setup time; here, we are viewing these as truly fixed.
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Figure 10.3: The e↵ect of a random self reduction

Proof of Theorem 10.2. Algorithm B works as follows:

Input: u 2 G
Output: Dlogg(u) or fail

�  R Zq

u1  u · g� 2 G
↵1  A(u1)

if g↵1 6= u1

then output fail

else output ↵ ↵1 � �

Suppose that u = g↵. Observe that u1 = g↵+�. Since � is uniformly distributed over Zq, the
group element u1 is uniformly distributed over G. Therefore, on input u1, adversary A will output
↵1 = ↵ + � with probability ✏. When this happens, B will output ↵1 � � = ↵, and otherwise, B
will output fail. 2

Why random self reducibility is important. Any hard problem can potentially form the
basis of a cryptosystem. For example, an NP-hard problem known as subset sum has attracted
attention for many years. Unfortunately, many hard problems, including subset sum, are only hard
in the worst case. Generally speaking, such problems are of little use in cryptography, where we
need problems that are not just hard in the worst case, but hard on average (i.e., for randomly
chosen inputs). For a problem with a random self-reduction, if it hard in the worst case, then it
must be hard on average. This implication makes such problems attractive for cryptography.

One can also give random self reductions for both the CDH and DDH problems, as well as for
the RSA problem (in a more limited sense). These ideas are developed the chapter exercises.

10.5.2 Mathematical details

As in previous sections, we give the mathematical details pertaining to the DL, CDH, and DDH
assumptions. We use the terminology introduced in Section 2.4. This section may be safely skipped
on first reading with very little loss in understanding.

To state the assumptions asymptotically we introduce a security parameter � that identifies the
group in which the DL, CDH, and DDH games are played. We will require that the adversary’s
advantage in breaking the assumption is a negligible function of �. As lambda increases the
adversary’s advantage in breaking discrete-log in the group defined by � should quickly go to zero.
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To make sense of the security parameter � we need a family of groups that increase in size as
� increases. As in Section 2.4, this family of groups is parameterized by both � and an additional
system parameter ⇤. The idea is that once � is chosen, a system parameter ⇤ is generated by a
system parameterization algorithm P . The pair (�, ⇤) then fully identifies the group G�,⇤

where the DL, CDH, and DDH games are played. Occasionally we will refer to ⇤ as a group
description. This ⇤ is a triple

⇤ := ( ⇤1, q, g )

where ⇤1 is an arbitrary string, q is prime number that represents the order of the group G�,⇤, and
g is a generator of G�,⇤.

Definition 10.9 (group family). A group family G consists of an algorithm Mul along with a
family of spaces:

G = {G�,⇤}�,⇤
with system parameterization algorithm P , such that

1. G is e�ciently recognizable.

2. Algorithm Mul is an e�cient deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)),
u, v 2 G�,⇤, outputs w 2 G�,⇤.

3. For all � 2 Z�1, ⇤ = (⇤1, q, g) 2 Supp(P (�)), algorithm Mul is a multiplication operation on
G�,⇤ that defines a cyclic group of prime order q generated by g.

The definition implies that all the spaces G�,⇤ are e�ciently sampleable. Since ⇤ = (⇤1, q, g)
we can randomly sample a random element u of G�,⇤ by picking a random ↵  R Zq and setting
u  g↵. Specific group families may allow for a more e�cient method that generates a random
group element. The group identity element may always be obtained by raising g to the power q,
although for specific group families, there are most likely simpler and faster ways to do this.

An example. We define the asymptotic version of a subgroup of prime order q within Z⇤
p, where

q is a prime dividing p � 1, and p itself is prime. Here the system parameterization algorithm P
takes � as input and outputs a group description ⇤ := (p, q, g) where p is a random `(�)-bit prime
(for some poly-bounded length function `) and g is an element of Z⇤

p of order q. The group G�,⇤ is
the subgroup of Z⇤

p generated by g. Elements of G�,⇤ may be e�ciently recognized as follows: first,
one can check that a given bit string properly encodes an element u of Z⇤

p; second, one can check
that uq = 1.

Armed with the concept of a group family, we now parameterize the DL Attack Game 10.4
by the security parameter �. In that game, the adversary is given the security parameter � and
a group description ⇤ = (⇤1, q, g), where g is a generator for the group G�,⇤. It is also given a
random u 2 G�,⇤, and it wins the game if it computes Dlogg(u). Its advantage DLadv[A,G] is now
a function of �, and for each �, this advantage is a probability that depends on the random choice
of group and generator, as well as the random choices made by the the challenger and adversary.
Definition 10.6 should be read as saying that DLadv[A,G](�) is a negligible function.

We use the same approach to define the asymptotic CDH and DDH assumptions.
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10.6 Collision resistant hash functions from number-theoretic
primitives

It turns out that the RSA and DL assumptions are extremely versatile, and can be used in many
cryptographic applications. As an example, in this section, we show how to build collision-resistant
hash functions based on the RSA an DL assumptions.

Recall from Section 8.1 that a hash function H defined over (M, T ) is an e�ciently computable
function from M to T . In most applications, we want the message space M to be much larger
than the digest space T . We also defined a notion of collision resistance, which says that for every
e�cient adversary A, its collision-finding advantage CRadv[A, H] is negligible. Here, CRadv[A, H]
is defined to be probability that A can produce a collision, i.e., a pair m0, m1 2 M such that
m0 6= m1 but H(m0) = H(m1).

10.6.1 Collision resistance based on DL

Let G be a cyclic group of prime order q generated by g 2 G. We define a hash function Hdl defined
over (Zq ⇥ Zq,G). This hash function is parameterized by the group G and the generator g, along
with a randomly chosen u 2 G. Thus, the group G, along with the group elements g and u, are
chosen once and for all, and together, they define the hash function Hdl. For ↵, � 2 Zq, we define

Hdl(↵, �) := g↵u� .

Notice that a collision on Hdl consists of ↵, �, ↵0, �0 2 Zq such that

(↵, �) 6= (↵0, �0) and g↵u� = g↵
0
u�0

. (10.1)

That is, a collision of this type gives us two di↵erent ways to represent the same group element as
a power of g times a power of u. The problem of finding a collision of this type is sometimes called
the representation problem.

Theorem 10.3. The hash function Hdl is collision resistant under the DL assumption.

In particular, for every collision-finding adversary A, there exists a DL adversary B, which is
an elementary wrapper around A, such that

CRadv[A, Hdl] = DLadv[B,G]. (10.2)

Proof. Consider a collision as in (10.1). Notice that g↵u� = g↵
0
u�0

implies

g↵�↵0
u���0

= 1, (10.3)

where either ↵ � ↵0 6= 0 or � � �0 6= 0. Thus, we have a nontrivial representation of 1 as a power
of g times a power of u.

We claim that � � �0 6= 0. To see this, suppose by way of contradiction that � � �0 = 0. Then
(10.3) implies g↵�↵0

= 1, and since g is a generator for G, this would mean ↵ � ↵0 = 0. Thus, we
would have ↵� ↵0 = 0 and � � �0 = 0, which is a contradiction.

Since � � �0 6= 0 and q is prime, it follows that � � �0 has a multiplicative inverse in Zq, which
we can in fact e�ciently compute (see Section ??). So we can rewrite (10.3) as

u = g(↵
0�↵)/(���0),
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which means
Dlogg(u) = (↵0 � ↵)/(� � �0). (10.4)

So we use the given collision-finding adversary A to build a DL adversary B as follows. When
B receives its challenge u 2 G from its DL-challenger, B runs A using Hdl, which is defined using
G, g, and the given u. If A produces a collision as in (10.1), adversary B computes and outputs
Dlogg(u) as in (10.4). By the above discussion, (10.2) is clear. 2

The function Hdl : Zq⇥Zq ! G maps from a message space of size q2 to a digest space of size q.
The good news is that the message space is larger than the digest space, and so the hash function
actually compresses. The bad news is that the set of encodings of G may be much larger than the
set G itself. Indeed, if G is constructed as recommended in Section 10.4 as a subset of Z⇤

p, then
elements of G are encoded as 2048-bit strings, even though the group G itself has order ⇡ 2256. So
if we replace the set G by the set of encodings, the hash function Hdl is not compressing at all.
This problem can be avoided by using other types of groups with more compact encodings, such
as elliptic curve groups (see Chapter 16). See also Exercise 10.17 and Exercise 10.18.

10.6.2 Collision resistance based on RSA

We shall work with an RSA encryption exponent e that is a prime. For this application, the bigger
e is, the more compression we get. Let Ie := {0, . . . , e� 1}. Let n be an RSA modulus, generated
as in Section 10.3 using an appropriate length parameter `. We also choose a random y 2 Z⇤

n. The
values e, n, and y are chosen once and for all, and together they determine a hash function Hrsa

defined over (Z⇤
n ⇥ Ie, Z⇤

n) as follows: for a 2 Z⇤
n and b 2 Ie, we define

Hrsa(a, b) := aeyb.

We will show that Hrsa is collision resistant under the RSA assumption. Note that Hrsa can be
used directly as a compression function in the Merkle-Damg̊ard paradigm (see Section 8.4) to build
a collision-resistant hash function for arbitrarily large message spaces. In applying Theorem 8.3,
we would take X = Z⇤

n and Y = {0, 1}blog2 ec.
To analyze Hrsa, we will need a couple of technical results. The first result simply says that in

the RSA attack game, it is no easier to compute an eth root of a random element of Z⇤
n than it is

to compute an eth root of a random element of Zn. To make this precise, suppose that we modify
Attack Game 10.3 so that the challenger chooses x R Z⇤

n, and keep everything else the same. Note
that since x is uniformly distributed over Z⇤

n, the value y := xe is also uniformly distributed over
Z⇤
n. Denote by uRSAadv[A, `, e] the adversary A’s advantage in this modified attack game.

Theorem 10.4. Let ` > 2 and odd e > 2 be integers. For every adversary A, there exists an an ad-
versary B, which is an elementary wrapper around A, such that uRSAadv[A, `, e]  RSAadv[B, `, e].

Proof. Let A be a given adversary. Here is how B works. Adversary B receives a random element
y 2 Zn. If y 2 Z⇤

n, then B gives y to A and outputs whatever A outputs. Otherwise, B computes
an eth root x of y as follows. If y = 0, B sets x := 0; otherwise, by computing the GCD of y and
n, B can factor n, compute the RSA decryption exponent d, and then compute x := yd.

Let W be the event that B succeeds. We have

Pr[W ] = Pr[W | y 2 Z⇤
n] Pr[y 2 Z⇤

n] + Pr[W | y /2 Z⇤
n] Pr[y /2 Z⇤

n].
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The result follows from the observations that

Pr[W | y 2 Z⇤
n] = uRSAadv[A, `, e]

and
Pr[W | y /2 Z⇤

n] = 1 � uRSAadv[A, `, e]. 2

The above theorem shows that the standard RSA assumption implies a variant RSA assumption,
where the preimage is chosen at random from from Z⇤

n, rather than Zn. In Exercise 10.22, you
are to show the converse, that is, that this variant RSA assumption implies the standard RSA
assumption.

We also need the following technical result, which says that given y 2 Z⇤
n, along with an integer

f that is relatively prime to e, and an eth root of yf , we can easily compute an eth root of y itself.
Just to get a feeling for the result, suppose e = 3 and f = 2. We have w 2 Z⇤

n such that
w3 = y2. We want to compute x 2 Z⇤

n such that x3 = y. If we set x := (y/w), then we have

x3 = y3/w3 = y3/y2 = y.

Theorem 10.5 (Shamir’s trick). There is an e�cient algorithm that takes as input n, e, f, w, y,
where n is a positive integer, e and f are relatively prime integers, and w and y are elements of Z⇤

n

that satisfy we = yf , and outputs x 2 Z⇤
n such that xe = y.

Proof. Using the extended Euclidean algorithm (see Section ??), we compute integers s and t such
that es + ft = gcd(e, f), and output x := yswt. If gcd(e, f) = 1 and we = yf , then

xe = (yswt)e = yeswet = yesyft = yes+ft = y1 = y. 2

Theorem 10.6. The hash function Hrsa is collision resistant under the RSA assumption.

In particular, for every collision-finding adversary A, there exists an RSA adversary B, which
is an elementary wrapper around A, such that

CRadv[A, Hrsa]  RSAadv[B, `, e]. (10.5)

Proof. We construct an adversary B0 that plays the alternative RSA attack game considered in
Theorem 10.4. We will show that CRadv[A, Hrsa] = uRSAadv[B0, `, e], and the theorem will the
follow from Theorem 10.4.

Our RSA adversary B0 runs as follows. It receives (n, y) from its challenger, where n is an RSA
modulus and y is a random element of Z⇤

n. The values e, n, y define the hash function Hrsa, and
adversary B0 runs adversary A with this hash function. Suppose that A finds a collision. This is a
pair of inputs (a, b) 6= (a0, b0) such that

aeyb = (a0)eyb
0
,

which we may rewrite as
(a/a0)e = yb

0�b.

Using this collision, B0 will compute an eth root of y.
Observe that b0 � b 6= 0, since otherwise we would have (a/a0) = 1 and hence a = a0. Also

observe that since |b � b0| < e and e is prime, we must have gcd(e, b � b0) = 1. So now we simply
apply Theorem 10.5 with n, e, and y as given, and w := a/a0 and f := b0 � b. 2
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kb  (u0)� = g↵0�

ka, kb

Figure 10.4: Man in the middle attack

10.7 Attacks on the anonymous Di�e-Hellman protocol

The Di�e-Hellman key exchange is secure against a passive eavesdropper. Usually, however, an
attacker capable of eavesdropping on tra�c is also able to inject its own messages. The protocol
completely falls apart in the presence of an active adversary who controls the network. The main
reason is the lack of authentication. Alice sets up a shared secret, but she has no idea with whom
the secret is shared. The same holds for Bob. An active attacker can abuse this to expose all tra�c
between Alice and Bob. The attack, called a man in the middle attack, works against any key
exchange protocol that does not include authentication. It works as follows (see Fig. 10.4):

• Alice sends (g, g↵) to Bob. The attacker blocks this message from reaching Bob. He picks a
random ↵0  R Zn and sends (g, g↵

0
) to Bob.

• Bob responds with g� . The attacker blocks this message from reaching Alice. He picks a
random �0  R Zn and sends g�

0
to Alice.

• Now Alice computes the key kA := g↵�
0
and Bob computes kB := g↵

0� . The attacker knows
both kA and kB.

At this point Alice thinks kA is a secret key shared with Bob and will use kA to encrypt messages
to him. Similarly for Bob with his key kB. The attacker can act as a proxy between the two. He
intercepts each message ci := E(kA, mi) from Alice, re-encrypts it as c0i  E(kB, mi) and forwards
c0i to Bob. He also re-encrypts messages from Bob to Alice. The communication channel works
properly for both parties and they have no idea that this proxying is taking place. The attacker,
however, sees all plaintexts in the clear.

This generic attack explains why we view key exchange secure against eavesdropping as a toy
problem. Protocols secure in this model can completely fall apart once the adversary can tamper
with tra�c. We will come back to this problem in Chapter 20, where we design protocols secure
against active attackers.
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Puzzles P1, . . . , PL

j  R {1, . . . , `}

Pj = (c1, c2, c3)` D(k, c2)

k  s` k  s`

Figure 10.5: Merkle puzzles protocol

10.8 Merkle puzzles: a partial solution to key exchange using
block ciphers

Can we build a secure key exchange protocol using symmetric-key primitives? The answer is yes,
but the resulting protocol is very ine�cient. We show how to do key exchange using a block cipher
E = (E, D) defined over (K, M). Alice and Bob want to generate a random s 2M that is unknown
to the adversary. They use a protocol called Merkle puzzles (due to the same Merkle from the
Merkle-Damg̊ard hashing paradigm). The protocol, shown in Fig. 10.5, works as follows:

Protocol 10.1 (Merkle puzzles).

1. Alice picks random triples (ki, si) R K ⇥M for i = 1, . . . , L. We will determine the optimal
value for L later. She constructs L puzzles where puzzle P 0

i is defined as:

P 0
i =

�

E(ki, si), E(ki, i), E(ki, 0)
�

Next, she sends the L puzzles in a random order to Bob. That is, she picks a random
permutation ⇡  R Perms[{1, . . . , L}] and sends (P1, . . . , PL) := (P 0

⇡(1), . . . , P
0
⇡(L)) to Bob.

2. Bob picks a random puzzle Pj = (c1, c2, c3) where j  R {1, . . . , L}. He solves the puzzle by
brute force, by trying all keys k 2 K until he finds one such that

D(k, c3) = 0. (10.6)

In the unlikely event that Bob finds two di↵erent keys that satisfy (10.6), he indicates to
Alice that the protocol failed, and they start over. Otherwise, Bob computes `  D(k, c2)
and s D(k, c1), and sends ` back to Alice.

3. Alice locates puzzle P 0
` and sets s s`. Both parties now know the shared secret s 2M.

Clearly, when the protocol terminates successfully, both parties agree on the same secret s 2M.
Moreover, when |M| is much larger than |K|, the protocol is very likely to terminate successfully,
because under these conditions (10.6) is likely to have a unique solution.

The work for each party in this protocol is as follows:

Alice’s work = O(L), Bob’s work = O(|K|).
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Hence, to make the workload for the two parties about the same we need to set L ⇡ |K|. Either way,
the size of L and K needs to be within reason so that both parties can perform the computation in
a reasonable time. For example, one can set L ⇡ |K| ⇡ 230. When using AES one can force K to
have size 230 by fixing the 98 most significant bits of the key to zero.

Security. The adversary sees the protocol transcript which includes all the puzzles and the quan-
tity ` sent by Bob. Since the adversary does not know which puzzle Bob picked, intuitively, he
needs to solve all puzzles until he finds puzzle P`. Thus, to recover s 2M the adversary must solve
L puzzles each one taking O(|K|) time to solve. Overall, the adversary must spend time O(L|K|).

One can make this argument precise, by modeling the block cipher E as an ideal cipher, as we
did in Section 4.7. We can assume that |K| is poly-bounded, and that |M| is super-poly. Then the
analysis shows that if the adversary makes at most Q queries to the ideal cipher, then its probability
of learning the secret s 2M is bounded by approximately Q

L|K| . Working out the complete proof
and the exact bound is a good exercise in working with the ideal cipher model.

Performance. Suppose we set L ⇡ |K|. Then the adversary must spend time O(L2) to break
the protocol, while each participant spends time O(L). Hence, there is a quadratic gap between
the work of the participants and the work to break the protocol. Technically speaking, this doesn’t
satisfy our definitions of security — with constant work the adversary has advantage about 1/L2

which is non-negligible. Even worse, in practice one would have to make L extremely large to have
a reasonable level of security against a determined attacker. The resulting protocol is then very
ine�cient.

Nevertheless, the Merkle puzzles protocol is very elegant and shows what can be done using
block ciphers alone. As the story goes, Merkle came up with this clever protocol while taking a
seminar as an undergraduate student at Berkeley. The professor gave the students the option of
submitting a research paper instead of taking the final exam. Merkle submitted his key exchange
protocol as the research project. These ideas, however, were too far out and the professor rejected
the paper. Merkle still had to take the final exam. Subsequently, for his Ph.D. work, Merkle chose
to move to a di↵erent school to work with Martin Hellman.

It is natural to ask if a better key exchange protocol, based on block ciphers, can achieve better
than quadratic separation between the participants and the adversary. Unfortunately, a result by
Impagliazzo and Rudich [57] suggests that one cannot achieve better separation using block ciphers
alone.

10.9 Fun application: Pedersen commitments

To be written.

10.10 Notes

Citations to the literature to be added.
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10.11 Exercises

10.1 (Computationally unbounded adversaries). Show that an anonymous key exchange
protocol P (as in Definition 10.1) cannot be secure against a computationally unbounded adversary.
This explains why all protocols in this chapter must rely on computational assumptions.

10.2 (DDH PRG). Let G be a cyclic group of prime order q generated by g 2 G. Consider the
following PRG defined over (Z2

q , G3):

G(↵, �) := (g↵, g� , g↵�).

Show that G is a secure PRG assuming DDH holds in G.

10.3 (The Naor-Reingold PRF). Let G be a cyclic group of prime order q generated by g 2 G.
Let us show that the following PRF defined over

�

Zn+1
q , {0, 1}n, G

�

is secure assuming DDH holds
in G:

FNR

⇣

(↵0, ↵1, . . . , ↵n), (x1, . . . , xn)
⌘

:= g(↵0·↵x1
1 ···↵x

n

n

)

This secure PRF is called the Naor-Reingold PRF.

(a) We prove security of FNR using Exercise 4.18. First, show that FNR is an augmented tree
construction constructed from the PRG: GNR(↵, g�) := (g� , g↵�).

(b) Second, show that GNR satisfies the hypothesis of Exercise 4.18 part (b), assuming DDH
holds in G. Use the result of Exercise 10.10.

Security of FNR now follows from Exercise 4.18 part (b).

Discussion: See Exercise 11.1 for a simpler PRF from the DDH assumption, but in the random
oracle model.

10.4 (Random self-reduction for CDH (I)). Consider a specific cyclic group G of prime order
q generated by g 2 G. For u = g↵ 2 G and v = g� 2 G, define [u, v] = g↵� , which is the solution
instance (u, v) of the CDH problem. Consider the randomized mapping from G2 to G2 that sends
(u, v) to (ũ, v), where

⇢ R Zq, ũ g⇢u.

Show that

(a) ũ is uniformly distributed over G;

(b) [ũ, v] = [u, v] · v⇢.

10.5 (Random self-reduction for CDH (II)). Continuing with the previous exercise, suppose
A is an e�cient algorithm that solves the CDH problem with success probability ✏ on random
inputs. That is, if u, v 2 G are chosen at random, then Pr[A(u, v) = [u, v]] = ✏, where the
probability is over the random choice of u and v, as well as any random choices made by A. Using
A, construct an e�cient algorithm B that solves the CDH problem with success probability ✏ for
all inputs. More precisely, for all u, , v 2 G, we have Pr[B(u, v) = [u, v]] = ✏, where the probability
is now only over the random choices made by B.

Remark: If we iterate B on the same input (u, v) many times, say nd1/✏e times for some n, at
least one of these iterations will output the correct result [u, v] with probability 1� (1� ✏)nd1/✏e �
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1� exp(�n). Unfortunately, assuming the DDH is true, we will have no way of knowing which of
these outputs is the correct result.

10.6 (An alternative DDH characterization). Let G by a cyclic group of prime order q
generated by g 2 G. Let P be the uniform distribution over G3. Let Pdh be the uniform distribution
over the set of all DH-triples (g↵, g� , g↵�). Let Pndh be the uniform distribution over the set of all
non-DH-triples (g↵, g� , g�), � 6= ↵�.

(a) Show that the statistical distance between P and Pndh is 1/q.

(b) Using part (a), deduce that under the DDH assumption, the distributions Pdh and Pndh are
computationally indistinguishable.

10.7 (Random self-reduction for DDH (I)). Consider a specific cyclic group G of prime order
q generated by g 2 G. Let DH be the set of all DH-triples, i.e.,

DH := {(g↵, g� , g↵�) 2 G3 : ↵, � 2 Zq}.

For fixed u 2 G, and let Tu be the subset of G3 whose first coordinate is u. Consider the randomized
mapping from G3 to G3 that sends (u, v, w) to (u, v⇤, w⇤), where

�  R Zq, ⌧  R Zq, v⇤  g�v⌧ , w⇤  u�w⌧ .

Prove the following:

(a) if (u, v, w) 2 DH, then (u, v⇤, w⇤) is uniformly distributed over DH \Tu;

(b) if (u, v, w) /2 DH, then (u, v⇤, w⇤) is uniformly distributed over Tu.

10.8 (Random self-reduction for DDH (II)). Continuing with the previous exercise, consider
the randomized mapping from G3 to G3 that sends (u, v, w) to (ũ, v, w̃), where

⇢ R Zq, ũ g⇢u, w̃  v⇢w.

Prove the following:

(a) ũ is uniformly distributed over G;

(b) (u, v, w) 2 DH () (ũ, v, w̃) 2 DH;

(c) if we apply the randomized mapping from the previous exercise to (ũ, v, w̃), obtaining the
triple (ũ, v⇤, w̃⇤), then we have

• if (u, v, w) 2 DH, then (ũ, v⇤, w̃⇤) is uniformly distributed over DH;

• if (u, v, w) /2 DH, then (ũ, v⇤, w̃⇤) is uniformly distributed over G3.

10.9 (Random self-reduction for DDH (III)). Continuing with the previous exercise, prove
the following. Suppose A is an e�cient algorithm that takes as input three group elements and
outputs a bit, and which satisfies the following property: if ↵, �, � 2 Zq are chosen at random, then

�

�

�

Pr[A(g↵, g� , g↵�) = 1]� Pr[A(g↵, g� , g�) = 1]
�

�

�

= ✏,
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where the probability is over the random choice of ↵, �, �, as well as any random choices made by
A. Assuming that 1/✏ is poly-bounded, show how to use A to build an e�cient algorithm B that for
all inputs (u, v, w) correctly decides whether or not (u, v, w) 2 DH with negligible error probability.
That is, adversary B may output an incorrect answer, but for all inputs, the probability that its
answer is incorrect should be negligible.

Hint: Use a Cherno↵ bound.

10.10 (Multi-DDH). Let G be a cyclic group of prime order q generated by g 2 G. Let n  m
be positive integers. Define the following two distributions over Gn·m+n+m:

D : g↵i (i = 1, . . . , n), g�j (j = 1, . . . , m)

g↵i

�
j (i = 1, . . . , n, j = 1, . . . , m),

and

R : g↵i (i = 1, . . . , n), g�j (j = 1, . . . , m)

g�ij (i = 1, . . . , n, j = 1, . . . , m).

where the ↵i’s, �j ’s, and �ij ’s are uniformly and independently distributed over Zq. Show that
under the DDH assumption, D and R are computationally indistinguishable (as in Definition 3.4).
In particular, show that for every adversary A that distinguishes D and R, there exists a DDH
adversary B (which is an elementary wrapper around A) such that

Distadv[A, D, R]  n · (1/q + DDHadv[B,G]).

Hint: First give a proof for the case n = 1 using the results of Exercise 10.6 and Exercise 10.7,
and then generalize to arbitrary n using a hybrid argument.

Discussion: This result gives us a DDH-based PRG G defined over (Zn+m
q , Gn·m+n+m), with a

nice expansion rate, given by

G
⇣

{↵i}ni=1, {�j}mj=1

⌘

:=
⇣

{g↵i}ni=1, {g�j}mj=1, {g↵i

�
j} i=1,...,n

j=1,...,m

⌘

10.11 (Matrix DDH). Let G be a cyclic group of prime order q generated by g 2 G. Let n and
m be positive integers, and assume n  m. For A = (↵ij) 2 Zn⇥m

q (i.e., A is an n⇥m matrix with

entries in Zq), let gA be the n⇥m matrix whose entry at row i column j is the group element g↵ij .
For k = 1, . . . , n, define the random variable R(k) to be a random matrix uniformly distributed
over all n ⇥m matrices over Zq of of rank k. Let 1  k1 < k2  n. Show that gR(k1) and gR(k2)

are computationally indistinguishable under the DDH. In particular, show that for every adversary
A that distinguishes gR(k1) and gR(k2) there exists a DDH adversary B (which is an elementary
wrapper around A) such that

Distadv[A, gR(k1), gR(k2)]  (k2 � k1) · (1/q + DDHadv[B,G]).

Hint: Use the fact that if A 2 Zn⇥m
q is a fixed matrix of rank k, and if U 2 Zn⇥n

q and V 2 Zm⇥m
q

are a random invertible matrices, then the matrix UAV 2 Zn⇥m
q is uniformly distributed over all

n⇥m matrices of rank k. You might also try to prove this fact, which is not too hard.

Discussion: For k1 = 1 and k2 = n, this result implies a closely related, but slightly weaker form
of Exercise 10.10. In this sense, this exercise is a generalization of Exercise 10.10.
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10.12 (A trapdoor test). Consider a specific cyclic group G of prime order q generated by g 2 G.
Let u 2 G and f : G! G3. Now set

�  R Zq, ⌧  R Zq, ū g�u⌧ , (v, w, w̄) f(ū).

Let S be the the event that (u, v, w) and (ū, v, w̄) are both DH-triples. Let T be the event that
w̄ = v�w⌧ . Show that:

(a) ū is uniformly distributed over G;

(b) Pr[S ^ ¬T ] = 0;

(c) Pr[¬S ^ T ]  1/q.

Remark: This result gives us a kind of trapdoor test. Suppose a group element u 2 G is given (it
could be chosen at random or adversarially chosen). Then we can generate a random element ū and
a “trapdoor” (�, ⌧). Using this trapdoor, given group elements v, w, w̄ 2 G (possibly adversarially
chosen in a way that depends on ū), we can reliably test if (u, v, w) and (ū, v, w̄) are both DH-
triples, even though we do not know either Dlogg(u) or Dlogg(ū), and even though we cannot tell
whether (u, v, w) and (ū, v, w̄) are individually DH-triples. This rather technical result has several
nice applications, one of which is developed in the following exercise.

10.13 (A CDH self-corrector). Consider a specific cyclic group G of prime order q generated
by g 2 G. Let A be an e�cient algorithm with the following property: if ↵, � 2 Zq are chosen at
random, then Pr[A(g↵, g�) = g↵� ] = ✏. Here, the probability is over the random choice of ↵ and
�, as well as any random choices made by A. Assuming 1/✏ is poly-bounded and |G| is super-poly,
show how to use A to build an e�cient algorithm B that solves the CDH problem on all inputs with
negligible error probability; that is, on every input (g↵, g�), algorithm B outputs a single group
element w, and w 6= g↵� with negligible probability (and this probability is just over the random
choices made by B).

Here is a high-level sketch of how B might work on input (u, v).

somehow choose ū 2 G
somehow use A to generate lists L, L̄ of group elements
for each w in L and each w̄ in L̄ do

if (u, v, w) and (ū, v, w̄) are both DH-triples then
output w and halt

output an arbitrary group element

As stated, this algorithm is not fully specified. Nevertheless, you can use this rough outline, com-
bined with the CDH random self reduction in Exercise 10.4 and the trapdoor test in Exercise 10.12,
to prove the desired result.

For the next problem, we need the following notions from complexity theory:

• We say problem A is deterministic poly-time reducible to problem B if there exists
a deterministic algorithm R for solving problem A on all inputs that makes calls to
a subroutine that solves problem B on all inputs, where the running time of R (not
including the running time for the subroutine for B) is polynomial in the input
length.
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• We say that A and B are deterministic poly-time equivalent if A is deterministic
poly-time reducible to B and B is deterministic poly-time reducible to A.

10.14 (Problems equivalent to DH). Consider a specific cyclic group G of prime order q
generated by g 2 G. Show that the following problems are deterministic poly-time equivalent:

(a) Given g↵ and g� , compute g↵� (this is just the Di�e-Hellman problem).

(b) Given g↵, compute g(↵
2).

(c) Given g↵ with ↵ 6= 0, compute g1/↵.

(d) Given g↵ and g� with � 6= 0, compute g↵/� .

Note that all problem instances are defined with respect to the same group G and generator g 2 G.

10.15 (System parameters). In formulating the discrete-log Attack Game 10.4, we assume that
the description of G, including g 2 G and q, is a system parameter that is generated once and for
all at system setup time and shared by all parties involved. This parameter may be generated via
some randomized process, in which case the advantage ✏ = DLadv[A,G] is a probability over the
choice of system parameter, as well as the random choice of ↵ 2 Zq made by the challenger and
any random choices made by adversary. So we can think of the system parameter as a random
variable ⇤, and for any specific system parameter ⇤0, we can consider the corresponding conditional
advantage ✏(⇤0) given that ⇤ = ⇤0, which is a probability just over the random choice of ↵ 2 Zq

made by the challenger and any random choices made by adversary. Let us call ⇤0 a “vulnerable”
parameter if ✏(⇤0) � ✏/2.

(a) Prove that the probability that ⇤ is vulnerable is at least ✏/2.

Note that even if an adversary breaks the DL with respect to a randomly generated system
parameter, there could be many particular system parameters for which the adversary cannot
or will not break the DL (it is helpful to imagine an adversary that is all powerful yet
capricious, who simply refuses to break the DL for certain groups and generators which he
finds distasteful). This result says, however, that there is still a non-negligible fraction of
vulnerable system parameters for which the adversary breaks the DL.

(b) State and prove an analogous result for the CDH problem.

(c) State and prove an analogous result for the DDH problem.

10.16 (Choice of generators). In formulating the DL, CDH, and DDH assumptions, we work
with a cyclic group G of prime order q generated by g 2 G. We do not specify how the generator
g is chosen. Indeed, it may be desirable to choose a specific g that allows for more e�cient
implementations. Conceivably, such a g could be a “weak” generator that makes it easier for an
adversary to break the DL, CDH, or DDH assumptions. So to be on the safe side, we might insist
that the generator g is uniformly distributed over G\{1}. If we do this, we obtain new assumptions,
which we call the rDL, rCDH, and rDDH assumptions. Show that:

(a) the rDL and DL assumptions are equivalent;

(b) the rCDH and CDH assumptions are equivalent;
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(c) the DDH assumption implies the rDDH assumption.

Hint: To start with, you might first consider the setting where we are working with a specific
group, then generalize your result to incorporate all the aspects of the asymptotic attack game (see
Section 10.5.2), including the security parameter and the system parameter (where the group is
selected at system setup time).

Remark: The rDDH assumption is not known to imply the DDH assumption, so for applications
that use the DDH assumption, it seems safest to work with a random generator.

10.17 (Collision resistance from discrete-log). Let G be a cyclic group of prime order q
generated by g 2 G. Let n be a poly-bounded parameter. We define a hash function H defined
over (Zn

q ,G). The hash function is parameterized by the group G and n randomly chosen group
elements g1, . . . , gn 2 G. For (↵1, . . . , ↵n) 2 Zn

q , we define

H(↵1, . . . , ↵n) := g↵1
1 · · · g↵n

n .

Prove that H is collision resistant under the DL assumption for G. In particular, show that for
every collision-finding adversary A, there exists a DL adversary B, which is an elementary wrapper
around A, such that CRadv[A, H]  DLadv[B,G] + 1/q.

10.18 (Collision resistance in Z⇤
p). This exercise asks you to prove that the hash function

presented in Section 8.5.1 is collision resistant under an appropriate DL assumption. Let us define
things a bit more precisely. Let p be a large prime such that q := (p � 1)/2 is also prime. The
prime q is called a Sophie Germain prime, and p is sometimes called a “strong” prime. Such primes
are often very convenient to use in cryptography. Suppose x is a randomly chosen integer in the
range [2, q] and y is a randomly chosen integer in the range [1, q]. These parameters define a hash
function H that takes as input two integers in [1, q] and outputs an integer in [1, q], as specified in
(8.3). Let G be the subgroup of order q in Z⇤

p, and consider the DL assumption for G with respect
to a randomly chosen generator. Show that H is collision resistant under this DL assumption.

Hint: Use the fact that and that the map that sends ↵ 2 Z⇤
p to ↵2 2 Z⇤

p is a group homomorphism
with image G and kernel ±1; also use the fact that there is an e�cient algorithm for taking square
roots in Z⇤

p.

10.19 (A broken CRHF). Consider the following variation of the hash construction in the
previous exercise. Let p be a large prime such that q := (p � 1)/2 is also prime. Let x and y be
randomly chosen integers in the range [2, p� 2] (so neither can be ±1 (mod p)). These parameters
define a hash function H that takes as input two integers in [1, p � 1] and outputs an integer in
[1, p� 1], as follows:

H(a, b) := xayb mod p.

Give an e�cient, deterministic algorithm that takes as input p, x, y as above, and computes a
collision on the corresponding H. Your algorithm should work for all inputs p, x, y.

10.20 (DDH is easy in groups of even order). We have restricted the DL, CDH, and DDH
assumptions to prime order groups G. Consider the DDH assumption for a cyclic group G of even
order q with generator g 2 G. Except for dropping the restriction that q is prime, the attack game
is identical to Attack Game 10.6. Give an e�cient adversary that has advantage 1/2 in solving the
DDH for G.
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Remark: For a prime p > 2, the group Z⇤
p is a cyclic group of even order p�1. This exercise shows

that the DDH assumption is false in this group. Exercise 10.19 gives another reason to restrict
ourselves to groups of prime order.

10.21 (RSA variant (I)). Let n be an RSA modulus generated by RSAGen(`, e). Let X and
X⇤ be random variables, where X is uniformly distributed over Zn and X⇤ is uniformly distributed
over Z⇤

n. Show that the statistical distance �[X, X⇤] is less than 2�(`�2).

10.22 (RSA variant (II)). In Theorem 10.4, we considered a variant of the RSA assumption
where the challenger chooses the preimage x at random from Z⇤

n, rather than Zn. That theorem
showed that the standard RSA assumption implies this variant RSA assumption. In this exercise,
you are to show the converse. In particular, show that RSAadv[A, `, e]  uRSAadv[B, `, e]+2�(`�2)

for every adversary A.

Hint: Use the result of the previous exercise.

10.23 (A proper trapdoor permutation scheme based on RSA). As discussed in Sec-
tion 10.3, our RSA-based trapdoor permutation scheme does not quite satisfy our definitions,
simply because the domain on which it acts varies with the public key. This exercise shows one way
to patch things up. Let ` and e be parameters used for RSA key generation, and let G be the key
generation algorithm, which outputs a pair (pk , sk). Recall that pk = (n, e), where n is an RSA
modulus, which is the product of two `-bit primes, and e is the encryption exponent. The secret
key is sk = (n, d), where d is the decryption exponent corresponding to the encryption exponent e.
Choose a parameter L that is a substantially larger than 2`, so that n/2L is negligible. Let X be
the set of integers in the range [0, 2L). We shall present a trapdoor permutation scheme (G, F ⇤, I⇤),
defined over X . The function F ⇤ takes two inputs: a public key pk as above and an integer x 2 X ,
and outputs an integer y 2 X , computed as follows. Divide x by n to obtain the integer quotient
Q and remainder R, so that x = nQ + R and 0  R < n. If Q > 2L/n � 1, then set S := R;
otherwise, set S := Re mod n. Finally, set y := nQ + S.

(a) Show that F ⇤(pk , ·) is a permutation on X , and give an e�cient inversion function I⇤ that
satisfies I⇤(sk , F ⇤(pk , x)) = x for all x 2 X .

(b) Show under the RSA assumption, (G, F ⇤, I⇤) is one-way.

10.24 (Random self-reduction for RSA). Suppose we run (n, d)  R RSAGen(`, e). There
could be “weak” RSA moduli n for which an adversary can break the the RSA assumption with
some probability ✏. More precisely, suppose that there is an e�cient algorithm A such that for
any such “weak” modulus n, if x 2 Z⇤

n is chosen at random, then Pr[A(xe) = x] � ✏, where the
probability is over the random choice of x, as well as any random choices made by A. Using A,
construct an e�cient algorithm B such that for every “weak” modulus n, and every x 2 Zn, we
have Pr[A(xe) = x] � ✏, where the probability is now only over the random choices made by B.

Hint: Use the randomized mapping from Z⇤
n to Z⇤

n that sends y to ỹ, where r  R Z⇤
n, ỹ  rey.

Show that for every y 2 Z⇤
n, the value ỹ is uniformly distributed over Z⇤

n.

10.25 (n-product CDH). Let G be a cyclic group of prime order q generated by g 2 G. The
following attack game defines the n-product CDH problem (here, n is a poly-bounded parameter,
not necessarily constant). The challenger begins by choosing ↵i  R Zq for i = 1, . . . , n. The
adversary then makes a sequence of queries. In each query, the adversary submits proper a subset
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of indices S ( {1, . . . , n}, and the challenger responds with

g
Q

i2S

↵
i .

The adversary wins the game if he outputs

g↵1···↵n .

We relate the hardness of solving the n-product CDH problem to another problem, called the n-
power CDH problem. In the attack game for this problem, the challenger begins by choosing
↵ R Z⇤

q , and gives

g, g↵, . . . , g↵
n�1

to the adversary. The adversary wins the game if he outputs g↵
n

.

Show that if there is an e�cient adversary A that breaks n-product CDH with non-negligible
probability, then there is an e�cient adversary B that breaks n-power CDH with non-negligible
probability.

10.26 (Trapdoor collison resistance). Let us show that the collision resistant hash functions
Hdl and Hrsa, presented in Section 10.6, are trapdoor collision resistant.

(a) Recall that Hdl is defined as Hdl(↵, �) := g↵u� 2 G, where g and u are parameters chosen at
setup. Show that anyone who knows the discrete-log of u base g (the trapdoor), can break
the 2nd-preimage resistance of Hdl. That is, given (↵, �) as input, along with the trapdoor,
one can e�ciently compute (↵0, �0) 6= (↵, �) such that Hdl(↵0, �0) = Hdl(↵, �).

(b) Recall that Hrsa is defined as Hrsa(a, b) := aeyb 2 Zn, where n, e and y are parameters chosen
at setup. Show that anyone who knows the eth root of y in Zn (the trapdoor), can break the
2nd-preimage resistance of Hrsa.

(c) Continuing with part (b), show that anyone who knows the factorization of n (the trapdoor),
can invert Hrsa. That is, given z 2 Zn as input, one can find (a, b) such that Hrsa(a, b) = z.

Discussion: Part (c) shows that the factorization of n is a “stronger” trapdoor for Hrsa than the
eth root of y. The latter only breaks 2nd-preimage resistance of Hrsa, where as the former enables
complete inversion. Both trapdoors break collision resistance.
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Chapter 11

Public key encryption

In this chapter, we consider again the basic problem of encryption. As a motivating example,
suppose Alice wants to send Bob an encrypted email message, even though the two of them do not
share a secret key (nor do they share a secret key with some common third party). Surprisingly,
this can be done using a technology called public-key encryption.

The basic idea of public-key encryption is that the receiver, Bob in this case, runs a key gener-
ation algorithm G, obtaining a pair of keys:

(pk , sk) R G().

The key pk is Bob’s public key, and sk is Bob’s secret key. As their names imply, Bob should keep
sk secret, but may publicize pk .

To send Bob an encrypted email message, Alice needs two things: Bob’s email address, and
Bob’s public key pk . How Alice reliably obtains this information is a topic we shall explore later in
Section 13.8. For the moment, one might imagine that this information is placed by Bob in some
kind of public directory to which Alice has read-access.

So let us assume now that Alice has Bob’s email address and public key pk . To send Bob an
encryption of her email message m, she computes the ciphertext

c R E(pk , m).

She then sends c to Bob, using his email address. At some point later, Bob receives the ciphertext
c, and decrypts it, using his secret key :

m D(sk , c).

Public-key encryption is sometimes called asymmetric encryption to denote the fact that
the encryptor uses one key, pk , and the decryptor uses a di↵erent key, sk . This is in contrast with
symmetric encryption, discussed in Part 1, where both the encryptor and decryptor use the same
key.

A few points deserve further discussion:

• Once Alice obtains Bob’s public key, the only interaction between Alice and Bob is the actual
transmission of the ciphertext from Alice to Bob: no further interaction is required. In fact,
we chose encrypted email as our example problem precisely to highlight this feature, as email
delivery protocols do not allow any interaction beyond delivery of the message.
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• As we will discuss later, the same public key may be used many times. Thus, once Alice ob-
tains Bob’s public key, she may send him encrypted messages as often as she likes. Moreover,
other users besides Alice may send Bob encrypted messages using the same public key pk .

• As already mentioned, Bob may publicize his public key pk . Obviously, for any secure public-
key encryption scheme, it must be hard to compute sk from pk , since anyone can decrypt
using sk .

11.1 Two further example applications

Public-key encryption is used in many real-world settings. We give two more examples.

11.1.1 Sharing encrypted files

In many modern file systems, a user can store encrypted files to which other users have read access:
the owner of the file can selectively allow others to read the unencrypted contents of the file. This
is done using a combination of public-key encryption and an ordinary, symmetric cipher.

Here is how it works. Alice encrypts a file f under a key k, using an ordinary, symmetric cipher.
The resulting ciphertext c is stored on the file system. If Alice wants to grant Bob access to the
contents of the file, she encrypts k under Bob’s public key; that is, she computes cB  R E(pkB, k),
where pkB is Bob’s public key. The ciphertext cB is then stored on the file system near the
ciphertext c, say, as part of the file header, which also includes file metadata (such as the file name,
modification time, and so on). Now when Bob wants to read the file f , he can decrypt cB using his
secret key skB, obtaining k, using which he can decrypt c using the symmetric cipher. Also, so that
Alice can read the file herself, she grants access to herself just as she does to Bob, by encrypting k
under her own public key pkA.

This scheme scales very nicely if Alice wants to grant access to f to a number of users. Only
one copy of the encrypted file is stored on the file system, which is good if the file is quite large
(such as a video file). For each user that is granted access to the file, only an encryption of the
key k is stored in the file header. Each of these ciphertexts is fairly small (on the order of a few
hundred bytes), even if the file itself is very big.

11.1.2 Key escrow

Consider a company that deploys an encrypted file system such as the one described above. One
day Alice is traveling, but her manager needs to read one of her files to prepare for a meeting
with an important client. Unfortunately, the manager is unable to decrypt the file because it is
encrypted and Alice is unreachable.

Large companies solve this problem using a mechanism called key escrow. The company runs
a key escrow server that works as follows: at setup time the key escrow server generates a secret key
skES and a corresponding public key pkES. It keeps the secret key to itself and makes the public
key available to all employees.

When Alice stores the encryption c of a file f under a symmetric key k, she also encrypts k
under pkES, and then stores the resulting ciphertext cES in the file header. Every file created by
company employees is encrypted this way. Now, if Alice’s manager later needs access to f and Alice
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is unreachable, the manager sends cES to the escrow service. The server decrypts cES, obtaining k,
and sends k to the manager, who can then use this to decrypt c and obtain f .

Public-key encryption makes it possible for the escrow server to remain o✏ine, until someone
needs to decrypt an inaccessible file. Also, notice that although the escrow service allows Alice’s
manager to read her files, the escrow service itself cannot read Alice’s files, since the escrow service
never sees the encryption of the file.

11.2 Basic definitions

We begin by defining the basic syntax and correctness properties of a public-key encryption scheme.

Definition 11.1. A public-key encryption scheme E = (G, E, D) is a triple of e�cient algo-
rithms: a key generation algorithm G, an encryption algorithm E, a decryption algorithm
D.

• G is a probabilistic algorithm that is invoked as (pk , sk)  R G(), where pk is called a public
key and sk is called a secret key.

• E is a probabilistic algorithm that is invoked as c  R E(pk , m), where pk is a public key (as
output by G), m is a message, and c is a ciphertext.

• D is a deterministic algorithm that is invoked as m D(sk , c), where sk is a secret key (as
output by G), c is a ciphertext, and m is either a message, or a special reject value (distinct
from all messages).

• As usual, we require that decryption undoes encryption; specifically, for all possible outputs
(pk , sk) of G, and all messages m, we have

Pr[D(sk , E(pk , m) ) = m] = 1.

• Messages are assumed to lie in some finite message space M, and ciphertexts in some finite
ciphertext space C. We say that E = (G, E, D) is defined over (M, C).

We next define the notion of semantic security for a public-key encryption scheme. We stress
that this notion of security only models an eavesdropping adversary. We will discuss stronger
security properties in the next chapter.

Attack Game 11.1 (semantic security). For a given public-key encryption scheme E =
(G, E, D), defined over (M, C), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes (pk , sk) R G(), and sends pk to the adversary.

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes c R E(pk , mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.
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Challenger A

m0,m1 2 M

b̂ 2 {0, 1}

(Experiment b)

c

pk(pk , sk)
R G()

c
R E(pk , mb)

Figure 11.1: Experiment b of Attack Game 11.1

If Wb is the event that A outputs 1 in Experiment b, we define A’s advantage with respect to
E as

SSadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Note that in the above game, the events W0 and W1 are defined with respect to the probability
space determined by the random choices made by the key generation and encryption algorithms,
and the random choices made by the adversary. See Fig. 11.1 for a schematic diagram of Attack
Game 11.1.

Definition 11.2 (semantic security). A public-key encryption scheme E is semantically se-
cure if for all e�cient adversaries A, the value SSadv[A, E ] is negligible.

As discussed in Section 2.3.5, Attack Game 11.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
SSadv⇤[A, E ] as |Pr[b̂ = b]� 1/2|. The general result of Section 2.3.5 (namely, (2.13)) applies here
as well:

SSadv[A, E ] = 2 · SSadv⇤[A, E ]. (11.1)

11.2.1 Mathematical details

We give a more mathematically precise definition of a public-key encryption scheme, using the
terminology defined in Section 2.4.

Definition 11.3 (public-key encryption scheme). A public-key encryption scheme consists
of a three algorithms, G, E, and D, along with two families of spaces with system parameterization
P :

M = {M�,⇤}�,⇤ and C = {C�,⇤}�,⇤,

such that

1. M and C are e�ciently recognizable.
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2. M has an e↵ective length function.

3. Algorithm G is an e�cient probabilistic algorithm that on input �, ⇤, where � 2 Z�1, ⇤ 2
Supp(P (�)), outputs a pair (pk , sk), where pk and sk are bit strings whose lengths are always
bounded by a polynomial in �.

4. Algorithm E is an e�cient probabilistic algorithm that on input �, ⇤, pk , m, where � 2 Z�1,
⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some sk, and m 2 M�,⇤, always outputs an
element of C�,⇤.

5. Algorithm D is an e�cient deterministic algorithm that on input �, ⇤, sk , c, where � 2 Z�1,
⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some pk, and c 2 C�,⇤, outputs either an
element of M�,⇤, or a special symbol reject /2M�,⇤.

6. For all �, ⇤, pk , sk , m, c, where � 2 Z�1, ⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)), k 2
K�,⇤, m 2M�,⇤, and c 2 Supp(E(�, ⇤; pk , m)), we have D(�, ⇤; sk , c) = m.

As usual, the proper interpretation of Attack Game 11.1 is that both challenger and adversary
receive � as a common input, and that the challenger generates ⇤ and sends this to the adversary
before the game proper begins. The advantage is actually a function of �, and security means that
this is a negligible function of �.

11.3 Implications of semantic security

Before constructing semantically secure public-key encryption schemes, we first explore a few con-
sequences of semantic security. We first show that any semantically secure public-key scheme must
use a randomized encryption algorithm. We also show that in the public-key setting, semantic
security implies CPA security. This was not true for symmetric encryption schemes: the one-time
pad is semantically secure, but not CPA secure.

11.3.1 The need for randomized encryption

Let E = (G, E, D) be a semantically secure public-key encryption scheme defined over (M, C) where
|M| � 2. We show that the encryption algorithm E must be a randomized, otherwise the scheme
cannot be semantically secure.

To see why, suppose E is deterministic. Then the following adversary A breaks semantic security
of E = (G, E, D):

• A receives a public key pk from its challenger.

• A chooses two distinct messages m0 and m1 in M and sends them to its challenger. The
challenger responds with c := E(pk , mb) for some b 2 {0, 1}.

• A computes c0 := E(pk , m0) and outputs 0 if c = c0. Otherwise, it outputs 1.

Because E is deterministic, we know that c = c0 whenever b = 0. Therefore, when b = 0 the
adversary always outputs 0. Similarly, when b = 1 it always outputs 1. Therefore

SSadv[A, E ] = 1
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showing that E is insecure.
This generic attack explains why semantically secure public-key encryption schemes must be

randomized. All the schemes we construct in this chapter and the next use randomized encryption.
This is quite di↵erent from the symmetric key settings where a deterministic encryption scheme
can be semantically secure; for example, the one-time pad.

11.3.2 Semantic security against chosen plaintext attack

Recall that when discussing symmetric ciphers, we introduced two distinct notions of security:
semantic security, and semantic security against chosen plaintext attack (or CPA security, for
short). We showed that for symmetric ciphers, semantic security does not imply CPA security.
However, for public-key encryption schemes, semantic security does imply CPA security. Intuitively,
this is because in the public-key setting, the adversary can encrypt any message he likes, without
knowledge of any secret key material. The adversary does so using the given public key and never
needs to issue encryption queries to the challenger. In contrast, in the symmetric key setting, the
adversary cannot encrypt messages on his own.

The attack game defining CPA security in the public-key setting is the natural analog of the
corresponding game in the symmetric setting (see Attack Game 5.2 in Section 5.3):

Attack Game 11.2 (CPA security). For a given public-key encryption scheme E = (G, E, D),
defined over (M, C), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes (pk , sk) R G(), and sends pk to the adversary.

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ci  R E(pk , mib), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, then we define A’s advantage with respect
to E as

CPAadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 11.4 (CPA security). A public-key encryption scheme E is called semantically
secure against chosen plaintext attack, or simply CPA secure, if for all e�cient adversaries
A, the value CPAadv[A, E ] is negligible.

Theorem 11.1. If a public-key encryption scheme E is semantically secure, then it is also CPA
secure.

In particular, for every CPA adversary A that plays Attack Game 11.2 with respect to E, and
which makes at most Q queries to its challenger, there exists an SS adversary B, where B is an
elementary wrapper around A, such that

CPAadv[A, E ] = Q · SSadv[B, E ].
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Proof. The proof is a straightforward hybrid argument, and is very similar to the proof of The-
orem 5.1. Suppose E = (G, E, D) is defined over (M, C). Let A be a CPA adversary that plays
Attack Game 11.2 with respect to E , and which makes at most Q queries to its challenger.

We describe the relevant hybrid games. For j = 0, . . . , Q, Hybrid j is played between A and a
challenger who works as follows:

(pk , sk) R G()
Send pk to A
Upon receiving the ith query (mi0, mi1) 2M2 from A do:

if i > j
then ci  R E(pk , mi0)
else ci  R E(pk , mi1)

send ci to A.

Put another way, the challenger in Hybrid j encrypts

m11, . . . , mj1, m(j+1)0, . . . , mQ0,

As usual, we define pj to be the probability that A outputs 1 in Hybrid j. Clearly,

CPAadv[A, E ] = |pQ � p0|.
Next, we define an appropriate adversary B that plays Attack Game 11.1 with respect to E :

First, B chooses ! 2 {1, . . . , Q} at random.

Then, B plays the role of challenger to A: it obtains a public key pk from its own
challenger, and forwards this to A; when A makes a query (mi0, mi1), B computes its
response ci as follows:

if i > ! then
c R E(pk , mi0)

else if i = ! then
B submits (mi0, mi1) to its own challenger
ci is set to the challenger’s response

else // i < !
ci  R E(pk , mi1).

Finally, B outputs whatever A outputs.

The crucial di↵erence between the proof of this theorem and that of Theorem 5.1 is that for i 6= !,
adversary B can encrypt the relevant message using the public key.

For b = 0, 1, let Wb be the event that B outputs 1 in Experiment 0 of its attack game. It is
clear that for j = 1, . . . , Q,

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj ,

and the theorem follows by the usual telescoping sum calculation. 2

One can also consider multi-key CPA security, where the adversary sees many encryptions under
many public keys. In the public-key setting, semantic security implies not only CPA security, but
multi-key CPA security — see Exercise 11.9.
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11.4 Encryption based on a trapdoor function scheme

In this section, we show how to use a trapdoor function scheme (see Section 10.2) to build a
semantically secure public-key encryption scheme. In fact, this scheme makes use of a hash function,
and our proof of security works only when we model the hash function as a random oracle (see
Section 8.10.2). We then present a concrete instantiation of this scheme, based on RSA (see
Section 10.3).

Our encryption scheme is called ETDF, and is built out of several components:

• a trapdoor function scheme T = (G, F, I), defined over (X , Y),

• a symmetric cipher Es = (Es, Ds), defined over (K, M, C),

• a hash function H : X ! K.

The message space for ETDF is M, and the ciphertext space is Y ⇥ C. We now describe the key
generation, encryption, and decryption algorithms for ETDF.

• The key generation algorithm for ETDF is the key generation algorithm for T .

• For a given public key pk , and a given message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := x R X , y  F (pk , x), k  H(x), c R Es(k, m)
output (y, c).

• For a given secret key sk , and a given ciphertext (y, c) 2 Y ⇥ C, the decryption algorithm
runs as follows:

D(sk , (y, c) ) := x I(sk , y), k  H(x), m Ds(k, c)
output m.

Thus, ETDF = (G, E, D), and is defined over (M, Y ⇥ C).
The correctness property for T immediately implies the correctness property for ETDF. If H

is modeled as a random oracle (see Section 8.10), one can prove that ETDF is semantically secure,
assuming that T is one-way, and that Es is semantically secure.

Recall that in the random oracle model, the function H is modeled as a random function O
chosen at random from the set of all functions Funs[X , K]. More precisely, in the random oracle
version of Attack Game 11.1, the challenger chooses O at random. In any computation where
the challenger would normally evaluate H, it evaluates O instead. In addition, the adversary is
allowed to ask the challenger for the value of the function O at any point of its choosing. The
adversary may make any number of such “random oracle queries” at any time of its choosing. We
use SSro

adv[A, ETDF] to denote A’s advantage against ETDF in the random oracle version of Attack
Game 11.1.

Theorem 11.2. Assume H : X ! K is modeled as a random oracle. If T is one-way and Es is
semantically secure, then ETDF is semantically secure.

In particular, for every SS adversary A that attacks ETDF as in the random oracle version of
Attack Game 11.1, there exist an inverting adversary Bow that attacks T as in Attack Game 10.2,
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and an SS adversary Bs that attacks Es as in Attack Game 2.1, where Bow and Bs are elementary
wrappers around A, such that

SSro
adv[A, ETDF]  2 · OWadv[Bow, T ] + SSadv[Bs, Es]. (11.2)

Proof idea. Suppose the adversary sees the ciphertext (y, c), where y = F (pk , x). If H is modeled
as a random oracle, then intuitively, the only way the adversary can learn anything at all about
the symmetric key k used to generate c is to explicitly evaluate the random oracle representing H
at the point x; however, if he could so this, we could easily convert the adversary into an adversary
that inverts the function F (pk , ·), contradicting the one-wayness assumption. Therefore, from the
adversary’s point of view, k is completely random, and semantic security for ETDF follows directly
from the semantic security of Es. In the detailed proof, we implement the random oracle using
the same “faithful gnome” technique as was used to e�ciently implement random functions (see
Section 4.4.2); that is, we represent the random oracle as a table of input/output pairs corresponding
to points at which the adversary actually queried the random oracle (as well as the point at which
the challenger queries the random oracle when it runs the encryption algorithm). We also use many
of the same proof techniques introduced in Chapter 4, specifically, the “forgetful gnome” technique
(introduced in the proof of Theorem 4.6) and the Di↵erence Lemma (Theorem 4.7). 2

Proof. It is convenient to prove the theorem using the bit-guessing versions of the semantic security
game. We prove:

SSro
adv

⇤[A, ETDF]  OWadv[Bow, T ] + SSadv⇤[Bs, Es]. (11.3)

Then (11.2) follows by (11.1) and (2.12).
Define Game 0 to be the game played between A and the challenger in the bit-guessing version

of Attack Game 11.1 with respect to ETDF. We then modify the challenger to obtain Game 1. In
each game, b denotes the random bit chosen by the challenger, while b̂ denotes the bit output by
A. Also, for j = 0, 1, we define Wj to be the event that b̂ = b in Game j. We will show that
|Pr[W1]�Pr[W0]| is negligible, and that Pr[W1] is negligibly close to 1/2. From this, it follows that

SSro
adv

⇤[A, ETDF] = |Pr[W0]� 1/2| (11.4)

is also negligible.

Game 0. Note that the challenger in Game 0 also has to respond to the adversary’s random oracle
queries. The adversary can make any number of random oracle queries, but at most one encryption
query. Recall that in addition to direct access the random oracle via explicit random oracle queries,
the adversary also has indirect access to the random oracle via the encryption query, where the
challenger also makes use of the random oracle. In describing this game, we directly implement
the random oracle as a “faithful gnome.” This is done using an associative array Map : X ! K.
The details are in Fig. 11.2. In the initialization step, the challenger prepares some quantities
that will be used later in processing the encryption query. In particular, in addition to computing
(pk , sk) R G(), the challenger precomputes x R X , y  F (pk , x), k  R K. It also sets Map[x] k,
which means that the value of the random oracle at x is equal to k.

Game 1. This game is precisely the same as Game 0, except that we make our gnome “forgetful”
by deleting line (3) in Fig. 11.2.

Let Z be the event that the adversary queries the random oracle at the point x in Game 1.
Clearly, Games 0 and 1 proceed identically unless Z occurs, and so by the Di↵erence Lemma, we
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initialization:
(1) (pk , sk) R G(), x R X , y  F (pk , x)

initialize an empty associative array Map : X ! K
(2) k  R K, b R {0, 1}
(3) Map[x] k

send the public key pk to A;

upon receiving an encryption query (m0, m1) 2M2:
(4) c Es(k, mb)

send (y, c) to A;

upon receiving a random oracle query x̂ 2 X :
if x̂ /2 Domain(Map) then Map[x̂] R K
send Map[x̂] to A

Figure 11.2: Game 0 challenger

have
|Pr[W1]� Pr[W0]|  Pr[Z]. (11.5)

If event Z happens, then one of the adversary’s random oracle queries is the inverse of y under
F (pk , ·). Moreover, in Game 1, the value x is used only to define y = F (pk , x), and nowhere else.
Thus, we can use adversary A to build an e�cient adversary Bow that breaks the one-wayness
assumption for T with an advantage equal to Pr[Z].

Here is how adversary Bow works in detail. This adversary plays Attack Game 10.2 against a
challenger Cow, and plays the role of challenger to A as in Fig. 11.2, except with the following lines
modified as indicated:

(1) obtain (pk , y) from Cow

(3) (deleted)

Additionally,

when A terminates:
if F (pk , x̂) = y for some x̂ 2 Domain(Map)

then output x̂
else output “failure”.

To analyze Bow, we may naturally view Game 1 and the game played between Bow and Cow

as operating on the same underlying probability space. By definition, Z occurs if and only if
x 2 Domain(Map) when Bow finishes its game. Therefore,

Pr[Z] = OWadv[Bow, T ]. (11.6)

Observe that in Game 1, the key k is only used to encrypt the challenge plaintext. As such,
the adversary is essentially attacking Es as in the bit-guessing version of Attack Game 2.1 at this
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point. More precisely, we derive an e�cient SS adversary Bs based on Game 1 that uses A as a
subroutine, such that

|Pr[W1]� 1/2| = SSadv⇤[Bs, Es]. (11.7)

Adversary Bs plays the bit-guessing version of Attack Game 2.1 against a challenger Cs, and plays
the role of challenger to A as in Fig. 11.2, except with the following lines modified as indicated:

(2) (deleted)

(3) (deleted)

(4) forward (m0, m1) to Cs, obtaining c

Additionally,

when A outputs b̂:

output b̂

To analyze Bs, we may naturally view Game 1 and the game played between Bs and Cs as
operating on the same underlying probability space. By construction, Bs and A output the same
thing, and so (11.7) holds.

Combining (11.4), (11.5), (11.6), and (11.7), yields (11.3). 2

11.4.1 Instantiating ETDF with RSA

Suppose we now use RSA (see Section 10.3) to instantiate T in the above encryption scheme ETDF.
This scheme is parameterized by two quantities: the length ` of the prime factors of the RSA
modulus, and the encryption exponent e, which is an odd, positive integer. Recall that the RSA
scheme does not quite fit the definition of a trapdoor permutation scheme, because the domain of
the trapdoor permutation is not a fixed set, but varies with the public key. Let us assume that X
is a fixed set into which we may embed Zn, for every RSA modulus n generated by RSAGen(`, e)
(for example, we could take X = {0, 1}2`). The scheme also makes use of a symmetric cipher
Es = (Es, Ds), defined over (K, M, C), as well as a hash function H : X ! K.

The basic RSA encryption scheme is ERSA = (G, E, D), with message space M and ciphertext
space X ⇥ C, where

• the key generation algorithm runs as follows:

G() := (n, d) R RSAGen(`, e), pk  (n, e), sk  (n, d)
output (pk , sk);

• for a given public key pk = (n, e), and message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := x R Zn, y  xe, k  H(x), c R Es(k, m)
output (y, c) 2 X ⇥ C;

• for a given secret key sk = (n, d), and a given ciphertext (y, c) 2 X ⇥ C, where y represents
an element of Zn, the decryption algorithm runs as follows:

D(sk , (y, c) ) := x yd, k  H(x), m Ds(k, c)
output m.
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Theorem 11.3. Assume H : X ! K is modeled as a random oracle. If the RSA assumption holds
for parameters (`, e), and Es is semantically secure, then ERSA is semantically secure.

In particular, for any SS adversary A that attacks ERSA as in the random oracle version of
Attack Game 11.1, there exist an RSA adversary Brsa that breaks the RSA assumption for (`, e)
as in Attack Game 10.3, and an SS adversary Bs that attacks Es as in Attack Game 2.1, where
Brsa and Bs are elementary wrappers around A, such that

SSro
adv

⇤[A, ERSA]  RSAadv[Brsa, `, e] + SSadv⇤[Bs, Es].

Proof. The proof of Theorem 11.2 carries over, essentially unchanged. 2

11.5 ElGamal encryption

In this section we show how to build a public-key encryption scheme from Di�e-Hellman. Security
will be based on either the CDH or DDH assumptions from Section 10.5.

The encryption scheme is a variant of a scheme first proposed by ElGamal, and we call it EEG.
It is built out of several components:

• a cyclic group G of prime order q with generator g 2 G,

• a symmetric cipher Es = (Es, Ds), defined over (K, M, C),

• a hash function H : G! K.

The message space for EEG is M, and the ciphertext space is G ⇥ C. We now describe the key
generation, encryption, and decryption algorithms for EEG.

• the key generation algorithm runs as follows:

G() := ↵ R Zq, u g↵

pk  u, sk  ↵
output (pk , sk);

• for a given public key pk = u 2 G and message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := �  R Zq, v  g� , w  u� , k  H(w), c Es(k, m)
output (v, c);

• for a given secret key sk = ↵ 2 Zq and a ciphertext (v, c) 2 G⇥ C, the decryption algorithm
runs as follows:

D(sk , (v, c) ) := w  v↵, k  H(w), m Ds(k, c)
output m.

Thus, EEG = (G, E, D), and is defined over (M,G⇥ C).
Note that the description of the group G and generator g 2 G is considered to be a system

parameter, rather than part of the public key.
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11.5.1 Semantic security of ElGamal in the random oracle model

We shall analyze the security of EEG under two di↵erent sets of assumptions. In this section we do
the analysis modeling H : G ! K as a random oracle, under the CDH assumption for G, and the
assumption that Es is semantically secure. In the next section we analyze EEG without the random
oracle model, but using the stronger DDH assumption for G.

Theorem 11.4. Assume H : G! K is modeled as a random oracle. If the CDH assumption holds
for G, and Es is semantically secure, then EEG is semantically secure.

In particular, for every SS adversary A that plays the random oracle version of Attack Game 11.1
with respect to EEG, and makes at most Q queries to the random oracle, there exist a CDH
adversary Bcdh that plays Attack Game 10.5 with respect to G, and an SS adversary Bs that
plays Attack Game 2.1 with respect to Es, where Bcdh and Bs are elementary wrappers around
A, such that

SSro
adv[A, EEG]  2Q · CDHadv[Bcdh,G] + SSadv[Bs, Es]. (11.8)

Proof idea. Suppose the adversary sees the ciphertext (v, c), where v = g� . If H is modeled as
a random oracle, then intuitively, the only way the adversary can learn anything at all about the
symmetric key k used to generate c is to explicitly evaluate the random oracle representing H at the
point w = v↵; however, if he could so this, we could convert the adversary into an adversary that
breaks the CDH assumption for G. One wrinkle is that we cannot recognize the correct solution to
the CDH problem when we see it (if the DDH assumption is true), so we simply guess by choosing
at random from among all of the adversary’s random oracle queries. This is where the factor of Q in
(11.8) comes from. So unless the adversary can break the CDH assumption, from the adversary’s
point of view, k is completely random, and semantic security for EEG follows directly from the
semantic security of Es. 2

Proof. It is convenient to prove the theorem using the bit-guessing version of the semantic security
game. We prove:

SSro
adv

⇤[A, EEG]  Q · CDHadv[Bcdh,G] + SSadv⇤[Bs, Es]. (11.9)

Then (11.8) follows from (11.1) and (2.12).
We define Game 0 to be the game played between A and the challenger in the bit-guessing

version of Attack Game 11.1 with respect to EEG. We then modify the challenger to obtain Game 1.
In each game, b denotes the random bit chosen by the challenger, while b̂ denotes the bit output
by A. Also, for j = 0, 1, we define Wj to be the event that b̂ = b in Game j. We will show that
|Pr[W1]�Pr[W0]| is negligible, and that Pr[W1] is negligibly close to 1/2. From this, it follows that

SSro
adv

⇤[A, EEG] = |Pr[W0]� 1/2| (11.10)

is negligible.

Game 0. The adversary can make any number of random oracle queries, but at most one encryption
query. Again, recall that in addition to direct access the random oracle via explicit random oracle
queries, the adversary also has indirect access to the random oracle via the encryption query, where
the challenger also makes use of the random oracle. The random oracle is implemented using an
associative array Map : G ! K. The details are in Fig. 11.3. At line (3), we e↵ectively set the
random oracle at the point w to k.
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initialization:
(1) ↵, �  R Zq, u g↵, v  g� , w  g↵�

initialize an empty associative array Map : G! K
(2) k  R K, b R {0, 1}
(3) Map[w] k

send the public key u to A;

upon receiving an encryption query (m0, m1) 2M2:
(4) c Es(k, mb)

send (v, c) to A;

upon receiving a random oracle query ŵ 2 G:
if ŵ /2 Domain(Map) then Map[ŵ] R K
send Map[ŵ] to A

Figure 11.3: Game 0 challenger

Game 1. This is the same as Game 0, except we delete line (3) in Fig. 11.3.
Let Z be the event that the adversary queries the random oracle at w in Game 1. Clearly,

Games 0 and 1 proceed identically unless Z occurs, and so by the Di↵erence Lemma, we have

|Pr[W1]� Pr[W0]|  Pr[Z]. (11.11)

If event Z happens, then one of the adversary’s random oracle queries is the solution w to the
instance (u, v) of the CDH problem. Moreover, in Game 1, the values ↵ and � are only needed
to compute u and v, and nowhere else. Thus, we can use adversary A to build an adversary Bcdh

to break the CDH assumption: we simply choose one of the adversary’s random oracle queries at
random, and output it — with probability at least Pr[Z]/Q, this will be the solution to the given
instance of the CDH problem.

In more detail, adversary Bcdh plays Attack Game 10.5 against a challenger Ccdh, and plays the
role of challenger to A as in Fig. 11.3, except with the following lines modified as indicated:

(1) obtain (u, v) from Ccdh

(3) (deleted)

Additionally,

when A terminates:
if Domain(Map) 6= ;

then ŵ  R Domain(Map), output ŵ
else output “failure”

To analyze Bcdh, we may naturally view Game 1 and the game played between Bcdh and Ccdh

as operating on the same underlying probability space. By definition, Z occurs if and only if
w 2 Domain(Map) when Bcdh finishes its game. Moreover, since |Domain(Map)|  Q, it follows
that

CDHadv[Bcdh,G] � Pr[Z]/Q. (11.12)

427



Observe that in Game 1, the key k is only used to encrypt the challenge plaintext. We leave it
to the reader to describe an e�cient SS adversary Bs that uses A as a subroutine, such that

|Pr[W1]� 1/2| = SSadv⇤[Bs, Es]. (11.13)

Combining (11.10), (11.11), (11.12), and (11.13), yields (11.9), which completes the proof of
the theorem. 2

11.5.2 Semantic security of ElGamal without random oracles

As we commented in Section 8.10.2, security results in the random oracle model do not necessarily
imply security in the real world. When it does not hurt e�ciency, it is better to avoid the random
oracle model. By replacing the CDH assumption by the stronger, but still reasonable, DDH as-
sumption, and by making an appropriate, but reasonable, assumption about H, we can prove that
the same system EEG is semantically secure without resorting to the random oracle model.

We thus obtain two security analyses of EEG: one in the random oracle model, but using the
CDH assumption. The other, without the random oracle model, but using the stronger DDH
assumption. We are thus using the random oracle model as a hedge: in case the DDH assumption
turns out to be false in the group G, the scheme remains secure assuming CDH holds in G, but
in a weaker random oracle semantic security model. In Exercise 11.13 we develop yet another
analysis of ElGamal without random oracles, but using a weaker assumption than DDH called
hash Di�e-Hellman (HDH) which more accurately captures the exact requirement to needed to
prove security.

To carry out the analysis using the DDH assumption in G we make a specific assumption about
the hash function H : G! K, namely that H is a secure key derivation function, or KDF for
short. We already introduced a very general notion of a key derivation function in Section 8.10.
What we describe here is more focused and tailored precisely to our current situation.

Intuitively, H : G ! K is a secure KDF if no e�cient adversary can e↵ectively distinguish
between H(w) and k, where w is randomly chosen from G, and k is randomly chosen from K. To be
somewhat more general, we consider an arbitrary, e�ciently computable hash function F : X ! Y,
where X and Y are arbitrary, finite sets.

Attack Game 11.3 (secure key derivation). For a given hash function F : X ! Y, and for a
given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes
x R X , y0  F (x), y1  R Y,

and sends yb to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, then we define A’s advantage with respect
to F as

KDFadv[A, F ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2
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Definition 11.5 (secure key derivation). A hash function F : X ! Y is a secure KDF if for
every e�cient adversary A, the value KDFadv[A, F ] is negligible.

It is plausible to conjecture that an “o↵ the shelf” hash function, like SHA256 or HKDF (see
Section 8.10.5), is a secure KDF. In fact, one may justify this assumption modeling the hash
function as a random oracle; however, using this explicit computational assumption, rather than
the random oracle model, yields more meaningful results.

One may even build a secure KDF without making any assumptions at all: the construction in
Section 8.10.4 based on a universal hash function and the leftover hash lemma yields an uncondi-
tionally secure KDF. Even though this construction is theoretically attractive and quite e�cient,
it may not be a wise choice from a security point of view: as already discussed above, if the DDH
turns out to be false, we can still rely on the CDH in the random oracle model, but for that, it is
better to use something based on SHA256 or HKDF, which can more plausibly be modeled as a
random oracle.

Theorem 11.5. If the DDH assumption holds for G, H : G ! K is a secure KDF, and Es is
semantically secure, then EEG is semantically secure.

In particular, for every SS adversary A that plays Attack Game 11.1 with respect to EEG, there
exist a DDH adversary Bddh that plays Attack Game 10.6 with respect to G, a KDF adversary
Bkdf that plays Attack Game 11.3 with respect to H, and an SS adversary Bs that plays Attack
Game 2.1 with respect to Es, where Bddh, Bkdf , and Bs are elementary wrappers around A, such
that

SSadv[A, EEG]  2 · DDHadv[Bddh,G] + 2 · KDFadv[Bkdf , H] + SSadv[Bs, Es]. (11.14)

Proof idea. Suppose the adversary sees the ciphertext (v, c), where v = g� and c is a symmetric
encryption created using the key k := H(u�). Suppose the challenger replaces w = u� by a random
independent group element w̃ 2 G and constructs k as k := H(w̃). By the DDH assumption the
adversary cannot tell the di↵erence between u� and w̃ and hence its advantage is only negligibly
changed. Under the KDF assumption, k := H(w̃) looks like a random key in K, independent of
the adversary’s view, and therefore security follows by semantic security of Es. 2

Proof. More precisely, it is convenient to prove the theorem using the bit-guessing version of the
semantic security game. We prove:

SSadv⇤[A, EEG]  DDHadv[Bddh,G] + KDFadv[Bkdf , H] + SSadv⇤[Bs, Es]. (11.15)

Then (11.14) follows by (11.1) and (2.12).
Define Game 0 to be the game played between A and the challenger in the bit-guessing version

of Attack Game 11.1 with respect to EEG. We then modify the challenger to obtain Games 1 and
2. In each game, b denotes the random bit chosen by the challenger, while b̂ denotes the bit output
by A. Also, for j = 0, 1, 2, we define Wj to be the event that b̂ = b in Game j. We will show that
|Pr[W2]�Pr[W0]| is negligible, and that Pr[W2] is negligibly close to 1/2. From this, it follows that

SSadv⇤[A, EEG] = |Pr[W0]� 1/2| (11.16)

is negligible.

Game 0. The logic of the challenger in this game is presented in Fig. 11.4.
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initialization:
(1) ↵, �  R Zq, �  ↵�, u g↵, v  g� , w  g�

(2) k  H(w)
b R {0, 1}
send the public key u to A;

upon receiving (m0, m1) 2M2:
c Es(k, mb), send (v, c) to A

Figure 11.4: Game 0 challenger

Game 1. We first play our “DDH card.” The challenger in this game is as in Fig. 11.4, except
that line (1) is modified as follows:

(1) ↵, �  R Zq, �  R Zq, u g↵, v  g� , w  g�

We describe an e�cient DDH adversary Bddh that uses A as a subroutine, such that

|Pr[W0]� Pr[W1]| = DDHadv[Bddh,G]. (11.17)

Adversary Bddh plays Attack Game 10.6 against a challenger Cddh, and plays the role of challenger
to A as in Fig. 11.4, except with line (1) modified as follows:

(1) obtain (u, v, w) from Cddh

Additionally,

when A outputs b̂:

if b = b̂ then output 1 else output 0

Let p0 be the probability that Bddh outputs 1 when Cddh is running Experiment 0 of the DDH
Attack Game 10.6, and let p1 be the probability that Bddh outputs 1 when Cddh is running Exper-
iment 1. By definition, DDHadv[Bddh,G] = |p1 � p0|. Moreover, if Cddh is running Experiment 0,
then adversary A is playing our Game 0, and so p0 = Pr[W0], and if Cddh is running Experiment 1,
then A is playing our Game 1, and so p1 = Pr[W1]. Equation (11.17) now follows immediately.

Game 2. Observe that in Game 1, w is completely random, and is used only as an input to H.
This allows us to play our “KDF card.” The challenger in this game is as in Fig. 11.4, except with
the following lines modified as indicated:

(1) ↵, �  R Zq, �  R Zq, u g↵, v  g� , w  g�

(2) k  R K
We may easily derive an e�cient KDF adversary Bkdf that uses A as a subroutine, such that

|Pr[W1]� Pr[W2]| = KDFadv[Bkdf , H]. (11.18)

Adversary Bkdf plays Attack Game 11.3 against a challenger Ckdf , and plays the role of challenger
to A as in Fig. 11.4, except with the following lines modified as indicated:
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(1) ↵, �  R Zq, u g↵, v  g� , �  R Zq, w  g�

(2) obtain k from Ckdf

Additionally,

when A outputs b̂:

if b = b̂ then output 1 else output 0

We leave it to the reader to verify (11.18).
Observe that in Game 2, the key k is only used to encrypt the challenge plaintext. As such,

the adversary is essentially just playing the SS game with respect to Es at this point. We leave it
to the reader to describe an e�cient SS adversary Bs that uses A as a subroutine, such that

|Pr[W2]� 1/2| = SSadv⇤[Bs, Es]. (11.19)

Combining (11.16), (11.17), (11.18), and (11.19), yields (11.15), which completes the proof of
the theorem. 2

11.6 Threshold decryption

We next discuss an important technique used to protect the secret key sk in a public key encryption
scheme. Suppose sk is stored on a server, and that server is used to decrypt incoming ciphertexts.
If the server is compromised, and the key is stolen, then all ciphertexts ever encrypted under the
corresponding public-key can be decrypted by the attacker. For this reason, important secret keys
are sometimes stored in a special hardware component, called a hardware security module
(HSM) that responds to decryption requests, but never exports the secret key in the clear. An
attacker who compromises the server can temporarily use the key, but cannot steal the key and use
it o✏ine.

Another approach to protecting a secret key is to split it into a number of pieces, called shares,
and require that all the shares must be present in order to decrypt a ciphertext. Each share can
be stored on a di↵erent machine so that all the machines must cooperate in order to decrypt a
ciphertext. Decryption fails if even one machine does not participate. Consequently, to steal the
secret key, an attacker must break the security of all the machines, and this can be harder than
compromising a single machine. In what follows, we use s to denote the total number of shares.

While splitting the key makes it harder to steal, it also hurts availability. If even a single share is
lost, decryption becomes impossible. For this reason we often require that decryption can proceed
even if only t of the s shares are available, for some 0 < t  s. For security, t�1 shares should reveal
nothing about the key sk , and should not help the adversary decrypt ciphertexts. Typical values
for t and s are 3-out-of-5 or 5-out-of-8; however some applications require larger values for t and s.
In a 3-out-of-5 sharing, stealing only two shares should reveal nothing helpful to the adversary.

Threshold decryption. Ideally, during decryption, the secret key sk is never reconstituted in a
single location. This ensures that there is no single point of failure that an adversary can attack
to steal the key. In such a system, there are s key servers, and an additional entity called a
combiner that orchestrates the decryption process. The combiner takes as input a ciphertext c to
decrypt, and forwards c to all the key servers. Every online server applies its key share to c, and
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sk0 sk1 sk2 sk3 sk4

combiner

c c c c c

c̃0
c̃2 c̃4

c m

c

key servers

The combiner sends the given ciphertext c to all five key servers. Three servers respond,
enabling the combiner to construct and output the plaintext message m.

Figure 11.5: Threshold decryption using three responses from five key servers.

sends back a “partial decryption.” Once t responses are received from the key servers, the combiner
can construct the complete decryption of c. The entire process is shown in Fig. 11.5. Overall, the
system should decrypt c without reconstituting the key sk in a single location. Such a system is
said to support threshold decryption.

Definition 11.6. A public-key threshold decryption scheme E = (G, E, D, C) is a tuple of
four e�cient algorithms:

• G is a probabilistic algorithm that is invoked as (pk , sk1, . . . , sks)  R G(s, t) to generate a
t-out-of-s shared key. It outputs a public key pk and s shares SK := {sk1, . . . , sk s} of the
decryption key.

• E is an encryption algorithm as in a public key encryption scheme, invoked as c R E(pk , m).

• D is a deterministic algorithm that is invoked as c0  D(sk i, c), where sk i is one of the key
shares output by G, c is a ciphertext, and c0 is a partial decryption of c using sk i.

• C is a deterministic algorithm that is invoked as m C(c, c01, . . . , c0t), where c is a ciphertext,
and c01, . . . , c0t are some t partial decryptions of c, computed using t distinct key shares.

• As usual, decryption should correctly decrypt well-formed ciphertexts; specifically, for all pos-
sible outputs (pk , sk1, . . . , sk s) of G(s, t), all messages m, and all t-size subsets {sk 0

1, . . . , sk
0
t}

of sk, for all outputs c of E(pk , m), we have C( c, D(sk 0
1, c), . . . , D(sk 0

t, c) ) = m.

A public-key threshold decryption scheme is secure if an adversary that completely compromises
t�1 of the key servers, and can eavesdrop on the output of the remaining key servers, cannot break
semantic security. We will define security more precisely after we look at some constructions.

Note that Definition 11.6 requires that t and s be specified at key generation time. However,
all the schemes in this section can be extended so that both t and s can be changed after the secret
key shares are generated, without changing the public key pk .

Combinatorial threshold decryption. Recall that in Exercise 2.21 we saw how a symmetric
decryption key k can be split into three shares, so that any two shares can be used to decrypt a
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given ciphertext, but a single share cannot. The scheme can be generalized so that k can be split
into s shares and any t  s can be used to decrypt, but t � 1 shares cannot. The communication
pattern during decryption is a little di↵erent than the one shown in Fig. 11.5, but nevertheless, the
system satisfies our goal of decrypting without ever reconstituting the key k in a single location.

The di�culty with the scheme in Exercise 2.21 is that its performance degrades rapidly as t and
s grow. Even supporting a small number of shares, say a 5-out-of-8 sharing, requires a ciphertext
that is over fourteen times as long as a non-threshold ciphertext.

ElGamal threshold decryption. As we will shortly see, the ElGamal encryption scheme (Sec-
tion 11.5) supports a very e�cient threshold decryption mechanism, even for large t and s. In
Exercise 11.16 we look at RSA threshold decryption.

11.6.1 Shamir’s secret sharing scheme

Our threshold version of ElGamal encryption is based on a technique, which has numerous other
application, called secret sharing.

Suppose Alice has a secret ↵ 2 Z, where Z is some finite set. She wishes to generate s shares of
↵, each belonging to some finite set Z 0, and denoted ↵1, . . . , ↵s 2 Z 0, so that the following property
is satisfied: any t of the s shares are su�cient to reconstruct ↵, but every set of t� 1 shares reveals
nothing about ↵. This sharing lets Alice give one share to each of her s friends, so that any t
friends can help her recover ↵, but t � 1 friends learn nothing. Such a scheme is called a secret
sharing scheme.

Definition 11.7. A secret sharing scheme over Z is a pair of e�cient algorithms (G, C):

• G is a probabilistic algorithm that is invoked as (↵1, . . . , ↵s)  R G(s, t, ↵), where 0 < t  s
and ↵ 2 Z, to generate a t-out-of-s sharing of ↵. It outputs s shares SK := {↵1, . . . , ↵s}.

• C is a deterministic algorithm that is invoked as ↵ C(↵0
1, . . . , ↵

0
t), to recover ↵.

• Correctness: we require that for every ↵ 2 Z, every set of s shares SK output by G(s, t, ↵),
and every t-size subset {↵0

1, . . . , ↵
0
t} of SK, we have that C(↵0

1, . . . , ↵
0
t) = ↵.

Intuitively, a secret sharing scheme is secure if every set of t � 1 shares output by G(s, t, ↵)
reveals nothing about ↵. To define this notion formally, it will be convenient to use the following
notation: for a set S ✓ {1, . . . , s}, we denote by G(s, t, ↵)[S] the set of shares output by G at
positions indicated by S. For example, G(s, t, ↵)[{1, 3, 4}] is the set {↵1, ↵3, ↵4}.

Definition 11.8. A secret sharing scheme (G, C) over Z is secure if for every ↵, ↵0 2 Z, and
every subset S of {1, . . . , s} of size t�1, the distribution G(s, t, ↵)[S] is identical to the distribution
G(s, t, ↵0)[S].

The definition implies that by looking at t � 1 shares, one cannot tell if the secret is ↵ or ↵0,
for all ↵ and ↵0 in Z. Hence, looking at only t� 1 shares reveals nothing about the secret.

Shamir secret sharing. An elegant secret sharing scheme over Zq, where q is prime, is due to
Shamir. This scheme makes use of the following general fact about polynomial interpolation:
a polynomial of degree at most t� 1 is completely determined by t points on the polynomial. For
example, two points determine a line, and three points determine a parabola. This general fact not
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only holds for the real numbers and complex numbers, but over any algebraic domain in which all
non-zero elements have a multiplicative inverse. Such a domain is called a field. When q is prime,
Zq is a field, and so this general fact holds here as well.

Shamir’s scheme (Gsh, Csh) is a t-out-of-s secret sharing scheme over Zq that requires that q > s,
and works as follows:

• Gsh(s, t, ↵): choose random a1, . . . , at�1  R Zq and define the polynomial

f(x) := at�1x
t�1 + at�2x

t�2 + . . . + a1x + ↵ 2 Zq[x].

Notice that f has degree at most t� 1 and that f(0) = ↵.

Next, choose arbitrary s non-zero points x1, . . . , xs in Zq (for example, we could just use the
points 1, . . . , s in Zq).

For i = 1, . . . , s compute yi  f(xi) 2 Zq, and define ↵i := (xi, yi).
Output the s shares ↵1, . . . , ↵s 2 Z2

q .

• Csh(↵0
1, . . . , ↵

0
t): an input of t valid shares corresponds to t points on the polynomial f , and

these t points completely determine f . Algorithm Csh interpolates the polynomial f and
outputs ↵ := f(0).

The description of algorithm Csh needs a bit more explanation. A simple method for interpo-
lating the polynomial of degree at most t�1 from t points is called Lagrange interpolation. Let
us see how it works.

Given t shares ↵0
i = (x0

i, y
0
i) for i = 1, . . . , t, define t polynomials:

Li(x) :=
t
Y

j=1
j 6=i

x� x0
j

x0
i � x0

j

2 Zq[x] for i = 1, . . . , t.

It is not di�cult to verify that: Li(x0
i) = 1 and Li(x0

j) = 0 for all j 6= i in {1, . . . , t}. Next, consider
the polynomial

g(x) := L1(x) · y01 + . . . + Lt(x) · y0t 2 Zq[x]

Again, it is not di�cult to see that g(x0
i) = y0i = f(x0

i) for all i = 1, . . . , t. Since both f and g are
polynomials of degree t� 1, and they match at t points, they must be the same polynomial (here
is we use our general fact about polynomial interpolation). Therefore, ↵ = f(0) = g(0), and in
particular

↵ = g(0) =
t
X

i=1

�i · y0i where �i := Li(0) =
t
Y

j=1
j 6=i

�x0
j

x0
i � x0

j

2 Zq. (11.20)

The scalars �1, . . . , �t 2 Zq are called Lagrange coe�cients.
Using (11.20) we can now describe algorithm Csh in more detail. Given a set of t � 1 shares,

the algorithm first computes the Lagrange coe�cients �1, . . . , �t 2 Zq. Computing these quantities
requires division, but since q is prime, this is always well defined. It then computes ↵ using the
linear combination on the left side of (11.20).

Note that the Lagrange coe�cients �1, . . . , �t do not depend on the secret ↵, and can be
precomputed if one knows ahead of time which shares will be used to reconstruct ↵.
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Security. It remains to show that this secret sharing scheme is secure, as in Definition 11.8.

Theorem 11.6. Shamir’s secret sharing scheme (Gsh, Csh) is secure.

Proof. To prove the theorem, we shall show that for every ↵ 2 Zq, any set of t � 1 shares
(x0

1, y
0
1), . . . , (x

0
t�1, y

0
t�1) has the property that the y-coordinates y01, . . . , y0t�1 are uniformly and

independently distributed over Zq. So let ↵ and x0
1, . . . , x

0
t�1 be fixed.

Claim. Consider the map that sends (a1, . . . , at�1) 2 Zt�1
q (as chosen by Gsh(s, t, ↵)) to

(y01, . . . , y0t�1) 2 Zt�1
q , which are the y-coordinates of the shares whose x-coordinates are x0

1, . . . , x
0
t�1.

Then this map is one-to-one.
The theorem follows from the claim, since if (a1, . . . , at�1) is chosen uniformly over Zt�1

q , then
(y01, . . . , y0t�1) must also be uniformly distributed over Zt�1

q .
Finally, to prove the claim, suppose by way of contradiction that this map is not one-to-one.

This would imply the existence of two distinct polynomials g(x), h(x) 2 Zq[x] of degree at most
t � 2, such that the polynomials ↵ + xg(x) and ↵ + xh(x) agree at the t � 1 non-zero points
x0
1, . . . , x

0
t�1. But then this implies that g(x) and h(x) themselves agree at these same t� 1 points,

which contradicts our basic fact about polynomial interpolation. 2

11.6.2 ElGamal threshold decryption

For any public-key encryption scheme, one can use Shamir secret sharing to share the secret de-
cryption key sk , in a t-out-of-s fashion, among s servers. Then any t servers can help the combiner
reconstruct the secret key and decrypt a given ciphertext. However, this creates a single point of
failure: an adversary who compromises the combiner during decryption will learn sk in the clear.

In this section we show how to enhance ElGamal decryption, so that decryption can be done
with the help of t servers, as in Fig. 11.5, but without reconstituting the key at a single location.
We first describe the scheme, and then define and prove security.

ElGamal threshold decryption. Recall that the ElGamal encryption scheme (Section 11.5)
uses a group G of prime order q with generator g 2 G, a symmetric cipher Es = (Es, Ds), defined
over (K, M, C), and a hash function H : G ! K. The secret key sk is an element ↵ 2 Zq, and a
ciphertext (v, c) 2 G⇥ C is decrypted by first computing w  v↵.

To support t-out-of-s threshold decryption, the key generation algorithm first generates a t-out-
of-s Shamir secret sharing of the ElGamal decryption key ↵ 2 Zq. The resulting shares, (xi, yi) for
i = 1, . . . , s, are the shares of the decryption key ↵, and each key server is given one share.

Now, to decrypt an ElGamal ciphertext (v, c), it su�ces for some t key servers to send the
partial decryption (xi, vyi) 2 Zq ⇥ G to the combiner. Once the combiner receives t partial
decryptions c0i = (xi, vyi) for i = 1, . . . , t, it decrypts the ciphertext as follows: First, the combiner
uses x1, . . . , xt to compute the Lagrange coe�cients �1, . . . , �t 2 Zq as in Eq. (11.20). Next, it
computes

w  (vy1)�1 · (vy2)�2 · · · (vyt)�t 2 G.

By (11.20) we know that
w = v(y1·�1+···+y

t

·�
t

) = v↵. (11.21)

This w = v↵ is su�cient to decrypt the ciphertext (v, c), as in normal ElGamal decryption. Observe
that during decryption, the ElGamal decryption key ↵ was never assembled in a single location.

The complete ElGamal threshold decryption system EthEG = (G, E, D, C) works as follows:
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• Key generation runs as follows, using Shamir’s secret sharing scheme (Gsh, Csh):

G(s, t) := ↵ R Zq, pk := u g↵

(x1, y1), . . . , (xs, ys) R Gsh(s, t, ↵)
for i = 1, . . . , s set sk i := (xi, yi)
output (pk , sk1, . . . , sk s)

• The encryption algorithm E(pk , m) is the same as in ElGamal encryption in Section 11.5.
It outputs a pair (v, c) 2 G⇥ C.

• for a given secret key share sk i = (x, y) 2 Zq ⇥G and a ciphertext (v, c) 2 G⇥ C, the partial
decryption algorithm runs as follows:

D(sk i, (v, c) ) := w  vy,
output c0 := (x, w) 2 Zq ⇥G.

• given a ciphertext (v, c) 2 G ⇥ C, and t partial decryptions c0i = (xi, wi) for i = 1, . . . , t, the
combine algorithm runs as follows:

C
�

(v, c), c01, . . . , c0t
�

:=
use x1, . . . , xt to compute �1, . . . , �t 2 Zq as in (11.20)

(⇤) set w  w�1
1 · w�2

2 · · · w�
t

t 2 G, k  H(w), m Ds(k, c)
output m

The combine algorithm works correctly because, as explained in (11.21), the quantity w com-
puted on line (⇤) satisfies w = v↵, which is then used to derive the symmetric encryption key k
needed to decrypt c.

ElGamal threshold decryption is secure. First, let us define more precisely what it means
for a threshold decryption scheme to be secure. As usual, this is done by defining an attack game.
Just as in Attack Game 11.1, our adversary will be allowed to make a single encryption query, in
which he submits a pair of messages to the challenger, and obtains an encryption of one of them.
However, to capture the notion of security we are looking for in a threshold decryption scheme,
in addition to the public key, the adversary also gets to see t � 1 shares of the secret key of its
choice. Additionally, we want to capture the notion that the combiner cannot become a single
point of failure. To this end, we allow the adversary to make any number of combiner queries: in
such a query, the adversary sumbits a single message to the challenger, and gets to see not only its
encryption, but also all s of the corresponding partial decryptions of the ciphertext.

Our security definition, given below, allows the adversary to eavesdrop on all tra�c sent to the
combiner. A more powerful adversary might completely compromise the combiner, and tamper
with what it sends to the key servers. We do not consider such adversaries here, but will come
back to this question in Chapter 16.

Attack Game 11.4 (threshold decryption semantic security). For a public-key threshold
decryption scheme E = (G, E, D, C) defined over (M, C), and for a given adversary A, we define
two experiments, parameterized by integers 0 < t  s.

Experiment b (b = 0, 1):
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• Setup: the adversary chooses a set S ✓ {1, . . . , s} of size t� 1 and gives it to the challenger.
The challenger runs (pk , sk1, . . . , sk s) R G(s, t) and sends pk and {sk i}i2S to the adversary.

• The adversary queries the challenger several times. Each query can be one of two types:

– Combiner query: for j = 1, 2, . . . , the jth such query is a message mj 2 M. The
challenger computes cj  R E(pk , mj) and the s partial decryptions c0j,i  D(sk i, cj), for
i = 1, . . . , s. The challenger sends cj and c0j,1, . . . , c

0
j,s to the adversary.

– Single encryption query: The adversary sends m0, m1 2M, of the same length, to the
challenger. The challenger computes c R E(pk , mb), and sends c to the adversary. The
adversary may only issue a single encryption query (which may be preceded or followed
by any number of combiner queries).

• The adversary outputs a bit b̂ 2 {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, define A’s advantage with respect to E as

thSSadv[A, E ] :=
�

�

�

Pr[W0]� Pr[W1]
�

�

�

. 2

Definition 11.9 (threshold decryption semantic security). A public-key threshold decryption
scheme E is semantically secure if for all e�cient adversaries A, the value thSSadv[A, E ] is
negligible.

Next, we argue that the ElGamal threshold decryption scheme EthEG is semantically secure.
The proof is very similar to the proof of Theorem 11.5.

Theorem 11.7. If EEG is semantically secure, then EthEG is threshold decryption semantically
secure.

In particular, for every adversary A that attacks EthEG as in Attack Game 11.4, there exists an
adversary B that attacks EEG as in Attack Game 11.1, such that

thSSadv[A, EthEG] = SSadv[B, EEG].

Proof. We design B to play the role of challenger to A. When A receives pk = g↵ from its own
challenger, we need to have A provide to B not only pk , but also t�1 key shares. By Theorem 11.6,
we know that (Gsh, Csh) satisfies Definition 11.7, which means that we can generate the required
t � 1 key shares by just running Gsh(↵̂, r, s) for an arbitrary ↵̂ 2 Zq. In fact, by the proof of
of Theorem 11.6, we know that we can just generate the y-coordinates of the required shares by
choosing elements of Zq uniformly and independently.

When A makes its single encryption query, B forwards this query to its own challenger, and
forwards the response from the challenger back to A.

Whenever A outputs a bit b̂ 2 {0, 1}, our adversary B outputs the same bit b̂.
To finish the proof, we have to show how our B can faithfully respond to all of A’s combiner

queries. Once we do this, the proof will be finished: B will have the same advantage in its attack
game that A has in its attack game.

Let (x0
i, y

0
i) for i = 1, . . . , t�1 be the key shares that were given to A. Let m 2M be a combiner

query. Our B first encrypts m by choosing a random �  R Zq and computing v  g� , w  u� , c 
Es(H(w), m). Now, let (x, y) be some key share. Our B needs to compute the partial decryption
c0 := (x, vy). There are two cases:

437



• If x 2 {x0
1, . . . , x

0
t�1} then B knows y and can easily compute c0 := (x, vy).

• Otherwise, our B can compute vy without knowing y, as follows. It uses (11.20) to compute the
t Lagrange coe�cients �, �1, . . . , �t�1 2 Zq corresponding to the t points x, x0

1, . . . , x
0
t�1 2 Zq.

Although B does not know ↵ or y, it knows that

↵ = � · y + �1 · y01 + . . . + �t�1 · y0t�1.

By multiplying both sides by � and exponentiating, it follows that

u� = g�·↵ = g�·�·y · g�(�1·y01+···+�
t�1·y0

t�1) = (vy)� · g�(�1·y01+···+�
t�1·y0

t�1).

Since vy is the only unknown in this equation, B can easily solve for vy, and obtain the
required value.

In conclusion, we see that B can compute all the required partial decryptions c0 := (x, vy), and
send them to the adversary, along with the ciphertext (v, c). 2

Further enhancements. The threshold decryption scheme EthEG can be strengthened in several
ways. First, the system EthEG easily generalizes to more flexible access structures than strict
threshold. For example, it is easy to extend the scheme to support the following access structure:
decryption is possible if key server number 1 participates, and at least t of the remaining s� 1 key
servers participate. We explore more general access structures in Exercise 11.15.

Another enhancement, called proactive security, further strengthens the system by forcing the
adversary to break into all s servers within a short period of time, say ten minutes [53]. Otherwise,
the adversary gets nothing. This is done by having the key servers proactively refresh the sharing
of their secret key every ten minutes, without changing the public key.

Finally, key generation can be strengthened so that the secret key ↵ is not generated in a
central location. Instead, the s key servers engage in a distributed computation to generate the
key shares [45]. This way the secret key ↵ is always stored in shared form, from inception to final
retirement.

11.7 Fun application: oblivious transfer from DDH

To be written.

11.8 Notes

Citations to the literature to be added.

11.9 Exercises

11.1 (Simple PRF from DDH). Let G be a cyclic group of prime order q generated by g 2 G.
Let H : M! G be a hash function, which we shall model as a random oracle (see Section 8.10.2).
Let F be the PRF defined over (Zq, M,G) as follows:

F (k, m) := H(m)k for k 2 Zq, m 2M.
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Show that F is a secure PRF in the random oracle model for H under the DDH assumption for G.

Hint: Use the results of Exercises 10.6 and 10.7.

11.2 (Simple PRF from CDH). Continuing with Exercise 11.1, let Ĥ : G⇥G! Y be a hash
function, which we again model as a random oracle. Let F̂ be the PRF defined over (Zq, M, Y) as
follows:

F̂ (k, m) := Ĥ
⇣

H(m), H(m)k
⌘

for k 2 Zq, m 2M.

Show that F̂ is a secure PRF in the random oracle model for H and Ĥ under the CDH assumption
for G.

Hint: Use the result of Exercise 10.4.

11.3 (Oblivious PRF from DDH). Your proof that the PRF F F presented in Exercise 11.1
should still go through even if the value gk is publicly known. Using this fact, we can design a
protocol that allows F to be evaluated obliviously. This means that if Bob has a key k and Alice
has an input m, there is a simple protocol that lets Alice compute F (k, m) in such a way that Bob
does not learn anything about m and Alice learns nothing about k besides F (k, m) and gk.

Hint: Alice starts by sending Bob H(m) · g⇢ for random ⇢ 2 Zq — see also Exercise 10.4.

11.4 (Broken variant of RSA). Consider the following broken version of the RSA public-key
encryption scheme: key generation is as in ERSA, but to encrypt a message m 2 Zn with public key
pk = (n, e) do E(pk , m) := me. Decryption is done using the RSA trapdoor.

Clearly this scheme is not semantically secure. Even worse, suppose one encrypts a random message
m 2 {0, 1, . . . , 264} to obtain c := me mod n. Show that for 35% of plaintexts in [0, 264], an
adversary can recover the complete plaintext m from c using only 235 eth powers in Zn.

Hint: Use the fact that about 35% of the integers m in [0, 264] can be written as m = m1 · m2

where m1, m2 2 [0, 234].

11.5 (Multiplicative ElGamal). Let G be a cyclic group of prime order q generated by g 2 G.
Consider a simple variant of the ElGamal encryption system EMEG = (G, E, D) that is defined over
(G,G2). The key generation algorithm G is the same as in EEG, but encryption and decryption
work as follows:

• for a given public key pk = u 2 G and message m 2 G:

E(pk , m) := �  R Zq, v  g� , c m · u� , output (v, c)

• for a given secret key sk = ↵ 2 Zq and a ciphertext (v, c) 2 G2:

D(sk , (v, c) ) := output c/v↵

(a) Show that EMEG is semantically secure assuming the DDH assumption holds in G. In par-
ticular, you should show that the advantage of any adversary A in breaking the semantic
security of EMEG is bounded by 2✏, where ✏ is the advantage of an adversary B (which is an
elementary wrapper around A) in the DDH attack game.

(b) Show that EMEG is not semantically secure if the DDH assumption does not hold in G.
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(c) Show that EMEG has the following property: given a public key pk , and two ciphertexts
c1  R E(pk , m1) and c2  R E(pk , m2), it is possible to create a new ciphertext c which is an
encryption of m1 · m2. This property is called a multiplicative homomorphism.

11.6 (An attack on multiplicative ElGamal). Let p and q be large primes such that q divides
p � 1. Let G be the order q subgroup of Z⇤

p generated by g 2 G and assume that the DDH
assumption holds in G. Suppose we instantiate the ElGamal system from Exercise 11.5 with the
group G. However, plaintext messages are chosen from the entire group Z⇤

p so that the system is
defined over (Z⇤

p,G⇥ Z⇤
p). Show that the resulting system is not semantically secure.

11.7 (Extending the message space). Suppose that we have a public-key encryption scheme
E = (G, E, D) with message space M. From this, we would like to build an encryption scheme
with message space M2. To this end, consider the following encryption scheme E2 = (G2, E2, D2),
where

G2() := (pk0, sk0) R G(), (pk1, sk1) R G(),

output pk := (pk0, pk1) and sk := (sk0, sk1)

E2
�

pk , (m0, m1)
�

:=
�

E(pk0, m0), E(pk1, m1)
�

D2
�

sk , (c0, c1)
�

:=
�

D(sk0, c0), D(sk1, c1)
�

Show that E2 is semantically secure, assuming E itself is semantically secure.

11.8 (Modular hybrid construction). Both of the encryption schemes presented in this chapter,
ETDF in Section 11.4 and EEG in Section 11.5, as well as many other schemes used in practice, have a
“hybrid” structure that combines an asymmetric component and a symmetric component in a fairly
natural and modular way. The symmetric part is, of course, the symmetric cipher Es = (Es, Ds),
defined over (K, M, C). The asymmetric part can be understood in abstract terms as what is called
a key encapsulation mechanism, or KEM.

A KEM Ekem consists of a tuple of algorithms (G, Ekem, Dkem). Algorithm G is invoked as (pk , sk) R
G(). Algorithm Ekem is invoked as (k, ckem)  R Ekem(pk), where k 2 K and ckem 2 Ckem. Algorithm
Dkem is invoked as k  Dkem(sk , ckem), where k 2 K [ {reject} and ckem 2 Ckem. We say that Ekem is
defined over (K, Ckem). We require that Ekem satisfies the following correctness requirement:
for all possible outputs (pk , sk) of G(), and all possible outputs (k, ckem) of Ekem(pk), we have
Dkem(sk , ckem) = k.

We can define a notion of semantic security in terms of an attack game between a challenger and
an adversary A, as follows. In Experiment b, for b = 0, 1, the challenger computes

(pk , sk) R G(), (k0, ckem) R Ekem(pk), k1  R K,

and sends (kb, ckem) to A. Finally, A outputs b̂ 2 {0, 1}. As usual, if Wb is the event that A
outputs 1 in Experiment b, we define A’s advantage with respect to Ekem as SSadv[A, Ekem] :=
|Pr[W0] � Pr[W1]|, and if this advantage is negligible for all e�cient adversaries, we say that Ekem

is semantically secure.

Now consider the hybrid public-key encryption scheme E = (G, E, D), constructed out of Ekem

and Es, and defined over (M, Ckem ⇥ C). The key generation algorithm for E is the same as that of
Ekem. The encryption algorithm E works as follows:

E(pk , m) :=
�

(k, ckem) R Ekem(pk), c R Es(k, m), output (ckem, c)
 

.
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The decryption algorithm D works as follows:

D(sk , (ckem, c)) :=
�

m reject, k  Dkem(sk , ckem), if k 6= reject then m Ds(k, c),

output m
 

.

(a) Prove that E satisfies the correctness requirement for a public key encryption scheme, assum-
ing Ekem and Es satisfy their corresponding correctness requirements.

(b) Prove that E is semantically secure, assuming that Ekem and Es are semantically secure. You
should prove a concrete security bound that says that for every adversary A attacking E ,
there are adversaries Bkem and Bs (which are elementary wrappers around A) such that

SSadv[A, E ]  2 · SSadv[Bkem, Ekem] + SSadv[Bs, Es].

(c) Describe the KEM corresponding to ETDF and prove that it is semantically secure (in the
random oracle model, assuming T is one way).

(d) Describe the KEM corresponding to EEG and prove that it is semantically secure (in the
random oracle model, under the CDH assumption for G).

(e) Let Ea = (G, Ea, Da) be a public-key encryption scheme defined over (K, Ca). Define the KEM
Ekem = (G, Ekem, Da), where

Ekem(pk) :=
�

k  R K, ckem  R Ea(pk , k), output (k, ckem)
 

.

Show that Ekem is semantically secure, assuming that Ea is semantically secure.

Discussion: Part (e) shows that one can always build a KEM from a public-key encryption scheme
by just using the encryption scheme to encrypt a symmetric key; however, parts (c) and (d) show
that there are more direct and e�cient ways to do this.

11.9 (Multi-key CPA security). Generalize the definition of CPA security for a public-key
encryption scheme to the multi-key setting. In this attack game, the adversary gets to obtain
encryptions of many messages under many public keys. Show that semantic security implies multi-
key CPA security. You should show that security degrades linearly in QkQe, where Qk is a bound
on the number of keys, and Qe is a bound on the number of encryption queries per key. That is,
the advantage of any adversary A in breaking the multi-key CPA security of a scheme is at most
QkQe · ✏, where ✏ is the advantage of an adversary B (which is an elementary wrapper around A)
that breaks the scheme’s semantic security.

11.10 (A tight reduction for multiplicative ElGamal). We proved in Exercise 11.9 that
semantic security for a public-key encryption scheme implies multi-key CPA security; however,
the security degrades significantly as the number of keys and encryptions increases. Consider the
multiplicative ElGamal encryption scheme EMEG from Exercise 11.5. You are to show show a tight
reduction from multi-key CPA security for EMEG to the DDH assumption, which does not degrade
at all as the number of keys and encryptions increases. In particular, you should show that the
advantage of any adversary A in breaking the multi-key CPA security of EMEG is bounded by
2(✏ + 1/q), where ✏ is the advantage of an adversary B (which is an elementary wrapper around A)
in the DDH attack game.
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Note: You should assume that in the multi-key CPA game, the same group G and generator g 2 G
is used throughout.

Hint: Use the results of Exercises 10.6, 10.7, and 10.8.

11.11 (An easy discrete-log group). Let n be a large integer and consider the following subset
of Z⇤

n2 :
Gn :=

�

[an + 1]n2 2 Z⇤
n2 : a 2 {0, . . . , n� 1} 

(a) Show that Gn is a multiplicative subgroup of Z⇤
n2 of order n.

(b) Which elements of Gn are generators?

(c) Choose an arbitrary generator g 2 Gn and show that the discrete-log problem in Gn is easy.

11.12 (Pallier encryption). Let us construct another public-key encryption scheme (G, E, D)
that makes use of RSA composites:

• The key generation algorithm is parameterized by a fixed value ` and runs as follows:

G(`) := generate two distinct random `-bit primes p and q,
n pq, d (p� 1)(q � 1)/2
pk  n, sk  d
output (pk , sk)

• for a given public key pk = n and message m 2 {0, . . . , n� 1}, set g := [n + 1]n2 2 Z⇤
n2 . The

encryption algorithm runs as follows:

E(pk , m) := h R Z⇤
n2 , c R gmhn 2 Z⇤

n2 , output c.

(a) Explain how the decryption algorithm D(sk , c) works.

Hint: Using the notation of Exercise 11.11, observe that cd falls in the subgroup Gn which
has an easy discrete-log.

(b) Show that this public-key encryption scheme is semantically secure under the following as-
sumption:

let n be a product of two random `-bit primes,
let u be uniform in Z⇤

n2 ,
let v be uniform in the subgroup (Zn2)n := {hn : h 2 Z⇤

n2},

then the distribution (n, u) is computationally indistinguishable from the distribution (n, v).

Discussion: This encryption system, called Pallier encryption, has a useful property called
an additive homomorphism: for ciphertexts c0  R E(pk , m0) and c1  R E(pk , m1), the product
c c0 · c1 is an encryption of m0 + m1 mod n.

11.13 (Hash Di�e-Hellman). Let G be a cyclic group of prime order q generated by g 2 G.
Let H : G ! K be a hash function. We say that the Hash Di�e-Hellman (HDH) assumption
holds for (G, H) if the distribution

�

g↵, g� , H(g↵�)
�

is computationally indistinguishable from the
distribution (g↵, g� , k) where ↵, �  R Zq and k  R K.
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(a) Show that if H is modeled as a random oracle and the CDH assumption holds for G, then
the HDH assumption holds for (G, H).

(b) Show that if H is a secure KDF and the DDH assumption holds for G, then the HDH
assumption holds for (G, H).

(c) Prove that the ElGamal public-key encryption scheme EEG is semantically secure if the HDH
assumption holds for (G, H).

11.14 (Anonymous public-key encryption). Suppose t people publish their public-keys
pk1, . . . , pk t. Alice sends an encrypted message to one of them, say pk5, but she wants to en-
sure that no one (other than user 5) can tell which of the t users is the intended recipient. You may
assume that every user, other than user 5, who tries to decrypt Alice’s message with their secret
key, obtains fail.

(a) Define a security model that captures this requirements. The adversary should be given t
public keys pk1, . . . , pk t and it then selects the message m that Alice sends. Upon receiving
a challenge ciphertext, the adversary should learn nothing about which of the t public keys
is the intended recipient. A system that has this property is said to be an anonymous
public-key encryption scheme.

(b) Show that the ElGamal public-key encryption system EEG is anonymous.

(c) Show that the RSA public-key encryption system ERSA is not anonymous. Assume that all t
public keys are generated using the same RSA parameters ` and e.

11.15 (Access structures). Generalize the ElGamal threshold decryption scheme of Sec-
tion 11.6.2 to the following settings: The s key servers are split into two disjoint groups S1 and S2,
and decryption should be possible only if the combiner receives at least t1 responses from the set
S1, and at least t2 responses from the set S2, where t1  |S1| and t2  |S2|. Adapt the security
definition to these settings, and prove that your scheme is secure.

Discussion: An access structure is the set of subsets of {0, . . . , s � 1} that should be able to
decrypt. In Section 11.6.2 we looked at a threshold access structure, and this exercise looks at
a slightly more general threshold access structure. Other access structures can be achieved using
more general secret sharing schemes, as long as the secret is reconstructed using a linear function
of the given shares. Such schemes, called linear secret sharing schemes (LSSS), are surveyed in [5].

11.16 (RSA threshold decryption). Let us show how to enable simple threshold decryption for
the RSA public key encryption scheme of Section 11.4.1.

(a) Recall that the key generation algorithm generates numbers n, e, d, where n is the RSA
modulus, e is the encryption exponent, and d is the decryption exponent. We extend the
key generation algorithm with two more steps: choose a random integer d1 in [1, n2] and set
d2 = d1 � d 2 Z. Then output the two key shares sk1 := (n, d1) and sk2 := (n, d2), and the
public key pk := (n, e). Explain how to use this setup for 2-out-of-2 threshold decryption, to
match the framework of Definition 11.6.

Hint: Show that the distribution of the key share d2 is statistically close to the uniform
distribution on {1, . . . , n2}.
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(b) Prove that your scheme from part (a) satisfies the security definition for 2-out-of-2 threshold
decryption (Definition 11.9).

(c) Generalize the scheme to provide 2-out-of-3 threshold decryption, using the mechanism of
Exercise 2.20. Prove that the scheme is secure.

11.17 (Proxy re-encryption). Bob works for the Acme corporation and publishes a public-key
pkbob so that all incoming emails to Bob are encrypted under pkbob. When Bob goes on vacation
he instructs the company’s mail server to forward all his incoming encrypted email to Alice. Alice’s
public key is pkalice. The mail server needs a way to translate an email encrypted under public-key
pkbob into an email encrypted under public-key pkalice. This would be easy if the mail server had
skbob, but then the mail server can read all of Bob’s incoming email.

Suppose that pkbob and pkalice are public keys for the ElGamal encryption scheme EEG discussed
in Section 11.5, both based on the same group G with generator g 2 G. Then the mail server can
do the translation from pkbob to pkalice while learning nothing about the email contents.

(a) Suppose pkalice = g↵ and pkbob = g↵
0
. Show that giving ⌧ := ↵/↵0 to the mail server

lets it translate an email encrypted under pkbob into an email encrypted under pkalice, and
vice-versa.

(b) Assume that EEG is semantically secure. Show that the adversary cannot break semantic
security for Alice, even if it is given Bob’s public key g↵

0
along with the translation key ⌧ .

11.18 (A voting system). Consider an election system where voters vote for one of two parties
and their vote is either 0 and 1. The election service publishes an ElGamal public-key pk and every
voter sends to the election service its vote bi 2 {0, 1}, encoded as the group element gbi , encrypted
under pk using the multiplicative ElGamal system from Exercise 11.5. The election service needs
to determine how many people voted 0 and how many voted 1. This is equivalent to computing
S :=

Pn
i=1 bi where n is the total number of voters who sent in their encrypted votes. You may

assume that n is at most 109.

(a) Suppose the election service is partitioned into two components, a tabulation service and a
decryption authority. Incoming votes are received by the tabulation service and the decryption
authority is an o✏ine box that holds sk and only communicates with the tabulation service.
Show that the tabulation service can send a single ElGamal ciphertext c⇤ to the decryption
authority who then decrypts c⇤ and outputs S in the clear. If both parties are honestly
following your protocol then neither one learns anything other than S about the individual
votes. Explain how the tabulation service constructs c⇤.

Hint: Use Exercise 11.5 part (c).

(b) Show that a single malicious voter can make S come out to be whatever value that voter
wants.

Discussion: While part (b) shows that this voting system is insecure as is, this idea can form the
basis of a secure election system. See [28] for details.
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Chapter 12

Chosen ciphertext secure public key
encryption

In Chapter 11, we introduced the notion of public-key encryption. We also defined a basic form
of security called semantic security, which is completely analogous to the corresponding notion
of semantic security in the symmetric-key setting. We observed that in the public-key setting,
semantic security implies security against a chosen plaintext attack, i.e., CPA security.

In this chapter, we study the stronger notion of security against chosen ciphertext attack, or
CCA security. In the CPA attack game, the decryption key is never used, and so CPA security
provides no guarantees in any real-world setting in which the decryption key is actually used to
decrypt messages. The notion of CCA security is designed to model a wide spectrum of real-world
attacks, and it is considered the “gold standard” for security in the public-key setting.

We briefly introduced the notion of CCA security in the symmetric-key setting in Section 9.2,
and the definition in the public-key setting is a straightforward translation of the definition in the
symmetric-key setting. However, it turns out CCA security plays a more fundamental role in the
public-key setting than in the symmetric-key setting.

12.1 Basic definitions

As usual, we formulate this notion of security using an attack game, which is a straightforward
adaptation of the CCA attack game in the symmetric settings (Attack Game 9.2) to the public-key
setting.

Attack Game 12.1 (CCA security). For a given public-key encryption scheme E = (G, E, D),
defined over (M, C), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes (pk , sk) R G() and sends pk to the adversary.

• A then makes a series of queries to the challenger. Each query can be one of two types:

– Encryption query: for i = 1, 2, . . . , the ith encryption query consists of a pair of messages
(mi0, mi1) 2 M2, of the same length. The challenger computes ci  R E(pk , mib) and
sends ci to A.
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– Decryption query: for j = 1, 2, . . . , the jth decryption query consists of a ciphertext
ĉj 2 C that is not among the responses to the previous encryption queries, i.e.,

ĉj /2 {c1, c2, . . .}.

The challenger computes m̂j  D(sk , ĉj), and sends m̂j to A.

• At the end of the game, the adversary outputs a bit b̂ 2 {0, 1}.

Let Wb is the event that A outputs 1 in Experiment b and define A’s advantage with respect
to E as

CCAadv[A, E ] :=
�

�Pr[W0]� Pr[W1]
�

�. 2

Definition 12.1 (CCA Security). A public-key encryption scheme E is called semantically
secure against a chosen ciphertext attack, or simply CCA secure, if for all e�cient adver-
saries A, the value CCAadv[A, E ] is negligible.

Just as we did in the symmetric-key setting, we can consider a restricted attack game in which
the adversary makes only a single encryption query:

Definition 12.2 (1CCA security). In Attack Game 12.1, if the adversary A is restricted to
making a single encryption query, we denote its advantage by 1CCAadv[A, E ]. A public-key en-
cryption scheme E is one-time semantically secure against chosen ciphertext attack, or
simply, 1CCA secure, if for all e�cient adversaries A, the value 1CCAadv[A, E ] is negligible.

Notice that if we strip away the decryption queries, 1CCA security corresponds to semantic
security, and CCA security corresponds to CPA security. We showed in Theorem 11.1 that semantic
security for a public-key encryption scheme implies CPA security. A similar result holds with respect
to chosen ciphertext security, namely, that 1CCA security implies CCA security.

Theorem 12.1. If a public-key encryption scheme E is 1CCA secure, then it is also CCA secure.

In particular, for every CCA adversary A that plays Attack Game 12.1 with respect to E, and
which makes at most Qe encryption queries to its challenger, there exists a 1CCA adversary B
as in Definition 12.2, where B is an elementary wrapper around A, such that

CCAadv[A, E ] = Qe · 1CCAadv[B, E ].

The proof is a simple hybrid argument that is almost identical to that of Theorem 11.1, and
we leave the details as an easy exercise to the reader. Using another level of hybrid argument, one
can also extend this to the multi-key setting as well — see Exercise 12.5.

Since 1CCA security implies CCA security, if we want to prove that a particular public-key
encryption scheme is CCA secure, we will typically simply prove 1CCA security. So it will be
helpful to study the 1CCA attack game in a bit more detail. We can view the 1CCA attack game
as proceeding in a series of phases:

Initialization phase: the challenger generates (pk , sk) R G() and sends pk to the adversary.

Phase 1: the adversary submits a series of decryption queries to the challenger; each such query
is a ciphertext ĉ 2 C, to which the challenger responds with m̂ D(sk , ĉ).
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Encryption query: the adversary submits a single encryption query (m0, m1) to the challenger;
in Experiment b (where b = 0, 1), the challenger responds with c R E(pk , mb).

Phase 2: the adversary again submits a series of decryption queries to the challenger; each such
query is a ciphertext ĉ 2 C, subject to the restriction that ĉ 6= c, to which the challenger
responds with m̂ D(sk , ĉ).

Finish: at the end of the game, the adversary outputs a bit b̂ 2 {0, 1}.

As usual, as discussed in Section 2.3.5, Attack Game 12.1 can be recast as a “bit guessing”
game, where instead of having two separate experiments, the challenger chooses b 2 {0, 1} at
random, and then runs Experiment b against the adversary A. In this game, we measure A’s bit-
guessing advantage CCAadv

⇤[A, E ] (and 1CCAadv

⇤[A, E ]) as |Pr[b̂ = b] � 1/2|. The general result
of Section 2.3.5 applies here as well:

CCAadv[A, E ] = 2 · CCAadv

⇤[A, E ]. (12.1)

And similarly, for adversaries restricted to a single encryption query, we have:

1CCAadv[A, E ] = 2 · 1CCAadv

⇤[A, E ]. (12.2)

12.2 Understanding CCA security

The definition of CCA security may seem rather unintuitive at first. Indeed, one might ask: in the
attack game, why can the adversary get any message decrypted except the ones he really wants
to decrypt? One answer is that without this restriction, it would be impossible to satisfy the
definition. However, this is not a very satisfying answer, and it begs the question as to whether the
entire definitional framework makes sense.

In this section, we explore the definition of CCA security from several angles. Hopefully, by the
end, the reader will understand why this definition makes sense, and what it is good for.

12.2.1 CCA security and ciphertext malleability

Our first example illustrates an important property of CCA secure systems: they are non-
malleable. That is, given an encryption c of some message m, the attacker cannot create a di↵erent
ciphertext c0 that decrypts to a message m0 that is somehow related to m. The importance of this
will become clear in the example below.

Consider a professor, Bob, who collects homework by email. Moreover, assume that Bob gen-
erates a public key/secret key pair (pk , sk) for a public-key encryption scheme, and gives pk to all
of his students. When a student Alice submits an email, she encrypts it under pk .

To make things concrete, suppose that the public-key encryption scheme is the semantically
secure scheme ETDF presented in Section 11.4, which is based on a trapdoor function along with
some symmetric cipher Es. The only requirement on Es is that it is semantically secure, so let us
assume that Es is a stream cipher (such as AES in counter mode).

When Alice encrypts the email message m containing her homework using ETDF and pk , the
resulting ciphertext is of the form (y, c), where y = F (pk , x) and c = G(H(x)) �m. Here, H is a
hash function and G is a PRG.
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As we saw in Section 3.3.2, any stream cipher is extremely malleable, and the public-key scheme
ETDF inherits this weakness. In particular, an attacker Molly can do essentially the same thing
here as she did in Section 3.3.2. Namely, assuming that Alice’s email message m starts with the
header From:Alice, by flipping a few bits of the symmetric-key ciphertext c, Molly obtains another
ciphertext c0 that decrypts (under the same symmetric key) to a message m0 that is identical to m,
except that the header now reads From:Molly.

Using the above technique, Molly can “steal” Alice’s homework as follows. She intercepts Alice’s
ciphertext (y, c). She then modifies the symmetric-key ciphertext c to obtain c0 as above, and sends
the public-key ciphertext (y, c0) to Bob. Now, when Professor Bob decrypts (y, c0), he will essentially
see Alice’s homework, but Bob will mistakenly think that the homework was submitted by Molly,
and give Molly credit for it.

The attack described so far is a good example of a chosen ciphertext attack, which could not
succeed if the public-key encryption scheme were actually CCA secure. Indeed, if given (y, c) it is
possible for Molly to create a new ciphertext (y, c0) where the header From:Alice is changed to
From:Molly, then the system cannot be CCA secure. For such a system, we can design a simple
CCA adversary A that has advantage 1 in the CCA security game. Here is how.

• Create a pair of messages, each with the same header, but di↵erent bodies. Our adversary A
submits this pair as an encryption query, obtaining (y, c).

• A then uses Molly’s algorithm to create a ciphertext (y, c0), which should encrypt a message
with a di↵erent header but the same body.

• A then submits (y, c0) as a decryption query, and outputs 0 or 1, depending on which body
it sees.

As we have shown, if Alice encrypts her homework using a CCA-secure system, she is assured
that no one can steal her homework by modifying the ciphertext she submitted. CCA security,
however, does not prevent all attacks on this homework submission system. An attacker can
maliciously submit a homework on behalf of Alice, and possibly hurt her grade in the class. Indeed,
anyone can send an encrypted homework to the professor, and in particular, a homework that
begins with From:Alice. Preventing this type of attack requires tools that we will develop later.
In Section 13.7, where we develop the notion of signcryption, which is one way to prevent this
attack.

12.2.2 CCA security vs authentication

When we first encountered the notion of CCA security in the symmetric-key setting, back in
Section 9.2, we saw that CCA security was implied by AE security, i.e., ciphertext integrity plus
CPA security. Moreover, we saw that ciphertext integrity could be easily added to any CPA-secure
encryption scheme using the encrypt-then-MAC method. We show here that this does not work in
the public-key setting: simply adding an authentication wrapper does not make the system CCA
secure.

Consider again the homework submission system example in the previous section. If we start
with a scheme, like ETDF, which is not itself CCA secure, we might hope to make it CCA secure
using encrypt-then-MAC: Alice wraps the ciphertext (y, c) with some authentication data computed
from (y, c). Say, Alice computes a MAC tag t over (y, c) using a secret key that she shares with Bob
and sends (y, c, t) to Bob (or, instead of a MAC, she computes a digital signature on (y, c), a concept
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discussed in Chapter 13). Bob can check the authentication data to make sure the ciphertext was
generated by Alice. However, regardless of the authentication wrapper used, Molly can still carry
out the attack described in the previous section. Here is how. Molly intercepts Alice’s ciphertext
(y, c, t), and computes (y, c0) exactly as before. Now, since Molly is a registered student in Bob’s
course, she presumably is using the same authentication mechanism as all other students, so she
simply computes her own authentication tag t0 on ciphertext (y, c0) and sends (y, c0, t0) to Bob. Bob
receives (y, c0, t0), and believes the authenticity of the ciphertext. When Bob decrypts (y, c0), the
header From:Molly will look perfectly consistent with the authentication results.

What went wrong? Why did the strategy of authenticating ciphertexts provide us with CCA
security in the symmetric-key setting, but not in the public-key setting? The reason is simply
that in the public-key setting, anyone is allowed to send an encrypted message to Bob using Bob’s
public key. The added flexibility that public-key encryption provides makes it more challenging to
achieve CCA security, yet CCA security is vital for security in real-world systems. (We will discuss
in detail how to securely combine CCA-secure public-key encryption and digital signatures when
we discuss signcryption in Section 13.7.)

12.2.3 CCA security and key escrow

Consider again the key escrow example discussed in Section 11.1.2. Recall that in that example,
Alice encrypts a file f using a symmetric key k. Among other things, Alice stores along with the
encrypted file an escrow of the file’s encryption key. Here, the escrow is an encryption cES of k
under the public key of some escrow service. If Alice works for some company, then if need be,
Alice’s manager or other authorized entity can retrieve the file’s encryption key by presenting cES
to the escrow service for decryption.

If the escrow service uses a CCA-secure encryption scheme, then it is possible to implement
an access control policy which can mitigate against potential abuse. This can be done as follows.
Suppose that in forming the escrow-ciphertext cES, Alice encrypts the pair (k, h) under the escrow
service’s public key, where h is a collision-resistant hash of the metadata md associated with the
file f : this might include the name of the file, the time that it was created and/or modified, and
perhaps the identity of the owner of the file (Alice, in this case). Let us also assume that all of this
metadata md is stored on the file system in the clear along with the encrypted file.

Now suppose a requesting entity presents the escrow-ciphertext cES to the escrow service, along
with the corresponding metadata md . The escrow service may impose some type of access control
policy, based on the given metadata, along with the identity or credentials of the requesting entity.
Such a policy could be very specific to a particular company or organization. For example, the
requesting entity may be Alice’s manager, and it is company policy that Alice’s manager should
have access to all files owned by Alice. Or the requesting entity may be an external auditor that is
to have access to all files created by certain employees on a certain date.

To actually enforce this access control policy, not only must the escrow service verify that the
requesting identity’s credentials and the supplied metadata conform to the access control policy,
the escrow service must also perform the following check: after decrypting the escrow-ciphertext
cES to obtain the pair (k, h), it must check that h matches the hash of the metadata supplied by the
requesting entity. Only if these match does the escrow service release the key k to the requesting
entity.

This type of access control can prevent certain abuses. For example, consider the external
auditor who has the right to access all files created by certain employees on a certain date. Suppose
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the auditor himself is a bit too nosy, and during the audit, wants to find out some information in a
personal file of Alice that is not one of the files targeted by the audit. The above implementation
of the escrow service, along with CCA security, ensures that the nosy auditor cannot obtain this
unauthorized information. Indeed, suppose cES is the escrow-ciphertext associated with Alice’s
personal file, which is not subject to the audit, and that this file has metadata md . Suppose the
auditor submits a pair (c0ES,md 0) to the escrow service. There are several cases to consider:

• if md 0 = md , then the escrow service will reject the request, as the metadata md of Alice’s
personal file does not fit the profile of the audit;

• if md 0 6= md and c0ES = cES, then the collision resistance of the hash ensures that the escrow
service will reject the request, as the hash embedded in the decryption of c0ES will not not
match the hash of the supplied metadata md 0;

• if md 0 6= md and c0ES 6= cES, then the escrow service may or may not accept the request, but
even if it does, CCA security and the fact that c0ES 6= cES ensures that no information about
the encryption key for Alice’s personal file is revealed.

This implementation of an escrow service is pretty good, but it is far from perfect:

• It assumes that Alice follows the protocol of actually encrypting the file encryption key along
with the correct metadata. Actually, this may not be such an unreasonable assumption, as
these tasks will be performed automatically by the file system on Alice’s behalf, and so it
may not be so easy for a misbehaving Alice to circumvent this protocol.

• It assumes that the requesting entity and the escrow service do not collude.

Treating the metadata as associated data. In Section 12.7 we define public-key encryption
with associated data, which is the public-key analogue of symmetric encryption with associated
data from Section 9.5. Here the public-key encryption and decryption algorithms take a third
input called associated data. The point is that decryption reveals no useful information if the given
associated data used in decryption is di↵erent from the one used in encryption.

The metadata information md in the escrow system above can be treated as associated data,
instead of appending it to the plaintext. This will result in a smaller ciphertext while achieving the
same security goals. In fact, associating metadata to a ciphertext for the purpose described above
is a very typical application of associated data in a public-key encryption scheme.

12.2.4 Encryption as an abstract interface

To conclude our motivational discussion of CCA security we show that it abstractly captures a
“correct” and very natural notion of security. We do this by describing encryption as an abstract
interface, as discussed in Section 9.3 in the symmetric case.

The setting is as follows. We have a sender S and receiver R, who are participating in some
protocol, during which S drops messages m1, m2, . . . into his out-box, and R retrieves messages
from his in-box. While S and R do not share a secret key, we assume that R has generated public
key/secret key pair (pk , sk), and that S knows R’s public key pk .

That is the abstract interface. In a real implementation, when mi is placed in S’s out-box, it is
encrypted under pk , yielding a corresponding ciphertext ci, which is sent over the wire to R. On
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the receiving end, when a ciphertext ĉ is received at R’s end of the wire, it is decrypted using sk ,
and if the decryption is a message m̂ 6= reject, the message m̂ is placed in R’s in-box.

Note that while we are syntactically restricting ourselves to a single sender S, this restriction
is superficial: in system with many users, all of them have access to R’s public key, and so we can
model such a system by allowing all users to place messages in S’s out-box.

Just as in Section 9.3, an attacker may attempt to subvert communication in several ways:

• The attacker may drop, re-order, or duplicate the ciphertexts sent by S.

• The attacker may modify ciphertexts sent by S, or inject ciphertexts computed in some
arbitrary fashion.

• The attacker may have partial knowledge — or even influence the choice — of the messages
sent by S.

• The attacker can obtain partial knowledge of some of the messages retrieved by R, and
determine if a given ciphertext delivered to R was rejected.

We now describe an ideal implementation of this interface. It is slightly di↵erent from the ideal
implementation in Section 9.3 — in that section, we were working with the notion of AE security,
while here we are working with the notion of CCA security. When S drops mi in its out-box,
instead of encrypting mi, the ideal implementation creates a ciphertext ci by encrypting a dummy
message dummy i, that has nothing to do with mi (except that it should be of the same length).
Thus, ci serves as a “handle” for mi, but does not contain any information about mi (other than its
length). When ci arrives at R, the corresponding message mi is magically copied from S’s out-box
to R’s in-box. If a ciphertext ĉ arrives at R that is not among the previously generated ci’s, the
ideal implementation decrypts ĉ using sk as usual.

CCA security implies that this ideal implementation of the service is for all practical purposes
equivalent to the real implementation. In the ideal implementation, we see that messages magically
jump from S to R, in spite of any information the adversary may glean by getting R to decrypt
other ciphertexts — the ciphertexts generated by S in the ideal implementation serve simply as
handles for the corresponding messages, but do not carry any other useful information. Hopefully,
analyzing the security properties of a higher-level protocol will be much easier using this ideal
implementation.

Note that even in the ideal implementation, the attacker may still drop, re-order, or dupli-
cate ciphertexts, and these will cause the corresponding messages to be dropped, re-ordered, or
duplicated. A higher-level protocol can easily take measures to deal with these issues.

We now argue informally that when E is CCA secure, the real world implementation is indis-
tinguishable from the ideal implementation. The argument is similar to that in Section 9.3. It
proceeds in two steps, starting with the real implementation, and in each step, we make a slight
modification.

• First, we modify the real implementation of R’s in-box, as follows. When a ciphertext ĉ
arrives on R’s end, the list of ciphertexts c1, c2, . . . previously generated by S is scanned, and
if ĉ = ci, then the corresponding message mi is magically copied from S’s out-box into R’s
in-box, without actually running the decryption algorithm.

The correctness property of E ensures that this modification behaves exactly the same as the
real implementation. Note that in this modification, any ciphertext that arrives at R’s end
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that is not among the ciphertexts previously generated by S will be decrypted as usual using
sk .

• Second, we modify the implementation of S’s out-box, replacing the encryption of mi with the
encryption of dummy i. The implementation of R’s in-box remains as in the first modification.

Here is where we use the CCA security property: if the attacker could distinguish the second
modification from the first, we could use the attacker to break the CCA security of E .

Since the second modification is identical to the ideal implementation, we see that the real and
ideal implementations are indistinguishable from the adversary’s point of view.

Just as in Section 9.3, we have ignored the possibility that the ci’s generated by S are not unique.
Certainly, if we are going to view the ci’s as handles in the ideal implementation, uniqueness would
seem to be an essential property. Just as in the symmetric case, CPA security (which is implied by
CCA security) guarantees that the ci’s are unique with overwhelming probability (the reader can
verify that the result of Exercise 5.11 holds in the public-key setting as well).

12.3 CCA-secure encryption from trapdoor function schemes

We now turn to constructing CCA-secure public-key encryption schemes. We begin with a construc-
tion from a general trapdoor function scheme satisfying certain properties. We use this to obtain
a CCA-secure system from RSA. Later, in Section 12.6, we will show how to construct suitable
trapdoor functions (in the random oracle model) from arbitrary, CPA-secure public-key encryp-
tion schemes. Using the result in this section, all these trapdoor functions give us CCA-secure
encryption schemes.

Consider again the public-key encryption scheme ETDF = (G, E, D) discussed in Section 11.4,
which is based on an arbitrary trapdoor function scheme T = (G, F, I), defined over (X , Y). Let us
briefly recall this scheme: it makes use of a symmetric cipher Es = (Es, Ds), defined over (K, M, C),
and a hash function H : X ! K, which we model as a random oracle. The message space for ETDF

is M and the ciphertext space is Y ⇥ C. The key generation algorithm for ETDF is the same as the
key generation algorithm for T , and encryption and decryption work as follows:

E(pk , m) := x R X , y  F (pk , x), k  H(x), c R Es(k, m)
output (y, c);

D(sk , (y, c) ) := x I(sk , y), k  H(x), m Ds(k, c)
output m.

If X 6= Y, that is, if T is not a trapdoor permutation scheme, we have to modify the scheme
slightly to get a scheme that is CCA secure. Basically, we modify the decryption algorithm to
explicitly check that the given value y 2 Y is actually in the image of F (pk , ·). So the scheme we
will analyze is E 0

TDF = (G, E, D0), where

D0(sk , (y, c) ) := x I(sk , y)
if F (pk , x) = y

then k  H(x), m Ds(k, c)
else m reject

output m.
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We will prove that E 0
TDF is CCA secure if we model H as a random oracle, under appropriate

assumptions. The first assumption we will make is that Es is 1CCA secure (see Section 9.6). We
also have to assume that T is one-way. However, when X 6= Y, we need a somewhat stronger
assumption: that T is one-way even given access to an “image oracle”. Essentially, this means that
given pk and y = F (pk , x) for randomly chosen x 2 X , it is hard to compute x, even given access
to an oracle that will answer arbitrary questions of the form “does a given ŷ 2 Y lie in the image of
F (pk , ·)?”. We formalize this notion by giving an attack game that is similar to Attack Game 10.2,
but where the adversary has access to an image oracle.

Attack Game 12.2 (One-way trapdoor function scheme even with image oracle). For a
given trapdoor function scheme T = (G, F, I), defined over (X , Y), and a given adversary A, the
attack game runs as follows:

• The challenger computes

(pk , sk) R G(), x R X , y  F (pk , x)

and sends (pk , y) to the adversary.

• The adversary makes a series of image oracle queries to the challenger. Each such query is
of the form ŷ 2 Y, to which the challenger replies “yes” if F (pk , I(sk , ŷ)) = ŷ, and “no”
otherwise.

• The adversary outputs x̂ 2 X .

We define the adversary’s advantage in inverting T given access to an image oracle, denoted
IOWadv[A, T ], to be the probability that x̂ = x. 2

Definition 12.3. We say that a trapdoor function scheme T is one way given an image oracle
if for all e�cient adversaries A, the quantity IOWadv[A, T ] is negligible.

In Exercise 12.13 we show that (in the random oracle model) every one way trapdoor function
scheme can be easily converted into one that is one way given an image oracle.

The next theorem proves the CCA security of E 0
TDF, assuming T is one-way given an image ora-

cle, Es is 1CCA secure (see Definition 9.6), and H is modeled as a random oracle. In Exercise 12.12
we explore an alternative analysis of this scheme under di↵erent assumptions.

In proving this theorem, we just prove that E 0
TDF is 1CCA secure (see Definition 12.2). By

virtue of Theorem 12.1, this is su�cient. Recall that in the random oracle model (see Section 8.10),
the function H is modeled as a random function O chosen at random from the set of all functions
Funs[X , K]. This means that in the random oracle version of the 1CCA attack game, the challenger
chooses O at random. In any computation where the challenger would normally evaluate H, it
evaluates O instead. In addition, the adversary is allowed to ask the challenger for the value of the
function O at any point of its choosing. The adversary may make any number of such “random
oracle queries” at any time of its choosing, arbitrarily interleaved with its usual encryption and
decryption queries. We use 1CCAro

adv[A, E 0
TDF] to denote A’s advantage against E 0

TDF in the
random oracle version of the 1CCA attack game.

Theorem 12.2. Assume H : X ! K is modeled as a random oracle. If T is one-way given an
image oracle, and Es is 1CCA secure, then E 0

TDF is CCA secure.
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In particular, for every 1CCA adversary A that attacks E 0
TDF as in the random oracle version of

Definition 12.2, there exist an inverting adversary Biow that breaks the one-wayness assumption
for T as in Attack Game 12.2, and a 1CCA adversary Bs that attacks Es as in Definition 9.6,
where Biow and Bs are elementary wrappers around A, such that

1CCAro
adv[A, E 0

TDF]  2 · IOWadv[Biow, T ] + 1CCAadv[Bs, Es]. (12.3)

For applications of this theorem in the sequel, we record here some further technical properties
that the adversary Biow satisfies.

If A makes at most Qd decryption queries, then Biow makes at most Qd image-oracle queries.
Also, the only dependence of Biow on the function F is that it invokes F (pk , ·) as a subroutine,
at most Qro times, where Qro is a bound on the number of random-oracle queries made by A;
moreover, if Biow produces an output x̂, it always evaluates F (pk , ·) at x̂.

Proof idea. The crux of the proof is to show that the adversary’s decryption queries do not help
him in any significant way. What this means technically is that we have to modify the challenger so
that it can compute responses to the decryption queries without using the secret key sk . The trick
to achieve this is to exploit the fact that our challenger is in charge of implementing the random
oracle, maintaining a table of all input/output pairs. Assume the target ciphertext (i.e., the one
resulting from the encryption query) is (y, c), where y = F (pk , x), and suppose the challenger is
given a decryption query (ŷ, ĉ), where y 6= ŷ = F (pk , x̂).

• If the adversary has previously queried the random oracle at x̂, and if k̂ was the output of
the random oracle at x̂, then the challenger simply decrypts ĉ using k̂.

• Otherwise, if the adversary has not made such a random oracle query, then the challenger
does not know the correct value of the symmetric key — but neither does the adversary. The
challenger is then free to choose a key k̂ at random, and decrypt ĉ using this key; however, the
challenger must do some extra book-keeping to ensure consistency, so that if the adversary
ever queries the random oracle in the future at the point x̂, then the challenger “back-patches”
the random oracle, so that its output at x̂ is set to k̂.

We also have to deal with decryption queries of the form (y, ĉ), where ĉ 6= c. Intuitively, under
the one-wayness assumption for T , the adversary will never query the random oracle at x, and so
from the adversary’s point of view, the symmetric key k used in the encryption query, and used in
decryption queries of the form (y, ĉ), is as good as random, and so CCA security for E 0

TDF follows
immediately from 1CCA security for Es.

In the above, we have ignored ciphertext queries of the form (ŷ, ĉ) where ŷ has no preimage under
F (pk , ·). The real decryption algorithm rejects such queries. This is why we need to assume T is
one-way given an image oracle — in the reduction, we need this image oracle to reject ciphertexts
of this form. 2

Proof. It is convenient to prove the theorem using the bit-guessing versions of the 1CCA attack
games. We prove:

1CCAro
adv

⇤[A, E 0
TDF]  IOWadv[Biow, T ] + 1CCAadv

⇤[Bs, Es]. (12.4)

Then (12.3) follows by (12.2) and (9.2).
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As usual, we define Game 0 to be the game played between A and the challenger in the bit-
guessing version of the 1CCA attack game with respect to E 0

TDF. We then modify the challenger to

obtain Game 1. In each game, b denotes the random bit chosen by the challenger, while b̂ denotes
the bit output by A. Also, for j = 0, 1, we define Wj to be the event that b̂ = b in Game j.

Game 0. The logic of the challenger is shown in Fig. 12.1. The challenger has to respond to
random oracle queries, in addition to encryption and decryption queries. The adversary can make
any number of random oracle queries, and any number of decryption queries, but at most one
encryption query. Recall that in addition to direct access to the random oracle via explicit random
oracle queries, the adversary also has indirect access to the random oracle via the encryption and
decryption queries, where the challenger also makes use of the random oracle. In the initialization
step, the challenger computes (pk , sk) R G(); we also have our challenger make those computations
associated with the encryption query that can be done without yet knowing the challenge plaintext.
To facilitate the proof, we want our challenger to use the secret key sk as little as possible in
processing decryption queries. This will motivate a somewhat nontrivial strategy for implementing
the decryption and random oracle queries.

As usual, we will make use of an associative array to implement the random oracle. In the
proof of Theorem 11.2, which analyzed the semantic security of ETDF, we did this quite naturally
by using an associative array Map : X ! K. We could do the same thing here, but because we want
our challenger to use the secret key as little as possible, we adopt a di↵erent strategy. Namely, we
will represent the random oracle using associative array Map 0 : Y ! K, with the convention that
if the value of the oracle at x̂ 2 X is equal to k̂ 2 K, then Map 0[ŷ] = k̂, where ŷ = F (pk , x̂). We
will also make use of an associative array Pre : Y ! X that is used to track explicit random oracle
queries made by the adversary: if Pre[ŷ] = x̂, this means that the adversary queried the oracle at
the point x̂, and ŷ = F (pk , x̂). Note that Map 0 will in general be defined at points other than those
at which Pre is defined, since the challenger also makes random oracle queries.

In preparation for the encryption query, in the initialization step, the challenger precomputes
x R X , y  F (pk , x), k  R K. It also sets Map 0[y] k, which means that the value of the random
oracle at x is equal to k. Also note that in the initialization step, the challenger sets c  ?, and
in processing the encryption query, overwrites c with a ciphertext in C. Thus, decryption queries
processed while c = ? are phase 1 queries, while those processed while c 6= ? are phase 2 queries.

To process a decryption query (ŷ, ĉ), making minimal use of the secret key, the challenger uses
the following strategy.

• If ŷ = y, the challenger just uses the prepared key k directly to decrypt ĉ.

• Otherwise, the challenger checks if Map 0 is defined at the point ŷ, and if not, it assigns to
Map 0[ŷ] a random value k̂. If ŷ has a preimage x̂ and Map 0 was not defined at ŷ, this means
that neither the adversary nor the challenger previously queried the random oracle at x̂, and
so this new random value k̂ represents the value or the random oracle at x̂; in particular, if
the adversary later queries the random oracle at the point x̂, this same value of k̂ will be
used. If ŷ has no preimage, then assigning Map 0[ŷ] a random value k̂ has no real e↵ect — it
just streamlines the logic a bit.

• Next, the challenger tests if ŷ is in the image of F (pk , ·). If ŷ is not in the image, the
challenger just rejects the ciphertext. In Fig. 12.1, we implement this by invoking the function
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initialization:
(pk , sk) R G(), x R X , y  F (pk , x)
c ?
initialize empty associative arrays Pre : Y ! X and Map 0 : Y ! K
k  R K, b R {0, 1}

(1) Map 0[y] k
send the public key pk to A;

upon receiving an encryption query (m0, m1) 2M2:
b R {0, 1}, c R Es(k, mb), send (y, c) to A;

upon receiving a decryption query (ŷ, ĉ) 2 X ⇥ C, where (ŷ, ĉ) 6= (y, c):
if ŷ = y then

m̂ Ds(k, ĉ)
else

if ŷ /2 Domain(Map 0) then Map 0[ŷ] R K
(2) if Image(pk , sk , ŷ) = “no” // i.e., ŷ is not in the image of F (pk , ·)

then m̂ reject

else k̂  Map 0[ŷ], m̂ Ds(k̂, ĉ)
send m̂ to A;

upon receiving a random oracle query x̂ 2 X :
ŷ  F (pk , x̂), Pre[ŷ] x̂
if ŷ /2 Domain(Map 0) then Map 0[ŷ] R K
send Map 0[ŷ] to A

Figure 12.1: Game 0 challenger

Image(pk , sk , ŷ). For now, we can think of Image as being implemented as follows:

Image(pk , sk , ŷ) :=

⇢

return “yes” if F (pk , I(sk , ŷ)) = ŷ and “no” otherwise

�

.

This is the only place where our challenger makes use of the secret key.

• Finally, if ŷ is in the range of F (pk , ·), the challenger simply decrypts ĉ directly using the
symmetric key k̂ = Map 0[ŷ], which at this point is guaranteed to be defined, and represents
the value of the random oracle at the preimage x̂ of ŷ. Note that our challenger can do this,
without actually knowing x̂. This is the crux of the proof.

Despite this somewhat involved bookkeeping, it should be clear that our challenger behaves
exactly as in the usual attack game.

Game 1. This game is precisely the same as Game 0, except that we delete the line marked (1) in
Fig. 12.1.

Let Z be the event that the adversary queries the random oracle at x in Game 1. Clearly,
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Games 0 and 1 proceed identically unless Z occurs, and so by the Di↵erence Lemma, we have

|Pr[W1]� Pr[W0]|  Pr[Z]. (12.5)

If event Z happens, then at the end of Game 1, we have Pre[y] = x. What we want to do,
therefore, is use A to build an e�cient adversary Biow that breaks the one-wayness assumption
for T with an advantage equal to Pr[Z], with the help of an image oracle. The logic of Biow is
very straightforward. Basically, after obtaining the public key pk and y 2 Y from its challenger in
Attack Game 12.2, Biow plays the role of challenger to A as in Game 1. The value of x is never
explicitly used in that game (other than to compute y), and the value of the secret key sk is not
used, except in the evaluation of the Image function, and for this, Biow can use the image oracle
provided to it in Attack Game 12.2. At the end of the game, if y 2 Domain(Pre), then Biow outputs
x = Pre[y]. It should be clear, by construction, that

Pr[Z] = OWadv[Biow, T ]. (12.6)

Finally, note that in Game 1, the key k is only used to encrypt the challenge plaintext, and to
process decryption queries of the form (y, ĉ), where ĉ 6= c. As such, the adversary is essentially just
playing the 1CCA attack game against Es at this point. More precisely, we can easily derive an
e�cient 1CCA adversary Bs based on Game 1 that uses A as a subroutine, such that

|Pr[W1]� 1/2| = 1CCAadv

⇤[Bs, Es]. (12.7)

This adversary Bs generates (pk , sk) itself and uses sk to answer queries from A.
Combining (12.5), (12.6) and (12.7), we obtain (12.4). That completes the proof of the theorem.

2

12.3.1 Instantiating E 0
TDF with RSA

Suppose we instantiate E 0
TDF using RSA just as we did in Section 11.4.1. The underlying trapdoor

function is actually a permutation on Zn. This implies two things. First, we can omit the check in
the decryption algorithm that y is in the image of the trapdoor function, and so we end up with
exactly the same scheme ERSA as was presented in Section 11.4.1. Second, the implementation of
the image oracle in Attack Game 12.2 is trivial to implement, and so we end up back with Attack
Game 10.2. Theorem 12.2 specializes as follows:

Theorem 12.3. Assume H : X ! K is modeled as a random oracle. If the RSA assumption holds
for parameters (`, e), and Es is 1CCA secure, then ERSA is CCA secure.

In particular, for every 1CCA adversary A that attacks ERSA as in the random oracle version
of Definition 12.2, there exist an RSA adversary Brsa that breaks the RSA assumption for (`, e)
as in Attack Game 10.3, and a 1CCA adversary Bs that attacks Es as in Definition 9.6, where
Brsa and Bs are elementary wrappers around A, such that

1CCAro
adv[A, ERSA]  2 · RSAadv[Brsa, `, e] + 1CCAadv[Bs, Es].
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12.4 CCA-secure ElGamal encryption

We saw that the basic RSA encryption scheme ERSA could be shown to be CCA secure in the random
oracle model under the RSA assumption (and assuming the underlying symmetric cipher was
1CCA secure). It is natural to ask whether the basic ElGamal encryption scheme EEG, discussed in
Section 11.5, is CCA secure in the random oracle model, under the CDH assumption. Unfortunately,
this is not the case: it turns out that a slightly stronger assumption than the CDH assumption is
both necessary and su�cient to prove the security of EEG.

12.4.1 CCA security for basic ElGamal encryption

Recall that the basic ElGamal encryption scheme, EEG = (G, E, D), introduced in Section 11.5. It
is defined in terms of a cyclic group G of prime order q generated by g 2 G, a symmetric cipher
Es = (Es, Ds), defined over (K, M, C), and a hash function H : G! K. The message space of EEG
is M and the ciphertext space is G⇥ C. Public keys are of the form u 2 G and secret keys are of
the form ↵ 2 Zq. The algorithms G, E, and D are defined as follows:

G() := ↵ R Zq, u g↵, pk  u, sk  ↵
output (pk , sk);

E(u, m) := �  R Zq, v  g� , w  u� , k  H(w), c R Es(k, m)
output (v, c);

D(↵, (v, c) ) := w  v↵, k  H(w), m Ds(k, c)
output m.

To see why the CDH assumption by itself is not su�cient to establish the security of EEG
against chosen ciphertext attack, suppose the public key is u = g↵. Now, suppose an adversary
selects group elements v̂ and ŵ in some arbitrary way, and computes k̂  H(ŵ) and ĉ R Es(k̂, m̂)
for some arbitrary message m̂. Further, suppose the adversary can obtain the decryption m⇤ of the
ciphertext (v̂, ĉ). Now, it is very likely that m̂ = m⇤ if and only if ŵ = v̂↵, or in other words, if and
only if (u, v̂, ŵ) is a DH-triple. Thus, in the chosen ciphertext attack game, decryption queries can
be e↵ectively used by the adversary to answer questions of the form “is (u, v̂, ŵ) a DH-triple?” for
group elements v̂ and ŵ of the adversary’s choosing. In general, the adversary would not be able to
e�ciently answer such questions on his own (this is the DDH assumption), and so these decryption
queries may potentially leak some information about the secret key ↵. Based on the current state
of our knowledge, this leakage does not seem to compromise the security of the scheme; however,
we do need to state this as an explicit assumption.

Intuitively, the interactive CDH assumption states that given a random instance (g↵, g�)
of the DH problem, it is hard to compute g↵� , even when given access to a “DH-decision oracle”
that recognizes DH-triples of the form (g↵, ·, ·). More formally, this assumption is defined in terms
of the following attack game.

Attack Game 12.3 (Interactive Computational Di�e-Hellman). Let G be a cyclic group
of prime order q generated by g 2 G. For a given adversary A, the attack game runs as follows.

• The challenger computes

↵, �  R Zq, u g↵, v  g� , w  g↵�

and gives (u, v) to the adversary.
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• The adversary makes a sequence of DH-decision oracle queries to the challenger. Each query
is of the form (ṽ, w̃) 2 G2. Upon receiving such a query, the challenger tests if ṽ↵ = w̃; if so,
he sends “yes” to the adversary, and otherwise, sends “no” to the adversary.

• Finally, the adversary outputs some ŵ 2 G.

We define A’s advantage in solving the interactive computational Di�e-Hellman prob-
lem, denoted ICDHadv[A,G], as the probability that ŵ = w. 2

We stress that in the above attack game, the adversary can ask the challenger for help in
determining whether certain triples are DH-triples, but only triples of the form (u, ·, ·), where u is
generated by the challenger.

Definition 12.4 (Interactive Computational Di�e-Hellman assumption). We say that the
interactive computational Di�e-Hellman (ICDH) assumption holds for G if for all e�cient
adversaries A the quantity ICDHadv[A,G] is negligible.

By the above discussion, we see (at least heuristically) that the ICDH assumption is necessary
to establish the CCA security of EEG. Conversely, one can prove that EEG is CCA secure in the
random oracle model under the ICDH assumption (and assuming also that Es is 1CCA secure);
however, we shall instead analyze a slight variation of EEG, for which the reduction is simpler and
more e�cient. This encryption scheme, which we denote E 0

EG, is exactly the same as EEG, except
that the symmetric key k is derived by hashing both v and w, instead of just w; that is, the hash
function H is now of the form H : G2 ! K, and the symmetric key k is computed as k = H(v, w).

For completeness, we describe the scheme E 0
EG = (G, E, D) in its entirety. It is defined in terms

of a cyclic group G of prime order q generated by g 2 G, a symmetric cipher Es = (Es, Ds), defined
over (K, M, C), and a hash function H : G2 ! K. Public keys are of the form u 2 G and secret
keys are of the form ↵ 2 Zq. The algorithms G, E, and D are defined as follows:

G() := ↵ R Zq, u g↵, pk  u, sk  ↵
output (pk , sk);

E(u, m) := �  R Zq, v  g� , w  u� , k  H(v, w), c R Es(k, m)

output (v, c);

D(↵, (v, c) ) := w  v↵, k  H(v, w), m Ds(k, c)

output m.

The message space is M and the ciphertext space is G ⇥ C. We have highlighted the di↵erences
between E 0

EG and EEG.

Theorem 12.4. Assume H : G2 ! K is modeled as a random oracle. If the ICDH assumption
holds for G, and Es is 1CCA secure, then E 0

EG is CCA secure.

In particular, for every 1CCA adversary A that attacks E 0
EG as in the random oracle version

of Definition 12.2, there exist an ICDH adversary Bicdh for G as in Attack Game 12.3, and
a 1CCA adversary Bs that attacks Es as in Definition 9.6, where Bicdh and Bs are elementary
wrappers around A, such that

1CCAro
adv[A, E 0

EG]  2 · ICDHadv[Bicdh,G] + 1CCAadv[Bs, Es]. (12.8)

In addition, the number of DH-decision oracle queries made by Bicdh is bounded by the number
of random oracle queries made by A.
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Proof. The basic structure of the proof is very similar to that of Theorem 12.2. As in that proof,
it is convenient to use the bit-guessing versions of the 1CCA attack games. We prove

1CCAro
adv

⇤[A, E 0
EG]  ICDHadv[Bicdh,G] + 1CCAadv

⇤[Bs, Es]. (12.9)

Then (12.8) follows by (12.2) and (9.2).
We define Games 0 and 1. Game 0 is the bit-guessing version of Attack Game 12.1 played by

A with respect to E 0
EG. In each game, b denotes the random bit chosen by the challenger, while b̂

denotes the bit output by A. For j = 0, 1, we define Wj to be the event that b̂ = b in Game j.

Game 0. The logic of the challenger is shown in Fig. 12.2. The adversary can make any number
of random oracle queries, and any number of decryption queries, but at most one encryption query.
As usual, in addition to direct access the random oracle via explicit random oracle queries, the
adversary also has indirect access to the random oracle via the encryption and decryption queries,
where the challenger also makes use of the random oracle.

In the initialization step, the challenger computes the secret key ↵ 2 Zq and the public key
u = g↵; it also makes those computations associated with the encryption query that can be done
without yet knowing the challenge plaintext. As in the proof of Theorem 12.2, we want our
challenger to use the secret key ↵ as little as possible in processing decryption queries, and again,
we use a somewhat nontrivial strategy for implementing the decryption and random oracle queries.
Nevertheless, despite the significant superficial di↵erences, this implementation will be logically
equivalent to the actual attack game.

As usual, we will implement the random oracle using an associative array Map : G2 ! K.
However, we will also make use of an auxiliary associative array Map 0 : G ! K. The convention
is that if (u, v̂, ŵ) is a DH-triple, and the value of the random oracle at the point (v̂, ŵ) is k̂, then
Map[v̂, ŵ] = Map 0[v̂] = k̂. However, in processing a decryption query (v̂, ĉ), we may speculatively
assign a random value k̂ to Map 0[v̂], and then later, if the adversary queries the random oracle
at the point (v̂, ŵ), where (u, v̂, ŵ) is a DH-triple, we assign the value k̂ to Map[v̂, ŵ], in order to
maintain consistency.

Now for more details. In preparation for the encryption query, in the initialization step, the
challenger precomputes �  R Zq, v  g� , w  g↵� , k  R K. It also sets Map[v, w] and Map 0[v] to
k, which means that the value of the random oracle at (v, w) is equal to k. Also note that in the
initialization step, the challenger sets c ?, and in processing the encryption query, overwrites c
with a ciphertext in C. Thus, decryption queries processed while c = ? are phase 1 queries, while
those processed while c 6= ? are phase 2 queries.

Processing random oracle queries. When processing a random oracle query (v̂, ŵ), if Map[v̂, ŵ] has
not yet been defined, the challenger proceeds as follows.

• First, it tests if (u, v̂, ŵ) is a DH-triple. In Fig. 12.2, we implement this by invoking the
function DHP(↵, v̂, ŵ). For now, we can think of DHP as being implemented as follows:

DHP(↵, v̂, ŵ) := v̂↵ = ŵ.

This is the only place where our challenger makes use of the secret key.

• If (u, v̂, ŵ) is a DH-triple, the challenger sets Map 0[v̂] to a random value, if it is not already
defined, and then sets Map[v̂, ŵ]  Map 0[v̂]. It also sets Sol [v̂]  ŵ, where Sol : G ! G is
another associative array. The idea is that Sol records solutions to Di�e-Hellman instances
(u, v̂) that are discovered while processing random oracle queries.
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• If (u, v̂, ŵ) is not a DH-triple, then the challenger just sets Map[v̂, ŵ] to a random value.

The result of the random oracle query is always Map[v̂, ŵ].

Processing decryption queries. In processing a decryption query (v̂, ĉ), the challenger proceeds as
follows.

• If v̂ = v, the challenger just uses the prepared key k directly to decrypt ĉ.

• Otherwise, the challenger checks if Map 0 is defined at the point v̂, and if not, it assigns to
Map 0[v̂] a random value. It then uses the value k̂ = Map 0[v̂] directly to decrypt ĉ. Observe
that our challenger performs the decryption without using the solution ŵ to the instance
(u, v̂) of the CDH problem. However, if the adversary queries the random oracle at the point
(v̂, ŵ), the adversary will see the same value k̂, and so consistency is maintained.

Hopefully, it is clear that our challenger behaves exactly as in the usual attack game, despite
the more elaborate bookkeeping.

Game 1. This game is the same as Game 0, except that we delete line (1) in Fig. 12.2.
Let Z be the event that A queries the random oracle at (v, w) in Game 1. It is not hard to see

that Games 0 and 1 proceed identically, unless Z occurs. By the Di↵erence Lemma, we have

|Pr[W1]� Pr[W0]|  Pr[Z]. (12.10)

If event Z happens, then at the end of Game 1, we have Sol [v] = w. What we want to do,
therefore, is use A to build an e�cient adversary Bicdh that breaks the CDH assumption for G,
with the help of a DH-decision oracle, with an advantage equal to Pr[Z]. The logic of Bicdh is very
straightforward. Basically, after obtaining u and v from its challenger in Attack Game 12.3, Bicdh

plays the role of challenger to A as in Game 1. Besides the computation of u, the value of ↵ is
never explicitly used in that game, other than in the evaluation of the DHP function, and for this,
Bicdh can use the DH-decision oracle provided to it in Attack Game 12.3. At the end of the game,
if v 2 Domain(Sol), then Bicdh outputs w = Sol [v].

By construction, it is clear that

Pr[Z] = ICDHadv[Bicdh,G]. (12.11)

Finally, note that in Game 1, the key k is only used to encrypt the challenge plaintext, and to
process decryption queries of the form (v, ĉ), where ĉ 6= c. As such, the adversary is essentially just
playing the 1CCA attack game against Es at this point. More precisely, we can easily derive an
e�cient 1CCA adversary Bs based on Game 1 that uses A as a subroutine, such that

|Pr[W1]� 1/2| = 1CCAadv

⇤[Bs, Es]. (12.12)

We leave the details of Bs to the reader.
Combining (12.10), (12.11), and (12.12), we obtain (12.9). That completes the proof of the

theorem. 2
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initialization:
↵, �  R Zq, u g↵, v  g� , w  g↵�

k  R K, b R {0, 1}
c ?
initialize three empty associative arrays

Map : G2 ! K, Map 0 : G! K, and Sol : G! G
(1) Map[v, w] k, Map 0[v] k

send the public key u to A;

upon receiving an encryption query (m0, m1) 2M2:
c R Es(k, mb), send (v, c) to A;

upon receiving a decryption query (v̂, ĉ) 2 G⇥ C, where (v̂, ĉ) 6= (v, c):
if v̂ = v then

m̂ Ds(k, ĉ)
else

if v̂ /2 Domain(Map 0) then Map 0[v̂] R K
k̂  Map 0[v̂], m̂ Ds(k̂, ĉ)

send m̂ to A;

upon receiving a random oracle query (v̂, ŵ) 2 G2:
if (v̂, ŵ) /2 Domain(Map) then

if DHP(↵, v̂, ŵ) then
if v̂ /2 Domain(Map 0) then Map 0[v̂] R K
Map[v̂, ŵ] Map 0[v̂], Sol [v̂] ŵ

else
Map[v̂, ŵ] R K

send Map[v̂, ŵ] to A

Figure 12.2: Game 0 challenger

Discussion. We proved that E 0
EG is CCA-secure, in the random oracle model, under the ICDH

assumption. Is the ICDH assumption reasonable? On the one hand, in Chapter 16 we will see
groups G where the ICDH assumption is equivalent to the CDH assumption. In such groups
there is no harm in assuming ICDH. On the other hand, the ElGamal system is most commonly
implemented in groups where ICDH is not known to be equivalent to CDH. Is it reasonable to
assume ICDH in such groups? Currently, we do not know of any group where CDH holds, but
ICDH does not hold. As such, it appears to be a reasonable assumption to use when constructing
cryptographic schemes. Later, in Section 12.6.2, we will see a variant of ElGamal encryption that
is CCA-secure, in the random oracle model, under the normal CDH assumption.
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12.5 CCA security from DDH without random oracles

In Section 11.5.2, we proved that EEG was semantically secure without relying on the random oracle
model. Rather, we used the DDH assumption (among other assumptions). Unfortunately, it seems
unlikely that we can ever hope to prove that EEG (or E 0

EG, for that matter) is CCA secure without
relying on random oracles.

In this section, we present a public key encryption scheme that can be proved CCA secure
without relying on the random oracle heuristic. The scheme is based on the DDH assumption (as
well as a few other standard assumptions). The scheme is a variant of one designed by Cramer and
Shoup, and we call it ECS. It is built out of several components:

• a cyclic group G of prime order q with generator g 2 G,

• a symmetric cipher Es = (Es, Ds), defined over (K, M, C),

• a hash function H : G! K,

• a hash function H 0 : G⇥G! Zq.

The message space for ECS is M, and the ciphertext space is G3 ⇥ C. We now describe the key
generation, encryption, and decryption algorithms for ECS.

• the key generation algorithm runs as follows:

G() := ↵ R Zq, u g↵

for i = 1, . . . , 3: �i, ⌧i  R Zq, ui  g�iu⌧
i

pk  (u, u1, u2, u3), sk  (�1, ⌧1, �2, ⌧2, �3, ⌧3)
output (pk , sk);

• for a given public key pk = (u, u1, u2, u3) 2 G4 and message m 2M, the encryption algorithm
runs as follows:

E(pk , m) := �  R Zq, v  g� , w  u� , ⇢ H 0(v, w)

w1  u�
1 , w2  (u2u

⇢
3)

�

k  H(w1), c R Es(k, m)
output (v, w, w2, c);

• for a given secret key sk = (�1, ⌧1, �2, ⌧2, �3, ⌧3) 2 Z6
q and a ciphertext (v, w, w2, c) 2 G3 ⇥ C,

the decryption algorithm runs as follows:

D(sk , (v, w, w2, c) ) := ⇢ H 0(v, w)
if v�2+⇢�3w⌧2+⇢⌧3 = w2

then w1  v�1w⌧1 , k  H(w1), m Ds(k, c)
else m reject

output m.

We first argue that ECS satisfies the basic correctness property, i.e., that decryption undoes
encryption. Consider an arbitrary encryption of a message m, which has the form (v, w, w2, c),
where

v = g� , w = u� , ⇢ = H 0(v, w), w1 = u�
1 , w2 = (u2u

⇢
3)

� , k = H(w1), c = Es(k, m).
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First, observe that

v�2+⇢�3w⌧2+⇢⌧3 = g�(�2+⇢�3)u�(⌧2+⇢⌧3) = (u2u
⇢
3)

� = w2.

This implies that the test in the decryption algorithm succeeds. Second, observe that

v�1w⌧1 = g��1u�⌧1 = u�
1 = w1.

This implies that the decryption algorithm derives the same symmetric key k as was used in
encryption, and correctness for ECS follows from correctness for Es.

We shall prove that ECS is CCA secure under the following assumptions:

• the DDH assumption holds in G;

• Es is 1CCA secure;

• H is a secure KDF (see Definition 11.5);

• H 0 is collision resistant (see Definition 8.1).

One can in fact prove security of ECS under a weaker assumption on H 0 (namely, target collision
resistance — see Definition 8.5). Moreover, a variation of ECS can be proved secure under an
assumption that is somewhat weaker than the DDH assumption (namely, the Hash Di�e-Hellman
assumption, discussed in Exercise 11.13). These results are developed below in the exercises.

Theorem 12.5. If the DDH assumption holds in G, Es is 1CCA secure, H is a secure KDF, and
H 0 is collision resistant, then ECS is CCA secure.

In particular, for every 1CCA adversary A that attacks ECS as in Definition 12.2, and makes at
most Qd decryption queries, there exist a DDH adversary Bddh for G as in Attack Game 10.6,
a 1CCA adversary Bs that attacks Es as in Definition 9.6, a KDF adversary Bkdf that attacks
H as in Attack Game 11.3, and a collision-finding adversary Bcr that attacks H 0 as in Attack
Game 8.1, where Bddh, Bs, Bkdf, Bcr are elementary wrappers around A, such that

1CCAadv[A, ECS]  2
⇣

DDHadv[Bddh,G] + KDFadv[Bkdf, H]

+ CRadv[Bcr, H
0] +

Qd + 1

q

⌘

+ 1CCAadv[Bs, Es].
(12.13)

Proof. As usual, it is convenient to use the bit-guessing versions of the 1CCA attack games. We
prove

1CCAadv

⇤[A, ECS]  DDHadv[Bddh,G] + KDFadv[Bkdf, H]

+ CRadv[Bcr, H
0] +

Qd + 1

q
+ 1CCAadv

⇤[Bs, Es].
(12.14)

Then (12.13) follows by (12.2) and (9.2).
We define a series of games, Game j for j = 0, . . . , 6. Game 0 is the bit-guessing version of

Attack Game 12.1 played by A with respect to ECS. In each game, b denotes the random bit chosen
by the challenger, while b̂ denotes the bit output by A. For j = 0, . . . , 6, we define Wj to be the

event that b̂ = b in Game j.
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initialization:
↵, �  R Zq

(1) �  ↵�
u g↵, v  g� , w  g�

⇢ H 0(v, w)
for i = 1, . . . , 3: �i, ⌧i  R Zq, ui  g�iu⌧

i

(2) w1  u�
1

(3) w2  (u2u
⇢
3)

�

(4) k  H(w1)
b R {0, 1}, c ?
send the public key (u, u1, u2, u3) to A;

upon receiving an encryption query (m0, m1) 2M2:
c R Es(k, mb), send (v, w, w2, c) to A;

upon receiving a decryption query (v̂, ŵ, ŵ2, ĉ) 2 G3 ⇥ C, where (v̂, ŵ, ŵ2, ĉ) 6= (v, w, w2, c):
if (v̂, ŵ, ŵ2) = (v, w, w2) then

m̂ Ds(k, ĉ)
else

⇢̂ H 0(v̂, ŵ)
(5) if v̂�2+⇢̂�3ŵ⌧2+⇢̂⌧3 = ŵ2 then
(6) ŵ1  v̂�1ŵ⌧1

k̂  H(ŵ1), m̂ Ds(k̂, ĉ)
else

m̂ reject

send m̂ to A.

Figure 12.3: Game 0 challenger

Game 0. The logic of the challenger is shown in Fig. 12.3. The adversary can make any number
of decryption queries, but at most one encryption query. Note that in the initialization step, the
challenger performs those computations associated with the encryption query that it can, without
yet knowing the challenge plaintext. Also note that in the initialization step, the challenger sets
c ?, and in processing the encryption query, overwrites c with a ciphertext in C. Thus, decryption
queries processed while c = ? are phase 1 queries, while those processed while c 6= ? are phase 2
queries.

Game 1. We replace the lines marked (2) and (3) in Fig. 12.3 as follows:

(2) w1  v�1w⌧1

(3) w2  v�2+⇢�3w⌧2+⇢⌧3

Basically, we have simply replaced the formulas used to generate w1 and w2 in the encryption
procedure with those used in the decryption procedure. As we already argued above in analyzing
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the correctness property for ECS, these formulas are equivalent. In particular:

Pr[W1] = Pr[W0]. (12.15)

The motivation for making this change is that now, the only place where we use the exponents
↵, �, and � is in the definition of the group elements u, v, and w, which allows us to then play the
“DDH card” in the next step of the proof.

Game 2. We replace the line marked (1) in Fig. 12.3 with

(1) �  R Zq

After this change, the lines marked (1), (2), and (3) in Fig. 12.3 now read as follows:

(1) �  R Zq

(2) w1  v�1w⌧1

(3) w2  v�2+⇢�3w⌧2+⇢⌧3

It is easy to see that
�

�Pr[W1]� Pr[W2]
�

�  DDHadv[Bddh,G] (12.16)

for an e�cient DDH adversary Bddh, which works as follows. After it obtains its DDH problem
instance (u, v, w) from its own challenger, adversary Bddh plays the role of challenger to A in
Game 0, but using the given values u, v, w. If (u, v, w) is a random DH-triple, then this is equivalent
to Game 0, and if (u, v, w) is a random triple, this is equivalent to Game 1. At the end of the game,
Bddh outputs 1 if b̂ = b and 0 otherwise.

Game 3. We replace the line marked (1) in Fig. 12.3 with

(1) �  R Zq \ {↵�}
After this change, the lines marked (1), (2), and (3) in Fig. 12.3 now read as follows:

(1) �  R Zq \ {↵�}
(2) w1  v�1w⌧1

(3) w2  v�2+⇢�3w⌧2+⇢⌧3

Since the statistical distance between the uniform distribution on all triples and the uniform
distribution on all non-DH-triples is 1/q (see Exercise 10.6), it follows that:

�

�Pr[W2]� Pr[W3]
�

�  1

q
. (12.17)

Interlude. Before continuing with the proof, let us see what the changes so far have accomplished.
Consider any fixed values of ↵, �, and � 6= ↵�. Moreover, consider the group elements u1, w1

generated by the challenger. These satisfy the equations

u1 = g�1u⌧1 = g�1+↵⌧1 and w1 = v�1w⌧1 = g��1+�⌧1 .

Taking discrete logarithms, we can write this as a matrix equation
✓

Dloggu1

Dloggw1

◆

=

✓

1 ↵
� �

◆

| {z }

=:M

✓

�1

⌧1

◆

. (12.18)
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Now, the matrix M is non-singular. One way to see this is to calculate its determinant det(M) =
� � ↵� 6= 0. Another way to see this is to observe that the second row of M cannot be a scalar
multiple of the first: if it were, then by looking at the first column of M , the second row of M
would have to be equal to � times the first, and by looking at the second column of M , this would
imply � = ↵�, which is not the case.

Next, observe that �1 and ⌧1 are uniformly and independently distributed over Zq. Since M is
non-singular, it follows from (12.18) that Dloggu1 and Dloggw1 are also uniformly and independently
distributed over Zq. Equivalently, u1 and w1 are uniformly and independently distributed over G.

If the adversary does not submit any decryption oracle queries, he learns nothing more about
u1 and w1, and since w1 is only used to derive the key k and then encrypt mb, security follows
easily from the assumptions that H is a secure KDF and Es is semantically secure.

Unfortunately, if the adversary does make decryption queries, these could potentially leak in-
formation about w1. Specifically, suppose the adversary submits a ciphertext (v̂, ŵ, ŵ2, ĉ) such that
(u, v̂, ŵ) is not a DH-triple, yet passes the test at line (5). Then the value of ŵ1 = v̂�1ŵ⌧1 computed
on line (6), together with the value u1 in the public key, completely determine the values of �1 and
⌧1, and hence the value of w1. This can be seen by again considering a matrix equation as above.
Indeed, if �̂ := Dloggv̂ and �̂ = Dloggŵ, with �̂ 6= ↵�̂, then

✓

Dloggu1

Dloggŵ1

◆

=

✓

1 ↵

�̂ �̂

◆

| {z }

=:cM

.

✓

�1

⌧1

◆

.

Again, the matrix cM is non-singular, and so the values Dloggu1 and Dloggŵ1 completely determine
�1 and ⌧1.

So to complete the proof, we shall argue that with overwhelming probability, the scenario
described in the previous paragraph does not occur. That is, we shall argue that whenever the
adversary submits a ciphertext (v̂, ŵ, ŵ2, ĉ), where (u, v̂, ŵ) is not a DH-triple, the test at line (5)
will pass with only negligible probability. That is the point of including the extra group elements
u2 and u3 in the public key and the extra group element w2 in the ciphertext.

Game 4. This is the same as Game 3, except we replace lines (5) and (6) by

(5) if v̂↵ = ŵ and v̂↵2+⇢̂↵3 = ŵ2 then
(6) ŵ1  v̂↵1

where we define
↵i := �i + ↵⌧i (i = 1, . . . , 3). (12.19)

Observe that if (u, v̂, ŵ) is not a DH-triple, then the modified test in line (5) will not pass; otherwise,
if it is a DH-triple (i.e., v̂↵ = ŵ), one can verify that this test passes if and only if the original test in
Game 3 passes, and the computation of ŵ1 on line (6) is equivalent to that in Game 3. In particular,
this new test is strictly stronger than the test in Game 3. Also notice that the computations in
lines (5) and (6) in Game 4 do not depend directly on the individual values of �1, ⌧1, �2, ⌧2, �3, and
⌧3, but rather, only indirectly, via the values ↵1, ↵2, and ↵3, defined in (12.19). The importance of
this will become evident later in the proof.

After this change, the lines marked (1), (2), (3), (5), and (6) in Fig. 12.3 now read as follows:
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(1) �  R Zq \ {↵�}
(2) w1  v�1w⌧1

(3) w2  v�2+⇢�3w⌧2+⇢⌧3

(5) if v̂↵ = ŵ and v̂↵2+⇢̂↵3 = ŵ2 then
(6) ŵ1  v̂↵1

Define Z to be the event that in Game 4, for some decryption query, the test in line (5) is
performed, and we have ŵ 6= v̂↵ but ŵ2 = w⇤

2, where

w⇤
2 := v̂�2+⇢̂�3ŵ⌧2+⇢̂⌧3 .

Such a ciphertext is rejected in Game 4, but not in Game 3. However, the two games proceed
identically unless Z occurs, and so by the Di↵erence Lemma, we have

�

�Pr[W3]� Pr[W4]
�

�  Pr[Z]. (12.20)

To bound Pr[Z], it will also be convenient to consider the event Z 0 that for the relevant de-
cryption query, we have (v, w) 6= (v̂, ŵ) but H 0(v, w) = H 0(v̂, ŵ), that is, (v, w) and (v̂, ŵ) form a
collision under H 0. Clearly, we have

Pr[Z]  Pr[Z 0] + Pr[¬Z 0 ^ Z]. (12.21)

It should be clear that
Pr[Z 0]  CRadv[Bcr, H

0] (12.22)

for an e�cient collision-finding adversary Bcr. Indeed, adversary Bcr just plays Game 4 and waits
for the event Z 0 to happen.

So now we are left to bound Pr[¬Z 0 ^ Z]. We claim that

Pr[¬Z 0 ^ Z]  Qd

q
, (12.23)

where Qd is an upper bound on the number of decryption queries. To prove (12.23), it will su�ce
to consider the event ¬Z 0 ^ Z for just a single decryption query and apply the union bound.

So consider a fixed decryption query (v̂, ŵ, ŵ2, ĉ), and suppose that ¬Z 0^Z occurs at this query.
We must have (v̂, ŵ, ŵ2) 6= (v, w, w2), as otherwise, we would not even reach the test at line (5).
We must also have (v̂, ŵ) 6= (v, w), as otherwise w⇤

2 = w2 6= ŵ2, and so event Z could not have
occurred at this query. Moreover, since Z 0 does not occur at this query, we must have ⇢̂ 6= ⇢. Let
�̂ := Dloggv̂ and �̂ = Dloggŵ. Since Z occurs at this query, we must have �̂ 6= ↵�̂.

Summarizing, if ¬Z 0 ^ Z occurs at this query, we must have

⇢̂ 6= ⇢, �̂ 6= ↵�̂, and ŵ2 = w⇤
2.

We can express the relationship between the values �2, ⌧2, �3, ⌧3 and the values Dloggu2, Dloggu3,
Dloggw2, Dloggw

⇤
2 as a matrix equation:

0

B

B

@

Dloggu2

Dloggu3

Dloggw2

Dloggw
⇤
2

1

C

C

A

=

0

B

B

@

1 ↵ 0 0
0 0 1 ↵
� � ⇢� ⇢�

�̂ �̂ ⇢̂�̂ ⇢̂�̂

1

C

C

A

| {z }

=:M

0

B

B

@

�2

⌧2
�3

⌧3

1

C

C

A

. (12.24)
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An essential fact is that the matrix M is non-singular. Indeed, one can again just compute the
determinant

det(M) = (⇢� ⇢̂)(� � ↵�)(�̂ � ↵�̂),

which is nonzero under our assumptions.
Since �2, ⌧2, �3, and ⌧3 are uniformly and independently distributed over Zq, and M is non-

singular, the values Dloggu2, Dloggu3, Dloggw2, and Dloggw
⇤
2 are also uniformly and independently

distributed over Zq. Moreover, in Game 4, the only information the adversary obtains about �2,
⌧2, �3, and ⌧3 is that implied by the values Dloggu2, Dloggu3, and Dloggw2. This is where we use
the fact that the test at line (5) is now implemented in terms of the values ↵2 = Dloggu2 and
↵3 = Dloggu3, defined in (12.19). That is, the test itself only uses information that is already
present in the public key. It follows that the value ŵ2 computed by the adversary is independent
of the correct value w⇤

2; therefore, ŵ2 = w⇤
2 with probability 1/q. The bound (12.23) then follows

from the union bound.

Game 5. We replace the line marked (2) with

(2) w1  R G

After this change, the lines marked (1), (2), (3), (5), and (6) in Fig. 12.3 now read as follows:

(1) �  R Zq \ {↵�}
(2) w1  R G
(3) w2  v�2+⇢�3w⌧2+⇢⌧3

(5) if v̂↵ = ŵ and v̂↵2+⇢̂↵3 = ŵ2 then
(6) ŵ1  v̂↵1

We claim that
Pr[W5] = Pr[W4]. (12.25)

This is because, as already argued in the analysis of Game 2, the values Dloggu1 and Dloggw1 are
related to the random values �1 and ⌧1 by the matrix equation (12.18), where the matrix M is
non-singular. Moreover, in Game 4, the only information the adversary obtains about �1 and ⌧1 is
that implied by Dloggu1 and Dloggw1. This is where we use the fact that the computation at line
(6) is implemented in terms of ↵1 = Dloggu1. That is, the computation of ŵ1 at line (6) only uses
information that is already present in the public key. Thus, replacing w1 by a truly random group
element does not really change the game at all.

Game 6. Finally, the stage is set to play our “KDF card” and “1CCA card”. We replace the line
marked (4) by

(4) k  R K
After this change, the lines marked (1)–(6) in Fig. 12.3 now read as follows:

(1) �  R Zq \ {↵�}
(2) w1  R G
(3) w2  v�2+⇢�3w⌧2+⇢⌧3

(4) k  R K
(5) if v̂↵ = ŵ and v̂↵2+⇢̂↵3 = ŵ2 then
(6) ŵ1  v̂↵1
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It should be clear that

�

�Pr[W5]� Pr[W6]
�

�  KDFadv[Bkdf, H] (12.26)

and
�

�Pr[W6]� 1/2
�

� = 1CCAadv

⇤[Bs, Es], (12.27)

where Bkdf is an e�cient adversary attacking H as a KDF, and Bs is a 1CCA adversary attacking
Es.

The bound (12.14) now follows directly from (12.15), (12.16), (12.17), (12.20), (12.21), (12.22),
(12.23), (12.25), (12.26), and (12.27). That completes the proof of the theorem. 2

12.6 CCA security via a generic transformation

We have presented several constructions of CCA-secure public key encryption schemes. In Sec-
tion 12.3, we saw how to achieve CCA security in the random oracle model using a trapdoor
function scheme, and in particular (in Section 12.3.1) with RSA. In Section 12.4, we saw how to
achieve CCA security in the random oracle model under the interactive CDH assumption, and with
a bit more e↵ort, we were able to achieve CCA security in Section 12.5 without resorting to the
random oracle model, but under the DDH assumption.

It is natural to ask if there is a generic transformation that converts any CPA-secure public key
encryption scheme into one that is CCA-secure, as we did for symmetric encryption in Chapter 9.
The answer is yes. In the random oracle model it is possible to give a simple and e�cient transfor-
mation from CPA-security to CCA-security. This transformation, called the Fujisaki-Okamoto
transformation, allows one to e�ciently convert any public-key encryption scheme that satisfies a
very weak security property (weaker than CPA security) into a public-key encryption scheme that
is CCA-secure in the random oracle model. It is possible, in principle, to give a similar transfor-
mation without relying on random oracles, however, the known constructions are too ine�cient to
be used in practice [33].

Applications. We show in Section 12.6.2 that applying the Fujisaki-Okamoto transformation to
a variant of ElGamal encryption, gives a public key encryption scheme that is CCA-secure in the
random oracle model under the ordinary CDH assumption, rather than the stronger, interactive
CDH assumption. (Exercise 12.23 develops another approach to achieving the same result, with a
tighter security reduction to the CDH assumption).

Beyond ElGamal, the Fujisaki-Okamoto transformation can be applied to other public key
encryption schemes, such as Regev’s lattice-based encryption scheme discussed in Chapter 17, the
McEliece coding-based scheme [73], and the NTRU scheme [54]. All these systems can be made
CCA secure, in the random oracle model, using the technique in this section.

The Fujisaki-Okamoto transformation. It is best to understand the Fujisaki-Okamoto trans-
formation as a technique that allows us to build a trapdoor function scheme TFO that is one way,
even given an image oracle (as in Definition 12.3), starting from any one-way, probabilistic public-
key encryption scheme Ea = (Ga, Ea, Da). We can then plug TFO into the construction E 0

TDF
presented in Section 12.3, along with a 1CCA symmetric cipher, to obtain a public-key encryption
scheme EFO that is CCA secure in the random oracle model.
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Let Ea = (Ga, Ea, Da) be an arbitrary public-key encryption scheme with message space X and
ciphertext space Y.

• The encryption algorithm Ea may be probabilistic, and in this case, it will be convenient to
make its random coin tosses explicit. To this end, let us view Ea as a deterministic algorithm
that takes three inputs: a public key pk , a message x 2 X , and a randomizer r 2 R, where R
is some finite randomizer space. To encrypt a message x 2 X under a public key pk , one
chooses r 2 R at random, and then computes the ciphertext Ea(pk , x; r).

• In general, the decryption algorithm Da may return the special symbol reject; however, we will
assume that this is not the case. That is, we will assume that Da always returns an element in
the message space X . This is not a serious restriction, as we can always modify the decryption
algorithm so as to return some default message instead of reject. This assumption will simplify
the presentation somewhat.

The Fujisaki-Okamoto transformation applied to Ea = (Ga, Ea, Da) works as follows. We will
also need a hash function U : X ! R, mapping messages to randomizers, which will be modeled
as a random oracle in the security analysis. The trapdoor function scheme is TFO = (Ga, F, Da),
defined over (X , Y), where

F (pk , x) := Ea(pk , x; U(x)). (12.28)

To prove that TFO is one way given an image oracle, in addition to modeling U as a random
oracle, we will need to make the following assumptions, which will be made more precise below:

1. Ea is one way, which basically means that given an encryption of a random message x 2 X ,
it is hard to compute x;

2. Ea is unpredictable, which basically means that a random re-encryption of any ciphertext
y 2 Y is unlikely to be equal to y.

We now make the above assumptions more precise. As usual, the one-wayness property is
defined in terms of an attack game.

Attack Game 12.4 (One-way encryption). For a given public-key encryption scheme Ea =
(Ga, Ea, Da) with message space X , ciphertext space Y, and randomizer space R, and a given
adversary A, the attack game proceeds as follows:

• The challenger computes

(pk , sk) R Ga(), x R X , r  R R, y  Ea(pk , r; s),

and sends (pk , y) to the adversary.

• The adversary outputs x̂ 2 R.

We say A wins the above game if x̂ = x, and we define A’s advantage OWadv[A, Ea] to be the
probability that A wins the game. 2

Definition 12.5 (One-way encryption). A public-key encryption scheme Ea is one way if for
every e�cient adversary A, the value OWadv[A, Ea] is negligible.
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Note that because Ea may be probabilistic, an adversary that wins Attack Game 12.4 may not
even know that they have won the game.

We define unpredictable encryption as follows.

Definition 12.6 (Unpredictable encryption). Let Ea = (Ga, Ea, Da) be a given public-key
encryption scheme with message space X , ciphertext space Y, and randomizer space R. We say Ea
is ✏-unpredictable if for every possible output (pk , sk) of Ga and every y 2 Y, if we choose r 2 R
at random, then we have

Pr[Ea(pk , Da(sk , y); r) = y]  ✏.

We say Ea is unpredictable if it is ✏-unpredictable for negligible ✏.

We note that the one-wayness assumption is implied by semantic security (see Exercise 12.9).
We also note that, any public-key encryption scheme that is semantically secure typically is also
unpredictable, even though this is not implied by the definition. Moreover, any public-key encryp-
tion scheme can be easily transformed into one that satisfies this assumption, without a↵ecting the
one-wayness assumption (see Exercise 12.10).

Theorem 12.6. If U is modeled as a random oracle, and if Ea is one way and unpredictable, then
the trapdoor function scheme TFO, resulting from the Fujisaki-Okamoto transformation (12.28), is
one way given an image oracle.

In particular, assume that Ea is ✏-unpredictable. Also assume that adversary A attacks TFO as
in the random oracle version of Attack Game 12.2, and makes at most Qio image oracle queries
and Qro random oracle queries. Moreover, assume that A always includes its output among
its random oracle queries. Then there exists an adversary Bow that breaks the one-wayness
assumption for Ea as in Attack Game 12.4, where Bow is an elementary wrapper around A, such
that

OWro
adv[A, TFO]  Qio · ✏ + Qro · OWadv[B, Ea]. (12.29)

Proof. We define Game 0 to be the game played between A and the challenger in the random oracle
version of Attack Game 12.2 with respect to TFO = (Ga, F, Da). We then modify the challenger
several times to obtain Games 1, 2, and so on. In each game, x denotes the random element of
X chosen by the challenger. For j = 0, 1, . . . , we define Wj to be the event that x is among the
random oracle queries made by A in Game j. As stated above, we assume that A always queries
the random oracle at its output value: this is a reasonable assumption, and we can always trivially
modify an any adversary to ensure that it behaves this way, increasing its random-oracle queries
by at most 1. Clearly, we have

OWro
adv[A, TFO]  Pr[W0]. (12.30)

Game 0. The challenger in Game 0 has to respond to random oracle queries, in addition to image
oracle queries. We make use of an associative array Map : X ! R to implement the random oracle
representing the hash function U . The logic of the challenger is shown in Fig. 12.4. The adversary
can make any number of random oracle queries and any number of image queries. The associative
array Pre : Y ! X is used to track the adversary’s random oracle queries. Basically, Pre[ŷ] = x̂
means that ŷ is the image of x̂ under F (pk , ·).
Game 1. In this game, we make the following modification to the challenger. The line marked (2)
in the logic for processing decryption queries is modified as follows:
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initialization:
(pk , sk) R Ga(), x R X , r  R R, y  Ea(pk , x; r)
initialize empty associative arrays Map : X ! R and Pre : Y ! X

(1) Map[x] r
send the public key pk to A;

upon receiving an image oracle query ŷ 2 Y:
if ŷ = y then

result  “yes”
else

x̂ Da(sk , ŷ)
if x̂ /2 Domain(Map) then Map[x̂] R X
r̂  Map[x̂]

(2) if Ea(pk , x̂; r̂) = ŷ
then result  “yes”
else result  “no”

send result to A;

upon receiving a random oracle query x̂ 2 X :
if x̂ /2 Domain(Map) then Map[x̂] R R
r̂  Map[x̂], ŷ  Ea(pk , x̂; r̂), Pre[ŷ] x̂
send r̂ to A

Figure 12.4: Game 0 challenger

(2) if ŷ 2 Domain(Pre)

Let Z1 be the event that in Game 1, the adversary submits an image oracle query ŷ such that

ŷ 6= y, ŷ /2 Domain(Pre), and Ea(pk , x̂; r̂) = ŷ,

where x̂ and r̂ are computed as in the challenger. It is clear that Games 0 and 1 proceed identically
unless Z1 occurs, and so by the Di↵erence Lemma, we have

|Pr[W1]� Pr[W0]|  Pr[Z1]. (12.31)

We argue that
Pr[Z1]  Qio · ✏, (12.32)

where we are assuming that Ea is ✏-unpredictable. Indeed, observe that in Game 1, if A makes an
image query ŷ with

ŷ 6= y and ŷ /2 Domain(Pre),

then either

• x̂ = x, and so Ea(pk , x̂; r̂) = y 6= ŷ with certainty, or
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upon receiving an image oracle query ŷ 2 Y:
if ŷ 2 {y} [Domain(Pre) then

then result  “yes”
else result  “no”

send result to A

Figure 12.5: Modified logic for image oracle queries

• x̂ 6= x, and so r̂ is independent of A’s view, from which it follows that Ea(pk , x̂; r̂) = ŷ with
probability at most ✏.

The inequality (12.32) then follows by the union bound.

Game 2. This game is the same Game 1, except that we implement the image oracle queries using
the logic described in Fig. 12.5. The idea is that in Game 1, we do not really need to use the secret
key to implement the image oracle queries.

It should be clear that
Pr[W2] = Pr[W1]. (12.33)

Since we do not use the secret key at all in Game 2, this makes it easy to play our “one-wayness
card.”

Game 3. In this game, we delete the line marked (1) in Fig. 12.4.
We claim that

Pr[W3] = Pr[W2]. (12.34)

Indeed, Games 2 and 3 proceed identically until A queries the random oracle at x. So if W2 does
not occur, neither does W3, and if W3 does not occur, neither does W2. That is, W2 and W3 are
identical events.

We sketch the design an e�cient adversary B such that

Pr[W3]  Qro · OWadv[B, Ea]. (12.35)

The basic idea, as usual, is that B plays the role of challenger to A, as in Game 3, except that the
values pk , sk , x, r, and y are generated by B’s OW challenger, from which B obtains the values
pk and y. Adversary B interacts with A just as the challenger in Game 3. The key observation is
that B does not need to know the values sk , x, and r in order to carry out its duties. At the end of
the game, if A made a random oracle query at the point x, then the value x will be contained in
the set Domain(Map). In general, it may not be easy to determine which of the values in this set
is the correct decryption of y, and so we use our usual guessing strategy; namely, B simply chooses
an element at random from Domain(Map) as its guess at the decryption of y. It is clear that the
inequality (12.35) holds.

The inequality (12.29) now follows from (12.30)–(12.35). That proves the theorem. 2
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12.6.1 A generic instantiation

Putting all the pieces together, we get the following public-key encryption scheme EFO. The com-
ponents consist of:

• a public-key encryption scheme Ea = (Ga, Ea, Da), with message space X , ciphertext space
Y, and randomizer space R;

• a symmetric cipher Es = (Es, Ds), with key space K and message space M;

• hash functions H : X ! K and U : X ! R.

The scheme EFO = (Ga, E, D) has message space M and ciphertext space Y ⇥ C. Encryption and
decryption work as follows:

E(pk , m) := x R X , r  U(X), y  Ea(pk , x; r)
k  H(x), c R Es(k, m)
output (y, c);

D(sk , (y, c) ) := x I(sk , y), r  U(x)
if Ea(pk , x; r) 6= y

then m reject

else k  H(x), m Ds(k, c)
output m.

Combining Theorem 12.2 and Theorem 12.6, we immediately get the following:

Theorem 12.7. If H and U are modeled as a random oracles, Ea is one way and unpredictable,
and Es is 1CCA secure, then the above public-key encryption scheme EFO is CCA secure.

In particular, assume that that Ea is ✏-unpredictable. Then for every 1CCA adversary A that
attacks EFO as in the random oracle version of Definition 12.2, and which makes at most Qd

decryption queries, QH queries to the random oracle for H, and QU queries to the random
oracle for U , there exist an adversary Bow that breaks the one-wayness assumption for Ea as in
Attack Game 12.4, and a 1CCA adversary Bs that attacks Es as in Definition 9.6, where Bow

and Bs are elementary wrappers around A, such that

1CCAro
adv[A, EFO]  2(QH + QU ) · OWadv[Bow, Ea] + 2Qd · ✏ + 1CCAadv[Bs, Es]. (12.36)

12.6.2 A concrete instantiation with ElGamal

In the Fujisaki-Okamoto transformation, we can easily use a variant of ElGamal encryption in the
role of Ea. Let G be a cyclic group of prime order q generated by g 2 G. We define a public-key
encryption scheme Ea = (Ga, Ea, Da), with message space G, ciphertext space G2, and randomizer
space Zq. Public keys are of the form u 2 G and secret keys of the form ↵ 2 Zq. Key generation,
encryption, and decryption work as follows:

Ga() := ↵ R Zq, u g↵, pk  u, sk  ↵
output (pk , sk);

Ea(u, x; �) := v  g� , w  u� , y  wx
output (v, y);

Da(↵, (v, y)) := w  v↵, x y/w
output x.
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We called this scheme multiplicative ElGamal in Exercise 11.5, where we showed that it is seman-
tically secure under the DDH assumption. It easily verified that Ea has the following properties:

• Ea is one-way under the CDH assumption. Indeed, an adversary A that breaks the one-
wayness assumption for Ea is easily converted to an adversary B that breaks the CDH with
same advantage. Given an instance (u, v) 2 G2 of the CDH problem, adversary B plays the
role of challenger against A in Attack Game 12.4 as follows:

– B sets y  R G, and gives A the public key u and the ciphertext (v, y);

– when A outputs x 2 G, adversary B outputs w  y/x.

Clearly, if x is the decryption of (v, y), then w = y/x is the solution to the given instance
(u, v) of the CDH problem.

• Ea is 1/q-unpredictable. Moreover, under the CDH assumption, it must be the case that 1/q
is negligible.

Putting all the pieces together, we get the following public-key encryption scheme EEG
FO = (G, E, D).

The components consist of:

• a cyclic group G of prime order q generated by g 2 G;

• a symmetric cipher Es = (Es, Ds), with key space K and message space M;

• hash functions H : G! K and U : G! Zq.

The message space of EEG
FO is M and its ciphertext space is G2⇥C. Public keys are of the form u 2 G

and secret keys of the form ↵ 2 Zq. The key generation, encryption, and decryption algorithms
work as follows:

G() := := ↵ R Zq, u g↵, pk  u, sk  ↵
output (pk , sk);

E(u, m) := x R G, �  U(x), v  g� , w  u� , y  w · x
k  H(x), c R Es(k, m)
output (v, y, c);

D(↵, (v, y, c)) := w  v↵, x y/w, �  U(x)
if g� = v

then k  H(x), m Ds(k, c)
else m reject

output m.

Here, we have optimized the decryption algorithm a bit: if v = g� , then it follows that Ea(pk , x; �) =
(g� , u�x) = (v, y), and so it is unnecessary to execute all of algorithm Ea.

As a special case of Theorem 12.7, we get the following:

Theorem 12.8. If H and U are modeled as a random oracles, the CDH assumption holds for G,
and Es is 1CCA secure, then the above public-key encryption scheme EEG

FO is CCA secure.
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In particular, for every 1CCA adversary A that attacks EEG
FO as in the random oracle version

of Definition 12.2, and which makes at most Qd decryption queries, QH queries to the random
oracle for H, and QU queries to the random oracle for U , there exist an adversary Bcdh that
breaks the CDH assumption for G as in Attack Game 10.5, and a 1CCA adversary Bs that
attacks Es as in Definition 9.6, where Bcdh and Bs are elementary wrappers around A, such that

1CCAro
adv[A, EEG

FO ]  2(QH + QU ) · CDHadv[Bcdh,G] + 2Qd/q + 1CCAadv[Bs, Es]. (12.37)

Contrast this result to the construction in Section 12.4.1: to achieve CCA security, instead of
the ordinary CDH assumption, that scheme requires the stronger, interactive CDH assumption.

12.7 CCA-secure public-key encryption with associated data

In Section 9.6, we introduced the notion of CCA security for symmetric-key ciphers with associated
data. In this section, we briefly sketch how this notion can be adapted to public-key encryption.

First, we have to deal with the syntactic changes. A public-key encryption scheme E = (G, E, D)
with associated data, or AD public-key encryption scheme, has the same basic structure as
an ordinary public-key encryption scheme, except that the encryption algorithm E and decryption
algorithm D each take an additional input d, called the associated data. Thus, E gets invoked
as c R E(pk , m, d), and D gets invoked as m D(sk , c, d). As usual, we require that ciphertexts
generated by E are correctly decrypted by D, as long as both are given the same associated data.
That is, for all possible outputs (pk , sk) of G, and all messages m and associated data d, we have

Pr[D(sk , E(pk , m, d), d ) = m] = 1.

Messages lie in some finite message space M, ciphertexts in some finite ciphertext space C, and
associated data in some finite space D . We say that E is defined over (M, D, C).

Definition 12.7 (CCA and 1CCA security with associated data). The definition of CCA
security for ordinary public-key encryption schemes carries over naturally to AD public-key en-
cryption schemes. Attack Game 12.1 is modified as follows. For encryption queries, in addition
to a pair of messages (mi0, mi1), the adversary also submits associated data di, and the challenger
computes ci  R E(pk , mib, di). For decryption queries, in addition to a ciphertext ĉj, the adversary

submits associated data d̂j, and the challenger computes m̂j  D(sk , ĉj , d̂j). The restriction is that

the pair (ĉj , d̂j) may not be among the pairs (c1, d1), (c2, d2), . . . corresponding to previous encryp-
tion queries. An adversary A’s advantage in this game is denoted CCAadadv[A, E ], and the scheme
is said to be CCA secure if this advantage is negligible for all e�cient adversaries A. If we
restrict the adversary to a single encryption query, as in Definition 12.2, the advantage is denoted
1CCAadadv[A, E ], and the scheme is said to be 1CCA secure if this advantage is negligible for all
e�cient adversaries A.

Observations. We make a couple of simple observations.

• Theorem 12.1 carries over to AD schemes. That is, if an AD public-key encryption scheme is
1CCA secure, then it is also CCA secure. The proof and concrete security bounds go through
with no real changes.
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• All of the CCA-secure public-key encryption schemes presented in this chapter can be trivially
converted to CCA-secure AD public-key encryption schemes, simply by replacing the sym-
metric cipher Es used in each construction with a 1CCA-secure AD cipher. The associated
data for the AD public-key scheme is simply passed through to the AD symmetric-key cipher,
in both the encryption and decryption algorithms.

Applications. CCA-secure AD public-key encryption has a number of natural applications. One
such application is the key-escrow application, which we discussed in Section 12.2.3. In this appli-
cation, we escrowed a file-encryption key k by encrypting the pair (k, h) under the public-key of a
key escrow service. Here, h was the collision-resistant hash of some metadata md associated with
the file, and the public-key encryption scheme used by the escrow service was assumed CCA se-
cure. By encrypting the pair (k, h), the escrow service could enforce various access control policies,
based on the metadata and the identity or credentials of an entity requesting the key k. However,
the metadata itself was considered public information, and it did not really need to be encrypted,
except that we wanted it to be bundled in some non-malleable way with the key k. This same e↵ect
can be achieved more naturally and e�ciently by using a CCA-secure AD public-key encryption
scheme, as follows. When the key k is escrowed, the escrow-ciphertext is generated by encrypting k
using the metadata md as associated data. When a requesting entity presents a pair (c,md) to the
escrow service, the service checks that that the requesting identity’s credentials and the supplied
metadata conform to the access control policy, and if so, decrypts c using the supplied metadata md
as associated data. The access control policy is enforced by the CCA-security property: attempting
to decrypt the escrow-ciphertext using non-matching metadata as associated data will not leak any
information about the corresponding file-encryption key.

We will also make use use of CCA-secure AD public-key encryption in building signcryption
schemes (see Section 13.7.3).

12.8 Case study: PKCS1, OAEP, OAEP+, and SAEP

The most widely used public-key encryption scheme using RSA is described in a standard from
RSA Labs called PKCS1. This scheme is quite di↵erent from the scheme ERSA we presented in
Section 12.3.1.

Why does the PKCS1 standard not use ERSA? The reason is that when encrypting a short
message — much shorter than the RSA modulus n — a PKCS1 ciphertext is more compact than
an ERSA ciphertext. The ERSA scheme outputs a ciphertext (y, c) where y is in Zn and c is a
symmetric ciphertext, while a PKCS1 ciphertext is only a single element of Zn.

Public-key encryption for short messages is used in a variety of settings. For example, in some
key exchange protocols, public-key encryption is only applied to short messages: a symmetric key
and some metadata. Similarly, in some access control systems, one encrypts a short access token
and nothing else. In these settings, schemes like PKCS1 are more space e�cient than ERSA. It
is worth noting, however, that the ElGamal scheme E 0

EG can produce even shorter ciphertexts
(although encryption time with ElGamal is typically higher than with RSA).

Our goal in this section is to study PKCS1, and more generally, public-key encryption schemes
based on a trapdoor function T = (G, F, I) defined over (X , Y), where the ciphertext is just a single
element of Y.
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12.8.1 Padding schemes

Let T = (G, F, I) be a trapdoor function defined over (X , Y), and let M be some message space,
where |M|⌧ |X |. Our goal is to design a public-key encryption scheme where a ciphertext is just
a single element in Y. To do so, we use the following general paradigm: to encrypt a message
m 2 M, the encryptor “encodes” the given message as an element of X , and then applies the
trapdoor function to the encoded element to obtain a ciphertext c 2 Y. The decryptor inverts the
trapdoor function at c, and decodes the resulting value to obtain the message m.

As a first naive attempt, suppose X := {0, 1}t and M := {0, 1}s, where, say, t = 2048 and
s = 256. To encrypt a message m 2M using the public key pk do

E(pk , m) := F
�

pk , 0t�s k m
�

.

Here we pad the message m in M with zeros so that it is in X . To decrypt a ciphertext c, invert
the trapdoor function by computing I(sk , c) and strip o↵ the (t� s) zeros on the left.

This naive scheme uses deterministic encryption and is therefore not even CPA secure. It should
never be used. Instead, to build a secure public-key scheme we need a better way to encode the
message m 2 M into the domain X of the trapdoor function. The encoding should be invertible
to enable decryption, and should be randomized to have some hope of providing CPA security, let
alone CCA security. Towards this goal, let us define the notion of a padding scheme.

Definition 12.8. A padding scheme PS = (P, U), defined over (M, R, X ), is a pair of e�cient
algorithms, P and U , where P : M ⇥ R ! X and U : X ! M [ { reject } is its inverse in the
following sense: U(x) = m whenever x = P (m, r) for some (m, r) 2M⇥R, and U(x) = reject if
x is not in the image of P .

For a given padding scheme (P, U) defined over (M, R, X ), let us define the following pubic-key
encryption scheme Epad = (G, E, D) derived from the trapdoor function T = (G, F, I):

E(pk ,m) := D(sk ,c) :=

r  R R, x P (m, r), x I(sk , c),

c F (pk , x), m U(x),

output c; output m.

(12.38)

When the trapdoor function T is RSA it will be convenient to call this scheme RSA-PS encryption.
For example, when RSA is coupled with PKCS1 padding we obtain RSA-PKCS1 encryption.

The challenge now is to design a padding scheme PS for which Epad can be proven CCA secure,
in the random oracle, under the assumption that T is one way. Many such padding schemes have
been developed with varying properties. In the next subsections we describe several such schemes,
their security properties, and limitations.

12.8.2 PKCS1 padding

The oldest padding scheme, which is still in use today, is called PKCS1 padding.
To describe this padding scheme let assume from now on that the domain X of the trapdoor

function is 08 ⇥ {0, 1}t�8, where t is a multiple of 8. That is, X consists of all t-bit strings whose
left-most 8 bits are zero. These zero bits are meant to accommodate a t-bit RSA modulus, so that
all such strings are binary encodings of numbers that are less than the RSA modulus. The message
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00 02 non-zero random bytes r 00 mx :=

16 bits s bits

t bits

Figure 12.6: PKCS1 padding (mode 2)

space M consists of all bit strings whose length is a multiple of 8, but at most t� 88. The PKCS1
standard is very much byte oriented, which is why all bit strings are multiples of 8. The number
88 is specified in the standard: the message to be encrypted must be at least 11 bytes (88 bits)
shorter than the RSA modulus. For an RSA modulus of size 2048 bits, the message can be at most
245 bytes (1960 bits). In practice, messages are often only 32 bytes (256 bits).

The PKCS1 padding algorithm is shown in Fig. 12.6. A double-digit number, like 00 or 02, in
the figure denotes a one-byte (8-bit) value in hexadecimal notation. Here, s is the length of the
message m. The randomizer r shown in the figure is a sequence of (t� s)/8� 3 random non-zero
bytes.

The PKCS1 padding scheme (P, U) works as follows. We can take the randomizer space R to
be the set of of all strings r0 of non-zero bytes of length t/8� 3; to pad a particular message m, we
use a prefix r of r0 of appropriate length so that the resulting string x is exactly t-bits long. Here
are the details of algorithms P and U .

Algorithm P (m, r0):
output x :=

�

00 k 02 k r k 00 k m
� 2 {0, 1}t,

where r is the appropriate prefix of r0

Algorithm U(x):
(1) parse x as

�

00 k 02 k non-zero bytes r k 00 k m
�

if x cannot be parsed this way, output reject

else, output m

Because the string r contains only non-zero bytes, parsing x in line (1) can be done unambiguously
by scanning the string x from left to right. The 16 bits representing 00 02 at the left of the string
is the reason why this padding is called PKCS1 mode 2 (mode 1 is discussed in the next chapter).

By coupling PKCS1 padding with RSA, as in (12.38), we obtain the RSA-PKCS1 encryption
scheme. What can we say about the security of RSA-PKCS1? As it turns out, not much. In fact,
there is a devastating chosen ciphertext attack on it, which we discuss next.

12.8.3 Bleichenbacher’s attack on the RSA-PKCS1 encryption scheme

The RSA-PKCS1 standard, although widely deployed, is not secure against chosen ciphertext
attacks. We describe an attack, due to Bleichenbacher, as it applies to the TLS protocol between
a client and a server. More recent versions of TLS defend against this attack, as discussed below.
The only details of TLS relevant to this discussion is the following:

• During session setup, the client chooses a random 48-byte (192-bit) string, called the
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pre master secret, and encrypts it with RSA-PKCS1 under the server’s public-key. It
sends the resulting ciphertext c to the server in a message called client key exchange.

• When the server receives a client key exchange message it extracts the ciphertext c and
attempts to decrypt it. If PKCS1 decoding returns reject, the server sends an abort message
to the client. Otherwise, it continues normally with session setup.

Let us show a significant vulnerability in this system that is a result of a chosen ciphertext
attack on RSA-PKCS1. Suppose the attacker has a ciphertext c that it intercepted from an earlier
TLS session with the server. This c is an encryption generated using the server’s RSA public key
(n, e), with RSA modulus n and encryption exponent e. The attacker’s goal is to decrypt c. Let x
be the eth root of c in Zn, so that xe = c in Zn. We show how the attacker can learn x, which is
su�cient to decrypt c.

The attacker’s strategy is based on the following observation: let r be some element in Zn and
define c0  c · re in Zn; then

c0 = c · re = (x · r)e 2 Zn.

The attacker plays the role of a client and attempts to establish a TLS connection with the
server. The attacker creates a client key exchange message that contains c0 as the encrypted
pre master secret and sends the message to the server. The server, following the protocol, com-
putes the eth root of c0 to obtain x0 = x · r in Zn. Next, the server checks if x0 is a proper PKCS1
encoding: does x0 begin with the two bytes 00 02, and if so, is it followed by non-zero bytes, then
a zero byte, and then 48 additional (message) bytes? If not, the server sends an abort message to
the attacker. Otherwise, decryption succeeds and it sends the next TLS message to the attacker.
Consequently, the server’s response to the attacker’s client key exchange message reveals some
information about x0 = x · r. It tells the attacker if x0 is a valid PKCS1 encoding.

The attacker can repeat this process over and over with di↵erent values of r 2 Zn of its choosing.
Every time the attacker learns if x·r is a valid PKCS1 encoding or not. In e↵ect, the server becomes
an oracle that implements the following predicate for the attacker:

Px(r) :=

(

1 if x · r in Zn is a valid PKCS1 encoding;

0 otherwise.

The attacker can query this predicate for any r 2 Zn of its choice and as many times as it wants.
Bleichenbacher showed that for a 2048-bit RSA modulus, this oracle is su�cient to recover

all of x with several million queries to the server. Exercise 12.16 gives a simple example of this
phenomenon.

This attack is a classic example of a real-world chosen ciphertext attack. The adversary has
a challenge ciphertext c that it wants to decrypt. It does so by creating a number of related
ciphertexts and asks the server to “partially decrypt” those ciphertexts (i.e., evaluate the predicate
Px). After enough queries, the adversary is able to obtain the decryption of c. Clearly, this attack
would not be possible if RSA-PKCS1 were CCA-secure: CCA security implies that such attacks
are not possible even given a full decryption oracle, let alone a partial decryption oracle like Px.

This devastating attack lets the attacker eavesdrop on any TLS session of its choice. Given the
wide deployment of RSA-PKCS1 in TLS, the question then is how to best defend against it.
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The TLS defense. When Bleichenbacher’s attack was discovered in 1998, there was a clear need
to fix TLS. Moving away from PKCS1 to a completely di↵erent padding scheme would have been
di�cult since it would have required updating both clients and servers, and this can take decades for
everyone to update. The challenge was to find a solution that requires only server-side changes, so
that deployment can be done server-side only. This will protect all clients, old and new, connecting
to an updated server.

The solution, implemented in TLS 1.0 and later, changes the RSA-PKCS1 server-side decryption
process to the following procedure:

1. generate a string r of 48 random bytes,
2. decrypt the RSA-PKCS1 ciphertext to recover the plaintext m,
3. if the PKCS1 padding is invalid, or the length of m is not exactly 48 bytes:
4. set m r
5. return m

In other words, when PKCS1 parsing fails, simply choose a random plaintext r and use this r as
the decrypted value. Clearly, the TLS session setup will fail further down the line and setup will
abort, but presumably doing so at that point reveals no useful information about the decryption
of c. Some justification for this process is provided by Jonsson and Kaliski [59]. The TLS 1.2
standard goes further and includes the following warning about this decryption process:

In any case, a TLS server MUST NOT generate an alert if processing an RSA-encrypted
pre-master secret message fails [...] Instead, it MUST continue the handshake with a
randomly generated pre-master secret. It may be useful to log the real cause of failure for
troubleshooting purposes; however, care must be taken to avoid leaking the information
to an attacker (through, e.g., timing, log files, or other channels.)

Note the point about side channels, such as timing attacks, in the last sentence. Suppose the server
takes a certain amount of time to respond to a client key exchange message when the PKCS1
padding is valid, and a di↵erent amount of time when it is invalid. Then by measuring the server’s
response time, the Bleichenbacher attack is easily made possible again.

The DROWN attack. To illustrate the cost of cryptographic mistakes, we mention an inter-
esting attack called DROWN [4]. While implementations of TLS 1.0 and above are immune to
Bleichenbacher’s attack, an old version of the TLS protocol, called SSL 2.0, is still vulnerable.
Although SSL 2.0 is quite old and vulnerable, many Internet servers still support SSL 2.0 so that
old clients can connect to them. The trouble is that, in a common TLS deployment, the server has
only one TLS public-key pair. The same public key is used to establish a session when the latest
version of TLS is used, as when the old SSL 2.0 is used. As a result, an attacker can record the
ciphertext c used in a modern TLS session, encrypted under the server’s public key, and then use
Bleichenbacher’s attack on the SSL 2.0 implementation to decrypt this c. This lets the attacker de-
crypt the TLS session, despite the fact that TLS is immune to Bleichenbacher’s attack. E↵ectively,
the old SSL 2.0 implementation compromises the modern TLS.

This attack shows that once a cryptographically flawed protocol is deployed, it is very di�cult
to get rid of it. Even more troubling is that flaws in a protocol can be used to attack later versions
of the protocol that have supposedly corrected those flaws. The lesson is: make sure to get the
cryptography right the first time. The best way to do that is to only use schemes that have been
properly analyzed.
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Figure 12.7: OAEP padding using hash functions H and W , and optional associated data d

12.8.4 Optimal Asymmetric Encryption Padding (OAEP)

The failure of RSA-PKCS1 leaves us with the original question: is there a padding scheme (P, U)
so that the resulting encryption scheme Epad from (12.38) can be shown to be CCA-secure, in the
random oracle model, based on the one-wayness of the trapdoor function?

The answer is yes, and the first attempt at such a padding scheme was proposed by Bellare and
Rogaway in 1994. This padding, is called Optimal Asymmetric Encryption Padding (OAEP), and
the derived public-key encryption scheme was standardized in the PKCS1 version 2.0 standard. It
is called “optimal” because the ciphertext is a single element of Y, and nothing else.

The OAEP padding scheme (P, U) is defined over (M, R, X ), where R := {0, 1}h and X :=
08 ⇥ {0, 1}t�8. As usual, we assume that h and t are multiples of eight so that lengths can be
measured in bytes. As before, in order to accommodate a t-bit RSA modulus, we insist that the
left-most 8 bits of any element in X are zero. The message space M consists of all bit strings whose
length is a multiple of 8, but at most t� 2h� 16.

The scheme also uses two hash functions H and W , where

H : {0, 1}t�h�8 ! R , W : R! {0, 1}t�h�8. (12.39)

The set R should be su�ciently large to be the range of a collision resistant hash. Typically,
SHA256 is used as the function H and we set h := 256. The function W is derived from SHA256
(see Section 8.10.3 for recommended derivation techniques).

OAEP padding is used to build a public-key encryption scheme with associated data (as dis-
cussed in Section 12.7). As such, the padding algorithm P takes an optional third argument
d 2 R = {0, 1}h, representing the associated data. To support associated data that is more than h
bits long one can first hash the associated data using a collision resistant hash to obtain an element
of R. If no associated data is provided as input to P , then d is set to a constant that identifies the
hash function H, as specified in the standard. For example, for SHA256, one sets d to the following
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256-bit hex value:

d := E3B0C442 98FC1C14 9AFBF4C8 996FB924 27AE41E4 649B934C A495991B 7852B855.

Algorithm P (m, r, d) is shown in Fig. 12.7. Every pair of digits in the figure represents one byte
(8 bits). The variable length string of zeros in z is chosen so that the total length of z is exactly
(t� h� 8) bits. The algorithm outputs an x 2 X .

The inverse algorithm U , on input x 2 X and d 2 R, is defined as follows:

parse x as (00 k r0 k z0) where r0 2 R and z0 2 {0, 1}t�h�8

(1) if x cannot be parsed this way, set m reject

else
r  H(z0)� r0, z  W (r)� z0

parse z as (d k 00 . . . 00 01 k m) where d 2 R and m 2M
if z cannot be parsed this way, set m reject

output m

Finally, the public-key encryption scheme RSA-OAEP is obtained by combining the RSA trap-
door function with the OAEP padding scheme, as in (12.38). When referring to OAEP coupled
with a general trapdoor function T = (G, F, I), we denote the resulting encryption scheme by
EOAEP = (G, E, D).

The security of EOAEP. One might hope to prove CCA security of EOAEP in the random oracle
model using only the assumption that T is one-way. Unfortunately, that is unlikely because of
a counter-example: there is a plausible trapdoor function T for which the resulting EOAEP is
vulnerable to a CCA attack. See Exercise 12.18.

Nevertheless, it is possible to prove security of EOAEP by making a stronger one-wayness as-
sumption about T , called partial one-wayness. Recall that in the game defining a one-way function,
the adversary is given pk and y  F (pk , x), for some pk and random x 2 X , and is asked to produce
x. In the game defining a partial one-way function, the adversary is given pk and y, but is only
asked to produce, say, certain bits of x. If no e�cient adversary can accomplish even this simpler
task, then we say that T is partial one-way. More generally, instead of producing some bits of x,
the adversary is asked to produce a particular function f of x. This is captured in the following
game.

Attack Game 12.5 (Partial one-way trapdoor function scheme). For a given trapdoor
function scheme T = (G, F, I), defined over

�X , Y�, a given e�ciently computable function f :
X ! Z, and a given adversary A, the attack game runs as follows:

• The challenger computes

(pk , sk) R G(), x X , y  F
�

pk , x
�

and sends (pk , y) to the adversary.

• The adversary outputs ẑ 2 Z.

We define the adversary’s advantage, denoted POWadv[A, T , f ], to be the probability that ẑ = f(x).
2
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Definition 12.9. We say that a trapdoor function scheme T defined over
�X , Y� is partial one

way with respect to f : X ! Z if, for all e�cient adversaries A, the quantity POWadv[A, T , f ]
is negligible.

Clearly, a partial one-way trapdoor function is also a one-way trapdoor function: if an adversary
can recover x it can also recover f(x). Therefore, the assumption that a trapdoor function is partial
one way is at least as strong as assuming that the trapdoor function is one way.

The following theorem, due to Fujisaki, Okamoto, Pointcheval, and Stern, shows that EOAEP is
CCA-secure in the random oracle model, assuming T is partial one-way. The proof can be found
in their paper [41].

Theorem 12.9. Let t, h, X , H, and W be as in the OAEP construction. Assume H and W are
modeled as a random oracles. Let T = (G, F, I) be a trapdoor function defined over

�X , Y). Let
f : X ! {0, 1}t�h�8 be the function that returns the right-most (t� h� 8) bits of its input. If T is
partial one way with respect to f , and 2h is super-poly, then EOAEP is CCA secure.

Given Theorem 12.9 the question is then: is RSA a partial one-way function? We typically
assume RSA is one-way, but is it partial one-way when the adversary is asked to compute only
(t � h � 8) bits of the pre-image? As it turns out, if RSA is one-way then it is also partial one-
way. More precisely, suppose there is an e�cient adversary A that given an RSA modulus n
and encryption exponent e, along with y  xe 2 Zn as input, outputs more than half the least
significant bits of x. Then there is an e�cient adversary B that uses A and recovers all the bits of
x. See Exercise 12.19.

As a result of this wonderful fact, we obtain as a corollary of Theorem 12.9 that RSA-OAEP is
CCA-secure in the random oracle model assuming only that RSA is a one-way function. However,
the concrete security bounds obtained when proving CCA security of RSA-OAEP based on the
one-wayness of RSA are quite poor.

Manger’s timing attack. RSA-OAEP is tricky to implement securely. Suppose the OAEP
algorithm U(x, d) were implemented so that it takes a certain amount of time when the input is
rejected because of the test on line (1), and a di↵erent amount of time when the test succeeds. Notice
that rejection on line (1) occurs when the eight most significant bits of x are not all zero. Now,
consider again the setting of Bleichenbacher’s attack on PKCS1. The adversary has a ciphertext c,
generated using under the server’s RSA public key, with RSA modulus n and encryption exponent
e. The adversary wants to decrypt c. It can repeatedly interact with the server, sending it c0  c·re
in Zn, for various values of r of the adversary’s choice. By measuring the time that the server takes
to respond, the attacker can tell if rejection happened because of line (1). Therefore, the attacker
learns if the eight most significant bits of (c0)1/e in Zn are all zero. As in Bleichenbacher’s attack,
this partial decryption oracle is su�cient to decrypt all of c. See Exercise 12.16, or Manger [69],
for the full details.

12.8.5 OAEP+ and SAEP+

In the previous section we saw that RSA-OAEP is CCA-secure assuming RSA is a one-way function.
However, for other one-way trapdoor functions, the derived scheme EOAEP may not be CCA-secure.

The next question is then: is there a padding scheme (P, U) that, when coupled with a general
trapdoor function, gives a CCA-secure scheme in the random oracle model? The answer is yes,

485



and a padding scheme that does so, called OAEP+, is a variation of OAEP [97]. The di↵erence,
essentially, is that the block of zero bytes in Fig. 12.7 is replaced with the value H 0(m, r) for
some hash function H 0. This block is verified during decryption by recomputing H 0(m, r) from the
recovered values for m and r. The ciphertext is rejected if the wrong value is found in this block.

For RSA specifically, it is possible to use a simpler CCA-secure padding scheme. This simpler
padding scheme, called SAEP+, eliminates the hash function H and the corresponding xor on the
left of H in Fig. 12.7. The randomizer r needs to be longer than in OAEP. Specifically, r must be
slightly longer than half the size of the modulus, that is, slightly more than t/2 bits. RSA-SAEP+
is CCA-secure, in the random oracle model, assuming the RSA function is one-way [21]. It provides
a simple alternative padding scheme for RSA.

12.9 Fun application: sealed bid auctions

To be written.

12.10 Notes

Citations to the literature to be added.

12.11 Exercises

12.1 (Insecurity of multiplicative ElGamal). Show that multiplicative ElGamal from Exer-
cise 11.5 is not CCA secure. Your adversary should have an advantage of 1 in the 1CCA attack
game.

12.2 (Sloppy CCA). Let E = (G, E, D) be a CCA-secure public-key encryption scheme defined
over (M, C) where C := {0, 1}`. Consider the encryption scheme E 0 = (G, E0, D0) defined over
(M, C0) where C := {0, 1}`+1 as follows:

E0(pk , m) := E(k, m) k 0 and D0(sk , c) := D(sk , c[0 . . `� 1]).

That is, the last ciphertext bit can be 0 or 1, but the decryption algorithm ignores this bit. Show
that E 0 is not CCA secure. Your adversary should have an advantage of 1 in the 1CCA attack
game.

Discussion: Clearly, adding a bit to the ciphertext does not harm security in practice, yet it
breaks CCA security of the scheme. This issue suggests that the definition of CCA security may be
too strong. A di↵erent notion, called generalized CCA (gCCA), weakens the definition of CCA
security so that simple transformations of the ciphertext, like the one in E 0, do not break gCCA
security. More formally, we assume that for each key pair (pk , sk), there is an equivalence relation
⌘

pk

on ciphertexts such that

c ⌘
pk

c0 =) D(sk , c) = D(sk , c0).

Moreover, we assume that given pk , c, c0, it is easy to tell if c ⌘
pk

c0. Note that the relation ⌘
pk

is
specific to the particular encryption scheme. Then, in Attack Game 12.1, we insist each decryption
query is not equivalent to (as opposed to not equal to) any ciphertext arising from a previous
encryption query.
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12.3 (Extending the message space). Continuing with Exercise 11.7. Show that even if E is
CCA secure, E2 is not CCA secure. For this, you should assume M is non-trivial (i.e., contains at
least two messages of the same length).

Note: The next exercise presents a correct way to extend the message space of a CCA-secure
encryption scheme.

12.4 (Modular hybrid construction). All of the public-key encryption schemes presented in this
chapter can be viewed as special cases of the general hybrid construction introduced in Exercise 11.8.

Consider a KEM Ekem = (G, Ekem, Dkem), defined over (K, Ckem). We define 1CCA security for
Ekem in terms of an attack game, played between a challenger and an adversary A, as follows. In
Experiment b, for b = 0, 1, the challenger first computes

(pk , sk) R G(), (k0, ckem) R Ekem(pk), k1  R K,

and sends (kb, ckem) to A. Next, the adversary submits a sequence of decryption queries to the
challenger. Each such query is of the form ĉkem 2 Ckem, to which the challenger responds with
Dkem(sk , ĉkem). Finally, A outputs b̂ 2 {0, 1}. As usual, if Wb is the event that A outputs 1 in
Experiment b, we define A’s advantage with respect to Ekem as 1CCAadv[A, Ekem] := |Pr[W0] �
Pr[W1]|, and if this advantage is negligible for all e�cient adversaries, we say that Ekem is 1CCA
secure.

If Es is a symmetric cipher defined over (K, M, C), then as in Exercise 11.8, we also consider the
hybrid public-key encryption scheme E = (G, E, D), defined over (M, Ckem⇥ C), constructed out of
Ekem and Es.

(a) Prove that E is CCA secure, assuming that Ekem and Es are 1CCA secure. You should prove a
concrete security bound that says that for every adversary A attacking E , there are adversaries
Bkem and Bs (which are elementary wrappers around A) such that

1CCAadv[A, E ]  2 · 1CCAadv[Bkem, Ekem] + 1CCAadv[Bs, Es].

(b) Describe the KEM corresponding to E 0
TDF and prove that it is 1CCA secure (in the random

oracle model, assuming T is one way given an image oracle).

(c) Describe the KEM corresponding to E 0
EG and prove that it is 1CCA secure (in the random

oracle model, under the ICDH assumption for G).

(d) Give examples that show that if one of Ekem and Es is 1CCA secure, while the other is only
semantically secure, then E need not be CCA secure.

(e) Consider the KEM built Ekem constructed out of the encryption scheme Ea, as in part (e) of
Exercise 11.8. Show that Ekem is 1CCA secure, assuming that Ea is 1CCA secure.

Discussion: Using this result, one can arbitrarily extend the message space of any CCA-
secure encryption scheme whose message space is already large enough to contain the key
space for a 1CCA-secure symmetric cipher. For example, in practice, a 128-bit message space
su�ces. Interestingly, one can arbitrarily extend the message space even when starting from
a CCA-secure scheme for 1-bit messages [80, 55].
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12.5 (Multi-key CCA security). Generalize the definition of CCA security for a public-key
encryption scheme to the multi-key setting. In this attack game, the adversary gets to obtain
encryptions of many messages under many public keys, and can make as decryption queries with
respect to any of these keys. Show that 1CCA security implies multi-key CCA security. You should
show that security degrades linearly in QkQe, where Qk is a bound on the number of keys, and Qe

is a bound on the number of encryption queries per key. That is, the advantage of any adversary A
in breaking the multi-key CCA security of a scheme is at most QkQe · ✏, where ✏ is the advantage
of an adversary B (which is an elementary wrapper around A) that breaks the scheme’s 1CCA
security.

12.6 (Multi-key CCA security of ElGamal). Consider a slight modification of the public-key
encryption scheme E 0

EG, which was presented an analyzed in Section 12.4. This new scheme, which
we call xE 0

EG, is exactly the same as E 0
EG, except that instead of deriving the symmetric key as

k = H(v, w), we derive it as k = H(u, v, w). Consider the security of xE 0
EG in the multi-key CCA

attack game, discussed above in Exercise 12.5. In that attack game, suppose Qte is a bound on the
total number of encryptions — clearly, Qte is at most QkQe, but it could be smaller. Let A be an
adversary that attacks the multi-key CCA security of xE 0

EG. Show that A’s advantage is at most

2✏icdh + Qte · ✏s,

where ✏icdh is that advantage of an ICDH adversary Bicdh attacking G and ✏s is the advantage of a
1CCA adversary Bs attacking Es (where both Bicdh and Bs are elementary wrappers around A).

Hint: Use the random self reduction for CDH (see Exercise 10.4).

12.7 (Multi-key CCA security of Fujisaki-Okamoto with ElGamal). Consider a slight
modification of Fujisaki-Okamoto transformation, in which we include the public key in the hash
function, and suppose we instantiate this scheme with ElGamal encryption as in Section 12.6.2.
Call this new scheme xEEG

FO . The only di↵erence is that we include the public key u in the hash
functions, so we compute �  U(u, x) and k  H(u, x). Consider the security of xEEG

FO in the
multi-key CCA attack game, discussed above in Exercise 12.5. In that attack game, suppose Qte

is a bound on the total number of encryptions — clearly, Qte is at most QkQe, but it could be
smaller. Also, let Qro be a bound on the total number of random oracle queries, and Qtd be a
bound on the total number of decryptions. Let A be an adversary that attacks the multi-key CCA
security of xEEG

FO . Show that A’s advantage is at most

2Qro · ✏cdh + 2Qtd/q + Qte · ✏s,

where ✏cdh is that advantage of a CDH adversary Bcdh attacking G and ✏s is the advantage of a
1CCA adversary Bs attacking Es (where both Bcdh and Bs are elementary wrappers around A).

Hint: Use the random self reduction for CDH (see Exercise 10.4).

12.8 (Fujisaki-Okamoto with verifiable ciphertexts). Consider the Fujisaki-Okamoto trans-
formation presented in Section 12.6. Suppose that the asymmetric cipher Ea has verifiable cipher-
texts, which means that there is an e�cient algorithm that given a public key pk , along with x 2 X
and y 2 Y, determines whether or not y is an encryption of x under pk . Under this assumption,
improve the security bound (12.29) to

OWro
adv[A, TFO]  Qio · ✏ + OWadv[B, Ea].

Notice that this bound does not degrade as Qro grows.
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12.9. Show that any semantically secure public-key encryption scheme with a super-poly-sized
message space is one way (as in Definition 12.5).

12.10 (Any cipher can be made unpredictable). Let (Ga, Ea, Da) be a public key encryption
scheme with message space X , ciphertext space Y, and randomizer space R. Let S be some
super-poly-sized finite set. Consider the encryption scheme (Ga, E0

a, D
0
a), with message space X ,

ciphertext space Y⇥S, and randomizer space R⇥S, where E0
a(pk , x; (r, s)) := (Ea(pk , x; r), s) and

D0
a(sk , (y, s)) := Da(sk , y). Show that (Ga, E0

a, D
0
a) is unpredictable (as in Definition 12.6). Also

show that if (Ga, Ea, Da) is one way (as in Definition 12.5), then so is (Ga, E0
a, D

0
a).

12.11 (Fujisaki-Okamoto with semantically secure encryption). Consider the Fujisaki-
Okamoto transformation presented in Section 12.6. Suppose that the asymmetric cipher Ea is
semantically secure. Under this assumption, improve the security bound (12.29) to

OWro
adv[A, TFO]  Qio · ✏ + SSadv[B, Ea] + Qro/|X |.

12.12 (An analysis of E 0
TDF without image oracles). Theorem 12.2 shows that E 0

TDF is CCA-
secure assuming the trapdoor function scheme T is one-way given access to an image oracle, and Es
is 1CCA secure. It is possible to prove security of E 0

TDF assuming only that T is one-way (i.e.,
without assuming it is one-way given access to an image oracle), provided that Es is 1AE secure.
Note that we are making a slightly stronger assumption about Es (1AE instead of 1CCA), but prove
security under a weaker assumption on T . Prove the following statement: if H : X ! K is modeled
as a random oracle, T is one-way, and Es is 1AE secure, then E 0

TDF is CCA secure.

Hint: The proof is similar to the proof of Theorem 12.2. Let (ŷ, ĉ) be a decryption query from the
adversary where ŷ 6= y. If Es provides ciphertext integrity, then in testing whether ŷ is in the image
of F (pk , ·), we can instead test if the adversary queried the random oracle at a preimage x̂ of ŷ. If
not, we can safely reject the ciphertext — ciphertext integrity implies that the original decryption
algorithm would have anyway rejected the ciphertext with overwhelming probability.

Discussion: The analysis in this exercise requires that when a ciphertext (y, c) fails to decrypt,
the adversary does not learn why. In particular, the adversary must not learn if decryption failed
because the inversion of y failed, or because the symmetric decryption of c failed. This means, for
example, if the time to decrypt is not the same in both cases, and this discrepancy is detectable
by the adversary, then the analysis in this exercise no longer applies. By contrast, the analysis
in Theorem 12.2 is una↵ected by this side-channel leak: the adversary is given an image oracle
and can determine, by himself, the reason for a decryption failure. In this respect, the analysis
of Theorem 12.2 is more robust to side-channel attacks and is the preferable way to think of this
system.

12.13 (Immunizing against image queries). Let (G, F, I) be a trapdoor function scheme
defined over (X , Y). Let U : X ! R be a hash function. Consider the trapdoor function scheme
(G, F 0, I 0) defined over (X , Y⇥R), where F 0(pk , x) := (F (pk , x), U(x)) and I 0(sk , (y, r)) := I(sk , y).
Show that if U is modeled as a random oracle, (G, F, I) is one way, and |R| is super-poly, then
(G, F 0, I 0) is one way given an image oracle.

12.14 (A broken CPA to CCA transformation). Consider the following attempt at trans-
forming a CPA-secure scheme to a CCA-secure one. Let (G, E, D) be a CPA-secure encryption
scheme defined over (K⇥M, C), and let (S, V ) be a secure MAC with key space K. We construct
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a new encryption scheme (G, E0, D0), with message space M, as follows:

E0(pk , m) :=

8

>

>

<

>

>

:

k  R K,
c R E

�

pk , (k, m)
�

,
t R S(k, c),
output (c, t)

9

>

>

=

>

>

;

D0�sk , (c, t)
�

:=

8

<

:

(k, m) D(sk , c),
if V (k, c, t) = accept output m,
otherwise output reject

9

=

;

One might expect this scheme to be CCA-secure because a change to a ciphertext (c, t) will invali-
date the MAC tag t. Show that this is incorrect. That is, show a CPA-secure encryption scheme
(G, E, D) for which (G, E0, D0) is not CCA-secure (for any choice of MAC).

12.15 (Public-key encryption with associated data). In Section 12.7 we defined public-key
encryption with associated data. We mentioned that the CCA-secure schemes in this chapter can
be made into public-key encryption schemes with associated data by replacing the symmetric cipher
used with an AD symmetric cipher. Here we develop another approach. Consider the scheme E 0

TDF
from Section 12.3. Show that defining the encryption algorithm E as:

E(pk , m, d) := x R X , y  F (pk , x), k  H(x, d), c R Es(k, m)

output (y, c);

and making the corresponding change to the E 0
TDF decryption algorithm D0, gives a secure public-

key encryption with associated data, under the same assumptions used in the analysis of E 0
TDF.

12.16 (Baby Bleichenbacher attack). Consider an RSA public key (n, e), where n is an RSA
modulus, and e is an encryption exponent. For x 2 Zn, consider the predicate Px : Zn ! {0, 1}
defined as:

Px(r) :=

8

>

>

<

>

>

:

y  x · r 2 Zn

treat y as an integer in the interval [0, n)
if y > n/2, output 1
else, output 0

9

>

>

=

>

>

;

(a) Show that by querying the predicate Px at about log2 n points, it is possible to learn the
value of x.

(b) Suppose an attacker obtains an RSA public key and an element c 2 Zn. It wants to compute
the eth root of c in Zn. To do so, the attacker can query an oracle that takes z 2 Z as
input, and outputs 1 when [z1/e mod n] > n/2, and outputs 0 otherwise. Here [z1/e mod n]
is an integer w in the interval [0, n) such that we ⌘ z mod n. Use part (a) to show how the
adversary can recover the eth root of c.

12.17 (OAEP is CPA-secure for any trapdoor function). Let T = (G, F, I) be a trapdoor
function defined over (X , Y) where X = 08 ⇥ {0, 1}t�8. Consider the OAEP padding scheme from
Fig. 12.7, omitting the associated data input d, and let EOAEP be the public key encryption scheme
that results from coupling T with OAEP, as in (12.38). Show that EOAEP is CPA secure in the
random oracle model.

12.18 (A counter-example to the CCA-security of OAEP). Let T0 = (G, F0, I0) be a one-
way trapdoor permutation defined over R := {0, 1}h. Suppose, T0 is xor-homomorphic in the
following sense: there is an e�cient algorithm C that for all pk output by G and all r, � 2 R,
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we have C(F0(pk , r)) = F0(pk , r � �). Next, if t > 2h + 16, let T = (G, F, I) be the trapdoor
permutation defined over 08 ⇥ {0, 1}t�8 as follows:

F
�

pk , (00 k r k z)
�

= 00 k F0(pk , r) k z.

Notice that from F
�

pk , (00 k r k z)
�

it is easy to recover z, but not the entire preimage. Consider
the public-key encryption EOAEP obtained by coupling this T with OAEP as in (12.38). Show a
CCA attack on this scheme that has advantage 1 in winning the CCA game. Your attack shows
that for some one-way trapdoor functions, the scheme EOAEP may not be CCA-secure.

12.19 (RSA is partial one-way). Consider an RSA public key (n, e), where n is an RSA
modulus, and e is an encryption exponent. Suppose n is a t-bit integer where t is even, and let T
be an integer that is a little bit smaller than 2(t/2). Let x be a random integer in the interval [0, n)
and y := (xe mod n) 2 Zn. Suppose A is an algorithm so that

Pr



A(n, e, y) = z and 0  x� zT < T

�

> ✏.

The fact that the integer zT is so close to x means that z reveals half of the most significant bits
of x. Hence, A is an RSA partial one-way adversary for the most significant bits.

(a) Construct an algorithm B that takes (n, e, y) as input, and outputs x with probability ✏2. For
this, you should determine a more precise value for the parameter T .

Hint: Algorithm B works by choosing a random r 2 Zn and running z0  A(n, e, y) and
z1  A(n, e, y · re). If A outputs valid z0 and z1 both times — an event that happens with
probability ✏2 (explain why) — then

x ⌘ z0T + �0 (mod n)

x · r ⌘ z1T + �1 (mod n)

where 0  �0, �1 < T . Show an e�cient algorithm that given such r, z0, z1, outputs x, �0, �1,
with high probability. Your algorithm B should make use of an algorithm for finding shortest
vectors in 2-dimensional lattices (see, for example, [102]). If you get stuck, see [41].

Discussion: This result shows that if RSA is one-way, then an adversary cannot even
compute the most significant bits of a preimage.

(b) Show that a similar result holds if an algorithm A0 outputs more than half the least significant
bits of x.

12.20 (Multiplicative Cramer-Shoup encryption). Consider the following multiplicative ver-
sion of the Cramer-Shoup encryption scheme (presented in Section 12.5). Let G be a cyclic group
of prime order q with generator g 2 G. Let H 0 : G3 ! Zq be a hash function. The encryption
scheme EMCS = (G, E, D) is defined over (G,G4) as follows. Key generation is exactly as in ECS.
For a given public key pk = (u, u1, u2, u3) 2 G4 and message m 2 G, the encryption algorithm runs
as follows:

E(pk , m) := �  R Zq, v  g� , w  u� , c u�
1 · m

⇢ H 0(v, w, c), w2  (u2u
⇢
3)

� , output (v, w, w2, c).
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For a given secret key sk = (�1, ⌧1, �2, ⌧2, �3, ⌧3) 2 Z6
q and a ciphertext (v, w, w2, c) 2 G4, the

decryption algorithm runs as follows:

D(sk , (v, w, w2, c) ) := ⇢ H 0(v, w, c)
if v�2+⇢�3w⌧2+⇢⌧3 = w2

then output c/(v�1w⌧1)
else output reject.

Show that EMCS is CCA secure, provided H 0 is collision resistant and the DDH assumption holds
for G.

12.21 (Non-adaptive CCA security and Cramer-Shoup lite). One can define a weaker
notion of CCA security, corresponding to a variant of the CCA attack game in which the adversary
must make all of his decryption queries before making any of his decryption queries. Moreover, just
as we did for ordinary CCA security, it su�ces to assume that the adversary makes just a single
encryption query. Let us call the corresponding security notion non-adaptive 1CCA security.

Now consider the following simplified version of the encryption scheme in the previous exercise.
Again, G is a cyclic group of prime order q with generator g 2 G. The encryption scheme EMCSL =
(G, E, D) is defined over (G,G4) as follows. The key generation algorithm runs as follows:

G() := ↵ R Zq, u g↵

for i = 1, . . . , 2: �i, ⌧i  R Zq, ui  g�iu⌧
i

pk  (u, u1, u2), sk  (�1, ⌧1, �2, ⌧2)
output (pk , sk).

For a given public key pk = (u, u1, u2) 2 G3 and message m 2 G, the encryption algorithm runs as
follows:

E(pk , m) := �  R Zq, v  g� , w  u� , c u�
1 · m

w2  u�
2 , output (v, w, w2, c).

for a given secret key sk = (�1, ⌧1, �2, ⌧2) 2 Z4
q and a ciphertext (v, w, w2, c) 2 G4, the decryption

algorithm runs as follows:

D(sk , (v, w, w2, c) ) := if v�2w⌧2 = w2

then output c/(v�1w⌧1)
else output reject.

(a) Show that EMCSL is non-adaptive 1CCA secure, provided the DDH assumption holds for G.

(b) Show that EMCSL is not CCA secure.

12.22 (The twin CDH problem). In Section 12.4.1, we saw that the basic ElGamal encryption
scheme could not be proved secure under the ordinary CDH assumption, even in the random
oracle model. To analyze the scheme, we had to introduce a new, stronger assumption, called the
interactive CDH (ICDH) assumption (see Definition 13.9). In this exercise and the next, we show
how to avoid this stronger assumption with just a slightly more involved encryption scheme.

492



Let G be a cyclic group of prime order q generated by g 2 G. The Twin CDH (2CDH) problem
is this: given

g↵1 , g↵2 , g�

compute the pair
(g↵1� , g↵2�).

A tuple of the form
(g↵1 , g↵2 , g� , g↵1� , g↵2�)

is called Twin DH (2DH) tuple. The interactive Twin CDH (I2CDH) assumption is this:
it is hard to solve a random instance (g↵1 , g↵2 , g�) of the 2DH problem, given access to an oracle
that recognizes 2DH-tuples of the form (g↵1 , g↵2 , ·, ·, ·).

(a) Flesh out the details of the I2CDH assumption by giving an attack game analogous to Attack
Game 12.3. In particular, you should define an analogous advantage I2CDHadv[A,G] for an
adversary A in this attack game.

(b) Using the trapdoor test in Exercise 10.12, show that the CDH assumption implies the I2CDH
assumption. In particular, show that for every I2CDH adversary A, there exists a CDH
adversary B (where B is an elementary wrapper around A), such that

I2CDHadv[A,G]  CDHadv[B,G] +
Qro

q
,

where Qro is an upper bound on the number of oracle queries made by A.

12.23 (Twin CDH encryption). The Twin CDH encryption scheme, E2cdh = (G, E, D), is
a public-key encryption scheme whose CCA security (in the random oracle model) is based on the
I2CDH assumption (see previous exercise). Let G be a cyclic group of prime order q generated by
g 2 G. a symmetric cipher We also need a symmetric cipher Es = (Es, Ds), defined over (K, M, C),
and a hash function H : G3 ! K. The algorithms G, E, and D are defined as follows:

G() := ↵1  R Zq, ↵2  R Zq, u1  g↵1 , u2  g↵2

pk  (u1, u2), sk  (↵1, ↵2)
output (pk , sk);

E(pk , m) := �  R Zq, v  g� , w1  u�
1 , w2  u�

2
k  H(v, w1, w2), c R Es(k, m)
output (v, c);

D(sk , (v, c) ) := w1  v↵1 , w2  v↵2 , k  H(v, w1, w2), m Ds(k, c)
output m.

The message space is M and the ciphertext space is G⇥ C.

(a) Suppose that we model the hash function H as a random oracle. Show that E2cdh is CCA
secure under the I2CDH assumption, also assuming that Es is 1CCA secure. In particular,
show that for every 1CCA adversary A attacking E2cdh, there exist an I2CDH adversary Bi2cdh

and a 1CCA adversary Bs, where Bi2cdh and Bs are elementary wrappers around A, such that

1CCAro
adv[A, E2cdh]  2 · I2CDHadv[Bi2cdh,G] + 1CCAadv[Bs, Es].
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(b) Now use the result of part (b) of the previous exercise to show that E2cdh is secure in the
random oracle model under the ordinary CDH assumption for G (along with the assumption
that Es is 1CCA secure). In particular, show that for every 1CCA adversary A attacking
E2cdh, there exist a CDH adversary Bcdh and a 1CCA adversary Bs, where Bcdh and Bs are
elementary wrappers around A, such that

1CCAro
adv[A, E2cdh]  2 · CDHadv[Bcdh,G] +

2Qro

q
+ 1CCAadv[Bs, Es],

where Qro is a bound on the number of random oracle queries made by A.

Discussion: Compared to the ElGamal encryption scheme, E 0
EG, which we analyzed in Sec-

tion 12.4, this scheme achieves CCA security under the CDH assumption, rather than the stronger
ICDH assumption. Also, compared to the instantiation of the Fujisaki-Okamoto transformation
with ElGamal, EEG

FO , which we analyzed in Section 12.6.2, the reduction to CDH here is much
tighter, as we do not need to multiply CDHadv[Bcdh,G] by a factor of Qro as in (12.37). This tight
reduction even extends to the more general multi-key CCA setting, as explored in the next exercise.

12.24 (Multi-key CCA security of Twin CDH). Consider a slight modification of the public-
key encryption scheme E2cdh from the previous exercise. This new scheme, which we call xE2cdh, is
exactly the same as E2cdh, except that instead of deriving the symmetric key as k = H(v, w1, w2),
we derive it as k = H(u1, u2, v, w1, w2). Consider the security of xE2cdh in the multi-key CCA
attack game, discussed above in Exercise 12.5. In that attack game, suppose Qte is a bound on
the total number of encryptions. Also, let Qro be a bound on the total number of random oracle
queries. Let A be an adversary that attacks the multi-key CCA security of xE2cdh. Show that A’s
advantage is at most

2 · ✏cdh +
2Qro

q
+ Qte · ✏s,

where ✏cdh is that advantage of a CDH adversary Bcdh attacking G and ✏s is the advantage of a
1CCA adversary Bs attacking Es (where both Bcdh and Bs are elementary wrappers around A).

Hint: Use the random self reduction for CDH (see Exercise 10.4).

12.25 (The twin HDH problem). This exercise and the next develop a public-key encryption
scheme that is CCA secure without random oracles and under the weaker Hash Di�e-Hellman
(HDH) assumption (see Exercise 11.13).

First, we explore a decisional variant of the 2CDH problem discussed above in Exercise 12.22. Let
G be a cyclic group of prime order q generated by g 2 G. Let H : G! K be a hash function. The
interactive twin HDH (I2HDH) assumption for (G, H) asserts that it is hard to distinguish
random tuples of the form

(g↵1 , g↵2 , g� , H(g↵1�))

from random tuples of the form
(g↵1 , g↵2 , g� , k),

where and ↵1, ↵2, � 2 Zq and k 2 K, even when given access to an oracle that recognizes 2DH-tuples
of the form (g↵1 , g↵2 , ·, ·, ·).

(a) Flesh out the details of the I2HDH assumption by giving an appropriate attack game and
defining an appropriate notion of advantage.
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(b) Using the trapdoor test in Exercise 10.12, show that the HDH assumption for (G, H) implies
the I2HDH assumption for (G, H), giving a concrete security bound.

12.26 (Twin HDH encryption). The Twin HDH encryption scheme, E2hdh = (G, E, D),
is a public-key encryption scheme whose CCA security (without random oracles) is based on the
I2HDH assumption (see previous exercise). Let G be a cyclic group of prime order q generated by
g 2 G. We also need a symmetric cipher Es = (Es, Ds), defined over (K, M, C), and hash functions
H : G! K and H 0 : G! Zq. The algorithms G, E, and D are defined as follows:

G() := ↵1, ↵2, ↵̃1, ↵̃2  R Zq

u1  g↵1 , u2  g↵2 , ũ1  g↵̃1 , ũ2  g↵̃2

pk  (u1, u2, ũ1, ũ2), sk  (↵1, ↵2, ↵̃1, ↵̃2)
output (pk , sk);

E(pk , m) := �  R Zq, v  g� , ⇢ H 0(v)

x1  (u⇢
1ũ1)� , x2  (u⇢

2ũ2)� , w1  u�
1 , k  H(w1)

c R Es(k, m)
output (v, x1, x2, c);

D(sk , (v, x1, x2, c) ) := ⇢ H 0(v),
if v↵1⇢+↵̃1 = x1 and v↵2⇢+↵̃2 = x2

then w1  v↵1 , k  H(w1), m Ds(k, c)
else m reject

output m.

(a) Show that E2hdh is CCA secure under the I2HDH assumption for (G, H), also assuming that
Es is 1CCA secure and that H 0 is collision resistant, giving a concrete security bound.

You may wish to structure your proof as follows. Working with the bit-guessing version of
the 1CCA attack game, define a sequence of games:

Game 0: This is the original attack game, where the challenger starts the game by generating
not only the public key and secret key, but also the components (including v, x1, and
x2) of the target ciphertext other than c.

Game 1: Modify the challenger so that it rejects all decryption queries (v̂, x̂1, x̂2, ĉ) such
that v̂ 6= v but H 0(v̂) = H 0(v). Argue that the advantage in Game 1 is negligibly close
to that in Game 0, under the collision resistance assumption for H 0.

Game 2: Modify the challenger so that the elements ũ1, ũ2 in public key and the elements
x1, x2 in the target ciphertext are generated as follows:

�1, �2  R Zq, ũ1  g�1u�⇢
1 , ũ2  g�2u�⇢

2 , x1  v�1 , x2  v�2 ,

where ⇢ := H 0(v). With this change, the exponents ↵̃1 and ↵̃2 are implicitly defined as

↵̃1 = �1 � ↵1⇢ and ↵̃2 = �2 � ↵2⇢.

Show how to further modify the challenger, so that all decryption queries (v̂, x̂1, x̂2, ĉ)
with ⇢̂ := H 0(v̂) 6= ⇢ are answered without using the values ↵1, ↵2 at all, but instead,
using an oracle to test if

(u1, u2, v̂, ŵ1, ŵ2)
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is a 2DH-tuple, where

ŵ1 := (x̂1/v̂�1)1/(⇢̂�⇢) and ŵ2 := (x̂2/v̂�2)1/(⇢̂�⇢).

With these modifications, the values ↵1, ↵2, � should not be used in Game 2, except
to define the group elements u1, u2, v, w1, and implicitly in the implementation of the
2DH-oracle. The advantage in Game 2 should be identical to that in Game 1.

Note: This is an example of what is known as an all-but-one simulation strategy, where
we set up a public parameter in such a way that a simulator can answer all but one
query of a certain type.

Game 3: Replace the key k used to generate the target ciphertext by a random key. Argue
that the advantage in Game 3 is negligibly close to that in Game 2, under the I2HDH
assumption for (G, H). Argue that the advantage in Game 3 is negligible, assuming that
Es is 1CCA secure.

(b) Now use part (b) of the previous exercise to show that E2hdh is CCA secure under the HDH
assumption for (G, H), also assuming that Es is 1CCA secure and that H 0 is collision resistant,
giving a concrete security bound.
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Chapter 13

Digital signatures

In this chapter and the next we develop the concept of a digital signature. Although there are some
parallels between physical world signatures and digital signatures, the two are quite di↵erent. We
motivate digital signatures with three examples.

Example 1: Software distribution. Suppose a software company, SoftAreUs, releases a soft-
ware update for its product. Customers download the software update file U by some means, say
from a public distribution site or from a peer-to-peer network. Before installing U on their machine,
customers want to verify that U really is from SoftAreUs. To facilitate this, SoftAreUs appends a
short tag to U , called a signature. Only SoftAreUs can generate a signature on U , but anyone in
the world can verify it. Note that there are no secrecy issues here — the update file U is available
in the clear to everyone. A MAC system is of no use in this setting because SoftAreUs does not
maintain a shared secret key with each of its customers. Some software distribution systems use
collision resistant hashing, but that requires an online read-only server that every customer uses to
check that the hash of the received file U matches the hash value on the read-only server.

To provide a clean solution, with no additional security infrastructure, we need a new crypto-
graphic mechanism called a digital signature. The signing process works as follows:

• First, SoftAreUs generates a secret signing key sk along with some corresponding public key
denoted pk . SoftAreUs keeps the secret key sk to itself. The public key pk is hard-coded into
all copies of the software sold by SoftAreUs and is used to verify signatures issued using sk .

• To sign a software update file U , SoftAreUs runs a signing algorithm S that takes (sk , U) as
input. The algorithm outputs a short signature �. SoftAreUs then ships the pair (U, �) to
all its customers.

• A customer Bob, given the update (U, �) and the public key pk , checks validity of this message-
signature pair using a signature verification algorithm V that takes (pk , U, �) as input. The
algorithm outputs either accept or reject depending on whether the signature is valid or not.
Recall that Bob obtains pk from the pre-installed software system from SoftAreUs.

This mechanism is widely used in practice in a variety of software update systems. For security we
must require that an adversary, who has pk , cannot generate a valid signature on a fake update
file. We will make this precise in the next section.
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We emphasize that a digital signature � is a function of the data U being signed. This is very
di↵erent from signatures in the physical world where the signature is always the same no matter
what document is being signed.

Example 2: Authenticated email. As a second motivating example, suppose Bob receives an
email claiming to be from his friend Alice. Bob wants to verify that the email really is from Alice.
A MAC system would do the job, but requires that Alice and Bob have a shared secret key. What
if they never met before and do not share a secret key? Digital signatures provide a simple solution.
First, Alice generates a public/secret key pair (pk , sk). For now, we assume Alice places pk in a
public read-only directory. We will discuss how to get rid of this directory in just a minute.

When sending an email m to Bob, Alice generates a signature � on m derived using her secret
key. She then sends (m, �) to Bob. Bob receives (m, �) and verifies that m is from Alice in two
steps. First, Bob retrieves Alice’s public key pk . Second, Bob runs the signature verification
algorithm on the triple (pk , m, �). If the algorithm outputs accept then Bob is assured that the
message came from Alice. More precisely, Bob is assured that the message was sent by someone
who knows Alice’s secret key. Normally this would only be Alice, but if Alice’s key is stolen then
the message could have come from the thief.

As a more concrete example of this, the domain keys identified mail (DKIM) system is an email-
signing system that is widely used on the Internet. An organization that uses DKIM generates a
public/secret key pair (pk , sk) and uses sk to sign every outgoing email from the organization.
The organization places the public key pk in the DNS records associated with the organization, so
that anyone can read pk . An email recipient verifies the signature on every incoming DKIM email
to ensure that the email source is the claimed organization. If the signature is valid the email is
delivered, otherwise it is dropped. DKIM is widely used as a mechanism to make it harder for
spammers to send spam email that pretends to be from a reputable source.

Example 3: Certificates. As a third motivating example for digital signatures, we consider
their most widely used application. In Chapter 11 and in the authenticated email system above, we
assumed public keys are obtained from a read-only public directory. In practice, however, there is no
public directory. Instead, Alice’s public key pk is certified by some third party called a certificate
authority or CA for short. We will see how this process works in more detail in Section 13.8. For
now, we briefly explain how signatures are used in the certification process.

To generate a certified public key, Alice first generates a public/private key pair (pk , sk) for
some public-key cryptosystem, such as a public-key encryption scheme or a signature scheme. Next,
Alice presents her public key pk to the CA. The CA then verifies that Alice is who she claims to
be, and once the CA is convinced that it is speaking with Alice, the CA constructs a statement m
saying “public key pk belongs to Alice.” Finally, the CA signs the message m using its own secret
key skCA and sends the pair Cert := (m, �CA) back to Alice. This pair Cert is called a certificate
for pk . When Bob needs Alice’s public key, he first obtains Alice’s certificate from Alice and verifies
the CA’s signature in the certificate. If the signature is valid, Bob has some confidence that pk
is Alice’s public key. The main purpose of the CA’s digital signature is to prove to Bob that the
statement m was issued by the CA. Of course, to verify the CA’s signature, Bob needs the CA’s
public key pkCA. Typically, CA public keys come pre-installed with an operating system or a Web
browser. In other words, we simply assume that the CA’s public key is already available on Bob’s
machine.
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Of course, the above can be generalized so that the CA’s certificate for Alice associates several
public keys with her identity, such as public keys for both encryption and signatures.

Non-repudiation. An interesting property of the authenticated email system above is that Bob
now has evidence that the message m is from Alice. He could show the pair (m, �) to a judge who
could also verify Alice’s signature. Thus, for example, if m says that Alice agrees to sell her car to
Bob, then Alice is (in some sense) committed to this transaction. Bob can use Alice’s signature as
proof that Alice agreed to sell her car to Bob — the signature binds Alice to the message m. This
property provided by digital signatures is called non-repudiation.

Unfortunately, things are not quite that simple. Alice can repudiate the signature by claiming
that the public key pk is not hers and therefore the signature was not issued by her. Or she
can claim that her secret key sk was stolen and the signature was issued by the thief. After all,
computers are compromised and keys are stolen all the time. Even worse, Alice could deliberately
leak her secret key right after generating it thereby invalidating all her signatures. The judge at
this point has no idea who to believe.

These issues are partially the reason why digital signatures are not often used for legal purposes.
Digital signatures are primarily a cryptographic tool used for authenticating data in computer sys-
tems. They are a useful building block for higher level mechanisms such as key-exchange protocols,
but have little to do with the legal system. Several legislative e↵orts in the U.S. and Europe at-
tempt to clarify the process of digitally signing a document. In the U.S., for example, electronically
signing a document does not require a cryptographic digital signature. We discuss the legal aspects
of digital signatures in Section 13.9.

Non-repudiation does not come up in the context of MACs because MACs are non-binding.
To see why, suppose Alice and Bob share a secret key and Alice sends a message to Bob with an
attached MAC tag. Bob cannot use the tag to convince a judge that the message is from Alice
since Bob could have just as easily generated the tag himself using the MAC key. Hence Alice can
easily deny ever sending the message. The asymmetry of a signature system — the signer has sk
while the verifier has pk — makes it harder (though not impossible) for Alice to deny sending a
signed message.

13.1 Definition of a digital signature

Now that we have an intuitive feel for how digital signature schemes work, we can define them
more precisely. Functionally, a digital signature is similar to a MAC. The main di↵erence is that in
a MAC, both the signing and verification algorithms use the same secret key, while in a signature
scheme, the signing algorithm uses one key, sk , while the verification algorithm uses another, pk .

Definition 13.1. A signature scheme S = (G, S, V ) is a triple of e�cient algorithms, G, S and
V , where G is called a key generation algorithm, S is called a signing algorithm, and V is
called a verification algorithm. Algorithm S is used to generate signatures and algorithm V is
used to verify signatures.

• G is a probabilistic algorithm that takes no input. It outputs a pair (pk , sk), where sk is called
a secret signing key and pk is called a public verification key.

• S is a probabilistic algorithm that is invoked as �  R E(sk , m), where sk is a secret key (as
output by G) and m is a message. The algorithm outputs a signature �.
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Challenger Adversary A
(pk , sk) R G() pk

mi

�i  S(sk , mi)

(m, �)

Figure 13.1: Signature attack game (Attack Game 13.1)

• V is a deterministic algorithm invoked as V (pk , m, �). It outputs either accept or reject.

• We require that a signature generated by S is always accepted by V . That is, for all (pk , sk)
output by G and all messages m, we have

Pr[V (pk , m, S(sk , m) ) = accept] = 1.

As usual, we say that messages lie in a finite message space M, and signatures lie in some finite
signature space ⌃. We say that S = (G, S, V ) is defined over (M, ⌃).

13.1.1 Secure signatures

The definition of a secure signature scheme is similar to the definition of secure MAC. We give the
adversary the power to mount a chosen message attack, namely the attacker can request the
signature on any message of his choice. Even with such power, the adversary should not be able
to create an existential forgery, namely the attacker cannot output a valid message-signature
pair (m, �) for some new message m. Here “new” means a message that the adversary did not
previously request a signature for.

More precisely, we define secure signatures using an attack game between a challenger and an
adversary A. The game is described below and in Fig. 13.1.

Attack Game 13.1 (Signature security). For a given signature scheme S = (G, S, V ), defined
over (M, ⌃), and a given adversary A, the attack game runs as follows:

• The challenger runs (pk , sk) R G() and sends pk to A.

• A queries the challenger several times. For i = 1, 2, . . . , the ith signing query is a
message mi 2 M. Given mi, the challenger computes �i  R S(sk , mi), and then
gives �i to A.

• Eventually A outputs a candidate forgery pair (m, �) 2M⇥ ⌃.

We say that the adversary wins the game if the following two conditions hold:

• V (pk , m, �) = accept, and
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• m is new, namely m 62 {m1, m2, . . .}.

We define A’s advantage with respect to S, denoted SIGadv[A, S], as the probability that A wins
the game. Finally, we say that A is a q-query adversary if A issues at most q signing queries. 2

Definition 13.2. We say that a signature scheme S is secure if for all e�cient adversaries A, the
quantity SIGadv[A, S] is negligible.

In case the adversary wins Attack Game 13.1, the pair (m, �) it outputs is called an existential
forgery. Systems that satisfy Definition 13.2 are said to be existentially unforgeable under a
chosen message attack.

Verification queries. In our discussion of MACs we proved Theorem 6.1, which showed that
tag verification queries do not help the adversary forge MACs. In the case of digital signatures,
verification queries are a non-issue — the adversary can always verify message-signature pairs for
himself. Hence, there is no need for an analogue to Theorem 6.1 for digital signatures.

Security against multi-key attacks. In real systems there are many users, and each one of
them can have a signature key pair (pk i, sk i) for i = 1, . . . , n. Can a chosen message attack on
pk1 help the adversary forge signatures for pk2? If that were possible then our definition of secure
signature would be inadequate since it would not model real-world attacks. Just as we did for other
security primitives, one can generalize the notion of a secure signatures to the multi-key setting,
and prove that a secure signature is also secure in the multi-key settings. See Exercise 13.1. We
proved a similar fact for a secure MAC system in Exercise 6.3.

Strongly unforgeable signatures Our definition of existential forgery is a little di↵erent than
the definition of secure MACs. Here we only require that the adversary cannot forge a signature
on a new message m. We do not preclude the adversary from producing a new signature on m
from some other signature on m. That is, a signature scheme is secure even if the adversary can
transform a valid pair (m, �) into a new valid pair (m, �0).

In contrast, for MAC security we insisted that given a message-tag pair (m, t) the adversary
cannot create a new valid tag t0 6= t for m. This was necessary for proving security of the encrypt-
then-MAC construction in Section 9.4.1. It was also needed for proving that MAC verification
queries do not help the adversary (see Theorem 6.1 and Exercise 6.7).

One can similarly strengthen Definition 13.2 to require this more stringent notion of existential
unforgeability. We capture this in the following modified attack game.

Attack Game 13.2. For a given signature scheme S = (G, S, V ), and a given adversary A, the
game is identical to Attack Game 13.1, except that the second bullet in the winning condition is
changed to:

• (m, �) is new, namely (m, �) 62 �(m1, �1), (m2, �2), . . .
 

We define A’s advantage with respect to S, denoted stSIGadv[A, S], as the probability that A wins
the game. 2

Definition 13.3. We say that a signature scheme S is strongly secure if for all e�cient adver-
saries A, the quantity stSIGadv[A, S] is negligible.
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Strong security ensures that for a secure signature scheme, the adversary cannot create a new
signature on a previously signed message, as we required for MACs. There are a few specific
situations that require signatures satisfying this stronger security notion, such as [33, 22] and
a signcryption construction described in Section 13.7. However, most often Definition 13.2 is
su�cient. At any rate, any secure signature scheme S = (G, S, V ) can be converted into a strongly
secure signature scheme S 0 = (G0, S0, V 0). See Exercise 14.6.

Limitations of the security definition. Definition 13.2 ensures that generating valid message-
signature pairs is di�cult without the secret key. The definition, however, does not capture several
additional desirable properties for a signature scheme:

• Binding signatures. Definition 13.2 does not require that the signer be bound to messages
she signs. That is, suppose the signer generates a signature � on some message m. The
definition does not preclude the signer from producing another message m0 6= m for which �
is a valid signature. The message m might say “Alice owes Bob ten dollars” while m0 says
“Alice owes Bob one dollar.” Since � is a valid signature on both messages, a judge cannot
tell what message Alice actually signed. See Exercise 13.2.

For many applications of digital signatures we do not need the signer to be bound to signed
messages. Consequently, we do not require signature schemes to enforce this property. Nev-
ertheless, many of the constructions in this chapter and the next do bind the signer to the
message. That is, the signer cannot produce two distinct messages with the same signature.

• Duplicate Signature Key Selection (DSKS). Let S = (G, S, V ) be a signature scheme
and let (m, �) be a valid message-signature pair with respect to some public key pk . The
signature scheme S is said to be vulnerable to DSKS if an attacker, who sees (m, �), can
generate a key pair pk 0, sk 0 such that (m, �) is also valid with respect to the public key pk 0.
We require that the attacker can produce both pk 0 and sk 0. Exercise 13.3 gives examples of
signature schemes that are vulnerable to DSKS.

A DSKS vulnerability can lead to a number of undesirable consequences. For example,
suppose (m, �) is a signed homework solution set submitted by a student Alice. After the
submission deadline, an attacker Molly, who did not submit a solution set, can use a DSKS
attack to claim that the homework submission (m, �) is hers. To do so, Molly uses the DSKS
attack to generate a key pair pk 0, sk 0 such that (m, �) is a valid message-signature pair for
the key pk 0. Because the assignment is properly signed under both public keys pk and pk 0,
the Professor cannot tell who submitted the assignment (assuming the homework m does not
identify Alice). In practice, DSKS attacks have been used to attack certain key exchange
protocols, as discussed in Chapter 20.

Definition 13.2 does not preclude DSKS attacks. However, it is quite easy to immunize a
signature scheme against DSKS attacks: the signer simply attaches his or her public key
to the message before signing the message. The verifier does the same before verifying the
signature. This way, the signing public key is authenticated along with the message (see
Exercise 13.4). Attaching the public key to the message prior to signing is good practice and
is recommended in many real-world applications.

502



13.1.2 Mathematical details

As usual, we give a more mathematically precise definition of a signature, using the terminology
defined in Section 2.4. This section may be safely skipped on first reading.

Definition 13.4 (Signature). A signature scheme is a triple of e�cient algorithms (G, S, V ),
along with two families of spaces with system parameterization P :

M = {M�,⇤}�,⇤, and ⌃ = {⌃�,⇤}�,⇤,

As usual, � 2 Z�1 is a security parameter and ⇤ 2 Supp(P (�)) is a system parameter. We require
that

1. M and ⌃ are e�ciently recognizable.

2. Algorithm G is an e�cient probabilistic algorithm that on input �, ⇤, where � 2 Z�1, ⇤ 2
Supp(P (�)), outputs a pair (pk , sk), where pk and sk are bit strings whose lengths are always
bounded by a polynomial in �.

3. Algorithm S is an e�cient probabilistic algorithm that on input �, ⇤, sk , m, where � 2 Z�1,
⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some pk, and m 2 M�,⇤, always outputs an
element of ⌃�,⇤.

4. Algorithm V is an e�cient deterministic algorithm that on input �, ⇤, pk , m, �, where � 2
Z�1, ⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some sk, m 2M�,⇤, and � 2 ⌃�,⇤, and
outputs either accept or reject.

In defining security, we parameterize Attack Game 13.1 by the security parameter � which is
given to both the adversary and the challenger. The advantage SIGadv[A, S] is then a function of �.
Definition 13.2 should be read as saying that SIGadv[A, S](�) is a negligible function. Similarly for
Definition 13.3.

13.2 Extending the message space with collision resistant hashing

Suppose we are given a secure digital signature scheme with a small message space, say M =
{0, 1}256. We show how to extend the message space to much larger messages using a collision
resistant hash function. We presented a similar construction for MACs in Fig. 8.1. Let S = (G, S, V )
be a signature scheme defined over (M, ⌃) and let H : M0 !M be a hash function, where the set
M0 is much larger than M. Define a new signature scheme S 0 = (G, S0, V 0) over (M0, ⌃) as

S0(sk , m) := S(sk , H(m)) and V 0(pk , m, �) := V (pk , H(m), �) (13.1)

The new scheme signs much larger message than the original scheme. This approach is often called
the hash-and-sign paradigm. As a concrete example, suppose we take H to be SHA256. Then
any signature scheme capable of signing 256-bit messages can be securely extended to a signature
scheme capable of signing arbitrary long messages. Hence, from now on it su�ces to focus on
building signature schemes for short 256-bit messages.

The following simple theorem shows that this construction is secure. Its proof is essentially
identical to the proof of Theorem 8.1.
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Theorem 13.1. Suppose the signature scheme S is secure and the hash function H is collision
resistant. Then the derived signature scheme S 0 = (G, S0, V 0) defined in (13.1) is a secure signature.

In particular, suppose A is a signature adversary attacking S 0 (as in Attack Game 13.1). Then
there exist an e�cient signature adversary BS and an e�cient collision finder BH , which are
elementary wrappers around A, such that

SIGadv[A, S 0]  SIGadv[BS , S] + CRadv[BH , H]

13.2.1 Extending the message space using TCR functions

We briefly show that collision resistance is not necessary for extending the message space of a
signature scheme. A second pre-image resistant (SPR) hash function is su�cient. Recall that in
Section 8.11.2 we used SPR hash functions to build target collision resistant (TCR) hash functions.
We then used a TCR hash function to extend the message space of a MAC. We can do the same
here to extend the message space of a signature scheme.

Let H be a TCR hash function defined over (KH , M, T ). Let S = (G, S, V ) be a signature
scheme for short messages in KH⇥T . We build a new signature scheme S 0 = (G, S0, V 0) for signing
messages in M as follows:

S0(sk , m) := V 0(pk , m, (�, r) ) :=

r  R KH h H(r, m) (13.2)

h H(r, m) Output V (pk , (r, h), �)

�  S
�

sk , (r, h)
�

Output (�, r)

The signing procedure chooses a random TCR key r, includes r as part of the message being signed,
and outputs r as part of the final signature. As a result, signatures produced by this scheme are
longer than signatures produced by extending the domain using a collision resistant hash, as above.
Using the TCR construction from Fig. 8.13, the length of r is logarithmic in the size of the message
being signed. This extra logarithmic size key must be included in every signature. Exercise 13.6
proposes a way to get shorter signatures.

The benefit of the TCR construction is that security only relies on H being TCR, which is a
much weaker property than collision resistance and hence more likely to hold for H. For example,
the function SHA256 may eventually be broken as a collision-resistant hash, but the function
H(r, m) := SHA256(r k m) may still be secure as a TCR.

The following theorem proves security of the construction in (13.2) above. The theorem and its
proof are almost identical to the same theorem and proof applied to MAC systems (Theorem 8.12).
Note that the concrete bound in the theorem below has an extra factor of Q that does not appear
in Theorem 13.1 above. The reason for this extra Q factor is the same as in the proof for MAC
systems (Theorem 8.12).

Theorem 13.2. Suppose S = (G, S, V ) is a secure signature scheme and the hash function H is
TCR. Then the derived signature scheme S 0 = (G, S0, V 0) defined in (13.2) is secure.

In particular, for every signature adversary A attacking S 0 (as in Attack Game 13.1) that issues
at most Q signing queries, there exist an e�cient signature adversary BS and an e�cient TCR
adversary BH , which are elementary wrappers around A, such that

SIGadv[A, S 0]  SIGadv[BS , S] + Q · TCRadv[BH , H].
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13.3 Signatures from trapdoor permutations: the full domain
hash

We now turn to constructing signature schemes. All the constructions in this chapter are proven
secure in the random oracle model. We present practical non-random-oracle constructions in Chap-
ter 16 and in the next chapter. We will see more random oracle signature schemes in Chapter 19.

We begin with a simple construction based on trapdoor permutations. We then present a
concrete signature scheme from the only trapdoor permutation we have, namely RSA. Recall that
a trapdoor permutation scheme defined over X is a triple of algorithms T = (G, F, I), where
G generates a public key/secret key pair (pk , sk), F (pk , ·) evaluates a permutation on X in the
forward direction, and I(sk , ·) evaluates the permutation in the reverse direction. See Section 10.2
for details.

We show that a trapdoor permutation T gives a simple signature scheme. The only other
ingredient we need is a hash function H that maps messages in M to elements in X . This function
will be modeled as a random oracle in the security analysis. The signature scheme, called full
domain hash (FDH), denoted SFDH, works as follows:

• The key generation algorithm for SFDH is the key generation algorithm G of the trapdoor
permutation scheme T . It outputs a pair (pk , sk).

• The signature on m is simply the inverse of H(m) with respect to the function F (pk , ·). That
is, to sign a message m 2M using sk , the signing algorithm S runs as follows:

S(sk , m) := y  H(m), �  I(sk , y)
output �.

• To verify a signature � on a message m the verification algorithm V checks that F (pk , �) is
equal to H(m). More precisely, V works as follows:

V (pk , m, �) := y  F (pk , �)
if y = H(m) output accept; otherwise, output reject.

We will analyze SFDH by modeling the hash function H as a random oracle. Recall that in the
random oracle model (see Section 8.10), the function H is modeled as a random function O chosen
at random from the set of all functions Funs[M, X ]. More precisely, in the random oracle version of
Attack Game 13.1, the challenger chooses O at random. In any computation where the challenger
would normally evaluate H, it evaluates O instead. In addition, the adversary is allowed to ask the
challenger for the value of the function O at any point of its choosing. The adversary may make
any number of such “random oracle queries” at any time of its choosing. We use SIGro

adv[A, SFDH]
to denote A’s advantage against SFDH in the random oracle version of Attack Game 13.1.

Theorem 13.3. Let T = (G, F, I) be a one-way trapdoor permutation defined over X . Let H :
M ! X be a hash function. Then the derived FDH signature scheme SFDH is a secure signature
scheme when H is modeled as a random oracle.

In particular, let A be an e�cient adversary attacking SFDH in the random oracle version of
Attack Game 13.1. Moreover, assume that A issues at most Qro random oracle queries and Qs

signing queries. Then there exists an e�cient inverting adversary B that attacks T as in Attack
Game 10.2, where B is an elementary wrapper around A, such that

SIGro
adv[A, SFDH]  (Qro + Qs + 1) · OWadv[B, T ] (13.3)
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An overview of the proof of security for SFDH. We defer the full proof of Theorem 13.3
to Section 13.4.2. For now, we sketch the main ideas. To forge a signature on a message m, an
adversary has to compute � = I(sk , y), where y = H(m). With H modeled as a random oracle, the
value y is essentially just a random point in X , and so this should be hard to do, assuming T is one
way. Unfortunately, this argument does not deal with the fact that in a chosen message attack, the
adversary can get arbitrary messages signed before producing its forgery. Again, since H is modeled
as a random oracle, this e↵ectively means that to break the signature scheme, the adversary must
win the following game: after seeing several random points y1, y2, . . . in X (corresponding to the
hash outputs on various messages), the adversary can ask to see preimages of some of the yi’s
(corresponding to the signing queries), and then turn around and produce the preimage of one of
the remaining yi’s. It turns out that winning this game is not too much easier than breaking the
one-wayness of T in the usual sense. This will be proved below in Lemma 13.5 using a a kind of
“guessing argument”: in the reduction, we will have to guess in advance at which of the random
points the adversary will invert F (pk , ·). This is where the factor Qro + Qs + 1 in (13.3) comes
from.

Unique signatures. The SFDH scheme is a unique signature scheme: for a given public key,
every message m has a unique signature � that will be accepted as valid for m by the verification
algorithm. This means that if SFDH is secure, it must also be strongly secure in the sense of
Definition 13.3.

The importance of hashing. The hash function H is crucial to the security of SFDH. Without
first hashing the message, the system is trivially insecure. To see why, suppose we incorrectly define
the signature on m 2 X as � := I(sk , m). That is, we apply I without first hashing m. Then to
forge a signature, the adversary simply chooses a random � 2 X and computes m  F (pk , �).
The pair (m, �) is an existential forgery. Note that this forgery is created without using the chosen
message attack. Of course this m is likely to be gibberish, but is a valid existential forgery.

This attack shows that the hash function H plays a central role in ensuring that SFDH is secure.
Unfortunately, we can only prove security when H is modeled as a random oracle. We cannot prove
security of SFDH, when H is a concrete hash function, using standard assumptions about T and H.

13.3.1 Signatures based on the RSA trapdoor permutation

We instantiate the SFDH construction with the only trapdoor permutation at our disposal, namely
RSA. We obtain the RSA full domain hash signature scheme, denoted SRSA-FDH. Recall that
parameters for RSA are generated using algorithm RSAGen(`, e) which outputs a pair (pk , sk)
where pk = (n, e). Here n is a product of two `-bit primes. The RSA trapdoor permutation
F (pk , ·) : Zn ! Zn is defined as F (pk , x) := xe.

For each public key pk = (n, e), the SRSA-FDH system needs a hash function H that maps
messages in M to Zn. This is a problem — the output space of H depends on n which is di↵erent
for every public key. Since hash functions generally have a fixed output space, it is preferable
that the range of H be fixed and independent of n. To do so, we define the range of H to be
Y := {1, . . . , 22`�2} which, when embedded in Zn, covers a large fraction of Zn, for all the RSA
moduli n output by RSAGen(`, e).

We describe the signature scheme SRSA-FDH using a hash function H defined over (M, Y). We
chose Y as above so that |Y| � n/4 for all n output by RSAGen(`, e). This is necessary for the
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proof of security. Because an RSA modulus n is large, at least 2048 bits, the hash function H
must produce a large output, approximately 2048 bits long. One cannot simply use SHA256. We
described appropriate long-output hash functions in Section 8.10.2.

For a given hash function H : M! Y, the SRSA-FDH signature scheme works as follows:

• the key generation algorithm G uses parameters ` and e and runs as follows:

G() := (n, d) R RSAGen(`, e), pk  (n, e), sk  (n, d)
output (pk , sk);

• for a given secret key sk = (n, d), and message m 2M, algorithm S runs as follows:

S(sk , m) := y  H(m) 2 Y, �  yd 2 Zn

output �;

• for a given public key pk = (n, e) the verification algorithm runs as follows:

V (pk , m, �) := y  �e 2 Zn

if y = H(m) output accept; otherwise, output reject.

Signing and verification speed. Recall that typically the public key exponent e is small, often
e = 3 or e = 65537, while the secret key exponent d is as large as n. Consequently, signature
generation, which uses a d exponentiation, is much slower than signature verification. In fact,
RSA has the fastest signature verification algorithm among all the standardized signature schemes.
This makes RSA very attractive for applications where a signature is generated o✏ine, but needs
to be quickly verified online. Certificates used in a public key infrastructure are a good example
where fast verification is attractive. We discuss ways to speed-up the RSA signing procedure in
Chapter 15.

Signature size. One downside of RSA is that the signatures are much longer than in other
signature schemes, such as the ones presented in Chapter 19. To ensure that factoring the RSA
modulus n is su�ciently di�cult, the size of n must be at least 2048 bits (256 bytes). As a result,
RSA signatures are 256 bytes, which is considerably longer than in other schemes. This causes
di�culties in heavily congested or low bandwidth networks as well as in applications where space
is at a premium. For example, at one point the post o�ce looked into printing digital signatures
on postage stamps. The signatures were intended to authenticate the recipient’s address and were
to be encoded as a two dimensional bar code on the stamp. RSA signatures were quickly ruled
out because there is not enough space on a postage stamp. We will discuss short signatures in
Section 16.3.

The importance of hashing. We showed above that SFDH is insecure without first hashing the
message. In particular, consider the unhashed RSA system where a signature on m 2 Zn is
defined as � := md. We showed that this system is insecure since anyone can create an existential
forgery (m, �). Recall, however, that this attack typically forges a signature on a message m that
is likely to be gibberish.

We can greatly strengthen the attack on this unhashed RSA using the random self-reducibility
property of RSA (see Exercise 10.24). In particular, we show that an attacker can obtain the
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signature on any message m of his choice by issuing a single signing query for a random m̂ 2 Z⇤
n.

Let (n, e) be an RSA public key and let m 2 Zn be some message. As the reader should verify, we
may assume that m 2 Z⇤

n. To obtain the signature on m the attacker does the following:

r  R Z⇤
n, m̂ m · re

Request the signature on m̂ and obtain �̂
Output �  �̂/r

Indeed, if �̂e = m̂ then � 2 Zn is a valid signature on m since

�e = (�̂/r)e = �̂e/re = m̂/re = m. (13.4)

The attack shows that by fooling the user into signing a random message m̂ the adversary can
obtain the signature on a message m of his choice. We say that unhashed RSA signatures are
universally forgeable and thus should never be used.

Surprisingly, the fact that an attacker can convert a signature on a random message into a
signature on a chosen message turns out to play a central role in the construction of so called blind
signatures. Blind signatures are used in protocols for anonymous electronic cash and anonymous
electronic voting. In both applications blind signatures are the main ingredient for ensuring privacy
(see Exercise 13.12).

Security of RSA full domain hash. Recall that the security proof for the general full domain
hash SFDH (Theorem 13.3) was very loose: an adversary A with advantage ✏ in attacking SFDH gives
an adversary B with advantage ✏/(Qro +Qs +1) in attacking the underlying trapdoor permutation.

Can we do better? Indeed, we can: using the random self-reducibility property of RSA, we
can prove security with a much tighter bound, as shown in Theorem 13.4 below. In particular, the
factor Qro+Qs+1 is replaced by (approximately) Qs. This is significant, because in a typical attack,
the number of signing queries Qs is likely to be much smaller than the number of random oracle
queries Qro. Indeed, on the one hand, Qro represents the number of times an attacker evaluates
the hash function H. These computations can be done by the attacker “o↵ line,” and the attacker
is only bounded by how own computing resources. On the other hand, each signing query requires
that an honest user sign a message. Concretely, a conservative bound on Qro could perhaps be as
large as 2128, while Qs could perhaps be reasonably bounded by 240. We thus obtain a much tighter
reduction for SRSA-FDH than for SFDH with a general trapdoor permutation. However, even for
SRSA-FDH the reduction is not tight due to the Qs factor. We will address that later in Section 13.5.

As in the proof of SFDH, our security proof for SRSA-FDH models the hash function H : M! Y
as a random oracle. The proof requires that Y is a large subset of Zn (we specifically assume that
|Y| � n/4, but any constant fraction would do). In what follows, we use 2.72 as an upper bound
on the base of the natural logarithm e ⇡ 2.718 (not to be confused with the RSA public exponent
e).

Theorem 13.4. Let H : M ! Y be a hash function, where Y = {1, . . . , 22`�2}. If the RSA
assumption holds for (`, e), then SRSA-FDH with parameters (`, e) is a secure signature scheme,
when H is modeled as a random oracle.

In particular, let A be an e�cient adversary attacking SRSA-FDH in the random oracle version
of Attack Game 13.1. Moreover, assume that A issues at most Qs signing queries. Then there
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exists an e�cient RSA adversary B as in Attack Game 10.3, where and B are elementary
wrappers around A, such that

SIGro
adv[A, SRSA-FDH]  2.72 · (Qs + 1) · RSAadv[B, `, e] (13.5)

We defer the proof of Theorem 13.4 to Section 13.4.2.

13.4 Security analysis of full domain hash

The goal of this section is to analyze the security of the the full domain hash signature scheme;
specifically, we prove Theorems 13.3 and 13.4. We begin with a tool that will be helpful, and is
interesting and useful in its own right.

13.4.1 Repeated one-way functions: a useful lemma

Let f be a one-way function over (X , Y). Briefly, this means that given y  f(x) for a random
x 2 X , it is di�cult to find a pre-image of y. This notion was presented in Definition 8.4.

Consider the following, seemingly easier, problem: we give the adversary
�

f(x1), . . . , f(xt)
�

and
allow the adversary to request some, but not all, of the xi’s. To win, the adversary must produce
one of the remaining xi’s. We refer to this as the t-repeated one-way problem. More precisely,
the problem is defined using the following game.

Attack Game 13.3 (t-repeated one-way problem). For a given positive integer t and a given
adversary A, the game runs as follows:

• The challenger computes

x1, . . . , xt  R X , y1  f(x1), . . . , yt  f(xt)

and sends (y1, . . . , yt) to the adversary.

• A makes a sequence of reveal queries. Each reveal query consists of an index j 2 {1, . . . , t}.
Given j, the challenger sends xj to A.

• Eventually, A the adversary outputs (⌫, x), where ⌫ 2 {1, . . . , t} and x 2 X .

We say that A wins the game if index ⌫ is not among A’s reveal queries, and f(x) = y⌫ . We define
A’s advantage, denoted rOWadv[A, f, t], as the probability that A wins the game. 2

The following lemma shows that the repeated one-way problem is equivalent to the standard
one-way problem given in Definition 8.4. That is, winning in Attack Game 13.3 is not much easier
than inverting f .

Lemma 13.5. For every t-repeated one-way adversary A there exists a standard one-way adversary
B, where B is an elementary wrapper around A, such that

rOWadv[A, f, t]  t · OWadv[B, f ]. (13.6)
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Proof idea. The proof is a kind of “guessing argument”, somewhat similar to what we did, for
example, in the proof of Theorem 6.1. We want to use A to build an adversary B that breaks the
one-wayness of f . So B starts with y⇤ 2 Y and wants to find a preimage of y⇤ under f , using A
as a subroutine. The first thing that B does is make a guess ! at the value of the index ⌫ that A
will ultimately choose. Our adversary B then prepares values y1, . . . , yt 2 Y as follows: for i 6= !,
it sets yi  f(xi) for random xi 2 X ; it also sets y!  y⇤. It then sends (y1, . . . , yt) to A, as in
Attack Game 13.3. If B’s guess was correct (which happens with probability 1/t), it will be able
to respond to all of A’s queries, and A’s final output will provide the preimage of y that B was
looking for. 2

Proof. In more detail, our adversary B is given y⇤ := f(x⇤) for a random x⇤ 2 X , and then plays
the role of challenger to A as in Attack Game 13.3 as follows:

Initialize:
x1, . . . , xt  R X
y1  f(x1), . . . , yt  f(xt)
!  R {1, . . . , t}, y!  y⇤ // Plug y⇤ at position !
Send (y1, . . . , yt) to A

// B now knows pre-images for all yi’s other than y!
Upon receiving a query j 2 {1, . . . , t} from A:

if j 6= !
then send xj to A
else output fail and stop

When A outputs a pair (⌫, x):
if ⌫ = !

then output x and stop
else output fail and stop

Now we argue that the inequality (13.6) holds.
Define Game 0 to be the game played between A and the challenger in Attack Game 13.3, and

let W0 be the event that A wins the game.
Now define a new Game 1, which is the same as Game 0, except that the challenger chooses

! 2 {1, . . . , t} at random. Also, we say that A wins Game 1 if it wins as in Game 0 with output
(⌫, x) such that ⌫ = !. Define W1 to be the event that A wins Game 1.

We can think of Games 0 and 1 as operating on the same underlying probability space. Really,
the two games are exactly the same: all that changes is the winning condition. Moreover, as ! is
independent of everything else, we have

Pr[W1] = Pr[W0 ^ ⌫ = !] = Pr[W0] · Pr[⌫ = ! | W0] = (1/t) · Pr[W0].

Moreover, it is clear that OWadv[B, f ] = Pr[W1]; indeed, adversary B is really just playing Game 1
— it only aborts when it is clear that it will not win Game 1 anyway — and it wins Game 1 if and
only if is succeeds in find a preimage of y⇤. 2

Application to trapdoor functions. Lemma 13.5 applies equally well to trapdoor functions.
If T = (G, F, I) is a trapdoor function scheme defined over (X , Y), then T is one way in the sense
of Definition 10.3 if and only if f := F (pk , ·) is one way in the sense of Definition 8.4. Indeed, for
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any adversary, the respective advantages in the corresponding attack games are equal. Technically,
with f := F (pk , ·), the public key pk is viewed as a “system parameter” defining f .

A tighter reduction for RSA. For a general one-way function f , the concrete bound in
Lemma 13.5 is quite poor: if adversary A has advantage ✏ in winning the t-repeated one-way
game, then the lemma constructs a one-way attacker with advantage only ✏/t.

When f is derived from the RSA function we can obtain a tighter reduction using the random
self-reducibility property of RSA. We replace the factor t by a factor of (about) Q, where Q is the
number of reveal queries from A. This Q is usually much smaller than t.

We first restate Attack Game 13.3 as it applies to the RSA function. We slightly tweak the game
and require that the images y1, . . . , yt given to A lie in a certain large subset of Zn denoted Y. For
RSA parameters ` and e, we set Y := {1, 2, . . . , 22`�2} so that for all n generated by RSAGen(`, e),
we have |Y| � n/4.

Attack Game 13.4 (t-repeated RSA). For given RSA parameters ` and e, a given positive
integer t, and a given adversary A, the game runs as follows:

• The challenger computes

(n, d) R RSAGen(`, e)
y1, . . . , yt  R Y // Recall that Y := {1, 2, . . . , 22`�2}

and sends (n, e) and (y1, . . . , yt) to A.

• A makes a sequence of reveal queries. Each reveal query consists of an index j 2 {1, . . . , t}.
Given j, the challenger sends xj := ydj 2 Zn to A.

• Eventually the adversary outputs (⌫, x), where ⌫ 2 {1, . . . , t} and x 2 Zn.

We say that A wins the game if index ⌫ is not among A’s reveal queries, and xe = y⌫ . We define
A’s advantage, denoted rRSAadv[A, `, e, t], as the probability that A wins the game. 2

We show that the t-repeated RSA problem is equivalent to the basic RSA problem, but with a
tighter concrete bound than in Lemma 13.5. In particular, the factor of t is replaced by 2.72·(Q+1).
The constant 2.72 is an upper on the base of the natural logarithm e ⇡ 2.718.

Lemma 13.6. Let ` and e be RSA parameters. For every t-repeated RSA adversary A that makes
at most Q reveal queries, there exists a standard RSA adversary B, where B is an elementary
wrapper around A, such that

rRSAadv[A, `, e, t]  2.72 · (Q + 1) · RSAadv[B, `, e]. (13.7)

Proof idea. The proof is similar to that of Lemma 13.5. In that proof, we plugged the challenge
instance y⇤ of the one-way attack game at a random position among the yi’s, and using A, we
succeed if A does not issue a reveal query at the plugged position, and its output inverts at the
plugged position. Now, using the random self-reducibility property for RSA, we take the challenge
y⇤, and “spread it around,” plugging related, randomized versions of y⇤ at many randomly chosen
positions. We succeed if A’s reveal queries avoid the plugged positions, but its output inverts at
one of them. By increasing the number of plugged positions, the chance of hitting one at the output
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Initialize: // Generate random y1, . . . , yt 2 Y
⌦ ;
for i = 1, . . . , t:

flip a biased coin ci 2 {0, 1} such that Pr[ci = 1] = 1/(Q + 1)
if ci = 1 then ⌦ ⌦ [ {i}

(1) repeat
xi  R Zn, yi  xe

i · yci⇤ // So yi = xe
i or yi = xe

i · y⇤
until yi 2 Y

Send (n, e) and (y1, . . . , yt) to A
// B now knows pre-images for all yi where i 62 ⌦
Upon receiving a reveal query j 2 {1, . . . , t} from A:

if j 62 ⌦
then send xj to A
else output fail and stop

When A outputs a pair (⌫, x):
if ⌫ 2 ⌦

(2) then x̃ x/x⌫ , output x̃
else output fail and stop

Figure 13.2: Algorithm B in the proof of Lemma 13.6

stage increases (which is good), but the chance of avoiding them during a reveal query decreases
(which is bad). Using a clever strategy for sampling the set of plugged positions, we can optimize
the success probability to get the desired result. 2

Proof. We describe an adversary B that is given (n, e) and a random y⇤ 2 Zn, and then attempts
to compute an eth root of y⇤.

We first deal with an annoying corner case. It may happen (albeit with very small probability)
that y⇤ /2 Z⇤

n. However, in this case, it is easy to compute the eth root of y⇤: if y⇤ = 0, the eth
root is 0; otherwise, gcd(y⇤, n) gives us the prime factorization of n, which allows us to compute
the decryption exponent d, and hence the eth root of y⇤.

So from now on, we assume y⇤ 2 Z⇤
n. Adversary B uses A to compute an eth root of y⇤ as

shown in Fig. 13.2. First, B generates t random values y1, . . . , yt 2 Y and sends them to A. For
each i = 1, . . . , t, either yi = xe

i , in which case B knows an eth root of yi and can respond to a
reveal query for i, or yi = xe

i · y⇤ in which case B does not know an eth root of yi. Here, ⌦ is the
set of indices i for which B does not know an eth root of yi.

If B reaches the line marked (2) and x is an eth root of y⌫ , we have

x̃e = (x/x⌫)
e = xe/xe

⌫ = y⌫/xe
⌫ = (xe

⌫ · y⇤)/xe
⌫ = y⇤,

and so B’s output x̃ is an eth root of y⇤.
Actually, we have ignored another corner case. Namely, it may happen (again, with very small

probability) that the value x⌫ computed above does not lie in Z⇤
n. However, if that happens, it
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must be the case that x⌫ 6= 0 (since 0 /2 Y), and as in the other corner case, we can use x⌫ to factor
n and compute the decryption exponent.

Let us analyze the repeat/until loop at the line marked (1) for a fixed i = 1, . . . , t. Since
y⇤ 2 Z⇤

n, each candidate value for yi generated in the loop body is uniformly distributed over Zn.
Since |Y| � n/4, the probability that each candidate yi lies in Y at at least 1/4. Therefore, the
expected number of loop iterations is at most 4. Moreover, when the loop terminates, the final
value of yi is uniformly distributed over Y.

We now argue that (13.7) holds. The basic structure of the argument is the same as in
Lemma 13.5. Define Game 0 to be the game played between A and the challenger in Attack
Game 13.4, and let W0 be the event that A wins the game.

Now define a new Game 1, which is the same as Game 0, except that the challenger generates
a set of indices ⌦ ✓ {1, . . . , t}, as follows: each i = 1, . . . , t is independently added to ⌦ with
probability 1/(Q + 1). Let R be the set of reveal queries made by A. We say that A wins Game 1
if it wins as in Game 0 with output (⌫, x), and in addition, R\⌦ = ; and ⌫ 2 ⌦. Define W1 to be
the event that A wins Game 1. We have

Pr[W1] = Pr[W0 and R \ ⌦ = ; and ⌫ 2 ⌦] = Pr[W0] · Pr[R \ ⌦ = ; ^ ⌫ 2 ⌦ | W0].

Moreover, it is not hard to see that

RSAadv[B, `, e] � Pr[W1].

Indeed, when B’s input y⇤ lies in Z⇤
n, adversary B is essentially just playing Game 1: the distributions

of (y1, . . . , yt, ⌦) are identical in both games. The condition R\⌦ = ; corresponds to the condition
that B does not abort in processing one of A’s reveal queries. The condition ⌫ 2 ⌦ corresponds
to the condition that B does not abort at A’s output stage. When B’s input y⇤ lies outside of Z⇤

n,
adversary B always wins.

Since ⌦ is independent of the A’s view, it su�ces to prove the following:

Claim. Let ⌦ be a randomly generated subset of {1, . . . , t}, as above. Let R ✓ {1, . . . , t}
be a fixed set of at most Q indices, and let ⌫ 2 {1, . . . , t} be a fixed index not in R. Let
X be the event that R \ ⌦ = ; and ⌫ 2 ⌦. Then we have

Pr[X] � 1

2.72 · (Q + 1)
.

The claim is trivially true if Q = 0; otherwise, we have:

Pr[X] = Pr[R \ ⌦ = ;] · Pr[⌫ 2 ⌦] �
✓

1� 1

Q + 1

◆Q

· 1

Q + 1
� 1

2.72 · (Q + 1)
.

Here, we have made use of the handy inequality 1 + x  exp(x), which holds for all real numbers
x. That proves the claim and the theorem. 2

13.4.2 Proofs of Theorems 13.3 and 13.4

Armed with Lemma 13.5, the proof of Theorem 13.3 is quite straightforward. Let A be an adversary
attacking SFDH as in the theorem statement. Using A, we wish to construct an adversary B that
breaks the one-wayness of T with advantage as in (13.3).
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We would like to make a few of simplifying assumptions about A. First, whenever A makes a
signing query on a message, it has previously queried the random oracle at that message. Second,
when A outputs its forgery on a particular message, it has previously queried the random oracle on
that message. Third, A never makes the same random oracle query twice, that is, all of its random
oracle queries are distinct. If A does not already satisfy these properties, we can always convert it
to and adversary A0 that does, increasing the number of random oracle queries by at most Qs + 1.

So from now on, let us work with the more convenient adversary A0, which makes at most
t := Qro + Qs + 1 random oracle queries, and whose advantage in breaking the signature scheme
SFDH is the same as that of A. From A0, we construct an adversary B0 that wins the t-repeated
one-way attack game against f := F (pk , ·), where t := Qro + Qs + 1, with the same advantage that
A0 wins the signature game. After we have B0, the theorem follows immediately from Lemma 13.5.

Adversary B0 works as follows. It obtains (y1, . . . , yt) from its own t-repeated one-way challenger.
It responds to the ith random oracle query from A0 with yi. Whenever A0 asks to sign a particular
message, by assumption, the random oracle has already been queried at that message; if this was
the jth random oracle query, B0 makes a reveal query at position j to obtain xj , and forwards xj to
A0. Finally, when A0 outputs its candidate forgery (m, �), then by assumption, the random oracle
query was already queried at m; if this was query number ⌫, then B0 outputs (⌫, �).

Clearly, B0 simulates the signature attack game perfectly for A0, and wins its attack game
precisely when A0 wins its game.

Proof of Theorem 13.4. This is almost identical to the proof of Theorem 13.4. The only
di↵erence is that we use Lemma 13.6 instead of Lemma 13.5. In the application of Lemma 13.6,
the the of reveal queries Q in Attack Game 13.4 is bounded by Qs.

13.5 An RSA-based signature scheme with tighter security proof

Theorem 13.4 shows that SRSA-FDH is a secure signature scheme in the random oracle model, but
with a relatively loose security reduction. In particular, let A be an adversary attacking SRSA-FDH

that issues at most Qs signing queries and succeeds in breaking SRSA-FDH with probability ✏. Then
A can be used to break the RSA assumption with probability about ✏/Qs. It is unlikely that
SRSA-FDH has a tighter security reduction to the RSA assumption.

Surprisingly, a small modification to SRSA-FDH gives a signature scheme that has a tight reduc-
tion to the RSA assumption in the random oracle model. The only di↵erence is that instead of
computing an eth root of H(m), the signing algorithm computes an eth root of H(b, m) for some
random bit b 2 {0, 1}. The signature includes the eth root along with the bit b. We call this
modified signature scheme S 0

RSA-FDH.
We describe S 0

RSA-FDH using the notation of Section 13.3.1. Let M0 := {0, 1} ⇥M. We will
need a hash function H : M0 ! Y. Furthermore, we will need a PRF F defined over (K, M, {0, 1}).
The S 0

RSA-FDH signature scheme is defined as follows:

• The key generation algorithm G uses fixed RSA parameters ` and e, and runs as follows:

G() := k  R K, (n, d) R RSAGen(`, e)
pk  (n, e), sk  (k, n, d)
output (pk , sk).

• For a given secret key sk = (k, n, d) and m 2M, the signing algorithm S runs as follows:
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S(sk , m) := b F (k, m) 2 {0, 1}
y  H(b, m) 2 Y, �  yd 2 Zn

output (b, �).

• For a given public key pk = (n, e) and signature (b, �), the verification algorithm does:

V
�

pk , m, (b, �)
�

:= y  H(b, m)
if y = �e output accept; otherwise, output reject.

Security. The S 0
RSA-FDH system can be shown to be secure under the RSA assumption, when H

is modeled as a random oracle. The security proof uses the random self reduction of RSA to obtain
a tight reduction to the RSA problem. The point is that the factor 2.72(Qs + 1) in Theorem 13.4
is replaced by a factor of 2 in the theorem below.

Theorem 13.7. Let H : M0 ! Y be a hash function. Assume that the RSA assumption holds for
(`, e), and F is a secure PRF. Then S 0

RSA-FDH is a secure signature scheme when H is modeled as
a random oracle.

In particular, let A be an e�cient adversary attacking S 0
RSA-FDH. Then there exist an e�cient

RSA adversary B and a PRF adversary BF , where B and BF are elementary wrappers around A,
such that

SIGro
adv[A, S 0

RSA-FDH]  2 · RSAadv[B, `, e] + PRFadv[F, BF ]

Proof idea. Suppose the PRF F is a random function f : M! {0, 1}. We build an algorithm B that
uses an existential forger A to break the RSA assumption. Let (n, d)  R RSAGen(`, e), x⇤  R Zn,
and y⇤  xe⇤ 2 Zn. Algorithm B is given n, y⇤ and its goal is to output x⇤. First B sends the public
key pk = (n, e) to A. Now A issues random oracle queries and signing queries. To obtain a tight
reduction, B must properly answer all signing queries from A. In other words, B must be able to
sign every message in M. But this seems impossible — if B already knows the signature on all
messages, how can an existential forgery from A possibly help B solve the challenge (n, y⇤)? The
signature produced by A seems to give B no new information.

The solution comes from the extra bit in the signature. Recall that in S 0
RSA-FDH every message

m 2M has two valid signatures, namely �0 = (0, H(m, 0)d) and �1 = (1, H(m, 1)d). Algorithm B
sets things up so that it knows exactly one of these signatures for every message. In particular,
B will know the signature (b, H(b, m)) where b  f(m). The forger A will output an existential
forgery (m, (b, �)) where, with probability 1/2, (b, �) is the signature on m that B does not know.
We will use the random self reduction of RSA to ensure that any such signature enables B to solve
the original challenge. For this to work, A must not know which of the two signatures B knows.
Otherwise, a malicious A could always output a signature forgery that is of no use to B. This is
the purpose of the PRF.

To implement this idea, B responds to random oracle queries and signing queries as follows. We
let O denote the random oracle implementing H.

• upon receiving a random oracle query (b, m) 2M0 from A do:

if b = f(m) then c 0 else c 1

repeat until y 2 Y
x R Zn, y  xe · yc⇤ 2 Zn // So y = xe or y = xe · y⇤

send y to A // This defines O(b, m) := y
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Observe that in either case O(b, m) is a uniform value in Y as required. In particular, A
learns nothing about the value of f(m).

When b = f(m) the random oracle value O(b, m) is a random value y for which B knows an
eth root, namely x. When b 6= f(m) then O(b, m) is a random value y for which B does not
know an eth root. In fact, an eth root of y = xe · y⇤ will solve the original challenge — if �
is an eth root of y then x⇤ = �/x 2 Zn is an eth root of y⇤, since:

xe
⇤ = �e/xe = y/xe = (xe · y⇤)/xe = y⇤. (13.8)

In e↵ect, B uses the random self reduction of RSA to map the original challenge y⇤ to a
random challenge y. It then maps O(b, m) to this random y.

• Upon receiving a signing query m 2M from A, respond as follows. First, compute b f(m)
and let y  O(b, m) 2 Y. By construction, B defined O(b, m) = xe for some random x 2 Zn

chosen by B. Hence, B has an eth root x for this y. It sends A the signature (b, x).

So far, B simulates the challenger perfectly. Its responses to A’s oracle queries are uniform and
random in Y and all its responses to signing queries are valid. Therefore, A produces an existential
forgery (b, �) on some message m. Then �e = O(b, m). Now, if b 6= f(m) then O(b, m) = xe · y⇤
and hence x⇤ = �/x as in (13.8).

In summary, assuming b 6= f(m), algorithm B obtains a solution to the challenge y⇤. But, by
construction of O, the adversary learns no information about the function f . In particular, f(m)
is a random bit, and is independent of the adversary’s view. Therefore, b 6= f(m) happens with
probability 1/2. This is the source of the factor of 2 in Theorem 13.7. 2

So what does this mean? The S 0
RSA-FDH system is a minor modification of SRSA-FDH. Signa-

tures include an additional bit which leads to a tighter reduction to the RSA assumption. Despite
this tighter reduction, S 0

RSA-FDH has not gained much acceptance in practice. Most practitioners
do not view the extra complexity as a worthwhile tradeo↵ against the tighter reduction, especially
since this reduction is ultimately heuristic, as it models H as a random oracle. It is not clear that
S 0
RSA-FDH is any more secure than SRSA-FDH for any particular instantiation of H. This is an open

question. Conversely, Exercise 13.7 shows that for every instantiation of H, the signature scheme
S 0
RSA-FDH is no less secure than SRSA-FDH.

13.6 Case study: PKCS1 signatures

The most widely deployed standard for RSA signatures is known as PKCS1 version 1.5 mode 1.
This RSA signing method is commonly used for signing X.509 certificates. Let n be an t-bit RSA
modulus. The standard requires that t is a multiple of 8. Let e be the encryption exponent (or
signature verification exponent). To sign a message m, the standard specifies the following steps:

• Hash m to an h-bit hash value using a collision resistant hash function H, where h is also
required to be a multiple of 8. The standard requires that h < t� 88.

• Let D 2 {0, 1}t be the binary string shown in Fig. 13.3. The string starts with the two bytes
00 01. It then contains a padding sequence of FF-bytes that ends with a single 00 byte. Next
a short DigestInfo (DI) field is appended that encodes the name of the hash function H used
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00 01 FF FF FF . . . FF FF 00 DI H(m)

16 bits

t bits

D:

Figure 13.3: PKCS1 signatures: the quantity D signed by RSA

to hash m. For example, when SHA256 is used the DigestInfo field is a fixed 19-byte string.
Finally, H(m) is appended. The length of the padding sequence of FF-bytes is such that D
is exactly t bits.

• View D as an t-bit integer, which we further interpret as an element of Zn, and output the
eth root of D as the signature �.

To verify the signature, first compute �e 2 Zn, and then interpret this as an t-bit string D. Finally,
verify that D contains all the fields shown in Fig. 13.3, and no other fields.

The reason for prepending the fixed PKCS1 pad to the hash value prior to signing is to avoid
a chosen message attack due to Desmedt and Odlyzko [30]. The attack is based on the following
idea. Suppose PKCS1 directly signed a 256-bit message digest with RSA, without first expanding
it to a long string as in Fig. 13.3. Further, suppose the attacker finds three messages m1, m2, m3

such that
H(m1) = p1, H(m2) = p2, H(m3) = p1 · p2, (13.9)

where H(m1), H(m2), H(m3) are viewed as integers in the interval [0, 2256). The attacker can
request the signatures on m1 and m2 and from them deduce the signature on m3 by multiplying
the two given signatures. Hence, the attacker obtains an existential forgery by issuing two chosen
message queries. The attack of Desmedt and Odlyzko extends this basic idea so that the attack
succeeds with high probability using many chosen message queries. The reason for the padding in
Fig. 13.3 is so that the numbers for which an eth root is computed are much longer than 256 bits.
As a result, it is much less likely that an attacker can find messages satisfying a condition such as
(13.9).

Security. PKCS1 is an example of a partial domain hash signature. The message m is hashed
into an h-bit string that is mapped into a fixed interval I inside of Zn. The interval has size |I| = 2h.
Typically, the hash size h is 160 or 256 bits, and the modulus size t is at least 2048 bits. Hence, I
is a tiny subset of Zn.

Unfortunately, the proof of Theorem 13.4 requires that the output of the hash function H be
uniformly distributed over a large subset Y of Zn. This was necessary for the proof of Lemma 13.6.
The set Y had to be large so that we could pick a random y 2 Y for which we knew an eth root.

When hashing into a tiny subset I of Zn the proof of Lemma 13.6 breaks down. The problem
is that we cannot pick a random y 2 I so that an eth root of y is known. More precisely, the
obstruction to the proof is the following problem:

(⇤) given an RSA modulus n, output a pair (y, x) where y is uniformly
distributed in a subset I ✓ Zn and x is an eth root of y.
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A solution to this problem will enable us to prove security of PKCS1 under the assumption that
computing eth roots is hard in the interval I. Problem (⇤) is currently open. The best known
algorithm [27] solves the problem for e = 2 whenever |I| � n2/3. However, typically in PKCS1, |I|
is far smaller than n2/3 (and for RSA we use e > 2).

In summary, although PKCS1 v1.5 is a widely used standard for signing using RSA, we cannot
prove it secure under the standard RSA assumption. An updated version of PKCS1 known as
PKCS1 v2.1 includes an additional RSA-based signature method called PSS, discussed in the
chapter notes.

13.6.1 Bleichenbacher’s attack on PKCS1 signatures

Implementing cryptography is not easy. In this section, we give a clever attack on a once-popular
implementation of PKCS1 that illustrates its fragility. Let pk = (n, 3) be an RSA public key for
the PKCS1 signature scheme: n is an t-bit RSA modulus and the signature verification exponent
is 3. We assume t � 2048.

When signing a message m using PKCS1 the signer forms the block D shown in Fig. 13.3, and
then, treating D as an integer, computes the cube root of D modulo n as the signature �.

Consider the following erroneous implementation of the verification algorithm. To verify a message-
signature pair (m, �), with SHA256 as the hash function, the verifier does:

1. compute �e 2 Zn, and then interpret this as a t-bit string D

2. parse D from left to right as follows:

(a) reject if the top most 2 bytes are not 00 01

(b) skip over all FF-bytes until reaching a 00 byte and skip over it too

(c) reject if the next bytes are not the DigestInfo field for the SHA256 function

(d) read the following 32 bytes (256 bits), compare them to the hash value SHA256(m), and
reject if not equal

3. if all the checks above pass successfully, accept the signature

While this procedure appears to correctly verify the signature, it ignores one very crucial step: it
does not check that D contains nothing to the right of the hash value. In particular, this verification
procedure accepts an t-bit block D⇤ that looks as follows:

D⇤ := 00 01 FF . . . FF 00 DI hash more bits J

Here J is some sequence of bits chosen by the attacker. The attacker shortened the variable length
padding block of FF’s to make room for the quantity J , so that the total length of D⇤ is still t bits.

This minor-looking oversight leads to a complete break of the signature scheme. An attacker
can generate a valid signature on any message m of its choice, as we now proceed to demonstrate.

Let w 2 Z be the largest multiple of eight smaller than t/3 � 3. To forge the signature on m,
the attacker first computes H(m) = SHA256(m) and constructs the block D, as in Fig. 13.3, but
where D is only w bits long (note that w ⇡ t/3). To make D this short, simply make the variable
length padding block su�ciently short. Next, viewing D as an integer, the attacker computes:

s 3
p

D · 2t�w 2 R, x d s e 2 Z, output x.
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Here, the cube root s of D · 2t�w is computed over the real numbers and rounded up to the next
integer x.

We show that x, when viewed as an element of Zn, will be accepted as a valid signature on m.
Since 0  x� s < 1, we obtain

0  x3 � (D · 2t�w) = x3 � s3 = (x� s)(x2 + xs + s2) < 3(s + 1)2.

Observe that s3 = D · 2t�w < 2t, because the leading bits of D are zero. Moreover, for s � 3, we
have that (s + 1)2  2s2 < 2 · 2(2/3)t, and therefore

0  x3 � (D · 2t�w) < 3(s + 1)2 < 6 · 2(2/3)t < 2t�[(t/3)�3] < 2t�w.

In other words, x3 = (D · 2t�w) + J where 0  J < 2t�w.
It follows that if we treat x as an element of Zn, it will be accepted as a signature on m.

Indeed, x3 will be strictly less than n, so the computation of x3 mod n will not wrap around at all.
Moreover, when the verifier interprets x3 as an t-bit string D⇤, the w most significant bits of D⇤

are equal to D, ensuring that x will be accepted as a signature on m with respect to the public key
(n, 3).

This attack applies to RSA public keys that use a small public exponent, such as e = 3. When
it was originally discovered, it was shown to work well against several popular PKCS1 implemen-
tations. The attack exploits a bug in the implementation of PKCS1 that is easily mitigated: the
verifier must reject the signature if D is not the correct length, or there are bits in D to the right
of the hash value. Nevertheless, it is a good illustration of the di�culty of correctly implementing
cryptographic primitives. A simple misunderstanding in reading the PKCS1 specification resulted
in a devastating attack on its implementation.

13.7 Signcryption: combining signatures and encryption

A signcryption scheme lets a sender, Alice, send an encrypted message to a recipient, Bob, so that
(1) only Bob can read the message, and (2) Bob is convinced that the message came from Alice.
Signcryption schemes are needed in messaging systems that provide end-to-end security, but where
Bob may be o✏ine at the time that Alice sends the message. Because Bob is o✏ine, Alice cannot
interact with Bob to establish a shared session key. Instead, she encrypts the message intended
for Bob, and Bob receives and decrypts it at a later time. The ciphertext she sends to Bob must
convince Bob that the message is from Alice.

Since anyone can generate public-private key pairs, signcryption only makes sense in an envi-
ronment where every identity is publicly bound to one or more public keys. More precisely, Bob can
tell what public keys are bound to Alice’s identity, and an attacker cannot cause Bob to associate
an incorrect public key to Alice. If this were not the case, that is, if an attacker can generate a
public-private key pair and convince Bob that this public key belongs to Alice, then the goals of
signcryption cannot be achieved: the attacker could send a message on behalf of Alice, and Bob
could not tell the di↵erence; similarly, the attacker could decrypt messages that Bob thinks he is
sending to Alice.

To capture this requirement on public keys and identities, we assign to every user X of the
system a unique identity idX. Moreover, we assume that any other user can fetch the public key
pkX that is bound to the identity idX. So, Alice can obtain a public key bound to Bob, and she
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can be reasonably confident that only Bob knows the corresponding private key. Abstractly, one
can think of a public directory that maintains a mapping from identities to public keys. Anyone
can read the directory, but only the user with identity idX can update the record associated with
idX (in today’s technology, Facebook user profiles serve as such a global directory). In Section 13.8
we will see that certificates are another way to reliably bind public keys to identities.

We will denote the sender’s identity by idS and the recipient’s identity by idR. We denote the
sender’s public-private key pair by pkS and skS and the recipients key pair by pkR and skR. To
encrypt a message m intended for a specific recipient, the sender needs its own identity idS and
secret key skS as well as the recipients identity idR and public key pkR. To decrypt an incoming
ciphertext, the recipient needs the sender’s identity idS and public key pkS as well as its own
identity idR and secret key skR. With this in place we can define the syntax for signcryption.

Definition 13.5. A signcryption scheme SC = (G, E, D) is a triple of e�cient algorithms, G, E
and D, where G is called a key generation algorithm, E is called an encryption algorithm,
and D is called a decryption algorithm.

• G is a probabilistic algorithm that takes no input. It outputs a pair (pk , sk), where sk is called
a secret key and pk is called a public key.

• E is a probabilistic algorithm that is invoked as c R E
�

skS, idS, pkR, idR, m
�

, where skS and
idS are the secret key and identity of the sender, pkR and idR are the public key and identity
of the recipient, and m is a message. The algorithm outputs a ciphertext c.

• D is a deterministic algorithm invoked as D
�

pkS, idS, skR, idR, c
�

. It outputs either a message
m or a special symbol reject.

• We require that a ciphertext generated by E is always accepted by D. That is, for all possible
outputs (pkS, skS) and (pkR, skR) of G, all identities idS, idR, and all messages m

Pr
⇥

D
�

pkS, idS, skR, idR, E(skS, idS, pkR, idR, m)
�

= m
⇤

= 1.

As usual, we say that messages lie in a finite message space M, ciphertexts lie in some finite
ciphertext space C, and identities lie in some finite identity space I. We say that SC =
(G, E, D) is defined over (M, C, I).

We can think of signcryption as the public-key analogue of authenticated encryption for sym-
metric ciphers. Authenticated encryption is designed to achieve the same confidentiality and au-
thenticity goals as signcryption, but assuming the sender and recipient have already established a
shared secret key. Signcryption is intended for a non-interactive setting where no shared secret key
is available. With this analogy in mind we can consider two signcryption constructions, similar to
the ones in Chapter 9:

• The signcryption analogue of encrypt-then-MAC is encrypt-then-sign: first encrypt the mes-
sage with the recipient’s public encryption key and then sign the resulting ciphertext with
the sender’s secret signing key.

• The signcryption analogue of MAC-then-encrypt is sign-then-encrypt: first sign the message
with the sender’s secret signing key and then encrypt the message-signature pair with the
recipient’s public encryption key.
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Which of these is secure? Is one method better than the other? To answer these questions we must
first formally define what it means for a signcryption scheme to be secure, and then analyze these
and other signcryption schemes.

We begin in Section 13.7.1 with a formal definition of security for signcryption. Admittedly,
our definition of secure signcryption is a bit lengthy, and it may not be immediately clear that
it captures the “right” properties. In Section 13.7.2, we discuss how this definition can be used
to derive more intuitive security properties of signcryption in a multi-user setting. It is precisely
these implications that give us confidence that the basic definition in Section 13.7.1 is su�ciently
strong. In Sections 13.7.3 and 13.7.4 we turn to the problem of constructing secure signcryption
schemes. Finally, in Section 13.7.5, we investigate some additional desirable security properties for
signcryption, called forward-secrecy and non-repudiation, and show how to achieve them.

13.7.1 Secure signcryption

We begin with the basic security requirements for a signcryption scheme. As we did for au-
thenticated encryption, we define secure signcryption using two games. One game captures data
confidentiality: an adversary who does not have Alice’s or Bob’s secret key cannot break semantic
security for a set of challenge ciphertexts from Alice to Bob. The other game captures data au-
thenticity: an adversary who does not have Alice’s or Bob’s secret key cannot make Bob accept a
ciphertext that was not generated by Alice with the intent of sending it to Bob.

In both games the adversary is active. In addition to asking Alice to encrypt messages intended
for Bob, and asking Bob to decrypt messages supposedly coming from Alice, the adversary is free
to ask Alice to encrypt messages intended for any other user of the adversary’s choosing, and to
ask Bob to decrypt messages supposedly coming from any other user of the adversary’s choosing.
Moreover, the attack game reflects the fact that while Alice may be sending messages to Bob, she
may also be receiving messages from other users. Therefore, the adversary is free to ask Alice to
decrypt messages supposedly coming from any other user of the adversary’s choosing. Similarly,
modeling the fact that Bob may also be playing the role of sender, the adversary is free to ask Bob
to encrypt messages intended for any other user of the adversary’s choosing.

Ciphertext integrity. We start with the data authenticity game, which is an adaptation of the
ciphertext integrity game used in the definition of authenticated encryption (Attack Game 9.1).

Attack Game 13.5 (ciphertext integrity). For a given signcryption scheme SC = (G, E, D)
defined over (M, C, I), and a given adversary A, the attack game runs as follows:

• The adversary chooses two distinct identities idS (the sender identity) and idR (the receiver
identity), and gives these to the challenger. The challenger runs G twice to obtain (pkS, skS)
and (pkR, skR) and gives pkS and pkR to A.

• A issues a sequence of queries to the challenger. Each query is one of the following types:

S! R encryption query: a message m.

The challenger computes c R E(skS, idS, pkR, idR, m), and gives c to A.

X! Y encryption query: a tuple (idX, idY, pkY, m), where idX 2 {idS, idR} and (idX, idY) 6=
(idS, idR). The challenger responds to A with c, computed as follows:
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if idX = idS then c R E(skS, idS, pkY, idY, m),
if idX = idR then c R E(skR, idR, pkY, idY, m).

X! Y decryption query: a tuple (idX, idY, pkX, ĉ), where idY 2 {idS, idR} and (idX, idY) 6=
(idS, idR). The challenger responds to A with m̂, computed as follows:

if idY = idS then m̂ D(pkX, idX, skS, idS, ĉ),
if idY = idR then m̂ D(pkX, idX, skR, idR, ĉ).

• Finally, A outputs a candidate ciphertext forgery c0 2 C, where c0 is not among the responses
to an S! R encryption query.

We say that A wins the game if its candidate ciphertext forgery c0 is a valid ciphertext from idS

to idR, that is, D(pkS, idS, skR, idR, c0) 6= reject. We define A’s advantage, denoted SCIadv[A, SC],
as the probability that A wins the game. 2

Definition 13.6. We say that SC = (G, E, D) provides signcryption ciphertext integrity, or
SCI for short, if for every e�cient adversary A, the value SCIadv[A, SC] is negligible.

Security against a chosen ciphertext attack. Next, we define the data confidentiality game,
which is an adaptation of the game used to define chosen ciphertext security (Attack Game 12.1).
Note that in this game, the syntax of the X ! Y encryption and decryption queries are exactly
the same as in Attack Game 13.5.

Attack Game 13.6 (CCA security). For a given signcryption scheme SC = (G, E, D), defined
over (M, C, I), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The adversary chooses two distinct identities idS (the sender identity) and idR (the receiver
identity), and gives these to the challenger. The challenger runs G twice to obtain (pkS, skS)
and (pkR, skR) and gives pkS and pkR to A.

• A issues a sequence of queries to the challenger. Each query is one of the following types:

S! R encryption query: a pair of equal-length messages (m0, m1).

The challenger computes c R E(skS, idS, pkR, idR, mb), and gives c to A.

S! R decryption query: a ciphertext ĉ, where ĉ is not among the outputs of any previous
S! R encryption query.

The challenger computes m̂ R D(pkS, idS, skR, idR, ĉ), and gives ĉ to A.

X! Y encryption query: a tuple (idX, idY, pkY, m), where idX 2 {idS, idR} and (idX, idY) 6=
(idS, idR). The challenger responds to A with c, computed as follows:

if idX = idS then c R E(skS, idS, pkY, idY, m),
if idX = idR then c R E(skR, idR, pkY, idY, m).

X! Y decryption query: a tuple (idX, idY, pkX, ĉ), where idY 2 {idS, idR} and (idX, idY) 6=
(idS, idR). The challenger responds to A with m̂, computed as follows:

if idY = idS then m̂ D(pkX, idX, skS, idS, ĉ),
if idY = idR then m̂ D(pkX, idX, skR, idR, ĉ).
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• At the end of the game, the adversary outputs a bit b̂ 2 {0, 1}.

Let Wb is the event that A outputs 1 in Experiment b and define A’s advantage as

SCCAadv[A, SC] :=
�

�Pr[W0]� Pr[W1]
�

�. 2

Definition 13.7 (CCA Security). A signcryption scheme SC is called semantically secure
against a chosen ciphertext attack, or simply CCA secure, if for all e�cient adversaries A,
the value SCCAadv[A, SC] is negligible.

Finally, we define a secure signcryption scheme as one that is both CCA secure and has cipher-
text integrity.

Definition 13.8. We say that a signcryption scheme SC = (G, E, D) is secure if SC is (1) CCA
secure, and (2) provides signcryption ciphertext integrity.

From two users to multiple users. While this security definition focuses on just two honest
users, it actually implies a strong security property in a multi-user setting. We will flesh this out
below in Section 13.7.2.

Replay attacks. One thing the definition does not prevent is a “replay” attack: an attacker can
record a valid ciphertext c from Alice to Bob and at a later time, say a week later, resend the
same c to Bob. Bob receives the replayed ciphertext c and, because it is a valid ciphertext, he
might mistakenly believe that Alice sent him the same message again. For example, if the message
from Alice is “please transfer $10 to Charlie,” then Bob might incorrectly transfer another $10 to
Charlie.

Signcryption is not designed to prevent replay attacks. Higher level protocols that use sign-
cryption must themselves take measures to counter-act them. We will discuss replay attacks and
how to prevent them when we discuss authenticated key exchange in Chapter 20.

Statically vs adaptively chosen user IDs. Our definition of secure signcryption is subject
to a rather subtle criticism, related to the manner in which user IDs are chosen. While we leave
it to the adversary to choose the user IDs of the sender and receiver (that is, idS and idR), this
choice is “static” in the the sense that it is made at the very beginning of the game. A more
robust definition would allow a more “adaptive” strategy, in which the adversary gets to choose
these IDs after seeing one or both of the public keys, or even after seeing the response to one
or more X ! Y queries. For most realistic schemes (including all of those discussed here), this
distinction makes no di↵erence, but it is possible to dream up contrived schemes where it does (see
Exercise 13.16). We have presented the definition with statically chosen IDs mainly for the sake of
simplicity (and because, arguably, honest users choose their IDs in a manner than is not so much
under an adversary’s control).

13.7.2 Signcryption as an abstract interface

Our definition of secure signcryption may seem a bit technical, and it is perhaps useful to discuss
how this definition can applied. Much as we did in Sections 9.3 and 12.2.4, we do so by describing
signcryption as an abstract interface. However, unlike in those two sections, it makes more sense
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here to explicitly model a system consisting of many users who are trying to send messages to one
another over an insecure network.

The setting is as follows. We have a system of many users: some are “honest” and some are
“corrupt.” The honest users are assumed to follow the specified communication protocol correctly,
while the corrupt users may do anything they like to try and subvert the protocol. The corrupt users
may collude with each other, and may also attempt to subvert communications by eavesdropping
on and tampering with network communication. In fact, we can just assume there is a single
attacker who orchestrates the behavior of all the corrupt users and completely controls the network.
Moreover, this attacker may have some knowledge of or influence over messages sent by honest users,
and may have some knowledge of messages received by honest users.

To start with, we assume that each honest user somehow registers with the system by providing
a user ID and a public key. We do not worry about the details of this registration process, except
that we require each honest user to have a unique ID and to generate its public key using the key
generation algorithm of the signcryption scheme (and, of course, keep the corresponding secret key
to itself).

We require that the corrupt users also register with the system. While we insist that all users
(honest and corrupt) have unique IDs, we do not make any requirements on how the corrupt users
generate their public keys: they may use the prescribed key generation algorithm, or they may
do something else entirely, including computing their public key as some function of one or more
honest users’ public keys. In fact, we may even allow the corrupt users to register with the system
after it has been running for a while, choosing their public keys (and even their user IDs) in some
way that depends in some malicious way on everything that has happened so far (including all
network tra�c).

We model the communication interface as a collection of in-boxes and out-boxes.
For each honest user idS and each registered user (honest or corrupt) idR 6= idS, we have an

out-box denoted Out(idS, idR). If idR belongs to an honest user, we say that the out-box is safe;
otherwise, we say that it is unsafe. From time to time, user idS may want to send a message to
user idR, and he does so by dropping the message in the out-box Out(idS, idR).

For each registered user (honest or corrupt) idS and each honest user idR 6= idS, we have an in-
box denoted In(idS, idR). If idS belongs to an honest user, we say that the in-box is safe; otherwise,
we say that it is unsafe. From time to time, a message may appear in the in-box In(idS, idR),
which user idR may then retrieve.

That is the abstract interface. We now describe the real implementation.
First, consider an out-box Out(idS, idR) associated with an honest user idS. The user idR may

or may not be honest. When user idS user drops a message in the out-box, the message is encrypted
using the secret key associated with user idS and the public key associated with user idR (along
with the given user IDs). The resulting ciphertext is sent out of the network.

In a properly functioning network, if user idR is an honest user, this ciphertext will eventually
be presented to the matching in-box In(idS, idR).

Now consider an in-box In(idS, idR) associated with an honest user idR. The user idS may or
may not be honest. Whenever the network presents a ciphertext to this in-box, it is decrypted
using the public key of idS and the secret key idR (along with the given user IDs). If the ciphertext
is not rejected, the resulting message is placed in the in-box for later consumption by user idR.

We now describe an ideal implementation of this interface.
Here is what happens when an honest user drops a message in an out-box Out(idS, idR). If the
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out-box is safe (i.e., user idR is an honest user), instead of encrypting the given message, a dummy
message is encrypted. This dummy message has nothing to do with the real message (except that
it should be of the same length), and the resulting ciphertext just serves as a “handle”. Otherwise,
if the out-box is unsafe, the real message is encrypted as in the real implementation.

Here is what happens when the network presents a ciphertext to an in-box In(idS, idR). If the
in-box is safe (i.e., user idS is an honest user), the ideal implementation checks if this ciphertext
was previously generated as a handle by the matching out-box Out(idS, idR), and if so, copies
the corresponding message directly from the out-box to the in-box; otherwise, the ciphertext is
discarded. If the in-box is unsafe, the ciphertext is decrypted as in the real implementation.

We hope that it is intuitively clear that this ideal implementation provides all the security one
could possibly hope for. In this ideal implementation, messages magically “jump” from honest
senders to honest receivers: the attacker cannot tamper with or glean any information about
these messages, even if honest users interact with corrupt users. At worst, an attacker reorders
or duplicates messages by reordering or duplicating the corresponding handles (indeed, as already
mentioned, our definition of secure signcryption does not rule out “replay” attacks). Typically, this
is an issue that a higher level protocol can easily deal with.

We now argue informally that if the signcryption scheme is secure, as in Definition 13.8, then
the real world implementation is indistinguishable from the ideal implementation. The argument
proceeds in three steps. We start with the real implementation, and in each step, we make a slight
modification.

• First, we modify the behavior of the safe in-boxes. Whenever the network presents a cipher-
text to the in-box that came from the matching out-box, the corresponding message is copied
directly from the out-box to the in-box.

The correctness property of the signcryption scheme ensures that this modification behaves
exactly the same as the real implementation.

• Second, we modify the behavior of the safe in-boxes again. Whenever the network presents
a ciphertext to the in-box that did not came from the matching out-box, the ciphertext is
discarded.

The ciphertext integrity property ensures that this modification is indistinguishable from
the first. To reduce from the multi-user setting to the two-user setting, one must employ a
“guessing argument”.

• Third, we modify the behavior of the safe out-boxes, so that dummy messages are encrypted
in place of the real messages.

The CCA security property ensures that this modification is indistinguishable from the second.
To reduce from the multi-user setting to the two-user setting, one must employ a “hybrid
argument”.

Just as in Sections 9.3 and 12.2.4, we have ignored the possibility that the ciphertexts generated
in a safe out-box are not unique. If we are going to view these ciphertexts as handles in the ideal
implementation, uniqueness is an essential property. However, just as in those cases, the CCA
security property implies that these ciphertexts are unique with overwhelming probability.
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13.7.3 Constructions: encrypt-then-sign and sign-then-encrypt

We begin by analyzing the two most natural constructions. Both are a combination of a CCA-
secure public-key encryption scheme and a secure signature scheme. Getting these combinations
right is a little tricky and small variations can be insecure. We explore some insecure variations in
Exercise 13.15.

Let E = (GENC, E, D) be a public-key encryption scheme with associated data (see Section 12.7).
Recall that this means that E is invoked as c R E(pk , m, d), and D is invoked as m R D(sk , c, d),
where d is the “associated data”. Also, let S = (GSIG, S, V ) be a signature scheme. Define algorithm
G as:

G() := (pkENC, skENC) R GENC(), (pkSIG, skSIG) R GSIG()

output pk := (pkENC, pkSIG) and sk := (skENC, skSIG)

In what follows we use the shorthand E(pk , m, d) to mean E(pkENC, m, d) and S(sk , m) to mean
S(skSIG, m), for some message m. We use a similar shorthand for V (pk , m, �) and D(sk , c, d). We
next define two natural signcryption schemes, each of which has a message space M and an identity
space I.

Encrypt-then-sign. The scheme SCEtS = (G, EEtS, DEtS) is defined as

EEtS(skS, idS, pkR, idR, m) := c R E
�

pkR, m, idS
�

, �  R S
�

skS, (c, idR)
�

output (c, �);

DEtS
�

pkS, idS, skR, idR, (c, �)
�

:= if V (pkS, (c, idR), �) = reject, output reject

otherwise, output D(skR, c, idS).

Here the encryption scheme E is assumed to be defined over (M, I, C), so that I is the associated
data space for E . The signature scheme S is assumed to be defined over (C ⇥ I, ⌃).

Sign-then-encrypt. The scheme SCStE = (G, EStE, DStE) is defined as

EStE(skS, idS, pkR, idR, m) := �  R S
�

skS, (m, idR)
�

, c R E
�

pkR, (m, �), idS
�

output c;

DEtS
�

pkS, idS, skR, idR, c
�

:= if D(skR, c, idS) = reject, output reject, otherwise:
(m, �) D(skR, c, idS)
if V (pkS, (m, idR), �) = reject, output reject

otherwise, output m.

Here the encryption scheme E is assumed to be defined over (M⇥⌃, I, C), where I is the associated
data space. The signature scheme S is assumed to be defined over (M⇥I, ⌃). Moreover, we shall
assume that the signatures are bit strings whose length only depends on the message being signed
(this technical requirement will be required in the security analysis).

The following two theorems show that both schemes are secure signcryption schemes. Notice
that the corresponding symmetric constructions analyzed in Section 9.4 were not both secure.
Encrypt-then-MAC provides authenticated encryption while MAC-then-encrypt might not. In the
signcryption setting, both constructions are secure. The reason sign-then-encrypt is secure is that
we are starting from a CCA-secure public-key system E , where as MAC-then-encrypt was built
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from a CPA-secure cipher. In fact, we know by Exercise 9.15 that MAC-then-encrypt, where the
encryption scheme is CCA secure, provides authenticated encryption. Therefore, it should not be
too surprising that sign-then-encrypt is secure.

Unlike the encrypt-then-MAC construction, the encrypt-then-sign method requires a CCA-
secure encryption scheme for security, rather than just a CPA-secure encryption scheme. We
already touched on this issue back in Section 12.2.2 as one of the motivations for studying CCA-
secure public-key encryption.

The encrypt-then-sign method requires a strongly secure signature scheme for security, as defined
in Definition 13.3. Without this, the scheme can be vulnerable to a CCA attack: if an adversary,
given a challenge ciphertext (c, �), can produce a new valid signature �0 on the same data, then
the adversary can win the CCA attack game by asking for a decryption of (c, �0). To prevent this,
we require that the signature scheme is strongly secure. This is perhaps to be expected, as in the
symmetric setting, the encrypt-then-MAC construction requires a secure MAC, and our definition
of a secure MAC is the direct analogue of our definition of a strongly secure signature scheme.
In contrast, sign-then-encrypt requires just a secure signature scheme — the scheme need not be
strongly secure.

We now present the security theorems for both schemes.

Theorem 13.8. SCEtS is a secure signcryption scheme assuming E is a CCA-secure public-key
encryption scheme with associated data and S is a strongly secure signature scheme.

In particular, for every ciphertext integrity adversary Aci that attacks SCEtS as in Attack
Game 13.5 there exists a strong signature adversary Bsig that attacks S as in Attack Game 13.2,
where Bsig is an elementary wrapper around Aci, such that

SCIadv[Aci, SCEtS] = stSIGadv[Bsig, S].

In addition, for every CCA adversary Acca that attacks SCEtS as in Attack Game 13.6 there
exists a CCA adversary Bcca that attacks E as in Definition 12.7, and a strong signature adver-
sary Bsig that attacks S as in Attack Game 13.2, where Bcca and B0

sig are elementary wrappers
around Acca, such that

SCCAadv[Acca, SCEtS]  CCAadadv[Bcca, E ] + stSIGadv[B0
sig, S].

Proof sketch. We have to prove both ciphertext integrity and security against chosen ciphertext
attack. Both proofs make essential use of the placement of the identifiers idS and idR as defined
in the encryption and decryption algorithms. We start with ciphertext integrity.

Proving ciphertext integrity. We begin by constructing adversary Bsig that interacts with a
signature challenger for S, while playing the role of challenger to Aci in Attack Game 13.5. Bsig

first obtains a signature public key pk⇤
SIG from its own challenger.

Next, Aci supplies two identities idS and idR. Bsig then uses GENC and GSIG to generate two
public-key encryption key-pairs (pkENC,S, skENC,S) and (pkENC,R, skENC,R), and one signature key-pair
(pkSIG,R, skSIG,R). It sends to Aci the two public keys

pkS := (pkENC,S, pk⇤
SIG) and pkR := (pkENC,R, pkSIG,R).

Note that Bsig knows all the corresponding secret keys, except for the secret key corresponding to
pk⇤

SIG, which is the challenge signature public key that Bsig is trying to attack.
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Aci then issues several encryption and decryption queries.
To process an encryption query, Bsig begins by encrypting the given message m using the

encryption algorithm E with the appropriate public key. This generates a ciphertext c. Next, Bsig

must generate an appropriate signature �. For an S! R encryption query, Bsig obtains a signature
� under pk⇤

SIG on the message (c, idR) by using its own signature challenger. For an X ! Y
encryption query with idX = idS, Bsig obtains a signature � under pk⇤

SIG on the message (c, idY),
again, by using its own signature challenger. For an X! Y encryption query with idX = idR, Bsig

generates � by signing the the message (c, idY) directly, using the secret key skSIG,R. In any case,
Bsig responds to the encryption query with the ciphertext/signature pair (c, �).

Bsig answers decryption queries from Aci by simply running algorithm DEtS on the given data
in the query. Indeed, Bsig has all the required keys to do so.

Eventually, Aci outputs a valid ciphertext forgery (c0, �0), where �0 is a valid signature on the
message (c0, idR). We argue that the message-signature pair

�

(c0, idR), �0� is a strong existential
forgery for the signature scheme S. The only way this can fail is if Bsig had previously asked its
challenger for a signature on (c0, idR) and the challenger responded with �0. Observe that the only
reason Bsig would ask for a signature on (c0, idR) is as part of responding to an S! R encryption
query from Aci. This is where we make essential use the fact that the identity idR is included in
the data being signed. We conclude that the signature from the challenger cannot be �0 because
the ciphertext forgery (c0, �0) must be di↵erent from all the S ! R ciphertexts generated by Bsig.
It follows that

�

(c0, idR), �0� is a valid strong existential forgery on S, as required.

Proving chosen ciphertext security. Next, we sketch the proof of CCA security. It is convenient
to modify the attack game slightly. Let Game 0 be the original signcryption CCA game between a
SCEtS challenger and an adversary Acca. We then define Game 1, which is the same as Game 0, ex-
cept that we add a “special rejection rule” in the challenger’s logic for processing S! R decryption
queries. Namely, given an S! R decryption query (ĉ, �̂), where �̂ is a valid signature on (ĉ, idR),
and ĉ is the first component of a response to a previous S ! R encryption query, the challenger
returns reject without further processing.

It is not di�cult to see that Games 0 and 1 proceed identically, unless the challenger rejects
a ciphertext (ĉ, �̂) in Game 1 that would not be rejected in Game 0. However, if (ĉ, �̂) is such
a ciphertext, then

�

(ĉ, idR), �̂
�

is a strong existential forgery for S. Therefore, we can construct
an adversary B0

sig whose advantage in strong existential forgery game against S is equal to the
probability that such a ciphertext gets rejected in Game 1.

We now construct an adversary Bcca whose CCA advantage is the same as Acca’s advantage in
Game 1. As usual, Bcca interacts with its own CCA challenger, while playing the role of challenger
to Acca in Game 1.

Adversary Bcca first obtains an encryption public key pk⇤
ENC from its own challenger.

Next, Acca supplies two identities idS and idR. Bcca then runs the key-generation algorithm for
the signature scheme twice and the key-generation algorithm for the encryption scheme once, and
sends to Acca the two public keys

pkS := (pkENC,S, pkSIG,S) and pkR := (pk⇤
ENC, pkSIG,R),

where it knows all the corresponding secret keys, except for the secret key corresponding to pk⇤
ENC.

Acca then issues several encryption and decryption queries.

Processing encryption queries. Adversary Bcca answers an S! R encryption query for message
pair (m0, m1) by issuing an encryption query for (m0, m1) to its challenger, relative to the associated

528



data idS. It gets back a ciphertext c, signs (c, idR) to get �, and sends (c, �) to Acca as a response
to the query.

To answer an X! Y encryption query, Bcca runs algorithm EEtS on the given data in the query.
Indeed, Bcca has all the required keys to do so.

Processing decryption queries. Consider first an S! R decryption query (ĉ, �̂). Our adversary
Bcca uses the following steps:

1. return reject if �̂ is an invalid signature on (ĉ, idR) under pkSIG,S ;

2. return reject if ĉ is the first component of any response to an S ! R encryption query (this
is the special rejection rule we introduced in Game 1);

3. ask the CCA challenger to decrypt ĉ using the associated data idS, and return the result
(note that because of the logic of Steps 1 and 2, Bcca has not issued an encryption query to
its own challenger corresponding to (ĉ, idS)).

The logic for processing an X! Y decryption query (idX, idY, pkX, (ĉ, �̂)) with with idY = idR

is similar:

1. return reject if �̂ is an invalid signature on (ĉ, idR) under pkX;

2. ask the CCA challenger to decrypt ĉ using the associated data idX, and return the result
(note that because idX 6= idS, Bcca has not issued an encryption query to its own challenger
corresponding to (ĉ, idX)).

For other decryption queries, we have all the keys necessary to perform the decryption directly.

Finishing up. Eventually, Acca outputs a guess b̂ 2 {0, 1}. This guess gives Bcca the same
advantage against its CCA challenger that Acca has in Game 1. 2

Theorem 13.9. SCStE is a secure signcryption scheme assuming E is a CCA-secure public-key
encryption scheme with associated data and S is a secure signature scheme.

In particular, for every ciphertext integrity adversary Aci that attacks SCEtS as in Attack
Game 13.5 there exists a signature adversary Bsig that attacks S as in Attack Game 13.1, and
a CCA adversary Bcca that attacks E as in Definition 12.7, where Bsig and B0

cca are elementary
wrappers around Aci, such that

SCIadv[Aci, SCEtS]  SIGadv[Bsig, S] + CCAadadv[B0
cca, E ]

In addition, for every CCA adversary Acca that attacks SCEtS as in Attack Game 13.6 there
exists a CCA adversary Bcca that attacks E as in Definition 12.7, where Bcca is an elementary
wrapper around Acca, such that

SCCAadv[Acca, SCEtS] = CCAadadv[Bcca, E ]

Proof idea. CCA security for the signcryption scheme follows almost immediately from the CCA
security of E . The reader can easily fill in the details.

Proving CI for the signcryption scheme is slightly trickier. Let Game 0 be the original CI attack
game. We modify Game 0 so that for each S! R encryption query, instead of computing

c R E(pkR, (m, �), idS)
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where
�  R S(skS, (m, idR)),

the challenger instead computes

c R E(pkR, (m, dummy), idS).

Call this Game 1. Under CCA security for E , the adversary’s advantage in breaking CI in Game 0
must be negligibly close to the corresponding advantage in Game 1. However, in Game 1, since the
challenger never signs any message of the form (·, idR), breaking CI in Game 1 is tantamount to
forging a signature on just such a message.

In proving both security properties, we need to make use of the technical requirement that
signatures are bit strings whose length only depends on the message being signed. 2

13.7.4 A construction based on Di�e-Hellman key exchange

Our next signcryption construction does not use signatures at all. Instead, we use a non-interactive
variant of the Di�e-Hellman key exchange protocol from Section 10.4.1. The protocol uses a group
G of prime order q with generator g 2 G. This variant is said to be non-interactive because once
every party publishes its contribution to the protocol — g↵ for some random ↵ 2 Zq — no more
interaction is needed to establish a shared key between any pair of parties. For example, once
Alice publishes g↵ and Bob publishes g� , their shared secret is derived from g↵� . The signcryption
scheme we describe can be built from any non-interactive key exchange, but here we present it
concretely using Di�e-Hellman key exchange.

The signcryption scheme SCDH is built from three ingredients:

• a symmetric cipher E = (Es, Ds) defined over (K, M, C),

• a group G of prime order q with generator g 2 G, and

• a hash function H : G3 ⇥ I2 ! K.

Given these ingredients, the system SCDH is defined over (M, C, I) and works as follows:

• The key generation algorithm G runs as follows:

↵ R Zq, h g↵.

The public key is pk := h, and the secret key is sk := ↵. We use hX to denote the public key
associated with identity idX and use ↵X to denote the associated secret key.

• E
�

↵S, idS, hR, idR, m
�

works by first deriving the Di�e-Hellman secret between users S and
R, namely hSR := g↵S·↵R , and then encrypting the message m using the symmetric cipher
with a key derived from hSR. More precisely, encryption works as follows, where hS := g↵S :

hSR  (hR)↵S = g↵S·↵R , k  H
�

hS, hR, hSR, idS, idR
�

, output c R Es(k, m).

• D
�

hS, idS, ↵R, idR, c
�

works as follows, where hR := g↵R :

hSR  (hS)
↵R = g↵S·↵R , k  H

�

hS, hR, hSR, idS, idR
�

, output Ds(k, c).
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It is easy to verify that SCDH is correct. To state the security theorem we must first introduce
a new assumption, called the double-interactive CDH assumption. The assumption is related to,
but a little stronger than, the interactive CDH assumption introduced in Section 12.4.1.

Intuitively, the double-interactive CDH assumption states that given a random instance (g↵, g�)
of the DH problem, it is hard to compute g↵� , even when given access to a DH-decision oracle that
recognizes DH-triples of the form (g↵, ·, ·) or of the form (·, g� , ·). More formally, this assumption
is defined in terms of the following attack game.

Attack Game 13.7 (Double-Interactive Computational Di�e-Hellman). Let G be a cyclic
group of prime order q generated by g 2 G. For a given adversary A, the attack game runs as
follows.

• The challenger computes

↵, �  R Zq, u g↵, v  g� , w  g↵�

and gives (u, v) to the adversary.

• The adversary makes a sequence of queries to the challenger. Each query is one of the following
types:

↵-query: given (ṽ, w̃) 2 G2, the challenger tests if ṽ↵ = w̃;

�-query: given (ũ, w̃) 2 G2, the challenger tests if ũ� = w̃.

In either case, if equality holds the challenger sends “yes” to the adversary, and otherwise,
sends “no” to the adversary.

• Finally, the adversary outputs some ŵ 2 G.

We define A’s advantage in solving the double-interactive computational Di�e-Hellman
problem, denoted I2CDHadv[A,G], as the probability that ŵ = w. 2

Definition 13.9 (Double-Interactive computational Di�e-Hellman assumption). We say
that the double-interactive computational Di�e-Hellman (I2CDH) assumption holds for G
if for all e�cient adversaries A the quantity I2CDHadv[A,G] is negligible.

The following theorem shows SCDH is a secure signcryption scheme where security is defined as
in the previous section (Definition 13.8).

Theorem 13.10. SCDH is a secure signcryption scheme assuming E is an AE-secure cipher, the
I2CDH assumption holds for G, and the hash function H is modeled as a random oracle.

In particular, for every ciphertext integrity adversary Aci that attacks SCDH as in the random
oracle variant of Attack Game 13.5, there exists a ciphertext integrity adversary Bci that attacks
E as in Attack Game 9.1, and an I2CDH adversary Bdh for G, where Bci and Bdh are elementary
wrappers around Aci, such that

SCIadv[Aci, SCDH]  CIadv[Bci, E ] + I2CDHadv[Bdh,G]

In addition, for every CCA adversary Acca that attacks SCDH as in the random oracle variant
of Attack Game 13.6, there exists a CCA adversary Bcca that attacks E as in Attack Game 9.2,
and an I2CDH adversary B0

dh for G, where Bcca and B0
iidh are elementary wrappers around Aci,

such that
SCCAadv[Acca, SCDH]  CCAadv[Bcca, E ] + 2 · I2CDHadv[B0

dh,G]
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The proof of Theorem 13.10 follows easily from the analysis of Di�e-Hellman as a non-interactive
key exchange scheme. This analysis is given in Section 20.10 and we defer proving the theorem to
that section.

13.7.5 Additional desirable properties

So far we looked at three signcryption schemes: SCDH presented in the previous section and the two
schemes presented in Section 13.7.3. All three schemes satisfy the signcryption security definition
(Definition 13.8). However, there are significant di↵erences between SCDH and the two schemes in
Section 13.7.3. One di↵erence between SCDH and the others is a simple inter-operability issue: it
requires all users of the system to use the same group G for generating their keys. This may be
acceptable in some settings but not in others, and is inherent to how SCDH operates.

There are two other, more fundamental, di↵erences that are worth examining further. We
explore these di↵erences by defining two new signcryption properties: (1) forward secrecy, and (2)
non-repudiation.

Property I: forward secrecy. Suppose Alice encrypts a message to Bob and sends the resulting
ciphertext c to Bob. A week later the adversary corrupts Bob and steals his secret key. Because
Bob can decrypt c, so can the adversary. There is no hope of maintaining security under such an
attack. However, suppose that instead of corrupting Bob, the adversary corrupts Alice and steals
her secret key a week after she sent c. Bob’s key remains intact and only known to Bob. One might
reasonably expect that the adversary not be able to decrypt c using Alice’s secret key. We refer to
this property as forward secrecy.

Let us define more precisely what it means for a signcryption scheme to provide forward secrecy.
The goal is to ensure that CCA security is maintained even if the adversary obtains the sender’s
secret key. To do so we make a small tweak to the CCA security game (Attack Game 13.6).

Attack Game 13.8 (CCA security with forward secrecy). The game is identical to Attack
Game 13.6 except that we change the setup step as follows: in addition to giving the adversary
the public keys pkS and pkR, the challenger gives the adversary the sender’s secret key skS. The
corresponding advantage is denoted SCCA0

adv[A, SC]. 2

Definition 13.10. A signcryption scheme SC is said to provide forward secrecy if for all e�cient
adversaries A, the value SCCA0

adv[A, SC] is negligible.

Forward secrecy for sign-then-encrypt. The sign-then-encrypt construction provides forward
secrecy: the secret key skS is only used for signing messages and does not help to decrypt anything.
Indeed, from the concrete security bound given in Theorem 13.9, one can see that the bound on
the SCCA advantage does not depend at all on the security of the signature scheme.

Forward secrecy for encrypt-then-sign. One might be tempted to say the same thing for
encrypt-then-sign; however, this is not quite true in general. Observe that in the concrete security
bound in Theorem 13.8, the bound on the SCCA advantage depends on the security of both the
signature scheme and the encryption scheme. Indeed, as we already discussed in relation to the
need for a strongly secure signature scheme, if the adversary obtains a ciphertext (c, �) in response
to an S! R encryption query, and could compute a valid signature �0 6= � on (c, idR), then by the
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rules of the CCA attack game, the adversary would be free to submit (c, �0) as an S! R decryption
query, completely breaking CCA security.

Now, without the sender’s signing key, this attack would be infeasible. But with the signing
key, it is easy if the signature algorithm is probabilistic (we will see such signature schemes later):
the adversary can use the sender’s signing key to generate a di↵erent signature on an inner S! R
ciphertext and obtain a “new” encrypt-then-sign ciphertext that it can submit to the decryption
oracle.

However, all is not lost. There are a couple of ways to salvage the forward secrecy property of
encrypt-then-sign. One way is to salvage the the situation is to employ a signature scheme that has
unique signatures (i.e., for every public key and message, there is at most one valid signature — full
domain hash is such a scheme). Then the above attack becomes impossible, even with the signing
key. See also Exercise 13.17, which discusses a modification of encrypt-then-sign which achieves
forward secrecy more generically.

Another way is to salvage the situation is to weaken the security definition slightly, by simply
not allowing the adversary to submit a decryption query for the ciphertext (c, �0) in the attack
game. Is this reasonable? Arguably, it is, as anyone can easily tell that the (c, �) and (c, �0)
decrypt to the same thing if � and �0 are both valid signatures on c. Indeed, such a restriction
on the adversary corresponds to the notion of gCCA security discussed in Exercise 12.2, and is
actually quite acceptable for most applications.

Forward secrecy for SCDH. The SCDH signcryption system is does not provide forward secrecy
at all: given the secret key of the sender, the adversary can decrypt any ciphertext generated by
the sender that it wants. Fortunately, we can enhance SCDH to provide forward secrecy.

Enhanced SCDH. Using the notation of Section 13.7.4, the enhanced SCDH signcryption system,
denoted SC0

DH, is defined over (M, G⇥ C, I) and works as follows:

• The key generation algorithm G is as in SCDH. We use hX to denote the public key associated
with identity idX and use ↵X to denote the associated secret key.

• E
�

↵S, idS, hR, idR, m
�

works as follows, where hS := g↵S :

�  R Zq, v  g� ,

hSR  (hR)↵S , w  (hR)� ,

k  H
�

v, w, hS, hR, hSR, idS, idR
�

, c Es(k, m)

output (v, c).

• D
�

hS, idS, ↵R, idR, (v, c)
�

works as follows, where hR := g↵R :

hSR  (hS)
↵R , w  v↵R , k  H

�

v, w, hS, hR, hSR, idS, idR
�

, output Ds(k, c).

In this scheme, the symmetric encryption key is derived from the long term secret key hSR = g↵S·↵R

along with an ephemeral secret key w = g�·↵R . The ephemeral secret key ensures CCA security even
when the attacker knows the sender’s secret key ↵S. The long term secret key ensures ciphertext
integrity, as before.
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The following theorem proves security of SC0
DH in this stronger signcryption security model.

Interestingly, the proof of CCA security for SC0
DH only relies on the simpler interactive Di�e-

Hellman assumption from Section 12.4.1, not the double-interactive assumption I2CDH that we
used in proving CCA-security for SCDH.

Theorem 13.11. SC0
DH is a secure signcryption scheme that provides forward secrecy assuming E

is an AE-secure cipher, the I2CDH assumption holds in G, and the hash function H is modeled as
a random oracle.

In particular, for every ciphertext integrity adversary Aci that attacks SC0
DH as in the random

oracle variant of Attack Game 13.5, there exists a ciphertext integrity adversary Bci that attacks
E as in Attack Game 9.1, and an I2CDH adversary Bdh for G, where Bs and Bdh are elementary
wrappers around Aci, such that

SCIadv[Aci, SCDH]  CIadv[Bci, E ] + I2CDHadv[Bdh,G].

In addition, for every CCA adversary Acca that attacks SCDH as in the random oracle variant
of Attack Game 13.6, there exists a 1CCA adversary B1cca that attacks E as in Definition 9.6,
and an ICDH adversary B0

dh for G, where Bs and B0
dh are elementary wrappers around Aci, such

that
SCCA0

adv[Acca, SCDH]  1CCAadv[B1cca, E ] + 2 · ICDHadv[B0
dh,G].

Proof idea. The proof of ciphertext integrity is very similar to the proof in Theorem 13.10. The
proof of CCA security with forward secrecy, where the adversary is given the sender’s secret key, is
almost identical to the proof of ElGamal CCA security (Theorem 12.4), together with the random
self reduction for CDH (see Exercise 10.4); as such, the ICDH assumption is su�cient for the proof.
2

Property II: non-repudiation. Suppose Alice encrypts a message m to Bob and obtains the
ciphertext c. The question is, does c, together with Bob’s secret key, provide Bob with enough
evidence to convince a third party that Alice actually sent the message m to Bob? We call this
property non-repudiation. We explained at the beginning of the chapter that such evidence is
inherently limited in its persuasive powers: Alice can simply claim that her secret key was stolen
from her and that someone else produced c, or she can deliberately leak her secret key in order to
repudiate c. Nevertheless, since non-repudiation may be required in some situations, we define it
and show how to construct signcryption schemes that provide it.

We define the non-repudiation property by slightly tweaking the ciphertext integrity game
(Attack Game 13.5). The goal is to ensure that ciphertext integrity is maintained even if the
adversary obtains the recipient’s secret key. The modified game is as follows:

Attack Game 13.9 (Ciphertext integrity with non-repudiation). The game is identical
to Attack Game 13.5 except that we change the setup step as follows: in addition to giving the
adversary the public keys pkS and pkR, the challenger gives the adversary the receiver’s secret key
skR. The corresponding advantage is denoted SCI0adv[A, SC]. 2

Definition 13.11. A signcryption scheme SC is said to provide non-repudiation, if for all
e�cient adversaries A, the value SCI0adv[A, SC] is negligible.
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Non-repudiation for encrypt-then-sign. The encrypt-then-sign construction provides non-
repudiation: the secret key skR is only used to decrypt ciphertexts and does not help in signing
anything. Indeed, in the concrete security bound given in Theorem 13.8, one can see that bound
on SCI advantage does not depend at all on the security of the signature scheme.

Non-repudiation for sign-then-encrypt. The same argument cannot be made for the sign-
then-encrypt construction. Observe that in the concrete security bound given in Theorem 13.9,
the bound on the SCCI advantage depends on both the security of the encryption scheme and the
signature scheme. In fact, it is easy to see that this scheme cannot provide non-repudiation as we
have defined it. Indeed, given the decryption key, one can always decrypt a ciphertext encrypting
(m, �) and then simply re-encrypt it, obtaining a di↵erent, but still valid, ciphertext.

Although sign-then-encrypt does not satisfy our definition of non-repudiation, it does satisfy
a weaker notion that corresponds to plaintext integrity, rather than ciphertext integrity. Roughly
speaking, this property corresponds to a modification of Attack Game 13.9 in which the winning
condition is changed: to win the game, it candidate forgery ĉ must decrypt to a message that was
never submitted as an S ! R encryption query. We leave it the reader to flesh out the details of
this definition, and to show that sign-then-encrypt satisfies this weaker notion of non-repudiation.
See also Exercise 9.15.

Non-repudiation for SCDH. The SCDH scheme does not provide non-repudiation, in a very
strong sense: the recipient can encrypt any message just as well as the sender. The same is true
for SC0

DH. Because of this property, both these schemes provide complete deniability — the sender
can always claim (correctly) that any ciphertext it generated could have been generated by the
receiver. In real-world settings this deniability property may be considered a feature rather than a
bug.

Summary. Forward secrecy is clearly a desirable property in real-world systems. Non-
repudiation, in the context of signcryption, is not usually needed, except for some niche applications.
In situations where forward secrecy is desirable, but non-repudiation is not, the SC0

DH scheme is a
very e�cient solution. In situations where both properties are needed, encrypt-then-sign is a safer
option than sign-then-encrypt, despite only providing a slightly weaker notion of CCA security, as
discussed above. Exercise 13.17 is a variation of encrypt-then-sign that is also an attractive option
to ensure both forward secrecy and non-repudiation.

13.8 Certificates and the public-key infrastructure

We next turn to one of the central applications of digital signatures, namely, their use in certificates
and public-key infrastructure. In its simplest form, a certificate is a blob of data that binds a public-
key to an identity. This binding is asserted by a third party called a certificate authority, or
simply a CA. We first discuss the mechanics of how certificates are issued and then discuss some
real-world complications in managing certificates — specifically, how to cope with misbehaving
CAs and how to revoke certificates.

Obtaining a certificate. Say Alice wishes to obtain a certificate for her domain alice.com. She
sends a certificate signing request (CSR) to the CA, that contains Alice’s identity, her email
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…

Figure 13.4: An example X.509 certificate

address, and the public key that she wishes to bind to her domain.
Once the CA receives the CSR, it checks that Alice is who she claims to be. In some cases this

check is as naive as sending a challenge email to Alice’s address and verifying that she can read the
email. In other cases this is done by requiring notarized documents proving Alice’s identity. We
emphasize that certifying Alice’s real-world identity is the primary service that the CA provides. If
all the checks succeed, the CA assembles the relevant data into a certificate structure, and signs it
using the CA’s secret signing key. The resulting signed blob is a certificate that binds the public key
in the CSR to Alice’s identity. Some CAs issue certificates for free, while others require payment
from Alice to issue a certificate.

The resulting signed certificate can be sent to anyone that needs to communicate securely with
Alice. Anyone who has the CA’s verification key can verify the certificate and gain some confidence
that the certified public key belongs to Alice.

X.509 certificates. Certificates are formatted according to a standard called X.509. Fig. 13.4
gives an example X.509 certificate that binds a public key to an entity identified in the subject
field. Here the entity happens to be Facebook Inc., and its public key is an (elliptic-curve) ElGamal
public key, shown on the right side of the figure. The certificate was issued by a CA called DigiCert
Inc., who used its RSA signing key to sign the certificate using the PKCS1 standard with SHA256
as the hash function. A portion of the CA’s signature is shown on the bottom right of the figure.
To verify this certificate one would need the public key for DigiCert Inc.

Every X.509 certificate has a serial number that plays a role in certificate revocation, as ex-
plained in Section 13.8.2 below. Certificates also have a validity window: a time when the certificate
becomes active, and a time when the certificate expires. A certificate is considered invalid outside
of its validity window, and should be rejected by the verifier. The validity window is typically one
or two years, but can be longer or shorter. For example, the certificate in Fig. 13.4 has a validity
window of about seventeen months. The reason for limiting certificate lifetime is to ensure that if
the private key is stolen by an attacker, that attacker can only abuse the key for a limited period
of time. The longer the validity window, the longer an attacker can abuse a stolen secret key. We
discuss this further is Section 13.8.2 where we discuss certificate revocation.
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A certificate issued by a CA can be verified by anyone who has that CA’s public key. If there
were only one CA in the world then everyone could store a copy of that CA’s public key and use
it to verify all certificates. However, a single global CA would not work well. First, every country
wants to run a CA for local businesses in its region. Second, to keep the price of certificates low, it
is best to enable multiple CAs to compete for the business of issuing certificates. Currently there
are thousands of active CAs issuing certificates.

Certificate chains. Since there are multiple CAs issuing certificates, and new ones can appear at
any time, the challenge is to distribute CA public keys to end-users who need to verify certificates.
The solution, called a certificate chain, is to allow one CA to certify the public key of another
CA. This process can repeat recursively, resulting in a chain of certificates where every certificate
in the chain certifies the public key of the next CA in the chain.

The public key of top level CAs, called root CAs, are pre-installed on all clients that need
to verify certificates. There are several hundred such root CAs that ship with every standard
operating system. A root CA can issue a certificate to an intermediate CA, and an intermediate
CA can issue a certificate to another intermediate CA. Continuing this way we obtain a chain of
certificates starting from the root and containing one or more intermediate CAs. Finally, the CA at
the bottom of the chain issues a client certificate for the end identity, such as Facebook in Fig. 13.4.

The certificate chain for the Facebook certificate is shown in Fig. 13.5. The root CA is DigiCert
Inc., but its secret key is kept o✏ine to reduce the risk of theft. The root secret key is only used for
one thing: to issue a certificate for an intermediate CA, that is also owned by DigiCert Inc. That
intermediate CA then uses its secret key to issue client certificates to customers like Facebook. If
the intermediate CA’s secret key is lost or stolen, the corresponding certificate can be revoked, and
the root CA can issue a new certificate for the intermediate CA.

To verify this certificate chain of length three, the verifier needs a local trusted copy of the
public key of the root CA. That public key lets the verifier check validity of the certificate issued
to the intermediate CA. If valid, it has some assurance that the intermediate CA can be trusted.
The verifier then checks validity of the certificate issued to Facebook by the intermediate CA. If
valid, the verifier has some assurance that it has the correct public key for Facebook.

Certificate chains and basic constraints. X.509 certificates contain many fields and we only
scratched the surface in our discussion above. In the context of certificate chains we mention
two fields that play an important security role. In Fig. 13.5 we saw that the certificate chain
issued to Facebook has length three. What is to prevent Facebook from behaving like a CA and
generating a certificate chain of length four for another identity, say alice.com? This certificate
chain, unbeknownst to Alice, would enable Facebook to impersonate alice.com and even eavesdrop
on tra�c to alice.com by acting as a “man in the middle,” similar to what we saw in Section 10.7.

The reason Facebook cannot issue certificates is because of a basic constraint field that every

Figure 13.5: An example certificate chain
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CA must embed in the certificates that it issues. This field, called the “CA” field, is set to true if
the entity being certified is allowed to act as a CA, and is set to false otherwise. For a certificate
chain of length ` to be valid, it must be the case that the top ` � 1 certificates in the chain have
their CA basic constraint set to true. If not, the chain must be rejected by the verifier. Facebook’s
certificate has its CA field set to “false,” preventing Facebook from acting as an intermediate CA.

Certificate validation includes many other such subtle checks, and is generally quite tricky to
implement correctly. Many systems that implement custom certificate validation were found to be
insecure [46], making them vulnerable to impersonation and man-in-the-middle attacks.

13.8.1 Coping with malicious or negligent certificate authorities

By now it should be clear that CAs have a lot of power. Any CA can issue a rogue certificate
and bind the wrong public key to Facebook. If left unchecked, a rogue certificate would enable an
adversary to mount a man-in-the-middle attack on tra�c to Facebook and eavesdrop on all tra�c
between Facebook and unsuspecting users. We will discuss these attacks in detail in Chapter 20
after we discuss the TLS session setup mechanism. Several commercial tools make this quite easy
to do in practice.

There are currently thousands of intermediate CAs operating on the Internet and all are trusted
to issue certificates. Due to the large number of CAs, it is not surprising that wrong certificates
are routinely discovered. Here is a small sample of incidents:

• Diginotar was a Dutch certificate authority that was hacked in 2011. The attacker obtained
a Diginotar signed certificate for *.google.com, and for many other domains, letting the
attacker mount a man-in-the-middle attack on all these domains. In response, major Web
browser vendors revoked trust in all certificates issued by the Diginotar CA, causing Diginotar
to declare bankruptcy in Sep. 2011.

• India NIC in 2013 erroneously issued certificates for several Google and Yahoo domains [65].
This intermediate CA was certified by India CCA, a root CA trusted by Microsoft Windows.
As a result, the Chrome browser no longer trusts certificates issued by India NIC. Further-
more, following this incident, the India CCA root CA is only trusted to issue certificates for
domains ending in .in, such as google.co.in.

• Verisign in 2001 erroneously issued a Microsoft code-signing certificate to an individual mas-
querading as a Microsoft employee [75]. This certificate enabled that individual to distribute
code that legitimately looked like it was written by Microsoft. In response, Microsoft issued
a Windows software patch that revoked trust in this certificate.

As we can see, many of these events are due to an erroneous process at the CA. Any time a certificate
is issued that binds a wrong public key to a domain, that certificate enables a man-in-the-middle
attack on the target domain. The end result is that the attacker can inspect and modify tra�c to
and from the victim domain.

The question then is how to identify and contain misbehaving CAs. We discuss two ideas below.

Certificate pinning. The reader must be wondering how the incidents mentioned above were
discovered in the first place. The answer is a mechanism called certificate pinning, which is
now widely supported by Web browsers. The basic idea is that browsers are pre-configured to
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know that the only CA authorized to issue certificates for the domain facebook.com is “DigiCert
SHA2 High Assurance Server CA,” as shown in Fig. 13.5. If a browser ever sees a certificate for
facebook.com that is issued by a di↵erent CA, it does two things: first, it treats the certificate
as invalid and closes the connection, and second, it optionally alerts an administrator at Facebook
that a rogue certificate was discovered. The incident discussed above, involving India NIC, was
discovered thanks to a certificate pin for gmail.com. Browsers in India alerted Google to the
existence of a rogue certificate chain for gmail.com. Google then took action to revoke the chain
and launch an investigation. The signatures in the rogue chain provide irrefutable evidence that
something went wrong at the issuing CA.

In more detail, certificate pinning works as follows. Every browser maintains a pinning database,
where, roughly speaking, every row in the database is a tuple of the form

(domain, hash0, hash1, . . .).

Each hashi is the output of a hash function (so for SHA256, a 32-byte string). The data for
each record is provided by the domain owner. Facebook, for example, provides the hashes for the
facebook.com domain.

When the browser connects to a domain using HTTPS, that domain sends its certificate chain
to the browser. If the domain is in the pinning database, the browser computes the hash of each
certificate in the chain. Let S be the resulting set of hash values. Let T be the set of hash values
in the pinning record for this domain. If the intersection of S and T is empty, the certificate chain
is rejected, and the browser optionally sends an alert to the domain administrator indicating that
a rogue certificate chain was encountered.

To see how this works, consider again the example chain in Fig. 13.5. The pinning record for
the domain facebook.com is just a single hash, namely the hash of the certificate for “DigiCert
SHA2 High Assurance Server CA.” In other words, the set T contains a single hash value. If the
browser encounters a certificate chain for facebook.com where none of the certificates in the chain
hash to the pinned value, the certificate chain is rejected. More generally, domains that purchase
certificates from multiple CAs include the hash of all those CA certificates in their pinning record.

Why does Facebook write the hash of its CA certificate in the Facebook pinning record? Why
not write the hash of the Facebook certificate from Fig. 13.4 in the pinning record? In fact,
writing the CA certificate in the pinning record seems insecure; it makes it possible for DigiCert to
issue a rogue certificate for facebook.com that will be accepted by browsers, despite the pinning
record. If instead, Facebook wrote the Facebook certificate in Fig. 13.4 as the only hash value in
the pinning record, then DigiCert would be unable to issue a rogue certificate for facebook.com.
The only certificate for facebook.com that browsers would accept would be the certificate in
Fig. 13.4. However, there is enormous risk in doing so. If Facebook somehow lost its own secret
key, then no browser in the world will be able to connect to facebook.com. Pinning the CA
certificate lets Facebook recover from key loss by simply asking DigiCert to issue a new certificate
for facebook.com. Thus, the risk of bringing down the site outweighs the security risk of DigiCert
issuing a rogue certificate. While losing the secret key may not be a concern for a large site like
Facebook, it is a significant concern for smaller sites who use certificate pinning.

Finally we mention that there are two mechanisms for creating a pinning record: static and
dynamic. Static pins are maintained by the browser vendor and shipped with the browser. Dynamic
pins allow a domain to declare its own pins via an HTTP header, sent from the server to the browser,
as follows:
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Public-Key-Pins: pin-sha256="hash"; max-age=expireTime

[; report-uri="reportURI"] [; includeSubDomains]

Here pin-sha256 is the hash value to pin to, max-age indicates when the browser will forget the
pin, and report-uri is an optional address where to report pin validation failures. The HTTP
header is accepted by the browser only if it is sent over an encrypted HTTPS session. The header is
ignored when sent over unencrypted HTTP. This prevents a network attacker from injecting invalid
pins.

Certificate transparency. A completely di↵erent approach to coping with misbehaving CAs
is based on public certificate logs. Suppose there existed a public certificate log that contained
a list of all the certificates ever issued. Then a company, like Facebook, could monitor the log
and learn when someone issues a rogue certificate for facebook.com. This idea, called certificate
transparency, is compelling, but is not easy to implement. How do we ensure that every certificate
ever issued is on the log? How do we ensure that the log is append-only so that a rogue certificate
cannot be removed from the log? How do we ensure that everyone in the world sees the same
version of the log?

Certificate transparency provides answers to all these questions. Here, we just sketch the
architecture. When a CA decides to support certificate transparency, it chooses one of the public
certificate logs and augments its certificate issuance procedure as follows: (1) before signing a new
certificate, the CA sends the certificate data to the log, (2) the log signs the certificate data and
sends back the signature, called a signed certificate timestamp (SCT), (3) the CA adds the
SCT as an extension to the certificate data and signs the resulting structure, to obtain the final
issued certificate. The SCT is embedded as an extension in the newly issued certificate.

The SCT is a promise by the certificate log to post the certificate to its log within a certain
time period, say one day. At noon every day, the certificate log appends all the new certificates it
received during that day to the log. It then computes a hash of the entire log and signs the hash
along with the current timestamp. The log data and the signature are made publicly available for
download by anyone.

The next piece of the architecture is a set of auditors that run all over the world and ensure
that the certificate logs are behaving honestly — they are posting to the log as required, and they
never remove data from the log. Every day the auditors download all the latest logs and their
signatures, and check that no certificates were removed from the logs. If they find that a certificate
on some day t is missing from the log on day t + 1, then the log signatures from days t and t + 1
are evidence that the certificate log is misbehaving.

Moreover, every auditor crawls the Internet looking for certificates. For each certificate that
contains an SCT extension, the auditor does an inclusion check: it verifies that the certificate
appears on the latest version of the log that the SCT points to. If not, then the signed SCT along
with the signed log, are evidence that the certificate log is misbehaving. This process ensures that
all deployed certificates with an SCT extension must appear on one of the logs; otherwise one of the
certificate logs is caught misbehaving. Anyone can run the auditor protocol. In particular, every
Web browser can optionally function as an auditor and run the inclusion check before choosing
to trust a certificate. If the inclusion check fails, the browser notifies the browser vendor who
can launch an investigation into the practices of the certificate log in question. We note that by
using a data structure, called a Merkle hash tree, the inclusion check can be done very e�ciently,
without having to download the entire log. We discuss Merkle hash trees and their applications in
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Section 8.9.
Unfortunately, auditing is not enough. A devious certificate log can misbehave in a way that

will not be caught by the auditing process above. Suppose that a CA issues a rogue certificate for
facebook.com and writes it to a certificate log, as required. Now, the certificate log creates two
signed versions of the log: one with the rogue certificate and one without. Whenever an auditor
downloads the log, it is given the version of the log with the rogue certificate. To the auditor, all
seems well. However, when Facebook reads the log to look for rogue facebook.com certificates,
it is given the version without the rogue certificate. This prevents Facebook from discovering the
rogue certificate, even though all the auditors believe that the certificate log is behaving honestly.
The architecture mitigates this attack in two ways. First, every certificate must be written to at
least two logs, so that both certificate logs must be corrupt for the attack to succeed. Second, there
is a broadcast mechanism in which the daily hash of all the logs is broadcast to all entities in the
system. A log that does not match the broadcast hash is simply ignored.

The final piece of the architecture is mandating certificate transparency on all CAs. At some
point in the future, browser vendors could decide to reject all certificates that do not have a valid
SCT from a trusted certificate log. This will e↵ectively force universal adoption of certificate
transparency by all CAs. At that point, if a rogue certificate is issued, it will be discovered on one
of the certificate logs and revoked. We note that many of the large CAs already support certificate
transparency.

13.8.2 Certificate revocation

We next look at the question of revoking certificates. The goal of certificate revocation is to ensure
that, after a certificate is revoked, all clients treat that certificate as invalid.

There are many reasons why a certificate may need to be revoked. The certificate could have
been issued in error, as discussed in the previous subsection. The private key corresponding to
the certificate may have been stolen, in which case the certificate owner will want to revoke the
certificate so it cannot be abused. This happens all the time; sites get hacked and their secrets are
stolen. One well-publicized example is the heartbleed event. Heartbleed is a bug in the OpenSSL
library that was introduced in 2012. The bug was publicly discovered and fixed in 2014, but during
those two years, from 2012 to 2014, a remote attacker could have easily extracted the secret key
from every server that used OpenSSL, by simply sending a particular malformed request to the
server. When the vulnerability was discovered in 2014, thousands of certificates had to be revoked
because of concern that the corresponding secret keys were compromised.

Given the need to revoke certificates, we next describe a few techniques to do so.

Short-lived certificates. Recall that every certificate has a validity period and the certificate
is no longer valid after its expiration date. Usually, when an entity like Facebook buys a one-year
certificate, the CA issues a certificate that expires a year after it was issued. Imagine that instead,
the CA generated 365 certificates, where each one is valid for exactly one day during that year.
All 365 certificates are for the same public key; the only di↵erence is the validity window. These
certificates are called short-lived certificates because each is valid for only one day.

The CA keeps all these certificates to itself, and releases each one at most a week before it
becomes valid. So, the certificate to be used on January 28 is made available on January 21, but no
sooner. Every day Facebook connects to a public site provided by the CA and fetches the certificate
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to be used a week later. This is a simple process to automate, and if anything goes wrong, there is
an entire week to fix the problem.

Now, when Facebook needs to revoke its certificate, it simply instructs the CA to stop releasing
short-lived certificates for its domain. This e↵ectively makes the stolen private key useless after
at most one week. If faster revocation is needed, the CA can be told to release each short-lived
certificate only an hour before it becomes valid, in which case the secret key becomes useless at
most 25 hours after it is revoked.

The use of short-lived certificates is the simplest and most practical technique for certificate
revocation available, yet it is not widely used. The next two techniques are more cumbersome, but
are the ones most often used by CAs.

Certificate revocation lists (CRLs). A very di↵erent approach is to have the CA collect all
certificate revocation requests from all its customers, and on a weekly basis issue a signed list of
all certificates that were revoked during that week. This list, called a certificate revocation list
(CRL), contains the serial numbers of all the certificates that were revoked during that week. The
list is signed by the CA.

Every certificate includes a special extension field called CRL Distribution Points, as shown
in Fig. 13.6. This field instructs the verifier where to obtain the CRL from the issuing CA. The
CA must run a public server that serves this list to anyone who asks for it.

When a client needs to validate a certificate, it is expected to download the CRL from the
CRL distribution point, and reject the certificate if its serial number appears in the CRL. For
performance reasons, the CRL has a validity period of, say one week, and the client can cache the
CRL for that period. As a result, it may take a week from the time a revocation request is issued
until all clients learn that the certificate has been revoked.

There are two significant di�culties with this approach. First, what should the client do if
the CRL server does not respond to a CRL download request? If the client were to accept the
certificate, then this opens up a very serious attack. An attacker can cause the client to accept a
revoked certificate by simply blocking its connection to the CRL server. Clearly the safe thing to
do is to reject the certificate; however, this is also problematic. It means that if the CRL server
run by Facebook’s CA were to accidentally crash, then no one could connect to Facebook until the
CA fixes the CRL server. As you can imagine, this does not go over well with Facebook.

A second di�culty with CRLs is that they force the client to download a large list of revoked
certificates that the client does not need. The client is only interested in learning the validity
status of a single certificate: the one it is trying to validate. The client does not need, and is not
interested in, the status of other certificates. This ine�ciency is addressed by a better mechanism
called OCSP, which we discuss next.

The online certificate status protocol (OCSP). A client that needs to validate a certificate
can use the OCSP protocol to query the CA about the status of that specific certificate. To make
this work, the CA includes an OCSP extension field in the certificate, as shown in Fig. 13.6. This
field tells the client where to send its OCSP query. In addition, the CA must setup a server, called
an OCSP responder, that responds to OCSP queries from clients.

When the client needs to validate a certificate, it sends the certificate’s serial number to the
OCSP responder. Roughly speaking, the responder sends back a signed message saying “valid” or
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…
Figure 13.6: The CRL and OCSP fields in the certificate from Fig. 13.4.

“invalid”. If “invalid” the client rejects the certificate. OCSP responses can be cached for, say a
week, and consequently revocation only takes e↵ect a week after a request is issued.

As with CRLs, it is not clear what the client should do when the OCSP responder simply does
not respond. Moreover, OCSP introduces yet another problem. Because a client, such as a Web
browser, sends to the CA the serial number of every certificate it encounters, the CA can e↵ectively
learn what web sites the user is visiting. This is a breach of user privacy. The problem can be
partially mitigated by an extension to OCSP, called OCSP stapling, but this extension is rarely
used.

13.9 Case study: legal aspects of digital signatures

While cryptographers say that a signature scheme is secure if it existentially unforgeable under
a chosen message attack, the legal standard for what constitutes a valid digital signature on an
electronic document is quite di↵erent. The legal definition tries to capture the notion of intent:
a signature is valid if the signer “intended” to sign the document. Here we briefly review a few
legislative e↵orts that try to articulate this notion. This discussion shows that a cryptographic
digital signature is very di↵erent from a legally binding electronic signature.

Electronic signatures in the United States. On June 30, 2000, the U.S. Congress enacted
the Electronic Signatures in Global and National Commerce Act, known as E-SIGN. The goal of
E-SIGN is to facilitate the use of electronic signatures in interstate and foreign commerce.

The U.S. statute of frauds requires that contracts for the sale of goods in excess of $500 be
signed. To be enforceable under U.S. law, E-SIGN requires that an electronic signature possess
three elements: (1) a symbol or sound, (2) attached to or logically associated with an electronic
record, and (3) made with the intent to sign the electronic record. Here we only discuss the
first element. The U.S. definition of electronic signatures recognizes that there are many di↵erent
methods by which one can sign an electronic record. Examples of electronic signatures that qualify
under E-SIGN include:

1. a name typed at the end of an e-mail message by the sender,

2. a digitized image of a handwritten signature that is attached to an electronic document,

3. a secret password or PIN to identify the sender to the recipient,

4. a mouse click, such as on an “I accept” button,
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5. a sound, such as the sound created by pressing ‘9’ on a phone,

6. a cryptographic digital signature.

Clearly, the first five examples are easily forgeable and thus provide little means of identifying
the signatory. However, recall that under U.S. law, signing a paper contract with an ‘X’ constitutes
a binding signature, as long as one can establish intent of the signatory to sign the contract. Hence,
the first five examples should be treated as the legal equivalent of signing with an ‘X’.

United nations treaty on electronic signatures. In November 2005 the United Nations
adopted its convention on the use of electronic communications in international contracts. The
signature requirements of the 2005 U.N. convention go beyond those required under E-SIGN. In
particular, the convention focuses on the issue of security, by requiring the use of a method that
(1) identifies the signer, and (2) is reliable. In particular, the convention observes that there is
a big di↵erence between an electronic signature that merely satisfies the basic requirements of
applicable U.S. law (e.g., a mouse click) and a trustworthy electronic signature. Thus, under the
U.N. convention a mouse click qualifies as a digital signature only if it allows the proponent to
ultimately prove “who” clicked, and to establish the intention behind the click.

European Community framework for electronic signatures. in December 1999 the Euro-
pean Parliament adopted the Electronic Signatures Directive. The directive addresses three forms
of electronic signatures. The first can be as simple as signing an e-mail message with a person’s
name or using a PIN-code. The second is called the “advanced electronic signature” (AES). The
directive is technology neutral but, in practice, AES refers mainly to a cryptographic digital signa-
ture based on a public key infrastructure (PKI). An AES is considered to be more secure, and thus
enjoys greater legal acceptability. An electronic signature qualifies as an AES if it is: (1) uniquely
linked to the signatory, (2) capable of identifying the signatory, (3) created using means that the
signatory can maintain under his sole control, and (4) is linked to the data to which it relates in
such a manner that any subsequent change of the data is detectable.

13.10 A fun application: private information retrieval

To be written.

13.11 Notes

Citations to the literature to be added.

13.12 Exercises

13.1 (Multi-key signature security). Just as we did for secure MACs in Exercise 6.3, show
that security in the single-key signature setting implies security in the multi-key signature setting.

(a) Show how to extend Attack Game 13.1 so that an attacker can submit signing queries with
respect to several signing keys. This is analogous to the multi-key generalization described
in Exercise 6.3.
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(b) Show that every e�cient adversary A that wins your multi-key attack game with probability ✏
can be transformed into an e�cient adversary B that wins Attack Game 13.1 with probability
✏/Q. The proof uses the same “plug-and-pray” technique as in Exercise 6.3.

13.2 (Non-binding signatures). In Section 13.1.1 we mentioned that secure signatures can be
non-binding: for a given (pk , sk), the signer can find two distinct messages m0 and m1 where the
same signature � is valid for both messages under pk . We explained that this can cause problems.
Give an example of a secure signature that is non-binding.

Hint: Consider using the hash-and-sign paradigm of Section 13.2, but with the collision resistant
hash functions discussed in Exercise 10.26.

13.3 (DSKS attack on RSA). Let us show show that SFDH is vulnerable to the DSKS attack
discussed in Section 13.1.1. Let (n, e) be Alice’s public key and � 2 Zn be a signature on some
message m. Then �e = H(m) in Zn. Show that an adversary can e�ciently come up with a
new public key pk 0 = (n0, e0) and the corresponding secret key, such that (m, �) is valid message-
signature pair with respect to pk 0.

Hint: We show in Section 15.2.2 that for some primes p, the discrete-log problem in Z⇤
p can be

solved e�ciently. For example, when p = 2` + 1 is prime, and ` is poly-bounded, the discrete-log
problem in Z⇤

p is easy. Show that by forming n0 as a product of two such primes, the adversary can

come up with an e0 such that �(e0) = H(m) in Zn0 .

13.4 (Preventing DSKS attacks). In this exercise we explore a general defense against DSKS
vulnerabilities discussed in Section 13.1.1.

(a) Define a security game capturing the fact that a signature scheme is secure against DSKS
attacks: the attacker mounts a chosen message attack on some pk and wins if it outputs a
(pk 0, sk 0), where pk 0 6= pk , such that at least one of the given message-signature pairs verifies
under pk 0. Moreover, sk 0 is a valid signing key for pk 0 (assume that you have an algorithm
T (pk 0, sk 0) that returns accept only when sk 0 is a valid signing key for pk 0).

(b) In Section 13.1.1 we describe a general approach to immunizing existentially unforgeable
signature schemes against DSKS attacks. Prove that this approach satisfies the security
definition from part (a).

13.5 (Derandomizing signatures). Let S = (G, S, V ) be a secure signature scheme defined over
(M, ⌃), where the signing algorithm S is probabilistic. In particular, algorithm S uses randomness
chosen from a space R. We let S(sk , m; r) denote the execution of algorithm S with randomness
r. Let F be a secure PRF defined over (K, M, R). Show that the following signature scheme
S 0 = (G0, S0, V ) is secure:

G0() :=
�

(pk , sk) R G(), k  R K, sk 0 := (sk , k), output (pk , sk 0)
 

;

S0(sk 0, m) := {r  F (k, m), �  S(sk , m; r), output �} .

Now the signing algorithm for S 0 is deterministic.

13.6 (Extending the domain using enhanced TCR). In Exercise 8.26 we defined the notion
of an enhanced-TCR. Show how to use an enhanced-TCR to e�ciently extend the domain of a
signature. In particular, let H be an enhanced-TCR defined over (KH , M, X ) and let S = (G, S, V )
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be a secure signature scheme with message space X . Show that S 0 = (G, S0, V 0) is a secure signature
scheme:

S0(pk , m) :=
�

r  R KH , �  S
�

sk , H(r, m)
�

, output (�, r)
 

;

V 0�pk , m, (�, r)
�

:= { accept if � = V (pk , H(r, m))} .

The benefit over the construction in Section 13.2.1 is that r is not part of the message given to the
signing procedure.

13.7 (FDH variant). Show that the signature scheme S 0
RSA-FDH (defined in Section 13.5) is no

less secure than the signature scheme SRSA-FDH (defined in Section 13.3.1). You should show that
if A is an adversary that succeeds with probability ✏ in breaking S 0

RSA-FDH (which has message
space M), then there exists an adversary B (whose running time is roughly the same as that of
A) that succeeds with probability ✏ in breaking SRSA-FDH (with message space M0 = {0, 1}⇥M).
This should hold for any hash function H.

13.8 (Probabilistic full domain hash). Consider the following signature scheme S = (G, S, V )
with message space M, and using a hash function H : M⇥R! Zn:

G() := {(n, d) R RSAGen(`, e), pk := (n, e), sk := (n, d), output (pk , sk)} ;

S(sk , m) :=
n

r  R R, y  H(m, r), �  yd 2 Zn, output (�, r)
o

;

V
�

pk , m, (�, r)
�

:= {y  H(m, r), accept if y = �e and reject otherwise} .

Show that this signature is secure if the RSA assumption holds for (`, e), the quantity 1/|R| is
negligible, and H is modeled as a random oracle. Moreover, the reduction to inverting RSA is
tight.

Discussion: While S 0
RSA-FDH, from Section 13.5, also has a tight reduction, the construction here

does not use a PRF. The cost is that signatures are longer because r is included in the signature.

13.9 (Batch RSA). Let us show how to speed up signature generation in SRSA-FDH.

(a) Let n = pq such that neither 3 nor 5 divide (p� 1)(q � 1). We are given p, q and y1, y2 2 Zn.

Show how to compute both x1 := y1/31 2 Zn and x2 := y1/52 2 Zn by just computing the
15th root of t := (y1)5(y2)3 2 Zn and doing a bit of extra arithmetic. In other words, show
that given t1/15 2 Zn, it is possible to compute both x1 and x2 using a constant number of
arithmetic operations in Zn.

(b) Describe an algorithm for computing a 15th root in Zn using a single exponentiation, for n
as in part (a).

(c) Explain how to use parts (a) and (b) to speed up the SRSA-FDH signature algorithm. Specif-
ically, show that the signer can sign two messages at once using about the same work as
signing a single message. The first message will be signed under the public key (n, 3) and the
other under the public key (n, 5). This method generalizes to fast RSA signature generation
in larger batches.

13.10 (Signature with message recovery). Let T = (G, F, I) be a one-way trapdoor permu-
tation defined over X := {0, 1}n. Let R := {0, 1}` and U := {0, 1}n�`, for some 0 < ` < n. Let H
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be a hash function defined over (M ⇥ U , R), and let W be a hash function defined over (R, U).
Consider the following signature scheme S = (G, S, V ) defined over (M⇥ U , X ) where

S
�

sk , (m0, m1)
�

:=

⇢

h H(m0, m1), �  I
�

sk , h k (W (h)�m1)
�

, output �

�

(a) Explain how the verification algorithm works.

(b) Show that the scheme is secure assuming T is one-way, 1/|R| is negligible, and H and W are
modeled as random oracles.

(c) Show that just given (m0, �), where � is a valid signature on the message (m0, m1), it is
possible to recover m1. A signature scheme that has this property is called a signature
with message recovery. It lets the signer send shorter transmissions: the signer need only
transmit (m0, �) and the recipient can recover m1 by itself. This can somewhat mitigate the
cost of long signatures with RSA.

(d) Can the technique of Section 13.5 be used to provide a tight security reduction for this
construction?

13.11 (An insecure signature with message recovery). Let T = (G, F, I) be a one-way
trapdoor permutation defined over X := {0, 1}n. Let H be a hash function defined over (M0, X ).
Consider the following signature scheme S = (G, S, V ) defined over (M0 ⇥ X , X ) where

S
�

sk , (m0, m1)
�

:=
�

�  I(sk , H(m0)�m1), output �
 

V
�

pk , (m0, m1), �
�

:=
�

y  F (pk , �), accept if y = H(m0)�m1 and reject otherwise
 

(a) Show that just given (m0, �), where � is a valid signature on the message (m0, m1), it is
possible to recover m1.

(b) Show that this signature scheme is insecure, even when T is one-way and H is modeled as a
random oracle. You may assume that algorithm I has the following property: for all (sk , pk)
output by G, and all x 2 X , given only I(sk , x) as input, one can easily compute I(sk , x�1n).

13.12 (Blind signatures). At the end of Section 13.3.1 we mentioned the RSA signatures can
be adapted to give blind signatures. A blind signature scheme lets one party, Alice, obtain a
signature on a message m from Bob, so that Bob learns nothing about m. Blind signatures are
used in e-cash systems and anonymous voting systems.

Let (n, d) R RSAGen(`, e) and set (n, e) as Bob’s RSA public key and (n, d) as his corresponding
private key. As usual, let H : M ! Zn be a hash function. Alice wants Bob to sign a message
m 2M. They engage in the following three-message protocol:

(1) Alice chooses r  R Zn, sets m0  H(m) · re 2 Zn, and sends m0 to Bob,
(2) Bob computes �0  (m0)d 2 Zn and sends �0 to Alice,
(3) Alice computes the signature � on m as �  �0/r 2 Zn.

Equation (13.4) shows that � is a valid signature on m. Observe that in this process Bob sees a
random message m0 in Zn that is independent of m. As such, he learns nothing about m.
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(a) We say that a blind signature protocol is secure if the adversary, given a public key and the
ability to request Q blind signatures on messages of his choice, cannot produce Q + 1 valid
message-signature pairs. Write out the precise definition of security.

(b) Show that the RSA blind signature is secure assuming the RSA assumption holds for (`, e),
and H is modeled as a random oracle.

13.13 (Threshold RSA signatures). In Exercise 11.16 we showed how a secret RSA decryption
key can be split into three shares, so that two shares are needed to decrypt a given ciphertext,
but a single share reveals nothing. In this exercise we show that the same can be done for RSA
signatures, namely two shares are needed to generate a signature, but one share reveals nothing.

(a) Define what is a threshold signature scheme by adapting Definition 11.6 to the context of
signature schemes. Then adapt Attack Game 11.4, used to define security for threshold
decryption, to define secure threshold signatures.

(b) Use Exercise 11.16 to construct a 2-out-of-3 threshold RSA signature scheme.

(c) Prove that your scheme from part (b) satisfies the security definition from part (a).

13.14 (Insecure signcryption). Let E = (GE, E, D) be a CCA-secure public-key encryption
scheme with associated data and let S = (GS, S, V ) be a strongly secure signature scheme. Define
algorithm G as in Section 13.7.3. Show that the following encrypt-then-sign signcryption scheme
(G, E0, D0) is insecure:

E0(skS, idS, pkR, idR, m) := c R E
�

pkR, m, idR
�

, �  R S
�

skS, (c, idS)
�

output (c, �)

D0�pkS, idS, skR, idR, (c, �)
�

:= if V (pkS, (c, idS), �) = reject, output reject

otherwise, output D(skR, c, idR)

13.15 (The iMessage attack). Let E = (GE, E, D) be a CCA-secure public-key encryption
scheme and let S = (GS, S, V ) be a strongly secure signature scheme. Let (Esym, Dsym) be a
symmetric cipher with key space K that implements deterministic counter mode. Define algorithm
G as in Section 13.7.3. Consider the following encrypt-then-sign signcryption scheme (G, E0, D0):

E0(skS, idS, pkR, idR, m) := k  R K, c1  Esym
�

k, (idS, m)
�

, c0  R E(pkR, k)
�  R S

�

skS, (c0, c1, idR)
�

output (c0, c1, �)

D0�pkS, idS, skR, idR, (c0, c1, �)
�

:= if V (pkS, (c0, c1, idR), �) = reject, output reject

k  D(skR, c0), (id , m) Dsym(k, c1)
if id 6= idS output reject

otherwise, output m

Because the symmetric ciphertext c1 is part of the data being signed by the sender, the designers
assumed that there is no need to use an AE cipher and that deterministic counter mode is su�cient.
Show that this system is an insecure signcryption scheme by giving a CCA attack. At one point, a
variant of this scheme was used by Apple’s iMessage system and this lead to a significant breach of
iMessage [43]. Because every plaintext message m included a checksum (CRC), an adversary could
decrypt arbitrary encrypted messages using a chopchop-like attack (Exercise 9.5).
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13.16 (Signcryption: statically vs adaptively chosen user IDs). In the discussion following
Definition 13.8, we briefly discussed the possibility of a more robust security definition in which
the adversary is allowed to choose the sender and receiver user IDs adaptively, after seeing one or
both of the public keys, or even after seeing the response to one or more X! Y queries.

(a) Work out the details of this more robust definition, defining corresponding SCI and SCCA
attack games.

(b) Give an example of a signcryption scheme that satisfies Definition 13.8 but does not satisfy
your more robust definition. To this end, you should start with a scheme that satisfies Defi-
nition 13.8, and then “sabotage” the scheme somehow so that it still satisfies Definition 13.8,
but no longer satisfies your more robust definition. You may make use of any other standard
cryptographic primitives, as convenient.

13.17 (Signcryption: encrypt-and-sign-then-sign). In this exercise, we develop a varia-
tion on encrypt-then-sign called encrypt-and-sign-then-sign. As does the scheme SCEtS, this new
scheme, denoted SCEaStS, makes use of a public-key encryption scheme with associated data
E = (GENC, E, D), and a signature scheme S = (GSIG, S, V ). Key generation for SCEaStS is identical
to that in SCEtS. However, SCEaStS makes use of another signature scheme S 0 = (G0

SIG, S0, V 0). The
encryption algorithm EEaStS(skS, idS, pkR, idR, m) runs as follows:

(pk 0, sk 0) R G0
SIG, c R E(pkR, m, pk 0), �  R S(skS, pk

0),
�0  R S0(sk 0, (c, �, idS, idR)), output (pk 0, c, �, �0)

The decryption algorithm DEaStS(pkS, idS, skR, idR, (pk 0, c, �, �0)) runs as follows:

if V (pkS, pk
0, �) = reject or V 0(pk 0, (c, �, idS, idR), �0) = reject

then output reject

else output D(skR, c, pk 0)

Here, the value ephemeral public verification key pk 0 is used as associated data for the encryption
scheme E .

Your task is to show that SCEaStS is a secure signcryption scheme that provides both forward
secrecy and non-repudiation, under the following assumptions: (i) E is CCA secure; (ii) S is secure
(not necessarily strongly secure); (iii) S 0 is strongly secure (just against 1-query adversaries).

Discussion: Note that we have to run the key generation algorithm S 0 every time we encrypt,
thereby generating an ephemeral signing key that is only used to sign a single message. The fact
that we only need security against 1-query adversaries means that it is possible to very e�ciently
implement S 0 under reasonable assumptions. This is the topic of the next chapter.

Another feature is that in algorithm EEaStS, we can run algorithms E and S in parallel; more-
over, we can even run algorithms G0

SIG and S before algorithm EEaStS is invoked (as discussed in
Section 14.4.1). Similarly, in algorithm DEaStS, we can run algorithms V , V 0, and D in parallel.
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Appendix A

Basic number theory

A.1 Cyclic groups

Notation: for a finite cyclic group G we let G⇤ denote the set of generators of G.

A.2 Arithmetic modulo primes

A.2.1 Basic concepts

We use the letters p and q to denote prime numbers. We will be using large primes, e.g. on the
order of 300 digits (1024 bits).

1. For a prime p let Zp = {0, 1, 2, . . . , p� 1}.
Elements of Zp can be added modulo p and multiplied modulo p. For x, y 2 Zp we write x+y
and x · y to denote the sum and product of x and y modulo p.

2. Fermat’s theorem: gp�1 = 1 for all 0 6= g 2 Zp

Example: 34 mod 5 = 81 mod 5 = 1

3. The inverse of x 2 Zp is an element a satisfying a · x = 1.
The inverse of x in Zp is denoted by x�1.
Example: 1. 3�1 in Z5 is 2 since 2 · 3 = 1 mod 5.

2. 2�1 in Zp is p+1
2 .

4. All elements x 2 Zp except for x = 0 are invertible.
Simple (but ine�cient) inversion algorithm: x�1 = xp�2 mod p.
Indeed, xp�2 · x = xp�1 = 1 mod p.

5. We denote by Z⇤
p the set of invertible elements in Zp. Then Z⇤

p = {1, 2, . . . , p� 1}.

6. We now have algorithm for solving linear equations in Zp: a · x = b.
Solution: x = b · a�1 = b · ap�2.
What about an algorithm for solving quadratic equations?
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A.2.2 Structure of Z⇤
p

1. Z⇤
p is a cyclic group.

In other words, there exists g 2 Z⇤
p such that Z⇤

p = {1, g, g2, g3, . . . , gp�2}.
Such a g is called a generator of Z⇤

p.
Example: in Z⇤

7: h3i = {1, 3, 32, 33, 34, 35, 36} = {1, 3, 2, 6, 4, 5} (mod 7) = Z⇤
7.

2. Not every element of Z⇤
p is a generator.

Example: in Z⇤
7 we have h2i = {1, 2, 4} 6= Z⇤

7.

3. The order of g 2 Z⇤
p is the smallest positive integer a such that ga = 1.

The order of g 2 Z⇤
p is denoted orderp(g).

Example: order7(3) = 6 and order7(2) = 3.

4. Lagrange’s theorem: for all g 2 Z⇤
p we have that orderp(g) divides p � 1. Observe that

Fermat’s theorem is a simple corollary:
for g 2 Z⇤

p we have gp�1 = (gorder(g))(p�1)/order(g) = (1)(p�1)/order(g) = 1.

5. If the factorization of p� 1 is known then there is a simple and e�cient algorithm to
determine orderp(g) for any g 2 Z⇤

p.

A.2.3 Quadratic residues

1. The square root of x 2 Zp is a number y 2 Zp such that y2 = x mod p.
Example: 1.

p
2 in Z7 is 3 since 32 = 2 mod 7.

2.
p

3 in Z7 does not exist.

2. An element x 2 Z⇤
p is called a Quadratic Residue (QR for short) if it has a square root in Zp.

3. How many square roots does x 2 Zp have?
If x2 = y2 in Zp then 0 = x2 � y2 = (x� y)(x + y).
Zp is an “integral domain” which implies that x� y = 0 or x + y = 0, namely x = ±y.
Hence, elements in Zp have either zero square roots or two square roots.
If a is the square root of x then �a is also a square root of x in Zp.

4. Euler’s theorem: x 2 Zp is a QR if and only if x(p�1)/2 = 1.
Example: 2(7�1)/2 = 1 in Z7 but 3(7�1)/2 = �1 in Z7.

5. Let g 2 Z⇤
p. Then a = g(p�1)/2 is a square root of 1. Indeed, a2 = gp�1 = 1 in Zp.

Square roots of 1 in Zp are 1 and �1.
Hence, for g 2 Z⇤

p we know that g(p�1)/2 is 1 or �1.

6. Legendre symbol: for x 2 Zp define
⇣

x
p

⌘

:=

8

<

:

1 if x is a QR in Zp

�1 if x is not a QR in Zp

0 if x = 0 mod p
.

7. By Euler’s theorem we know that
⇣

x
p

⌘

= x(p�1)/2 in Zp.

=) the Legendre symbol can be e�ciently computed.
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8. Easy fact: let g be a generator of Z⇤
p. Let x = gr for some integer r.

Then x is a QR in Zp if and only if r is even.
=) the Legendre symbol reveals the parity of r.

9. Since x = gr is a QR if and only if r is even it follows that exactly half the elements of Zp

are QR’s.

10. When p = 3 mod 4 computing square roots of x 2 Zp is easy.
Simply compute a = x(p+1)/4 in Zp.
a =
p

x since a2 = x(p+1)/2 = x · x(p�1)/2 = x · 1 = x in Zp.

11. When p = 1 mod 4 computing square roots in Zp is possible but somewhat more complicated;
it requires a randomized algorithm.

12. We now have an algorithm for solving quadratic equations in Zp.
We know that if a solution to ax2 + bx + c = 0 mod p exists then it is given by:

x1,2 =
�b ±pb2 � 4ac

2a

in Zp. Hence, the equation has a solution in Zp if and only if � = b2 � 4ac is a QR in Zp.
Using our algorithm for taking square roots in Zp we can find

p
� mod p and recover x1 and

x2.

13. What about cubic equations in Zp? There exists an e�cient randomized algorithm that solves
any equation of degree d in time polynomial in d.

A.2.4 Computing in Zp

1. Since p is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.

2. Elements of Zp are stored in buckets where each bucket is 32 or 64 bits long depending on
the processor’s chip size.

3. Adding two elements x, y 2 Zp can be done in linear time in the length of p.

4. Multiplying two elements x, y 2 Zp can be done in quadratic time in the length of p. If p is
n bits long, better algorithms work in time O(n1.7) (rather than O(n2)).

5. Inverting an element x 2 Zp can be done in quadratic time in the length of p.

6. Using the repeated squaring algorithm, xr mod p can be computed in time (log2 r)O(n2)
where p is n bits long. Note, the algorithm takes linear time in the length of r.

A.2.5 Summary: arithmetic modulo primes

Let p be a 1024 bit prime. Easy problems in Zp:

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod p is easy even if r is very large.
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3. Inverting an element. Solving linear systems.

4. Testing if an element is a QR and computing its square root if it is a QR.

5. Solving polynomial equations of degree d can be done in polynomial time in d.

Problems that are believed to be hard in Zp:

1. Let g be a generator of Z⇤
p. Given x 2 Z⇤

p find an r such that x = gr mod p. This is known
as the discrete log problem.

2. Let g be a generator of Z⇤
p. Given x, y 2 Z⇤

p where x = gr1 and y = gr2 . Find z = gr1r2 . This
is known as the Di�e-Hellman problem.

A.3 Arithmetic modulo composites

We are dealing with integers n on the order of 300 digits long, (1024 bits). Unless otherwise stated,
we assume that n is the product of two equal size primes, e.g. on the order of 150 digits each (512
bits).

1. For a composite n let Zn = {0, 1, 2, . . . , n� 1}.
Elements of Zn can be added and multiplied modulo n.

2. The inverse of x 2 Zn is an element y 2 Zn such that x · y = 1 mod n.
An element x 2 Zn has an inverse if and only if x and n are relatively prime. In other words,
gcd(x, n) = 1.

3. Elements of Zn can be e�ciently inverted using Euclid’s algorithm. If gcd(x, n) = 1 then
using Euclid’s algorithm it is possible to e�ciently construct two integers a, b 2 Z such that
ax + bn = 1. Reducing this relation modulo n leads to ax = 1 mod n. Hence a = x�1 mod n.
note: this inversion algorithm also works in Zp for a prime p and is more e�cient than
inverting x by computing xp�2 mod p.

4. We let Z⇤
n denote the set of invertible elements in Zn.

5. We now have an algorithm for solving linear equations: a · x = b mod n.
Solution: x = b · a�1 where a�1 is computed using Euclid’s algorithm.

6. How many elements are in Z⇤
n? We denote by '(n) the number of elements in Z⇤

n. We already
know that '(p) = p� 1 for a prime p.

7. One can show that if n = pe11 · · · pemm then '(n) = n ·Qm
i=1

⇣

1� 1
p
i

⌘

.

In particular, when n = pq we have that '(n) = (p� 1)(q � 1) = n� p� q + 1.
Example: '(15) =

�

�{1, 2, 4, 7, 8, 11, 13, 14}�� = 8 = 2 ⇤ 4.

8. Euler’s theorem: all a 2 Z⇤
n satisfy a'(n) = 1 in Zn.

note: For primes p Euler’s theorem implies that a'(p) = ap�1 = 1 for all a 2 Z⇤
p. Hence,

Euler’s theorem is a generalization of Fermat’s theorem.
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Structure of Zn

Theorem A.1 (Chinese Remainder Theorem (CRT)). state theorem

Summary

Let n be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in Zn:

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod n is easy even if r is very large.

3. Inverting an element. Solving linear systems.

Problems that are believed to be hard if the factorization of n is unknown, but become easy if the
factorization of n is known:

1. Finding the prime factors of n.

2. Testing if an element is a QR in Zn.

3. Computing the square root of a QR in Zn. This is provably as hard as factoring n. When the
factorization of n = pq is known one computes the square root of x 2 Z⇤

n by first computing
the square root in Zp of x mod p and the square root in Zq of x mod q and then using the
CRT to obtain the square root of x in Zn.

4. Computing e’th roots modulo n when gcd(e, '(n)) = 1.

5. More generally, solving polynomial equations of degree d > 1. This problem is easy if the
factorization of n is known: one first finds the roots of the polynomial equation modulo the
prime factors of n and then uses the CRT to obtain the roots in Zn.

Problems that are believed to be hard in Zn:

1. Let g be a generator of Z⇤
n. Given x 2 Z⇤

n find an r such that x = gr mod n. This is known
as the discrete log problem.

2. Let g be a generator of Z⇤
n. Given x, y 2 Z⇤

n where x = gr1 and y = gr2 . Find z = gr1r2 . This
is known as the Di�e-Hellman problem.
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Appendix B

Basic probability theory

Includes a description of statistical distance.

B.1 Birthday Paradox

Theorem B.1. Let M be a set of size n and let X1, . . . , Xk be k independent random variables
uniform in M. Let C be the event that for some distinct i, j 2 {1, . . . , k} we have that Xi = Xj.
Then

(i) Pr[C] � 1� e�k(k�1)/2n � min
nk(k � 1)

4n
, 0.63

o

, and

(ii) Pr[C]  1� e�k(k�1)/n when k < n/2.

Proof. These all follow easily from the inequality

1� x  e�x  1� x/2,

which holds for all x 2 [0, 1]. 2

Most frequently we will use the lower bound to say that a collision happens with at least a
certain probability. But occasionally we will use the upper bound to argue that collisions do not
happen.

It is well documented that birthdays are not really uniform throughout the year. For example,
in the U.S. the percentage of births in September is higher than in any other month. We show next
that this non-uniformity only increases the probability of collision.

We present a stronger version of the birthday paradox that applies to independent random
variables that are not necessarily uniform in M. We do, however, require that all random variables
are identically distributed. Such random variables are called i.i.d (independent and identically
distributed). This version of the birthday paradox is due to Blom [Blom, D. (1973), ”A birthday
problem”, American Mathematical Monthly, vol. 80, pp. 1141-1142].

Corollary B.2. Let M be a set of size n and let X1, . . . , Xk be k i.i.d random variables over M
where k � 2. Let C be the event that for some distinct i, j 2 {1, . . . , k} we have that Xi = Xj.
Then

Pr[C] � 1� e�k(k�1)/2n � min
nk(k � 1)

4n
, 0.63

o

.
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The graph shows that collision probability for n = 106 elements and k ranging from one sample to
5000 samples. It illustrates the threshold phenomenon around the square root. At the square root,p

n = 1000, the collision probability is about 0.4. Already at 4
p

n = 4000 the collision probability
is almost 1. At 0.5

p
n = 500 the collision probability is small.

Figure B.1: Birthday Paradox

Proof. Let X be a random variable distributed as X1. Let M = {a1, . . . , an} and let pi = Pr[X =
ai]. Let I be the set of all k-tuples over M containing distinct elements. Then I contains

�n
k

�

k!
tuples. Since the variables are independent we have that:

Pr[¬C] =
X

(b1,...,b
k

)2I
Pr[X1 = b1 ^ . . . ^Xk = bk] =

X

(b1,...,b
k

)2I

k
Y

j=1

pb
j

(B.1)

We show that this sum is maximized when p1 = p2 = . . . = pn = 1/n. This will mean that the
probability of collision is minimized when all the variables are uniform. The Corollary will then
follow from Theorem B.1.

Suppose some pi is not 1/n, say pi < 1/n. Since
Pn

j=1 pi = 1 there must be another pj such
that pj > 1/n. Let ✏ = min((1/n) � pi, pj � 1/n) and note that pj � pi > ✏. We show that
replacing pi by pi + ✏ and pj by pj � ✏ increases the value of the sum in (B.1). Clearly, the resulting
p1, . . . , pn still sum to 1. Hence, the resulting p1, . . . , pn form a distribution over M in which there
is one less value that is not 1/n. Furthermore, the probability of no collision in this distribution is
greater than in the unmodified distribution. Repeating this replacement process at most n times
will show that the sum is maximized when all the pi’s are equal to 1/n. Again, this means that the
probability of not getting a collision is maximized when the variables are uniform.

Now, consider the sum in (B.1). There are four types of terms. First, there are terms that
do not contain either pi or pj . These terms are una↵ected by the change to pi and pj . Second,
there are terms that contain exactly one of pi or pj . These terms pair up. For every k-tuple that
contains i but not j there is a corresponding tuple that contains j but not i. Then the sum of the
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corresponding two terms in (B.1) looks like A(pi + ✏) + A(pj � ✏) for some A 2 [0, 1]. Since this
equals Api + Apj the sum of these two terms is not a↵ected by the change to pi and pj . Finally,
there are terms in (B.1) that contain both pi and pj . These terms change by

B(pi + ✏)(pj � ✏)�Bpipj = B[✏(pj � pi)� ✏2]

for some B 2 [0, 1]. By definition of ✏ we know that pj � pi > ✏ and therefore ✏(pj � pi) � ✏2 > 0.
Hence, the sum with modified pi and pj is larger than the sum with the unmodified values.

Overall, we proved that the modification to pi and pj increases the value of the sum in (B.1),
as required. This completes the proof of the Corollary. 2

B.1.1 More collision bounds

Consider the sequence xi  f(xi�1) for a random function f : X ! X . Analyze the cycle time of
this walk (needed for Pollard). Now, consider the same sequence for a permutation ⇡ : X ! X .
Analyze the cycle time (needed for analysis of SecurID identification).

B.1.2 A simple distinguisher

We describe a simple algorithm that distinguishes two distributions on strings in {0, 1}n. Let
X1, . . . , Xn and Y1, . . . , Yn be independent random variables taking values in {0, 1}. Then

X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn)

are elements of {0, 1}n. Suppose, that for i = 1, . . . , n we have

Pr[Xi = 1] = p and Pr[Yi = 1] = (1 + 2✏) · p

for some p 2 [0, 1] and some small ✏ > 0 so that (1+2✏) · p  1. Then X and Y induce two distinct
distributions on {0, 1}n.

We are given an n-bit string T and are told that it is either sampled according to the distribu-
tion X or the distribution Y , so that both p and ✏ are known to us. Our goal is to decide which
distribution T was sampled from. Consider the following simple algorithm A:

input: T = (t1, . . . , tn) 2 {0, 1}n
output: 1 if T is sampled from X and 0 otherwise

s (1/n) ·Pn
i=1 ti

if s > p · (1 + ✏) output 0 else output 1

We are primarily interested in the quantity

� :=
�

�Pr[A(Tx) = 1]� Pr[A(Ty) = 1]
�

� 2 [0, 1]

where Tx  R X and Ty  R Y . This quantity captures how well A distinguishes the distributions X
and Y . For a good distinguisher � will be close to 1. For a weak distinguisher � will be close to 0.
The following theorem shows that when n is about 1/(p✏2) then � is about 1/2.

Theorem B.3. For all p 2 [0, 1] and ✏ < 0.3, if n = 4d1/(p✏2)e then � > 0.5
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Proof. The proof follows directly from the Cherno↵ bound. When T is sampled from X the Cherno↵
bound implies that

Pr[A(Tx) = 1] = Pr[s > p(1 + ✏)]  e�n·(p✏2/2)  e�2  0.135

When T is sampled from Y then the Cherno↵ bound implies that

Pr[A(Ty) = 0] = Pr[s < p(1 + ✏)]  e�n·(p✏2/4)  e�1  0.368

Hence, � > |(1� 0.368)� 0.135| = 0.503 and the bound follows. 2
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Appendix C

Basic complexity theory

To be written.
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Appendix D

Probabilistic algorithms

To be written.
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